
Faculty of Electrical Engineering

Department of Computer Science

Master’s thesis

Lower Bound Estimates for Path Planning

in Environment with Obstacles

Bc. Kristýna Kučerová

May 2023

Supervisor: Ing. Jinďrǐska Deckerová

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474523Osobní číslo:KristýnaJméno:KučerováPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Odhady dolních mezí pro plánování cesty v prostředí s překážkami

Název diplomové práce anglicky:

Lower Bound Estimates for Path Planning in Environment with Obstacles

Pokyny pro vypracování:
- Familiarize yourself with routing problems such as the Traveling Salesman Problem (TSP) [1] and its variants with
neighborhoods [2] motivated by data collection planning. Familiarize yourself with the Branch-and-Bound (BnB) for
computation of lower bound values for the Close Enough TSP [3,4] and methods addressing problems in an environment
with obstacles [5,6,7].
- Propose problem formulation of the TSPwith continuous neighborhoods in an environment with obstacles as amathematical
model.
- Implement an extension of the BnB method to address the studied problem using the proposed mathematical model.
- Evaluate the extended BnB and compare it with the baseline methods [5].

Seznam doporučené literatury:
[1] Applegate, D. and Bixby, R. and Chvátal, V. and Cook, W., The Traveling Salesman Problem: A Computational Study,
Princeton University Press, 2007.
[2] Gulczynski, D. J. and Heath, J. W. and Price, C. C., The Close Enough Traveling Salesman Problem: A Discussion of
Several Heuristics, Perspectives in Operations Research: Papers in Honor of Saul Gass' 80th Birthday, 2006; 271--283,
10.1007/978-0-387-39934-8_16.
[3] Coutinho, W. & Nascimento, R. & Pessoa, A. & Subramanian, A., A Branch-and-Bound Algorithm for the Close-Enough
Traveling Salesman Problem. INFORMS Journal on Computing. 2016; 28. 752-765. 10.1287/ijoc.2016.0711.
[4] Gentilini, I. and Margot, F. and Shimada, K., The travelling salesman problem with neighbourhoods: MINLP solution,
Optimization Methods & Software, 2012; 10.1080/10556788.2011.648932.
[5] Faigl, J. & Kulich, M. & Vonasek, V.h & Preucil, L. An application of the self-organizing map in the non-Euclidean
Traveling Salesman Problem. Neurocomputing. 2011; 74. 671-679. 10.1016/j.neucom.2010.08.026.
[6] Schulman J, Duan Y, Ho J, et al., Motion planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research. 2014; 33(9):1251-1270. doi:10.1177/0278364914528132.
[7] Babel, L. Curvature-constrained traveling salesman tours for aerial surveillance in scenarios with obstacles. European
Journal of Operational Research. 2017; 262. 10.1016/j.ejor.2017.03.067.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jindřiška Deckerová katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 24.09.2022

Platnost zadání diplomové práce: 24.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jindřiška Deckerová

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomantka bere na vědomí, že je povinna vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for ob-
serving the ethical principles in the preparation of university theses.

Prague, May 26, 2023

. .
Bc. Kristýna Kučerová

v

Acknowledgment

I would like to thank Ing. Jindřǐska Deckerová for supervising my thesis and for the valuable
help. Her determination and drive for research are admirable. I would also like to thank prof.
Ing. Jan Faigl, Ph.D. for the discussions and his expertise. Many thanks to my family, my
caring boyfriend, and my friends for their love and support, it was a prerequisite to where I
am today. Namely, I would like to thank Bc. Petra Fridrichová for sharing the struggles once
again, while still being so joyful.

vii

Abstract

In the thesis, we address a variant of the well-known Traveling Salesman Problem called
the Close-Enough Traveling Salesman Problem with obstacles in the polygonal domain. The
problem is to visit given target regions within their disk neighborhoods, such that the length
of the formed closed-loop tour is minimal, and the tour does not interfere with any polygonal
obstacles. We formulate the problem as the Mixed Integer Non-Linear Program (MINLP)
for a fixed sequence that includes the intermediate points between regions necessary for ob-
stacle avoidance. We propose an extension of the sequence-based Branch-and-Bound (BnB)
method to address the studied problem utilizing several lower bound estimates of the solu-
tion cost based on the Euclidean distance, the Visibility Graph, and the mathematical model
disregarding the obstacles. Moreover, we propose two different methods to determine feasible
upper-bound solutions: the Sampled-based method, where the target region borders are sam-
pled and the problem becomes discretized; and the MINLP model, which includes obstacle
constraints using half-plane separation of obstacle points.

The proposed BnB method is evaluated on randomly generated instances and compared
with the existing heuristic methods. We examine the lower bound estimate influence on the
solution quality and the performance of the upper bound solutions. Based on the results,
all proposed lower bound estimates provide the same optimal sequence for all evaluated in-
stances. The upper bound determined by the sampling-based method is dependent on the
density of the sampling. The found solutions provided by the method with sparse sampling
can be significantly improved by the proposed MINLP-based method as the post-optimization
procedure. In comparison to the reference methods, the obtained results had better or com-
parable costs in a longer computational time, which is to be expected due to using exact
methods. Furthermore, the post-optimization procedure can be used to improve the reference
solutions as well.

Keywords: Close-Enough Traveling Salesman Problem with Obstacles, Polygonal Domain,
Mixed Integer Non-Linear Program, Branch-and-Bound

ix

Abstrakt

V této práci se zabýváme variantou známého Problému obchodńıho cestuj́ıćıho, nazvaného
Problém obchodńıho cestuj́ıćıho s kruhovým okoĺım v prostřed́ı s překážkami v polygonálńım
prostoru. Ćılem je navšt́ıvit všechny definované ćılové regiony v jejich kruhovém okoĺı tak, aby
délka vzniklé cesty tvořićı uzavřený cyklus byla minimálńı a zároveň cesta neprot́ınala žádné
polygonálńı překážky. Formulujeme problém jako Celoč́ıselný nelineárńı program (MINLP)
pro pevně danou sekvenci, která obsahuje body mezi ćılovými regiony nutné pro vyhnut́ı
se překážkám. Navrhujeme rozš́ı̌reńı Metody větv́ı a meźı (BnB) pro větveńı na sekvenćıch
pro řešeńı studovaného problému, včetně r̊uzných druh̊u odhad̊u spodńıch limit̊u délky řešeńı
na základě Euklidovských vzdálenost́ı, Grafu viditelnosti, a pomoćı matematického modelu
neuvažuj́ıćıho překážky. Dále navrhujeme dvě r̊uzné metody pro źıskáńı řešeńı problému:
metoda vzorkuj́ıćı hranici kruhového regionu, která transformuje studovaný problém do vzorko-
vaného prostoru, a metoda využ́ıvaj́ıćı MINLP model, obsahuj́ıćı omezeńı pro rozděleńı plochy
na poloroviny, do kterých př́ısluš́ı daná překážka. Navrhované řešeńı problému je horńım
ohraničeńım optimálńıho řešeńı.

Výsledky navrhovaného BnB algoritmu jsou napoč́ıtány na náhodně vygenerovaných in-
stanćıch a porovnány s existuj́ıćımi heuristickými metodami. Vyhodnocujeme jak vliv r̊uzných
odhad̊u spodńıho limitu, tak kvalitu r̊uzných metod řešeńı. Z výsledk̊u vyplývá že všechny
typy odhadu spodńıho limitu řešeńı poskytuj́ı stejnou výslednou optimálńı sekvenci pro všechny
testované instance. Navržené řešeńı problému pomoćı vzorkuj́ıćı metody je závislé na hustotě
vzorkováńı. Řešeńı nalezené touto metodou s malým množstv́ım vzork̊u je možné výrazně
vylepšit použit́ım MINLP modelu jako dodatečnou optimalizaci. V porovnáńı s referenčńımi
metodami maj́ı výsledky lepš́ı nebo porovnatelnou délku cesty źıskanou v deľśım výpočetńım
čase, což je očekávané kv̊uli exaktńımu př́ıstupu. Nav́ıc je možné použ́ıt dodatečnou optimal-
izaci i na vylepšeńı řešeńı nalezených pomoćı referenčńıch metod.

Kĺıčová slova: Problém obchodńıho cestuj́ıćıho s kruhovým okoĺım a překážkami, poly-
gonálńı doména, Celoč́ıselný nelineárńı program, Metoda větv́ı a meźı

xi

i
Contents

Used Abbreviations xv

Used Symbols xvii

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

2 Related Work 5

2.1 Traveling Salesman Problem . 5

2.2 Traveling Salesman Problem with Neighborhoods 6

2.3 Multi Goal Path Planning in Environment with Obstacles 7

2.4 Mathematical Modeling and Optimization Solvers 8

3 Problem Statement 11

3.1 Polygonal domain . 11

3.1.1 Obstacle Representation . 12

3.2 Traveling Salesman Problem . 12

3.3 Traveling Salesman Problem with Neighborhoods 13

3.4 Close-Enough Traveling Salesman Problem with Obstacles 13

4 Background 17

4.1 Visibility Graph . 17

4.1.1 Shortest Path in the Visibility Graph 18

4.2 Priority Queue . 18

4.3 Computation of Area Between Two Disks . 18

4.3.1 Equal Radii . 19

4.3.2 Non-equal Radii . 19

xiii

5 Proposed Method 21
5.1 Branch-and-Bound for the Sequence Optimization 21

5.1.1 Initialization . 24
5.1.2 Lower Bound Estimates . 25
5.1.3 Upper Bound Computation . 25
5.1.4 Proposed Solution . 26

5.2 Sampled-Based Method . 27
5.3 Mixed Integer Non-Linear Program for the CETSPobs 28

5.3.1 Second-Order Cone Program for the CETSP 28
5.3.2 Polygonal Obstacles Constrained in a Half-Plane 29
5.3.3 Conditions for Adding Obstacle Constraints to Model 31
5.3.4 Discussion of the Model Solution Quality 34
5.3.5 The MINLP as Post-optimization Heuristic 34

6 Empirical Evaluation 37
6.1 Instances . 37
6.2 Evaluation of the Lower Bound Estimates . 39
6.3 Evaluation of the Upper Bound Solutions . 41

7 Conclusion 47

Bibliography 49

A Instances 53

i
Used Abbreviations

ATSP Asymmetric Traveling Salesman Problem

BnB Branch-and-Bound

CETSP Close-Enough Traveling Salesman Problem

CETSPobs Close-Enough Traveling Salesman Problem with Obstacles

CHOMP Covariant Hamiltonian Optimization for Motion Planning

CTSPO Curvature-Constrained Traveling Salesman Problem (TSP) with Obstacles

DoF Degrees of Freedom

ETSP Euclidean Traveling Salesman Problem

GLNS Large Neighborhood Search Heuristic for the Generalized Traveling
Salesman Problem (GTSP)

GLNS-CETSP Large Neighborhood Search Heuristic for the GTSP (GLNS) for the
Close-Enough Traveling Salesman Problem (CETSP)

GTSP Generalized Traveling Salesman Problem

LP Linear Program

MTP Multi-Goal Path Planning / Multi-Target Planning

MILP Mixed Integer Linear Program

MINLP Mixed Integer Non-Linear Program

MISOCP Mixed Integer Second-Order Cone Program

NLP Non-Linear Program

NN Nearest Neighbor

xv

PQ Priority Queue

RFID Radio-Frequency Identification

SOCP Second-Order Cone Program

SOM Self-Organizing Map

TSP Traveling Salesman Problem

TSPN Traveling Salesman Problem with Neighborhoods

VG Visibility Graph

xvi

i
Used Symbols

Mathematical notation

R set of real numbers

R+
0 set of non-negative real numbers

Z set of integer numbers

N set of non-negative integer numbers, also denoted as N0

N+ set of positive integer numbers

{•1, . . . , •x} set containing x elements •
{• | c(•)} set containing elements • that fulfill the condition c

(•1, . . . , •x) ordered list containing x elements •
|•| number of elements (size) of the set/list •
∥•∥ length / Euclidean distance of vector •
v vector in R2 denoted by the bold symbol

v• vector v with an identifier •
v• element of vector v at index •, note: in case of multiple subscripts, the

index is always the last subscript

O(f(n)) the computational complexity O growing at most as much as function f
with the input data size n

•⋃▲ unite sets • and ▲ into a set containing all elements from both sets

•⊔▲ append elements of lists ▲ after the elements of list • into a new list

Named symbols

S set of n target regions S, {S1, . . . , Sn}
Si i-th target region with disk neighborhood, Si = (ci, δi)

xvii

ci i-th target region center coordinates, ci ∈ R2

δi i-th target region disk radius, δi ∈ R+
0

Ω set of m obstacles O, Ω = {O1, . . . , Om}
Oi i-th polygonal obstacle given by list of k points o, O = {o1, . . . ,ok},oi ∈ R2

Σ visiting sequence to the target regions, Σ = (σ1, . . . , σn), σi ∈ {1, . . . , n}
LB lower bound value

UB upper bound value

C cost (length) of the solution tour

Q set of sets of intermediate points between two subsequent target regions,
Q = {Q1, . . . , Qn}

Qi i-th possibly empty set of intermediate points between two subsequent tar-
get regions

M mathematical model including objective function and constraints over a set
of obstacles

µ a Branch-and-Bound node, containing the solution node lower bound de-
noted as µ.LB, upper bound µ.UB, sequence µ.Σ, and cost µ.C

M Big-M constant for switching between the constraints.

t computational time in seconds

tmax maximum computational time limit in seconds

xviii

i
List of Figures

1.1 Example of the solutions produced by the proposed methods 2

3.1 Example of 2D configuration spaces with obstacles and a path 11
3.2 Example of convex and concave polygons . 12
3.3 Example of the instances for the CETSPobs. 14
3.4 Notation used for the CETSPobs . 14

4.1 Visibility Graph from a single vertex . 17
4.2 Area of direct visibility (cone) between two targets with same radii 19
4.3 Area of possible solution space (cone) between two targets with different radii . 20

5.1 Branch-and-Bound example on a CETSP instance 22
5.2 Solution points on target disk . 26
5.3 Instance with sampled target regions . 27
5.4 Auxiliary graph with target samples . 28
5.5 Points in half-planes generated by a solution line segment 30
5.6 Area of possible solutions between targets on a CETSPobs instance 32
5.7 Example of a target region and obstacle scenario with obstacle inside of the disk 32
5.8 Example of a target region and obstacle scenario with a complex concave obstacle 33
5.9 Example solution where the intermediate solution points can improve its cost . 34

6.1 Process for random obstacle generation . 38
6.2 Example of randomly generated instances . 38
6.3 Different number of examined lower bound values for the Sampled-based method 39
6.4 Solutions found before timeout with different lower bounds 41
6.5 The comparison of the solution cost and time for the Sampled-based method . 43

A.1 The randomly generated instances with proposed and reference solutions 53
A.2 The randomly generated instances with proposed and reference solutions contd. 54
A.3 The randomly generated instances with proposed and reference solutions contd. 55
A.4 The randomly generated instances with proposed and reference solutions contd. 56

xix

i
List of Tables

2.1 Supported mathematical optimization categories of selected solvers 9

6.1 Comparison of the LB types for Sampled-based method with k = 64 40
6.2 Sampled-based method with different number of samples k and LBSOCP 42
6.3 Comparison of solution cost C for proposed and reference methods 44
6.4 Comparison of solution cost C with Post-optimization heuristic 45

xxi

i
List of Algorithms

1 Shortest paths using the Visibility Graph . 18

2 Proposed Branch-and-Bound algorithm for the CETSPobs 24
3 Heuristic sequence insert of target regions . 26
4 Create optimization model with cone . 33
5 Pointify model solution . 35

xxiii

CHAPTER 1
Introduction

Path planning is the process of finding a feasible path from a starting point to a destination.
The path feasibility is based on the desired criteria, the capabilities of the vehicle, and also on
the environment. In robotics and autonomous systems, path planning is crucial for navigating
the movement and preserving resources, most often either energy or time. In the process of
determining the best path usually a set of constraints needs to be considered, such as obstacles,
speed limits, curvature limits, or remaining fuel or battery charge.

One of the most studied problems in Multi-Goal Path Planning / Multi-Target Planning
(MTP) and optimization is the Traveling Salesman Problem (TSP) [1]. The problem is to find
the shortest path visiting each location from the given set of locations exactly once, such that
the path is a closed loop. It has many important applications in logistics and transportation,
for example, scheduling a salesman’s visits to different locations, planning delivery routes for
logistics companies, or airline itineraries of a travel agency. Despite the simple formulation,
the TSP is NP-hard [1]. The number of solutions for the TSP increases by factorial with
the number of locations, making it difficult to solve for large instances. Because of the TSP
usability and complexity, it has received extensive research interest in the past and it is still
an active research topic today.

A variant of the TSP with disk neighborhoods is known as the Close-Enough Traveling
Salesman Problem (CETSP). The CETSP originated as a problem of a company reading
data from customers using the Radio-Frequency Identification (RFID) scanners, which can
read data from a distance. It is proposed in [2] along with multiple heuristic approaches for
solving the CETSP. In [3], the problem is approached using the Branch-and-Bound (BnB) for
the TSP sequence optimization, and the Second-Order Cone Program (SOCP) mathematical
model for solving the fixed-sequence subproblems. This second approach provides optimal
solutions to the problem in an environment without obstacles.

The problem is more complicated in an environment with obstacles, as the paths become
infeasible due to collisions with obstacles. Some use-case scenarios that can be modeled as
the CETSP with obstacles are for example:

• Video mapping or data collection [4], such as in a farm field with a drone and a camera.
The locations for scanning can be marked and since a camera has a wide view, it is
sufficient to have the marker anywhere within the view, which adds a visiting neighbor-
hood. The field can also have some scattered trees or farming equipment obstructing

1

Chapter 1. Introduction

the flight path.

• In a warehouse, all areas should periodically be visited and the visit to the positions
confirmed with RFID sensors, as in [2]. However, the warehouse is full of obstacles and
has different sections separated by walls, and the sensors have a sensing radius.

• In a supply run where a supply truck cannot remain in the target area for a long time
(e.g. a battlefield), as noted in [3], the supplies are dropped in any position within the
target area. Any obstacles can again occur, such as mountains, enemy camps, buildings,
etc.

In [5] the TSP in the polygonal space is approached using the Self-Organizing Map (SOM).
The SOM for the Traveling Salesman Problem with Neighborhoods (TSPN) is proposed in [6],
where the target neighborhoods of the TSPN are approximated as polygons. In [7], the
problem is approached using partitioning of the environment and modification of a solver
for the Generalized Traveling Salesman Problem (GTSP), called the Large Neighborhood
Search Heuristic for the GTSP (GLNS) [8]. It is initialized with a solution provided by the
SOM in the environment without obstacles and then the solutions are modified to be feasible.
However, these approaches are heuristic and there is no optimality guarantee.

To our best knowledge, there is no work approaching the CETSP with obstacles with
the aim of finding the globally optimal solution. In this thesis, we aim to approach the
CETSP with obstacles with the lower bound estimates to obtain the solution with the highest
quality. We denote the problem studied in the thesis as the CETSPobs, and formally define the
problem. The obstacles are approximated as polygons for this thesis with an arbitrary number
of sides. An example of the problem with the proposed solution can be seen in Figure 1.1.

(a) Sampled-based method with six points on each
target regions border, C = 506.5.

(b) Post-optimization heuristic of the point in
the target region, C = 499.6.

Figure 1.1: Example of the solutions produced by the Sampled-based method (Figure 1.1a) and
mathematical Post-optimization heuristic (Figure 1.1b) method. The tour cost is denoted as C,
yellow circles are the target regions and orange points are their point samples, brown polygons are the
obstacles, the green dashed line is the lower bound estimate using the Euclidean distance, and the blue
line is the proposed Close-Enough Traveling Salesman Problem with Obstacles (CETSPobs) solution.

2

Chapter 1. Introduction

Since the environment contains polygonal obstacles that need to be avoided, we utilize the
Visibility Graph (VG). The VG is an algorithm from computational geometry [9] that maps
visible vertices of the polygonal environment to create a graph, where the visibility is denoted
as edges between vertices. Graph-search algorithms such as Dijkstra can be then used to find
the shortest path between two points in the polygonal space.

In the thesis, we propose the BnB method [3] to address the CETSPobs and propose
a mathematical model formulation of the CETSPobs with polygonal obstacles. The model is
formulated for a fixed sequence, inspired by the SOCP mathematical model for the CETSP
from [3]. The addition of obstacles makes it non-linear and using binary variables transforms
it from SOCP to a Mixed Integer Non-Linear Program (MINLP) problem. The BnB with the
MINLP model takes a long time to compute a solution, therefore the Sampled-based method
has also been utilized in the thesis. The disk neighborhoods borders are sampled and one
of the samples has to be visited to consider the disk as visited, effectively transforming the
problem to GTSP. With a large enough number of samples, this method approaches the
optimal solution within the continuous domain. The solution of the Sampled-based method
can be also improved upon with the mathematical model by providing the sampled solution
as initialization, which we call the Post-optimization heuristic and is submitted in [10].

The proposed methods are tested on randomly generated instances. The computational
results are discussed and compared with a SOM-based approach for solving the TSPN within
the polygonal environment with obstacles [6] and the method for the CETSPobs called the
GLNS for the CETSP (GLNS-CETSP) [7]. The Sampled-based method is the fastest to
compute out of the proposed methods, and both the computational time and cost of the
solution are highly dependent on the number of samples. The Post-optimization heuristic
can improve the costs of the solutions provided by the proposed Sampled-based method,
and it can also improve the reference methods [6, 7]. The proposed method obtains better
solutions than the SOM approach, and solutions with better or comparable quality to the
GLNS-CETSP solutions when using the mathematical model.

The structure of this thesis is as follows. The related work is described in Chapter 2. The
problem formulation is introduced in Chapter 3, and the necessary background knowledge is
described in Chapter 4. The BnB algorithm and the mathematical model used in the proposed
method are presented in Chapter 5. The method is empirically evaluated in Chapter 6 along
with the discussion of results. Finally, the work is concluded in Chapter 7.

3

Chapter 1. Introduction

4

CHAPTER 2
Related Work

The herein studied Close-Enough Traveling Salesman Problem with Obstacles (CETSPobs)
is a variant of the well-known Traveling Salesman Problem (TSP). There are only a few
approaches to the CETSPobs or the closely related problem of Traveling Salesman Problem
with Neighborhoods (TSPN) with obstacles to the best of the author’s knowledge. Therefore,
we also present an overview of solutions to the TSPN, and Multi-Goal Path Planning /
Multi-Target Planning (MTP) with obstacles. Moreover, we present a brief overview of the
optimization solvers, since we solve the CETSPobs with a sequence-based mathematical model.

First, the possible solution approaches to the TSP are introduced in Section 2.1. Its
extended variant is the TSPN, where instead of visiting goals, the aim is to visit any point
within a region, and methods addressing the TSPN are described in Section 2.2. Existing
methods for planning with obstacles are introduced in Section 2.3, and finally, mathematical
optimization solvers are described in Section 2.4.

2.1 Traveling Salesman Problem

The TSP is a well-known problem from MTP [1]. The problem is to find a tour with a min-
imum length that visits all locations, and the initial and final locations are the same. The
TSP uses the Euclidean distances between locations to measure the path length, and it can
be referred to as the Euclidean Traveling Salesman Problem (ETSP) in the literature. Many
variants of the TSP exist, using different distance metrics, asymmetric distances (distance
from target a to target B is different than from B to A), which is called the Asymmetric
Traveling Salesman Problem (ATSP), adding neighborhoods of the target location, adding
obstacles etc.

Although the TSP assignment might seem simple, the problem is NP-hard [1] unless
P=NP, therefore, it cannot be solved in polynomial time. The TSP is a special case of the
Hamiltonian cycle, and it has been proven that computing the Hamiltonian cycle is NP-hard,
therefore the TSP is also NP-hard [1]. For the TSP with n goals, there are (n− 1)! solutions
and the factorial grows fast with n.

Many approaches had been proposed to solve the TSP, which can be divided into several
categories, such as heuristics, and exact methods. The heuristic approaches aim to find any
solutions efficiently. To name a few [11]: the Nearest Neighbor (NN) algorithm, which starts

5

Chapter 2. Related Work

with an arbitrary goal and adds the next nearest goal to the end of the sequence, and repeats
this step until all goals are added. Similar to the NN are the insertion methods, which can
insert the next goal not only at the end but to any position in the sequence.

The unsupervised learning approaches to the TSP are also studied, such as the Self-
Organizing Map (SOM) [12]. SOM is a two-layer neural network, where the output layer
is a ring of neurons. It is trained by adjusting itself to the input data, in this case, the
coordinates of the goals, by iteratively drawing the ring of neurons closer to the goals while
minimizing the ring’s length. The advantage of the SOM is its low computational complexity,
but the number of iterations to train the output layer to obtain the solution is not known in
advance.

The exact approaches aim to find the optimum solutions in less than exponential time.
The solution can be found using the brute force approach, which becomes intractable with just
a few dozen of goals. Therefore, approaches that can tighten the solution space have been
used. One of the most studied exact algorithms is the Branch-and-Bound (BnB) method,
which branches on sub-problems by prioritizing the promising solutions first and using the
bounding function to eliminate sequences with high tour costs [13]. The subproblems are
relaxations of the original problem, for example, a tour on a subset of the given goals of the
TSP. The bounding in BnB helps to limit which solutions are branched further, leading to
faster computation of the optimal solution.

Another exact approach is the Mixed Integer Linear Program (MILP)-based approach [14],
where the problem is formulated using an objective function with constraints and solved using
optimization solvers. The formulation is Mixed-Integer due to the use of binary variables to
indicate which edges between goals are within the solution. The solvers are usually optimized
for the TSP and use specific solution space cuts to find the solution faster. In MILP, the BnB
or its variations (such as Branch-and-Cut) can also be used to branch on the subproblems,
however here the problem relaxation is usually a linear subspace.

2.2 Traveling Salesman Problem with Neighborhoods

In the TSP, the exact locations are visited and the optimization concerns only the sequence
order. The herein studied problem of the TSPN is a variant of the TSP, where the aim
is to visit a neighborhood (area) instead. Because of this, in addition to the combinatorial
optimization of the TSP, the continuous optimization is adresseed to determine the points of
visit within the neighborhood The region is considered to be visited, if the solution touches
any point of the neighborhood including the border.

The neighborhood of the goal location can vary in both shape and size. In [15], polyhedra
or ellipsoid neighborhoods are considered. To solve the TSPN, the authors propose a Mixed
Integer Non-Linear Program (MINLP) for both symmetric and asymmetric distances. Since
the MINLP formulation is difficult to solve, the authors propose modifications of the spatial
BnB [16], such as subtour elimination and global search space cuts. The authors also discuss
a heuristic solution to the problem using different MINLP relaxations to obtain a tight upper
bound for the BnB.

In [2], the problem called the Close-Enough Traveling Salesman Problem (CETSP) is
introduced, which uses disk-shaped neighborhoods. The problem is introduced in relation to
MTP with the Radio-Frequency Identification (RFID) scanners, which can read the RFID
tags from a distance. Visiting a point in the disk-shaped (circular) neighborhood can result in
a shorter tour than visiting the disk centers. The approach proposed in [2] is to simplify the

6

Chapter 2. Related Work

initial CETSP by grouping the input target regions by their mutual distance and aggregating
these into as few nodes as possible such that by visiting the node, all the target regions within
the group are visited. The TSP tour on the nodes is then a feasible CETSP solution at the
same time guaranteed by the node grouping. Multiple heuristic approaches are proposed to
find the initial clusters and reduce their number, along with iterative improvement strategies.
A similar approach to [2] is described in [17], which also uses clustering of the nodes and
then a convex hull algorithm. In [18], various heuristic approaches to solving the CETSP are
discussed along with the computational results.

The mentioned approaches for solving the CETSP propose heuristic solutions. In [3], the
authors propose a method for solving the CETSP yielding the optimal solution with the use
of the BnB algorithm. They employ a mathematical model for solving the subproblems (fixed
sub-sequences) that be solved to optimality since it is formulated as the Second-Order Cone
Program (SOCP) from the convex optimization class [19]. The proposed algorithm works
as follows: the initialization consists of three targets with maximum tour length, and the
SOCP problem is solved on the three-target sequence. Afterward, the solution is branched
by adding the next target into the sequence at different positions, and the solution value is
always obtained by the SOCP. The authors solve the problem both in 2D and 3D space and
can find optimal solutions in many of the used instances from in [3] and [18].

2.3 Multi Goal Path Planning in Environment with Obstacles

There are different approaches to tackling path planning in an environment with obstacles.
In [20], the authors describe a non-convex optimization method named Covariant Hamiltonian
Optimization for Motion Planning (CHOMP) between two points when an obstacle is on
the straight line in between. It uses a covariant gradient update rule that provides fast
convergence to a local optimum. The authors apply this method within a multi-dimensional
motion planning, which is for example motion planning for a robotic hand with a high number
of Degrees of Freedom (DoF).

In [21], the authors propose an optimization method for planning with obstacles and
evaluate it for robot manipulators with multiple DoF with results up to 18 DoF. The proposed
optimization method is similar to the CHOMP, which starts with a straight-line trajectory
that interferes with obstacles and optimizes it to obtain a feasible solution. The method is
formulated using a sequential convex optimization, which solves a non-convex optimization
problem by repeatedly solving convex subproblems. A part of the strategy is to turn infeasible
constraints into penalties, leading to zero constraints violation. This paper focuses on the
mathematical formulations, constraints adding and modifying constraints during the solving
process, which is not the aim of this thesis.

The CHOMP is a method for motion planning, where smooth trajectories traversable
under physical constraints and without sharp turns are desired. In MTP, obstacle avoidance
is usually considered on a larger scale with the intermediate path instead. In a polygonal
domain where the obstacles are represented by polygons, graph approach can be employed to
avoid obstacles, namely the Visibility Graph (VG) [9]. The VG can be efficiently constructed
within the 2D polygonal space. Then, the path found using the VG is the shortest path as
shown in [9]. In the TSP problem with obstacles in the polygonal domain, this can be used
to obtain the distances between the targets and solved as the Non-Euclidean TSP [22].

In [5], the authors propose the use of the SOM for solving the TSP in an environment
with obstacles. The SOM can be represented as a two-layered competitive learning network,

7

Chapter 2. Related Work

where the nodes start in a ring and are iteratively drawn towards the vertices representing
the targets. It can be used for solving the TSP as well, as it requires only a cost function
of the resulting path, which in the Euclidean distance. The approach proposed in the paper
uses an approximation of the shortest path based on the convex partitioning of a polygonal
space, which is faster than the computation of the shortest path using the VG.

The SOM is also used for solving the TSPN with polygonal neighborhoods, in the polyg-
onal domain with obstacles [6]. The approach is similar to [5], where mainly the distance
function differs and different SOM variations are proposed. In [7], the CETSPobs is tackled by
modification of an algorithm for solving the Generalized Traveling Salesman Problem (GTSP)
called the Large Neighborhood Search Heuristic for the GTSP (GLNS) [8]. The GTSP can be
considered as a discretized TSPN, where instead of a neighborhood, one point from a set of
samples is to be visited for each target. The proposed heuristic approach is denoted as GLNS
for the CETSP (GLNS-CETSP), and it can be used with different initialization methods
and configurations of computational precision. It works by combining the GLNS algorithm
with the proposed distance computation technique for finding the shortest distance between
a point-circle-point sequence.

In [23] the authors tackle the problem of finding the shortest curvature-constrained path in
an environment with obstacles, named Curvature-Constrained TSP with Obstacles (CTSPO).
The authors describe various heuristic algorithms for solving the CTSPO feasibly. Because of
the presence of obstacles and curvature constraints, some tours can become infeasible, which
is also addressed by the authors. The main idea is to discretize the goals with heading angles,
which are part of the Dubins vehicle state representation [24]. Then, solve the problem of
finding the curvature-constrained path with obstacles separately. By solving this subproblem,
the distance between every two samples can be obtained to create a distance matrix. Since
the goal visits are sampled, the final tour is then found on the auxiliary graph constructed
from the goal samples in sequence order. The graph contains the distance between samples,
from which the shortest path can be obtained, and this technique can be also used for the
GTSP.

2.4 Mathematical Modeling and Optimization Solvers

A mathematical optimization problem is defined by an objective function and constraints.
The objective function is the optimization goal, which is either minimized or maximized. The
constraints define the bounds on the variables which are part of the optimization problem.
They can be either equality constraints or bounds for a (strictly) less or greater value.

One of the problems of mathematical optimization is the Linear Program (LP), and it
is a widely used formulation for optimization problems in business, logistics, etc. [25]. The
variables within the objective function and constraints are linear, meaning that there is no
variable multiplication and only linear operations (addition, subtraction and multiplication
by constant numbers). The LP is a problem of continuous optimization. In some applications,
it might be necessary to restrict some constraints to integer values or even to binary values.
This model can be understood as an extension of the LP, and is called Mixed Integer Linear
Program (MILP) or MIP. To solve the MILP problem, different approaches can be used
including the BnB algorithm [26]. The BnB for MILP works by first solving the problem
as the continuous LP, and branching if the integer variable has a non-integer value in the
solution. The BnB finds the exact solution to the MILP problem.

The convex optimization [19] is a category of mathematical optimization, where the objec-

8

Chapter 2. Related Work

tive function and constraints satisfy the convexity property. For a function, convexity means
that the line segment connecting any two points on the function lies above the graph or on
it [27]. Similarly, for a convex polygon, a line segment connecting any two points on the poly-
gon lies completely within the polygon. Convexity in the optimization problem guarantees
that the found local optimum is also the global optimum [27].

Another category of mathematical optimization is the Non-Linear Program (NLP). The
objective function and/or constraints are non-linear, therefore the NLP solution space is non-
convex. The NLP is usually solved with numerical methods such as gradient descent, but
the found solution might be only locally optimal. Many approaches for solving NLP exist,
but finding the global optimum might be computationally expensive, therefore most of the
approaches focus on finding at least a local optimum. A version of the NLP with integer
and/or binary variables is called Mixed Integer Non-Linear Program (MINLP).

There are many optimization solvers for mathematical optimization, and in Table 2.1, the
overview of selected solvers and their supported optimization categories are depicted.

Table 2.1: Supported mathematical optimization categories of selected solvers.

Solver name LP MILP SOCP MISOCP NLP MINLP

CPLEX [28] ✓ ✓ ✓ ✓ - -

Ipopt [29] ✓ - ✓ - ✓ -

Juniper [30] - - ✓ ✓ ✓ ✓
Bonmin [31] - - - - ✓ ✓
Alpine [32, 33] - - - - ✓ ✓

A mathematical model proposed in the thesis is in the MINLP category, therefore we need
a solver able to solve such a problem. Solving the MINLP is computationally demanding,
and different solvers provide various performances, and a few are mentioned next. A solver
which can solve the LP, SOCP and NLP is the Ipopt [29], however, it cannot address their
Mixed-Integer variants. The Juniper solver [30] is an open-source solver for MINLP developed
for Julia [34] to allow modifications of the BnB parameters for the user. Another considered
solver is (MI)NLP Bonmin solver [31], which is a part of the AMPL initiative for uniting
mathematical solvers under one framework. The (MI)NLP COUENNE solver [35], which is
used in [15] is also within the AMPL library. The two mentioned solvers for MINLP can find
a local optimum. To get the global optimum, another solver called Alpine [32, 33] can be
used. The Alpine solver requires sub-solvers for the MILP, NLP, and MINLP. In the thesis,
the IBM-developed solver CPLEX is used among others [28]. The CPLEX can solve both
problems from convex optimization (LP, SOCP), and their mixed integer variants (MILP,
Mixed Integer Second-Order Cone Program (MISOCP)).

9

Chapter 2. Related Work

10

CHAPTER 3
Problem Statement

In the thesis, we study the Close-Enough Traveling Salesman Problem (CETSP) in the polyg-
onal environment with obstacles. The CETSP is to find the most cost-efficient closed tour
visiting all target disks while avoiding obstacles. The most cost-efficient path is the one
minimizing the tour length. Hence, in this chapter, we first introduce the polygonal domain
environment in Section 3.1. Then the problem formulation of the Traveling Salesman Prob-
lem (TSP) is provided in Section 3.2, and the formulation of the Traveling Salesman Problem
with Neighborhoods (TSPN) is in Section 3.3 along with the disk-neighborhood variant called
the CETSP. Finally, the obstacles are introduced into the formulation of the problem solved
in this thesis, and it is provided in Section 3.4.

3.1 Polygonal domain

The problem studied in this thesis is within the 2D polygonal domain. The points in the
polygonal environment are defined by coordinates (x, y) ∈ R2. This is in contrast to e.g.
the 2D grid, where each of the coordinates is equal to a position in a grid. Both mentioned
environments can be seen in Figure 3.1 with a path between two coordinates. The path in the

x

y

(a) grid

x

y

(b) polygonal space

Figure 3.1: Example of 2D configuration spaces with obstacles (brown) and a path (blue) from start
(green) to finish (red).

11

Chapter 3. Problem Statement

grid space has to be specified as all the squares in the path, whereas the path in the polygonal
space is specified only by the intermediate space. The polygonal domain is separated into free
space and space occupied by polygonal obstacles.

3.1.1 Obstacle Representation

There are different options for how to represent obstacles. Real-environment obstacles are
for example a tree, a pit, or a cluster of people, and can have complex borders that are hard
to represent using geometric shapes. The obstacles can be approximated by shapes that are
easier to describe with mathematical prescription.

A polygonal obstacle O is a polygon with l sides and can be defined by a sequence of
vertices O = (o1, . . . ,ol), oi = (xi, yi) ∈ R2. The number of vertices can be different for each
obstacle, and the whole set Ω of m obstacles is

Ω = {O1, . . . , Om} = {(o1
1,o

1
2, . . . ,o

1
l1), . . . , (o

m
1 ,om

2 , . . . ,om
lm)},

m ∈ N, li ∈ N+ ∀i ∈ {1, . . . ,m}, (3.1)

(a) Convex polygon (b) Concave polygon (c) Convex hull of the concave polygon

Figure 3.2: Example of convex and concave polygons.

In Figure 3.2, examples of convex (Figure 3.2a) and concave (Figure 3.2b) polygons along
with a convex hull (Figure 3.2c) are shown. A convex hull is the encasement of a concave
polygon Pc within a convex polygon Px such that all points of Pc are contained in Px.

3.2 Traveling Salesman Problem

The TSP is a well-known problem to find a path with minimum length, that visits a given
set of n target locations C = {c1, . . . , cn} starting and finishing in the same position. Hence,
the aim is to find the optimal sequence of visits to C.

The TSP formal definition is shown in Problem 1, where ci ∈ R2, i ∈ {1, . . . , n} is the
location in 2D Euclidean space, and Σ is the visiting sequence being optimized. The distance
between the goals is Euclidean and is denoted as ∥ci − cj∥ between locations ci, cj .

Problem 1 (Traveling Salesman Problem (TSP))

min
Σ

∥cσn − cσ1∥+
n−1∑
i=1

∥cσi − cσi+1∥, (3.2)

s.t. Σ = (σ1, . . . , σn), (3.3)

σi ∈ {1, . . . , n}, (3.4)

σi ̸= σj for i ̸= j, (3.5)

12

Chapter 3. Problem Statement

3.3 Traveling Salesman Problem with Neighborhoods

The TSPN is a variant of the TSP, where instead of visiting locations exactly, at least one
point within their neighborhoods is visited. The path with minimum length is visiting a given
set of n regions R = {R1, . . . , Rn}, Ri ⊂ R2, determining the optimal visiting sequence Σ,
and at the same time optimizing the points P within the regions.

The problem consists of two parts: finding the optimal Σ is a problem of combinatorial
optimization, and finding the best points within the neighborhoods is a problem of continuous
optimization. The TSPN formal definition is shown in Problem 2, where the optimization
goal is to minimize the variable Euclidean distance between the points P within regions R,
visiting the target regions in the sequence Σ.

Problem 2 (Traveling Salesman Problem with Neighborhoods (TSPN))

min
Σ,P

∥pσn − pσ1∥+
n−1∑
i=1

∥pσi − pσi+1∥ (3.6)

s.t. P = {p1, . . . ,pn} ∈ Rn×2, (3.7)

pi ∈ Ri ∀Ri ∈ R, (3.8)

Σ = (σ1, . . . , σn), (3.9)

σi ∈ {1, . . . , n}, (3.10)

σi ̸= σj for i ̸= j, (3.11)

(3.12)

A variant of the TSP with disk-shaped neighborhoods (regions) is called the CETSP. The
neighborhoods are given as a set of n target regions S = {S1, . . . , Sn}, Si = (ci, δi) where
c ∈ R2 is the center point and δ ≥ 0 is the disk radius. The CETSP is to determine the
shortest cyclic tour visiting all disk regions Problem 3 is the formulation of the CETSP. The
optimization goal is the same as in the TSPN, but the cost is computed over locations in the
goal’s circular area given by the radius δ.

Problem 3 (Close-Enough Traveling Salesman Problem)

min
Σ,P

∥pσn − pσ1∥+
n−1∑
i=1

∥pσi − pσi+1∥ (3.13)

s.t. ∥pi − ci∥ ≤ δi ∀i ∈ {1, . . . , n} (3.14)

P = {p1, . . . ,pn} ∈ Rn×2, (3.15)

Σ = (σ1, . . . , σn) ∈ Zn, (3.16)

1 ≤ σi ≤ n, (3.17)

σi ̸= σj for i ̸= j. (3.18)

3.4 Close-Enough Traveling Salesman Problem with Obstacles

The problem studied in this thesis is the Close-Enough Traveling Salesman Problem with
Obstacles (CETSPobs), where the obstacles are defined as polygons. The aim of the CETSPobs

is the same as the CETSP, but the found tour avoids the obstacles in the environment.

13

Chapter 3. Problem Statement

(a) Instance t5 005 (b) Instance t9 003

Figure 3.3: Example of the instances for the CETSPobs. The target regions are shown as yellow
disks, and the obstacles are shown as brown polygons. The green lines are the edges in a Visibility
Graph (VG) and the blue lines show direct visibility between target region centers.

The instances used for such a problem are shown in Figure 3.3. In this case, a straight
line path between two subsequent target regions might not be possible, and in such cases,
the path consists of multiple line segments with intermediate points. We denote the set of
intermediate points as

Qi = (qi0, q
i
1, . . . , q

i
ki
),

ki ∈ N0 ∀i ∈ {1, . . . , n}. (3.19)

This denotes ki consecutive intermediate points between pi and pj .

If ki = 0, there are no intermediate points in between pi and pj . The notation used in
this problem is shown in Figure 3.4.

c1 c3

c2

c4

pσ1

pσ2

pσ3

pσ4

q1
1

q1
3

q1
4

q2
4

δ1

S1

δ3
S3

δ2

S2

δ4

S4

Figure 3.4: Notation used for the CETSPobs.

14

Chapter 3. Problem Statement

The addition of the intermediate points means that the distance is now computed as the
sum of the length of the segments of the multi-segment line. The length with intermediate
points denoted L∗ is defined as

L∗(pi,pj) =

∥pi − pj∥ if ki = 0,

∥pi − q1i ∥+ ∥q1i − pj∥ if ki = 1,

∥pi − q1i ∥+
(∑ki−1

l=1 ∥qli − ql+1
i ∥

)
+ ∥qkii − pj∥ if ki ≥ 2,

∞ if obstacle interference.

(3.20)
The formulation of the CETSPobs is in Problem 4. The optimization goal is to minimize

the distance function L∗ in between all target regions by optimization of the sequence Σ, the
points position within target region P and the intermediate points on obstacles Q.

Problem 4 (Close-Enough Traveling Salesman Problem with Obstacles)

min
Σ,P,Q

L∗(pσn ,pσ1) +
n−1∑
i=1

L∗(pσi ,pσi+1), (3.21)

s.t. ∥pi − si∥ ≤ δi ∀i ∈ {1, . . . , n}, (3.22)

P = {p1, . . . ,pn} ∈ Rn×2, (3.23)

Q = {Q1, . . . , Qn}, Qi = {qi1, . . . , qiki}, (3.24)

Σ = (σ1, . . . , σn) ∈ Zn, (3.25)

1 ≤ σi ≤ n, (3.26)

σi ̸= σj for i ̸= j. (3.27)

15

Chapter 3. Problem Statement

16

CHAPTER 4
Background

In this chapter, we summarize two concepts from computer science utilized in the pro-
posed method for solving the Close-Enough Traveling Salesman Problem with Obstacles
(CETSPobs). The concepts are described here for the thesis to be self-contained, and they are
the Visibility Graph (VG) in Section 4.1, and Priority Queue (PQ) in Section 4.2. In the pro-
posed method, the direct visibility area between two disks named cone is used, and to obtain
it, the goniometric (trigonometric) functions are used. Since the concept is important but not
necessary to understand the proposed method, it is described in this chapter in Section 4.3.

4.1 Visibility Graph

The VG is a well-known method from computational geometry [9], which can be used to find
the shortest paths within a polygonal environment. The VG is a graph Gvis = (V,E), where the
set of vertices V is obtained as all polygon vertices from the input map. The set of edges E
contains all edges between vertices v ∈ R2, which have direct visibility and are computed
during the initialization of the VG. Direct visibility of an edge e = (vi,vj),vi,vj ∈ V means

vv

Figure 4.1: VG from a single vertex v. Brown polygons are the obstacles, black lines are edges E in
the Gvis from v, and red lines are edges to the remaining vertices that are not visible from v. Note
that only a subset of E is displayed and the edges between obstacles are not shown for clarity.

17

Chapter 4. Background

that there is no obstacle intersecting e. The VG on a set of polygonal obstacles with a total
of n vertices can be computed in O(n2 log n) time [9]. An example of a simple visibility graph
from one point is shown in Figure 4.1.

4.1.1 Shortest Path in the Visibility Graph

The Dijkstra algorithm [9] is a graph algorithm for finding the shortest paths between the
graph vertices. The graph can be for example the VG as described in Section 4.1. The shortest
path between vertices of VG can be found using the Algorithm 1.

Algorithm 1: Shortest paths using the VG.

Input: Ω – set of polygonal obstacles
vstart,vgoal – starting and goal vertices

Output: P = (vσ1 , . . . ,vσk
) – the shortest visiting sequence of k vertices

1 Gvis ← Visibility Graph from Ω vertices
⋃

(vstart,vgoal)
2 to every edge (vi,vj) ∈ Gvis assing weight, which is the Euclidean distance |vi − vj |
3 use Dijkstra algorithm to compute a shortest path P between vstart,vgoal in Gvis

4.2 Priority Queue

The PQ [36] is an abstract data structure for accessing the element with the extremal sorting
value, which is usually the smallest or largest number. The PQ stores the elements and
provides the following functionality.

Retrieval of an element with an extremal value The elements in the PQ have an as-
signed value. This functionality allows to retrieve the element with the extremal value.

Peek to the element with an extremal value The element stays in the queue, but its
assigned sorting value can be obtained.

Insertion of an element with assigned sorting value The PQ must be able to insert
more data into the storage and use the value for deciding the extremal element.

The defined operations put a need on the data structure for which it can be optimized.
A possible solution would be to use a sorting function on a simple array, but the best computa-
tional complexity for sorting an array is O(n log n). An example of an efficient implementation
of the PQ is a Heap [36], which is represented as a tree with the extremal value in its root.
The computational complexity for element insertion and retrieval is O(log n), and for peek it
is O(1).

4.3 Computation of Area Between Two Disks

The area between two disks is a part of the proposed method as a constraint for the solution
space and detecting possible path interference with obstacles. However, the computation is
simply done by a combination of the goniometric functions, therefore it is shown here in
advance for completeness. The computation of the area between two disks has computational
complexity O(1).

18

Chapter 4. Background

The area between two disks, or two circles, encapsulates the area where the line connecting
any two points from the first and second disk goes through. We call this area, which creates
the solution space of the possible connecting lines, a cone. The cone is bordered by two line
segments, which are tangent to both disks.

The cone can be calculated using goniometric functions and the computation differs based
on the disks’ radii because of the different angles of the tangents. In Section 4.3.1, we de-
scribe the computation of the cone when the disks have the same radii. In Section 4.3.2 the
computation is described for different radii.

4.3.1 Equal Radii

In the case where the two disks have equal radii, the computation of the cone relies mostly on
the line segment connecting their centers. The cone is encapsulated by two tangents, which
are the same as the vector connecting the centers, shifted by its normal vector of the size of
the radius, as illustrated in Figure 4.2. In this case, the tangents are parallel.

c1

δ

c1 + r · n

c1 − r · n

c2

δ

c2 + r · n

c2 − r · n

n s

s

s

Figure 4.2: Area of direct visibility (cone) between two targets with same radii. The targets are
the black circles with their centers c, the radii are denoted by the dashed line, the connecting line is
denoted s, the normal vector is denoted n, |n| = 1 < r, and the cone is in yellow color, including the
area of the disks.

The disks are identified with their centers c1, c2 and radius δ. The vector connecting
c1 and c2 is calculated as

s = c2 − c1, (4.1)

and the normal vector n with length 1, perpendicular to s is calculated as

n =

(−s2
∥s∥ ,

s1
∥s∥

)
(4.2)

The border of the cone is then defined by the target regions, and the borders are defined as
one of the two equal options:

• line segment between c1 ± δn and c1 ± δn

• vector s starting in c1 ± δn

4.3.2 Non-equal Radii

In the case where the two disks have different radii, the computation of the cone is more
difficult as additional angles need to be obtained. The cone and the angles necessary for its

19

Chapter 4. Background

δ1

δ2c1
c2

sα
α

Figure 4.3: Area of possible solution space (cone) between two targets with different radii. The targets
are the black circles with their centers c, the radii are denoted by the dashed line, the connecting line
is denoted s, the angles used for cone calculation are denoted α, β, and the cone is in green color with
dark green border.

computation are illustrated in Figure 4.3.
The disks are defined with their centers c1, c2 and radii δ1, δ2. The vector s connecting

c1 and c2 is calculated as in (4.1), and the angle of s with respect to the coordinate system
denoted as γ is calculated as

γ = arctan

(
s2
s1

)
. (4.3)

The angle of the border, tangent to both disks is denoted α, and it is placed as shown in
Figure 4.3. It can be seen that there is a right-angle triangle and that the vector s is its
hypotenuse, and the difference δ1− δ2 is the length of one of its sides. With this information,
the angle α can be obtained as

α = arccos

(|δ1 − δ2|
∥s∥

)
(4.4)

The borders are then defined as the line segment between c1+ δ1n± and c2+ δ2n±, where
n+ and n− are two vectors defined as

n± = (cos(γ ± α), sin(γ ± α)) . (4.5)

20

CHAPTER 5
Proposed Method

In this chapter, the proposed method for solving the Close-Enough Traveling Salesman Prob-
lem with Obstacles (CETSPobs) is described. We approach the problem with the lower bound
estimates and the exact algorithm to obtain the best solution quality. The proposed method
is based on the Branch-and-Bound (BnB) algorithm, and it is presented in Section 5.1. The
CETSPobs consists of the problem of finding the optimal sequence which is a problem from
combinatorial optimization, and of finding the best point within the neighborhood, which is
a problem from continuous optimization. The BnB algorithm branches on subsequences of
the given target regions, and two methods for finding solutions on fixed target regions se-
quence have been proposed. The first method samples the target regions, therefore reducing
the problem from continuous optimization to combinatorial optimization, and it is described
in Section 5.2. Second, the mathematical model for representing the problem along with the
explanation of the used obstacle constraints is presented in Section 5.3

5.1 Branch-and-Bound for the Sequence Optimization

There are different approaches to sequence optimization for the Traveling Salesman Problem
(TSP) (Section 3.2). Since the problem is NP-hard and the number of possible solutions is
(n − 1)! where n is the number of targets, testing all solutions to find the optimal using the
brute force search becomes intractable with the increasing number of target regions. Branch-
and-Bound (BnB) is an algorithm for solving problems from mixed-integer and combinatorial
optimization. The BnB approach in this thesis for solving the CETSPobs is based on [3], which
is used for solving the Close-Enough Traveling Salesman Problem (CETSP) to optimality.
An example of the BnB algorithm for a small CETSP instance is illustrated in Figure 5.1.

The BnB algorithm creates and expands a solution tree consisting of nodes with partial
problem solutions. The solution tree is created by branching the already existing nodes, where
the next node for branching is selected as the one with the smallest lower bound. Since the
resulting solution tree could expand until it would contain all of the many possible sequences,
the BnB uses the bounding of the nodes to reduce the size of the search tree.

Some terminology is used for describing the proposed BnB approach for solving the
CETSPobs in this thesis. The terms are as follows, marked by the bold text.

21

Chapter 5. Proposed Method

Σ : 1, 4, 5
LB : 10.6
UB : 18.5

Σ : 1, 3, 4, 5
LB : 12.9
UB : 21.7

Σ : 1, 4, 3, 5
LB : 12.0
UB : 18.5

Σ : 1, 4, 5, 3
LB : 15.1
UB : 23.6

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Σ : 1, 2, 4, 3, 5
LB : 12.1
UB : 18.5

Σ : 1, 4, 2, 3, 5
LB : 15.2
UB : 24.5

Σ : 1, 4, 3, 2, 5
LB : 15.2
UB : 24.2

Σ : 1, 4, 3, 5, 2
LB : 12.6
UB : 21.0

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 5.1: BnB example on a CETSP instance. The BnB is first initialized with three targets and
then branched by adding the next target into the sequence Σ. Then, by the priority queue, the next
node with the smallest lower bound LB is examined and branched using the branching rule. The
next popped node contains all targets in Σ, therefore the BnB algorithm ends and returns the solution
with Σ = (1, 2, 4, 3, 5). Nodes are shown in rectangles, and the popped nodes have blue outlines. For
each node, the corresponding solution of the instance is shown next to it on the right with targets as
yellow disks, the LB as the blue line, and the upper bound UB as the red line. The green dotted lines
show the heuristic insert of targets for the UB (Algorithm 3).

Node Denoted as µ, the node of the solution tree is a partial problem. The partial problem
contains an ordered subset of the given target regions, whereas the full problem of the
CETSPobs contains all given target regions. Each node is unique by the sequence of
target regions, and it contains the lower and upper bound solutions for this sequence.
If the node is considered as promising based on its lower bound, the node is branched
with the branching rule, creating further nodes in the search tree.

Branching rule The rule is used for creating children nodes from a parent node. In our case
in branching, the sequence is extended with an additional target region, which is selected
to maximize the lower bound. Since it can be at different positions in the sequence, the
target region is inserted into each position to create multiple node children. The node
children are inserted into the Priority Queue (PQ) and can be examined as part of the
branching, which is the expansion of the subproblems to eventually contain all the target
regions.

Solution In the implementation, the Solution is a structure containing the following infor-
mation: the solution cost C, the visited target regions Σ, the sequence Ψ including both
the target regions and intermediate obstacle points, and lastly the exact points P on
which the cost was computed. The lower bound contains a solution with the goals which
are then branched upon, and the upper bound contains a feasible solution containing
all the target regions.

Lower bound Denoted LB, the LB is a possibly infeasible solution to the CETSPobs which

22

Chapter 5. Proposed Method

can contain only a subset of the target regions. It has a lower cost than or at most
equal cost to the optimal solution to the full problem. Its exact form in this thesis is
described in Section 5.1.2.

Upper bound Denoted UB, and it is a solution to the full problem with higher than or equal
cost to the optimal solution to the full problem. The UB solution is feasible and can be
accepted as the solution to the problem if the time limit is exceeded, therefore making
the BnB algorithm an any-time algorithm. Its exact form in this thesis is described in
Section 5.1.3.

Global bounds The LB and UB are obtained for each node. The bounds of nodes in the
search tree update the global bounds of the BnB algorithm, and the global bounds are
denoted as LB and UB. First, the global bounds can be initialized as: LB = 0,UB =∞.
Whenever a node µ is created and if µ.LB ≤ UB, the global bounds are updated as

LB = max (LB, µ.LB) , (5.1)

UB = min (UB, µ.UB) . (5.2)

Bounding The bounding is a crucial part of the BnB algorithm, as it eliminates unpromising
partial solutions from the solution tree. It uses the global UB for node elimination if
for the node µ, µ.LB > UB. This bounding can be applied because for any node µ, the
inequality

µ.LB ≤ µ.C ≤ µ.UB (5.3)

is valid due to the LB and UB definition, where µ.C is the found solution to the node
target region sequence µ.Σ.

The overview of the method is described in Algorithm 2. First, the initial node is created
with three target regions that maximize the LB as described in Section 5.1.1. Whenever a new
BnB node µ is created, it is added to the PQ as described in Section 4.2 with the sorting
value being µ.LB. From the initial node µinit, new nodes are branched using the branching
rule. The computation of the LB estimates is described in detail in Section 5.1.2, and the UB
computation is described in Section 5.1.3. Each new node not eliminated by the bounding
rule, is added to the PQ (children of the last examined node), and global LB and UB are
updated as in (5.1) and (5.2). The next examined node is the one with the smallest LB
retrieved from the PQ.

If the bounds are close to the solution, they are called tight bounds. The tight bounds are
desired because, with tight bounds, the BnB algorithm can find the optimal solution faster.
This is because the nodes with the LB higher than the global UB are cut off earlier, resulting
in fewer branches and thus a smaller search tree.

The BnB algorithm finishes successfully when all nodes are either opened or bounded
resulting in an empty PQ, or unsuccessfully if the maximum computation time limit is reached.
The leaf node is the node µleaf that has all the target regions added in the Σ, therefore the
solution to the full problem using the proposed method can be found. The solution is then
used to update the global UB which can be retrieved as a feasible solution at any time during
the tree search.

23

Chapter 5. Proposed Method

Algorithm 2: Proposed Branch-and-Bound algorithm for the CETSPobs.

Input: S = {S1, . . . , Sn} – set of target regions
VG – Visibility Graph between obstacle points and target regions center
tmax – maximum computation time

Output: LB,UB – global lower and upper bound solutions.

1 µroot ← empty BnB node
2 µroot.Σ← select root sequence from S using VG // (5.4)

3 µroot.LB, µroot.UB ← compute bounds from µroot.Σ // Sections 5.1.2 and 5.1.3

4 LB,UB ← µroot.LB, µroot.UB // initialize global bounds

5 PQ ← [µroot] // PQ of BnB nodes initialized with µroot

6 while PQ is not empty and t < tmax do
7 µ← get node with smallest LB.C from PQ
8 if µ.LB.Σ contains all goals then
9 P ← proposed solution on µ.LB.Σ // Section 5.1.4

10 if P.C < UB.C then
11 UB ← P // update global upper bound

12 end

13 end

// branching rule - insert next goal into µ.Σ that maximizes the distance

14 ν ← target region furthest from µ.LB.Σ // next goal for insertion

15 children ← {}
16 foreach i ∈ {1, . . . , |µ.Σ|} do // insert goal candidate into each index

17 µ′ ← empty BnB node
// insert ν to sequence µ′.Σ at index i

18 µ′.Σ← (µ′.σ1, . . . , µ
′.σi, v, µ

′.σi+1, . . . , µ
′.σ|µ.Σ|)

19 µ′.LB, µ′.UB ← compute bounds from µ′.Σ // Sections 5.1.2 and 5.1.3

20 add (µ′) to children

// update global bounds

21 LB ← argmaxµ′.LB,LB (µ′.LB.C,LB.C)
22 UB ← argminµ′.UB,UB (µ′.UB.C,UB.C)
23 end

// bounding

24 children ← filter children using (λx→ x.LB.C ≤ UB.C)
25 foreach child in children do
26 insert child into PQ
27 end

28 end
29 return LB, UB // solution after computational time limit reached

5.1.1 Initialization

The initialization of the BnB for the CETSPobs is shown in Algorithm 2 on lines 1–5. The
initial solution is selected to maximize the global LB. The initial three targets (Si, Sj , Sk) in

24

Chapter 5. Proposed Method

Algorithm 2 on Line 2 are selected as

(Si, Sj , Sk) = argmax
(Si,Sj ,Sk)∈S

(L∗(Si, Sj) + L∗(Sj , Sk) + L∗(Sk, Si)) . (5.4)

For every combination of three target regions, get the tour length, and the order of the
targets does not matter since the distance is symmetric and the tour is a cycle. The number
of possible combinations is calculated with the binomial coefficient

(
n
3

)
[37], and selecting the

root sequence can be implemented with a three-for-loop algorithm, thus the computational
complexity is O(n3).

5.1.2 Lower Bound Estimates

In this thesis, we propose several methods to address the lower bound estimation. The lower
bound, denoted LB, is a possibly infeasible solution to the CETSPobs with the cost lower or
equal to the final solution.

Because of this condition, the used lower bound must be smaller than the optimal solution.
We study the three following options to estimate the LB for subsequences of partial problems.

LBSOCP The Second-Order Cone Program (SOCP) [3] (Model 5.3.1) model-based lower
bound, and the solution to the CETSP [3]. It disregards the obstacles and solves the re-
laxed problem, therefore it is possibly infeasible in the CETSPobs if an obstacle interferes
with the solution.

LBEuclid For every two subsequent target regions Si = (ci, δi), Sj = (cj , δj) in Σ, we deter-
mine the shortest path disregarding the obstacles, calculated as

LBEuclid(Si, Sj) = ∥ci − cj∥ − δi − δj . (5.5)

The LBEuclid is an infeasible solution for the original problem because the result is not
a continuous path. It also has a property that the LB of a child node can be lower than
its parent because of the radii subtraction, which breaks the triangle inequality.

LBVG For every two subsequent target regions Si, Sj in Σ, we determine the shortest path
found with the Visibility Graph (VG), calculated using the L∗ (3.20) as

LBVG(Si, Sj) = L∗(ci, cj)− δi − δj . (5.6)

This bound is tighter than the LBEuclid, and it is also infeasible and has the same
property as LBEuclid. The LB is used for sorting the PQ and if when the children nodes
have smaller LB than the parent nodes, it can result in a more depth-first search.

5.1.3 Upper Bound Computation

The upper bound, denoted UB, is a feasible solution of each node to the CETSPobs problem
containing all the target regions, with the cost higher or equal to the optimal solution. It
should be fast to compute since it is used as a bound for each node, but should also be close
to the final solution.

We propose two methods to compute a tight upper bound but first, we need to add the
remaining target regions to the sequence µ.Σ for which we use a heuristic insert procedure
described Algorithm 3.

25

Chapter 5. Proposed Method

Algorithm 3: Heuristic sequence insert of target regions.

Input: S = {S1, . . . , Sn} – set of target regions
Σ = {σ1, . . . , σk}, k ≤ n – the sequence from node µ of goals already inserted
VG – Visibility Graph between obstacle points and target regions center

Output: updated Σ′ containing all S ∈ S
1 A← {σ | σ ∈ {1, . . . , n}, σ /∈ Σ} // select indexes that are not already in Σ

2 Σ′ = {σ′
1, . . . , σ

′
k} ← copy of Σ

3 foreach a ∈ A do
4 dmin ←∞ // minimum difference by adding the goal

5 imin ← 0 // insertion index leading to dmin
// compute difference created by inserting a at index i in Σ′

6 foreach i ∈ {1, . . . , |Σ′|} do
// the path between (Sσ′

i
, Sσ′

i+1
) can contain intermediate points q on

// the obstacle borders, creating a multi-line segment.

7 foreach line segment between (Sσ′
i
, Sσ′

i+1
) computed by VG do

8 d← distance of target region Sa from the line segment
9 if d < dmin then // update minimum difference

10 dmin ← d
11 imin ← i

12 end

13 end

14 end
// update Σ′ with a inserted at iminth index

15 Σ′ ← {σ′
1, . . . , σ

′
imin

, a, σ′
imin+1, . . . σ

′
|Σ′|}

16 end
17 return Σ

5.1.4 Proposed Solution

We propose to use two approaches to solve the CETSPobs, which differ in the possible points
on target regions, see Figure 5.2 – and MINLP model approach in Figure 5.2a, and the Sampled-
based method in Figure 5.2b. Both approaches for finding a solution are decoupled - they are
computed on the fixed target regions sequence.

(a) Continuous (b) Sampled

Figure 5.2: Solution points on target disk. In the continuous case, the points produced by the math-
ematical model can be anywhere within the green area including the border as shown in Figure 5.2a.
In the sampled case, the point visiting the disks is one of the six uniformly sampled points on the disk
border, denoted by the green dots in Figure 5.2b.

26

Chapter 5. Proposed Method

In the Sampled-based method, target region borders are sampled, and the problem is then
to select one sample for each region to minimize the tour cost. The approach for finding
the best samples is described in Section 5.2. In the MINLP model, the mathematical model
optimizes the points within the target regions, as described in Section 5.3. The target regions
can be initialized either by the result of the Sampled-based method, or with the sequence of
target regions itself, and adding intermediate points when necessary with the visibility graph.

5.2 Sampled-Based Method

In the Sampled-based method, we transform the continuous target regions into sets of samples,
as shown in Figure 5.2b. This transforms the continuous optimization problem of point
selection into a combinatorial one, namely from CETSPobs to Generalized Traveling Salesman
Problem (GTSP) with non-Euclidean distances provided by the VG. The tour still has to
visit all the target regions, but now it should visit one of the sampled points.

The samples Ki for target region Si are selected uniformly on the target region border as

Ki = {pi
1, . . . ,p

i
k}, pi

j = ci + δi(cos(jθ), sin(jθ)), θ =
2πj

k
∀j ∈ {1, . . . , k}, . (5.7)

The sampling of the region border is sufficient since it is visited even if the solution goes
through the target region. With the number of samples approaching infinity, the solution is
equal to the optimized version. An illustration of target sampling in an example instance is
shown in Figure 5.3.

Figure 5.3: Instance with sampled target regions, where the number of samples on the border is
three, shown by the orange dots. The green lines show all the combinations of paths between two
subsequent target regions.

When the samples are created and points are fixed, the VG is used to find the shortest
path between every two samples. Then, only the best samples for each position need to
be determined. This is done by the auxiliary graph as shown in Figure 5.4, with O(nk)
computational complexity to find the optimal solution, where n is the number of targets and
k is the number of samples in each target region. By using this graph approach, the solution
found on the samples is the best possible within the sampled space.

The computational time and solution cost of this approach are dependent on the number
of samples. With a smaller number of samples, it is relatively fast and straightforward to

27

Chapter 5. Proposed Method

p1
ip
1
i

S1

p1
ip
1
i

S1

...

S2

p2
k

p2
2

p2
1

...

S3

p3
k

p3
2

p3
1

...

Sn−1

pn−1
k

pn−1
2

pn−1
1

...

Sn

pn
k

pn
2

pn
1

. . .

Figure 5.4: Auxiliary graph with target samples. The distance is calculated using the VG from
the first target region S1 point p1

i , where i is the selected sample, in a cycle again up to p1
i . This

computation is repeated for all points from S1, and the best-found length from all of the points
p1
i , i ∈ {1, . . . , k} is the optimal length within the sampled space.

compute. With a higher number of samples, the computation takes longer time since also
the VG is computed with a higher number of vertices. By sampling the target region the
unlimited number of visiting point placements in the continuous domain is limited to only the
sample number, therefore some possibly better cost solutions in the continuous neighborhood
are lost.

5.3 Mixed Integer Non-Linear Program for the CETSPobs

In this section, we define the mathematical model as the Mixed Integer Non-Linear Program
(MINLP) for the CETSPobs when the sequence of visits is fixed. The model for finding the
optimal solution to the CETSP [3] is described in Section 5.3.1. This model is formulated as
a problem from convex optimization, therefore the found optimum is the global optimum of
the problem.

The model for the CETSP does not consider obstacles, and therefore we propose an exten-
sion of this model with added constraints for polygonal obstacles. The obstacle constraints,
along with the full model are in Section 5.3.2. The obstacle constraints however are added
only when the obstacle interferes with the solution between each two subsequent regions, as
described in Section 5.3.3. Lastly, the model only optimizes the points in the input target
regions. In some instances, the solution quality might increase if further obstacle points are
included in the solution, and the process of adding the points is described in Section 5.3.4.

5.3.1 Second-Order Cone Program for the CETSP

The problem of the CETSP is defined as the minimization of the tour length. Note that
the sequence Σ would determine the numbering of the target regions S. In this section, the
numbering of S by Σ is omitted for cleaner definitions. The sequence of the target regions S ′
is fixed and is denoted as

S ′ = (S1, . . . , Sk),

Si = (ci, δi), ci ∈R2, δi ≥ 0 ∀i ∈ {1, . . . , k}, k ≤ n. (5.8)

28

Chapter 5. Proposed Method

The optimization goal is the sum of distances f = {f1, . . . , fk} between the points x found
in the circular area from center c with radius δ. Due to the tour cyclicity, we define that the
target region with index k + 1 to be equivalent to the target with index 1 as

xk+1 ≜ x1. (5.9)

The objective goal and constraints with helper variables are defined in Model 5.3.1.

Model 5.3.1 (SOCP for CETSP)

min
X

n∑
i=1

fi, (5.10)

s.t. f2
i ≥ wT

i wi ∀i ∈ {1, . . . , n}, (5.11)

wi = xi+1 − xi ∀i ∈ {1, . . . , n}, (5.12)

vT
i vi ≤ δ2i ∀i ∈ {1, . . . , n}, (5.13)

vi = ci − xi ∀i ∈ {1, . . . , n}. (5.14)

fi ∈ R, wi ∈ R2, xi ∈ R2, vi ∈ R2 ∀i ∈ {1, . . . , k}.

The decision variables are the points in the target regions X = {x1, . . . ,xk}. The auxiliary
variable wi (5.12) contains the vector difference of the two subsequent points xi,xi+1, and
fi (5.11) represents the minimized length of vector wi. They are used to calculate the tour
cost in the objective function (5.10) as a sum over all variables f . The variable vi (5.13)
contains the vector difference of the point xi and its corresponding target region center ci.
The length of vector vi must be smaller than the target region radius δi (5.14). The model
expects an obstacle-free environment, and it can be extended using obstacle constraints to
find feasible solutions.

5.3.2 Polygonal Obstacles Constrained in a Half-Plane

The obstacle constraints are used in the mathematical model, therefore they need to be in
such a form to be solvable by the current solvers. The well-studied obstacle representation is
the polygon. The polygon is usually represented as a sequence of points that are connected
by line segments, and it can have an arbitrary number of sides. In the proposed approach, we
use only the polygon points to determine an intersection with the solution.

Figure 5.5 shows an example of the solution line segment generating two half-planes and
possible obstacle positions. The line segment is created by the two sequential points xi,xi+1,
and the half-plane is separated by the corresponding line. If all the points of the obstacle
border are in one half-plane, the solution does not interfere with the obstacle, as illustrated
in Figure 5.5a, otherwise the obstacle intersects the solution as in Figure 5.5b.

The line can be prescribed by a parametric equation ax1 + bx2 + c = 0, where a, b, c ∈ R
are the defining constants. The line consists of all points p ∈ R2 for which the equation is
valid. Prescription of the line generated by segment of points xi+1,xi ∈ R2 are

−d2p1 + d1p2 + q = 0, (5.15)

d = xi+1 − xi, q = d2xi,1 − d1xi,2. (5.16)

29

Chapter 5. Proposed Method

(a) Obstacles evasion (b) Obstacle intersection

Figure 5.5: Points in half-planes generated by a solution line segment. The line with blue-green
outlines represents the border between half-planes. Brown polygons are the obstacles with their vertices
shown with a dot or a star symbol, and the colored symbol represents half-plane affiliation.

The meaning of the left side of (5.15) for point p ∈ R2 anywhere in the plane is

−d2p1 + d1p2 + q

> 0 p is in the first half-plane,

= 0 p is on half-plane border,

< 0 p is in the other half-plane.

(5.17)

We want the obstacle to be on one side of the half-plane or the other. For this reason,
we model the constraints using the Big-M method, which by using a large constant M and
binary variable y ∈ {0, 1} activates one of the two half-plane constraints. The constraints
for a single obstacle O = {o1, . . . ,ol} being in one of the half-planes generated by solution
parametric line between every two subsequent points xi,xi+1 are

−di,2oj,1 + di,1oj,2 + qi ≤ 0 +Myi ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , l}, (5.18)

−di,2oj,1 + di,1oj,2 + qi ≥ 0−M(1− yi) ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , l}, (5.19)

di = xi+1 − xi ∀i ∈ {1, . . . , n}, (5.20)

qi = di,2xi,1 − di,1xi,2 ∀i ∈ {1, . . . , n}, (5.21)

oj ∈ O ∀j ∈ {1, . . . , l}, (5.22)

The mathematical model is defined as the minimization of the length tour with a given set
of target regions S as in (5.8), and a set of obstacles Ω (3.1). The set of obstacles is defined as
a set of polygons defined by points in order, where each polygon can have a different number
of sides.

The optimization goal is the sum of distances f between the points x found in the circular
area from center c with radius δ. The constraints are added for each of two consecutive target
regions Si, Si+1 if the obstacle is within their cone (further described in Section 5.3.3). The
tour is cyclic, therefore (5.9) holds. The objective goal and constraints with auxiliary variables
are defined in Model 5.3.2.

30

Chapter 5. Proposed Method

Model 5.3.2 (MINLP for CETSPobs)

min
X

n∑
i=1

fi, (5.23)

s.t. f2
i ≥ wT

i wi ∀i ∈ {1, . . . , n} (5.24)

wi = xi+1 − xi ∀i ∈ {1, . . . , n} (5.25)

vT
i vi ≤ δ2i ∀i ∈ {1, . . . , n} (5.26)

vi = ci − xi ∀i ∈ {1, . . . , n} (5.27)

− di,2o
k
l,1 + di,1o

k
l,2 + qi ≤Myi,k (5.28)

∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K}, l ∈ {1, . . . , lk} if Ok in cone of xi,xi+1

− di,2o
k
l,1 + di,1o

k
l,2 + qi ≥ −M(1− yi,k) (5.29)

∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K}, l ∈ {1, . . . , lk} if Ok in cone of xi,xi+1

di = xi+1 − xi ∀i ∈ {1, . . . , n} (5.30)

qi = di,2xi,1 − di,1xi,2 ∀i ∈ {1, . . . , n} (5.31)

fi ∈ R, wi ∈ R2, xi ∈ R2, vi ∈ R2, yi ∈ {0, 1}m, di ∈ R2, qi ∈ R ∀i ∈ {1, . . . , n}.

The first constraints are the same as in Model 5.3.1, equations (5.11)–(5.14), and the
remaining constraints are added for the obstacles. The constraints (5.28), (5.29) are the half-
plane constraints for each side of the line segment. The binary variable yi,k switching the
constraints for the Big-M method is indexed for each two consecutive target regions index i
and each obstacle index k. The in cone selection of indexes is described in Section 5.3.3. The
remaining variables are auxiliary, and they represent the difference vector di (5.30) of the line
between two consecutive solution points xi,xi+1, and the constant qi (5.31) representing the
constant of the line.

5.3.3 Conditions for Adding Obstacle Constraints to Model

The position of the obstacle in half-planes generated by the line segment solution is only
relevant for those obstacles that can interfere with the solution. Also, adding constraints for
every obstacle and for each of the two subsequent target regions could result in a large number
of constraints in the model that are always valid. The area where the solution line occurs is
known in advance and is visualized in Figure 5.6. The area between two points is denoted in
this thesis as a cone, and its computation is described in Section 4.3.

To decide if the constraint is needed for the specific two target regions, a cone between
them is calculated and then the intersection of the cone area with an obstacle is checked.
If the obstacle blocks the cone completely, any straight line between the two target regions
would be infeasible. In such a case, the intermediate points on the obstacle borders are added
using the VG, as is described in the statement of Section 3.1. The creation of the model with
the cone constraints and the intermediate points is shown in Algorithm 4.

The position of the obstacle in half-plane works, because we made some assumptions on
the instances. These assumptions are

1. The obstacles do not interfere with each other.

31

Chapter 5. Proposed Method

Figure 5.6: Area of possible solutions between targets on a CETSPobs instance. The brown polygons
are the obstacles, the yellow disks are the target regions, and the orange areas between the target
regions are the cones. The blue line is a possible solution to the instance.

2. No target region interferes with any obstacle.

3. The target regions are allowed to interfere.

The first assumption is important for the computation of VG due to the implementation
constraints [38]. The second assumption is important for the half-plane constraint. The case
scenario where the constraint is required, otherwise the solution could not be found, is shown
in Figure 5.7.

Figure 5.7: Example of a target region and obstacle scenario where the half-plane constraint would
fail due to obstacle presence inside of the disk.

Another limitation of the used constraints is that the obstacle should occur entirely in
one half-plane. If a complex concave polygon obstacle partly occurs inside the cone and then
creates a corner behind the target region as shown in Figure 5.8, it could also be blocking
a valid solution using the half-plane constraint.

This issue can be solved by convexification of the obstacle polygon. The obstacle is
separated into multiple smaller obstacles that are convex, and the original obstacle is their

32

Chapter 5. Proposed Method

Algorithm 4: Create optimization model with cone.

Input: S = {S1, . . . , Sn} – set of target regions
Σ = {σ1, . . . , σn} – order of visit to the target regions
Q = {Q1 . . . , Qn} – set of intermediate points on obstacles, where

Qi = {q1, . . . , qki} ∈ Rki×2, ki ∈ N0 ∀i ∈ {1, . . . , n}
Ω = {O1, . . . , Om} – set of obstacles, where

Oi = {oi
1, . . . ,o

i
li
} ∈ Rli×2, li ∈ N ∀i ∈ {1, . . . ,m}

Output: optimization modelM
1 Ψ← () // list of target regions in order

2 for σi ∈ Σ do // append all targets and intermediate points in a sequence

3 Ψ← Ψ
⊔
Sσi

4 Ψ← Ψ
⊔kσi

j=0 S(c = qσi , δ = 0) // add intermediate points on obstacles

as target regions with zero radius

5 end

6 M← optimization Model 5.3.1 with variables {x1, . . . ,x|Ψ|} ∈ R|Ψ|×2

7 forall i ∈ {1, . . . , |Ψ|} do // iterate all cones

8 to modelM add constraint di = xi+1 − xi

9 to modelM add constraint qi = di,2xi,1 − di,1xi,2

10 forall j ∈ {1, . . . ,m} do // iterate all obstacles

11 if obstacle Oj is in cone between target regions Ψi,Ψi+1 then
12 to modelM add binary variable yi,j
13 forall l ∈ {1, . . . , lj} do // iterate all points in obstacle

14 to modelM add constraint −di,2o
j
l,1 + di,1o

j
l,2 + qi ≤Myi,j

15 to modelM add constraint −di,2o
j
l,1 + di,1o

j
l,2 + qi ≥ −M(1− yi,j)

16 end

17 end

18 end

19 end
20 returnM;

Figure 5.8: Example of a target region and obstacle scenario with a complex concave obstacle around
the target region.

unification. The separation can be done for example with triangulation by ear clipping [39].
The triangulation of a single obstacle with l sides takes utmost O(n3) based on the imple-

33

Chapter 5. Proposed Method

mentation. Due to floating point sensitivity in the calculations, the VG is computed first, and
the obstacle triangulation is computed afterward, and the separated obstacle is used only for
the MINLP constraints.

5.3.4 Discussion of the Model Solution Quality

The model finds a solution over a set of target regions, along with the dummy target regions
added by the VG. Given the set Ψ, as in Algorithm 4, the solution found by Model 5.3.2 is
optimized. However, the question is if the whole sequence given in Ψ is optimal, and that is
not proved in this thesis.

During the examination, however, it is found that the optimized solution touches the
obstacle border points, as in the example in Figure 5.9. In this case, one can see that the

Figure 5.9: Example solution where the addition of intermediate solution points can improve its cost.
The blue line is the MINLP model solution with C = 174 only on yellow target regions in the sequence
input to Model 5.3.2, and the green line is the MINLP model solution with C = 128, after addition of
the points that touch the solution into the sequence.

solution could be improved if the solution line had multiple segments instead of a single
straight segment. For this purpose, an algorithm to include these touching points is proposed
in Algorithm 5. The algorithm first finds a solution ξ for the input list of target regions and
obstacles with Model 5.3.2. Then it enters a loop and the algorithm examines the solution
lines between every two consecutive target regions, and if any obstacle point is on the solution
line, it is added to the list of target regions with zero radius. If there are no added points, the
loop ends. A new solution ξ′ is computed from the updated list of target regions, and if the
new solution has a higher cost ξ′.C than the previous solution ξ.C, the loop ends. Otherwise,
ξ is updated with ξ′ and the loop continues. When the loop ends, the latest solution ξ is
returned.

5.3.5 The MINLP as Post-optimization Heuristic

The proposed MINLP mathematical Model 5.3.2 is from the Non-Linear optimization cat-
egory, and finding the optimum can be difficult with high computational complexity. On
the other hand, the Sampled-based method from Section 5.2 solves a discretized problem

34

Chapter 5. Proposed Method

Algorithm 5: Pointify model solution.

Input: Ψ = {S1, . . . , Sk} – sequence of target regions
VG – visibility graph between obstacle points and target regions center
Ω = {O1, . . . , Om} – set of obstacles

Output: ξ = (Ψ, C) – visiting sequence of the locations P.
1 ξ ← find solution points and tour cost usingM
2 while True do // iterative solution improvement

3 Ψ′ ← () // updated sequence of target regions

4 Q ← {Qi, . . . , Q|Ψ|}, Qi = ∅ // intermediate points for model creation

5 foreach consecutive line segment Xi = (Si, Si+1) from S do
6 Ψ′ ← Ψ′⊔Si

// for obstacle points that are in cone, check if they lay on the line

7 Qi ← found obstacle points touching solution between X
8 order Qi by the direction of X

9 end
10 if Ψ′ = Ψ then // no more obstacle points are added

11 return ξ
12 end
13 M← mathematical model created from Ψ′,O,Q with Algorithm 4
14 ξ′ ← find solution points and tour cost usingM
15 if ξ′.C > ξ.C then // added point prolongs the tour cost

16 return ξ
17 else
18 ξ ← ξ′

19 end
20 Ψ← Ψ′

21 end

with deterministic computation. We can use the Sampled-based method to find the initial
sequence including the intermediate obstacle points, and then use Algorithm 4 to obtain the
MINLP model. The obtained model is then optimized to obtain the solution. We denote this
approach as the Post-optimization heuristic , and it can be also used as the UB solution.

35

Chapter 5. Proposed Method

36

CHAPTER 6
Empirical Evaluation

In this chapter, we empirically evaluate the performance of the proposed Branch-and-Bound
(BnB) method. We also generate random instances for the method evaluation with up to
ten target regions, and they are described in Section 6.1. In the proposed method, different
options for the lower bound estimates are specified, and their influence on the BnB algo-
rithm is described in Section 6.2. Different methods for finding the upper bound solutions
on fixed sequence were proposed, which are also examined in terms of solution quality and
computational time in Section 6.3 and compared to the reference methods.

All the proposed solutions have been implemented in Julia language [34], version 1.8,
and were executed on a personal computer with Intel CPU i7-10700 CPU @ up to 2.9GHz.
The used optimization solver for the MINLP model is the Juniper solver [30] version 0.7 with
Ipopt [29] version 3.13, which are part of the Julia package system. For the Second-Order
Cone Program (SOCP) model for computing the LBSOCP, the CPLEX solver [28] version 0.6
is used.

6.1 Instances

In the previous chapter, the constraints on the feasible instances have been described. The
constraints are that obstacles cannot interfere with the target region or another obstacle, and
this is therefore prohibited during the instance generation.

The instances are generated as follows. First, a set of target regions is generated within the
specified limits. The targets can interfere with each other, so there is no additional check of
their locations. Then the set of obstacles is generated, and for each added obstacle, both the
interferences with any obstacle and any target region are checked. If the obstacle interferes,
it is generated again at random.

Global bounds on the coordinates in the 2D plane are set, and they are [xmin, xmax] on
the x-axis, and [ymin, ymax] on the y-axis. The radius of the target region must be within
[δmin, δmax]. The number of target regions can be fixed or generated in the specified range.
The number of targets should be greater than three because sequences shorter than or equal
to three do not need to be optimized.

The number of obstacles can also be fixed or random, and the values for generating a single
polygon are shown in Figure 6.1. The obstacle is specified by its border points and has to be

37

Chapter 6. Empirical Evaluation

d1

d2

d3

d4

d5

α1

α2

α3

Figure 6.1: Process for random obstacle generation with s = 5 sides, α1 < α2 < . . . < α5, absolute
value |αi − αi+1| ≤ π, center point (x, y) is at the intersection of the dashed lines.

a polygon with no crossing sides. First, a center point (x, y) is randomly generated, where
x ∈ [xmin, xmax] and y ∈ [ymin, ymax]. The number of obstacle border points can be fixed or
random, and they are generated by angles A = {α1, . . . , αs} and lengths D = {d1, . . . , ds},
where s is a randomly generated number of polygon sides. The set of angles is generated
randomly from the range [0, 2π) and sorted in ascending order. The distance between every
two succeeding angles must be ≤ π because there is a risk that the obstacle borders would
cross otherwise. The distances D are also generated randomly within the specified range, and
the final coordinates for obstacle O are calculated as

O = ((x+ di cosαi, y + di sinαi) | i ∈ {1, . . . , s}) . (6.1)

The generated obstacles cannot interfere with each other because of the Visibility Graph
(VG) computation. The VG is computed for all the obstacles and target region centers after
they are generated for the instance, and altogether the data are saved to an instance file. The
instances are named as tn 00i, where n is the number of target regions in an obstacle and
i is the identifier of the specific instance, i ≤ 6. An example of the generated data is shown
in Figure 6.2.

(a) t5 002 (b) t8 003 (c) t10 001

Figure 6.2: Example of randomly generated instances. Brown polygons are the obstacles, yellow
discs are the target regions, and the lines are the edges of VG.

38

Chapter 6. Empirical Evaluation

6.2 Evaluation of the Lower Bound Estimates

The lower and upper bounds are used in the BnB algorithm for bounding of the solution tree
size. In Section 5.1.2, three different lower bounds (denoted LB) were described - LBSOCP

computed with the SOCP model used for solving the Close-Enough Traveling Salesman Prob-
lem (CETSP), LBEuclid computed as the Euclidean distance minus the radii of the target
regions, and LBVG computed as the distance found using VG minus the radii.

The upper bounds (denoted UB) are found using the heuristic insertion of all target regions
into the sequence as described in Section 5.1.3. Once the BnB node contains all the target
regions, the global BnB UB is updated by the proposed UB solution. In this section, we focus
on the influence of the different LB estimates.

The number of examined nodes for the sampled solution method with k = 6 point samples
on the target region border is shown in Figure 6.3, and the corresponding data are in Table 6.1.
From Figure 6.3 it can be seen that the LBSOCP opens the lowest number of nodes from all the
proposed LB types, and LBEuclid the most nodes. Similarly for the solution updates, which

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Number of target regions n

101

102

C
ou

n
ts

of
O

p
en

N
o
d

es
(O

N
)

/
S

ol
u

ti
on

U
p

d
at

es
(S

U
) SOCP ON

SOCP SU

Euclid ON

Euclid SU

VG ON

VG SU

Figure 6.3: Different number of examined lower bound values for the Sampled-based method with
the number of samples k = 64.

are always lower than the number of open nodes, since only the open leaf nodes are considered
for the solution. The full data in Table 6.1 shows also the time needed to find the solution, and
it can be seen that the computational time for the different LB estimates is similar. This is
because even though the LBSOCP expanded fewer nodes, the model optimization takes longer
than accessing precomputed distances as in LBEuclid and LBVG. The sampling-based method
is deterministic, therefore two runs for each instance are considered sufficient. Furthermore,
all results for instances where the computational time has not been reached have the same
solution value C. The largest discrepancy of C is found for the instance t10 004, where the
cost found by the visibility graph is the lowest. This is because all three LB types timed out,
and the C is the latest result since BnB is an any-time algorithm. The found solutions for
this specific instance are shown in Figure 6.4.

39

Chapter 6. Empirical Evaluation

Table 6.1: Comparison of the LB types for Sampled-based method with k = 64. The best values for
each row are marked by bold font. The red values in columns t are when the 3600 s time limit of the
BnB algorithm is reached in at least one run, and blue values in columns C are when the value differs
from the minimum.

LBSOCP LBEuclid LBVG

Instance C t [s] ON C t [s] ON C t [s] ON

t5 001 499.7 307.7 7.0 499.7 308.2 8.0 499.7 332.9 7.0

t5 002 616.9 292.6 6.0 616.9 293.0 9.0 616.9 296.6 6.0

t5 003 687.8 413.2 7.0 687.8 414.7 7.0 687.8 420.3 7.0

t5 004 647.2 344.0 5.0 647.2 348.3 6.0 647.2 349.7 5.0

t5 005 691.8 339.5 6.0 691.8 343.5 9.0 691.8 341.4 4.0

t5 006 451.7 96.6 6.0 451.7 96.0 7.0 451.7 97.1 7.0

t6 001 693.3 767.8 18.0 693.3 792.3 19.0 693.3 782.5 18.0

t6 002 719.1 686.9 8.0 719.1 705.5 8.0 719.1 683.3 8.0

t6 003 451.2 775.3 11.0 451.2 800.0 20.0 451.2 780.5 15.0

t6 004 566.5 551.2 10.0 566.5 570.4 20.0 566.5 556.1 20.0

t6 005 690.6 723.7 9.0 690.6 750.8 12.0 690.6 722.8 6.0

t7 001 487.9 490.4 12.0 487.9 495.8 34.0 487.9 497.7 34.0

t7 002 896.2 989.7 23.0 896.2 1021.6 24.0 896.2 999.2 18.0

t7 003 782.8 1047.3 55.0 782.8 1051.2 81.0 782.8 1018.8 22.0

t7 004 693.9 1142.9 6.0 693.9 1151.1 13.0 693.9 1160.9 13.0

t7 005 764.0 977.8 11.0 764.0 988.2 15.0 764.0 979.9 12.0

t8 001 779.0 1671.9 45.0 779.0 1726.4 130.0 779.0 1685.4 37.0

t8 002 737.6 1545.0 15.0 737.6 1546.8 14.0 737.6 1545.5 14.0

t8 003 780.1 1921.2 42.0 780.1 1974.8 119.0 780.1 1951.9 49.0

t8 004 912.4 1615.1 17.0 912.4 1671.1 28.0 912.4 1625.5 21.0

t8 005 653.3 1648.6 22.0 653.3 1658.9 32.0 653.3 1656.5 25.0

t8 006 609.0 1367.8 10.0 609.0 1364.8 25.0 609.0 1369.4 12.0

t9 001 745.3 3010.5 27.0 745.3 3026.9 76.0 745.3 3043.5 30.0

t9 002 1007.0 1978.9 29.0 1007.0 2110.1 109.0 1007.0 2014.0 49.0

t9 003 823.0 2629.5 19.0 823.0 2665.5 39.0 823.0 2617.7 18.0

t9 004 797.4 3728.5 7.0 797.4 3766.8 7.0 797.4 3843.1 7.0

t9 005 707.2 2000.1 29.0 707.2 2088.0 114.0 707.2 2064.1 49.0

t10 001 780.9 2081.8 14.0 780.9 2149.6 116.0 780.9 2240.9 71.0

t10 002 884.6 3232.6 185.0 884.6 3600.4 365.5 884.6 3499.1 205.0

t10 003 653.1 3263.6 38.0 653.1 3350.0 60.0 653.5 3490.2 33.5

t10 004 851.2 3887.0 16.0 852.4 3875.1 8.0 794.4 4079.7 8.0

t10 005 638.0 3124.1 75.0 638.0 3359.9 284.0 638.0 3387.5 166.0

40

Chapter 6. Empirical Evaluation

Figure 6.4: Solutions for instance t10 004 with Sampled-based method and k = 64 found before
timeout tmax = 3600 s was reached with different LB estimates. The black line is the solution found
when LBVG is used, the blue line is the LBEuclid and the green line is the LBSOCP.

6.3 Evaluation of the Upper Bound Solutions

In this section, the cost of the solutions and the corresponding computational time needed
are compared. The cost and time are dependent on the different number of samples for the
Sampled-based method, described in Section 5.2 and Post-optimization heuristic, described
in Section 5.3.5. For the latter and the Mixed Integer Non-Linear Program (MINLP) formu-
lation described in Section 5.3, the cost and time are dependent on the optimization solver.

The cost and time for the Sampled-based method with SOCP lower bound LBSOCP is
shown in Figure 6.5, and the same data are also shown in Table 6.2. The table shows that with
a larger number of target region samples k the solution improves since the proposed Sampled-
based method is exact. At the same time, the computational time increases logarithmically.
The peak for n = 10, k = 64 at the end in Figure 6.5a is caused by the timeout. A feasible
solution is still obtained as the value of the global upper bound since the BnB is an any-time
algorithm.

The table Table 6.2 the MINLP model and Post-optimization heuristic methods along
with the computational times are shown. The cost C obtained by the Post-optimization

heuristic of k = 6 samples is better than Sampled-based method for k = 64, and the

41

Chapter 6. Empirical Evaluation

Table 6.2: Sampled-based method with different number of samples k and LBSOCP. The best values
for each row are marked by bold font and the times t where the time limit tmax of 3600 s is reached
are in red. The dash symbolizes missing results.

Sampled k = 6 Sampled k = 12 Sampled k = 32 Sampled k = 64 Post-opt k = 6 MINLP

Instance C t [s] C t [s] C t [s] C t [s] C t [s] C t [s]

t5 001 506.5 1.1 500.3 4.5 499.8 42.1 499.7 307.7 499.6 57.2 499.6 70.2

t5 002 626.6 1.1 617.7 4.6 616.9 41.6 616.9 292.6 616.9 80.9 616.9 149.9

t5 003 690.0 2.1 689.0 8.3 687.9 67.9 687.8 413.2 687.7 234.2 705.6 1225.8

t5 004 652.0 1.6 647.7 6.4 647.4 55.4 647.2 344.0 647.2 1786.6 649.2 1085.4

t5 005 697.6 1.6 694.4 6.5 691.9 55.3 691.8 339.5 692.1 37.2 695.0 71.6

t5 006 457.8 0.8 452.0 3.1 451.7 22.3 451.7 96.6 451.6 15.7 451.6 31.7

t6 001 697.5 2.7 694.5 11.1 693.4 103.3 693.3 767.8 693.2 5263.2 698.0 4362.6

t6 002 721.6 3.1 719.5 12.6 719.2 107.6 719.1 686.9 719.0 1070.7 719.0 1024.5

t6 003 453.0 2.3 451.6 9.3 451.2 90.2 451.2 775.3 451.2 337.9 451.2 325.6

t6 004 568.0 1.6 567.9 6.7 566.7 66.1 566.5 551.2 566.8 1595.6 566.8 2257.4

t6 005 694.4 2.9 691.0 11.7 690.8 102.8 690.6 723.7 690.6 55.5 691.5 38.7

t7 001 489.1 2.5 488.5 9.7 488.0 82.2 487.9 490.4 487.9 697.5 488.7 376.6

t7 002 903.2 2.5 896.9 10.2 896.3 109.7 896.2 989.7 – – 959.9 16504.2

t7 003 784.2 3.5 783.9 13.5 782.9 127.9 782.8 1047.3 782.8 3913.7 876.7 4029.3

t7 004 699.1 2.9 696.0 12.1 694.0 128.7 693.9 1142.9 698.2 15016.1 698.0 13362.1

t7 005 768.3 2.9 765.8 12.1 764.0 120.9 764.0 977.8 763.9 1321.5 766.5 505.5

t8 001 782.3 6.7 780.1 25.2 779.0 228.8 779.0 1671.9 782.3 3779.1 786.5 4045.9

t8 002 740.5 2.9 738.4 12.4 737.7 147.5 737.6 1545.0 740.5 3095.5 758.9 1089.7

t8 003 786.5 3.8 780.8 15.2 780.2 176.4 780.1 1921.2 786.5 3658.2 799.5 4550.0

t8 004 914.7 3.8 912.7 15.9 912.4 171.8 912.4 1615.1 914.7 3399.4 953.3 3767.6

t8 005 655.6 3.4 655.4 14.3 653.5 164.3 653.3 1648.6 653.3 2999.7 672.4 4100.8

t8 006 612.5 3.5 610.9 14.8 609.2 155.1 609.0 1367.8 609.0 1321.2 609.0 1287.9

t9 001 749.8 7.2 746.7 29.7 745.4 324.0 745.3 3010.5 749.8 4276.5 755.1 4264.3

t9 002 1010.4 4.0 1007.8 16.1 1007.2 197.1 1007.0 1978.9 1006.9 4040.5 1011.7 4387.1

t9 003 829.1 5.2 824.0 22.2 823.2 265.6 823.0 2629.5 829.1 824.8 823.5 1363.4

t9 004 801.0 5.1 797.9 22.3 797.5 303.7 797.4 3728.5 797.4 3759.7 797.4 3813.8

t9 005 713.9 4.0 709.4 16.1 707.3 197.6 707.2 2000.1 707.1 3631.4 835.2 4430.3

t10 001 788.3 4.1 782.7 16.5 781.0 196.2 780.9 2081.8 780.8 14437.8 – –

t10 002 892.6 11.7 886.7 35.4 884.7 351.3 884.6 3232.6 897.7 7868.3 907.3 4073.0

t10 003 656.3 3.4 654.4 15.8 653.4 252.0 653.1 3263.6 653.1 17503.8 – –

t10 004 805.1 11.7 797.7 38.8 794.5 400.8 851.2 3887.0 794.3 5346.5 – –

t10 005 644.9 9.3 638.7 32.1 638.2 337.4 638.0 3124.1 638.0 58214.1 – –

Post-optimization heuristic could perform better in all cases if more than 6 samples were
used. The solutions found directly by MINLP model usually take longer t, and C is equal to
or worse than the Post-optimization heuristic. This is because the MINLP solver does not
find the global optimum, and in many instances, not all the sequences were examined because
of the time limit. The computational time t fluctuates for the two methods without any re-
semblance of the tendency of t for the Sampled-based method. The time limit tmax was set to

42

Chapter 6. Empirical Evaluation

3600 s, and the optimization solver itself had the time limit set to 1000 s. In some instances,
t was many times higher than tmax. This is caused by the MINLP optimization solver, which,
even though the time limit was reached, did not stop the improvement loop.

k = 6 k = 12 k = 24 k = 32 k = 64

Number of samples k

0.990

0.992

0.994

0.996

0.998

1.000

1.002

1.004

1.006

R
el

at
iv

e
so

lu
ti

on
co

st
to
k

=
6

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

(a) Cost relative to 6 samples

k = 6 k = 12 k = 24 k = 32 k = 64

Number of samples k

100

101

102

103

C
om

p
u

ta
ti

on
al

T
im

e
[s

]

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

(b) Computational time

Figure 6.5: The comparison of the solution cost and time for the Sampled-based method with SOCP
lower bound and different number of samples. With a higher number of samples k the cost consistently
decreases, and the computational time increases logarithmically.

In table Table 6.3 the proposed Sampled-based method is compared with the reference
solutions found using the Self-Organizing Map (SOM) [6] and the Large Neighborhood Search
Heuristic for the Generalized Traveling Salesman Problem (GTSP) (GLNS) for the CETSP
(GLNS-CETSP) [7]. The reference methods are heuristic with the solution depending on the
initialization, and their cost is averaged over multiple runs. For the proposed Sampled-based
method , C decreases with the number of samples k, since the method is deterministic. Even
though the SOM approach also uses samples for the target regions to transform the circle to
a k-sided polygon, the cost C fluctuates due to the heuristic nature of the algorithm.

In Table 6.4 the comparison of the proposed and reference methods [6, 7] with and without
the Post-optimization heuristic is shown. The proposed Post-optimization heuristic im-
proves the solutions found with Sampled-based method. For the solutions from the reference
methods, the Post-optimization heuristic does not always improve the solutions. This can
happen because the initializing sequence uses the target regions, and the used mathematical
solver found only a local optimum. The better performance of the Post-optimization heuris-
tic on the proposed solution can be explained by multiple solution updates, whereas in the
reference methods only the final solution was provided to the Post-optimization heuristic.
Also, the UB solution in the proposed method is only updated when improvement is reached,
whereas in Table 6.4 the cost found by the Post-optimization heuristic for the reference
methods is shown nevertheless if the improvement is reached or not.

All of the used data instances and solutions from the proposed Sampled-based method,
Post-optimization heuristic and the reference SOM and GLNS-CETSP methods are shown
in Appendix in Chapter A.

43

Chapter 6. Empirical Evaluation

Table 6.3: Comparison of solution cost C for proposed and reference methods. The best values for
each row are marked in bold font. The dash symbolizes missing results.

Sampled-based method SOM [6] GLNS-
CETSP [7]Instance k = 6 k = 12 k = 24 k = 64 k = 6 k = 12 k = 24 k = 64

t5 001 506.5 500.3 499.8 499.7 513.8 512.6 515.3 510.2 499.6

t5 002 626.6 617.7 617.0 616.9 638.8 629.7 630.7 630.1 616.9

t5 003 690.0 689.0 688.1 687.8 693.0 692.5 691.0 692.1 687.7

t5 004 652.0 647.7 647.4 647.2 653.3 652.1 650.0 650.1 649.2

t5 005 697.6 694.4 692.0 691.8 709.7 705.3 702.7 705.5 692.1

t5 006 457.8 452.0 451.9 451.7 460.4 456.5 456.3 455.5 451.6

t6 001 697.5 694.5 693.6 693.3 708.8 705.8 703.3 704.1 693.2

t6 002 721.6 719.5 719.1 719.1 729.2 728.1 724.7 727.5 719.0

t6 003 453.0 451.6 451.5 451.2 469.9 469.9 474.9 473.3 451.2

t6 004 568.0 567.9 566.8 566.5 – – – – 566.9

t6 005 694.4 691.0 690.8 690.6 700.7 699.8 700.0 698.9 690.6

t7 001 489.1 488.5 488.2 487.9 498.1 497.8 497.4 496.1 488.1

t7 002 903.2 896.9 896.3 896.2 924.0 913.8 913.7 914.8 898.2

t7 003 784.2 783.9 782.9 782.8 794.8 801.9 793.8 796.2 788.8

t7 004 699.1 696.0 694.1 693.9 710.0 706.9 704.4 703.7 693.9

t7 005 768.3 765.8 764.1 764.0 782.1 780.7 784.8 779.0 764.0

t8 001 782.3 780.1 779.4 779.0 792.5 794.4 789.0 788.6 795.3

t8 002 740.5 738.4 738.0 737.6 752.8 745.6 746.1 746.0 737.6

t8 003 786.5 780.8 780.3 780.1 800.4 792.9 803.8 799.0 781.8

t8 004 914.7 912.7 912.5 912.4 937.3 944.0 933.2 938.5 1070.1

t8 005 655.6 655.4 653.7 653.3 665.1 667.6 664.0 662.8 653.3

t8 006 612.5 610.9 609.4 609.0 616.2 616.2 614.9 615.3 609.0

t9 001 749.8 746.7 745.4 745.3 758.8 757.1 754.7 754.6 745.3

t9 002 1010.4 1007.8 1007.4 1007.0 1018.5 1021.8 1020.1 1019.8 1019.3

t9 003 829.1 824.0 823.3 823.0 857.5 853.6 847.9 848.3 823.0

t9 004 801.0 797.9 797.6 797.4 806.1 804.8 809.5 803.0 797.4

t9 005 713.9 709.4 707.6 707.2 728.1 723.7 727.2 728.4 707.1

t10 001 788.3 782.7 781.2 780.9 797.7 805.5 801.2 800.5 780.8

t10 002 892.6 886.7 884.9 884.6 900.4 897.8 894.5 895.9 896.0

t10 003 656.3 654.4 653.5 653.1 664.5 661.8 661.2 661.4 653.2

t10 004 805.1 797.7 794.8 851.2 809.7 803.7 802.3 799.7 860.6

t10 005 644.9 638.7 638.3 638.0 647.7 644.2 644.3 643.2 638.0

44

Chapter 6. Empirical Evaluation

Table 6.4: Comparison of solution cost C with Post-optimization heuristic for proposed and refer-
ence methods. The best values for each row are marked by bold font. The dash symbolizes missing
results.

Instance Sampled

k = 6
Post-opt

k = 6
MINLP SOM

[6]
SOM

Post-opt

GLNSC
[7]

GLNSC
Post-opt

t5 001 506.5 499.6 499.6 515.3 514.5 499.6 499.6

t5 002 626.6 616.9 616.9 630.7 639.3 616.9 616.9

t5 003 690.0 687.7 705.6 691.0 694.0 687.7 687.7

t5 004 652.0 647.2 649.2 650.0 653.5 649.2 649.2

t5 005 697.6 692.1 695.0 702.7 710.4 692.1 692.1

t5 006 457.8 451.6 451.6 456.3 460.0 451.6 451.6

t6 001 697.5 693.2 698.0 703.3 709.5 693.2 693.2

t6 002 721.6 719.0 719.0 724.7 728.7 719.0 719.0

t6 003 453.0 451.2 451.2 474.9 469.8 451.2 451.2

t6 004 568.0 566.8 566.8 – – 566.9 566.9

t6 005 694.4 690.6 691.5 700.0 700.0 690.6 690.6

t7 001 489.1 487.9 488.7 497.4 499.1 488.1 488.1

t7 002 903.2 – 959.9 913.7 921.8 898.2 898.5

t7 003 784.2 782.8 876.7 793.8 792.7 788.8 788.8

t7 004 699.1 698.2 698.0 704.4 712.7 693.9 693.9

t7 005 768.3 763.9 766.5 784.8 779.2 764.0 764.0

t8 001 782.3 782.3 786.5 789.0 793.8 795.3 795.3

t8 002 740.5 740.5 758.9 746.1 752.8 737.6 737.6

t8 003 786.5 786.5 799.5 803.8 815.3 781.8 781.8

t8 004 914.7 914.7 953.3 933.2 941.5 1070.1 1070.1

t8 005 655.6 653.3 672.4 664.0 665.1 653.3 653.3

t8 006 612.5 609.0 609.0 614.9 616.1 609.0 609.0

t9 001 749.8 749.8 755.1 754.7 759.5 745.3 745.3

t9 002 1010.4 1006.9 1011.7 1020.1 1019.6 1019.3 1019.3

t9 003 829.1 829.1 823.5 847.9 850.5 823.0 823.0

t9 004 801.0 797.4 797.4 809.5 807.1 797.4 797.4

t9 005 713.9 707.1 835.2 727.2 726.8 707.1 707.1

t10 001 788.3 780.8 – 801.2 798.1 780.8 780.8

t10 002 892.6 897.7 907.3 894.5 906.2 896.0 896.0

t10 003 656.3 653.1 – 661.2 664.7 653.2 653.2

t10 004 805.1 794.3 – 802.3 811.5 860.6 860.6

t10 005 644.9 638.0 – 644.3 647.5 638.0 638.0

45

Chapter 6. Empirical Evaluation

46

CHAPTER 7
Conclusion

In this thesis, we study the Close-Enough Traveling Salesman Problem (CETSP) in an envi-
ronment with obstacles. It is a variant of the Traveling Salesman Problem (TSP), which is
an NP-hard problem, therefore the studied problem is challenging as well. The approaches
for solving the Close-Enough Traveling Salesman Problem with Obstacles (CETSPobs) and
related work are overviewed, and the descriptions of background methods are provided to
make the thesis self-contained.

The studied problem is denoted as the CETSPobs and its formal definition has been pro-
vided. The proposed Branch-and-Bound (BnB) algorithm is presented, along with the pro-
posed upper bound solutions (denoted UB). For the BnB, three different types of lower
bound estimates (denoted LB) are used: the Second-Order Cone Program (SOCP) model
solution of the CETSP disregarding the obstacles denoted LBSOCP, the Euclidean distance
minus the radii of the target regions denoted LBEuclid, and the distance found using the
Visibility Graph (VG) minus the radii denoted LBVG. The mathematical model formulation
for CETSPobs is formulated as the Mixed Integer Non-Linear Program (MINLP) for a fixed
target region sequence. The constraints use half-plane obstacle separation, and the cone area
is used to minimize the number of constraints added to the MINLP model.

Two different UB solution methods for the fixed sequence of target regions found by the
BnB algorithm are proposed. The first takes advantage of the MINLP model, which was pro-
vided with the description of obstacle constraints and the sequence optimization is discussed.
The second proposed method is the Sampled-based method, which effectively transforms the
CETSPobs to the Generalized Traveling Salesman Problem (GTSP), where the VG is used to
compute the shortest path between every two samples. This approach finds the optimal solu-
tion within the discretized problem by selecting the best samples using the auxiliary graph.
The two methods can be combined, and MINLPmodel is used to improve the solutions found by
the Sampled-based method by optimizing the found solution sequence including the obstacle
points, called the Post-optimization heuristic. The proposed methods for UB computation
are employed for the BnB nodes containing all the given target regions in the sequence (lead
nodes), and the solution is also used to update the global UB to tighten the bound to the
global optimum.

The proposed method is empirically evaluated on randomly generated instances. The
different types of LB estimates were compared by the number of opened BnB nodes and the

47

Chapter 7. Conclusion

number of UB updates in leaf nodes. The UB solution approaches were evaluated as well, and
the obtained solution costs C were the same for all LB types if the solution is found within the
time limit. However, the computational time to find the solution is different due to a different
number of examined nodes. The proposed BnB method has a longer computational time
than the two heuristic approaches used for comparison [6, 7], which is expected since the BnB
method is used for finding the exact solutions. The Post-optimization heuristic can also be
used on the solutions given by the approaches [6, 7], and is in review in [10].

The proposed UB solutions that use the MINLP mathematical model are quite slow to
computational and become intractable for larger instances. This is due to the proposed BnB
method and the infeasible LB , but also the speed of the optimization solvers for MINLP.
A tighter LB estimate could be used, e.g. the windowing approach with the distance found
with MINLP model, where the LB estimate is computed on a subset of the target region
sequence.

The obstacle constraints in the MINLP model are selected to have the lowest polynomial
complexity. Therefore, the half-plane representation is used in the thesis, because the con-
straint variables are at most to the power of two. During the design phase, different constraints
for obstacle avoidance were considered, such as obstacle representation as a disk, where the
intersection constraints had variables to the fourth power. The second option for the polygo-
nal obstacle was the intersection of the line segments of the polygonal obstacle border to the
solution line segment, which had floating point precision issues. Therefore, a possible future
work would be to further examine the different obstacle constraints.

48

i
Bibliography

[1] David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. The Traveling
Salesman Problem. In The Traveling Salesman Problem. Princeton university press, 2007.

[2] Damon J Gulczynski, Jeffrey W Heath, and Carter C Price. The Close Enough Traveling
Salesman Problem: A discussion of several heuristics. In Perspectives in operations
research, pages 271–283. Springer, 2006.

[3] Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and
Anand Subramanian. A Branch-and-Bound algorithm for the Close Enough Traveling
Salesman Problem. INFORMS Journal on Computing, 28(4):752–765, 2016.

[4] Jindřǐska Deckerová, Jan Faigl, and Vı́t Krátkỳ. Traveling Salesman Problem with neigh-
borhoods on a sphere in reflectance transformation imaging scenarios. Expert Systems
with Applications, 198:116814, 2022.

[5] Jan Faigl, Miroslav Kulich, Vojtěch Vonásek, and Libor Přeučil. An application of the
Self-Organizing Map in the non-Euclidean Traveling Salesman Problem. Neurocomputing,
74(5):671–679, 2011.

[6] Jan Faigl, Vojtěch Vonásek, and Libor Přeučil. Visiting convex regions in a polygonal
map. Robotics and Autonomous Systems, 61(10):1070–1083, 2013.

[7] Lukáš Fanta. The Close Enough Traveling Salesman Problem in the polygonal domain.
PhD thesis, Master’s thesis, CTU in Prague, 2021.

[8] Stephen L Smith and Frank Imeson. GLNS: An effective large neighborhood search
heuristic for the generalized Traveling Salesman Problem. Computers & Operations Re-
search, 87:1–19, 2017.

[9] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Compu-
tational Geometry: Introduction. Springer, 1997.

[10] Jindřǐska Deckerová, Kristýna Kučerová, and Jan Faigl. Towards improvement of heuris-
tic solutions of the Close Enough Traveling Salesman Problem in an environment with
obstacles, 2023. (in review).

49

Bibliography

[11] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several
heuristics for the Traveling Salesman Problem. SIAM journal on computing, 6(3):563–
581, 1977.

[12] Hui-Dong Jin, Kwong-Sak Leung, Man-Leung Wong, and Z-B Xu. An efficient Self-
Organizing Map designed by genetic algorithms for the Traveling Salesman Problem.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(6):877–
888, 2003.

[13] Egon Balas and Paolo Toth. Branch and Bound methods for the Traveling Salesman
Problem. Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1983.

[14] George Bernard Dantzig, Delbert R Fulkerson, and Selmer Martin Johnson. On a Linear-
Programming, combinatorial approach to the Traveling-Salesman Problem. Operations
research, 7(1):58–66, 1959.

[15] Iacopo Gentilini, François Margot, and Kenji Shimada. The Travelling Salesman Problem
with neighbourhoods: MINLP solution. Optimization Methods and Software, 28(2):364–
378, 2013.

[16] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. Branching
and Bounds tightening techniques for non-convex MINLP. Optimization Methods and
Software, 24(4-5):597–634, 2009.

[17] Jing Dong, Ning Yang, and Ming Chen. Heuristic approaches for a TSP variant: The
automatic meter reading shortest tour problem. Extending the horizons: Advances in
computing, optimization, and decision technologies, pages 145–163, 2007.

[18] William Kenneth Mennell. Heuristics for solving three routing problems: Close Enough
Traveling Salesman Problem, Close-Enough Vehicle Routing Problem, and Sequence-
Dependent Team orienteering Problem. University of Maryland, College Park, 2009.

[19] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[20] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. CHOMP:
Gradient optimization techniques for efficient motion planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 489–494. IEEE, 2009.

[21] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia
Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with sequential
convex optimization and convex collision checking. The International Journal of Robotics
Research, 33(9):1251–1270, 2014.

[22] John Saalweachter and Zygmunt Pizlo. Non-Euclidean Traveling Salesman Problem.
Decision modeling and behavior in complex and uncertain environments, pages 339–358,
2008.

[23] Luitpold Babel. Curvature-Constrained Traveling Salesman tours for aerial surveillance
in scenarios with obstacles. European Journal of Operational Research, 262(1):335–346,
2017.

50

Bibliography

[24] Lester E Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
mathematics, 79(3):497–516, 1957.

[25] George Bernard Dantzig. Linear Programming. Operations research, 50(1):42–47, 2002.

[26] Gautam Mitra. Investigation of some Branch and Bound strategies for the solution of
Mixed Integer Linear Programs. Mathematical Programming, 4:155–170, 1973.

[27] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis.
Springer Science & Business Media, 2004.

[28] Christian Bliek, Pierre Bonami, and Andrea Lodi. Solving Mixed-Integer Quadratic
Programming Problems with IBM-CPLEX: a progress report. In Proceedings of the
twenty-sixth RAMP symposium, pages 16–17, 2014.

[29] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale Nonlinear Programming. Mathematical Pro-
gramming, 106:25–57, 2006.

[30] Ole Kröger, Carleton Coffrin, Hassan Hijazi, and Harsha Nagarajan. Juniper: An Open-
source Nonlinear Branch-and-Bound Solver in Julia. In Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, pages 377–386. Springer In-
ternational Publishing, 2018.

[31] Pierre Bonami et al. Bonmin: Basic Open-source Nonlinear Mixed Integer Programming.
https://github.com/coin-or/Bonmin, 2004. Accessed: 2023-04-13.

[32] Harsha Nagarajan, Mowen Lu, Site Wang, Russell Bent, and Kaarthik Sundar. An adap-
tive, multivariate partitioning algorithm for global optimization of nonconvex programs.
Journal of Global Optimization, 2019.

[33] Harsha Nagarajan, Mowen Lu, Emre Yamangil, and Russell Bent. Tightening McCormick
relaxations for nonlinear programs via dynamic multivariate partitioning. In Interna-
tional Conference on Principles and Practice of Constraint Programming, pages 369–387.
Springer, 2016.

[34] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh ap-
proach to numerical computing. SIAM review, 59(1):65–98, 2017.

[35] Pierre Bonami et al. COUENNE: Convex Over and Under Envelopes for Nonlinear
Estimation. https://github.com/coin-or/Couenne, 2006. Accessed: 2023-04-13.

[36] Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. Design and implementation of an
efficient Priority Queue. Mathematical systems theory, 10(1):99–127, 1976.

[37] Herbert John Ryser. Combinatorial mathematics, volume 14. American Mathematical
Soc., 1963.

[38] Christian Reksten-Monsen et al. Taipanrex/pyvisgraph: Given a list of simple obstacle
polygons, build the visibility graph and find the shortest path between two points. https:
//github.com/TaipanRex/pyvisgraph, Last modified: 2018. Accessed: 2023-05-11.

[39] David Eberly. Triangulation by ear clipping. Geometric Tools, pages 2002–2005, 2008.

51

https://github.com/coin-or/Bonmin
https://github.com/coin-or/Couenne
https://github.com/TaipanRex/pyvisgraph
https://github.com/TaipanRex/pyvisgraph

APPENDIX A
Instances

t5 001 t5 002 t5 003

t5 004 t5 005 t5 006

Figure A.1: The randomly generated instances with proposed and reference solutions. The cyan
path is the solution found by SOM [6], the green path is the solution found by GLNS-CETSP[7],
the red path is found using the Sampled-based method with 6 samples, the blue path is found with
Post-optimization heuristic.

53

Appendix A. Instances

t6 001 t6 002 t6 003

t6 004 t6 005 t7 001

t7 002 (missing Post-opt) t7 003 t7 004

Figure A.2: The randomly generated instances with proposed and reference solutions contd.

54

Appendix A. Instances

t7 005 t8 001 t8 003

t8 002 t8 004 t8 005

t8 006 t9 001 t9 002

Figure A.3: The randomly generated instances with proposed and reference solutions contd.

55

Appendix A. Instances

t9 003 t9 004 t9 005

t10 001 t10 004 t10 003

t10 002 t10 005

Figure A.4: The randomly generated instances with proposed and reference solutions contd.

56

	Used Abbreviations
	Used Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Related Work
	Traveling Salesman Problem
	Traveling Salesman Problem with Neighborhoods
	Multi Goal Path Planning in Environment with Obstacles
	Mathematical Modeling and Optimization Solvers

	Problem Statement
	Polygonal domain
	Obstacle Representation

	Traveling Salesman Problem
	Traveling Salesman Problem with Neighborhoods
	Close-Enough Traveling Salesman Problem with Obstacles

	Background
	Visibility Graph
	Shortest Path in the Visibility Graph

	Priority Queue
	Computation of Area Between Two Disks
	Equal Radii
	Non-equal Radii

	Proposed Method
	Branch-and-Bound for the Sequence Optimization
	Initialization
	Lower Bound Estimates
	Upper Bound Computation
	Proposed Solution

	Sampled-Based Method
	Mixed Integer Non-Linear Program for the CETSPobs
	Second-Order Cone Program for the CETSP
	Polygonal Obstacles Constrained in a Half-Plane
	Conditions for Adding Obstacle Constraints to Model
	Discussion of the Model Solution Quality
	The MINLP as Post-optimization Heuristic

	Empirical Evaluation
	Instances
	Evaluation of the Lower Bound Estimates
	Evaluation of the Upper Bound Solutions

	Conclusion
	Bibliography
	Instances

