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© 2023 Vojtěch Krejsa. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
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Abstract

In early August 2022, a critical vulnerability identified as CVE-2022-37434
was discovered in the widely used Zlib compression library. The vulnerability
is described as a heap buffer overflow. Some sources even argue that it could
be exploited to execute arbitrary code. However, there is no available evidence
confirming this claim. In this thesis, a detailed analysis of the vulnerability
focusing on its exploitability to code execution is performed. The analysis
is performed on the Ubuntu 22.04 LTS operating system with the glibc 2.35
memory manager and on Windows 10, version 22H2, with its default memory
manager. The analysis results confirm that the vulnerability can indeed be ex-
ploited to code execution. In this thesis, it is described how it can be achieved.
For demonstration purposes, virtual environments have been prepared.

Keywords CVE-2022-37434 vulnerability, Zlib, buffer overflow, gzip, code
execution, exploit
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Abstrakt

Na začátku srpna roku 2022 byla v široce použ́ıvané kompresńı knihovně
Zlib objevena kritická zranitelnost s označeńım CVE-2022-37434. Zranitel-
nost je popisována jako přetečeńı bufferu na haldě. Některé zdroje dokonce
uváděj́ı, že by mohla být zneužita až ke spuštěńı libovolného kódu. Neexistuj́ı
však žádné dostupné d̊ukazy, které by tuto skutečnost potvrzovaly. V této
práci je provedena detailńı analýza zranitelnosti s d̊urazem na možnosti jej́ıho
zneužit́ı právě pro spuštěńı kódu. Analýza je provedena na operačńım systému
Ubuntu 22.04 LTS s pamět’ovým manažerem glibc 2.35 a na Windows 10
verze 22H2 s výchoźım pamět’ovým manažerem. Výsledky analýzy potvr-
zuj́ı, že zranitelnost lze skutečně pro spuštěńı kódu zneuž́ıt. V této práci
je popsáno, jak toho lze dosáhnout. Pro účely demonstrace byla připravena
virtuálńı prostřed́ı.

Kĺıčová slova zranitelnost CVE-2022-37434, Zlib, přetečeńı bufferu, gzip,
spuštěńı kódu, exploit
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Introduction

The amount of information stored, processed, and transmitted continuously
increases. Along with that, the number of software products is growing as
well, and so is the number of vulnerabilities. Software vulnerabilities allow
attackers to infiltrate and take control over target systems, compromising the
security, confidentiality, and integrity of stored information. Although many
developers and companies try to minimize vulnerabilities in their software,
creating perfectly secure software is nearly impossible. Cyber attacks are thus
gradually becoming one of the key issues of the modern world.

Nowadays, vulnerabilities are being disclosed publicly, allowing developers
to fix them faster and making the general public aware. In addition, it helps
to convince the users why they should update to a newer software version.

On August 5, 2022, a critical vulnerability identified as CVE-2022-37434
was discovered in the widely used Zlib compression library. According to its
description, it is a buffer overflow vulnerability. Some sources even argue that
it could be exploitable to code execution. However, at the time of writing this
thesis, there is no public exploit nor any evidence to confirm that claim. In
the light of the extensive use of the Zlib library, we were intrigued by this fact,
so we decided to explore the vulnerability more thoroughly.

Our goal is to study the Zlib library, identify its vulnerable parts, and
determine under which circumstances a buffer overflow can be triggered. Our
main goal is to describe in more detail when and how the overflow occurs and
determine whether the CVE-2022-37434 vulnerability can indeed be exploited
to code execution and, if so, to prepare a proof-of-concept of it.

The structure of the thesis is as follows:

In Chapter 1, we present the vulnerability disclosure system and how vulner-
abilities are scored. Next, we introduce buffer overflow vulnerabilities
and how they can be exploited. Finally, we present available information
about the CVE-2022-37434 vulnerability.
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Introduction

In Chapter 2, we present the gzip file format and the parts of the Zlib library
relevant to the CVE-2022-37434 vulnerability.

In Chapter 3, we describe how the vulnerability behaves, how the overflow
can be triggered, and how partial conditions for code execution can be
achieved.

In Chapter 4, we summarize the results of our analysis and propose condi-
tions under which code execution can be achieved. We also present our
CVE-2022-37434 vulnerability severity score.

2



Chapter 1
Vulnerabilities

The CVE-2022-37434 vulnerability is one of many publicly disclosed vulner-
abilities. In this chapter, we aim to introduce vulnerabilities in general, how
they are reported, when and how they are disclosed, how they are scored, and
how the general public can learn about the new ones. Furthermore, the goal
is to introduce buffer overflows, as the CVE-2022-37434 vulnerability belongs
to the category of buffer overflow vulnerabilities.

First, we will introduce the Common Vulnerabilities and Exposures pro-
gram, which is used for identifying and cataloging vulnerabilities. Next, we
will present the widely used Common Vulnerability Scoring System v3.1,
used to classify the severity of vulnerabilities. Then we will describe the
buffer overflow vulnerabilities, including exploitation techniques and protec-
tions against them. Finally, we will present the available information about
the CVE-2022-37434 vulnerability.

1.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a community-based effort
that maintains a database of publicly disclosed cybersecurity vulnerabilities.
Each vulnerability is described in a CVE Record and is uniquely identified
with a CVE Identifier. CVE Records are stored in the CVE List, the catalog
of all CVE Records identified by or reported to the CVE Program. The list
is publicly available, and anyone can access information about all disclosed
vulnerabilities in this list. [1], [2]

CVE was launched in 1999 and is operated by the MITRE Corporation,
funded by the Cybersecurity and Infrastructure Security Agency (CISA), part
of the U.S. Department of Homeland Security (DHS). The CVE program aims
to increase the volume of created CVE Records and to produce them as quickly
as possible after discovering a vulnerability. [1]

As shown in Fig. 1.1, the number of published CVE Records increases over
time. This is due to several factors. The amount of software is growing, and at
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1. Vulnerabilities

the same time, more people are looking for security flaws and reporting them.
Some software vendors even encourage people to search for vulnerabilities in
their software via so-called bug bounty programs1.

CVE provides a convenient and reliable way for all third parties interested
in a particular vulnerability to exchange security information about it. Using
CVE Records with CVE Identifiers ensures that two or more parties can confi-
dently refer to the same vulnerability when discussing or sharing information.
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Figure 1.1: Number of CVE Records published in the past ten years [4].

1.1.1 Difference Between Vulnerabilities and Exposures

Vulnerability is a flaw in a software, hardware, firmware, or service com-
ponent resulting from a weakness that can lead to the exploitation of a
given system and causes a negative impact on confidentiality, integrity,
or availability. An example of a vulnerability could be a buffer overflow
vulnerability, which can lead to the execution of arbitrary code. [2], [5]

Exposure is an incident in which an unauthorized activity has taken advan-
tage of a vulnerability. A vulnerability only implies potential exploita-
tion, while exposure means the weakness has been exploited to perform
an unauthorized action. [5]

1A bug bounty program is a public challenge issued by software vendors to reward individ-
uals for reporting security vulnerabilities in their software. These programs allow developers
to discover and fix vulnerabilities before the general public becomes aware, preventing them
from being exploited. [3]
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1.1. Common Vulnerabilities and Exposures

1.1.2 CVE Records

A CVE Record contains a brief description of a vulnerability associated with
a CVE Identifier and references to more information about it, such as vendor
advisories. It generally does not contain technical information and has no score
for the vulnerability. However, additional information about the vulnerability,
such as a CVSS score, information about a fix, and other essential details
needed for the mitigation of the vulnerability, can be found in other databases,
such as the U.S. National Vulnerability Database (NVD). [6]

As mentioned above, each CVE Record is assigned a number known as
a CVE Identifier so that it is possible to refer to the vulnerability. Those
identifiers are assigned by CVE Numbering Authorities (CNAs). The CVE
Identifier takes the form CVE-[Year]-[Number], where the Year represents the
year the CVE was published, and the Number is the number assigned by a
CNA. [6], [7]

Thus, the CVE-2022-37434 vulnerability was published in 2022 and was
assigned the serial number 37434.

Each CVE Record is associated with one of the following three states:

• Reserved – The initial state for a CVE Record. The CVE Record
already has a CVE Identifier assigned by the responsible CNA but is
not yet published.

• Published – In this state, the CVE Record is publicly disclosed in
the CVE List. It must meet all the requirements to be published. It
must contain an identifier, a brief description, and at least one public
reference.

• Rejected – This state indicates that the CVE Record should no longer
be used. A Rejected CVE Record remains in the CVE List so that users
can know that it is invalid. [7]

1.1.3 Criteria for the Establishment of a CVE Record

For a CVE Record to be created, it must meet certain conditions. The com-
plete, exhaustive list of requirements can be found in [8]. Only the most
important aspects are mentioned below.

CVE Records must be assigned to independently fixable vulnerabilities.
If one vulnerability can be fixed without fixing the other, a separate record
should be created for each. Thus, one CVE Record should describe precisely
one independently fixable vulnerability. At the same time, it must be true that
the reported vulnerability negatively impacts the system’s security. This can
be acknowledged by the software vendor or the vulnerability reporter with a
proof-of-concept of a security breach. However, the ultimate decision is always
with the responsible CNA.
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1. Vulnerabilities

1.1.4 Reporting and Publishing CVEs

The entire CVE reporting process is divided into several steps:

1. First, a security researcher or an organization must discover a new vul-
nerability. Then the discoverer reports the vulnerability to a CNA and
requests a CVE Identifier.

2. Once the identifier is reserved, the CVE Record is in the reserved state,
which is its initial state. At this point, stakeholders can already use the
CVE Identifier for early-stage vulnerability coordination and manage-
ment. The CVE Record is not yet published at this stage.

3. Next, the CNA submits the details of the vulnerability. These details
include affected products and versions, vulnerability type, impact, and
at least one public reference.

4. Once the minimum required data elements are included in the CVE
Record, the responsible CNA publishes it to the CVE List. As of this
moment, the CVE Record is publicly disclosed. [7]

1.1.5 Risks Associated with CVEs

It should be noted that by publishing a CVE Record, attackers are also in-
formed about the security flaw in the system. Whether it is better to disclose
the vulnerability and give attackers an opportunity to attack everyone who
has not yet patched it or to conceal its existence is a matter of debate.

It is generally accepted that the benefits of publishing outweigh the risks.
Just because a vulnerability is not disclosed does not mean it is not being
exploited. The description of the vulnerability in the CVE Record is inten-
tionally brief so that it does not give out too much detail on how to exploit
it. Disclosing and sharing information about vulnerabilities helps speed up
their mitigation process. Generally, the details about a vulnerability are only
published after a patch or fix is released. [6]

1.2 Scoring Vulnerabilities

Although any vulnerability in a system is undesirable, some of them are more
severe than others. There may even be multiple vulnerabilities in a system
simultaneously, so resolving them all at once may be impossible. In addition,
the cost of fixing a vulnerability can even be greater than the potential damage
to all users, so it is legitimate not to fix it at all or to fix it only partially to
reduce its impact on the security of the given system. Therefore, objectively
assessing each vulnerability’s severity is essential. Vulnerabilities can then be
ranked from the most severe and mitigated in that order.
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1.2. Scoring Vulnerabilities

To assess the severity of a vulnerability, it is advisable to utilize some of
the available vulnerability scoring systems. Using a scoring system has one
significant advantage – no essential security aspect is forgotten.

The vulnerability assessment can introduce certain subjectivity biases.
Thus, different organizations may assign various severity scores to the same
vulnerability.

There are several scoring systems, such as DREAD, Common Vulnerability
Scoring System (CVSS), and Common Weakness Scoring System (CWSS).
However, we will focus solely on CVSS, specifically its version 3.1, as it is
currently the most widely used. NVD generally publishes CVSS v3.0 or CVSS
v3.1 and CVSS v2.0 scores for each CVE Record.

1.2.1 Common Vulnerability Scoring System v3.1

The Common Vulnerability Scoring System is an open framework operated
by the Forum of Incident Response and Security Teams (FIRST). It is used
to evaluate the severity of software vulnerabilities. CVSS is currently in its
third major version (v3.1), designed to address shortcomings in the previous
versions.

The scoring system consists of three groups of metrics: Base, Temporal,
and Environmental. The Base group represents vulnerability characteristics
constant over time and across different environments. The Temporal group
reflects vulnerability characteristics that change over time, and the Environ-
mental group represents unique vulnerability characteristics within a given
environment. The individual metrics have a small number of possible values
to make the result less dependent on the subjectivity of the evaluator. [9]

Since NVD only provides the Base score for the vulnerabilities [10], we will
not focus on Temporal and Environmental scores further. However, NVD pro-
vides a CVSS calculator, allowing users to add Temporal and Environmental
metrics into their scoring, which better reflects the impact on their system.

Publicly available CVSS scores are in the vast majority Base scores only,
which do not reflect all the factors in specific environments. Such a score can
tell how dangerous the vulnerability is in general scope but cannot express
the danger in the specific organization’s context. This is why organizations
should supplement the Base Score with Temporal and Environmental Scores
specific to their use of the vulnerable product, making the severity score more
accurate to the organization’s environment. [9], [11]

The CVSS v3.1 Base score generates a numerical score ranging from 0 to 10,
which can be modified by scoring the Temporal and Environmental metrics.
The higher the value, the more severe the vulnerability. A CVSS score can
also be represented as a vector string, a textual representation of the metric
values used to derive the vulnerability score [9]. An example of such a vector
string is shown in Fig 1.2.
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1. Vulnerabilities

1.2.2 CVSS Base Metrics

The CVSS Base metric group represents the characteristics of a vulnerability
that are constant over time and across environments. It comprises three sub-
sets of metrics: the Exploitability metrics, the Scope, and the Impact metrics.

Below is a brief overview and meanings of the metrics used in the Base
Score calculation. A detailed description of each metric, including examples,
can be found in the official documentation [9]. A graphical representation of
the CVSS v3.1 calculation with a list of all possible values for each metric is
shown in Fig. 1.2.

When scoring Base metrics, it should be assumed that an attacker has
advanced knowledge of the weakness of the target system.

1.2.2.1 Exploitability Metrics

The Exploitability metrics reflect the characteristics of the vulnerable compo-
nent. They consist of four metrics:

• Attack Vector (AV) – Reflects the context by which vulnerability
exploitation is possible. This metric value will grow with the distance
(logically and physically) an attacker can be in exploiting the vulnera-
ble component. The possible values are Network, Adjacent, Local, and
Physical.

• Attack Complexity (AC) – Reflects the complexity of successful vul-
nerability exploitation. It considers conditions needed to exploit the
vulnerability but cannot be controlled by an attacker. As more of these
conditions exist, the higher the complexity gets. The evaluation of this
metric does not consider any user requirements – these are captured in
the User Interaction metric. The possible values are Low and High.

• Priviledges Required (PR) – Describes the level of privileges an
attacker must possess to exploit the vulnerability. The possible values
are None, Low, and High.

• User Interaction (UI) – Captures whether user participation is re-
quired for a successful attack. It determines whether an attacker can
exploit a vulnerability independent of other users. The possible values
are None and Required. [9]

1.2.2.2 Scope

The Scope metric describes whether exploitation of the vulnerability can affect
resources beyond the security scope managed by the vulnerable component.
If such a possibility exists, the resulting score is higher. The possible values
are Changed and Unchanged. [9]
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1.2. Scoring Vulnerabilities

1.2.2.3 Impact Metrics

Impact metrics describe the impact of a successful exploit on the component
being attacked. The evaluation should reflect reasonable outcomes that we
are confident an attacker can achieve. They consist of three metrics:

• Confidentiality (C) – Measures how much access an attacker gains
to information resources by exploiting the vulnerability. Confidentiality
refers to restricting access to information to authorized users only. The
possible values are None, Low, and High.

• Integrity (I) – Measures how much an attacker can modify data on
the compromised system. Integrity refers to the trustworthiness and
veracity of information. The possible values are None, Low, and High.

• Availability (A) – Measures the impact on the impacted component’s
availability resulting from successful exploitation. The possible values
are None, Low, and High. [9]

Figure 1.2: Visualization of the CVSS v3.1 Base score for the CVE-2022-37434
vulnerability provided by NIST [12]. The picture is taken from [13].
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1. Vulnerabilities

1.2.3 CVSS Qualitative Ratings

Converting the CVSS numeric value into a qualitative rating (text value) may
be advantageous in some cases. This approach is especially useful when com-
municating with less technical stakeholders since referring to a vulnerability
as critical rather than a vulnerability with a high CVSS score simplifies con-
vincing the stakeholders of its severity.

FIRST maps CVSS scores to the qualitative ratings shown in Fig. 1.3. As
can be seen, some security vulnerabilities may be assigned a CVSS score of
zero, raising questions as to why such a vulnerability exists in the first place.
Generally, these are reported bad habits that violate secure coding and are not
vulnerable by themselves but may be vulnerable in combination with another
bug.

Figure 1.3: Qualitative Severity Rating Scale [9].

1.3 Buffer Overflows

The vulnerability in the Zlib library described in CVE-2022-37434 is a buffer
overflow vulnerability. To comprehend the buffer overflow vulnerabilities, it
is first necessary to define the term buffer.

Buffer is a limited, contiguous allocated set of memory. Buffers are often
used to hold data while moving it from one program section to an-
other. [14]

A buffer overflow occurs when the amount of data written to a buffer ex-
ceeds the capacity of that buffer2. A buffer is located in memory, and an over-
flow causes a write beyond the buffer, overwriting whatever is stored there. [15]

2It should be emphasized that buffer overflows are solely the programmer’s fault. Pro-
grams behave deterministically and do precisely what the programmer wrote. However,
programmers are human and make mistakes, which may then lead to buffer overflows.

10



1.3. Buffer Overflows

The buffer overflow exploitation is based on the principle that the vulner-
ability permits overwriting memory in a manner unintended by the program’s
author. By overwriting certain structures in memory, it is possible to change
the flow of a program and, under certain circumstances, even gain control over
it to execute arbitrary code.

Buffer overflow is one of the best-known forms of software vulnerability.
Despite being well-known among software developers, it is still quite com-
mon. However, buffer overflows are not easy to discover, and even when one
is found, it is generally complicated to exploit, mainly due to existing protec-
tions against them. Therefore, nowadays, buffer overflow-type vulnerabilities
generally lead to a program crash. [16]

Buffer overflows are typically seen in C and C++ languages. This is be-
cause these languages have no inherent bounds-checking for buffers, shifting
the responsibility to the programmer. However, programmers do make mis-
takes and give these errors a chance to occur. [14]

If the responsibility were passed to the compiler, the resulting programs
would be slower because of the integrity checks [15]. This is one of many
reasons why these languages are still widely used, especially in applications
optimized for time and space. They give the programmer a significant level
of control but, at the same time, a considerable responsibility.

Buffer overflow vulnerabilities usually occur in a code that relies on exter-
nal data to control its behavior, for example, if the program processes user
input.

1.3.1 Buffer Overflow Exploitation

There are many techniques to exploit buffer overflows. They vary by the
memory segment in which the overflow occurs, the operating system, the pro-
gramming language, and the architecture. However, all the techniques have
one thing in common – they all aim to overwrite some interesting structures
in the overflowed memory, attempting to take control over the program flow.

Buffer overflows may be exploited to cause an application to crash3. An-
other possible exploitation is to overwrite the data behind the overflowed
buffer. If there were a bank account number directly behind the buffer, it
would undoubtedly be enough for an attacker if they could overwrite it with
their value. But perhaps the most interesting thing that can be achieved by
exploiting a buffer overflow is gaining control over the execution flow of the
program and forcing it to execute an injected code.

3These types of attacks are referred to as denial-of-service attacks. Even a mere appli-
cation crash is a severe vulnerability for institutions such as banks or hospitals.
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1.3.1.1 Stack Buffer Overflows

A stack buffer overflow is an overflow that occurs in a memory segment referred
to as a stack.

Stack is a LIFO (Last In First Out) data structure that stores data. The
last element is processed first, and the first is processed last. Each
program contains a stack segment that fulfills the purposes of such a
stack. The stack is essential for the program when calling functions.
When a function has completed executing its instructions, it returns
control to the original function caller. This concept is most efficiently
implemented with the stack. [14], [15]

Stack buffer overflow attacks do not vary much across different systems.
This makes protections against them more effective. However, it also makes
them easier to exploit. The stack buffer overflow exploitation techniques were
described in detail in the paper Smashing The Stack For Fun And Profit4.

Most stack buffer overflow attacks target overwriting the return address
stored on the stack. Return addresses are an interesting target because when
a program finishes executing a function, it continues at the address specified
in the return address. Thus, by overwriting it, an attacker can control where
the program continues after the function ends, for example, at the address
where they inject their code via user input. [14]

Exploitable targets on the stack include, but are not limited to:

• Return addresses

• Exception handlers

• Function pointers

• Values of local variables [14]

Since the vulnerability analyzed in this thesis is not a stack-based buffer
overflow, we will not discuss stack overflows further.

1.3.1.2 Heap Buffer Overflows

A heap buffer overflow is an overflow that occurs in a memory segment referred
to as a heap.

Heap is a writable memory segment that a programmer can directly control.
The heap is not of fixed size – it can grow larger or smaller as needed. It
is used when the programmer does not know, during compilation, how
much memory will be needed, or for allocating larger chunks of memory.
[14], [15]

4http://phrack.org/issues/49/14.html
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Heap buffer overflows differ from the stack ones not only in where they
occur but also in how they are being exploited. This is because the heap has
a much more complicated structure, and its implementation depends heavily
on the memory manager used. Thus, the methods of exploiting buffer over-
flows on the heap vary across different memory managers and their versions.
Therefore, there is no universal way to describe heap exploitation.

Heap overflow attacks tend to be more difficult to perform because of the
complexity of the heap structure and the needed knowledge about the memory
manager used. However, nowadays, heap overflows are being exploited more
than the stack ones. This is mainly because the various heap implementations
make developing universal protections against heap overflows difficult.

One possible heap overflow exploitation technique is based on overwriting
the internal heap structures located between allocated chunks of memory. By
doing so, the memory manager can be forced to behave in a non-desirable
manner. These techniques are theoretically very interesting but difficult to
perform and heavily dependent on the memory manager. Several articles have
been published in the past on how to exploit heap buffer overflows by over-
writing these internal structures – Vudo malloc tricks5, Once upon a free()6,
The Malloc Maleficarum7, and Malloc Des-Maleficarum8.

However, we will not focus on exploiting the heap by overwriting its inter-
nal structures. Instead, we will focus on how a heap overflow can be exploited
by overwriting a function pointer located in the heap memory, which is a far
more typical way of heap exploitation.

Unlike standard pointers, a function pointer points to code, not data.
Generally, a function pointer holds an address of a function. This technique is
based on overwriting the value of the function pointer with the address where
the injected code is located. When the function initially stored in this function
pointer is called, the injected code is executed9.

1.3.1.3 Overwriting a Function Pointer

A simplified example of such function pointer override is shown in Fig 1.4.
This example considers a 64-bit application, so the function pointer takes
eight bytes. It is also assumed that when writing to the buffer, the size of
the data being written is not checked. Thus, the 16-byte buffer is vulnerable
to an overflow, and copying 24 bytes into it leads to overwriting the func-
tion pointer behind it. Considering the little-endianness of the CPU and the

5http://phrack.org/issues/57/8.html
6http://phrack.org/issues/57/9.html
7https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
8http://phrack.org/issues/66/10.html
9In fact, the injected code would have to be additionally located in an executable memory

segment.
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ASCII encoding, the original value of the function pointer 0x55555555555189
is overwritten to 0x4242424242424242 caused by that overflow10.

Buffer overflow

0x89 0x51 0x55 0x55 0x55 0x55 0x55 0x00

buffer (16 bytes)

function pointer (8 bytes)

A A A A A A A A A A A A A A A A B B B B B B B B

End of buffer
Copy “AAAAAAAAAAAAAAAABBBBBBBB” to buffer

Figure 1.4: Example of a buffer overflow leading to a function pointer override.

If an attacker could control what data is copied to the buffer, they could
control what value the function pointer is overwritten with. Such controllable
values are, for example, user inputs. As shown in the example above, the
buffer did not store the B character but its binary representation. Thus, to
override a function pointer with a specific value, an attacker only would need
to find characters whose encoding corresponds to the desired binary values.

However, some values may be problematic to enter. One such value is 0x00
since it also represents the end of a string in C/C++. The most straightfor-
ward approach to deal with such values is to modify the injected code not to
contain them. However, this may not be feasible in certain situations, such as
when overwriting memory with a specific value is needed (e.g., when overwrit-
ing an address). Nevertheless, user input does not always have to be entered
as a string. It can also be entered as a binary file into which these problematic
characters can easily be inserted.

We emphasize that the function pointer does not have to be located im-
mediately after the buffer to be overridden this way. If the memory behind
the buffer is writable (i.e., allocated with write permissions), and the over-
flow does not exceed that memory, the application will not crash. Thus, if
a function pointer is located in a contiguous writable memory region behind
the buffer, and the overflow allows writing to this region, the pointer can be
overwritten.

1.3.2 Buffer Overflow Protections

Due to the severity of buffer overflow vulnerabilities, many protections have
been developed to protect memory from these attacks. These protections do
not prevent the overflow itself but try to prevent arbitrary code execution when
an overflow occurs. It should be noted that these protections do not prevent

10The overwritten value is 0x4242424242424242 since the B character has a hexadecimal
value of 0x42 in the ASCII encoding.
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the execution of such an attack but only make it more difficult to perform.
Buffer overflow protections are complementary, and overcoming multiple ones
simultaneously is significantly more difficult.

While it may seem virtually impossible to cause arbitrary code execution
with all protections enabled and that they definitively solve buffer overflows, it
is still possible, and buffer overflows are still a severe problem even nowadays.
Moreover, an attacker often does not need to execute code to exploit the
vulnerability. As we already mentioned, if there was a variable behind the
buffer specifying a bank account number, the attacker would be perfectly
happy to modify that value and would not need to run any code.

The most commonly used buffer overflow protections are described below.

1.3.2.1 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is a security feature controlled
by the operating system that places important parts of a process, such as
libraries, executables, the stack, and the heap, at random addresses each time
the application is run. [14]

Even though an attacker can overwrite a return address or a function
pointer, they do not know what value to overwrite it with since the address
space is randomized. The protection of ASLR is based on the principle that
it reduces the attacker’s probability of correctly guessing the correct address.
However, the attacker may still attempt to guess the correct value. For exam-
ple, in small address spaces, ASLR can be overcome by brute-force attacks. [14]

ASLR is very effective in combination with the NX-bit and has a low
impact on program performance. Currently, there is no legitimate reason to
disable this protection.

1.3.2.2 NX-bit/XD-bit

The NX-bit (Non-eXecutable bit) allows processors to mark memory pages as
non-executable. AMD introduced this feature in 2003, and Intel refers to this
functionality as XD-bit (eXecute Disable). The idea is simple. Only pages
that contain code will be executable, and the others will be marked as non-
executable since there is no reason to run code from them. The processor will
refuse to execute instructions in a memory marked as non-executable. [14], [17]

With the NX-bit protection enabled, more than redirecting the program
flow to the injected code is required. In addition, the injected code must be
placed in executable memory, which significantly complicates the attack. On
Microsoft systems, this protection is referred to as Data Execution Preven-
tion (DEP).

Unfortunately, there exists a technique that overcomes this protection
quite effectively. This technique is referred to as Return Oriented Program-
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ming (ROP). This is why it is advisable to use multiple protections simultane-
ously. As with ASLR, there is no legitimate reason to disable this protection.

1.3.2.3 Stack Canaries

A stack canary is designed to protect the stack. The name canary comes from
miners. They used to take a canary with them when they went down the
mine. The canary indicated that there were poisonous gases in the mine as it
was more sensitive and died first if there were some, giving the miners time
to escape. [14]

A stack canary works on a very similar principle. It is a randomly gener-
ated value placed between the return address and local variables on the stack.
This value is checked before returning from a function. If the value is over-
written, there is a high probability that the return address is overwritten as
well. In such circumstances, it is safer to terminate the program directly. [14]

This technique cannot be applied to a heap, as it cannot be determined
where such a canary should be placed and when it should be checked.

1.3.2.4 Guard Pages

A guard page is an unmapped memory page with no access rights placed be-
tween allocated memory blocks used to detect buffer overflows on the heap. It
is not allowed to read, write or execute instructions from a guard page. An ex-
ception is raised if this page is accessed, causing a segmentation fault. [18], [19]

One possible approach is to place guard pages immediately after a buffer,
thus detecting an overflow of even a single byte. This can be done by placing
each buffer at the end of a memory page and placing a guard page immediately
after that page.

While these guard pages increase memory requirements, they can effi-
ciently detect overflows. It is, therefore, up to the developer to consider
whether and to what extent to use them. They can be helpful, at least for
testing purposes.

1.3.2.5 Encoding and Decoding Function Pointers

By overwriting a function pointer, an attacker can change the program flow.
The protective technique works on a similar principle as ASLR. It does not
prevent the pointer from being overwritten, but it reduces the likelihood that
an attacker will be able to guess the correct value to overwrite it with. This
is achieved by encrypting the function pointer. Instead of storing a function
pointer, the program keeps its encrypted form. When the function pointer
needs to be used, it gets decrypted. Thus, an attacker would need to break
the encryption to redirect the pointer to the injected code. [18]

The Windows API provides the EncodePointer() and DecodePointer()
functions that implement this functionality.
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1.4 CVE-2022-37434

In this thesis, we focused on the vulnerability described in CVE-2022-3743411

published on August 8, 2022, which is a vulnerability in the widely used Zlib
compression library.

According to the CVE Record, the vulnerability is described as a heap
buffer overflow via a large gzip header extra field in the inflate() function.
In addition, the inflateGetHeader() function must be called for the overflow
to occur. If this function is not called, the header information, including the
extra field that causes the overflow, is discarded. [20]

NIST assigned CVE-2022-37434 a CVSS v3.1 score of 9.8 [10], which puts
it into the category of critical vulnerabilities. Some other companies rate this
vulnerability less severely. For example, SUSE assigned CVE-2022-37434 a
CVSS v3.1 score of 8.1 [21], and Red Hat a 7.0 [22]. However, these ratings
are often lower mainly because no exploit taking advantage of the vulnerability
has been published yet.

It is not explicitly stated in the CVE Record that the vulnerability can lead
to code execution. However, given the high CVSS v3.1 score, it can be assumed
that it can. Some third parties using the Zlib library, such as Apple [23]
or Debian [24], report in their security updates that the CVE-2022-37434
vulnerability could indeed lead to code execution.

One of the references in the CVE Record is a GitHub repository created by
Evgeny Legerov, who discovered the vulnerability. Unfortunately, this repos-
itory has been deleted and no longer exists. The reasons for the deletion are
not known. The repository did not include an exploit proving code execution
but served as a proof of concept that a heap buffer overflow can be triggered.

A patch remediating the CVE-2022-37434 vulnerability has already been
published. Its reliability will be discussed in the final chapter. The fix consists
of two commits. The first commit12 introduced a new bug into the code – a
NULL pointer dereference. The second commit13 only fixes this bug.

According to the description of the first commit, an overflow can occur if
the extra field of the gzip header is larger than the space provided by the user
when calling inflateGetHeader(). If the extra field data are delivered in
multiple calls of inflate(), there could be a buffer overflow of the provided
space.

The vulnerability was found in the library in version 1.2.12 but was intro-
duced in the code in version 1.2.2.1, meaning the library had been vulnerable
for almost terrifying twelve years. On October 13, 2022, Zlib version 1.2.13
with the fix remediating the vulnerability was published.

To summarize, we have found that the CVE-2022-37434 vulnerability is
a buffer overflow that can occur during gzip decompression using the Zlib

11https://www.cve.org/CVERecord?id=CVE-2022-37434
12https://github.com/madler/zlib/commit/eff308a
13https://github.com/madler/zlib/commit/1eb7682
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function inflate(). Currently, there is no known exploit demonstrating the
exploitation of this vulnerability, and apart from the information mentioned
above, no further information is available.

In the following chapters, we will describe the vulnerability in more detail
and present how it can be exploited to code execution.
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Chapter 2
The Zlib Library

The CVE-2022-37434 vulnerability was discovered in the Zlib library14. Zlib is
a free, open-source software library for lossless data compression and decom-
pression. The library’s authors are Jean-loup Gailly and Mark Adler, who are
also the authors of gzip15. Zlib is written in the C programming language and
can be used on virtually any hardware and operating system, which makes
it very popular and widely used across systems. In the past, a list16 of all
applications that used Zlib has been maintained on the official Zlib website.
However, this list contained so many applications that it was impossible to
continue. [25], [26]

Nowadays, most operating systems and software that uses compression
use Zlib, either directly or indirectly. Well-known software using the Zlib
library includes the Linux kernel, the Apache HTTP Server, and the OpenSSL
cryptographic library.

In this thesis, we have examined the Zlib library in more detail to analyze
the CVE-2022-37434 vulnerability’s security impacts and exploitability. In
this chapter, we will introduce selected parts of the library that are relevant
to the vulnerability. First, we will describe the gzip file format. Being familiar
with this file format helps in understanding how the library handles it and
how a malicious file should be created to trigger an overflow. Next, we will
present the important structures and functions we used to demonstrate how
the vulnerability can be exploited to execute arbitrary code. Finally, we will
describe how Zlib processes the gzip header since the vulnerability is found in
the code segment that processes it.

We performed the analysis on the library version 1.2.1217 and all informa-
tion provided in this chapter applies to this version of the library. While most
results are likely to apply to older versions, they may differ slightly.

14https://www.zlib.net/
15http://www.gzip.org/
16https://zlib.net/apps.html
17https://github.com/madler/zlib/tree/v1.2.12
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2.1 Zlib’s Data Formats

The Zlib library uses the DEFLATE algorithm for compression and decompres-
sion and supports three data formats: the deflate format, the zlib format,
and the gzip format. The deflate format is simply a deflate stream with no
wrapper. The zlib and gzip formats are wrappers around the deflate stream,
providing additional information about the compressed data. [27]

The main difference between the zlib and gzip wrappers is that the zlib
wrapper is more compact as the gzip wrapper holds extra information such as a
filename, comment, or extra field. These wrappers also differ in the integrity
check algorithm. The gzip format uses CRC-32, while the zlib format uses
Adler-32, which runs faster. [28]

By default, the library uses the zlib format [27]. This is important in-
formation since, according to the CVE-2022-37434, a buffer overflow can be
triggered when decompressing a gzip file which is not the Zlib’s default data
format. This does not mean the library is not vulnerable, but it reduces the
number of potentially vulnerable applications.

All three data formats Zlib uses are described by RFCs (Request for Com-
ments). The zlib format is documented in RFC 195018, the deflate format
is documented in RFC 195119, and the gzip format is documented in RFC
195220. Since the vulnerability is related to the gzip format, we will only
focus on the gzip format.

2.1.1 Gzip File Format

The following description of the gzip file format is based on the RFC 1952.
The gzip file format is a lossless compressed data format independent of

CPU type, operating system, file system, and character set. It was designed
for single-file compression and is compatible with the format created by the
gzip utility. This format uses the DEFLATE algorithm for compression but can
easily be extended to other algorithms. [29]

The gzip file consists of a series of so-called members. The members appear
one after another in the file, with no additional information before, between,
or after them. The format of such a member is shown in Fig. 2.1. It consists
of several fields. Some fields are fixed size, some are variable size, some are
mandatory, and some are optional. The presence of optional fields is specified
via the FLG field, and Fig. 2.1 shows which fields are optional. The meaning
and size of each field are as follows:

18https://www.rfc-editor.org/rfc/rfc1950
19https://www.rfc-editor.org/rfc/rfc1951
20https://www.rfc-editor.org/rfc/rfc1952
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Figure 2.1: Visualization of the gzip file format [29].

• ID1, ID2 fields are the size of one byte. Their value is fixed – ID1 has
the value 0x1f, and ID2 has the value 0x8b. They are used to identify
the gzip file.

• CM (Compression Method) field is the size of one byte. It identifies
the compression method used. The deflate compression method has the
value 0x08.

• FLG (Flags) field is the size of one byte. The individual bits are used
as flags indicating if optional fields are present. The bits are arranged
so that the most significant bit (bit 7) is on the left.

– bit 0: FTEXT

If set, the file is probably ASCII text.
– bit 1: FHCRC

If set, an optional field CRC16 for the gzip header is present.
– bit 2: FEXTRA

If set, optional extra fields are present.
– bit 3: FNAME

If set, an original file name terminated with a zero byte is
present.

– bit 4: FCOMMENT

If set, a comment terminated with a zero byte is present.
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– bit 5–7: reserved
These bits are reserved and must be set to zero.

• MTIME (Modification Time) field is the size of four bytes. It specifies
the most recent modification time of the original file. The time is in
Unix format.

• XFL (Extra Flags) field is the size of one byte. These extra flags are
available for use by specific compression methods.

• OS (Operating System) field is the size of one byte. It identifies the
operating system on which the compression was performed. It can help
determine the end-of-line conventions for text files.

• XLEN (Extra Length) field is of the size of two bytes. If the FEXTRA
flag is set, it specifies the optional extra field length.

• CRC32 field is the size of four bytes. It contains the uncompressed data’s
CRC32 value. It is used to check if the data was not corrupted during
decompression.

• ISIZE (Input Size) field is the size of four bytes. It contains the size
of the original input modulo 232. [29]

The presence of the optional extra field is a necessary condition for the
CVE-2022-37434 vulnerability to be exploitable. For this reason, from now
on, we will only consider gzip files containing an extra field. It is used to store
extra data in the header of the compressed file, and some applications use it
to extend the gzip format.

The optional extra field consists of a series of subfields. The form of each
subfield is shown in Fig. 2.2, and the size and meaning of each field are as
follows:

• SI1, SI2 fields are the size of one byte. They provide a subfield identi-
fier, typically two ASCII letters.

• LEN field is the size of two bytes. It specifies the length of the subfield
data, excluding the four initial bytes. [29]

Figure 2.2: Visualization of the extra field subfields [29].
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2.2 Zlib’s Structures

The Zlib library uses several structures when compressing and decompress-
ing a gzip file. We will present two of them – specifically the z stream and
gz header structures. Both are used when using inflate() for gzip decom-
pression with a previous call to inflateGetHeader().

2.2.1 z stream

Zlib uses the z stream structure to store the context of ongoing compression
and decompression, and it is therefore passed to most Zlib functions as an
argument. Before any compression or decompression can begin, z stream
should be initialized with one of the initialization functions provided by the
Zlib library. Before calling an initialization function, the application must
initialize zalloc, zfree, and opaque. Those variables are function pointers,
and an application can pass through them pointers to its functions for custom
memory management. If these values are set to Z NULL (Zlib’s zero constant),
the standard library functions malloc() and free() are used. [27]

Since the CVE-2022-37434 vulnerability does not depend on custom mem-
ory management, we will always set these variables to Z NULL.

The input to be processed is passed to the compression and decompression
methods via next in and avail in, and the output is returned via next out
and avail out. The application must update next in and avail in when
avail in has dropped to zero and must update next out and avail out
when avail out has dropped to zero. The library sets all the other fields,
and the application must not update them. [27]

The meaning of the individual z stream variables is described in List-
ing 2.1.

Listing 2.1 Structure z stream [27].
typedef struct z_stream_s {

z_const Bytef * next_in ; // next input byte
uInt avail_in ; // number of bytes available at next_in
uLong total_in ; // total number of bytes read so far
Bytef * next_out ; // next output byte will go there
uInt avail_out ; // remaining free space at next_out
uLong total_out ; // total number of bytes output so far
z_const char *msg; // last error message
struct internal_state FAR *state; // not visible by apps
alloc_func zalloc ; // used to allocate internal state
free_func zfree; // use to free internal state
voidpf opaque ; // argument passed to zalloc and zfree
int data_type ; // best guess about the data type
uLon269g adler; // Adler -32 or CRC -32
uLong reserved ; // reserved for future use

} z_stream ;

23



2. The Zlib Library

2.2.2 gz header

Zlib uses the gz header structure to pass gzip header information of a gzip
stream to and from Zlib routines. Using the gz header, an application can
precisely define the format of a gzip header of a compressed file. Each optional
field’s presence and content can be defined by passing a pointer to this field in
the appropriate variable. If the header should not contain an optional field,
the application must set the corresponding variable to Z NULL. [27]

Zlib provides the deflateSetHeader() function to set a gzip header of
a compressed file and the inflateGetHeader() function to retrieve the gzip
header from a compressed file.

The individual gz header variables match the fields of the gzip format
described above, and according to their name, it is possible to recognize
which variable corresponds to which field. In addition to the gzip header,
the gz header structure contains extra max, name max and comm max vari-
ables. They are used only when retrieving the header. Some optional fields
in the gzip header are of variable lengths, and to retrieve them, the appli-
cation must provide memory into which these fields should be loaded. The
available memory for each field is passed as a pointer to this memory via the
extra, name, and comment variables. If these variables are not Z NULL, then
extra max, name max, comm max contain the maximum size of memory in bytes
provided for each field [27].

The meaning of the individual gz header variables is described in List-
ing 2.2.

Listing 2.2 Structure gz header [27].
typedef struct gz_header_s {

int text; // true if compressed data believed to be
// ASCII text

uLong time; // modification time
int xflags ; // extra flags
int os; // operating system
Bytef *extra; // pointer to extra field or Z_NULL
uInt extra_len ; // extra field length
uInt extra_max ; // space at extra (if not Z_NULL )
Bytef *name; // pointer to file name or Z_NULL
uInt name_max ; // space at name (if not Z_NULL )
Bytef * comment ; // pointer to comment or Z_NULL
uInt comm_max ; // space at comment (if not Z_NULL )
int hcrc; // true if the CRC is present
int done; // true when done reading gzip header

} gz_header ;
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2.3 Zlib’s Functions

The Zlib library provides many functions for compression and decompression,
but we will only focus on a subset of these functions related to the analyzed
vulnerability.

The library uses the DEFLATE compression algorithm, a combination of the
LZ77 algorithm and Huffman encoding. However, the compression algorithm
itself is irrelevant to the vulnerability since the buffer overflow occurs during
the gzip header decoding, i.e. before an actual data decompression is per-
formed. Because of this, we will not describe the code sections implementing
this algorithm further.

Zlib refers to its compression method as deflate and decompression method
as inflate. The prefix “inflate” or “deflate” makes it possible to distinguish
whether a function relates to compression or decompression. Fig. 2.3 shows
the deflate and inflate process from a high-level perspective. Although the
CVE-2022-37434 vulnerability only affects the decompression process, we will
also describe several functions that are used for compression as we will use
them to create a malicious file.

Raw Data LZ77
Encoding

Huffman
Encoding

Compressed
Data

Decompressed
Data

LZ77
Decoding

Huffman
Decoding

Deflate

Inflate

Figure 2.3: Inflate and Deflate process from high level [25].

2.3.1 deflateInit2(), inflateInit2()

As mentioned above, z stream should be initialized before the actual compres-
sion or decompression can begin. For this purpose, the Zlib library provides
initialization functions, which include deflateInit2() and inflateInit2().
These functions must be called before the call to inflate() or deflate(),
depending on the operation to be performed [27].

The deflateInit2() and inflateInit2() functions are extensions of
deflateInit() and inflateInit(), allowing setting more compression or
decompression options. What is important for the CVE-2022-37434 vulnera-
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bility is that these extended functions, unlike the basic ones, allow setting the
gzip encoding and decoding.

As we mentioned, an overflow can only occur in the library when de-
compressing a gzip file, meaning that inflateInit2() must be used for the
CVE-2022-37434 vulnerability to be exploitable. The deflateInit2() may
not be used, but we use it to create a malicious file. However, that malicious
file could be created by other means as well.

Since the CVE-2022-37434 vulnerability does not depend on compression
options, they can be set to their default values21. The gzip encoding or decod-
ing is achieved by adding 16 to the windowsBit argument for both functions.
The default value of windowsBit is 15, so with the addition of 16, we will set
it to 31.

2.3.2 deflate(), inflate()

The Zlib library performs the actual compression using the deflate() func-
tion, and the decompression is done using the inflate() function. Both of
these functions take as arguments a z stream structure, through which the
input is passed, and the output is returned, and a flush argument, which is
used to specify how the data should be flushed to the output buffer. Both al-
low the input to be processed by parts and can be called repeatedly to process
the whole input22. [27]

The deflate() function tries to compress as much of the provided data
as possible and stops when the input buffer is empty or the output buffer is
full. The function processes more input, generates more output, or does both
simultaneously. The caller should ensure that at least one of these actions is
possible before calling deflate(). [27]

Of all the available options for the flush argument of deflate(), for
simplicity, we will only use the Z NO FLUSH and Z FINISH options.

The Z NO FLUSH option lets deflate() decide how much data to accumu-
late before producing output to maximize compression, and Z FINISH is used
in the last call to deflate(). Therefore, deflate() may not produce output
on every call. [27]

The inflate() function is crucial for the CVE-2022-37434 vulnerability
as part of the inflate() function is the gzip header processing, which is the
vulnerable part of the Zlib library.

inflate() tries to decompress as much of the provided data as possible
and stops when the input buffer is empty or the output buffer is full. Just
like deflate(), it processes more input, generates more output, or does both

21However, it may be useful to use Z NO COMPRESSION for deflateInit2() to store data
in a gzip wrapper without compression when creating a malicious file that aims to inject
code into an application. We will address this in the next chapter.

22It is even necessary for inflate() to be called repeatedly to trigger an overflow in the
library.
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simultaneously. The caller should ensure that at least one of these actions is
possible before calling inflate(). [27]

We will always set the flush argument of inflate() to the Z NO FLUSH
option since inflate() can detect the end of the stream itself, so there is no
need to use a different option for the vulnerability demonstration purposes.
Just like deflate(), inflate() may not produce output on every call [27].

2.3.3 deflateEnd(), inflateEnd()

The Zlib library may allocate some data structures for a z stream, for ex-
ample, when initializing it. The deflateEnd() and inflateEnd() functions
are used to free all data structures that the library has allocated for a given
z stream. These functions discard any unprocessed input and do not flush
any pending output. [27]

2.3.4 deflateSetHeader(), inflateGetHeader()

With the use of the deflateSetHeader() function, an application can provide
a custom gzip header for a file to be compressed. This function may be called
after deflateInit2() and before the first call to deflate(). It is passed a
z stream to which the given gzip header belongs and a gz header through
which the header is passed. The caller should ensure that if name and comment
are not Z NULL, the corresponding strings are terminated with a zero byte and
that if extra is not Z NULL, extra len bytes are available there. [27]

Calling deflateSetHeader() is optional. If the function is not called, Zlib
will use its default gzip header23 [27]. We will use this function when creating
a malicious file.

The inflateGetHeader() function is used to retrieve a gzip header of
a compressed file into the provided gz header structure. It may be called
after inflateInit2() and before the first call to inflate(). Before calling
inflateGetHeader(), the caller must assign to the name, comment, and extra
variables pointers to the memory into which the optional gzip header fields
are to be loaded. If these variables are not Z NULL, the caller should also set
variables name max, comm max and extra max, specifying the maximum size of
the provided memory space. [27]

According to the documentation, only the truncated data should be re-
trieved if the optional fields exceed the provided space [27]. This is the crucial
information since the CVE-2022-37434 vulnerability violates this expected be-
havior, which can lead to a buffer overflow.

Without calling inflateGetHeader(), the entire gzip header is discarded
[27], and the vulnerable section of inflate() is not reached. This is why
applications that do not call inflateGetHeader() are unaffected by the vul-
nerability.

23If the gzip wrapper is used for compression.
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2.4 Gzip Header Processing

The header processing is part of the inflate() function and is the vulnerable
part of the library. inflate() uses a state machine to process as much input
data and generate as much output data as possible in a single call [30]. Specif-
ically, the state that retrieves the extra field from a gzip header is vulnerable.
The rough structure of this state machine is shown in Listing 2.3.

Listing 2.3 inflate() state machine pseudocode [30].
for (;;)

switch (state ) {
...
case STATEn :

if (not enough input data or output space to make
progress )
return ;

... make progress ...
state = STATEm ;
break;

...
}

When inflate() is called again, the same state is attempted again [30],
which makes it possible to split the compression into multiple steps.

There are many inflate() states, but we will only focus on the EXTRA
state, which retrieves the extra field. Within the next chapter, we will present
a more detailed analysis of this code section.

Fig. 2.4 shows how inflate() progresses through each state when decom-
pressing a gzip file. For clarity, transitions to error states are not captured,
and only the part that processes the gzip header is shown. The decoding of
the header is followed by states that process the compressed data and the gzip
trailer. If a gzip file is being processed, the states are always processed in that
order24.

Some code sections of individual states may be skipped depending on the
presence of optional fields and the previous call to inflateGetHeader().
This is why the vulnerability does not affect applications that do not call
inflateGetHeader() – the vulnerable code section is skipped.

HEAD FLAGS TIME OS EXLEN

EXTRA NAME COMMENT HCRC TYPE

Figure 2.4: Visualization of gzip header processing [31].

24Except an error occurs.
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Chapter 3
Exploiting the Vulnerability

One of the objectives of this thesis is to explore the possibility of exploiting
the CVE-2022-37434 vulnerability to execute an attacker’s code. After a more
thorough analysis, we have found that code execution is indeed possible, and
in this chapter, we will describe how it can be achieved.

First, we will introduce the EXTRA state, which is the vulnerable part of the
inflate() function, and describe how this state works and why it is vulnerable
in the first place. Next, we will describe how the vulnerability behaves and
under what circumstances a buffer overflow can be triggered. Then we will
focus on how to arrange the memory so that the overflow does not cause an
application to crash. Finally, we will describe how a code may be injected into
an application via a malicious gzip file.

We performed the analysis on Linux with the glib 2.35 memory manager
and Windows 10, version 22H2, with its default memory manager. For Linux,
we chose the Ubuntu 22.04 LTS distribution.

As in the previous chapter, the information presented in this chapter ap-
plies to the Zlib library version 1.2.12.

3.1 State EXTRA

The vulnerable part of the Zlib library is the EXTRA state of the inflate()
function that is used to retrieve an extra field from a gzip header. Listing 3.1
shows the code of this vulnerable state. To understand how the EXTRA state
works, it is essential to understand the variables it uses.

The inflate() function is passed a z stream as an argument. Initially,
inflate() copies several values from the variables of the passed z stream
into its local variables so that it can access them faster. Updated values are
copied back to the z stream before returning from inflate(). One such
variable is state, which is a pointer to the internal state of inflate(). This
internal state is used to maintain the context of the ongoing decompression.
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Other such variables are have and next, which correspond to the avail in
and next in variables from the passed z stream.

The state->head variable is a pointer to a gz header structure into which
the gzip header information should be retrieved. The individual variables of
the gz header structure have already been described above. Without the
previous call to inflateGetHeader(), the state->head is set to Z NULL.

Listing 3.1 State EXTRA of the inflate() function [30].
761 case EXTRA:
762 if (state ->flags & 0x0400) {
763 copy = state -> length ;
764 if (copy > have) copy = have;
765 if (copy) {
766 if (state ->head != Z_NULL &&
767 state ->head ->extra != Z_NULL ) {
768 len = state ->head -> extra_len - state -> length ;
769 zmemcpy (state ->head ->extra + len , next ,
770 len + copy > state ->head -> extra_max ?
771 state ->head -> extra_max - len : copy);
772 }
773 if (( state ->flags & 0x0200) && (state ->wrap & 4))
774 state ->check = crc32(state ->check , next , copy);
775 have -= copy;
776 next += copy;
777 state -> length -= copy;
778 }
779 if (state -> length ) goto inf_leave ;
780 }
781 state -> length = 0;
782 state ->mode = NAME;

• state->check is a protected copy of check value.

• state->flags holds the gzip header method and flags.

• state->head is a pointer to a gz header where the gzip header infor-
mation should be retrieved.

• state->length determines how many bytes still need to be processed
for the given state. For the EXTRA state, this value is initialized in the
EXLEN state, in which the size of the extra field is loaded. This value can
be at most 65 535 because the XLEN field in the gzip header specifying
the size of the extra field is the size of two bytes, and a larger value
cannot be written into two bytes.

• state->mode specifies the current inflate mode.

• state->wrap is used to hold additional information about the ongoing
compression. Its bit 0 is true for the zlib wrapper, bit 1 is true for the
gzip wrapper, and bit 2 is true to validate the check value.
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• state->head->extra is a pointer to the memory into which the extra
field should be retrieved.

• state->head->extra len specifies the extra field length.

• state->head->extra max specifies the maximum size in bytes of the
memory provided for extra.

• copy specifies the number of stored bytes that can be copied.

• have specifies how many bytes are available in the input. It corresponds
to the avail in variable of the passed z stream.

• len determines how many bytes have already been loaded within the
EXTRA state.

• next is a pointer to the next input. It corresponds to the next in
variable of the passed z stream. [31], [30]

Now we can explain how the EXTRA state works. To begin with, an overflow
can occur when the zmemcpy() function is called (line 769). This function is
not vulnerable by itself. However, combined with the previous code, it can
be called with argument values that the authors did not intend, leading to an
overflow. Thus, for an overflow to occur at all, line 769 must be reachable.

First, whether the gzip file being decompressed contains an extra field is
checked (line 762). At the time of executing the EXTRA state, this information
is stored in the state->flags variable. If the gzip file does not contain an
extra field, there is nothing to process, and the vulnerable code that stores
the extra field is skipped. Therefore, the gzip file must contain an extra field
for an overflow to be triggered.

Then it is determined how many bytes of the extra field can be copied,
and this information is further held in the copy variable. Ideally, copying
all remaining bytes of the extra field is possible. The number of remaining
bytes to copy is given by the state->length variable. If not enough bytes are
available on the input, this value is reduced to the number of bytes available
(lines 763–764).

Next, whether a gz header is available is checked. If so, it is then checked
if memory to store an extra field has been provided (lines 766–767). Oth-
erwise, there is nowhere to save the extra field, and the vulnerable code is
skipped. A gz header is provided via the inflateGetHeader() function, and
without calling it, state->head is set to Z NULL. This gives two more condi-
tions that must be met to trigger an overflow. There must be a previous call
to inflateGetHeader(), and the application must provide memory to store
an extra field.

If the memory to store an extra field is provided, the number of bytes of
already processed extra field data is calculated and stored in the len variable.
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This is followed by a call to zmemcpy() function, which copies the specified
number of bytes from source to destination (lines 768–771). The zmemcpy()
function takes three arguments. The first argument is a pointer to the des-
tination array where the content is to be copied, the second argument is a
pointer to the source of data to be copied, and the third argument specifies
the number of bytes to be copied.

Within the EXTRA state, the arguments are passed as follows: the desti-
nation is specified as the sum of state->head->extra and len, the source
is specified as next, and the number of bytes to be copied depends on the
memory size provided for extra. The extra field data is, therefore, copied
from the input to extra at offset len, and only as many bytes as can fit in
extra should be copied. However, this expected behavior is violated under
some circumstances, resulting in an overflow.

If the already stored extra field data together with the data to be copied
would not fit in extra, the value of the third argument is determined as the re-
sult of subtracting len from state->head->extra max. The idea behind this
operation is to copy only as many bytes as can still fit in extra. The problem
is that there is no check whether len is smaller than state->head->extra max
before calling zmemcpy(). That subtraction may lead to data type underflow,
as both these variables are of unsigned int data type and len may be greater
than state->head->extra max.

If len is greater than state->head->extra max, the maximum amount of
the extra field data has already been stored, and there should be no further
writes to extra. However, an underflow of the unsigned int data type occurs
instead, as the result of the subtraction is negative. The zmemcpy() function
is subsequently requested to copy nearly four gigabytes of data, causing an
overflow of the provided memory. Considering the maximum possible size
of an extra field, the result of the subtraction cannot be less than -65 535,
which for an unsigned int corresponds to a value close to four gigabytes. So
if len happens to be greater than state->head->extra max, such a call to
zmemcpy() causes an overflow. The following section will focus on how this
overflow can be triggered.

Here the question may arise whether, when an underflow occurs, this value
is always close to four gigabytes, even on 32-bit and 64-bit architectures, and
whether it cannot be influenced in some way. We will come back to this later,
but for now, we can reveal that it is always almost four gigabytes regardless
of 32-bit and 64-bit architecture.

The remaining part of the EXTRA state is not so interesting for the vul-
nerability. After zmemcpy() is called, if FHCRC flag is set, the CRC32 check
value is calculated and stored in state->check (lines 773–774). Subsequently,
the information about the input data is updated to match the progress made.
The number of bytes available on the input is reduced by the number of bytes
that have been processed, the pointer to the input is shifted, and the number
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of bytes that still need to be processed within the EXTRA state is decreased
accordingly (lines 775–777).

Finally, it is checked if the entire extra field has been processed. If not,
the execution continues in inf leave, where the total counts and the check
value are updated, followed by a return from the inflate() function. In this
case, the execution will continue at the EXTRA state the next time inflate()
is called. If the entire extra field has already been processed, the state is
changed to NAME, and inflate() starts processing that state.

3.2 Triggering an Overflow

Having analyzed the behavior of the EXTRA state, we can now take a closer look
at how an overflow can be triggered in the library. As a reminder, to trigger
an overflow, the len variable must be greater than state->head->extra max
at the time of calling zmemcpy(). Given how the value of the len variable is
calculated, this can only be achieved if the extra field is larger than the memory
provided for extra, and, therefore, we will focus only on these scenarios.

3.2.1 Possible Scenarios

In the first processing of the EXTRA state, the state->head->extra len vari-
able is equal to state->length. The len variable is therefore equal to zero,
which means that it cannot be greater than state->head->extra max. Thus,
an overflow can only be triggered if the extra field is processed in more than
one inflate() call.

If any extra field data is available for processing in the EXTRA state, the
value of the state->length variable decreases with each call to inflate()
(line 777). This way, the entire extra field is gradually processed.

Another possible scenario is the following. The extra field is larger than
the memory provided for extra, and the entire extra field has not yet been
processed in the previous call to inflate(). All the extra field data retrieved
fit in extra, so it was stored there. Then the inflate() is called again.
During this call, the remaining part of the extra field is processed. However,
the remaining part does not fit in extra, so it must be truncated. At this
point, len is smaller than state->head->extra max, so this scenario does not
cause an overflow. Since the extra field is completely processed, the inflate()
function starts processing the next state.

The last and the most interesting scenario, since it causes an overflow, is
the following. The extra field is larger than the memory provided for extra,
and the entire extra field has not yet been processed in the previous call to
inflate(). The last retrieved extra field data did not fit into extra, so only
the truncated part of it was stored. More than state->head->extra max
bytes must have been processed since all the retrieved data did not fit into
extra. Then, the inflate() function is called again. At this point, len is
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necessarily greater than state->head->extra max. The sum of len and copy
is greater than state->head->extra max, so by the condition from line 770,
the number of bytes to copy is determined as the result of subtracting len
from state->head->extra max. However, since len is greater, the data type
underflow occurs, resulting in an overflow.

3.2.2 Overflow Demonstration on a Specific Example

To better understand how an overflow can be triggered, we will demonstrate it
with a specific example. For these purposes, we have chosen an example from
the official Zlib documentation from the Zlib Usage Example chapter [32]. This
chapter describes how the authors intend the inflate() function to be used.
Therefore, it can be expected that this is how users use it as well. Listing 3.2
shows the pseudocode of this example25.

Compared to the original example, we made minor changes. The differ-
ence is the use of inflateInit2() instead of inflateInit() and the added
call to inflateGetHeader(). We made these changes since we want to use
inflate() in the gzip decompression mode.

The pseudocode does not show how the individual structures are initial-
ized for better clarity. The description of how they should be initialized is
given in the previous chapter. Also omitted are code sections that handle the
decompression errors. The complete code can be found in the proof-of-concept
programs in the attached files.

Listing 3.2 Pseudocode of decompression using the inflate() function [32].
int inf( FILE * source , FILE * dest ) {

... z_stream initialization ...

... gz_header initialization ...

inflateInit2 (...); // init for gzip decompression
inflateGetHeader (...); // provide a gz_header

// decompression loop
do {

... read input from the source file ...

... provide loaded input to inflate () ...
do {

... provide output space for inflate () ...
inflate (...);
... write the generated output to the dest file ...

} while ( inflate () can generate output );
} while ( inflate () not reached the end of compressed data );

inflateEnd (...);
return Z_OK;

}

25Our proof-of-concept programs are also based on this example.
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The inf() function decompresses a gzip stream from the input file and
writes decompressed data to the output file. Internally, it uses the inflate()
function. Before every call to inflate(), the application should provide input
and available output space. Otherwise, there may be no progress made. This
is done by passing the input and output buffers via the z stream structure.
We will set these buffers to the size of 32 KB. The input file is, therefore, read
in 32 768-byte blocks, except the last block, which may be smaller.

The size of the input buffer is essential. If it were too large, the extra field
would always be processed in a single call to inflate(), which, as we have
already discussed, is the case that does not lead to an overflow. We consider
the buffer size of 32 768 bytes a reasonable value that another programmer
could use as well, as it is a nice rounded number of a reasonable size that is
a multiple of two. At the same time, an overflow can still be triggered with
such an input buffer size.

For the vulnerable part of the EXTRA state to be reachable, there must be
a previous call to the inflateGetHeader() function, via which a gz header
structure to store gzip header information is provided. An application should
provide the memory to retrieve optional fields from the header or set the ap-
propriate gz header variables to Z NULL. We will further assume that memory
of 32 768 bytes has been provided for extra, name, and comment. The values
of extra max, name max, and comm max are therefore 32 768.

The memory size provided for extra is essential since it directly determines
whether the vulnerability is exploitable. If the provided memory were larger
than 65 535 bytes, an overflow could not occur since len would never be greater
than state->head->extra max. According to the documentation [27], only
the truncated data will be stored if an optional field is larger than the memory
provided. Thus, providing a memory for optional fields of this size is perfectly
legitimate.

Although it would not be necessary to provide memory for name and
comment to demonstrate the vulnerability, we try to approximate as closely as
possible how another user might perform the decompression using inflate().
If they already decided to retrieve the gzip header, it is expected that they
would want to retrieve the entire header, including all available optional fields.

With these sizes of buffers and the memory provided for extra, an overflow
can be triggered, for example, when decompressing a gzip file with an extra
field of size 65 535 bytes. An example of how such a file might look is shown
in Fig. 3.1. Only the extra field of the optional fields is present since it is the
only one on which the vulnerability depends. However, any other optional
fields could be present as well.

We emphasize that this is not the only possible combination of input buffer
size, memory size provided for extra, and the size of an extra field of the gzip
file that leads to an overflow. There are many such combinations, and this is
only one of them.
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ID1, ID2, CM,
FLG, MTIME,

XFL, OS
CRC32, ISIZEXLEN = 65 535 65 535 bytes of

extra field
Compressed
data blocks

10 bytes 8 bytes2 bytes 65 535 bytes Variable length

 gzip wrapper

Figure 3.1: Structure of a gzip file with an extra field of size 65 535 bytes.

Assuming that the input buffer and memory provided for extra are the
sizes of 32 768 bytes, the processing of a valid gzip file with an extra field of
size 65 535 bytes by the inf() function is as follows (we will focus on what
happens in the EXTRA state of the inflate() function):

1. In the first call to inflate(), an input of size 32 768 bytes is provided.
By the time the EXTRA state is first executed, the first 12 bytes have
already been processed by previous states26. Thus, the EXTRA state is
given the remaining 32 756 bytes as input. The size of the extra field is
65 535 bytes, so currently, the entire available input contains extra field
data. All input data fits into extra and is copied there.

2. In the second call to inflate(), the execution continues in the EXTRA
state since the extra field has not yet been fully processed, and another
32 768 bytes are provided on input. The entire input again contains
extra field data, but this time, there is insufficient space in extra, so
based on the condition on line 770 of Listing 3.1, only 12 bytes are stored.
However, all 32 768 bytes of the input are processed within this call, as
they all are extra field data.

3. In the third call to inflate(), there are 11 more bytes to be processed
from the extra field, so the execution again continues in the EXTRA state.
Either 32 768 bytes or less are available on the input, depending on the
compressed data size. In this call, the value of the len variable is cal-
culated as 65 524, and the value of state->head->extra max is 32 768
(the memory size provided for extra). This is exactly the case when
len is greater than state->head->extra max before calling zmemcpy().
In this particular scenario, 4 294 934 540 bytes are copied, leading to an
overflow of the provided space.

As can be seen, the compressed data size does not affect whether an over-
flow occurs. Such an overflow causes, in most cases, a crash of an application,
but under certain circumstances, it may not. If an overflow occurs and the
application does not crash, the vulnerability may even be exploited to code ex-
ecution. However, even the mere fact that it is possible to cause an application
crash is a big problem, as attackers can perform denial-of-service attacks.

26It is always 12 bytes given the fixed size of the fields preceding the extra field.
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3.3 Code Execution

In this section, we will describe how the CVE-2022-37434 vulnerability can
be exploited to code execution. The principle of the attack is based on the
fact that an attacker can take advantage of the overflow to overwrite memory
locations that they would normally not be able to write to. These memory
locations may contain interesting objects whose overwriting may influence the
program flow. However, code execution can only be achieved if the overflow
does not result in a crash of the application.

First, we will discuss how many bytes are overflowed and what conclusions
can be drawn regarding exploiting the vulnerability on 32-bit and 64-bit archi-
tectures. Next, we will describe how the memory must be arranged so that the
overflow does not cause an application to crash. Finally, we will present how
a malicious file can be created whose decompression via the inf() function
will lead to arbitrary code execution.

3.3.1 Analysis of the Overflow Sizes

We can finally explain why, when an overflow occurs in the Zlib library due
to the CVE-2022-37434 vulnerability, it is always an overflow of almost four
gigabytes. This conclusion is based on a thorough analysis that we performed
on the vulnerable code parts at the assembler level. The generated assembler is
compiler dependent – we used the gcc compiler version 11.3.027. The analysis
was performed for both 32-bit and 64-bit versions.

First, we analyzed the EXLEN state responsible for retrieving the extra field
length. The extra field length is specified by two bytes. However, its retrieved
value is stored in the state->length variable, which is of unsigned data type
that takes four bytes in both analyzed cases. We focused on whether it is not
possible to influence the upper two bytes and thus change the retrieved value.

The extra field length is retrieved via the NEEDBITS() macro, which loads
the required number of bits from the input into a variable of unsigned long
data type. In the analyzed cases, the unsigned long takes four bytes on a
32-bit system and eight on a 64-bit system. The retrieved extra field length
value is first stored in unsigned long, then copied to unsigned. Either way,
only the lower four bytes are reflected in the final value.

To retrieve the bits, NEEDBITS() uses the movzx instruction, which copies
the content of the source operand (register or memory location) to the destina-
tion operand (register), and zero extends the value. This instruction ensures
the value is always retrieved correctly, regardless of the previous register value.

Based on the assembler analysis performed, the NEEDBITS() macro works
as expected – the requested bits are retrieved, and the unused upper bits are
set to zero. Therefore, we conclude that for the analyzed cases, the upper two

27https://gcc.gnu.org/gcc-11/
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bytes cannot be influenced in any way and that the retrieved extra field length
corresponds to the value specified in the gzip header of the decompressed file.

The third argument of the zmemcpy() function, which specifies the number
of bytes to be copied, is of the size t data type. The size of size t varies
depending on whether the application is 32-bit or 64-bit. On a 32-bit system,
size t takes four bytes, and on a 64-bit system, eight. One might wonder if
the number of bytes by which the buffer is overflowed does not vary depending
on whether the application is 32-bit or 64-bit since the result of subtracting len
from state->head->extra max is stored in size t, whose size is architecture
dependent.

The answer is no. It does not vary. On both 32-bit and 64-bit systems, len
and state->head->extra max are four-byte unsigned variables. According to
the assembler, the result of their subtraction is first saved as a four-byte value,
and only then it is converted and stored in size t. Thus, the calculated value
remains the same in both cases. On a 64-bit system, the upper four bytes are
zero-extended.

Thus, the number of bytes overflowed is the same for both 32-bit and
64-bit systems. For an overflow to occur, the result of the subtraction must
be negative. As we have already discussed, the result of the subtraction cannot
be less than -65 535. Considering these facts, there is always an overflow of
almost four gigabytes.

3.3.2 Analysis of the Affected Memory Areas

At this point, we have yet to discuss what the overflow overwrites. Looking
again at line 769 of Listing 3.1, the data are copied from the input (variable
next) to extra at offset len. However, once an overflow occurs, len is greater
than state->head->extra max, so all the data to be copied will be written
beyond extra. Thus, this is not a typical overflow scenario where the data
is written into a buffer, and the buffer boundaries are not checked during the
write operation, causing the overflow. In our case, the data is written directly
outside the buffer. A visualization of the overflow is shown in Fig. 3.2.

extra ... memory overwriten due to the overflow ...

232 bytes

extra + len

Figure 3.2: Visualization of the overflowed memory.

The greater the value of len, the fewer bytes are overflowed. The memory
is always overflowed from extra at offset len up to the position of 232 bytes
from the end of extra. As a reminder, len can only contain values from 0 to
65 535.
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3.3.3 Exploitability on 32-bit and 64-bit Architectures

The overflow is caused by the zmemcpy() function, which is called at the time
when it should not be called anymore as there is no more space in extra.
This function performs both read and write operations. If it fails to perform
either of these operations, the application crashes. To prevent the crash, the
source data must be read from memory with read permissions and written to
memory with write permissions.

Thus, based on what we already know about the examined overflow, to
avoid a crash, there must be almost four gigabytes of readable memory be-
hind the input buffer and almost four gigabytes of writable memory behind
extra28. We will consider a simplified scenario, where there must be exactly
four gigabytes (232 bytes) of readable and writable memory behind the buffers,
as the maximum number of bytes by which these memories can theoretically
be smaller (65 535 bytes) is negligible compared to the rest.

On a 32-bit architecture, a process has a maximum of four gigabytes of
virtual address space. However, a part of this space is reserved for the system.
For example, Windows and Linux operating systems have reserved one or two
gigabytes [33], [34]. Thus, a process can allocate a maximum of around three
gigabytes of memory.

When zmemcpy() is requested to copy almost four gigabytes of data on
a 32-bit architecture, it will necessarily attempt to read or write to memory
that is either unallocated, has no read or write permissions, or will try to
access the NULL address. All of these cases lead to a crash of an application.
Therefore, exploiting the CVE-2022-37434 vulnerability to code execution on
a 32-bit architecture is not possible. However, the vulnerability can still be
exploited for denial-of-service attacks.

On a 64-bit architecture, a process has a maximum of 264 bytes of virtual
address space, meaning there may be enough allocated memory behind the
input buffer and extra so that an overflow does not cause the application to
crash. If other conditions are met, code execution can be achieved.

3.3.4 Memory Layout Preventing a Crash

If there are 232 bytes of contiguous memory with read permissions directly be-
hind the input buffer and 232 bytes of contiguous memory with write permis-
sions behind extra, the overflow caused by the CVE-2022-37434 vulnerability
will not result in a crash, which under certain circumstances can lead up to
code execution. We will describe how to achieve such a memory layout in the
heap memory segment29. We emphasize that the following demonstrations
highly depend on the memory manager used.

28These memory blocks may overlap.
29An overflow could also occur in the stack memory segment if the input and extra

buffers were allocated on the stack.
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Fig. 3.3 shows an example of a memory layout that satisfies the conditions
to prevent a crash. We will now demonstrate how it can be achieved on a Linux
operating system with the glibc 2.35 memory manager and on Windows 10,
version 22H2, with its default memory manager.

input ouput name comm extra ... contiguous memory with R/W permissions ...

232 bytes

232 bytes

Figure 3.3: Example of a memory layout that prevents the overflow triggered
by the CVE-2022-37434 vulnerability from causing an application crash.

3.3.4.1 Arranging Memory on Linux with glibc 2.35

We will now describe how to create the desired memory layout on Linux using
the glibc’s malloc(). The glibc’s malloc() divides the memory it receives
from the operating system into chunks of various sizes and accomplishes the
allocation by assigning one or more consecutive chunks. Each chunk has its
size and can be either in use or free. Freed chunks are stored in lists called
bins so that they can be subsequently quickly and efficiently reused for other
allocation requests. When allocating, bins are first searched for an available
free chunk of sufficient size in bins, and if such a chunk exists, it is assigned.
Otherwise, malloc() asks the operating system for additional memory. [35]

This behavior can be leveraged to create the desired memory layout. An
example of how it can be achieved on Linux with glibc 2.35 is shown in List-
ing 3.3.

Listing 3.3 Creating the memory layout shown in Fig. 3.3 on Linux with
glibc 2.35.
# define CHUNK 32768

int inf ( FILE * source , FILE * dest) {
// This memory is divided between multiple buffers
char * memory = malloc ( 5 * CHUNK );
...

}

void arrangeMemory ( char ** data ) {
data = malloc ( 132000 * sizeof ( char * ) );
for ( size_t i = 0; i < 132000; ++i )

data[i] = malloc ( CHUNK )
for ( size_t i = 0; i < 5; ++i )

free ( data [i] );
inf (...);

}
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The arrangeMemory() function is assumed to be executed first. Within
the arrangeMemory() function, a large contiguous memory region is created
by calling malloc() in a loop30. Creating the contiguous large memory re-
gion in this manner makes freeing only part of it possible. So afterward, the
first few chunks are freed so that their size matches the memory size allocated
within the inf() function. Finally, the inf() function is called. When inf()
then calls malloc(), it is assigned the just-freed memory chunks. Thus, the
memory allocated within inf() is located directly in front of the large con-
tiguous memory region, and the created memory layout matches the desired
layout shown in Fig. 3.3.

In this example, we used the malloc() and free() functions, which are
standard C library functions available on most operating systems and are,
therefore, the most commonly used functions for dynamic allocation and deal-
location. The memory assigned by malloc() has read and write permissions.
The example is particularly interesting because we forced the memory man-
ager to create a specific memory arrangement using legitimate operations. If
an attacker could control when an application allocates and deallocates mem-
ory, he could force the memory manager to create such an arrangement.

The example is intended to illustrate a real-life scenario that could occur.
Let’s consider a situation where an application runs on a server and processes
user requests. One of its services is decompressing a gzip file, for which it
might use the inf() function. However, the application also provides other
services that involve memory allocations and deallocations. If an attacker
managed to force the application to allocate enough memory (e.g., by sending
the same request that allocates memory many times), then caused part of the
memory to be freed, and then requested the decompression of the gzip file,
they could potentially achieve the desired memory layout.

3.3.4.2 Arranging Memory on Windows 10, version 22H2

Achieving the desired memory layout on a Windows 10, version 22H2, with its
default memory manager is much more complicated, as the pages of a process’s
virtual address space can be in one of the following states:

• Free page can be reserved, committed, or both simultaneously. At-
tempting to read from or write to a free page results in an access viola-
tion exception.

• Reserved page is reserved for future use and cannot be used by other
allocation functions. It is inaccessible, so attempting to read from or
write to a reserved page creates an access violation exception. It is
available to be committed.

30It is taken advantage of that the glibc heap arranges the memory allocated this way
sequentially, resulting in a contiguous memory region.
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• Commited page is accessible, and the access is controlled via the mem-
ory protection constants. [36]

This mechanism is particularly useful when reserving space for a large
buffer that is not all needed immediately but needs to be contiguous. However,
it severely limits the ability to create the memory layout shown in Fig. 3.3.
Nevertheless, it is still possible. It is only more complicated, making the
vulnerability more difficult to exploit.

The malloc() function implemented using the Windows 10, version 22H2,
heap manager differs from the glibc’s malloc(). However, many of its prop-
erties are the same. Just like the glibc’s malloc(), it first tries to assign
previously freed memory from bins when allocating, which can be leveraged
for arranging the specific memory layout.

Considering that property, we tried to use the same strategy as in the
previous example to create the desired memory layout on Windows 10, ver-
sion 22H2. However, we could not succeed using the malloc() and free()
functions because of the reserved pages that the Windows heap manager leaves
between committed chunks once they reach a specific size. Fig. 3.4 shows
the virtual memory after such an attempt. As can be seen, there are al-
ways 0x1000 bytes of reserved memory without access between read-and-write
memory chunks, making the allocated memory non-contiguous.

Figure 3.4: Virtual memory after several consecutive allocations in small
chunks via the malloc() implemented using the Windows 10, version 22H2,
heap manager.

We have noticed that the malloc() implemented with the Windows heap
manager always reserves a memory address range, from which it then assigns
memory. The memory range may grow as the memory allocation requests
increase. Depending on the requested memory chunk size, the assigned mem-
ory may be contiguous even after multiple calls of malloc(), but only until it
reaches a specific size. Then, a chunk of reserved memory is left after that con-
tiguous committed memory chunk, and additional memory is allocated only
after the reserved chunk. This process is repeated until the required amount
of memory is allocated.

We have been trying to create the desired memory layout using malloc()
and free() in many different ways. Still, we could not succeed. We found that
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allocating a large contiguous chunk in a single call to malloc() is possible.
However, such large chunks also have a reserved memory region behind them.
Thus, the ability to force the memory manager to create a specific memory
layout is lost by doing so.

Conclusively, we cannot state with certainty that achieving the desired
memory layout is impossible using the malloc() implemented using the Win-
dows 10, version 22H2, heap manager. Still, based on our analysis, we believe
it is. A more detailed examination of the malloc() implementation is out of
the scope of this thesis.

We think the reserved pages left between read-write memory chunks serve
as guard pages. After all, one 4 096-byte guard page once every almost
16 megabytes is reasonable, even at the expense of more memory consumed,
and may prevent such abuse.

Although we could not succeed in creating the desired memory layout using
the malloc() and free() functions, we did succeed using the VirtualAlloc()
and VirtualFree() functions. These are low-level functions from the Win-
dows API that are used to manage dynamic memory directly.

In most cases, the malloc() and free() functions are more likely to be
used for dynamic memory management, partly because they do not depend on
the operating system and partly because they are easier to use and do not re-
quire knowledge of low-level memory management. However, VirtualAlloc()
and VirtualFree() are also used and are even necessary in some situations,
for example, when it is needed to work with memory protection constants.

The VirtualAlloc() function can be passed an address from which to
allocate memory via the first argument. However, since it is not needed to
achieve the desired memory layout, we will set this argument to NULL, leaving
the system to determine the allocated address.

VirtualAlloc() always assigns memory aligned on the system alloca-
tion granularity boundary and only allocates memory blocks in multiples of
the system granularity [37]. The system allocation granularity boundary is
0x10000 bytes on many 64-bit Windows systems [38], and the system gran-
ularity is mostly 0x1000 bytes. We found that the assigned memory is con-
tiguous if allocated in the system allocation granularity size chunks.

Figure 3.5: KUSER SHARED DATA pages without write access located at address
0x7FFE0000 interrupting the allocated contiguous memory region.
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As shown in Fig. 3.5, there are two KUSER SHARED DATA pages at address
0x7FFE0000 without write permissions interrupting the allocated contiguous
memory. They are always placed to this fixed address by the Windows op-
erating system when ASLR is disabled [39], so not much can be done with
them. The problem is that the VirtualAlloc() starts assigning memory be-
fore these pages, and the contiguous allocated chunk of memory is interrupted
by these pages after about two gigabytes.

Nevertheless, this problem can be easily bypassed by allocating six giga-
bytes of memory instead of four and freeing the memory chunks only after
these two non-writable pages. That also results in a layout preventing the
overflow from crashing an application. The layout should match the memory
layout shown in Fig. 3.6. The blue memory regions represent the memory
allocated via VirtualAlloc().

input ouput name comm extra

232 bytes

232 bytes

 Contiguous memory with R/W permissions

 KUSER_SHARED_DATA without W permissions

231 bytes

213 bytes

Figure 3.6: Example of another memory layout preventing the overflow trig-
gered by the CVE-2022-37434 vulnerability from causing an application crash.

Listing 3.4 Creating the memory layout shown in Fig. 3.3 on Windows 10,
version 22H2, with the VirtualAlloc() and VirtualFree() functions.
# define CHUNK 65536

int inf ( FILE * source , FILE * dest ) {
// This memory is divided between multiple buffers
char * memory = VirtualAlloc ( NULL , 2 * CHUNK , MEM_COMMIT |

MEM_RESERVE , PAGE_EXECUTE_READWRITE );
...

}

void arrangeMemory ( char ** data ) {
data = ( char ** ) malloc ( 100000 * sizeof ( char * ) );
for ( int i = 0; i < 100000; i++ ) {

data[i] = VirtualAlloc ( NULL , CHUNK , MEM_COMMIT |
MEM_RESERVE , PAGE_EXECUTE_READWRITE );

}
for ( int i = 32768; i < 32770; i++ )

VirtualFree ( data[i], 0, MEM_RELEASE );
inf (...);

}
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An example of how to achieve the memory layout shown in Fig. 3.6 on Win-
dows 10, version 22H2, with the VirtualAlloc() and VirtualFree() func-
tions is shown in Listing 3.4. Again it is assumed that the arrangeMemory()
is executed first. It is taken advantage of the fact that the memory allo-
cated via the VirtualAlloc() function in allocation granularity-sized chunks
is contiguous and that VirtualAlloc() first tries to assign previously freed
memory.

3.3.5 Creating a Malicious File

Finally, we can describe what a malicious file31 exploiting the CVE-2022-37434
vulnerability to code execution might look like. We have already shown an
example of a file that triggers an overflow. However, we only focused on
making the file trigger an overflow and did not care about its content which
is essential for the code execution.

So far, we have yet to deal with what the memory is overwritten with.
Looking again at line 769 of Listing 3.1, the second argument of zmemcpy(),
which determines where the data are copied from, is the next variable. The
next variable points to the next available input a thus corresponds to some
part of the gzip file being processed. At the time the overflow occurs, de-
pending on the input buffer size and the presence and size of each gzip file
field, the input buffer may contain in this order: extra field data, name field
data, comment field data, CRC16 field data, compressed data, CRC32 value,
and ISIZE value.

To execute code not initially present in the application at its launch, the
code must be injected into it. However, it is not injected as source code but as
binary machine instructions, also known as opcodes, as the processor can only
handle them32. Each instruction is uniquely identifiable and is represented by
one or more bytes of opcodes. Typically, the code is first written in the as-
sembler programming language and the corresponding opcodes are generated
based on it, making the process quite simple. An attack consists of injecting
a sequence of opcodes somewhere in memory and redirecting the flow of the
application to execute these instructions.

In the case of the CVE-2022-37434 vulnerability, the code can be injected
into an application via the content of a valid gzip file. It can be done in
multiple ways. The first option is via the CRC32 and ISIZE variables, as they
can take on arbitrary values. However, their values should correspond to the
compressed data, so for the file to be valid, compressed data would have to
be created to match the specific values. In addition, only eight bytes can be
stored in these fields. For this reason, it would be more worthwhile to store

31Even though we refer to these files as malicious, they are still legitimate gzip files
meeting the RFC 1952 specification.

32Even source code in high-level programming language must be first translated into these
opcodes before it can be executed. The translation is done during the compilation process.
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opcodes as compressed data and calculate the appropriate CRC32 and ISIZE
values accordingly.

Storing opcodes as compressed data is pretty simple. It can be done by
creating a gzip file with uncompressed content [40]. Storing uncompressed
data in a gzip file is typically used when the data needs to be saved in gzip
format so that it can be sent over a network or saved to disk but does not
need to be compressed. As a result, the opcodes are stored in uncompressed
form in a deflate stream with a gzip wrapper around it.

The only problem that arises is that even uncompressed data must contain
a five-byte deflate header to be a valid deflate stream, and the value of these
five bytes is hard to control. These five bytes specify that the content of a
deflate stream is uncompressed and determines its size [41]. Nevertheless, the
values of subsequent bytes can be controlled.

This way, injecting up to 65 535 contiguous arbitrary bytes (one deflate
block) is possible33. However, we have already discussed that for an overflow
to occur, the entire extra field, whose maximum size is 65 535 bytes, must
not be processed on a single inflate() call. Therefore, the input buffer size
remains the main limiting factor of how many bytes can be injected.

Fig. 3.7 shows what the input buffer content might look like when process-
ing a gzip file with opcodes stored as compressed data34. As can be seen, the
entire input buffer content, except for the five bytes of the deflate header, can
be controlled. If the compressed data were shorter, it might not fill the remain-
ing part of the input buffer. However, we aim to show that since it is possible
to control the size and the content of the compressed data and the extra field,
it is possible to control the contents of almost the entire input buffer.

deflate header

gzip header ... extra field data ...

... extra field data ...

1st call of inflate()

2nd call of inflate()

3rd call of inflate() - overflow occurs

Injected code

... ex. f. data ...

Injected code 5 bytes

... compressed data ...

Figure 3.7: Visualization of the input buffer content during individual
inflate() calls when processing a malicious gzip file that injects code via
compressed data.

33This block may be followed by another one, but with a new deflate header.
34The number of inflate() calls may vary depending on the input buffer size and the

size of the extra field.
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It is also possible to create a non-valid gzip file that contains the opcodes
right after the extra field (without a deflate header). However, such a file could
not be decompressed in most cases, as the compressed data would mostly not
be a valid deflate stream. Therefore, when decompressing, inflate() would
return an error. Nevertheless, it remains a possibility, and an overflow would
still occur since the actual processing of the compressed data occurs only after
the overflow is triggered.

Another option is to store the code in the name and comment optional
fields. There is an advantage that these fields can be arbitrarily long. The
problem is that both these fields are terminated with a zero byte (0x00), and
if a zero byte were a part of the injected code, it would terminate the field.
The remaining part would be regarded as another field, possibly corrupting
the deflate stream and making the gzip file non-valid. Although most codes
can be created so that their opcodes do not contain zero bytes, sometimes
using the zero bytes is unavoidable, especially for rewriting specific addresses.

The last option to store the code is in the extra field, whose content can
be arbitrary. By the time the overflow occurs, either only extra field data is
in the input buffer (and then it is possible to control the content of the entire
buffer), or the rest of the extra field, compressed data, and the gzip trailer
are there. However, a significant portion of the input buffer can be controlled
even in the latter case.

If the name and comment fields are omitted, and the compressed data is
small, the remaining part of the processed gzip file may not fill the rest of the
input buffer. In such a case, the remaining part of the input buffer contains
the extra field data from the previous inflate() call, which can be controlled.

compressed data gzip trailer

gzip header ... extra field data ...

... extra field data ...

... extra field data from the last call ...

1st call of inflate()

2nd call of inflate()

3rd call of inflate() - overflow occurs

Injected code

... ex. f. data ...

Injected code

Figure 3.8: Visualization of the input buffer content during individual
inflate() calls when processing a malicious gzip file that injects code via
the extra field data.

Fig. 3.8 shows what the input buffer content might look like when pro-
cessing a gzip file with opcodes stored in the extra field data. Our goal is to
show the scenario where before the overflow is triggered, the remaining part
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of the gzip file is loaded into the input buffer and does not fill it. Thus, the
bytes from the previous call are left in the input buffer, whose values can be
controlled. Again, the number of inflate() calls may vary depending on the
input buffer size and the size of the extra field.

Creating a specific file to inject code into a particular application always
depends on the input buffer size. Depending on this size, it is then possible to
modify the size and content of the individual fields of the malicious file so that
the code is injected into the desired location of the input buffer. When an
overflow occurs, the beginning of the overflowed memory is overwritten with
either all or part of the input buffer (depending on where the next variable is
pointing).

At this point, it is all down to what was present in the input buffer before
the overflow occurred and the attacker’s ingenuity. If, for example, a function
pointer were located in the memory being overwritten, it may be possible
to exploit it to execute the injected code by overwriting its value with the
address of the injected code35. However, there are many more ways to exploit
the CVE-2022-37434 vulnerability.

35This is how we demonstrated the code execution.
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Chapter 4
Results of the Analysis

In this chapter, we will present the results of our CVE-2022-37434 vulnerabil-
ity analysis.

First, we will summarize the conditions that would allow an attack that re-
sults in code execution to succeed. Next, we will comment on the exploitability
of the CVE-2022-37434 vulnerability in OpenSSL, as OpenSSL uses the Zlib
library and, therefore, may be vulnerable. Then we will discuss the available
fixes. Finally, we will present our CVSS v3.1 severity rating for the vulnera-
bility.

4.1 Conditions Allowing an Attack to Succeed

We will focus on attacks that aim to overwrite a function pointer in the over-
flowed memory with the address of the injected code. When the function
initially stored in the function pointer is then called, the injected code is exe-
cuted. This is how we demonstrated the code execution in the proof-of-concept
programs.

However, the attack may be more complicated due to the buffer overflow
protections, which are typically enabled. Suppose code execution is to be
achieved by overwriting a function pointer. In that case, it is necessary to
overcome the ASLR protection since it is required to know what address the
function pointer should be overwritten with, and the NX-bit protection since
the injected code must be located in an executable memory segment so that
it can be executed.

We have decided not to describe how these protections can be overcome,
as we do not want to give too detailed a description for potential attackers.
However, it should be remembered that these protections may not work in
every situation and do not make such an attack impossible. They only make
it harder. The proof-of-concept demonstrations should serve as a compelling
evidence of why it is not advisable to disable these protections.
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Thus, for demonstration purposes, we disabled the ASLR protection and
ensured the executability of the memory where the code is injected. On Linux,
we ensured the memory executability via the mprotect() function, and on
Windows, we directly allocated the memory as executable. The ASLR pro-
tection can be disabled at the operating system level.

The conditions that would allow achieving arbitrary code execution by
overriding a function pointer by exploiting the CVE-2022-37434 vulnerability
are as follows:

• The application must be 64-bit.

• The application must use the Zlib’s inflate() function for decompres-
sion.

• The application must use inflate() to decompress files in the gzip file
format.

• There must be a previous call to inflateGetHeader(), and memory
must be provided for extra.

• The entire extra field, whose maximum size is 65 535 bytes, must not be
processed in a single inflate() call. The input buffer must therefore be
smaller than 65 547 bytes (65 535 bytes for the extra field and 12 bytes
for the gzip header).

• There must be at least 232 bytes of readable memory behind the input
buffer and 232 bytes of writable memory behind extra.

• There must be a function pointer in the overflowed memory.

• The address where the code is injected must be known or detectable.

• The memory region into which the code is injected must be executable.

It should be noted that there may be other ways to exploit the vulnerability
than by overwriting a function pointer. Once an attacker can control what
the memory is overwritten with, it only depends on what was present in the
memory before the overflow occurred and how they are able to exploit it. For
example, the vulnerability may be exploited by overwriting the internal heap
structures.

Moreover, often an attacker does not even need to know the address or
have executable memory to exploit the vulnerability. If the overflowed mem-
ory contained information about the user account, such as access rights, an
attacker could assign themselves administrator privileges. They would need
neither the knowledge of the address nor an executable memory. In such a
case, even buffer overflow protections would not help.
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4.2 Proof-of-concept of Code Execution

In this thesis, we analyzed the vulnerability on two operating systems and
two memory managers – specifically Ubuntu 22.04 LTS with the glibc 2.35
memory manager and Windows 10, version 22H2, with its default memory
manager. For both operating systems, we prepared a proof-of-concept that it
is possible to exploit the CVE-2022-37434 vulnerability to execute code. For
demonstration purposes, we prepared virtual environments.

The virtual environment for Ubuntu 22.04 LTS is available directly in
the .ova format in the attached files, but we also provided steps to create it
manually. The virtual environment for Windows 10 cannot be published for
licensing reasons. However, we provided the steps for creating it.

Each virtual environment includes two scripts that perform the entire at-
tack. The scripts are independent of each other, and the attack can be per-
formed using any of them. There are two scripts because we have prepared
two programs that can create a malicious file – the first stores the code to
be injected into the compressed data, and the other stores it in the extra
field. The individual scripts differ in using different programs for creating the
malicious file. The scripts do the following:

1. Compile zlib inflate.c (a program that performs gzip decompression).

2. Compile zlib deflate comp.c or zlib deflate extra.c (a program that cre-
ates a malicious gzip file).

3. Create a malicious file using the program created in step two.

4. Turn off ASLR (This step applies only to the Linux scripts. On Win-
dows 10, the ASLR must be disabled manually.).

5. Decompress the malicious file using the program created in step one.
In this step, the overflow is triggered, leading to the execution of the
injected code.

6. Print the “End of script” message and pause before the user presses any
key.

More detailed information about the demonstration programs and how to
perform the attack is provided in the attached files.

The compiler used in both cases is the gcc version 11.3.0. However, we
achieved code execution even with the gcc version 12.2.0. Therefore, we would
like to emphasize that the CVE-2022-37434 vulnerability is not dependent on
a particular compiler version, and changing just the compiler does not protect
against the vulnerability.

On Ubuntu 22.04 LTS, we demonstrated the code execution by running
a shell, and on Windows 10, by running a calculator. That may not look so
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terrifying. However, an actual attacker might not run a shell or a calculator.
They might run something far more malicious. In the demonstration pro-
grams, the input buffer size is 32 768 bytes, and thus it is possible to execute
more than 30 000 bytes of opcodes. This gives the attacker the ability to run
almost anything. If the application were connected to the Internet, they might
even be able to inject a code that downloads another malicious program from
the Internet and executes it.

4.3 Zlib and OpenSSL

The OpenSSL cryptographic library uses Zlib and may, therefore, be vulner-
able. OpenSSL can be used to implement a TLS (Transport Layer Security)
client and server, and the TLS communication can be compressed. While
compression in TLS is no longer recommended due to security risks and is
even disabled by default in TLS 1.3, it can still be used. This could mean that
an evil server may send a compressed malicious file to a legitimate client, or
an evil client may send a malicious file to a legitimate server. Given that such
an attack vector theoretically exists, we decided to examine it.

Although it seems theoretically possible, it cannot be implemented in prac-
tice since OpenSSL does not use the Zlib library for gzip compression and
decompression, which is one of the necessary conditions for exploiting the
CVE-2022-37434 vulnerability (see Section 4.1).

4.4 Reliability of Available Fixes

The CVE-2022-37434 vulnerability was remedied in Zlib version 1.2.13, re-
leased on October 13, 2022. That is quite a long time since the publication
of the CVE Record on August 5, 2022. However, we believe the release was
delayed because the first commit fixing the vulnerability introduced a new bug
where the NULL pointer could be dereferenced. Thus, we assume the authors
did not want to release a new library version containing additional bugs, so
they waited to ensure the fix was correct.

The vulnerability was fixed by an added verification that the len variable
is not greater than state->head->extra max before calling zmemcpy(). As
we discussed in the vulnerability exploitation chapter, the case when len is
greater than state->head->extra max leads to an overflow. Adding this con-
dition ensures both that it is not possible to write outside extra when calling
zmemcpy() and that the data type cannot be underflowed when determining
the size of the data to be copied. Therefore, we consider the fix to be reliable.

The CVE-2022-37434 vulnerability had existed in Zlib since September 10,
2011, so the library had been vulnerable for almost terrifying twelve years.
This proves that although some software is massively used and even open
source, it can contain such a severe vulnerability. The CVE-2022-37434 vul-
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nerability was difficult to detect due to the complexity of the decompression
process via the inflate() function. It may have been introduced due to an
oversight, but it is equally possible that it was introduced intentionally. That
can, at the very least, raise some doubts.

As mentioned earlier, the Zlib library is widely used in many applications,
operating systems, and software projects. Examples of some of these are:

• Cryptographic libraries – OpenSSL, GnuTLS

• Database systems – SQLite, PostgreSQL, MySQL

• Multimedia software – VLC media player, OBS, GIMP

• Office suites – Microsoft Office, LibreOffice

• Operating systems – Linux kernel, macOS

• Web browsers – Google Chrome, Mozilla Firefox

• Web servers – Apache, Microsoft IIS, NGINX

The CVE-2022-37434 vulnerability thus allows the potential exploitation
of all software using vulnerable Zlib versions, which is highly concerning due
to the library’s widespread usage in various types of applications, including
the large-scale ones.

Given Zlib’s popularity and the severity of the CVE-2022-37434 vulnera-
bility, it is essential to upgrade to the latest version of the library (currently
Zlib 1.2.13) as soon as possible to avoid potential damage to users and systems
using Zlib.

4.5 Our Vulnerability Severity Rating

Given that we have examined the CVE-2022-37434 vulnerability thoroughly,
we consider it reasonable to assign it a severity score based on our analysis.
We decided to use the CVSS v3.1 scoring system.

Given that the vulnerability can be exploited to code execution, we con-
sider the Confidentiality, Integrity, and Availability metrics to be High. As
can be seen from the demonstration programs, neither User Interaction nor
Privileges are needed, so we scored both metrics as None. The attack can
also be performed over a network, so we scored the Attack Vector metric as
Network. The vulnerability exploitation cannot affect resources beyond the
security scope managed by the security authority of the vulnerable component,
so we scored the Scope metric as Unchanged.

The only change we would make from the current CVSS v3.1 Base score
provided by NIST is in the Attack Complexity metric. Considering that an
attacker would need to figure out the buffer sizes in the application, and
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the content of the overflowed memory, would need to find out if it is even
possible to cause an overflow without crashing the application and would
have to overcome the ASLR and the NX-bit protection to execute code, we
consider the Attack Complexity to be High. However, as discussed in the
previous chapter, performing denial-of-service attacks is pretty simple, so at
the same time, we consider the Low rating that NIST assigned to the metric
also reasonable.

Nevertheless, if the application only crashes, the Confidentiality and In-
tegrity would not be High. Therefore, looking at vulnerability comprehen-
sively, we find it more reasonable to score Attack Complexity as High. The
resulting score vector is shown in Fig. 4.1.

Figure 4.1: CVSS v3.1 Base Score Vector of our CVE-2022-37434 vulnerability
severity rating. The picture is taken from [13].
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The goal of this thesis was to explore the CVE-2022-37434 vulnerability, find
out when and how a buffer overflow can be triggered, and determine whether
it could be exploited to code execution. After our vulnerability analysis, we
concluded that code execution is indeed possible, and we have described how
it can be done.

First, we introduced vulnerabilities in general, how they are published,
and how they are scored. We focused on buffer overflow vulnerabilities, their
exploitation techniques, and protections against them. Then, we presented
the available information about the CVE-2022-37434 vulnerability.

In the second chapter, we described the gzip file format and the parts of
the library relevant to the CVE-2022-37434 vulnerability.

In the third chapter, we discussed how the vulnerability could be exploited
to code execution. We analyzed the vulnerable code segment, how the vul-
nerability behaves, and the scenarios that may lead to an overflow. Next,
we described how a memory manager could be forced to arrange memory so
that the overflow does not cause an application to crash. We also introduced
several ways to create a malicious gzip file whose decompression may lead to
an overflow and overwrite the overflowed memory with arbitrary values.

We performed the analysis on two operating systems and two memory
managers – Linux with glic 2.35 memory manager and Windows 10, ver-
sion 22H2, with its default memory manager. In both cases, we achieved code
execution and prepared a proof-of-concept of it.

To demonstrate the exploitation of the CVE-2022-37434 vulnerability to
code execution, we prepared virtual environments for both operating systems.
We created scripts to automate the demonstrations.

Finally, we summarized the conditions that would allow exploitation re-
sulting in code execution to succeed and provided our severity rating for the
vulnerability.

The results of this thesis and the exploitation demonstrations should serve
as a compelling evidence of why updating to the latest Zlib library version is
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advisable. In future work, it might be interesting to explore the possibility of
achieving code execution by overriding the internal heap structures.
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Appendix A
Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

CISA Cybersecurity and Infrastructure Security Agency

CNA CVE Numbering Authority

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWSS Common Weakness Scoring System

DEP Data Execution Prevention

DHS Department of Homeland Security

FIRST Forum of Incident Response and Security Teams

LIFO Last In First Out

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

RFC Request For Comments

ROP Return Oriented Programming

TLS Transport Layer Security
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Appendix B
Contents of attached files

README.pdf...............................the PDF file with description
impl.............................the directory with the implementation

poc...........the directory with the proof-of-concept demonstrations
virt ............ the directory with the prepared virtual environment

thesis....................................the directory with the thesis
BP Krejsa Vojtech 2023.pdf ......... the thesis text in PDF format
src ................. the directory of LATEX source codes of the thesis

63


	Introduction
	Vulnerabilities
	Common Vulnerabilities and Exposures
	Difference Between Vulnerabilities and Exposures
	CVE Records
	Criteria for the Establishment of a CVE Record
	Reporting and Publishing CVEs
	Risks Associated with CVEs

	Scoring Vulnerabilities
	Common Vulnerability Scoring System v3.1 
	CVSS Base Metrics
	CVSS Qualitative Ratings

	Buffer Overflows
	Buffer Overflow Exploitation
	Buffer Overflow Protections

	CVE-2022-37434

	The Zlib Library
	Zlib's Data Formats
	Gzip File Format

	Zlib's Structures
	z_stream
	gz_header

	Zlib's Functions
	deflateInit2(), inflateInit2()
	deflate(), inflate()
	deflateEnd(), inflateEnd()
	deflateSetHeader(), inflateGetHeader()

	Gzip Header Processing

	Exploiting the Vulnerability
	State EXTRA
	Triggering an Overflow
	Possible Scenarios
	Overflow Demonstration on a Specific Example

	Code Execution
	Analysis of the Overflow Sizes
	Analysis of the Affected Memory Areas
	Exploitability on 32-bit and 64-bit Architectures
	Memory Layout Preventing a Crash
	Creating a Malicious File


	Results of the Analysis
	Conditions Allowing an Attack to Succeed
	Proof-of-concept of Code Execution
	Zlib and OpenSSL
	Reliability of Available Fixes
	Our Vulnerability Severity Rating

	Conclusion
	Bibliography
	Acronyms
	Contents of attached files

