
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Implementing multi-threaded algorithms to the JGraphT library

Mgr. Barbora Kolomazníková

Ing. Ondřej Guth, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of the thesis is to analyze and implement support for parallel, multi-threaded

algorithms to the JGraphT library.

- Get familiar with the JGraphT library.

- Analyze possibilities of multithreaded processing in the library.

- Get familiar with parallel graph algorithms and corresponding theory.

- Propose multithreaded implementation of the following algorithms to the JGraphT

library: breadth-first search, depth-first search, Dijkstra shortest path algorithm, Bellman-

Ford algorithm.

- Use existing structures provided by the library appropriately.

Electronically approved by Ing. Michal Valenta, Ph.D. on 30 January 2023 in Prague.

Bachelor’s thesis

Implementing multi-threaded algorithms
to the JGraphT library

Mgr. Barbora Kolomazńıková

Department of software engineering
Supervisor: Ing. Ondřej Guth, Ph.D.

May 11, 2023

Acknowledgements

I would like to thank my supervisor Ing. Ondřej Guth, Ph.D. for his valuable
insights and recommendations. In addition, I would like to thank my family
for their continuous support throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.
I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Barbora Kolomazńıková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kolomazńıková, Barbora. Implementing multi-threaded algorithms to the JGraphT
library. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Abstract

The aim of the thesis is to implement four parallel, multi-threaded algorithms
to the JGraphT – a Java library providing graph data structures and cor-
responding algorithms. The selected multi-threaded algorithms to be imple-
mented are BFS, DFS, Dijkstra, and Bellman-Ford. First part of the thesis
provides an overview of the JGraphT and its main components. Second part
presents theoretical description of the selected algorithms and their parallel
versions. Third part introduces implementation requirements and describe the
implementation of the algorithms. Last part of the thesis focuses on present-
ing the testing results, evaluating performance of the implementations, and as-
sessing the fulfillment of the outlined implementation requirements. The main
outcome of the thesis is the implementation of the selected multi-threaded al-
gorithms which uses existing components of the JGraphT appropriately, is
fully tested and documented.

Keywords graph algorithms, BFS, DFS, Dijkstra, Bellman-Ford, multi-
threading, parallelism, implementing multi-threaded algorithms, JGraphT,
Java

vii

Abstrakt

Ćılem této práce je implementaci čtyř vybraných v́ıcevláknových algoritmů
do knihovny JGraphT. Jedná se o Java knihovnu poskytuj́ıćı grafové datové
struktury a souvisej́ıćı algoritmy. Čtyři vybrané v́ıcevláknové algoritmy jsou
BFS, DFS, Dijkstra a Bellman-Ford. Prvńı část práce se zabývá samotnou
knihovnou a popisem jej́ıch hlavńıch část́ı. Druhá část se soustřed́ı na sa-
motné algoritmy, přesněji jejich v́ıcevláknové verze a jejich teoretický popis.
Třet́ı část obsahuje implementačńı požadavky a technické detaily samotné
implementace. Posledńı část práce potom prezentuje výsledky test̊u, hod-
not́ı efektivitu jednotlivých implmementovaných algoritmů a zkoumá naplněńı
implementačńıch požadavk̊u. Hlavńım výstupem této práce je implementace
daných algoritmů, která vhodně využ́ıvá prvky knihovny JGraphT, je řádně
otestována a zdokumentována.

Kĺıčová slova grafové algoritmy, BFS, DFS, Dijkstra, Bellman-Ford, v́ıcevláknové
zpracováńı, paralelismus, implementace v́ıcevláknových algoritmů, JGraphT,
Java

viii

Contents

Introduction 1

1 Analysis of JGraphT library 3
1.1 jgrapht-core . 3

1.1.1 org.jgrapht.graph . 4
1.1.2 org.jgrapht.alg . 5

1.2 jgrapht-guava . 6
1.3 jgrapht-io . 7

2 Description of the selected multi-threaded algorithms 9
2.1 Breadth-first search . 9
2.2 Depth-first search . 10

2.2.1 Compute clustered labeling 12
2.2.2 Compute load-balanced indices 13
2.2.3 Worker thread processing 13
2.2.4 Merging labels . 13

2.3 Dijkstra . 14
2.4 Bellman-Ford . 16

3 Implementation 23
3.1 Implementation requirements 23

3.1.1 Functional requirements 23
3.1.2 Non-functional requirements 24

3.2 Concurrency implementation details 24
3.2.1 Thread API . 24
3.2.2 Synchronization . 25
3.2.3 Thread-safe data structures 26
3.2.4 Virtual threads . 27

3.3 Installation . 30
3.4 Code documentation . 30

ix

4 Testing and performance analysis 31
4.1 Unit tests . 31
4.2 Performance analysis . 31

4.2.1 Breadth-first search . 32
4.2.2 Depth-first search . 33
4.2.3 Dijkstra shortest path 33
4.2.4 Bellman-Ford . 35

4.3 Evaluation of implementation requirements 36

Conclusion 41

Bibliography 43

A Acronyms 47

B Contents of electronic attachment 49

x

List of Algorithms

1 Breadth-first search algorithm (source [4]) 11
2 Parallel breadth-first search algorithm (based on description in

[4]) . 12
3 Depth-first search algorithm (source [7]) 14
4 Labeling algorithm (based on description in [7]) 15
5 Parallel depth-first search algorithm (source [7]) 18
6 Dijkstra algorithm (based on [10]) 19
7 Parallel Dijkstra algorithm (based on [10]) 20
8 Bellman-Ford algorithm (source [12]) 21
9 Parallel Bellman-Ford algorithm (source [12]) 21

xi

List of Source Code Examples

1 Example usage of thread pool executors 25
2 Example usage of locks . 26
3 Example usage of synchronized blocks 26
4 Example usage of virtual threads 29
5 Parallel BFS thread code . 36
6 Parallel DFS thread code . 38
7 Parallel Dijkstra thread code 39
8 Parallel Bellman-Ford thread code 40

xiii

List of Figures

4.1 BFS performance . 32
4.2 DFS performance . 33
4.3 Dijkstra performance . 34
4.4 Bellman-Ford performance . 35

xv

Introduction

It is not so long ago when hardware capabilities were fairly limited and its
prices were rather high, as mentioned in [1]. However, as the author in [1]
points out these days we see the opposite to be true – there are systems
offering terabytes of memory with tens or hundreds of CPUs/GPUs with af-
fordable prices. For instance, according to [1] the hardware storage sizes have
risen 40,000-times over last 40 years and their prices have decreased to one
hundredth of the prices of their 1980s counterparts. Consequently, the need
to properly utilize those possibilities arises. Moreover, with the rise of the
online world when companies are offering their services to billions of people,
there is increasing demand for processing of large amounts of data. These two
trends – accessibility of powerful hardware and the increasing amounts of data
– moved the attention of the engineering community to creating fast, parallel,
and possibly multi-threaded algorithms that would enable scalable processing
of big data with proper utilization of the available hardware.

The aim of the thesis is to provide analysis of the JGraphT library and to
extend the library by implementing four multi-threaded graph algorithms,
namely breadth-first search algorithm, depth-first search, Dijkstra, and Bellman-
Ford algorithm. Since sequential versions of BFS, Dijkstra and Bellman-Ford
algorithms are already implemented in JGraphT, the goal of the new imple-
mentations is to provide the same interface and functionalities as the existing
ones. Additional aim is to verify the correctness and efficiency of the imple-
mentations. This is done by using unit tests and comparison tests that test the
outputs of parallel algorithms and compare them to the outputs of sequential
algorithms. Moreover, performance is assessed by using performance tests in
order to determine the efficiency of the parallel algorithms. Since the library
contains single-threaded versions of the aforementioned algorithms, those will
be tested as well to assess the efficiency improvement. The implementation
will utilize existing library components appropriately and adhere to the li-
brary’s conventions. In addition, all new code will be documented.

1

Introduction

The first chapter focuses on the analysis of the JGraphT library and its indi-
vidual modules. In particular, it targets the three main modules – jgrapht-core,
jgrapht-guava and jgrapht-io. Most detailed analysis is provided for the
jgrapht-core module as it is the one that will be extended as part of this
thesis. Chapter 2 then provides an overview of the four algorithms that will
be later implemented to the JGraphT library. It describes sequential ver-
sions of the algorithms as well as their parallel counterparts. Main focus is
put on the parallel implementations that are later used in this work. How-
ever, different approaches to parallelizing these algorithms are mentioned as
well. Chapter 3 presents the implementation requirements (both functional
and non-functional), and introduces the implementation of the algorithms de-
scribed in chapter 2. It describes the Java concepts related to multi-threading
used for the implementation and provides a discussion of possible alternatives.
Moreover, it introduces one of the new features in Java – virtual threads, and
depicts their usage for implementing the underlying algorithms. Chapter 4
discusses outputs of unit and comparison tests, and presents the results of per-
formance testing where the performance of the implemented multi-threaded
algorithms are compared to the performance of their sequential counterparts.

2

Chapter 1
Analysis of JGraphT library

In this chapter we describe and analyze the main components of the JGraphT
library.

JGraphT is an open-source library that provides data structures representing
various graph types (such as directed and undirected graphs) and implemen-
tation of corresponding graph algorithms, as mentioned in [2]. Latest versions
run on Java 11. Apart from graph representation the library also contains
listeners that enable to react to graph modifications. In addition, the library
has basic support for concurrency, which will be the main focus of this thesis.
In particular, it provides a thread-safe wrapper over standard graph imple-
mentations.

Following sections target the main components of the library – jgrapht-core,
jgrapht-guava and jgrapht-io.

1.1 jgrapht-core

jgrapht-core is the main part of the whole library. It contains all graph
representations as well as implemented algorithms. According to [2] the
module comprises of six packages – org.jgrapht.alg, org.jgrapht.event,
org.jgrapht.generate, org.jgrapht.graph, org.jgrapht.traverse and
org.jgrapht.util. Packages org.jgrapht.alg and org.jgrapht.graph
consist of graph and algorithm implementations and will be described in
greater detail in the following subsections. org.jgrapht.util provides util-
ity and helper classes/methods. org.jgrapht.traverse contains graph iter-
ators, while org.jgrapht.generate involves various graph generators – e.g.
random graph generators. Finally, events reflecting graph changes and their
corresponding listeners are part of org.jgrapht.event.

3

1. Analysis of JGraphT library

The root interface, as mentioned in [2], of the whole library is Graph. It takes
two parameterized types representing types of edges and vertices. Baseline
graph operations, such as adding and removing edges/vertices and correspond-
ing getters, are declared by the interface. Other graph classes either directly
implements this interface or extends other classes that implement Graph.

1.1.1 org.jgrapht.graph

The package holds classes representing different types of graphs. As men-
tioned above, the graph implementations are based on Graph interface.

AbstractGraph is an abstract class providing baseline implementation of the
Graph interface. Specifically, as mentioned in [2] the class involves methods
for removing edges/vertices, checking edge existence, and conversion methods
to String. Moreover, the class overrides hashCode and equals methods in
order to check for graph equivalence. In particular, two graphs are considered
equal, if they are of the same type and if they contain the same sets of vertices
and edges (also with the same weights).

Abstract class AbstractBaseGraph builds on AbstractGraph and provides
further implementation of the Graph interface. Its subclasses form various
types of graphs, e.g. directed vs. undirected. They place restrictions on the
graph properties through AbstractBaseGraph’s GraphSpecificsStrategy prop-
erty. In the documentation it is noted that this class is not concurrent safe
and therefore cannot be used for simultaneous reads and writes.

If we need a graph implementation that can be used in concurrent setting, the
library provides AsSynchronizedGraph implementation of the Graph inter-
face. The class uses an instance of ReentrantReadWriteLock in order to main-
tain thread-safety of read/write operations. The implementation also provides
a copyless mode which prevents the caller from creating collection copies. The
purpose is to avoid situations when a new copy of AsSynchronizedGraph is
made while the source instance is being modified by other threads. As ex-
plained in [2] the copyless mode forces the caller to explicitly synchronize the
iteration instead.

According to [2] the library allows creating graphs of various types simply
by creating instances of classes implementing Graph interface. According to
[2] the following graph properties are supported: directed/undirected edges,
self-loops, multiple edges, and weighted edges. The first property either de-
termines for every edge its source and target vertex (directed edges) or does
not impose any restriction on the vertices treating the edge as undirected.
Self-loops, according to [2], allows for existence of edges that connect a vertex
to itself. Multiple edges implies the possibility of having more than one edge

4

1.1. jgrapht-core

between particular two vertices, as stated in [2]. Last but not least, weighted
edges property let edges be assigned a particular weight represented as double.
As [2] points out, unweighted graphs are simply treated as weighted ones with
all edges having the same weight of 1.0.

Regarding graph modifications, all Graph implementations provide methods
for add new elements to graphs (vertices, edges) as well as methods for re-
moving those elements. As mentioned in [2], since these methods are built
on collections from java.util, modification operations possess the following
properties. Firstly, duplicates are discarded for unique collections. That is
not the case for non-unique collections, such as graphs that allows for mul-
tiple edges. In this case, we can have more than one edge between a pair
of vertices. Secondly, removing a non-existing object from a graph does not
result in an error, as stated in [2]. Lastly, accessing a non-existing element
throws IllegalArgumentException. For example, as mentioned in [2], an
error is thrown whenever we try to get a list of edges of some vertex which is
not part of the underlying graph.

The builder package of org.jgrapht.graph provides GraphBuilder, another
implementation of Graph interface. According to [2], the GraphBuilder allows
for more convenient creation of graph objects by providing a possibility of
method chaining. In addition, the package includes GraphTypeBuilder class
which is a builder for various graph types with the properties described in the
previous paragraph. In particular, the GraphTypeBuilder provides methods
for instantiating graphs with directed/undirected edges, self-loops, weighted
edges, and multiple edges. It also allows for creation of mixed graphs, i.e.
graphs that have both directed and undirected edges.

1.1.2 org.jgrapht.alg

This module provides implementations of various graph algorithms as well as
corresponding data structures used to represent the results of the algorithms.
In this analysis we focus on two parts of the module that are of our interest
– shortestpath and spanning. These two packages will be extended in the
following chapters by adding parallel implementations of Breadth-first search,
Dijkstra algorithm and Bellman-Ford algorithm to the shortestpath and par-
allel Depth-first search to the spanning.

The shortestpath package comprises of implementations of several algo-
rithms for finding shortest paths in various types of graphs. Most importantly
it contains sequential versions of BFS, Dijkstra and Bellman-Ford which will
be later used as benchmarks for corresponding parallel implementations.

5

1. Analysis of JGraphT library

Similarly, the spanning package includes algorithms for finding minimum
spanning trees, such as Kruskal or Boruvka algorithms. We lates extend this
package with a parallel implementation of DFS returning spanning tree for a
given source vertex. However, the found spanning tree will not be minimal,
contrary to the existing algorithms already implemented in the package.

According to [2], it is common to use an interface when there are several al-
gorithms solving the same problem. Such interfaces are stored in
org.jgrapht.alg.interfaces. There can be found interfaces
ShortestPathAlgorithm and SpanningTreeAlgorithm that will be used later
for implementation of the parallel algorithms. The ShortestPathInterface
requires implementation of the getPaths method which provides shortest
paths to all reachable vertices from some provide source vertex. On the other
hand, SpanningTreeAlgorithm interface contains class SpanningTreeImpl
which is a representation of a spanning tree that will be used as a return value
from corresponding algorithms.

1.2 jgrapht-guava

Based on [2], jgrapht-guava provides various adapters for guava graphs in
order to make them compatible with JGraphT.

Base implementation is defined by BaseGraphAdapter abstract class. The
class takes a type of one of guava’s graphs as its parameter. This guava’s
graph type will then be adapted, i.e. provided with the necessary Graph meth-
ods to make it compatible with JGraphT. In addition, there are two other
similar abstract classes – BaseNetworkAdapter and BaseValueGraphAdapter
– providing adapters for guava’s Network and ValueGraph, respectively. The
package then contains implementations of these abstract classes in both mu-
table and immutable versions.

Apart from adapters the package contains two helper classes – ElementOrder
and ElementOrderMethod. The first one provides means for order elements
in a set. The ordering is done either by using a provided comparator or by
mapping elements to Long instances that act as ordering indices. Regard-
ing ElementOrderMethod, this class exists in order to ensure the existence of
element ordering. In particular, any set of elements should be subjected to or-
dering either by using a provided comparator, by using a natural comparisons
(i.e. the provided elements should be comparable), by using a guava com-
parator, or by using an internal ordering, i.e. ordering based on Long indices
mentioned above. As is noted in the documentation, the last ordering method,
i.e. ordering by indices, requires extra memory for storing the indices, and

6

1.3. jgrapht-io

imposes extra time costs due to searching the map holding the indices.

1.3 jgrapht-io

This module provides means for exporting and importing graphs in various
formats. In particular, it contains GraphExporter and GraphImporter inter-
faces that hold methods for respective input-output operations.

There are various implementations of the above-mentioned interfaces. For
example, the module contains exporters/importers in formats such as CSV,
matrix (text-based representations used by software such as Matlab), JSON,
DOT or GEXF.

Apart from the above-mentioned interfaces the module also provides
BaseEventDrivenImporter abstract class. This class holds various consumers
of import events and notify them in case of event occurrence. As noted in the
documentation, the event-driven importers take care of the notification only
and the actual work is done by the provided consumers.

7

Chapter 2
Description of the selected
multi-threaded algorithms

This chapter provides description of the targeted algorithms: breadth-first
search, depth-first search, Dijkstra, and Bellman-Ford algorithm. Focus is
put on their multi-threaded versions and ways of efficient implementation.

2.1 Breadth-first search

The breadth-first search algorithm is one of the graph traversal algorithms
used to find the shortest path. In addition, the algorithm can also be used
to find connected components of a graph or determine bipartite graphs as
stated in [3]. As the authors mention, BFS is used in wide range of areas, e.g.
image processing, exploring social and semantic graphs, and machine learning.

The algorithm is described in 1. It start with an initialization of the distance
array Dist on lines 1-3. At the beginning the distance from source vertex s
to all other vertices is infinity – the algorithm will then update these values
accordingly. Line 4 sets the distance from source to itself to zero. The algo-
rithm then start with examining the source vertex and its neighbors, which is
depicted on line 5 by adding the source vertex to the BFS queue. The loop
on lines 6-14 is then the core of the algorithm. For every vertex u in the
queue, we start by removing it from the queue (line 7) and then continue with
examining all its neighbors (lines 8-12). If the distance from u to its neighbor
is infinity, i.e. the distance has not been updated yet, we set the correct value
and put the neighbor to the BFS queue (in order to examine its neighbors
in the next round). As mentioned in [4], such algorithm has time efficiency
equal to O(n + m) where n is the number of vertices in graph G and m is the
number of edges.

9

2. Description of the selected multi-threaded algorithms

As the authors in [3] point out, there are several approaches to parallel op-
timization of the BFS algorithm. One approach is the container-centric one.
As stated in [3] this optimization takes advantage of using multiple container,
or data structures, for storing intermediate results. For example, two separate
lists can be used and their roles will be switched after every iteration (as men-
tioned in [3]). The lists can be either local to every thread or it is also possible
to use global lists. In this case, it is necessary to handle concurrent writes, as
noted by the authors in [3]. Apart from lists it is possible to use also other
data structures, such as the bag structure. In short, the bag structure is a
dynamic unordered set with the following methods: create (creates new bag),
insert (inserts new objects to the bag), union (merges two bags into one), split
(splits one bag into halves). This structure and its usage for BFS is described
in detail in [4]. Another approach for optimizing BFS is the vertex-centric
approach. According to [3], in this case the parallelism is implemented in a
way that each thread is assigned to a particular vertex. The process of ex-
amining vertices in one iteration can then be run in parallel. As the authors
in [3] point out, the processing needs to be synchronized at the end of each
vertex examination by using a barrier. This approach, as mentioned by the
authors, does not need any additional data structures. Apart from the two
mentioned approaches, there are other ways of parallelizing BFS. For example,
[5] presents an extension of BFS using GPU optimizations. Similarly, [6] pro-
vides a BFS algorithm suited for CPU/GPU hybrid computing environment
with the usage of task-based parallelization.

The parallel implementation presented later in this thesis uses the vertex-
centric approach described above. The algorithm is shown in 2. It is mostly
the same as the sequential version in 1, the main differences being the paral-
lelization of the loop on line 8 and barrier synchronization at the end of each
while-iteration. Synchronization is needed when a thread updates the Dist
array and the FIFO queue Q. The barrier synchronization then ensures that
the next while-iteration will not begin until all threads finish the current one.

2.2 Depth-first search

Depth-first search is a graph traversal algorithm similar to BFS. Unlike BFS,
it does not find the shortest path in a graph, since it explores graph vertices
in a different manner. However, DFS is suitable for finding spanning trees in
graphs. It can also detect cycles in graph paths.

The sequential DFS is depicted by algorithm 3 (as described in [7]). The
algorithm starts with marking all vertices as not visited (lines 2-4). Then it
iterates through the vertices and for all unvisited ones generates a new label

10

2.2. Depth-first search

input : Graph G = (V, E), set of vertices V , set of edges E, source
vertex s, empty FIFO queue Q, empty distance array Dist

output: Array Dist with shortest-paths from s to all other vertices
1 foreach u ∈ V \ {s} do
2 Dist[u] =∞
3 end
4 Dist[s] = 0
5 Q = {s}
6 while Q is not empty do
7 u = Q.pop()
8 foreach v ∈ V such that (u, v) ∈ E do
9 if Dist[v] ==∞ then

10 Dist[v] = Dist[u] + 1
11 Q.put(v)
12 end
13 end
14 end

Algorithm 1: Breadth-first search algorithm (source [4])

(line 7) and runs the EXPLORE procedure (line 8). This procedure is de-
scribed on lines 11-18. It begins with marking vertex v as visited (line 12).
Then it loops over all neighbors of v and for the not visited ones assigns the
same label (line 15) and then explores such a neighbor by recursively calling
EXPLORE on it. Assigning the same label to a neighbor u as to the original
vertex v essentially puts those two vertices to the same connected component
of the graph. At the end of the algorithm array label holds the information of
spanning trees present in the graph. However, note that the found spanning
trees are not minimal.

As mentioned in [8] there are two main approaches to parallelizing DFS. The
first one, as stated by the authors, is the stack-splitting approach. As de-
scribed in [8] the approach starts with one thread processing the root vertex
of the underlying graph. Once enough sub-tasks are generated, the thread
splits its stack and assign the sub-tasks to other waiting threads. The waiting
threads then start processing the assigned sub-tasks and do similar splitting
once they generate enough work-load. This approach is used for example in
[9]. As noted by the authors in [9] the efficiency is strongly impacted by the
way the work is distributed among threads. Another approach to paralellizing
DFS mentioned in [8] is the fixed-packet approach. Unlike the previous ap-
proach, fixed-packet DFS distributes work among threads in packets of fixed
size (i.e. there is no dynamic splitting as in the stack-splitting approach).
When a thread finishes its work on the assigned packet, it requests a new
packet for DFS processing.

11

2. Description of the selected multi-threaded algorithms

input : Graph G = (V, E), set of vertices V , set of edges E, source
vertex s, empty FIFO queue Q, empty distance array Dist

output: Array Dist with shortest-paths from s to all other vertices
1 foreach u ∈ V \ {s} do
2 Dist[u] =∞
3 end
4 Dist[s] = 0
5 Q = {s}
6 while Q is not empty do
7 u = Q.pop()
8 foreach v ∈ V such that (u, v) ∈ E in parallel do

// synchronization here
9 if Dist[v] ==∞ then

10 Dist[v] = Dist[u] + 1
11 Q.put(v)
12 end
13 end

// barrier synchronization
14 end

Algorithm 2: Parallel breadth-first search algorithm (based on descrip-
tion in [4])

The parallel DFS algorithm implemented in this thesis is taken from [7] and
belongs to the fixed-packet class of parallel DFS algorithms. In other words,
the threads are assigned fixed sets of vertices for processing. The results of
each computation are then shared via global data structures (with synchro-
nized access). The implemented algorithm is described by algorithm 5. The
main thread starts with computing clustered labeling and with computing
load-balanced indices. Then it proceeds to starting individual worker threads
and assigning each the computed indices (i.e. vertices to process). After start-
ing the worker threads the main thread waits for all of them to finish. Lastly,
it merges the computed labels which produces the final spanning trees. Next
subsections describe each of these phases in detail.

2.2.1 Compute clustered labeling

In order to be able to divide work among worker threads, all vertices are la-
belled in a way that they form groups of neighboring vertices. In particular,
the labeling process is described by algorithm 4 (based on [7]). The algorithm
starts with initializing a counter and a labelMap that will store vertices and
their assigned labels. It proceeds with iterating over all vertices and assigning

12

2.2. Depth-first search

a label to the unlabelled ones. Moreover, for every newly labelled vertex the
algorithm explores its neighbors and labels the ones not labelled yet. As noted
by the authors in [7] this way if vertex vi has a label k then its m neighbors,
that have not been labelled yet, will be assigned labels from k + 1 to k + m.
This will allow us to assign vertices to worker threads in a load-balanced man-
ner such that each thread will process vertices close to each other.

2.2.2 Compute load-balanced indices

In the previous step we computed labelMap containing clustered indices for
all vertices. Now we need to divide these labelled indices to groups such that
each group will be processed by one worker thread. Since there are n vertices
in total and T worker threads, we create the groups such that each group has
n/T labels. The labels will be distributed in ascending manner, i.e. we sort
the labels in ascending order and then first n/T labels will be assigned to the
first worker thread, second n/T labels to the second thread etc. Due to the
clustered labeling threads will mostly process vertices that are close to each
other. According to [7] this will reduce the amount of labels merging at the
end of the parallel DFS processing. In the end we create an array loadbalanced
of size T where each element loadbalanced[i] stores the work-load for the par-
ticular worker thread i.

2.2.3 Worker thread processing

After computing clustered labels and load-balanced indices the algorithm pro-
ceeds with starting individual worker threads. Each thread i is assigned ver-
tices to process via loadbalanced[i]. The thread then executes procedure
ThreadRun described in algorithm 5 on lines 5-13. It goes through its as-
signed vertices and for each of them creates a new label (line 11) and then
starts DFS from that vertex (line 12). The DFS used here is iterative as op-
posed to the recursive one presented in algorithm 3. As the authors in [7]
mention the choice of an iterative algorithm is made with respect to memory
efficiency. The algorithm is a standard one except for lines 28-30. There the
information about two vertices belonging to the same connected component is
stored to a map labelEquivMap. Later this map will be used as an input for
labels merging in order to produce the final spanning trees of the underlying
graph.

2.2.4 Merging labels

After all thread finish processing their assigned vertices we obtain the labelEquivMap
storing information about vertices belonging to the same connected compo-

13

2. Description of the selected multi-threaded algorithms

input : Graph G = (V, E), set of vertices V , set of edges E, array
visited of visited vertices, array label holding labels of
vertices

output: Array label with labelled vertices
1 Algorithm DFS()
2 foreach v ∈ V do
3 visited[v] = false
4 end
5 foreach v ∈ V do
6 if !visited[v] then
7 label[v] = newlabel ; // generate new label
8 EXPLORE(v)
9 end

10 end
11 Procedure EXPLORE(v)
12 visited[v] = true
13 foreach (u, v) ∈ E do
14 if !visited[u] then
15 label[u] = label[v]
16 EXPLORE(u)
17 end
18 end

Algorithm 3: Depth-first search algorithm (source [7])

nents. Last step is then to merge these labels to obtain unique label sets or
in other words spanning trees. The procedure MergeLabels used for merging
is described in algorithm 5 on lines 34-40. As the authors in [7] point out,
for the merging procedure it is suitable to use the union-find data structure
which provides efficient union operation. When the merging operations finish
we obtain a union-find data structure (denoted uf in the algorithm 5) that
holds information about individual spanning trees contained in the graph.

2.3 Dijkstra

Dijkstra algorithm is used to solve the single source shortest path problem.
As mentioned in [10] the algorithm works for positive edge weights but does
not take into account negative ones. The idea of the algorithm is described in
6. The algorithm maintains three partitions of vertices – set S contains settled
vertices, fringe vertices are in F , and U consists of unexplored vertices. At
the beginning all vertices are unexplored except for the source vertex, which
is fringe. Array tent holds tentative distances from a source vertex s to any
vertex u. For unexplored vertices this tentative distance is infinity. For the

14

2.3. Dijkstra

input : Graph G = (V, E), set of vertices V , set of edges E
output: Map labelMap with labelled vertices

1 Algorithm Labeling()
2 counter = 0
3 Map labelMap
4 foreach v ∈ V do
5 if v not labelled then
6 labelMap.put(v, counter++)
7 foreach neigbour u of v do
8 if u not labelled then
9 labelMap.put(u, counter++)

10 end
11 end
12 end
13 end

Algorithm 4: Labeling algorithm (based on description in [7])

source vertex tent(s) = 0. Throughout the algorithm this tentative distance
gets updated as we explore each vertex and its neighbors. In particular, while
set F is not empty, we take vertex u which has the minimum tentative dis-
tance (line 7). At the same time, we remove this vertex u from F (line 8).
Then we iterate through all neighbors of u and for each of them check the con-
dition tent(v) > tent(u) + Cost[u, v]. If the conditions holds, we update the
tentative distance of v: tent(v) = tent(u) + Cost[u, v]. This basically means
that we found a path to v through u that is shorter then the previously found
path. This is called the relaxation step. Moreover, if the relaxed vertex v is
unexplored (line 12), we move it to fringe set F (line 13). Once we are done
iterating through all neighbors of u, we move u to the set of settled vertices S.
Important observation, as noted in [10], is that for vertices in S their tentative
distance is equal to the shortest path.

Authors in [11] propose parallelization of the algorithm by assigning each
worker thread a subset of vertices, then finding in F a vertex with minimum
tentative distance in parallel (i.e. each thread finds local minimum and then
the global minimum is found using reduce operations) and finally relaxing
corresponding neighboring vertices also in parallel. That way more than one
vertex can be settled at the same time. This approach is further improved in
[10] where the authors introduce stronger criteria for settling vertices. Their
results show that by using those enhanced criteria lower amount of phases is
achieved over the approach taken in [11]. In other words, the algorithm pre-
sented in [10] manages to identify more correct vertices in one iteration that
can be settled and their corresponding neighbors relaxed.

15

2. Description of the selected multi-threaded algorithms

In this thesis the algorithm introduced in [11] will be implemented. The
algorithm can be seen in 7. The authors in [11] define the OUT-criterion which
states that a vertex v can be settled if tent(v) ≤ L where L = min{tent(u) +
Cost[u, z] : u ∈ F and (u, z) ∈ E} with tent(u) being the tentative distance
from the source vertex to u and Cost[u, z] being the cost of edge (u, z). The
value min{Cost[u, z] : (u, z) ∈ E} can be computed only once at the beginning,
as pointed out by the authors in [11]. This computation can also be done
in parallel, where each worker thread computes the minimum cost for its
assigned vertices. In every iteration, each thread first computes local minimum
Llocal, which is then used to determine global minimum L. Based on that,
the worker threads determine which vertices from their assigned ones can be
settled (those are the vertices with tent(v) ≤ L). For each of these vertices,
all of its neighbors are explored and relaxed if needed. Then the iteration
repeats. The algorithm ends when either all vertices are settled, or there
are unreachable vertices that remain unexplored (i.e. they remain in set U).
Array tent then stores the shortest paths from the source vertex s to all settled
vertices.

2.4 Bellman-Ford

Bellman-Ford algorithm is similar to Dijkstra with one significant benefit – it
accounts for negative edge weights and is able to detect negative cycles. This
property makes it more universal than the Dijkstra’s algorithm.

Consider graph G = (V, E) where V is the set of vertices with size n, and E
is the set of edges. Denote Cost a cost matrix containing weights of corre-
sponding edges between any two vertices. If two vertices u and v do not share
an edge, the cost is Cost[u, v] = ∞. The cost between u and u is zero, i.e.
Cost[u, u] = 0. Given this setup the sequential Bellman-Ford algorithm, as
described in [12], is given by algorithm 8. The procedure on lines 6-8 is called
relaxation. As the authors in [12] point out, the existence of negative weights
is accounted for, since every edge can be relaxed more than once. The time
complexity of the underlying algorithm is O(n3) as stated in [12].

There are several works proposing ways of parallelizing Bellman-Ford algo-
rithm. Authors in [13] introduce a parallel implementation using NVIDIA’s
CUDA architecture. The main efficiency enhancement of their algorithm lies
in minimizing unnecessary computations by reducing the amount of relax op-
erations. According to [13] parallelism is also more effective due to mapping
of threads to edges instead of vertices. Similar approach is taken in [14] where
the authors present two kind of optimizations to the standard Bellman-Ford.
Firstly, they introduce a mechanism which aims to reduce the number of relax-
ations by using edge classification. Secondly, the authors propose architecture-

16

2.4. Bellman-Ford

based optimizations, mainly targeting memory efficiency adjustments (such as
caching). The architecture used for experiments is Kepler GPU, as opposed
to [13] where CUDA architecture was used.

Parallel implementation of Bellman-Ford in this thesis follows the one pre-
sented in [12]. The authors use OpenCL for the implementation and also pro-
vide analysis of the efficiency of the implementation when using OpenCL’s im-
plicit synchronization versus using explicit synchronization mechanisms. The
implemented algorithm is described in 9. The inicialization phase (lines 1-3)
is the same as for the sequential version. Lines 6-13 then describe work done
by individual threads in parallel. In particular, every thread gets an edge to
process, let us denote it (u, v). The thread then needs to obtain the indices of
vertices u and v and allows it to access correct fields in Dist and Cost matrices.
These indices are obtained on lines 6-7. Synchronization is not needed here,
because the indices are being only read and not written. Then each thread
calculates and updates the respective distances. In the first iteration (k = 1),
the first row of the Dist matrix contains the distances from the source vertex
to its immediate neighbors. Vertices not reachable from the source have dis-
tance equal to infinity. First iteration then updates Dist’s second row using
the initial values in the first row. In the second iteration (k = 2) distances are
again updates, but now they are stored in the first row using the second row
to update them. This process continues until k reaches n− 1. The results are
then stored in either first or second row of Dist depending on which one was
updated the last. The update process of the Dist matrix requires synchro-
nization as parallel writes may happen at the same time. Note that the main
loop (i.e. the one iteration k from 1 to n−1) is conducted in the main thread,
i.e. if for particular iteration k some thread finishes its work and there are no
more unprocessed edges in E, the thread needs to wait for the other threads
to finish their work before it can proceed to phase k + 1.

17

2. Description of the selected multi-threaded algorithms

input : Graph G = (V, E), set of vertices V , set of edges E, array
visited of visited vertices, array label holding labels of
vertices, number of available threads T

output: Array label with labelled vertices
1 Algorithm ParallelDFS()

// Compute clustered labeling
// Compute load-balanced indices

2 for i← 1 to T do
// Start a new thread with ThreadRun(loadbalanced[i])

task
3 end

// Wait for all threads to finish
4 MergeLabels()
5 Procedure ThreadRun(unvisitedVertices)

// This method is invoked by each thread
6 start = unvisitedVertices.pop()
7 label[start] = newlabel // assigns new label
8 DFS(start)
9 while unvisitedVertices is not empty do

10 v = unvisitedVertices.pop()
11 label[v] = newlabel
12 DFS(v)
13 end
14 Procedure DFS(v)
15 Set visited
16 Stack stack
17 stack.push(v)
18 while stack is not empty do
19 curr = stack.pop()
20 visited.add(curr)
21 foreach neighbor w of curr do
22 if w is not visited then
23 visited.add(w)
24 label[w] = label[curr]
25 stack.push(w)
26 end
27 if w is visited then
28 L1 = label[w]
29 L2 = label[curr]
30 labelEquivMap[L1].add(L2)
31 end
32 end
33 end
34 Procedure MergeLabels()
35 UnionFind uf
36 foreach label in labelEquivMap do
37 foreach otherLabel in labelEquivMap[label] do
38 uf.union(label, otherLabel)
39 end
40 end

Algorithm 5: Parallel depth-first search algorithm (source [7])

18

2.4. Bellman-Ford

input : Graph G = (V, E), set of vertices V , set of edges E, number
of vertices n, source vertex s, cost matrix Cost containing
weights for all pairs of vertices (with Cost[u, v] =∞
meaning v is unreachable from u, and Cost[u, u] = 0)

output: Array tent with shortest-paths from s to all other vertices
1 foreach v ∈ V do
2 tent(v) =∞
3 end
4 S = ∅, F = {s}, U = V \ F
5 tent(s) = 0
6 while F not empty do
7 u = vertex in F with min tent(u)
8 remove u from F
9 foreach neighbor v of u do

10 if tent(v) > tent(u) + Cost[u, v] then
11 tent(v) = tent(u) + Cost[u, v] // relaxation
12 if v ∈ U then
13 move v from U to F
14 end
15 end
16 end
17 S.add(u)
18 end

Algorithm 6: Dijkstra algorithm (based on [10])

19

2. Description of the selected multi-threaded algorithms

input : Graph G = (V, E), set of vertices V , set of edges E, number
of vertices n, source vertex s, cost matrix Cost containing
weights for all pairs of vertices (with Cost[u, v] =∞
meaning v is unreachable from u, and Cost[u, u] = 0)

output: Array tent with shortest-paths from s to all other vertices
1 foreach v ∈ V do
2 tent(v) =∞
3 end
4 S = ∅, F = {s}, U = V \ F
5 tent(s) = 0
6 while F not empty do
7 L = min{tent(w) + Cost[w, z] : w ∈ F and (w, z) ∈ E}
8 foreach u ∈ F with tent(u) ≤ L in parallel do
9 remove u from F

10 foreach neighbor v of u do
// synchronization here

11 if tent(v) > tent(u) + Cost[u, v] then
12 tent(v) = tent(u) + Cost[u, v] // relaxation
13 if v ∈ U then
14 move v from U to F
15 end
16 end
17 end
18 end
19 S.add(u)
20 end

Algorithm 7: Parallel Dijkstra algorithm (based on [10])

20

2.4. Bellman-Ford

input : Graph G = (V, E), set of vertices V , set of edges E, number
of vertices n, source vertex s, cost matrix Cost containing
weights for all pairs of vertices (with Cost[u, v] =∞
meaning v is unreachable from u, and Cost[u, u] = 0)

output: Array Dist with shortest-paths from s to all other vertices
1 for i← 1 to n do
2 Dist[i] = Cost[s,i]
3 end
4 for k ← 1 to n− 1 do
5 foreach (u,v) in E do
6 if Dist[v] > Dist[u] + Cost[u,v] then
7 Dist[v] = Dist[u] + Cost[u,v]
8 end
9 end

10 end
Algorithm 8: Bellman-Ford algorithm (source [12])

input : Graph G = (V, E), set of vertices V , set of edges E, number
of vertices n, source vertex s, cost matrix Cost containing
weights for all pairs of vertices (with Cost[u, v] =∞
meaning v is unreachable from u, and Cost[u, u] = 0)

output: Array Dist with shortest-paths from s to all other vertices
1 for i← 1 to n do
2 Dist[0][i] = Cost[s,i]
3 end
4 for k ← 1 to n− 1 do
5 foreach v ∈ V such that (u, v) belongs to E in parallel do
6 u = get global id(0)
7 v = get global id(1)
8 if k is odd then

// synchronization here
9 Dist[1][v] = min(Dist[0][v], (Dist[0][u] + Cost[u][v]))

10 end
11 if k is even then

// synchronization here
12 Dist[0][v] = min(Dist[1][v], (Dist[1][u] + Cost[u][v]))
13 end
14 end
15 end

Algorithm 9: Parallel Bellman-Ford algorithm (source [12])

21

Chapter 3
Implementation

This chapter describes the implementation of the following multi-threaded
algorithms – BFS, DFS, Dijkstra, and Bellman-Ford. The implementation
uses Java Thread API, in particular ThreadPoolExecutors for starting the
threads, synchronized blocks, barriers and locks for synchronization, and
thread-safe, non-blocking data structures such as ConcurrentMap or
ConcurrentLinkedQueue. The chapter also describes virtual threads, which
represents new concurrency model introduced in Java 19. Virtual threads are
used in the implementation as an alternative to standard platform threads.

First section presents implementation requirements. Seconds section then pro-
vides implementation details regarding concurrency. Third and fourth sections
contain details regarding installation and code documentation, respectively.

3.1 Implementation requirements

The main purpose of this work is to implement selected multi-threaded al-
gorithm to the JGraphT library. The selected algorithms are BFS, DFS,
Dijkstra, and Bellman-Ford. Since three of the algorithms (BFS, Dijkstra,
Bellman-Ford) already have their sequential counterparts implemented in the
library, it is also important to adhere to their existing interface and to provide
the same functionality. Moreover, all algorithm implementations should be
tested in order to verify their correctness. Last but not least, all new code
should be documented.

3.1.1 Functional requirements

Following is the list of functional requirements that this work aims on fulfilling.

F1 Implementation of parallel, multi-threaded BFS algorithm
F2 Implementation of parallel, multi-threaded DFS algorithm

23

3. Implementation

F3 Implementation of parallel, multi-threaded Dijkstra algorithm
F4 Implementation of parallel, multi-threaded Bellman-Ford algorithm
F5 Testing of the implemented algorithms

3.1.2 Non-functional requirements

The following list provides an overview of non-functional requirements that
we pose on the implementation.

N1 Documentation of new code
N2 Adhere to the conventions and style of the JgraphT library

3.2 Concurrency implementation details

This section provides on overview of Java concurrency tools used for the im-
plementation of the algorithms.

3.2.1 Thread API

Java allows for starting parallel tasks in kernel threads via its Thread class.
The class is described in Oracle Java Documentation [15]. Each Thread in-
stance corresponds to one kernel thread. This thread is therefore scheduled
and managed by the OS and its scheduler. Every thread has assigned task
that it executes. Since starting a new kernel thread requires performing sys-
tem calls, which are in general expensive (specifically in terms of memory
usage), we try to avoid doing these calls unnecessarily. The system calls op-
timization is done mostly by utilizing Java’s ThreadPoolExecutor [16]. As
mentioned in the documentation in [16] using ThreadPoolExecutor avoids
performance overhead by reducing the number of system calls when start-
ing new threads. In particular, the ThreadPoolExecutor defines number of
threads that it manages. Once one of the threads finishes its work, it is not ter-
minated but instead immediately assigned another task. Therefore, we avoid
a system call that would occur if the thread finished and would have to be
started again. Another advantage of using ThreadPoolExecutor according to
[16] is that it maintains some basic statistics of the execution, e.g. how many
tasks completed successfully.

Code 1 shows the usage of thread pool executors in the implementations.
In the code example, ParallelTask is a class implementing the Runnable
interface. Instance of this class is then submitted for execution by indi-
vidual worker threads. Calling executor.submit(...) where executor is
an instance of ThreadPoolExecutor returns a Future. Future represents a

24

3.2. Concurrency implementation details

1 Collection<Future<?>> tasks = new LinkedList<>();
2
3 for (int j = 0; j < numberOfThreads; j++) {
4 tasks.add(executor.submit(new ParallelTask()));
5 }
6
7 for (Future<?> task : tasks) {
8 try {
9 task.get(EXECUTOR_MAX_TIMEOUT, TimeUnit.SECONDS);

10 } catch (ExecutionException | InterruptedException | TimeoutException
e) {↪→

11 // process exception
12 }
13 }

Code 1: Example usage of thread pool executors

task that will finish in the future. On line 9 the main thread waits for in-
dividual futures to finish, with a timeout threshold specified by a constant
EXECUTOR_MAX_TIMEOUT.

3.2.2 Synchronization

Java offers several synchronization mechanisms. One option is to use locks,
such as ReentrantLock [17]. Locks, in general, work as follows. The first
thread acquiring the lock can proceed and execute the code between lock ac-
quisition and its release. Other threads then have to wait until the lock is
released and can be acquired again. As mentioned in [17], the lock release
should by done in a try-finally block in order to avoid deadlock. Deadlock
occurs when a thread is waiting for a lock that is acquired by another thread
but that is never going to be released. This can happen when, for example, a
thread encounters some exception when holding a lock. If the corresponding
code is not in try-finally block, then the lock will never be released. In general,
locks offer a considerable amount of flexibility when writing concurrent code.
On the other hand, locks require caution when releasing (i.e. try-finally block
has to be used, as explained above). Moreover, as mentioned in [18] locks per-
form a bit worse than another synchronization mechanism – synchronized
blocks.

synchronized is one of Java’s keywords and provides an alternative to locks.
According to [19], whole methods can be marker as synchronized – then
those methods are thread-safe, i.e. only one thread at the time can execute
the method. One immediate advantage over locks is that we do not have to
take care of any lock releases. When a method is marked as synchronized, all
synchronization is taken care of and no further synchronization mechanisms
are needed. Apart from methods, synchronized can also be used for synchro-

25

3. Implementation

1 ReentrantLock lock = new ReentrantLock();
2
3 lock.lock();
4 try {
5 // code that needs to be synchronized
6 } finally {
7 lock.unlock();
8 }

Code 2: Example usage of locks

1 synchronized (object) {
2 // code that needs to be synchronized
3 }

Code 3: Example usage of synchronized blocks

nizing blocks of code, as described in [19]. In this case, synchronized needs
an object for which the lock will be acquired. Handling of the lock logic will
then be taken care of by the synchronized mechanism.

Using synchronized is in general preferred over locks due to the advantages
described above. However, when using virtual threads, it is necessary to
use explicit locks as synchronized is not implemented to work with virtual
threads. This mechanism will be described in detail in section 3.2.4.

Both synchronized blocks and locks are used in the implementations. Locks
are mainly used with virtual threads, as these do not perform well with
synchronized blocks. Code 2 displays example usage of locks as they are used
in the implementations. Similarly, code 3 show example usage of synchronized
block. By calling synchronized the thread acquires intrinsic lock of object.
The lock is then automatically released when the execution reaches the end
of the synchronized block.

3.2.3 Thread-safe data structures

Previous section describes how to achieve thread-safety through the usage of
synchronization. In addition, Java also offers thread-safe data structures that
handle concurrent reads and writes and therefore prevent race conditions from
happening. There are two kinds of such data structures – blocking and non-
blocking.

Blocking data structures blocks the thread if the structure is empty. Such
structures are used mostly in consumer-producer use-cases. In the consumer-
producer scenario a subset of threads act as consumers, i.e. they take elements

26

3.2. Concurrency implementation details

from some common storage and process them. Another subset of threads are
producers, i.e. they prepare elements to be processed by consumer threads and
fill those elements to the common storage. Such storage is usually a shared
queue or dequeue, priority queue or stack. BlockingQueue is a Java’s interface
that provide a blocking queue functionality [20]. In particular, when a thread
tries to retrieve and elements from the queue and there is none, the thread gets
blocked until new elements arrive to the queue. BlockingQueue extends the
Queue interface [21] and therefore can be used as a normal queue. Its imple-
mentations involve LinkedBlockingQueue [22] and PriorityBlockingQueue
[23].

Non-blocking data structures do not block the threads. They provide a con-
current, lock-free access to the stored data based on CAS atomic operations.
One of the interfaces providing this behavior is, for example, ConcurrentMap
[24]. Its implementation ConcurrentHashMap [25] provides concurrency for
both reads and updates. It is also fully exchange with Hashtable as it imple-
ments the same interface. However, unlike Hashtable it does not use locks
for synchronization. Therefore, as pointed in [25] it cannot replace Hashtable
in applications which rely on its synchronization mechanics. Similarly to
ConcurrentMap, ConcurrentLinkedQueue [26] is another non-blocking data
structure providing thread-safe access operations. Putting into or removing
elements from the queue are atomic methods and therefore do not block the
threads. These methods also do not require any explicit synchronization.
However, as mentioned in [26] bulk operations such as addAll or forEach
are not guaranteed to be performed atomically. Other non-blocking, thread-
safe data structure is ConcurrentSkipListSet [27]. It implements the Set
interface and provides means for storing unique data. Similarly to the other
before-mentioned structures, operations for adding and removal elements are
atomic. The only exception are again bulk operations, where atomicity is not
guaranteed.

The implementations of the selected algorithms make use of the above-mentioned
concurrent, non-blocking data structures. In particular, BFS and DFS build
their efficiency mostly on using atomic operations. This allows these im-
plementations to avoid explicit synchronization mechanisms and therefore
gain performance benefits. While Dijkstra and Bellman-Ford implementa-
tions make use of the non-blocking data structures as well, they still need to
utilize explicit synchronization mechanisms.

3.2.4 Virtual threads

Standard platform threads have a significant drawback – creating them and
blocking (i.e. switching context) are expensive (in terms of memory and exe-
cution time) operations requiring making system calls from the Java runtime

27

3. Implementation

environment. Costly thread creation is partly solved using thread pools –
when one thread finishes its work, it is immediately assigned new task with-
out termination. Therefore, there is no need to make a system call to create
the thread again. However, the issue with costly blocking remained. Reactive
programming targets this drawback by providing a way of writing concur-
rent programs without the need of thread blocking. In particular, whenever
a thread is about to be blocked, it is instead provided with a callback func-
tion and assigned a new task in the meantime. The callback function is then
executed once the blocking operation finishes. Although reactive program-
ming leads to the reduced occurrence of thread blocking, the author in [28]
maintains that it is not easy to learn as it requires programmers to write
their concurrent programs in a completely different way than with standard
multi-threading model. This can result in higher probability of the occurrence
of coding errors and also can hinder the overall readability of the final program.

Java 19 has introduced new concurrency model as part of project Loom. The
project aims on addressing the above-mentioned concurrency problems by im-
plementing virtual threads (also called fibers or lightweight threads). Virtual
threads unlike platform threads live only in the JVM runtime and do not have
any direct connection to the OS, as is mentioned in [29]. Even the scheduler
is implemented in JVM and therefore JVM is completely in charge of vir-
tual threads management. Even though virtual threads are not connected
to the OS directly, they still need the platform threads in order to execute
their code. Therefore, as discussed in [29] each virtual thread needs a carrier
thread, which is a standard platform thread, for its execution. The advantage
of this approach is that whenever a virtual thread blocks, the platform thread
does not need to block too. It can instead execute another virtual thread.
This way the costly platform thread blocking is avoided. On the other hand,
virtual thread blocking is not an issue, since the thread and its context lives
only in the JVM and therefore does not require making any expensive system
calls.

Since virtual threads implements the Thread interface (the same as platform
threads), they can replace platform threads in the code quite seamlessly. How-
ever, there are some differences between virtual and platform threads that need
to be reflected in the code appropriately. Firstly, virtual threads are not meant
for pooling. Since pooling is used in order to avoid costly and unnecessary
thread creations, it is not needed when virtual threads are in place as these are
not created via system calls. Secondly, regarding synchronization mechanisms
virtual threads do not work well with synchronized blocks, as mentioned in
[30]. It is preferable to use locking instead (such as the ReentrantLock), as
this is optimized for use with virtual threads. synchronized blocks, on the
other hand, would perform worse in terms of efficiency (but they would still
provide the necessary synchronization).

28

3.2. Concurrency implementation details

1 Collection<Thread> tasks = new LinkedList<>();
2
3 for (int j = 0; j < numberOfThreads; j++) {
4 tasks.add(Thread.ofVirtual().start(new ParallelTask(dist,

currVertices, nextVertices, barrier, shouldFinish, lock)));↪→
5 }
6
7 for (Thread task : tasks) {
8 try {
9 task.join(Duration.ofSeconds(EXECUTOR_MAX_TIMEOUT));

10 } catch (InterruptedException ex) {
11 // process exception
12 }
13 }

Code 4: Example usage of virtual threads

Considering how virtual threads function, they are best suited for concurrent
applications with many blocking operations. On the other hand, there are not
appropriate for use-cases when CPU-heavy, non-blocking computations need
to be done. In this case, using virtual threads would be just an overhead
which would not bring any additional benefits, since blocking would not be an
issue. Therefore, the usage of virtual threads should considered with respect
to the nature of concurrent operations. Moreover, the above-mentioned lim-
itations of virtual threads (such as their incompatibility with synchronized
blocks) should be taken into account as well when assessing their suitability
for a particular use-case.

As part of the implementation, Dijkstra and Bellman-Ford algorithms have
been selected to be implemented with virtual threads as well as platform ones.
These two algorithms are considered best suitable for using virtual threads as
they contain explicit synchronizations. On the other hand, BFS and DFS
implementations do not require any explicit synchronization mechanisms and
therefore they would probably not benefit from utilizing virtual threads. Par-
allel implementations with virtual threads of Dijkstra and Bellman-Ford are
in package org.jgrapht.alg.shortestpath in classes
ParallelVirtualDijkstraShortestPath and
ParallelVirtualBellmanFordShortestPath, respectively. Code 4 shows how
the implementations incorporate virtual threads. Each thread is started with
Thread.ofVirtual().start(...). The thread is then added to the collec-
tion of threads (line 4) so that the join method can then be called on them
in order for the main thread to wait until the worker threads finish.

29

3. Implementation

3.3 Installation

The library uses Maven for build. Hence, the build processes is defined by
corresponding pom.xml files. The whole library can be built using command
mvn clean install. Java 19 is needed for the build.

3.4 Code documentation

Newly added code contains documentation comments. Maven build then uses
javadoc to generate HTML documentation from the code comments. The
documentation is generated during build (after running mvn clean install)
and it is created in a jar file jgrapht-core-1.5.2-SNAPSHOT-javadoc.jar.
In the root directory there is a file index-all.html which contains the gen-
erated documentation.

30

Chapter 4
Testing and performance

analysis

The chapter describes conducted unit and performance tests and provides as-
sessment of their results. The first section provides an overview of conducted
unit tests. Following section discusses the conducted performance tests and
their results. Last part of the chapter evaluates the fulfillment of the imple-
mentation requirements.

4.1 Unit tests

All implemented algorithms have corresponding unit tests. The tests for BFS,
Dijkstra and Bellman-Ford are in org.jgrapht.alg.shortestpath package
in test classes ParallelBFSShortestPathTest,
ParallelDijkstraShortestPathTest, and
ParallelBellmanFordShortestPathTest, respectively. The tests are of two
types. First, all parallel algorithms are required to pass the same unit tests
as their sequential counterparts. Second, random tests are conducted that
generate random data (i.e. random graphs) and compare results from se-
quential and parallel version of an algorithm. Tests for DFS are in package
org.jgrapht.alg.spanning in class ParallelDFSSpanningTreeTest. Since
there is no direct sequential counterpart to the parallel DFS, the tests class
provide only standard unit tests.

4.2 Performance analysis

Results of the performance analysis can be seen in figures 4.1, 4.2, 4.3 and
4.4. The performance analysis is conducted using the script in

31

4. Testing and performance analysis

Figure 4.1: BFS performance

org.jgrapht.demo.ParallelPerformanceDemo. The class contains a main
class, i.e. is executable, and by running it generates a CSV file with test
times. The tests are conducted several times (number of iteration is specified
in field numOfIterations. Moreover, graphs for tests are generated randomly,
with increasing number of vertices. Hence, it can be compared how algorithms
performance differ with respect to graph size. Next sections further describe
the obtained results. The tests were performed on Intel Core i5-8350U CPU,
1.70GHz x 4 and 16GB RAM. For the testing the configuration of 5 platform
threads and 20 virtual threads has been used. Following subsection describe
performance results for particular algorithms.

4.2.1 Breadth-first search

Best performance results are achieved by parallel BFS, as compared to its
sequential counterpart. The output of the performance analysis can be seen
in figure 4.1. The reason for parallel version outperforming the sequential
one is that BFS is suitable for parallelization, since the BFS processing for
each vertex can be conducted in parallel. The thread code can be seen in
listing 6. As can be seen, there are no synchronized blocks or usage of locks.
predecessorMap is an instance of ConcurrentHashMap and therefore can be
modified atomically. Updating of predecessorMap is the only place with

32

4.2. Performance analysis

Figure 4.2: DFS performance

concurrent operations, the rest of the code is thread-safe by itself. Hence, by
using a concurrent data structure the whole thread code is thread-safe without
explicit usage of synchronization mechanisms.

4.2.2 Depth-first search

Similarly to BFS, DFS also performs better in parallelized version. Results
can be seen in figure 4.2. The implemented algorithm allows threads to pro-
cess separate parts of the graph. The individual results are then combined in
the main thread to form the final output. During thread processing, which
can be seen in listing 6, synchronization is needed when accessing shared
data structures, in particular visited, which holds information about al-
ready visited vertices by all threads. However, explicit synchronization is not
needed as concurrent data structures with atomic operations can be used.
For example, visited can be implemented as ConcurrentHashMap. When
the visited structure has to be updated on line 33, it is possible to use the
atomic computeIfAbsent method instead of using synchronized blocks or
locks.

4.2.3 Dijkstra shortest path

Unlike BFS and DFS, based on the performance analysis Dijkstra’s parallel
version seems to perform worse than the sequential one, as can be seen in

33

4. Testing and performance analysis

Figure 4.3: Dijkstra performance

figure 4.3. The reason is that the algorithm is not suitable for parallelization.
Both BFS and DFS could make use of concurrent data structures and their
atomic operations. However, this is not possible with Dijkstra’s algorithm.
On the contrary, as can be seen in listing 7, explicit synchronization needs to
be used in order to maintain thread-safety. This results in smaller space for
parallel execution and therefore in a slowdown of the whole process.

The synchronization used in of two types – ReentrantLock is used in order
to synchronize reads/writes to shared data structures, while CyclicBarrier
is utilized for synchronizing the whole thread processing. When all threads
reach the barrier, another task will be conducted that will prepare the data
for the worker threads. In particular, the barrier task fills the neighbors
container that holds data for thread processing.

Another considerable aspect of the parallel Dijkstra performance is the na-
ture of the implemented algorithm itself. The implemented algorithm aims
on determining the OUT-criterion, which then allows to detect more then one
vertex per iteration for processing. However, this approach has extra perfor-
mance cost in the form of the OUT-criterion computation. This cost will pay
off only when dealing with large graphs. In this case, the benefit of processing
multiple vertices per iteration will outweigh the cost of the criterion compu-
tation.

34

4.2. Performance analysis

Figure 4.4: Bellman-Ford performance

Performance improvement is achieved when virtual thread are incorporated,
as can be seen in figure 4.3. Since the parallel implementation contains several
blocking occurrences, virtual threads can provide sufficient speed-up.

4.2.4 Bellman-Ford

Similarly to Dijkstra, Bellman-Ford performs in the performance tests worse
in parallel version than in sequential one, as is shown in figure 4.4. This result
is expected, since Bellman-Ford is not very suitable for parallelization. As can
be noted in the thread code in code 8, distance relaxation can be dome in par-
allel. However, this operation cannot be done atomically. Therefore, explicit
synchronization is needed. As a result, there is not much space for parallel
execution, as most operations in code 8 need to be synchronized. Moreover,
the algorithm requires a barrier synchronization (line 26 in code 8), in or-
der to update the queue of vertices to process and to check whether further
processing is even needed. Parallel version of Bellman-Ford might be more
efficient than the sequential version for very large graphs where the synchro-
nization cost becomes insignificant compared to the benefits of parallelization.

Unlike Dijkstra algorithm, incorporating virtual threads leads to worse algo-
rithm performance. The reason is that blocking occurrence is not very frequent

35

4. Testing and performance analysis

1 @Override
2 public void run() {
3 while (true) {
4 V vertex;
5
6 while ((vertex = frontierQueue.poll()) != null) {
7
8 for (E edge : graph.outgoingEdgesOf(vertex)) {
9 V neighbor = Graphs.getOppositeVertex(graph, edge,

vertex);↪→
10
11 predecessorMap.computeIfAbsent(neighbor, (key) -> {
12 nextFrontierQueue.add(neighbor);
13 return new Pair<>(bfsLevel.doubleValue(), edge);
14 });
15 }
16 }
17
18 try {
19 cyclicBarrier.await();
20 } catch (InterruptedException | BrokenBarrierException e) {
21 throw new RuntimeException(e);
22 }
23
24 if (shouldFinish.get()) {
25 return;
26 }
27 }
28 }

Code 5: Parallel BFS thread code

and therefore the benefits of virtual threads cannot manifest. In particular,
the cost of running virtual threads on top of platform ones outweighs the
benefits of more effective context switching during blocking.

4.3 Evaluation of implementation requirements

Section 3.1 introduces implementation requirements, both functional and non-
functional, that we pose on the implemented algorithms. Based on the previ-
ous findings, the requirements have been fulfilled as follows.

F1 Parallel, multi-threaded BFS algorithm has been implemented
F2 Parallel, multi-threaded DFS algorithm has been implemented
F3 Parallel, multi-threaded Dijkstra algorithm has been implemented
F4 Parallel, multi-threaded Bellman-Ford algorithm has been implemented
F5 Unit and performance tests have been conducted

36

4.3. Evaluation of implementation requirements

N1 New code has been documented using javadoc
N2 New code follows the conventions of the JGraphT library

37

4. Testing and performance analysis

1 @Override
2 public void run() {
3 V startVertex = unvisitedVertices.poll();
4 clusteredLabels.put(startVertex, labelCounter.incrementAndGet());
5 Map<Long, List<Long>> localLabelEquivMap = new HashMap<>();
6 // assure the vertex hasn't been already processed by some other

thread↪→
7 ...
8
9 V nextVertex;

10 while ((nextVertex = unvisitedVertices.poll()) != null) {
11 // assure the vertex hasn't been already processed by some other

thread↪→
12 ...
13
14 clusteredLabels.put(nextVertex, labelCounter.incrementAndGet());
15 Map<Long, List<Long>> lle = DFS(nextVertex);
16
17 for (Map.Entry<Long, List<Long>> entry : lle.entrySet()) {
18 localLabelEquivMap.computeIfAbsent(entry.getKey(), k -> new

ArrayList<>()).addAll(entry.getValue());↪→
19 }
20 }
21
22 labelEquivMap.put(threadIndex, localLabelEquivMap);
23 }
24
25 private Map<Long, List<Long>> DFS(V start) {
26 Stack<V> stack = new Stack<>();
27 Map<Long, List<Long>> llabelEquivMap = new HashMap<>();
28 stack.push(start);
29
30 while (!stack.empty()) {
31 V curr = stack.pop();
32 visited.put(curr, true);
33
34 List<E> outgoingEdges = new

ArrayList<>(graph.outgoingEdgesOf(curr));↪→
35 for (E neighborEdge : outgoingEdges) {
36 V neighbor = Graphs.getOppositeVertex(graph, neighborEdge,

curr);↪→
37 AtomicBoolean addedNewVisited = new AtomicBoolean(false);
38 visited.computeIfAbsent(neighbor, key -> {
39 addedNewVisited.set(true);
40 return true;
41 });
42
43 if (addedNewVisited.get()) {
44 finalEdges.add(neighborEdge);
45 clusteredLabels.put(neighbor, clusteredLabels.get(curr));
46 stack.push(neighbor);
47 } else {
48 Long label1 = clusteredLabels.get(neighbor);
49 Long label2 = clusteredLabels.get(curr);
50 llabelEquivMap.computeIfAbsent(label1, l -> new

ArrayList<>()).add(label2);↪→
51 }
52 }
53 }
54
55 return llabelEquivMap;
56 }

Code 6: Parallel DFS thread code

38

4.3. Evaluation of implementation requirements

1 @Override
2 public void run() {
3 while (true) {
4 if (shouldFinish.get()) {
5 return;
6 }
7
8 Pair<E, AddressableHeap.Handle<Double, Pair<V, E>>> neighbor =

neighbors.poll();↪→
9 if (neighbor == null) {

10 try {
11 barrier.await();
12 } catch (BrokenBarrierException | InterruptedException e) {
13 throw new RuntimeException(e);
14 }
15 continue;
16 }
17
18 E edge = neighbor.getFirst();
19 AddressableHeap.Handle<Double, Pair<V, E>> minFringe =

neighbor.getSecond();↪→
20 V minVertex = minFringe.getValue().getFirst();
21 V neighborVertex = Graphs.getOppositeVertex(graph, edge,

minVertex);↪→
22 double weight = graph.getEdgeWeight(edge);
23 if (comparator.compare(weight, 0.0) < 0) {
24 throw new IllegalArgumentException("Negative edge weight not

allowed");↪→
25 }
26
27 Double distRelaxed = minFringe.getKey() + weight;
28 if (comparator.compare(distRelaxed, radius) >= 0) {
29 continue;
30 }
31
32 synchronized(seen) { {
33 AddressableHeap.Handle<Double, Pair<V, E>> neighborNode =

seen.get(neighborVertex);↪→
34
35 if (neighborNode == null) {
36 neighborNode = fringe.insert(distRelaxed,

Pair.of(neighborVertex, edge));↪→
37 seen.put(neighborVertex, neighborNode);
38 fringeNodes.add(neighborNode);
39 } else {
40 Double distNeighbor = neighborNode.getKey();
41
42 if (comparator.compare(distRelaxed, distNeighbor) < 0) {
43 neighborNode.decreaseKey(distRelaxed);
44 neighborNode.setValue(Pair.of(neighborVertex, edge));
45 fringeNodes.add(neighborNode);
46 }
47 }
48 }
49 }
50 }

Code 7: Parallel Dijkstra thread code
39

4. Testing and performance analysis

1 @Override
2 public void run() {
3 while (true) {
4 V vertex = currVertices.poll();
5
6 while (vertex != null) {
7
8 for (E edge : graph.outgoingEdgesOf(vertex)) {
9 Double edgeWeight = graph.getEdgeWeight(edge);

10 V edgeTarget = Graphs.getOppositeVertex(graph, edge,
vertex);↪→

11
12 synchronized (dist) {
13 Double currDistance =

dist.get(edgeTarget).getFirst();↪→
14 Double newDistance = dist.get(vertex).getFirst() +

edgeWeight;↪→
15 if (comparator.compare(newDistance, currDistance) <

0) {↪→
16 dist.put(edgeTarget, Pair.of(newDistance, edge));
17 nextVertices.add(edgeTarget);
18 }
19 }
20 }
21
22 vertex = currVertices.poll();
23 }
24
25 try {
26 barrier.await();
27 } catch (BrokenBarrierException | InterruptedException e) {
28 throw new RuntimeException(e);
29 }
30
31 if (shouldFinish.get()) {
32 if (maxHops >= graph.vertexSet().size()) {
33 detectNegativeCycle();
34 }
35 return;
36 }
37 }
38 }

Code 8: Parallel Bellman-Ford thread code

40

Conclusion

The main purpose of this thesis is to implement parallel, multi-threaded ver-
sions of BFS, DFS, Dijkstra, and Bellman-Ford algorithms to the JGraphT
library. Since BFS, Dijkstra and Bellman-Ford are already implemented in
JGraphT in sequential manner, the new implementations aim on providing
the same interface and functionalities as the existing ones. Furthermore, per-
formance tests are conducted where the performance of the multi-threaded
algorithms is compared to the performance of their sequential counterparts.
Last but not least, the thesis provides an overview of the two existing con-
cepts of multi-threading in Java – platform threads and virtual threads. Their
suitability for the implementation of the underlying algorithms is examined
and verified experimentally as part of the performance tests.

As the results of performance analysis show, BFS and DFS parallel implemen-
tations achieve better performance than their sequential versions. The reason
behind these results is that both BFS and DFS are suitable for parallelization,
i.e. most parts of the algorithms can be conducted in parallel and there is not
much need for synchronization. Moreover, these two implementations make
use of Java thread-safe non-blocking data structures that provide atomic read-
/write operations and therefore provide further performance improvement. On
the other hand, parallel implementations of Dijkstra and Bellman-Ford do not
show any performance benefit over the sequential implementations. The rea-
son is two-fold. Firstly, both algorithms are difficult to parallelize as there
is not much space for parallel execution. In addition, explicit synchroniza-
tion is required limiting concurrent access to significant amount of code and
therefore causing further slowdown. Secondly, the performance tests were
conducted on graphs of maximum size of 10,000 vertices with a degree of 20.
In particular, the benefits of parallel Dijkstra and Bellman-Ford implemen-
tations might manifest on larger graphs and using better hardware allowing
for the usage of more threads. However, when incorporation virtual threads,
Dijkstra algorithm achieve performance improvement over standard platform

41

Conclusion

threads. The reason is that the implementations involves significant amount
of blocking which cost virtual threads aim on mitigating. On the other hand,
Bellman-Ford does not achieve any speed-up with virtual threads, as there
are not so many blocking parts that would make use of the benefits of virtual
threads.

To sum up, four new parallel, multi-threaded algorithms have been imple-
mented to the JGraphT library. All implementations make use of the exist-
ing interfaces and data structures in the library and follow the JGraphT’s
code conventions. In addition, all new code is documented and tested using
unit tests of the sequential algorithms, comparison tests comparing results
of sequential algorithms to their parallel counterparts, and performance tests
verifying efficiency of the implementations. Last but not least, Dijkstra and
Bellman-Ford algorithms are implemented using both platform threads and
new virtual threads.

Further work should aim at implementations of other graph multi-threaded
algorithms to the JGraphT library. Moreover, additional examination of the
suitability of Java’s virtual threads should be conducted. Virtual threads
should then be used wherever possible in order to leverage the additional
efficiency that they provide over standard platform threads. Another direction
would be to analyze the possibility of algorithm implementations supporting
GPU architectures (such as CUDA).

42

Bibliography

1. SEGAN, Sascha. 1982 vs. 2022: Has Technology Really Become More Af-
fordable? [online]. pcmag.com, 2022-06-15 [visited on 2023-05-11]. Avail-
able from: https : / / www . pcmag . com / news / 1982 - vs - 2022 - has -
technology-really-become-more-affordable.

2. Overview for Application Developers [online]. [N.d.]. [visited on 2023-04-
19]. Available from: https://jgrapht.org/guide/UserOverview.

3. BERRENDORF, Rudolf; MAKULLA, Mathias. Level-synchronous par-
allel breadth-first search algorithms for multicore and multiprocessor sys-
tems. In: Nygard, Tamir (Eds.): Future Computing 2014, The Sixth In-
ternational Conference on Future Computational Technologies and Ap-
plications. Venice, Italy, May 25-29, 2014 [online]. ThinkMind, 2014,
pp. 26–31 [visited on 2023-04-23]. isbn 978-1-61208-339-1. Available from:
https://www.thinkmind.org/index.php?view=article&articleid=
future_computing_2014_2_20_30037.

4. LEISERSON, Charles E.; SCHARDL, Tao B. A Work-Efficient Paral-
lel Breadth-First Search Algorithm (or How to Cope with the Nonde-
terminism of Reducers). In: Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures [on-
line]. Thira, Santorini, Greece: Association for Computing Machinery,
2010, pp. 303–314 [visited on 2023-04-23]. SPAA ’10. isbn 9781450300797.
Available from doi: 10.1145/1810479.1810534.

5. MERRILL, Duane; GARLAND, Michael; GRIMSHAW, Andrew. Scal-
able GPU Graph Traversal. SIGPLAN Not. [Online]. 2012, vol. 47, no. 8,
pp. 117–128 [visited on 2023-04-23]. issn 0362-1340. Available from doi:
10.1145/2370036.2145832.

6. MUNGUIA, Lluis-Miquel; BADER, David A; AYGUADE, Eduard. Task-
based parallel breadth-first search in heterogeneous environments. In:
19th International Conference on High Performance Computing [online].

43

https://www.pcmag.com/news/1982-vs-2022-has-technology-really-become-more-affordable
https://www.pcmag.com/news/1982-vs-2022-has-technology-really-become-more-affordable
https://jgrapht.org/guide/UserOverview
https://www.thinkmind.org/index.php?view=article&articleid=future_computing_2014_2_20_30037
https://www.thinkmind.org/index.php?view=article&articleid=future_computing_2014_2_20_30037
https://doi.org/10.1145/1810479.1810534
https://doi.org/10.1145/2370036.2145832

Bibliography

IEEE, 2012, pp. 1–10 [visited on 2023-04-23]. Available from doi: 10.
1109/HiPC.2012.6507474.

7. RAYASAM, Harish; NASRE, Rupesh. Parallelization of Depth-First Traver-
sal using Efficient Load Balancing. In: 22nd International Conference
on High Performance Computing (Student Research Symposium) [on-
line]. 2015 [visited on 2023-04-23]. Available from: https://hipc.org/
hipc2015/documents/HiPC-SRS-Paper/1570220263.pdf.

8. REINEFELD, A.; SCHNECKE, Volker. Work-load balancing in highly
parallel depth-first search. In: Proceedings of the Scalable High-Performance
Computing Conference [online]. 1994, pp. 773–780 [visited on 2023-04-
23]. isbn 0-8186-5680-8. Available from doi: 10 . 1109 / SHPCC . 1994 .
296719.

9. KUMAR, Vipin; RAO, V Nageshwara. Scalable parallel formulations of
depth-first search. Parallel algorithms for machine intelligence and vision
[online]. 1990, pp. 1–41 [visited on 2023-04-23]. isbn 978-1-4612-3390-9.
Available from doi: 10.1007/978-1-4612-3390-9_1.

10. KAINER, Michael; TRÄFF, Jesper Larsson. More parallelism in Dijk-
stra’s single-source shortest path algorithm. arXiv preprint [online]. 2019
[visited on 2023-04-30]. Available from doi: 10.48550/arXiv.1903.
12085.

11. CRAUSER, Andreas; MEHLHORN, Kurt; MEYER, Ulrich; SANDERS,
Peter. A parallelization of Dijkstra’s shortest path algorithm. In: Mathe-
matical Foundations of Computer Science 1998: 23rd International Sym-
posium, MFCS’98 Brno, Czech Republic, August 24–28, 1998 Proceedings
23 [online]. Springer, 1998, pp. 722–731 [visited on 2023-04-30]. Available
from doi: 10.1007/BFb0055823.

12. HAJELA, Gaurav; PANDEY, Manish. Parallel Implementations for Solv-
ing Shortest Path Problem using Bellman-Ford. International Journal of
Computer Applications [online]. 2014, vol. 95, no. 15 [visited on 2023-04-
14]. issn 0975-8887. Available from doi: 10.5120/16667-6659.

13. SURVE, Ganesh G; SHAH, Medha A. Parallel implementation of Bellman-
ford algorithm using CUDA architecture. In: 2017 International confer-
ence of Electronics, Communication and Aerospace Technology (ICECA)
[online]. 2017, vol. 2, pp. 16–22 [visited on 2023-04-19]. Available from
doi: 10.1109/ICECA.2017.8212794.

14. BUSATO, Federico; BOMBIERI, Nicola. An Efficient Implementation
of the Bellman-Ford Algorithm for Kepler GPU Architectures. IEEE
Transactions on Parallel and Distributed Systems [online]. 2016, vol. 27,
no. 8, pp. 2222–2233 [visited on 2023-04-19]. Available from doi: 10.
1109/TPDS.2015.2485994.

44

https://doi.org/10.1109/HiPC.2012.6507474
https://doi.org/10.1109/HiPC.2012.6507474
https://hipc.org/hipc2015/documents/HiPC-SRS-Paper/1570220263.pdf
https://hipc.org/hipc2015/documents/HiPC-SRS-Paper/1570220263.pdf
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1109/SHPCC.1994.296719
https://doi.org/10.1007/978-1-4612-3390-9_1
https://doi.org/10.48550/arXiv.1903.12085
https://doi.org/10.48550/arXiv.1903.12085
https://doi.org/10.1007/BFb0055823
https://doi.org/10.5120/16667-6659
https://doi.org/10.1109/ICECA.2017.8212794
https://doi.org/10.1109/TPDS.2015.2485994
https://doi.org/10.1109/TPDS.2015.2485994

Bibliography

15. Oracle Java Documentation - Thread [online]. oracle.com, 2023 [visited
on 2023-04-30]. Available from: https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/lang/Thread.html.

16. Oracle Java Documentation - ThreadPoolExecutor [online]. oracle.com,
2023 [visited on 2023-04-30]. Available from: https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
ThreadPoolExecutor.html.

17. Oracle Java Documentation - ReentrantLock [online]. oracle.com, 2023
[visited on 2023-05-01]. Available from: https://docs.oracle.com/
en/java/javase/17/docs/api/java.base/java/util/concurrent/
locks/ReentrantLock.html.

18. LIVERAMP. Java Performance: synchronized() vs Lock [online]. medium.com,
2011-06-17 [visited on 2023-05-01]. Available from: https://medium.
com/liveramp-engineering/java-performance-synchronized-vs-
lock-301130e62f47.

19. HORSTMANN, Cay. Synchronization in Java, Part 2: The synchronized
keyword. Java Magazine [online]. 2022 [visited on 2023-05-01]. Avail-
able from: https://blogs.oracle.com/javamagazine/post/java-
thread-synchronization-synchronized-blocks-adhoc-locks.

20. Oracle Java Documentation - BlockingQueue [online]. oracle.com, 2023
[visited on 2023-05-07]. Available from: https://docs.oracle.com/
en/java/javase/17/docs/api/java.base/java/util/concurrent/
BlockingQueue.html.

21. Oracle Java Documentation - Queue [online]. oracle.com, 2023 [visited
on 2023-05-07]. Available from: https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/util/Queue.html.

22. Oracle Java Documentation - LinkedBlockingQueue [online]. oracle.com,
2023 [visited on 2023-05-07]. Available from: https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
LinkedBlockingQueue.html.

23. Oracle Java Documentation - PriorityBlockingQueue [online]. oracle.com,
2023 [visited on 2023-05-07]. Available from: https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
PriorityBlockingQueue.html.

24. Oracle Java Documentation - ConcurrentMap [online]. oracle.com, 2023
[visited on 2023-05-07]. Available from: https://docs.oracle.com/
en/java/javase/17/docs/api/java.base/java/util/concurrent/
ConcurrentMap.html.

45

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html
https://medium.com/liveramp-engineering/java-performance-synchronized-vs-lock-301130e62f47
https://medium.com/liveramp-engineering/java-performance-synchronized-vs-lock-301130e62f47
https://medium.com/liveramp-engineering/java-performance-synchronized-vs-lock-301130e62f47
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-synchronized-blocks-adhoc-locks
https://blogs.oracle.com/javamagazine/post/java-thread-synchronization-synchronized-blocks-adhoc-locks
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/PriorityBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/PriorityBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/PriorityBlockingQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentMap.html

Bibliography

25. Oracle Java Documentation - ConcurrentHashMap [online]. oracle.com,
2023 [visited on 2023-05-07]. Available from: https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
ConcurrentHashMap.html.

26. Oracle Java Documentation - ConcurrentLinkedQueue [online]. oracle.com,
2023 [visited on 2023-05-07]. Available from: https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/util/concurrent/
ConcurrentLinkedQueue.html.

27. Oracle Java Documentation - ConcurrentSkipListSet [online]. oracle.com,
2023 [visited on 2023-05-07]. Available from: https://docs.oracle.
com / en / java / javase / 17 / docs / api / /java . base / java / util /
concurrent/ConcurrentSkipListSet.html.

28. SHIRIZADA, Rashad. Reactive Programming — What is it and why
should you care? [online]. medium.com, 2022-06-09 [visited on 2023-
05-11]. Available from: https://medium.com/@rashadsh/reactive-
programming-what-is-it-and-why-should-you-care-12ad44928d0.

29. LAKSHMANAN, Ram. Java Virtual Threads — Easy introduction [on-
line]. medium.com, 2023-02-24 [visited on 2023-05-11]. Available from:
https : / / medium . com / @RamLakshmanan / java - virtual - threads -
easy-introduction-44d96b8270f8.

30. JENKOV, Jakob. Java Virtual Threads [online]. jenkov.com, 2023-02-04
[visited on 2023-05-11]. Available from: https://jenkov.com/tutorials/
java-concurrency/java-virtual-threads.html.

46

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api//java.base/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/en/java/javase/17/docs/api//java.base/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/en/java/javase/17/docs/api//java.base/java/util/concurrent/ConcurrentSkipListSet.html
https://medium.com/@rashadsh/reactive-programming-what-is-it-and-why-should-you-care-12ad44928d0
https://medium.com/@rashadsh/reactive-programming-what-is-it-and-why-should-you-care-12ad44928d0
https://medium.com/@RamLakshmanan/java-virtual-threads-easy-introduction-44d96b8270f8
https://medium.com/@RamLakshmanan/java-virtual-threads-easy-introduction-44d96b8270f8
https://jenkov.com/tutorials/java-concurrency/java-virtual-threads.html
https://jenkov.com/tutorials/java-concurrency/java-virtual-threads.html

Appendix A
Acronyms

BFS Breadth-first search

CAS Compare-and-swap

CPU Central processing unit

CSV Comma-separated values

DFS Depth-first search

FIFO First-in, first-out

GEXF Graph exchange XML format

GPU Graphics processing unit

HTML Hypertext markup language

JSON JavaScript object notation

JVM Java virtual machine

OS Operating system

XML Extensible markup language

47

Appendix B
Contents of electronic

attachment

readme.md.......description of the contents of the electronic attachment
jgrapht ... the directory with the source codes of the extended JGraphT
library
data..................the directory with results of performance analysis
thesis.................the directory of LATEX source codes of the thesis
text..the thesis text directory

kolombar-bachelor-thesis.pdf...... the thesis text in PDF format

49

	Introduction
	Analysis of JGraphT library
	jgrapht-core
	org.jgrapht.graph
	org.jgrapht.alg

	jgrapht-guava
	jgrapht-io

	Description of the selected multi-threaded algorithms
	Breadth-first search
	Depth-first search
	Compute clustered labeling
	Compute load-balanced indices
	Worker thread processing
	Merging labels

	Dijkstra
	Bellman-Ford

	Implementation
	Implementation requirements
	Functional requirements
	Non-functional requirements

	Concurrency implementation details
	Thread API
	Synchronization
	Thread-safe data structures
	Virtual threads

	Installation
	Code documentation

	Testing and performance analysis
	Unit tests
	Performance analysis
	Breadth-first search
	Depth-first search
	Dijkstra shortest path
	Bellman-Ford

	Evaluation of implementation requirements

	Conclusion
	Bibliography
	Acronyms
	Contents of electronic attachment

