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Abstract

Gradual typing is a feature that allows programming languages to combine dynamic and static
typing within the same codebase, enabling the incremental addition of type annotations as the
code evolves. This study investigates existing approaches to gradual typing in Python, Ruby,
and PHP, with the goal of identifying techniques that could be applied to the R programming
language.

The thesis synthesizes information from multiple sources such as documentation, academic
articles, blog posts, formal proposals, and forum discussions. It follows up with suggestions on
implementation, syntax, semantics, tool support, and adoption strategies for gradual typing in
R.

Keywords gradual typing, extending programming languages, R, python, ruby, PHP, dynamic
programming languages

Abstrakt

Graduálńı typováńı je vlastnost programovaćıho jazyka, která umožňuje kombinaci dynamického
a statického typováńı ve stejné codebase. T́ım umožňuje přidáváńı typových anotaćı pr̊uběžně
s t́ım, jak se kód postupně rozšǐruje. Ćılem této práce je prozkoumat stávaj́ıćı př́ıstupy ke
graduálńımu typováńı v progamovaćıch jazyćıch Python, Ruby a PHP, a určit, které techniky
by bylo možné aplikovat na programovaćı jazyk R.

Práce shrnuje informace z v́ıcero zdroj̊u zahrnuj́ıćıch dokumentaci, odborné články, blogové
př́ıspěvky, formálńı návrhy a diskuse na fórech. Následně přicháźı s návrhy ohledně implemen-
tace, syntaxe, sémantiky, nástroj̊u a strategíı pro přijet́ı graduálńıho typováńı komunitou jazyka
R.

Kĺıčová slova graduálńı typováńı, rozš́ı̌reńı programovaćıch jazyk̊u, R, python, ruby, PHP,
dynamické programovaćı jazyky
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Chapter 1

Introduction

Programming languages are specific in that they are designed to serve communication between
humans and machines. For that reason, they need to be unambiguous and executable.

All data in the classical computer is represented by binary digits (bits), which are either zeroes
or ones. Different kinds of data, such as integers, floating-point numbers, and characters, require
different operations. To enable a system to identify the appropriate operations for a given piece
of data, the underlying data type must be stored and passed along with the binary representation.
This is where type systems in programming languages play a crucial role, helping to encode,
decode, and manipulate data correctly while ensuring the correct operations are applied based
on the data type.

We can categorize type systems by the type-checking approach used, dividing them into static
and dynamic.

Statically typed languages perform type checks at compile time. These checks aim to prevent
code containing errors from running. A typical feature of statically typed languages is mandatory
type annotations. As an example, take a look at the statically typed code written in the Scala
language. Notice the type String separated by a colon from the variable name:

// Mutable variable of type String
var myVar: String = "Hello, world!"
println(s" $myVar" )

Dynamically typed languages, on the other hand, determine the type of variables at runtime.
Type checks also happen at runtime, which means that it is generally possible to run code that
could lead to errors. While type annotations might be supported, they are generally not required.
See the same code written in a dynamically typed language, JavaScript. Notice that the variable
type is not explicitly stated anywhere:

// Mutable variable of type String
let myVar = "Hello, world!" ;
console.log(myVar);

While the examples mentioned above serve as a good illustration of how statically and dynam-
ically typed code can look like, they might be a bit misleading. Modern statically typed languages
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2 Introduction

(including Scala) employ type inference algorithms to identify the variable’s type without explic-
itly annotating it. As an example, take a look at the statically typed code with type inference
written in the Scala language. Notice that the variable type is not explicitly declared. However,
it is still checked during compile time:

// Mutable variable of type String
var myVar = "Hello, world!"
println(s" $myVar" )

Gradual typing, which combines the advantages of both systems, has emerged as a new
approach in programming languages [1]. It allows developers to start with dynamically typed
code, and as the codebase grows and the need for safer and more robust code arises, they can
gradually transition to statically typed code [1]. This means that both statically and dynamically
typed code can coexist not just within the same codebase, but even within the same file [1]. This
approach has already been successfully used in other languages (JavaScript [2], Python [3],
Clojure [4], ...).

The R language serves as a vital computational tool for research across various fields such
as statistics, biology, physics, mathematics, chemistry, economics, geology, and medicine [5].
It is an interactive language without explicit types [6]. This allows users to manipulate data
structures and functions at runtime [6]. Implicit types are not always consistent or predictable
across different operations or functions [6].

The dynamic nature of the language might be beneficial for quick learning and rapid iterations.
However, it has negative effects on reusability and can lead to unexpected errors and bugs [6].
This makes it less than optimal, especially for larger code bases and for libraries. A solution
to this issue might be gradual typing.

Adding gradual typing to R presents a significant challenge. First, the language itself is highly
dynamic, allowing for a plethora of implicit type conversions. The language contains several
separate object-oriented systems. It also includes implicit types that are difficult to annotate
due to their complexity (most notably, data frames). One of R’s strengths is its brevity and
interactivity. Both of these qualities should be preserved to ensure that the existing community
of users accepts the changes to the language.

This thesis discusses strategies for adding this feature to R based on case studies from three
other popular languages – Python, Ruby, and PHP. To the author’s best knowledge, this type
of analysis has not been done before. The thesis loosely extends the 2019 paper Towards a Type
System for R [7] and the 2020 paper Designing Types for R, Empirically [8] by Turcotte et al.
The former paper calls for adding a type system to R and suggests using the gradual typing
approach, while the latter proposes a type system for R based on empirical analysis.

1.1 Goals
The main goal of this thesis is to provide an overview and synthesis of the approaches to gradual
typing in other languages. It maps the history of adding this feature to three popular languages
and discusses the pros and cons of various design decisions. Additionally, it aims to identify
opportunities for further research in the area of gradual typing in the R programming language.

The rest of the thesis is organized as follows:

The Background chapter offers definitions of basic terms and an overview of the approach
for adding type annotations to dynamic languages. It delves into the advantages of gradual
typing as well as various concerns related to implementation, syntax, and semantics.
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The Review of Gradual Typing in Other Languages chapter compares the approaches em-
ployed in Python, Ruby, and PHP programming languages. These three languages were
specifically chosen due to their popularity [9, 10, 11] and their shared characteristic of being
dynamically typed, with the option to write statically typed code added later.

The Towards Gradually Typed R chapter introduces the R programming language and dis-
cusses its need for gradual typing. Furthermore, it examines design decisions associated with
implementing gradual typing in R, informed by insights from the previous sections.

The Conclusion chapter aims to summarize the findings and suggest opportunities for further
research in this area.
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Chapter 2

Background

This chapter establishes basic terminology associated with types and type systems in general
as well as the gradual typing approach. It also initiates the discussion surrounding implemen-
tation strategy, syntax, and semantics, which will continue throughout this thesis.

2.1 Types

Bits in memory can represent various forms of data, such as instructions, addresses, characters,
integers, and floating-point numbers. On the hardware level, there is no difference between them.
To utilize these representations in higher-level programming languages, it is beneficial to store
information about the nature of the data. This information is referred to as a type. Types serve
the purpose of differentiating between various kinds of data and restricting operations to only
those that are semantically valid. Type system consists of a set of rules linking types and language
constructs like variables, expressions or functions and another set of rules for type equivalence,
compatibility, and inference [12, p. 298, 299]. In this section, key concepts and terminology
of type systems will be discussed.

Type Safety. Type systems are considered type safe if they prevent operations that could lead
to a violation of the type system’s rules (type error) from occurring. Type safety can be achieved
by examining the compatibility of types involved in an operation. Such checks can be performed
during the compile time, which occurs before the program is executed, using specialized tools like
a static type checker or incorporating type checking within a compiler. Alternatively, the checks
can be conducted during the program execution, also known as runtime. It is also possible to do
a combination of both [12, p. 299, 300].

Type Soundness. Type systems are considered type sound if a program adhering to the rules
and semantics of the programming language cannot result in a runtime error [13]. Such property
of type system can be proven using a two-part theorem consisting of progress and preservation.
Progress says that if a term passes the type checker it will be able to make the next step
of evaluation until fully evaluated. Preservation says that the result of this step will have the
same type as the original. This logically leads to the final term having the same type as the
original one and the type system is therefore sound [14].

Type Checking. Type checking is an essential aspect of programming languages that ensures a
program adheres to the language’s type compatibility rules. Type checking is an important tool
for preventing bugs, improving code maintainability, and enhancing code readability.
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6 Background

There are two main categories of type checking: statically typed languages perform type check-
ing at compile time, while dynamically typed languages perform type checking at runtime [12,
p. 299, 300]. It is important to discuss the trade-offs between these two approaches, such as
flexibility versus safety and ease of use versus performance benefits, as they have implications
for different programming scenarios.

For statically typed languages, the type checker guarantees that only values of the correct
type can be used, eliminating the need for runtime type checking. This leads to both space
(saving representation) and time (eliminating runtime checks) performance benefits for programs.
The cost to the developer for this benefit is the need to convince the type system that their
program does not induce type errors. Due to limitations of decidability, even programs that
might have run without error might not be compliant with the type checker [14].

Type Annotations. To generate useful error messages, the type checker needs to know the
correct type within the given context. One way to let it know is to add type annotations, which
are an explicit specification of the expected data type of a variable, function argument, or return
value. While type annotations improve both the type checker’s and human’s understanding
of the code, having to write them can be seen as an overhead for the programmer [15].

Type Inference. To spare the programmer this overhead, we can employ a type inference
algorithm. Such an algorithm is in many cases able to infer the type of many expressions based
on their context even without explicit type annotations. A popular choice is the Damas-Hindley-
Milner type inference algorithm [16]. The algorithm assigns a type variable to each expression,
identifies constraints, turns them into a system of equations, and solves the equations using
a method called unification [17]. By using type inference algorithms like Damas-Hindley-Milner,
developers can balance the benefits of a statically typed language with a relatively concise and
easy-to-write syntax.

Taxonomy of types. To further understand the type systems in programming languages, it is
helpful to classify types into different categories. This thesis will follow the taxonomy described
by Scott [12, p. 305]:

Numeric types: including floating-point and discrete types;

Enumeration types: a set of named elements, such as booleans or days of the week;

Subrange types: a continuous subset of values of some discrete base type, e.g., 0..100;

Composite types: non-scalar types, such as container types (arrays, lists, sets, etc.), and
unions of types.

Other common types like strings or chars, can depending on the given language and implemen-
tation fit either into the Numeric or Composite category.

Type Compatibility. Type compatibility refers to determining which type can be used in
a specific context. For example, the types of the operands of + must both be compatible with some
common type that supports addition [12, p. 320]. On the other hand, type equivalence involves
identifying which types are considered the same. Type conversion is the process of creating a new
value in a different data type based on an existing value while preserving its original meaning
or representation [12, p. 312, 313]. This can happen either implicitly (the compiler injects the
call) or explicitly. Type coercion is an automatic, implicit conversion in certain contexts [12, p.
321]. For example, let’s say a comparison 1==1.0 is performed where 1 is an integer while 1.0
is a float – if the type system supports coercion, such an expression would evaluate to true.

Polymorphism. Based on Scott [12, p. 302], polymorphism refers to code that is designed
to work with values of multiple types. These types must have common characteristics, and the
code must rely on no other characteristics. Subtype polymorphism occurs when code is designed
to work with a specific type, denoted as T. Programmers can define other types as extensions or
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refinements of T, and the code works with these supertypes or subtypes as well. In this context,
the subtyping relationship notation A≺B is used, meaning that A is a subtype of B. Parametric
polymorphism refers to code that takes a type or a set of types as a parameter, either explicitly
(also known as generics or templates) or implicitly.

Subtyping can be classified into different categories [12, p. 332]. Structural typing is a form
of subtyping where names are inessential, and subtyping is defined directly based on the struc-
tures of types. Types with the same structure are considered equivalent. In contrast, nominal
typing considers names to be significant, and subtyping is explicitly defined. Another approach
to subtyping is duck typing, which is similar to structural typing but applicable to dynamically
typed languages. In duck typing, an object is considered to have an acceptable type if it supports
the requested methods.

Type bounds are constraints on type parameters in parametric polymorphism, specifying
the range of acceptable types. It is possible to specify that a component of a complex type
I can accept only subtypes or only super types of a type A. For example in Scala syntax
class I[T <: A] tells us that parameter T needs to be a subtype of type A [18].

Variance describes how the subtyping relationship between more complex types (e.g., con-
tainer types) relates to subtyping between their components [19, p. 185]. For example, given
simple types A as a component of a complex type I<A> and B as a component of a complex type
I<B>, the following relationships can exist:

Covariant: A relationship where A≺B implies I<A>≺I<B>. For example, if integer is a sub-
type of number, then a list of type List<integer> is a subtype of a list of type List<number>.

Contravariant: A relationship where A≺B implies I<B>≺I<A>. For example, if integer is a
subtype of number, then a function that takes a parameter of type I<number> is a subtype
of a function that takes a parameter of type I<integer>.

Invariant: The relationship between A and B does not have any effect on the relationship
between I<B> and I<A>.

In this section, the theory of types, including concepts like type compatibility and polymor-
phism, was covered. These concepts are essential for understanding the interaction between
static and dynamic typing. The next section will show how to bridge the gap between the two,
allowing programmers to benefit from the strengths of both approaches.

2.2 Gradual Typing
In their 2006 paper, Siek and Taha [20] reviewed the advantages and disadvantages of both static
and dynamic type systems. They argued that dynamic types are better suited for prototyping
and scripting, whereas static types are more appropriate for algorithms, data structures, and
system programming. The authors noted that it is common for programmers to start with
dynamically typed languages and switch to statically typed languages as the program grows.
They argued that such a change is unnecessarily costly and that programming languages should
provide mechanisms for a smoother transition. Programmer should have control over which parts
of code are statically and which are dynamically typed as well as an option to gradually move
between the two. To describe such a system, Siek and Taha coined the term gradual typing.

2.2.1 Implementation Strategy
There are several approaches to achieving gradual typing. For easier further reference, a name
was assigned to each of them:

Static Retrofitting: Adding the ability to write statically typed code to an otherwise dynam-
ically typed language [20].
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Dynamic Retrofitting: Adding the ability to write dynamically typed code to an otherwise
statically typed language [21].

Natively gradual: Building a gradually typed language from the ground up [22].

This thesis focuses on static retrofitting.
Selecting this approach leaves developers with a decision regarding whether to leave type

checking to external tools or modify the compiler or interpreter to perform type checking.
The first option allows for the emergence of tools with various approaches, each having dif-
ferent philosophies, pros, and cons, enabling programmers to choose the tool that best suits
their needs. External tools avoid performance overhead for partially annotated code, as there is
no runtime difference between annotated and unannotated code. However, using external tools
might not allow for optimizations that require the interpreter or compiler to know type infor-
mation. Additionally, it doesn’t enable sound gradual typing, as for sound gradual typing to
work, some runtime checks on the boundary between the statically and dynamically typed parts
of the code are needed in addition to the static ones [23].

Another concern is designing an appropriate type system. Ideally, the syntax of the type
system should not conflict with existing language constructs and should be compatible with
the language’s philosophy and design principles. The ultimate goal is striking a balance between
conciseness, readability, and usability on one side, and flexibility that allows developers to pre-
cisely annotate various type-related language constructs on the other. The semantics of the type
system should be logical, type safe, performant, scalable, and comprehensive, covering as large
a subset of valid dynamically typed programs as possible.

2.2.2 Syntax Considerations
When retrofitting static types to a dynamically typed language, developers face several design
decisions. One such decision is whether to exploit the existing syntax (e.g., comments) or extend
the language’s syntax. Exploiting existing syntax can be easier initially since it does not require
changes to the core language, but it might conflict with other uses of the exploited language
feature and may be less readable. A balanced approach, as demonstrated in Subsection 3.1.3,
involves prototyping this feature by exploiting comments and then transitioning to an extended
language syntax with type annotations as the design matures.

It is crucial to recognize that existing developer communities of dynamically typed languages
are often not used to type annotations. Despite their usefulness, using them might feel cum-
bersome for those unfamiliar with them. This is why it might be beneficial for the adoption
of gradual typing to limit the number of manually added type annotations as much as possible.

One method to reduce reliance on type annotations is by employing a type inference algorithm.
As demonstrated by Turcotte et al. [8], type inference can also be used during runtime to annotate
large sets of unannotated packages. This approach can serve as a proof of concept or even help
with interactions between annotated and unannotated code.

Another factor that might discourage dynamic language programmers from using gradual
typing is the complexity of type annotations, especially for compound and polymorphic types.
To address this issue, introducing type aliasing can be helpful, as it allows developers to map
a complex type to a simple type alias, making the annotations more manageable and readable.

Lastly, the number of types included in the type system can also be problematic. To mitigate
this issue, employing features such as union types and intersection types might be beneficial.
Union types represent a value that can be one of several types, while intersection types represent
a value that needs to satisfy all specified types. These features can help streamline the type
system and make it more approachable for developers working with dynamically typed languages.
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2.2.3 Semantics Considerations
Introducing gradual typing to a dynamically typed language might bring several challenges,
including dealing with existing (implicit) type systems that may be complex and poorly docu-
mented [6]. Significant design decisions are needed, such as defining rules for type compatibility,
determining which conversions and coercions should be supported, and designing composite types
that are concise, useful, and easy to understand. These types should allow for polymorphism
to work. Adding gradual typing to a language can introduce runtime overhead on statically
typed code [3].

Interactions between statically and dynamically typed code. Determining how interac-
tions between statically and dynamically typed code should be designed is crucial for achieving
a seamless integration of gradual typing. Examples of such interactions include function calls,
variable access, or class instantiation between statically and dynamically typed parts of code.
In a recent paper, Greenman et al. [24] identified several possible type-enforcement strategies for
restricting interactions between statically and dynamically typed code. These strategies balance
trade-offs between type soundness, runtime checks, and performance.

Erasure uses types only for static analysis, with no runtime checks performed. While this
approach does not guarantee soundness or ensure that the system moderates all boundaries
between statically and dynamically typed code, it does provide some benefits. Error messages
contain only boundaries relevant to the program, but they may not provide all the necessary
information. The erasure strategy accepts most programs without raising runtime errors and
does not require wrappers, making it faster compared to other strategies.

Transient checks runtime type only when necessary for an operation to be executed. This
strategy allows for type soundness but does not ensure that the system moderates all bound-
aries between statically and dynamically typed code. Additionally, error messages may not
contain all relevant information or only the relevant boundaries. The transient approach ac-
cepts fewer programs without raising runtime errors than erasure but more than the natural
strategy, and it does not require wrappers, thus offering faster performance.

Natural employs higher-order checks to ensure the integrity of types throughout the entire
program. The natural approach allows for soundness and ensures that the system moderates
all boundaries between statically and dynamically typed code. Furthermore, error messages
contain only the relevant boundaries and provide all necessary information. However, this
strategy accepts the fewest programs without raising runtime errors. Unlike the other strate-
gies, it does require wrappers, making it slower in terms of performance.

Concrete mandates descriptive type information as part of the metadata associated with
every value in both the statically and dynamically typed parts of the code. Type checks are
performed every time a value is used in an operation, providing a more thorough enforcement
of type information.

Hybrid combines multiple strategies to achieve a balance between soundness, performance,
and flexibility in handling interactions between statically and dynamically typed code.

Understanding the trade-offs between these type-enforcement strategies is essential for select-
ing the most appropriate approach when integrating gradual typing into a language or system.
Each strategy offers unique benefits and limitations, depending on the specific requirements and
goals of the implementation.

Sound gradual typing. Realizing type soundness for a gradual type system requires some
runtime checks for potential type mismatches between statically and dynamically typed code.
Takikawa et al. [23] mention two strategies for reducing the frequency of runtime checks for
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potential type mismatches between statically and dynamically code: macro-level and micro-level
gradual typing. Macro-level gradual typing enforces the programmer to always either annotate
the whole module or leave it dynamically typed. Micro-level gradual typing assigns an implicit
dynamic type to all annotated parts of the program. The implementation inserts casts at the
appropriate parts of the code.

Takikawa et al. [23] investigated the performance effects of sound gradual typing by testing
various combinations of typed and untyped modules for a set of 12 programs in Typed Racket.
They found that out of the 12 fully statically typed programs, 6 showed a speed improvement of
up to 72% compared to their dynamically typed counterparts, while one had no effect, and the
rest were slower by up to 13.34 times. In theory, fully statically typed programs should always
be faster due to compiler optimization. However, in practice, there tend to be dependencies
on external unannotated code that needs to be resolved during runtime, which can negatively
impact performance.

For partially typed programs, performance slowdowns were observed in all cases, with a mean
overhead of up to 53.1 times and a maximum overhead of up to 121.51 times, depending on the
program. It is important to note that the study’s findings are specific to macro-level gradual
typing in Typed Racket, and further research is needed to draw broader conclusions about other
approaches [23].

Despite the potential performance cost, sound gradual typing still has many advantages. The
additional runtime checks can help better locate type errors. If runtime performance is critical,
gradual typing can still be an option by performing static type analysis only. While this does
not guarantee soundness, it can still identify a wide range of type errors. In either case, the type
annotations can provide valuable information about the code and help improve its maintainability
and understandability.



Chapter 3

Review of Gradual Typing in
Other Languages

This chapter examines three popular programming languages—Python, Ruby, and PHP—that
have already implemented gradual typing in various forms. Each language approaches gradual
typing differently and has made a unique set of design decisions from which the R programming
language can learn.

3.1 Python
Python is an open-source language with a wide range of applications, including web develop-
ment, scientific and numeric computing, education, desktop GUIs, software development, and
business applications [25]. It is a dynamically-typed language with a simple yet effective approach
to object-oriented programming [26, p. 1]. Although its authors take pride in its simplicity and
brevity, Python supports advanced features, such as a wide variety of data structures, including
lists, tuples, sequences, sets, and dictionaries [26, p. 33–42]. A key design principle of Python is
duck typing (see Section 2.1) [26, p. 112].

Created by Guido van Rossum in 1989 at the Stichting Mathematisch Centrum in the Nether-
lands [27], Python was designed as a successor to the ABC programming language [28, p. 147].
The first internal release occurred in 1990, followed by the first public release, version 0.9.0,
in 1991. Python continued to evolve, with version 1.0.0 released in 1994 and version 2.0 in
2000 [27].

Guido van Rossum, who remains the main contributor to Python, continued his work on
the language at the Corporation for National Research Initiatives in Reston, Virginia, in 1995,
and later at BeOpen.com in 2000 [28, p. 147]. In 2001, the Python Software Foundation was
formed as a non-profit organization to manage Python-related Intellectual Property [28, p. 147].
Python 3.0 was released in 2008 [27].

Today, Python is one of the most popular and widely used programming languages. It ranks
second on GitHub’s list of most-used programming languages in 2022 [9], fourth in Stack Over-
flow’s 2022 Developer Survey in the programming, scripting, and markup languages category [10],
and first on the TIOBE Programming Community index for April 2023 [11].

3.1.1 Python Built-in Types
While Python is a dynamically typed language, its interpreter works with a range of built-in
types [29, p. 31–91]. The principal built-in types are numerics, sequences, mappings, classes,

11
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instances, and exceptions. In this text, a subset of the types will be briefly introduced. For a more
comprehensive overview, please see the standard library [29, p. 31–91]. The types relevant to
gradual typing will be further elaborated on in the subsequent text.

Numeric Types. Numeric types in Python consist of int, float, and complex. The int type
represents integer values with unlimited precision. The float type is a floating point number.
In addition to the built-in numeric types, the standard library includes fractions.Fraction
for representing rational numbers and decimal.Decimal for representing floating-point numbers
with user-definable precision. When performing arithmetic operations with mixed numeric types,
the ”narrower” type operand is coerced to match the wider one. In this context, an integer is
considered narrower than a floating-point number, which in turn is narrower than a complex
number [29, p. 32–38].

Enumeration Types. Enumeration types in Python include bool, which is a subclass of int.
The bool type conceptually represents an enumeration of two values, with True being represented
by 1 and False being represented by 0. In addition to the built-in bool type, the standard library
provides the enum.Enum base class, which allows users to define their own enumeration types.

Subrange Types. Subrange types in Python include the range type, which represents an im-
mutable sequence of numbers. The range type is particularly useful for looping a specific number
of times in for loops.

Composite Types. Composite types in Python encompass a variety of data structures, includ-
ing:

str: A sequence of Unicode characters.

list: A mutable sequence typically used to store collections of homogeneous items.

tuple: An immutable sequence typically used to store collections of heterogeneous items.

set: An unordered mutable collection of distinct objects, which can be heterogeneous.

frozenset: An unordered immutable collection of distinct objects, which can also be hetero-
geneous.

dict: A mapping of hashable values to arbitrary objects, allowing for heterogeneous collec-
tions.

Union: A type that enables grouping several other types into their common supertype.

According to the Python Standard Library [26, p. 69–81], classes are also considered built-
in types. In Scott’s taxonomy, they would be categorized as composite types. The Listing 1
demonstrates how the object-oriented system works in Python.

As this is the first Python code snippet in this thesis, please note that indentation has a
semantic meaning. The first two lines define a new class named A, with an attribute on line 2.
Lines 6–9 demonstrate how to add a method to a class after instantiation, showcasing that
Python classes behave like hash maps where keys are attribute and method names, and values
are their corresponding values or functions. Line 9 shows a method call. Lines 11–22 illustrate
how Python supports simple inheritance, while lines 24–32 showcase multiple inheritance.

Lines 34–36 define a new class C, which has its own implementation of the greetA() method.
The say_hi() function (lines 38–39) accepts an object and calls its greetA() method, demon-
strating duck typing in action. Finally, lines 43–44 show the say_hi() function working with
instances of classes A and C, regardless of their actual types.
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1 class A:
2 AttrA = 'Hello'
3

4 a = A()
5

6 def greetA(self):
7 print(self.AttrA + ' World!' )
8

9 A.greetA = greetA
10

11 a.greetA() # 'Hello World'
12

13 class B:
14 AttrB = 'Bonjour'
15

16 class SubB(B):
17 AttrSubB = ' Le Monde!'
18 def greetB(self):
19 print(self.AttrB + self.AttrSubB)
20

21 subB = SubB()
22 subB.greetB() # 'Bonjour Le Monde!'
23

24 class SubAB(A, B):
25 def greetA(self):
26 print(self.AttrA + ' World!' )
27 def greetB(self):
28 print(self.AttrB + ' Le Monde!' )
29

30 subAB = SubAB()
31 subAB.greetA() # 'Hello World'
32 subAB.greetB() # 'Bonjour Le Monde!'
33

34 class C:
35 def greetA(self):
36 print('Gutten Tag!' )
37

38 def say_hi(x):
39 x.greetA()
40

41 c = C()
42

43 say_hi(a) # 'Hello World'
44 say_hi(c) # 'Gutten Tag!'

Code listing 1 Demonstration of Python object-oriented system
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Having established a solid understanding of Python types, it is time to delve into the evolution
and implementation of gradual typing within the language, shedding light on its historical context
and development process.

3.1.2 Towards Gradual Typing
The following text delves into the history of gradual typing in Python, exploring the evolution
of type annotations and the gradual typing system in the language. The journey of gradual
typing in Python is a testament to the community’s dedication to improving the language’s
capabilities, as well as its adaptability to meet the changing needs of its users. We will discuss
key milestones and decisions that have shaped Python’s gradual typing landscape and set the
stage for its current implementation.

In 2004, van Rossum introduced the idea of adding optional static typing to the dynamically
typed language in a blog post [30]. He argued that such a change would enable developers to con-
tain bugs faster, thanks to compiler hints about potential issues. However, he also recognized
that this change would be difficult to implement and that creating a formal proposal for it would
present significant challenges.

Van Rossum also discussed several implementation challenges, such as whether inheritance
of types (e.g., int ≺ long ≺ float ≺ complex) should be implemented and how it would work
with duck typing, what container types should look like, and whether type checking should
happen during compile time or runtime [30].

As can be seen from the discussion forum under the blog post [31] the response of the com-
munity was generally skeptical. While some commentators were in favor of the change, others
strongly opposed it, citing the complexity of both implementing and using static types, the po-
tential distraction from other important issues, and the change defying Python’s philosophy
of simplicity and minimalism. Some argued that most, if not all, of the expected benefits, could
already be achieved with the existing syntax and libraries. Others proposed alternative solu-
tions like using type inference or adding a possibility to run type checks as well as other types
of validations before and after method execution (also known as Design by Contract).

Van Rossum followed up with another blog post [32] reacting to the critique. He argued
that creators of frameworks and large applications need type annotation. This leads to them
creating their own solutions and ultimately to a lower level of readability and interoperability
of code in the Python community. Other newly listed arguments for adding annotations were
documentation, runtime inspection, and refactoring. He noted that a way to optimize code might
be using type inference. For it to properly work, some sort of type hints would still be needed as
”Python is so dynamic that worst-case assumptions often make optimizations nearly impossible”.

He further outlined several ideas for implementing gradual typing to Python [32]. In his view,
a type should be an abstract set of method signatures. He suggested that interface types should
be structural, meaning any type implementing a set of methods defined by an interface should
be acceptable. Interfaces should be declared using their own keyword, rather than the existing
class keyword. He also suggested the possibility of, when needed, annotating an argument
nominally. For example, def foo(x: class int) -> int: would enforce only the built-in int
class, as opposed to any class of the same structure (including user-defined).

He proposed a built-in list of standard interfaces, including existing proto-interfaces such as
number, file-like, callable, and mapping. The any type would be the union of all possible types,
while nothing would be the union of no types. He also proposed support for parametrized types,
using a syntax like class List(list)[T]. Such syntax could be prototyped using a metaclass.

Subtyping should be part of the type system. He also suggested supporting union types using
the | operator, for example, def read(f: file | str) -> str. Lastly, van Rossum discussed
several possible syntax options for the format of the signature of functions and methods, such as
x: (int, int) -> str.
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As with the previous blog post, the community’s response [33] seemed to be rather lukewarm.
Various opinions emerged from the discussions:

Some welcomed and expanded on the concepts, seeing potential benefits for code readability,
maintenance, and performance;

Several were open towards type annotations but strongly against built-in type checking, which
felt unnecessarily complex to them. They argued that the existing dynamic typing system
was sufficient and that introducing static typing could lead to increased complexity and a
steeper learning curve;

The remainder was against any form of type annotations, seeing it as against Python’s philos-
ophy of simplicity, minimalism, and readability. They believed that adding type annotations
would make Python less accessible to new learners and could potentially alienate users who
appreciate the language’s simplicity [33].

The following comments illustrate some of the more critical responses. Phillip J. Eby, Python
contributor and author of books Web Component Development with Zope 3 and You, Version
2.0, commented, ”..., relatively few languages support all the bells and whistles you’ve got here,
and Python certainly has gotten on well enough without most of them.” Bruce Eckel, blogger
and author of many popular books on programming including Thinking in Java and Thinking in
C++, argued, ”I cannot see how traditional static type checking could be applied to Python and
have anything like Python come out the other end.” Ka-Ping Yee, author of a Python course at
UC Berkeley, expressed surprise, ”I’m rather surprised that you’re suggesting such an ambitious
and complex type system. Not that this is a bad thing, but it feels a little out of character for
Python as I’m used to it.” Marek Baczyński claimed, ”Making a type system like what is described
in the article would make Python a poor man’s ML, because most people will use a feature for
the sake of it.” Finally, Rich Salz, a long-time member of the IETF, noted, ”Holy crap. Python
has become very successful with the current type system. And you are now considering doubling
the complexity of the language.”

In his third and final blog post [34] on the topic, van Rossum scaled down his proposal
which helped to mitigate some of the criticism. He reinforced the originally proposed syntax for
parameter and return type declarations for functions:

def foo(x: t1, y: t2) -> t3:
...body...

Until the parser is ready for such syntax, he proposed using decorators – a feature of Python
denoted by the leading @ symbol that allows programmers to modify or extend the behavior of
functions or classes by wrapping them in another function. [34]:

@arguments(t1, t2)
@returns(t3)
def foo(x, y):

...body...

He also reiterated the idea of Interfaces with the following syntax [34]:

@interface I1(I2, I3):
def foo(a: t1, b: t2) -> t3:

" docstring "

class C(I1): # implements I1
def foo(a, b):

return a+b
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He seemed less confident in typed class attribute declarations and design by contract. Other
ideas, including overloaded methods, parametrized types, variable declarations, where clauses,
union types, cartesian products and compile–time type checking were all declared out of scope
for the time being [34].

This updated proposal received less pushback compared to the previous one which can be
again illustrated by the adjacent discussion thread [35]. Phillip J. Eby, who previously questioned
the necessity of many features, simply expressed his approval with a ”+1.” Bruce Eckel, who had
previously argued that traditional static type checking could not be applied to Python without
significantly altering the language, did not reiterate his previous concerns in this discussion.
Instead, he brought a new take on how tests and test coverage could be implemented. Ka–Ping
Yee, who had been surprised by the ambitious and complex type system initially suggested, now
expressed support for the updated proposal, stating, ”I like this proposal a lot. The concepts
make a lot of sense to me.” Other previous critics, such as Marek Baczyński and Rich Salz, did
not weigh into this discussion.

3.1.3 Evolution of Python’s Typing System
The development of Python takes place openly. The dev team communicates with each other
through forums, blogs, and mailing lists. Once an idea is polished enough, it is turned into a
formal proposal or PEP (Python Enhancement Proposal). The PEPs are stored and tracked
on the official Python website, providing a unique insight into the actions, motivations, and
reasoning of the language’s creators [36].

Figure 3.1 displays the history of notable typing PEPs mapped to their year of creation
and the version of Python in which they were implemented. The diagram aims to cover all
major changes and additions to syntax. For the sake of readability, informational proposals,
and proposals focused mainly on performance improvements have been left out. Both types of
omitted PEPs are still covered in the text below.

In 2005, Collin Winter introduced typecheck, a runtime type-checking module for Python,
which used decorators to work [37]. Annotated Python code using this package would look like
this [38]:

@accepts(Number, Number)
@returns(Number)
def my_add(a, b):

return a + b

In March 2006, Bill Birch started a new blog calling for structural subtyping in general,
without focusing on any particular language [39]. In April 2006, van Rossum posted a blog post
outlining the scope of Python 3, which did not mention gradual typing or type annotations [40].
However, Birch sought encouragement for contributing to a PEP focused on types in Python-
3000, the mailing list dedicated to the new version of Python [41]. One month later, he outlined
a draft PEP titled ”Some Thoughts on Types for Python-3000” that vouched for structural
subtyping [42].

While there is no evidence to confirm that Birch’s draft was submitted, it had some influence.
Collin Winter had questions about Python 3 and its interactions with typecheck and extensively
referred to Birch’s draft in his post, likely expecting it to be implemented [43]. Just a week
later, Winter stated that he was working on notes for the type annotations PEP, implying he
was now responsible for its development [44]. He continued discussing his ideas on Python–3000
and refined them in discussions with van Rossum as well as other contributors [45, 46, 47, 48].

PEP 3107 was introduced in December of that year, bringing gradual typing to Python for
the first time. The proposal provided syntax only, without any associated semantics. It covered
adding type annotations for parameters and return values of regular functions, intentionally
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leaving out other type parameters, including lambda functions [49]. From the outset, the PEP
emphasized that this feature was ”completely optional,” addressing community concerns and the
controversy surrounding the topic. It also clarified that there were no plans to add type–checking
directly to Python and that external libraries should be used for this purpose [49].

The syntax for type annotations would be:

def foo(parameter1: annotation1, parameter2: annotation2) -> annotation3:
...

Once compiled, the annotations are saved as the annotations attribute of a function in the
following format [49]:

{
'parameter1' : 'annotation1' ,
'parameter2' : 'annotation2' ,
'return' : 'annotation3' ,

}

Here, return is a reserved word and cannot be used as an attribute name. Type annotations
do not have to match either Python’s implicit types or any other limited list of values [49].

In 2012, mypy a static type checker for Python was first introduced (see Subsection 3.1.6).

The idea of type annotations was expanded in 2014, in PEP 484 [50], which introduced
the first draft of the semantics. The proposal was co–authored by van Rossum. As shown in
Figure 3.1, this PEP is influential as it has been cited by many other notable typing PEPs.
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The proposal was inspired by mypy and listed support for static analysis as its most important
goal. A significant contribution of this proposal is the introduction of the typing module, which
provided a namespace for new type–related features.

The proposal also included the concept of type aliases. Type aliases allow a programmer to
define alternative names for existing types. Here is an example of a simple type alias [50]:

Url = str

def retry(url: Url, retry_count: int) -> None:
...

A more complex example would look like this [50]:

T = TypeVar('T' , int, float, complex)
Vector = Iterable[Tuple[T, T]]

On the first line, a new type variable T is defined in a way that allows it to be either int, float,
or complex. On the second line, a complex type alias named Vector is defined as a tuple of two
elements of the same type T. Here is an example of using the newly defined type alias [50]:

def inproduct(v: Vector[T]) -> T:
return sum(x*y for x, y in v)

def dilate(v: Vector[T], scale: T) -> Vector[T]:
return ((x * scale, y * scale) for x, y in v)

vec = [] # type: Vector[float]

The inproduct function computes the sum of the products of the tuple elements, while the
dilate function scales the vector by a factor of type T. The very last line shows how to declare
an empty vector.

Another addition was generics allowing parametrization of containers and functions [50]:

T = TypeVar('T' )

def isfirst(l: Sequence[T], c: T) -> bool:
return l[0] == c

Here, the type of c is not explicitly specified, but it must always be consistent with the type
of the Sequence. This allows using this method for work with sequences of various type. The
PEP clarifies, that consistent in this case means invariant. It is however possible to change this
behavior to either covariant or contravariant as needed [50]:

# Covariant type
CovT = TypeVar('CovT' , covariant=True)

# Contravariant type
ConT = TypeVar('ConT' , contravariant=True)

It is possible to define a supertype of a set of types using a factory called Union [50]:

def handle_employees(e: Union[Employee, Sequence[Employee]]) -> None:
if isinstance(e, Employee):

e = [e]
...



Python 19

Generic classes would be defined like this [50]:

T = TypeVar('T' )

class LoggedVar(Generic[T]):

def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value

def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new

def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value

def log(self, message: str) -> None:
self.logger.info(' {}: {}' .format(self.name, message))

As there was still no native support for type annotations of variable declaration, programmers
were recommended to use comments [50]:

x = [] # type: List[Employee]
x, y, z = [], [], [] # type: List[int], List[int], List[str]
x, y, z = [], [], [] # type: (List[int], List[int], List[str])
a, b, *c = range(5) # type: float, float, List[float]
x = [1, 2] # type: List[int]

Lastly, this proposal introduced function overloading using the following syntax [50]:

class bytes:
...
@overload
def __getitem__(self, i: int) -> int: ...
@overload
def __getitem__(self, s: slice) -> bytes: ...

PEP 484 had two adjacent informational PEPs – PEP 482 created in 2015 and PEP 483
created in 2014.

PEP483 laid out the theory of the new type hinting proposal. It set the stage by defining a
type as a set of values and a set of functions that one can apply to these values [51]. It defined
terms like subtyping relationship and gradual typing in a manner consistent with Section 2.2,
citing the same sources. The relationship between types and classes was further explored – every
class is a type, but not every type is a class. An example of a type that is not a class might be
Union[str, int].

The fundamental building blocks of the type system were defined as follows [51]:

Any: A type that can represent any value.

Union: A type that represents a set of types (e.g., Union[str, int]).
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Optional: A shorthand for a Union that includes None (e.g., Optional[type1] is equivalent
to Union[type1, None]).

Tuple: A type that represents a tuple with a fixed number of elements and their respective
types (e.g., Tuple[int, float] represents a tuple with an int as the first element and a
float as the second).

Callable: A type that represents a function, specifying its input parameter types and return
type (e.g., Callable[[int, float], str] describes a function that takes an int as the first
parameter, a float as the second, and returns a str).

Furthermore, the proposal covered generics, type variables, and variance, concepts that have
been discussed earlier in this subsection.

PEP 482 provided a comprehensive literature overview of related work in the field of type
systems [52]. The proposal covered existing approaches in Python and their corresponding tools,
as well as relevant solutions in other programming languages. The existing tools in Python
included:

mypy: A static type checker that served as an inspiration for PEP 484.

Reticulated Python: An experimental gradual typing system for Python.

PyCharm: An integrated development environment (IDE) that supports type inference and
type checking.

Other: pyflakes, pylint, numpy, Argument Clinic, pytypedecl, numba, and obiwan.

The proposal covered several other programming languages that have developed their type
systems to support type hinting and gradual typing, including ActionScript, Dart, Hack (Sub-
section 3.3.3) and TypeScript.

The proposal served as a comprehensive review of the existing landscape of type systems.
It also covered both Python-specific approaches and those implemented in other programming
languages.

The PEP 484 (and thus concepts covered in PEP 482 and PEP 483) was approved and
integrated into version 3.5 released in 2015.

PEP 526 [53], created in 2016, further expanded the ideas on type annotations by introducing
syntax for variable declarations, such as variableName: int and containerName: List[int].
The reasons for this addition included:

To allow for annotating uninitialized variables (e.g., a = None # type: int vs. a: int).

Combining comment annotations and regular comments might cause confusion.

Retrieving comment annotations during runtime was problematic.

This proposal was approved and incorporated into Python 3.6 in 2016.

3.1.4 Optimizing Python’s Typing System
By 2017, it was clear that PEP 484 and PEP 526 were successful, with the typing module being
downloaded one million times per month [54]. However, the development was intentionally kept
outside the core of the main interpreter, CPython, which led to performance issues. Generic
classes, in particular, were ”very slow”.

PEP 560 [54] aimed to improve performance by removing a series of hacks and bugs. As a
result, the following performance improvements were achieved:
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Reloading the typing module became up to 7 times faster.

The creation of generic classes became up to 4 times faster.

Generic type operations became 10–20% faster.

Another issue with type annotations as defined by PEP 484 and PEP 526 was forward refer-
ences, where type hints contained names that were yet to be defined [55]. The workaround
at the time was to use string literals (instead of variable: type, programmers would use
variable: 'type'). PEP 563 [55] addressed this issue by postponing the evaluation of an-
notations, which also reduced the runtime cost of annotations.

PEP 561 [56] established a standardized way to distribute packages with type information
(including the type definitions). Type information was distributed in the form of stubs or non-
runnable code stored as .pyi files. Stubs were bundled into distributions or packaged files ready
for release. A distribution could consist of one or more packages or directories that namespace
modules. To include the type definitions, package maintainers needed to add a ”py.typed” file
in the top-level directory.

All PEP 560, PEP 561, and PEP 563 were approved and released as part of Python 3.7 in
2018.

PEP 544 [57] created in 2017, proposed the addition of support for structural subtyping.
Given Python’s familiarity with the concept of duck typing, the proposal dubs structural sub-
typing ”Static Duck Typing.” The proposal introduces the term ”protocols” for describing types
that support structural subtyping. The proposed syntax is as follows:

from typing import Protocol

class SupportsClose(Protocol):
def close(self) -> None:

...

PEP 544 made several classes in the typing module into protocols, such as Callable, Await-
able, Iterable, Iterator, AsyncIterable, AsyncIterator, Hashable, Sized, Container, Collection,
Reversible, ContextManager, AsyncContextManager, SupportsAbs, and other Supports* classes.

PEP 589, created in 2019, extended the capabilities of type annotations for dictionaries [58].
Dictionaries in Python are data structures consisting of unique ”key: value” pairs [26, p. 39].
PEP 484 allowed type annotations for consistent dictionaries only.

PEP 589 introduced the TypedDict feature, which enables more granular type annotations
for dictionaries:

from typing import TypedDict

class Movie(TypedDict):
name: str
year: int

movie: Movie = {'name' : 'Blade Runner' ,
'year' : 1982}

This allowed type checkers to better validate dictionary structures by specifying the expected
types for each key and their corresponding values. Both PEP 544 and PEP 589 were approved
and released as part of Python 3.8 in 2019.

Next in the line was PEP 585 [59]. Due to the historical separation between the typing
module and Python core, the language ended up with a duplicated collection hierarchy. This
was initially needed to enable support for generics. The proposal resolved this issue, making the
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language easier to use and maintain. PEP 585 was approved and released as a part of Python
3.9 in 2020.

Python 3.10 released in 2021 saw the implementation of three important typing PEPs. PEP
604 [60] (2019), inspired by the Scala programming language, introduced a more concise syntax
for union types. Instead of using Union[X,Y], it was possible to simply use X|Y. PEP 612 [61]
(2019) improved the ease of annotating higher-order functions and functions with complex signa-
tures. PEP 613 [62] (2020) introduced the TypeAlias type, which explicitly denoted type aliases
and helped avoid potential confusion (e.g., changing from x = int to x: TypeAlias = int).

The following PEPs were implemented in Python 3.11: PEP 646 [63] (2020) introduced
variadic generics, allowing for more precise types for functions and classes that handle an ar-
bitrary number of arguments. This improved type-checking and readability in Python code.
PEP 655 [64] (2021) extended PEP 589 by providing native support for optional keys in Type-
dDict, which could previously only be achieved through workarounds. With this PEP, qualifiers
typing.Required and typing.NotRequired could be used:

class Movie(TypedDict):
title: str
year: NotRequired[int]

PEP 673 [65] (2021) introduced type Self as a simple syntax for methods returning an
instance of their class:

from typing import Self

class Shape:
def set_scale(self, scale: float) -> Self:
self.scale = scale
return self

class Circle(Shape):
def set_radius(self, radius: float) -> Self:
self.radius = radius
return self

Python 3.11 was released in 2022 and is the latest stable version as of the day of this writing.

3.1.5 Typed Python in 2023

Throughout this section, it has been shown how Python has come a long way in implementing
gradual typing. The current version supports both statically and dynamically typed code with-
out an obvious bias towards either of them. Recent research has shown that type annotations
are widely used and are effective in exposing type errors. However, they are not always used
consistently, and it seems that not all users routinely employ a type checker [66].

The Listing 2 demonstrates how the same code can be written in Python both with and
without annotations.
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1 # Untyped code
2

3

4

5

6

7 class Vec2D:
8 def __init__(self, x, y):
9 self.x, self.y = x, y

10

11 def __add__(self, other):
12

13 if isinstance(other, (int, float)):
14 other = Vec2D(other, other)
15

16 return Vec2D(
17 self.x + other.x,
18 self.y + other.y
19 )
20

21 def __str__(self):
22 return f "( {self.x}, {self.y})"
23

24 vec1 = Vec2D(1, 2)
25 vec2 = Vec2D(3, 4)
26 vec3 = Vec2D(1.5, 2.5)
27

28 print(vec1 + vec2) # Output: (4, 6)
29 print(vec1 + vec3) # Output: (2.5, 4.5)
30 print(vec1 + 2) # Output: (3, 4)

# Typed code

from typing import Generic, TypeVar, Union

T = TypeVar("T" , int, float)

class Vec2D(Generic[T]):
def __init__(self, x: T, y: T) -> None:

self.x, self.y = x, y

def __add__(self,
other: Union['Vec2D[T]' , T]) -> 'Vec2D[T]' :

if isinstance(other, (int, float)):
other = Vec2D(other, other)

return Vec2D(
self.x + other.x,
self.y + other.y

)

def __str__(self) -> str:
return f "( {self.x}, {self.y})"

vec1 = Vec2D(1, 2)
vec2 = Vec2D(3, 4)
vec3 = Vec2D(1.5, 2.5)

print(vec1 + vec2) # Output: (4, 6)
print(vec1 + vec3) # Output: (2.5, 4.5)
print(vec1 + 2) # Output: (3, 4)

Code listing 2 Comparison of Python code without and with type annotations

In the typed version (to the right), type annotations provide more information about the
expected input and output types for methods and functions, enhancing code readability and
enabling type checking:

A TypeVar, defined on line 3 of the typed code, is used to represent either an int or a float.
This TypeVar is further employed on lines 7, 8, and 12 to demonstrate the use of generic
types within the Vec2D class.

The constructor on line 7 includes type annotations for both input parameters and the return
type (or the absence thereof). This makes it clear that the constructor accepts two arguments
of either int or float type and returns nothing.

The add method, starting on line 11, showcases the use of Union types and forward references.
The type annotation for the right operand of the addition operator, specified on line 12,
demonstrates that it can be either an instance of the Vec2D class or a scalar value (int or
float).

The forward reference to the Vec2D class (line 12 of the typed code) is used to indicate the
return type of the add method, which is an instance of Vec2D.
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The add method, on lines 13–18, performs different operations depending on the type of
input. If the other argument is an instance of Vec2D, it performs vector addition. In the
case of the scalars it first converts them into a Vec2D instance by setting both the x and y
components to the scalar value, and then performs the addition.

Pandas. Pandas is a powerful data analysis library for Python, providing a DataFrame object
for data manipulation with integrated indexing [67]. It is built on top of an array programming
library called NumPy [68, 67]. DataFrame is a type that essentially represents a table with named
rows and columns. This makes it especially relevant to R, which offers similar functionality.

import pandas as pd
from typing import Tuple, TypeAlias

def create_dataframe(
data:

Tuple[
Tuple[int, str, int],
Tuple[str, int, str],
Tuple[int, str, int]

]
) -> pd.DataFrame:

return pd.DataFrame(
data,
index=['row1' , 'row2' , 'row3' ],
columns=['col1' , 'col2' , 'col3' ]

)

df = create_dataframe((
(1, "a" , 3),
("b" , 5, "c" ),
(7, "d" , 9)

))

print(df)
print(df.dtypes)

# Python Console
# col1 col2 col3
# row1 1 a 3
# row2 b 5 c
# row3 7 d 9
# col1 object
# col2 object
# col3 object
# dtype: object

In the example above, a function called create_dataframe is defined that accepts a tuple
of tuples as an argument. The data represents a 3x3 matrix with heterogeneous elements.
The function returns a pandas DataFrame constructed with the given data, named rows ('row1',
'row2', 'row3'), and named columns ('col1', 'col2', 'col3'). The DataFrame is printed
along with its data types using the dtypes attribute.
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The function annotations are somewhat difficult to read, and the output of the dtypes
function is not particularly useful for this specific case. However, it can be improved using
Python functionality alone:

import pandas as pd
from typing import List, Tuple, TypeAlias

DataTuple: TypeAlias = Tuple[
Tuple[int, str, int],
Tuple[str, int, str],
Tuple[int, str, int]

]

def create_dataframe(data: DataTuple) -> pd.DataFrame:
return pd.DataFrame(

data,
index=['row1' , 'row2' , 'row3' ],
columns=['col1' , 'col2' , 'col3' ]

)

df = create_dataframe((
(1, "a" , 3),
("b" , 5, "c" ),
(7, "d" , 9)

))

def get_type(value):
return type(value).__name__

type_df = df.applymap(get_type)

print(df)
print(type_df)

# Python Console
# col1 col2 col3
# row1 1 a 3
# row2 b 5 c
# row3 7 d 9
# col1 col2 col3
# row1 int str int
# row2 str int str
# row3 int str int

Using a type alias makes our type annotation more concise and easier to use. With the
custom printout, programmers have a better understanding of the DataFrame’s type. This is still
a workaround rather than full support for typed DataFrames. For complete support, external
tools such as Strictly Typed Pandas [69] can be utilized.

Strictly Typed Pandas. Strictly Typed Pandas [69] introduces its own version of a DataFrame
called DataSet, which is immutable and works with mypy. Casting to regular DataFrames is
possible using the .to_dataframe() method. The package allows assigning types to DataSet
columns, as demonstrated in the following code snippet:



26 Review of Gradual Typing in Other Languages

from strictly_typed_pandas import DataSet
import numpy as np

class SchemaA:
name: str

class SchemaB:
id: int
name: str

def create_dataset(names: DataSet[SchemaA]) -> DataSet[SchemaB]:
n = len(names)
ids = np.array(range(n), dtype=int)
return DataSet[SchemaB](names.assign(id=ids))

df = DataSet[SchemaA]({"name" : ["John" , "Jane" , "Jack" ]})
ds = create_dataset(df)
print(ds)
print(ds.dtypes)

# Python Console
# name id
# 0 John 0
# 1 Jane 1
# 2 Jack 2
# name object
# id int32
# dtype: object

In the code snippet above, the first import of the necessary modules is necessary. Below, two
classes carrying type information – SchemaA and SchemaB are defined.

The create_dataset function takes a DataSet that is structured according to SchemaA and
returns a DataSet[SchemaB]. Inside the function, based on the length of the input DataSet, a
NumPy array of integers with that length is created. On return, a new DataSet[SchemaB] is
created with the array of integers serving as identifiers. Below, the function in action can be
seen with the resulting printout at the very bottom.

While this approach does not support 100% of Pandas types, it does provide support for
a common type with heterogeneous columns and homogeneous rows. This might be a good
compromise between expressive power and concise syntax. Additionally, the ability to check
declarations, function calls, and their return values with mypy should not be overlooked.

Overall, this example demonstrates how type annotations fulfill their original purpose of
documenting code, as declared in Subsection 3.1.2. Moreover, this is achieved at a relatively
small cost in terms of brevity.

3.1.6 Tooling
While documentation is an important aspect of type annotations, another significant benefit is
error detection and prevention (see Subsection 3.1.2). To fully realize this benefit, a type checker
is required. As discussed throughout this section, Python’s authors did not intend to include a
type checker in the language’s core. Instead, their declared goal was to support external type
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checkers. This section will review several prominent type checkers available for Python today.

Typeshed. Typeshed serves as a foundation for type checkers, as it is a central repository
for static type definitions for Python. It implements PEP561 (described in Subsection 3.1.4).
This GitHub repository is maintained by a community of contributors, including members of the
Python development team. It is used by all the major type checkers described below to obtain
type annotations for the language core, standard library, and widely-used external libraries. By
providing a central source of type annotations, Typeshed enables the type checkers to use the
same type definitions and keep up with language development [70].

Anyone is welcome to contribute to Typeshed (at the moment of this writing, 1169 con-
tributors have done so). For adding a stub for third-party packages, the requirements are that
the packages must be publicly available on the PyPI, support any Python version supported
by Typeshed, and not ship with their own stub or type annotations. For larger changes, it is
recommended to start by opening an issue outlining the proposed changes to get community
feedback before investing significant time. Once the new change is ready for submission, the
usual GitHub pull-request flow is used. That is, anyone interested may review the new code.
One of the maintainers will merge the pull request when they think it is ready [71].

Typeshed annotates various constructs such as variables and constants, functions, classes,
and type aliases. The annotations are stored in the form of stubs, which are non-runnable code
saved as .pyi files. These stubs provide type information without including the actual runnable
code [70].

For instance, consider the following examples of type annotations from Typeshed [70]:

Variables and constants:

e: float

Type aliases:

_SupportsFloatOrIndex: TypeAlias = SupportsFloat | SupportsIndex

Where SupportsFloat is a protocol that represents types that can be converted to the float
using the built-in function float(), while SupportsIndex is a protocol that represents types
that can be converted to the int using the built-in function index().

Functions:

def acos(__x: _SupportsFloatOrIndex) -> float: ...

Classes:

class _IsoCalendarDate(NamedTuple):
year: int
week: int
weekday: int

Where NamedTuple is a special base class for creating tuple classes with named attributes
and type annotations.

By providing type annotations for various constructs, Typeshed allows external type checkers
to understand the expected types and catch potential type-related issues in code.
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number = input("What is your favourite number?" )
print("It is" , number + 1)
# error: Unsupported operand types for + ("str" and "int")

Code listing 3 Demonstration of the mypy type checker [73]

def f():
return "PyCon"

def g():
return f() + 2019

# pytype: line 4, in g: unsupported operand type(s) for +: 'str'
# and 'int' [unsupported-operands]

from typing import List
def get_list() -> List[str]:

lst = ["PyCon" ]
lst.append(2019)
return [str(x) for x in lst]

# mypy: line 4: error: Argument 1 to "append" of "list" has
# incompatible type "int"; expected "str"

Code listing 4 Demonstration of the PyType type checker [75]

mypy. Mypy (demonstrated in Listing 3), an open-source project developed by Jukka Lehtosalo
and the Python community, was first introduced in 2012 [72]. It is a static type checker that
focuses on compile time type checking and supports gradual typing, checking only annotated
code. Mypy is strict and does not allow operations that change types. It can be considered a
referential type checker for Python as many influential PEPs directly reference it (for instance
PEP 484 [50], PEP 526 [53], and PEP 589 [58]).

PyType. PyType, an open-source project developed by Google, was first published on PyPI in
2016 [74, 75]. It is a static analyzer that does not execute the code. It attempts to check all
code, including unannotated code, using type inference. PyType is more lenient than mypy and
allows type mutations.

Listing 4 showcases the difference in the approaches taken by mypy and PyType. In the
first example, PyType detects an unsupported operand for the addition operation that would be
missed by mypy. In the second example, mypy detects an incompatible type when appending an
integer to a list of strings, pytype would run the code with no issue displaying its leniency.

PyRight. PyRight, developed by Microsoft, is a type checker designed with performance in
mind. It is often 3 to 5 times faster than mypy when type-checking large codebases. PyRight
features a lazy, just-in-time type evaluator, recursive type evaluation, and its own parser that
is able to recover from syntax errors and continue parsing. It was first published on PyPI in
2021 [76].

PyRight checks both annotated and unannotated code [77]. Within type inference, PyRight
utilizes union types to ensure that the inferred type is neither too narrow nor too wide. Listing 5
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class A:
def method1(self) -> None:

self.x = 1

def method2(self) -> None:
self.x = ""
# Mypy treats this as an error
# because `x` is implicitly declared as `int`

a = A()
reveal_type(a.x) # pyright: int | str

def func1(val: object):
if isinstance(val, str):

pass
elif isinstance(val, int):

pass
else:

return
reveal_type(val) # mypy: object, pyright: str | int

Code listing 5 Demonstration of the PyRight type checker [77]

demonstrates this behavior. In the first example, PyRight correctly infers the type of a.x as a
union of int and str. Mypy would treat the assignment of an empty string to x as an error
because x is implicitly declared as int. In the second example, PyRight narrows down the type
of val to a union of str and int. Mypy would keep the type as object which is unnecessarily
wide.

Pyre. Pyre is an open-source type checker developed by Meta (formerly Facebook) [78]. It is
designed to be performant on large codebases with millions of lines of Python. The authors claim
that Pyre is fast, integrated, fully featured, and built for security.

In addition to type checking, Pyre ships with Pysa, a static analysis tool. Pyre is capable
of performing static type inference, scanning code, and automatically applying annotations [79].
The first version of Pyre was published on PyPI in 2018 [80].

The emphasis on security is demonstrated by the inclusion of Strict Mode. This configuration
option allows enforcing type annotations either on the module or project level. Listing 6 illustrate
the difference between non-strict and strict code.

In summary, the tooling ecosystem for Python’s gradual typing is diverse and well-developed.
Typeshed serves as a foundation for type checkers, providing a central repository for type anno-
tations. Various type checkers such as mypy, PyType, PyRight, and Pyre cater to different needs
and preferences, offering a range of features, strictness levels, and performance characteristics.
This variety of tools highlights the commitment of the Python community to gradual typing
and ensures that developers have ample options for type-checking and error detection. As the
language and its typing system continue to evolve, the tooling ecosystem will likely adapt and
expand, further enhancing the benefits of gradual typing in Python.
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from typing import List

def unannotated(): # implictly returns `Any`
return b "" + "" # function body is not checked

def annotated() -> List: # explicit return annotation - `annotated` is checked
any = unannotated()
any.attribute # `Any` has all possible attributes
return 1 # Err: returning `int` but expecting `List`

# pyre-strict
from typing import List

def unannotated(): # Err: missing return annotation
return b "" + "" # Err: function body *is* checked

def annotated() -> List: # Err: implicit `Any` for a generic parameter to `List`
any = unannotated()
any.attribute # Note: the type of `any` is still any.
return 1 # Err: returning `int` but expecting `List`

Code listing 6 Demonstration of the Pyre type checker [79]

3.1.7 Evaluating Python’s (mypy) Type System
Mypy as a reference type checker will be used for discussions and comparisons in the following
text, including this discussion on type safety and type soundness.

Type Soundness. However, Ingkarat et al. [81] highlight that Python’s type system (together
with mypy or pytype) is unsound due to missing runtime checks and the fact that subtype checks
involving the Any type always succeed.

Type-Enforcement Strategy. Weissmann et al. [24] categorize mypy’s type enforcement strat-
egy as ”erasure”, meaning that types are used for static analysis only.

In summary, Python’s type system, when used with mypy, offers dynamic type safety while
being type unsound. This is a consequence of the chosen type-enforcement strategy.

3.1.8 Summary
The design of Python feels cohesive, following clear guiding principles. However, even after 19
years, the work on implementing gradual typing is far from done, highlighting the complexity of
such an undertaking.

The gradual typing process for Python began with discussions involving the community. The
authors consistently reassured the community that it would still be possible to write untyped
code, and the changes would not be imposed on them, even by convention. After a series of
blog posts, discussion forum threads, and email exchanges, a formal proposal for enhancing the
language was created.

Initially, the syntax for annotating functions was added. Only after that was the typing
module introduced to define the semantics. Subsequently, annotations for variable declarations
were introduced. Recent improvements focused on optimizing performance, notation, annotating
complex data types, and resolving edge cases. Type-checking is still not part of the language.
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Instead, this functionality is supplemented by various external packages offering an array of
features and benefits, allowing programmers to select the one that suits them best or to not use
any at all.

Key learnings from this process include the importance of engaging the community in dis-
cussions, responding to their feedback, and gradually enhancing the proposal. It is acceptable
to initially lack type checking and other features. It is also reasonable to start with a less per-
formant version and optimize it later. The key is to learn, adapt, and refine the system over
time.

3.2 Ruby

Ruby is an open-source language originally developed by Yukihiro ”Matz” Matsumoto in 1995 [82].
It is a dynamic, pure object-oriented language with complex but expressive grammar, influenced
by Lisp, Smalltalk, Perl, C, and Java [83, p. 2]. The primary goal of Ruby is to make pro-
gramming faster and easier. In Ruby, every value is an object, including simple numeric literals,
true, false, and nil. The language enforces strict encapsulation, meaning there is no access to the
internal state of an object from outside the object. A class in Ruby is a collection of methods
that operate on the state of an object, with the object’s state held by its instance variables [83,
p. 2, 3, 8].

One of Ruby’s distinguishing features is its support for metaprogramming. Metaprogramming
allows developers to write code that generates, manipulates, or modifies other code, often at
runtime. This can lead to more concise, flexible, and reusable code. However, metaprogramming
presents a challenge for static type checking, as the code can change during runtime, making it
difficult to analyze its behavior and properties. Given that a method can be added to a class
during runtime, it is non-trivial to know whether the class does or does not have the method at
the call site during the compile time [84].

Ruby was first made public with the release of ruby-0.95 on 21 December 1995 [85], and Ruby
1.0 was released on 25 December 1996 [85]. Initially, the language gained popularity in Japan,
and its development was further advanced with the release of Ruby 2 in 2013 [86] and Ruby 3 in
2020 [87]. The Ruby on Rails web framework, developed by David Heinemeier Hansson of the
37signals company, has significantly contributed to Ruby’s popularity [88]. Rails is a web-based,
opinionated, full-stack framework for both front-end and back-end development.

Similar to Python, discussions about the language’s further development take place on mailing
lists [82]. In 2006, Ruby achieved mass acceptance, with active user groups formed in the world’s
major cities and Ruby-related conferences filled to capacity [82]. As of April 2023, Ruby is
ranked 18th on the TIOBE Programming Community index [11], 17th in Stack Overflow’s 2022
Developer Survey in the programming, scripting, and markup languages category [10], and 10th
on GitHub’s list of most-used programming languages in 2022 [9]. Ruby continues to be a popular
choice for developers due to its flexibility, expressiveness, and strong community support.

3.2.1 Ruby Built-in Types

Ruby is a pure object-oriented language. All values are objects and all objects inherit from a
class named Object and share the methods defined by that class [83, p. 86].
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1 class A
2 attr_accessor :attr_a
3

4 def initialize
5 @attr_a = 'Hello'
6 end
7 end
8

9 a = A.new
10

11 def a.greet
12 puts " #{attr_a} World!"
13 end
14

15 a.greet # 'Hello World!'
16

17 class B
18 def greet
19 puts 'Gutten Tag!'
20 end
21 end
22

23 def say_hi(x)
24 x.greet
25 end
26

27 b = B.new
28

29 say_hi(a) # 'Hello World!'
30 say_hi(b) # 'Gutten Tag!'
31

32 class DynamicGreeter
33 attr_accessor :greeting
34

35 def initialize(greeting)
36 @greeting = greeting
37 end
38

39 define_method :greet do
40 puts " #{greeting} Le Monde!"
41 end
42 end
43

44 dynamic_greeter = DynamicGreeter.new('Bonjour' )
45 dynamic_greeter.greet # 'Bonjour Le Monde!'

Code listing 7 Demonstration of Ruby object-oriented system
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Numeric Types. Numeric types in Ruby inherit from the Numeric class. The numeric classes
in Ruby include Integer [89], representing integer numbers. Although other integer types such
as Fixnum and Bignum, are no longer supported, they can still be used in the text below to
demonstrate legacy tools in a time-appropriate manner. The Float [90] class represents real
numbers while the Complex [91] and Rational [92] classes represent complex and rational num-
bers, respectively. The Ruby documentation and accompanying code snippets demonstrate a
type hierarchy in which Integer is a ”narrower” type than Rational, which is a ”narrower”
type than Float, which in turn is a ”narrower” type than Complex. This hierarchy is similar to
that found in Python.

Enumeration Types. Ruby does not have any enumeration types. Boolean values are not part
of a separate enumeration type but are singleton instances of two separate classes: true as a
singleton instance of the TrueClass, and false as a singleton instance of the FalseClass [83,
p. 72].

Subrange Types. Subrange types are represented by a range object (1..10, 1...10). This Ruby
syntax represents values between two numbers and is an instance of the Range class [83, p. 68].

Composite Types. Composite types in Ruby encompass a variety of data structures, including
String [83, p. 46], a mutable sequence of characters; Array [83, p. 64], a mutable, indexed,
heterogeneous, dynamically resizable sequence; and Hash [83, p. 67], an associative array of
key-value pairs. Implicit conversions between types and other objects are possible as long as
they have the appropriate method (to_ary, to_int, to_s, etc.).

The Listing 7 demonstrates some key features of its object-oriented system. Lines 1–7 define
a simple class A with an attribute attr_a and an initializer method. Line 9 demonstrates how
to instantiate a class. Lines 11–15 demonstrate Ruby’s support for dynamically adding methods
to objects. Lines 17–30 showcase Ruby’s approach to duck-typing. Finally, the example demon-
strates Ruby’s metaprogramming capabilities with the DynamicGreeter class (lines 32–42). This
class has a custom greeting attribute, and its greet method is defined dynamically during class
definition using the define_method method (lines 39–41). On lines 44 and 45 a new instance
of the DynamicGreeter is created with the greeting ”Bonjour”, and its greet method is called,
printing ”Bonjour Le Monde!”.

In summary, Ruby’s built-in types cover numeric, enumeration, subrange, and composite
types, each providing unique features to the language. The object-oriented system, dynamic
method addition, duck-typing, and metaprogramming capabilities demonstrated in the listing
showcase Ruby’s flexibility and expressiveness. This foundation sets the stage for discussing
gradual typing, which builds on these core concepts to add type annotations and enhance the
language’s safety and reliability.

3.2.2 Towards Gradual Typing
The following text will delve into the history of gradual typing in Ruby, discussing the progression
of type annotations and gradual typing systems within the language. The journey of gradual
typing in Ruby has diverged significantly from Python’s, with the Ruby core team making distinct
design decisions that reflect an alternative philosophy and approach. This presents a unique
opportunity to analyze how these differing perspectives, compared to Python, have shaped the
gradual typing landscape in Ruby.

Figure 3.2 illustrates the history of Gradual Type Checkers for Ruby, discussed further in this
text. Individual tools are mapped to their year of creation, either through the publication of a
paper or the release of a production version of the tool on RubyGems – a package management
system for Ruby. The figure also presents major versions of Ruby and adjacent academic work.
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An arrow on the diagram indicates that the author directly referred to the previous work in an
adjacent paper or that part of the previous work (typically type definitions) was adapted in the
later one.
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Figure 3.2 History of Gradual Type Checkers and Adjacent Academic Work

Furr et al. [93] noted in their 2009 paper that Ruby had been known for its steep learning
curve and focus on the development experience. The price for this had been that errors might
have remained latent until runtime. They observed that introducing type annotations could
have improved code documentation and made it easier to identify type-related errors before they
became runtime issues.

3.2.2.0.1 Diamondback Ruby To address this issue, they introduced an extension for Ruby
called Diamondback Ruby (DRuby). This extension added a new static type inference system to
enhance Ruby’s type system. The goal had been to improve code safety, maintainability, and
readability by allowing developers to provide type annotations [93].

The type annotations were in the form of comments to ensure interoperability with the
standard Ruby interpreter. The DRuby annotation language offered features such as intersection
types, union types, optional types, self type, parametric polymorphism or generics, and tuple
types for heterogeneous arrays [93].

In the example below, the + operator and the insert method are annotated with comments
indicating their expected argument types and return types [93]:
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class String
...
##% "+" : (String) -> String
def +(p0); end
##% insert : (Fixnum, String) -> String
def insert(p0, p1); end
...
end

This example demonstrates intersection types. The include? method allows both Fixnum
and String types, working similarly to overloaded functions in other languages. The method’s
behavior differs depending on the argument type [93]:
...
##% include? : (Fixnum) -> Boolean
##% include? : (String) -> Boolean
def include?(p0); end
...

This one demonstrates union types. The % method takes any of the three numeric types
(Fixnum, Float, or String). This feature serves cases where multiple types share the same
method(s) called within the function, making them substitutable for the method’s purpose [93]:
...
##% "%" : (Fixnum or Float or String) -> String
def %(p0); end
...

The following two examples are functionally equivalent and demonstrate optional types [93]:

##% chomp : () -> String
##% chomp : (String) -> String
def chomp(p0=$/); end

##% chomp : (?String) → String
def chomp(p0=$/); end

This example demonstrates the use of the self type as a reference to the adjacent object [93]:

##% clone: () -> self
def clone() end

The following example shows parametric polymorphism. In this example, the array is of a
generic type, which means the return value of the method at is the same type as the <t> type
of the array [93]:

##% Array<t>
class Array

##% at : (Fixnum) -> t
def at(p0); end
...

end
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Tuple types are used to handle heterogeneous arrays, where each item can be of a different
type. Essentially, tuple types are vectors of types that map 1:1 to the items in the array.

##% f : () -> (Fixnum, Boolean)
def f(); [1, true] end
a, b = f

After its introduction, DRuby was extended to support the Ruby on Rails framework [94].
After that, however, there was not much news. The last update on the research project’s official
web page is from 2009 [95]. Even though it seems like DRuby never reached wide adoption, it
proved that static typing in Ruby is possible.

LASER: Lexically and Semantically Enriched Ruby. LASER, a thesis project by Michael
Joseph Edgar, aimed to determine what useful information about real-world Ruby programs
could be statically discovered. LASER leveraged traditional static analysis techniques, such as
Flow Analysis [96] and Static Single Assignment [97] transformations, to extract meaningful
program invariants, including both explicitly programmed constants and those implicitly defined
by Ruby’s semantics [84]. By establishing a well-defined distinction between load time and
runtime, LASER could determine the properties of a Ruby program even when it included
common metaprogramming techniques [84].

Inspired by DRuby and Ripper, a Ruby feature capable of printing out an AST, LASER
performed static analysis and linting for Ruby code [84]. It utilized Ripper to create an AST
and conducted both low-level and high-level analysis, including Control Flow Graph (CFG)
generation, Top-Level Simulation, Static Single Assignment, Type Inference, Purity Detection,
Constant Propagation, Inferring Block Use Patterns, Unreachable Code Analysis, and Unused
Variable Analysis [84]. Finally, LASER generated a printout of warnings and errors based on its
analysis. Although the author mentions type annotations, it appears that they were not included
in the final version of the project [84].

Below is an example of LASER’s analysis of a Ruby code snippet [98]:

1 $ cat temp.rb
2 class Foo
3 def initialize(x, *args)
4 a, b = args[1..2]
5 end
6 end
7 Foo.new(gets, gets)
8

9 $ laser temp.rb
10 4 warnings found. 0 are fixable.
11 ================================
12 (stdin):3 Error (4) - Variable defined but not used : x
13 (stdin):3 Error (6) - LHS never assigned - defaults to nil
14 (stdin):3 Error (4) - Variable defined but not used : a
15 (stdin):3 Error (4) - Variable defined but not used : b

Lines 2–7 show the Ruby code being analyzed. Line 10 provides high-level statistics generated
by LASER. Lines 11–15 elaborate on individual errors. Line 11 points out that variable x is
defined but never used, while line 12 indicates that the Left-Hand Side (LHS) of the assignment
is not assigned a value, and so it defaults to ’nil’. Lines 13 and 14 reveal that variables a and b
are defined but not used in the code.

Although there was no development after 2011, the project has 390 stars and 16 forks on
GitHub.
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Rubydust. Rubydust, introduced in 2011, was a dynamic analysis tool for Ruby aimed at pro-
viding static guarantees, such as eliminating method-not-found errors [99]. Among the authors
are Jong-hoon An, Jefferey S. Foster, and Michael Hicks who previously worked on DRuby.
Rubydust overcame the challenges of static analysis in Ruby by utilizing extensive test suites,
method call boundaries, and constraint-based dynamic type inference. This allowed for inferring
correct types and detecting type errors while maintaining soundness qualified by coverage.

In summary, Rubydust offered a novel approach to dynamic type inference for Ruby, imple-
mented as a metacircular library, and yielded promising results on small programs [99]. The work
on Rubydust subsequently inspired the development of the Ruby Type Checker (RTC ) [100].

The Ruby Type Checker. RTC was introduced in 2013 by a team of researchers, including
Jeffrey S. Foster [100]. Inspired by the dynamic type inference tool Rubydust [99], RTC focused
solely on runtime analysis, which might technically disqualify it as an example of gradual typing.
However, considering that Ren et al. [99] were adding type annotations to a dynamically typed
language, running type checks earlier (though still during runtime), and allowing both annotated
and unannotated code to coexist within the same file, the author finds RTC relevant to the topic
of this thesis.

RTC supported annotations on classes, methods, and objects. Its type system included
union types, intersection types, higher-order method types, polymorphism, and type casts. The
implementation used annotated objects wrapped by proxy objects that connected types with
the underlying object. When a proxy was instantiated, it executed the checks before and after
delegating the call to the underlying object. This meant that the type-checking happened eagerly,
i.e., when the method was called. The proxy also annotated incoming arguments and the return
value [100].

Annotations occur on a class basis. A call to rtc_annotated needs to be made to mark a
class as being annotated:

class A
rtc_annotated

end

This call makes annotation methods available locally. One such annotation method is typesig:

typesig "method_A: () -> Fixnum"
def method_A ... end

This annotation specifies method_A as having no parameters and a return value of Fixnum
type. Union types are annotated using the keyword or:

typesig "method_B: () -> Fixnum or %false"
def method_B() ... end

Where method_B returns either Fixnum or false. Intersection types are annotated using
multiple method annotations one above another:

typesig method_C : (A) -> Fixnum
typesig method_C : (Fixnum) -> Fixnum
def method_C(employee) ... end

Where method_C accepts either A (an employee object) or Fixnum (an employee ID). Higher-
order methods can be annotated using the following syntax:
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class String
rtc_annotated
typesig "each_char: () { (String) -> %any } -> String"

end

In this example, the String class defines the method each_char, which calls its higher-order
argument on each character of the receiver as a string of length 1. Since the return value of the
higher-order method is not used by each_char, %any is used to signify that it might return any
value. Parametric polymorphism can be achieved using a type variable:

class Array
rtc_annotated [:t , :each ]

typesig " '[]': (Range) -> Array<t>"
typesig " '[]': (Fixnum, Fixnum) -> Array<t>"
typesig " '[]': (Fixnum) -> t"

end

Where the :t is a type parameter. :each indicates how to find the contents type of :t for
a raw Array – when checking whether a raw Array can be annotated with type Array<u>, the
each method is called to iterate over all elements and test their type. Classes with multiple type
parameters can be specified by passing multiple two-element list arguments to rtc_annotated.
This was not very fast – that is why RTC allows opting out from this type of checks by using a
non-strict mode.

The performance overhead of RTC was large, often several orders of magnitude. The non-
strict mode showed a speed-up, especially when the program performed many Array operations.
The most significant recorded speedup was about 47%, still far from the speed of unannotated
code. However, the authors were able to discover some type errors [100].

After its introduction, RTC gained some adoption, with 84 stars and 4 forks on GitHub.
However, there was not much development since then. The only new code pushed to GitHub
was a 2016 announcement that RTC had been superseded by a new tool called RDL [101].

RDL. RDL was a lightweight system for adding types, type checking, and contracts to Ruby
programs [102]. First introduced in 2015 by the Programming Languages Research group at
the University of Maryland. Among the authors are Jeffrey S. Foster together with Brianna M.
Ren and Stephen T. Strickland who previously coauthored RTC. RDL authors also referred to
DRuby and Rubydust as their sources of inspiration [103].

Although the term ”gradual typing” was not explicitly mentioned, RDL allowed for the
coexistence of statically and dynamically typed code, as well as a smooth transition between the
two. By meeting these criteria, RDL aligns well with the definition established in Section2.2.
Considering the focus of this thesis, all non-typing features of RDL will be ignored in the text
below.

RDL provided type definitions for Ruby core and Ruby on Rails. The syntax of RDL was
similar to RTC, with annotations added above method definitions. Type checking could be
performed either at runtime or statically [103]. RDL supported union types, intersection types,
higher-order methods, and parametric polymorphism.

RDL’s syntax included a variety of features for adding type annotations to Ruby code [103].
To add annotation methods to the current scope, the following code is used:

require 'rdl'
extend RDL::Annotate

RDL, similar to RTC, decorates methods by adding annotations above them:
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type '(Integer, Integer) -> String'
def method_A(x, y) ... end

This gets checked at runtime. It is also possible to check statically:

type '(Integer) -> Integer' , typecheck : :label
def method_B(x)

"forty-two"
end

RDL.do_typecheck :label

An error message is generated if a type mismatch is detected:

$ ruby file.rb
.../lib/rdl/typecheck.rb:158:in `error': (RDL::Typecheck::StaticTypeError)
.../file.rb:6:3: error: got type `String' where return type `Integer' expected
.../file.rb:6: "forty-two"
.../file.rb:6: ˆ˜˜˜˜˜˜˜˜˜˜

Union types are annotated as follows:

type '(Numeric or String) -> %any'
def method_C(x) ... end

Here, x can be either Numeric or String, and the return type %any is a ”top” type that
matches any object. Intersection types are annotated like this:

type '(A) -> Integer'
type '(Integer) -> Integer'
def method_D(employee) ... end

Method D accepts either A or Integer (we can imagine A class representing an employee or
an ID of such an employee). Higher-order methods are annotated like this:

type '() { (String) -> %any } -> String'
def each_char() ... end

In this example, method each_char calls its higher-order argument on each character of the
receiver as a string of length 1. Since the return value of the higher-order method is not used by
each_char, %any is used to signify that it might return any value. Parametric polymorphism is
handled like this:

class Array
type_params [:t ], :all?

type Array, :[] , '(Range) -> Array<t>'
type Array, :[] , '(Integer, Integer) -> Array<t>'
type Array, :[] , '(Integer or Float) -> t'

end

The type_params method names the type parameter of the class. The three type annotations
show three acceptable signatures for method []. To assign a proper type to an Array object,
the programmer needs to use the RDL.instantiate! method:
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x = [1, 2]
RDL.instantiate!(x, 'Integer' )
x.push('three' ) # type error

Type_params support variance, where type_param [:t], :all? :+ would be covariant,
type_param [:t], :all? :- contravariant, and type_param [:t], :all? :˜ invariant [103].

In 2019, Kazerounian et al. introduced CompRDL, an extension of RDL that allowed library
method type signatures to include type-level computations, singleton types for table and column
names, and precise type signatures for tables, hash, array, and strings [104]. CompRDL was
proven to be sound and allowed for type-checking database queries.

RDL’s ideas have influenced the industry-standard type checker Sorbet which even adapted
RDL’s standard library definitions [105]. It also influenced Ruby 3 [106]. With over 35,000
downloads and 602 stars and 37 forks on GitHub, RDL has become a popular tool for adding
gradual typing features to Ruby programs [102, 103].

3.2.3 Emergence of Sorbet

Table 3.1 Early Development of Sorbet at Stripe

October 2017 Project kickoff, existing tools analysis, prototyping
November 2017 Go/no-go date, type syntax and type system features decided
February 2018 First code annotated manually

April 2018 60-day ”dark launch”, type checking added as a non-blocking step in CI
May 2018 Official announcement on Ruby Kaigi 2018
June 2018 Enforced in CI for every Stripe engineer

January 2019 Support for editor and OSS (Open Source Software) tooling
June 2019 Sorbet open sourced

In 2016, a full year before the work on Sorbet began, the first type annotations emerged in
Stripe’s (a payment company) Ruby codebase, which were checked at runtime with a check being
performed on each invocation [107]. The code looked like this:

class Yell < Opus::Command
declare_method({msg : String}, returns : String)
def call(msg)

helper(msg)
end

def helper(msg)
"Yell: #{msg}"

end
end

As Stripe’s Ruby codebase grew rapidly, the technological decisions that had helped them
iterate faster in their early days started to slow them down. By 2017, onboarding new engineers
took longer, and implementing new changes became difficult, some even borderline impossible.
The team decided to stick with Ruby, but some changes needed to be made. They seriously
considered adopting one of the two existing type checkers, RDL or TypedRuby, but neither met
their needs. RDL, while powerful, was just too slow for the needs of the payment company.
TypedRuby was faster but buggy and offered only limited functionality. Inspired by Microsoft’s
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TypeScript and Facebook’s Hack, they decided to try a similar approach with Ruby and started
the development of Sorbet [107].

In 2018, Petrashko et al. presented Sorbet to the public for the first time at Ruby Kaigi, a
conference focused on the Ruby ecosystem. They described the situation at Stripe and the scale
of Ruby usage in the company, with millions of lines of code. They also launched a public demo
and announced plans to make Sorbet open-source. Sorbet’s design principles were as follows[108]:

Explicit – that means annotations

Useful, not burdensome – the syntax should be concise, error messages clear

As simple as possible, but powerful enough – the type system should be expressive enough to
cover a big portion of real Ruby code. On the other hand, the goal is not to type all constructs
at any cost. The type system needs to be simple, easy to learn, and easy to understand.

Compatible with Ruby – no new syntax

Scales – should enable speed for teams and codebases of any size

Can be adopted gradually

Even back then, Sorbet offered an impressive list of features such as the identification of
incompatible types, non-existent methods, and unreachable code. It provided three levels of
strictness[108]:

# typed: true - enabled type checking

# typed: strict - required instance variables to be declared

# typed: strong - disallowed calling untyped code

Sorbet enabled annotating methods[108]:

sig(param1: T1, param2: T2).returns(T3)
def method_X(param1, param2) ... end

Where method_X accepts two parameters of types T1, and T2 respectively. Annotating
variable declarations was optional[108]:

a = 5
a = T.let("str" , String) # Explicitly declared type String

Where the first line infers type Integer, while the second performs explicit re-declaration to
the String type. Generic classes could be annotated as follows[108]:

class Box
extend T::Generic

Elem = type_member

sig.returns(Elem)
attr_reader :x

sig(x : Elem).returns(Elem)
attr_writer :x

end

int_box = Box[Integer].new
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Where Elem is the generic type. Generic methods would be annotated as follows[108]:

class Array
Elem = type_member

type_parameters(:U ).sig(
blk : T.proc(arg0: Elem).returns(T.type_parameter(:U )),

)
.returns(T::Array[T.type_parameter(:U )])
def map(&blk); end

end

In this example, Elem is the generic type representing the elements of the array, and the map
method is defined as a generic method that takes a block (higher order method) blk with a single
argument of type Elem. The block returns a type U, and the map method itself returns an array
of type U. This allows the type checker to infer the type of the result of the map method based
on the block passed to it.

In the process of developing Sorbet, the team made several key decisions, such as changing
the syntax from

sig(bar : Integer).returns(String)

to

sig {params(bar : Integer).returns String}

to allow for lazy loading of type definitions. They also introduced new tools for translating
dynamic definitions to static ones, automatically fixing common bugs, identifying type-checkable
files, and determining the most impactful methods to type [105].

By May 2019, all of Stripe’s Ruby developers used Sorbet to check new code, with a large por-
tion of older code being annotated as well [109]. A pilot program was conducted with crypto ex-
change Coinbase and e-commerce platform Shopify [109]. Sorbet was introduced to rubygems.org
in 2018 as version 0.0.1.pre.prealpha, with the first production version (0.0.42) being released in
2019 [110].

At the 2019 Kaigi conference, new IDE features were announced, such as ”Go to Definition,”
which allows developers to go from an instance to the definition of an expression, autocomplete
functionality, and contextual documentation display [111]. It was also announced that the Sorbet
team was collaborating with the Ruby team on types for Ruby 3.0, and new documentation was
released. Additional tooling was introduced, including the srb rbi (a family of commands for
automatic generation of .rbi files), improved support for the Ruby on Rails framework, and
sorbet-typed.

Sorbet-typed, developed by Coinbase, inspired by TypeScript’s DefinitelyTyped repository,
served as a central repository for Sorbet-compatible type definitions, stored as .rbi (Ruby In-
terface) files [112]. These type definitions were used by Sorbet for optional annotation of both
Ruby core and external packages and were stored in a GitHub repository where Ruby package
creators can submit their type definitions for use by the library.

RBI files provided information that Sorbet does not understand naturally, such as any-
thing defined in a package, dynamically modified ancestors, constants accessed or defined with
const_get or const_set, and methods defined with define_method or method_missing [113].
These type definitions could be generated or handwritten, and developers could update them as
needed, giving them full control over their projects and ensuring predictability. Syntax of RBIs
was the same as normal Ruby file, except for method definitions not needing implementation:
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# -- example.rbi --
# typed: strict

module MyModule
end

# Declares a class
class A

include MyModule
extend MyModule

X = T.let(T.unsafe(nil), Integer)

sig {params(x : Integer).returns(String)}
def method_A(x)
end

end

Where X is an integer constant with arbitrary value and method_A is a method accepting
Integer, returning String.

In 2019, the emergence of Tapioca was witnessed as an alternative to the use of srb rbi.
Alongside this, rbi-central provided type definitions for Tapioca, presenting an alternative to
sorbet-typed. Both of these tools were developed by the team at Shopify [114].

In a presentation at the 2019 JVM Language Summit, Petrashko shared benchmark results
demonstrating Sorbet’s performance, with an average incremental type-checking time of 5ms
on keypress in the integrated development environment (IDE) [115]. He also discussed the
implementation details.

The implementation details. Sorbet’s type-checking process consisted of two main steps:
syntactic analysis and semantic analysis. The syntactic analysis involved several phases, such
as pre-processing and indexing of the source code (index phases), building an Abstract Syntax
Tree (AST) from the source code (parser), simplifying the AST by rewriting complex constructs
into simpler ones (desugar), handling common library constructs such as getters, setters, Ruby
Structs, and others (DSL passes), and discovering definitions and resolving class names, ulti-
mately building the SymbolTable (namer and resolver).

Semantic analysis was composed of two main phases: building a Control Flow Graph (CFG)
and type-checking it, and inferring types for expressions and variables based on the information
available from the preceding phases. The type-checking phase operated on an immutable global
state, ensuring consistency. The type inference phase further refined the typing information and
provided more precise type checking.

These implementation details contributed to Sorbet’s impressive performance and allow it
to effectively handle complex Ruby codebases while providing accurate type checking and error
reporting.

Steep. Around the same time as Sorbet, work began on another gradual type checker called
Steep [116]. Steep was developed by Soutaro Matsumoto (not to be confused with Yukihiro
Matsumoto, the creator of Ruby). In the early days of Steep’s development, limited information
was available on the English-speaking internet. The first mention the author of this thesis was
able to find was in a 2019 article on type checking in Ruby by IT journalist Michael Kohl [117].
Kohl noted that Steep was the most widely known alternative to Sorbet and, unlike Sorbet,
Steep did not use annotations or type inference, relying entirely on .rbi files.
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3.2.4 Ruby 3 and Beyond

RBS. Soutaro Matsumoto played a significant role in the development of Ruby 3, particularly
in the area of type-related features [118]. He focused on creating a new language for type
signatures called RBS. These type signatures were stored in .rbs files, separate from the Ruby
code itself. The RBS library facilitated the portability of type signatures between type checkers
and encouraged the community to write types for their packages and applications.

RBS type signatures had several key features, including duck typing, union types, and method
overloading. These features allowed for increased code safety, better IDE integration, and the
detection of more bugs. Both Steep and Sorbet announced support for RBS. Matsumoto, in the
announcement of the new feature, made it clear that their aim was not to deprecate Sorbet or
RBI but rather to achieve interoperability. RBS also included a translator for converting RBI
files to RBS format [118].

The Sorbet team announced they would support both RBI and RBS files, allowing for in-
dividual preference [119]. They doubled down on their take on inline annotations reasoning: it
prevented ambiguity, was fully compatible with other tools, and was backward compatible. How-
ever, there were some drawbacks, such as limiting options and the inability to extend Ruby’s
syntax for prettier annotations [119].

Ruby 3. Ruby 3 was released on Christmas day in 2020 with three main features: performance,
concurrency, and typing [120]. The long-term vision of Matz (Yukihiro Matsumoto) was to
achieve static type checking without type declaration, using abstract interpretation. Typing
features included RBS, and TypeProf, an experimental type analysis tool using type inference
to generate RBS files [120].

RBS was able to support basic constructs of the language [118]:

class Merchant
attr_reader token : String
attr_reader name: String
attr_reader employees : Array[Employee]

def initialize: (token : String, name: String) -> void

def each_employee: () { (Employee) -> void } -> void
| () -> Enumerator[Employee, void]
end

Where Merchant is a class with three attributes: token, name, and employees, that are
typed String, String, and a generic class – Array[Employee] respectively. The class also has
two methods – initialize that accepts two parameters of type String and returns void and
each_employee that accepts a higher-level method (also called a block) and returns void or
accepts void and returns an Enumerator instance. Duck typing support would be achieved,
using interfaces [118]:

interface _Appendable
def <<: (String) -> void
end

def append: (_Appendable) -> String

Where _Appendable is an interface that requires << operator that accepts a String object.
Method append will then accept an Array[String] that has such an operator, but won’t ac-
cept, for example, Integer or True. Part of the specification is union types with the following
syntax [118]:
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def author: () -> (User | Bot)

Where the author method returns either a User or a Bot type. The syntax would then go
as follows [118]:

def each_reply: () -> Enumerator[Comment, void]
| { (Comment) -> void } -> void

Where the each_reply method has two different signatures: one that accepts no arguments
and returns an Enumerator[Comment, void], and another that accepts a block taking a Comment
object and returns void.

In 2021, the Sorbet team open-sourced an experimental ahead-of-time compiler [121]. Though
not ready for external use, for Stripe’s production API traffic it was 22–170% faster than Ruby’s
default implementation. The team chose ahead-of-time compilation because it is conceptually
simpler, and allows static type checking to provide performance improvements.

Ruby 3.1.0, released in 2021, added more type-related features. RBS introduced bounded
polymorphism and generic type aliases. The bounded polymorphism would work as follows [122]:

class PrettyPrint[T < _Output]
interface _Output

def <<: (String) -> void
end

attr_reader output : T
end

Where T is a type parameter that implements the _Output interface. The _Output interface
require << method accepting String and returning void. String provides such method while
Integer does not. The generic alias would then look like this:

type list[T] = [T, list[T]] | nil

type int_list = list[Integer] # List of Integer
type object_list = list[Object] # List of Object

TypeProf in the same version added experimental IDE support, which included displaying
guessed or provided method signatures above methods and completing method names [122].

In 2022, the Sorbet team open-sourced their extension for VS Code, a popular IDE [123]. That
same year, the Sorbet team officially recommended Tapioca as the go-to package for generating
RBI files, replacing the srb rbi family of commands. Sorbet-typed would then be superseded
by rbi-central [124]. The srb rbi command entered maintenance mode, with no new features
being added and the potential for retirement if a new Ruby release causes a breaking change.

3.2.5 Typed Ruby in 2023
Throughout this section, both academic research as well as commercial efforts on adding gradual
typing to Ruby were discussed. Gradual type checkers such as Sorbet or Steep are popular and
used by many programmers. At the moment, Sorbet seems to be ahead with almost 17 million
downloads on rubygems [110], with Steep being a distant second with just over 800 thousand
downloads [125].

Listing 8 demonstrates how the same code can be written in Ruby both with annotations
using Sorbet and without annotations.
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1 # Untyped code
2

3

4 class Vec2D
5

6

7

8

9

10

11 attr_accessor :x , :y
12

13

14

15

16 def initialize(x, y)
17 @x, @y = x, y
18 end
19

20

21

22

23

24 def +(other)
25 if other.is_a?(Numeric)
26 other = Vec2D.new(other, other)
27 end
28

29 Vec2D.new(
30 self.x + other.x,
31 self.y + other.y
32 )
33 end
34

35

36 def to_s
37 "( #{@x}, #{@y})"
38 end
39 end
40

41 vec1 = Vec2D.new(1, 2)
42 vec2 = Vec2D.new(3, 4)
43 vec3 = Vec2D.new(1.5, 2.5)
44

45 puts vec1 + vec2 # Output: (4, 6)
46 puts vec1 + vec3 # Output: (2.5, 4.5)
47 puts vec1 + 2 # Output: (3, 4)

# typed: strict
require 'sorbet-runtime'

class Vec2D
extend T::Sig

T_IntFloat = T.type_alias {
T.any(Integer, Float)

}

attr_accessor :x , :y

sig {
params(x : T_IntFloat, y : T_IntFloat).void

}
def initialize(x, y)

@x, @y = x, y
end

sig {
params(other : T.any(Vec2D, T_IntFloat))
.returns(Vec2D)

}
def +(other)

if other.is_a?(Numeric)
other = Vec2D.new(other, other)

end

Vec2D.new(
self.x + other.x,
self.y + other.y

)
end

sig { returns(String) }
def to_s

"( #{@x}, #{@y})"
end

end

vec1 = Vec2D.new(1, 2)
vec2 = Vec2D.new(3, 4)
vec3 = Vec2D.new(1.5, 2.5)

puts vec1 + vec2 # Output: (4, 6)
puts vec1 + vec3 # Output: (2.5, 4.5)
puts vec1 + 2 # Output: (3, 4)

Code listing 8 Comparison of Ruby code without and with type annotations
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In the type-annotated version of the code (on the right), Sorbet type annotations enhance
the code’s readability for both humans and the type checker. The # typed: strict directive
on the first line enforces strict typing rules, requiring instance variables to be declared. Sorbet’s
runtime system is imported on the second line, while extend T::Sig on the fifth line allows the
Vec2D class to use the sig method for type annotations. A type alias, T_IntFloat, representing
Integer and Float types, is defined on lines 7–9. The initialize method’s type annotation on
lines 13–15 specifies that it takes two T_IntFloat parameters and returns void. The operator +
is annotated on lines 20–23, showcasing union types by accepting either a Vec2D or a T_IntFloat
and returning a Vec2D. Lastly, the + method’s body (lines 25–32) demonstrates different behaviors
based on the parameter’s type.

While this style of annotations is arguably neither the shortest nor easiest to read, it allows
for full backward compatibility and interoperability with the existing Ruby ecosystem as well as
excellent performance.

3.2.6 Tooling
Similarly to Python (see Subsection 3.1.6), type checking in Ruby is not integrated into the core
language and relies on external type checkers and the adjacent ecosystem. In this subsection, we
discuss several notable tools available to the Ruby community.

Sorbet. Sorbet is a massively popular gradual type checker, extensively discussed throughout
this section. As of 2023, it is employed by dozens of companies, including Stripe, Shopify,
Coinbase, Instacart, and Kickstarter [126]. Sorbet provides IDE support for VS Code and via
Language Server Protocol to several others including Vim, Emacs, Sublime, or IntelliJ. With
over 3.4k stars on GitHub and 16,995,789 downloads on RubyGems [110], Sorbet has become an
essential part of the Ruby ecosystem.

Tapioca. Tapioca, a tool developed by Shopify [114], focuses on generating Ruby Interface
(RBI) files for packages used in an application as well as various Domain Specific Language
(DSL) patterns that rely on metaprogramming. Tapioca allows for the automatic generation of
RBI files based on an application’s dependencies file, importing signatures and documentation
from the source code of packages, and synchronization validation for continuous integration.
Tapioca also assists in managing shim RBI files and finding useless definitions in them. As of
2023, Tapioca has 518 stars on GitHub and 6,186,848 downloads on RubyGems [127].

Steep. Steep, another gradual type checker for Ruby developed by Soutaro Matsumoto [116],
supports the RBS format for type annotations. Unlike Sorbet, Steep does not support inline type
annotations; instead, annotations are stored in a separate file. Steep allows generating signature
prototypes, providing a starting point for annotating files. An example of Steep’s signature
prototype generation is shown below:

$ rbs prototype rb lib/person.rb lib/email.rb lib/phone.rb
class Person

@name: untyped
@contacts: Array[untyped]
def initialize: (name: untyped) -> Array[untyped]
def guess_country: () -> untyped

end

With IDE support for VSCode and Sublime Text, Steep is actively developed and contin-
ues to gain traction. As of 2023, Steep has 1.2k stars on GitHub and 812,502 downloads on
RubyGems [125].

These tools have significantly contributed to the adoption of gradual typing in the Ruby
community and have become essential components of the Ruby ecosystem.
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3.2.7 Evaluating Ruby’s (Sorbet) Type System
Sorbet will be due to its popularity used for comparison and discussion in the rest of the text
including this brief discussion on type soundness of its type system.

Type Soundness. Although the selected type-enforcement strategy allows for type soundness,
there are documented cases where Sorbet behaves unsoundly [128].

Type-Enforcement Strategy. Greenman et al. [24] categorize Sorbet’s type enforcement
strategy as hybrid enforcement, as it performs static analysis while runtime checks are optional.

In summary, Sorbet’s type system enforces type safety and aims for type soundness, though
there are instances where it may behave unsoundly. Its hybrid type-enforcement strategy allows
for both static analysis and optional runtime checks, catering to various development scenarios
and requirements.

3.2.8 Summary
Ruby’s dynamic type system is coherent and follows clear guiding principles. However, ap-
proaches towards the addition of gradual typing were quite different. The journey for Ruby
began in the academic sphere, with nine years of experimental work preceding the emergence of
the first commercial tool. These commercial tools are built heavily on previous academic work,
providing a head start.

The academic tools excel in many aspects, such as the ability to annotate language constructs
and (for some) soundness, but lack the runtime performance required for commercial applications
like payment processing and e-commerce. In contrast to Python, the core Ruby language was
slow to incorporate syntax changes supporting gradual typing, resulting in a less clean and more
verbose syntax (compare Listing 2 to Listing 8). A significant challenge in adding gradual typing
to Ruby was its extensive use of metaprogramming capabilities, which made type annotations
more complex.

Despite these challenges, Ruby tools (especially Sorbet) have achieved impressive speed in
the critical path of their domain-specific uses. Throughout the development process, the gradual
typing journey has been driven more by companies than individual developers. The engagement
between the language community and the Ruby core team played a crucial role in shaping the
gradual typing system.

One unique aspect of Ruby’s approach is the use of type annotations in separate files (RBI
or RBS), with both major type checkers supporting this feature while only one of them supports
annotations directly in code.

The experiences from Ruby’s gradual typing journey offer valuable insights for adding grad-
ual typing to R. Engaging the community and learning from feedback, is a key. Additionally,
considering the balance between academic and commercial needs, and focusing on performance
optimization for practical applications are other important factors. By adopting these lessons,
R can benefit from a more robust and flexible type system, providing developers with improved
code quality and maintainability.

3.3 PHP

PHP (PHP: Hypertext Preprocessor) is a popular programming language primarily used for
web development, designed for creating HTML content and supporting object-oriented program-
ming [129]. PHP allows for server-side scripting, command-line scripting, and GUI applications.
The language is flexible and offers support for major databases such as MySQL, PostgreSQL,
Oracle, and more. PHP has a rich standard library and a variety of extensions.
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PHP was created by Rasmus Lerdorf in 1994, originally known as Personal Home Page [129].
The first version was announced in 1995 on the Usenet as a framework for useful tools. PHP 2.0,
announced in 1996, was a server-side HTML embedded scripting language. This shift towards a
scripting language was driven by PHP users who demanded greater control over their websites.

In 1997, Andi Gutmans and Zeev Suraski created PHP 3.0, which provided support for
major operating systems, databases, and email protocols [130]. In 1999, Gutmans and Suraski
established Zend Technologies and developed PHP 4.0 along with an open-source parser called
Zend Engine. The company played a pivotal role in the development and popularization of PHP,
contributing to its technical advancements and widespread adoption. In 2015, Zend Technologies
was acquired by Rogue Wave Software, which was later acquired by Perforce Software in 2019,
becoming Zend by Perforce [130].

PHP 5.0 was released in 2004, followed by PHP 7.0 in 2015 after PHP 6.0 was never released
due to development issues [131]. PHP 8.0 was released in 2020. In 2021, the non-profit PHP
Foundation was established to support, advance, and develop the PHP language [132].

Today, PHP is a popular and widely used programming language. It ranks 7th on GitHub’s
list of most-used programming languages in 2022 [9], 10th in Stack Overflow’s 2022 Developer
Survey in the programming, scripting, and markup languages category [10], and 9th on the
TIOBE Programming Community index for April 2023 [11].

3.3.1 PHP built-in types
Like Python and Ruby, PHP is a dynamically typed language that includes several built-in
types [133].

The type system employs a nominal approach with a strong behavioral subtyping relation,
ensuring that a subtype’s behavior is a more specific version of its supertype’s behavior. This
guarantee is achieved through compile-time verification, complemented by dynamic type checking
at runtime [134].

In the following text, a brief overview of PHP’s types and object-oriented system will be
presented. For a more comprehensive explanation, please refer to the official documentation [134].

Numeric Types. Numeric types in PHP include int and float, which represent signed integers
of platform-dependent size (typically 32 or 64 bits) and floating-point numbers, respectively. The
float type behaves as a ”wider” type to int [134].

Enumeration Types. PHP has a boolean type bool as well as support for user-defined enu-
merations (enum) [134].

Subrange Types. PHP does not have subrange types.

Composite Types. Composite types in PHP include array, resource, and object [134]. The
array is implemented as an ordered collection of key-value pairs where both key and value are
heterogenous; such a data structure can behave like other container types, including lists, hash
tables, or dictionaries [135]:
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<?php
$array = array(

"foo" ,
"bar" ,
"hello" => "world" ,
-100,

);
var_dump($array);

// array(4) {
// [0]=>
// string(3) "foo"
// [1]=>
// string(3) "bar"
// ["hello"]=>
// string(5) "world"
// [2]=>
// int(-100)
// }

The resource is a special variable that refers to an external file, database connection, image
canvas area, etc.

Type string is a special case as it can behave as both composite [136] and numeric [137]
type. It represents a series of bytes where a byte can represent either a letter or a digit. This
leads to interesting behavior like [137]:

$foo = 1 + "10"; // $foo is 11
$foo = 1 + "10.5" // $foo is 11.5
$foo = 1 + "bob" // TypeError

The Listing 9 demonstrates some key features of PHP’s object-oriented system. Lines 2–4
define the interface Greetable, which requires the greet method to be implemented by any class
that implements it. On line 6, the abstract class A is declared, which implements the interface.
This class cannot be instantiated due to its abstract nature. The class attribute $privateAttr
(line 7) is private, meaning it can be accessed only within the scope of the class. The method
privateGreet() (lines 9–11) is also private, meaning it can be called within the class only, while
the protected method protectedGreet() (lines 13–15) can also be called from any class that
inherits from A. Lastly, the method greet (line 17) is both abstract—requiring any subclass to
provide an implementation—and public, meaning that it can be called outside the class A.

Line 20 displays simple inheritance (PHP does not support multiple inheritance). The func-
tion say_hi (lines 35–37) accepts any class implementing the interface Greetable, with lines 41
and 42 demonstrating how this can bring parametric polymorphism.

The provided example demonstrates several aspects of PHP’s object-oriented system, includ-
ing interfaces, abstract classes, inheritance, encapsulation, method visibility (public, private,
protected), and polymorphism through the use of interfaces.
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1 <?php
2 interface Greetable {
3 public function greet();
4 }
5

6 abstract class A implements Greetable {
7 private $privateAttr = 'Hello' ;
8

9 private function privateGreet() {
10 echo $this->privateAttr . " World! \n" ;
11 }
12

13 protected function protectedGreet() {
14 $this->privateGreet();
15 }
16

17 abstract public function greet();
18 }
19

20 class B extends A {
21 public function greet() {
22 $this->protectedGreet();
23 }
24 }
25

26 $b = new B();
27 $b->greet(); // 'Hello World!'
28

29 class C extends A {
30 public function greet() {
31 echo "Bonjour Le Monde! \n" ;
32 }
33 }
34

35 function say_hi(Greetable $x) {
36 $x->greet();
37 }
38

39 $c = new C();
40

41 say_hi($b); // 'Hello World!'
42 say_hi($c); // 'Bonjour Le Monde!'
43 ?>

Code listing 9 Demonstration of PHP object-oriented system
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3.3.2 Towards Gradual Typing
The following text delves into the history of gradual typing in PHP, tracing the evolution of type
annotations and the gradual typing system in the language. Unlike Python and Ruby, which
embraced more gradual and community-driven approaches, PHP’s path to gradual typing has
been shaped by the practical needs of its user base and the language’s specific design goals.
Through key milestones and decisions, the PHP’s gradual typing evolution will be explored.

In 2011, Facebook announced the Hip Hop Virtual Machine (HHVM), an open-source virtual
machine specifically designed for executing PHP code [138]. HHVM was developed to speed up
the development process and to replace the older transpiler HipHop. The main advantage of
HHVM is its ability to translate PHP code dynamically into native machine code.

In that time, Facebook’s thousands of PHP developers faced significant challenges in their
day-to-day work [139] One common bug involved calling a method on a null object, resulting in
runtime errors [139]. Furthermore, the complex API required developers to frequently consult
documentation [139] (note the similarity to the Subsection 3.2.3).

In 2012, Julien Verlauget and Alok Menghrajani, two Facebook developers, started working
on a solution. Their initial goal was to run a static analysis to identify and address vulnerabilities
in the code. As they collaborated with the HHVM team and expanded their own team, they
incrementally developed a more effective tool. This bottom-up approach proved successful, as
other engineers appreciated the improvements and provided valuable feedback. Consequently,
the tool gained widespread adoption within the company [140].

In 2014, three years after the introduction of HHVM, the tool was unveiled as Hack – a new
dialect of PHP designed primarily for use with HHVM [139]. Hack was developed as a gradually
typed and interoperable language with PHP, aiming to address prevalent issues in PHP programs
and offer a more sophisticated API while maintaining the capacity for rapid iteration [139].

It was designed to bring the best of both worlds (static and dynamic) and one mental model
(if you know PHP, you know Hack) [140]. Although most PHP files were valid Hack files, Hack
did not support certain PHP features and introduced new ones. One of the most significant
features introduced by Hack was the ability to add type annotations to function signatures and
class members. This allowed developers to specify the types of variables and function return
values, resulting in a more robust codebase. For instance:

<? hh // strict
function add(int $a, int $b): int {

return $a + $b;
}

In the example above, first notice that instead of the <?php tag, the <?hh tag is used signaling
Hack is used. Follows the // strict comment telling the static type checker, it should type-
check all language constructs – other options are // decl (only interfaces are checked) and the
default option that assumes that the code is correct if an annotation is missing and that unknown
functions and classes are defined in PHP (even when they are not) [140]. The function add takes
two integer parameters and returns an integer.

Hack also provided a new set of container classes called Collections, which were designed to
be more efficient and safer than PHP’s built-in arrays [140]. Some examples of Hack collections
are Vector, Map, and Set:

$vector = new Vector<int>(1, 2, 3);
$map = new Map<string, int>('a' => 1, 'b' => 2);
$set = new Set<string>('apple', 'banana', 'orange');

These Collections have more predictable behavior and better performance than PHP arrays,
as they are strongly typed and do not rely on key-value pairs. They also have their immutable
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variants ImmVector<T>, ImmMap<Tk, Tv> and ImmSet<T>. Generic classes and nullable types
would behave as follows [140]:

<? hh // strict
class Mailbox<T> {

private ?T $data = null;

public function send(T $data): void {
$this->data = $data;

}

public function fetch(): ?T {
return $this->data;

}
}

$mailbox = new Mailbox<string>();
$mailbox->send('Hi!' );
$msg = $mailbox->fetch();
if ($msg !== null) {

echo $msg; // Hi!
}

In this example, Mailbox is a generic class with a type parameter T. The ? before the param-
eter T denotes that the variable data can be either null or of type T. The send method accepts
a value of type T (never null) and does not return anything, while the fetch method does not
take any parameters and returns a nullable type T.

Apart from the type-specific changes, Hack introduced other benefits such as more concise
syntax for lambda expressions and constructors, as well as more consistent behavior for trailing
commas (making them always optional) [140]. While these changes were not necessarily directly
connected to gradual typing, they did have interesting effects. The concise syntax might have
offset the extra code introduced by the type annotations. Improved syntax overall might have
helped boost adoption and overcome initial doubts within the community.

Hack offered IDE support with fast execution, rapid type checking, and autocomplete [140].
The Hack type checker was designed as a server and functioned like a daemon, listening to kernel
events. It tracked dependencies and re-computed when a file changed [140].

The Facebook team presented their work on Hack at the Hack Developer Day 2014 event.
Shortly after, the Hack transpiler (h2tp) was introduced as a simple command-line tool. It
allowed projects converted from PHP to Hack to continue making releases targeting the PHP
language [141]. The tool provided forward compatibility with PHP by removing type annotations
and converting collections and lambda expressions into PHP constructs [141]. Some challenges in
the implementation of h2tp included the reference semantics of Hack collections and the difference
in handling empty collections between Hack and PHP [141].

In 2015, several large organizations, including Box, Etsy, and Wikipedia, announced their
adoption of HHVM [142]. While these companies switched to the virtual machine rather than
the Hack language, the adoption of HHVM demonstrates the potential for widespread adoption
of Hack in the future. This growing interest in type systems and the success of Hack may have
also contributed to the inclusion of static types in PHP itself.
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3.3.3 Emergence of Static Types in PHP
As a response to the growing interest in type systems, the release of PHP 7 in 2015 marked the
beginning of the introduction of static types in PHP. This release included support for return type
declarations and scalar type declarations [143, 144]. Return type declarations allowed specifying
the type of value that a function should return, which could be a scalar type (int, float, bool,
and string), a class, an interface, or the self keyword:

function test(): int {}

Scalar type declarations enabled annotating the types of function or method parameters:

function test(bool $param) {}

The official reasons for adding these features were to validate the programmer’s intent and
to allow for static analysis and static error detection [144].

With the release of PHP 7.1 in 2016, nullable types, the void type, and the iterable pseudo-
type were introduced [143, 145]. Nullable types followed the same syntax as in Hack:

declare(strict_types=1);

function foo(): ?int {
return null;
}

Notice the directive on the first line enforcing strict type checking – that means only a value
corresponding exactly to the type declaration will be accepted on function or method call or as
a return value. This directive is valid for the given file only.

The iterable pseudo-type acted as a built-in compile-time type alias for array | Traversable,
allowing for static analysis on any array-like structures.

PHP 7.2, released in 2017, added support for the object type [143, 145]:

function test(object $obj) : object {
return new SplQueue();
}

test(new stdClass());

In this example, the function test accepts a parameter of type object and returns a value of
the same type.

PHP 8.0, released in 2020, introduced union types and the mixed type [143, 145]. Unlike
Hack ”union” types, PHP allows the programmer to combine any built-in types or classes:

function foo(): X|Y

The mixed type is a supertype of all other types and is functionally equivalent to not specifying
a type. Semantically, it informs the reader that the generic type was intentionally chosen rather
than omitted:

function foo(mixed $X): mixed

Finally, PHP 8.1, released in 2021, added support for intersection types [143, 145]:
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function foo(): X&Y

In this case, the return value must be an instance of a class that is a subtype of both types
X and Y.

3.3.4 Typed PHP in 2023
Throughout this chapter, PHP and its dialect Hack have been discussed. In the previous two
subsections, it was shown that while Hack led the way with the adoption of many gradual-
typing features, at the moment both are offering good support for writing both statically and
dynamically typed code. As PHP is the more popular of the two (ranking 9th versus 50–100 on
the TIOBE rankings [11]), it will be used for all demonstrations below.

To gain a better understanding of the current adoption of gradual typing, the 10 most-starred
PHP repositories were reviewed. For each repository, contribution guidelines and the main file
were examined. Table 3.2 indicates whether inline annotations, PHPDoc annotations combined
with a static type checker (see Subsection 3.3.5), or both were used. For the purposes of this
statistic, any of these approaches count as gradual typing. Out of the top 10 most popular
repositories, 8 are using some form of gradual typing; 6 of them are employing inline annotations
as discussed in Subsection 3.3.3, 4 in combination with one of the static analysis tools introduced
in Subsection 3.3.5. Laravel, one of these repositories, is currently transitioning from PHPDoc
to inline annotations only [146]. Out of the 2 repositories without any notion of gradual typing,
one has been archived since 2021. This paints a clear picture: in the world of PHP, major tools
are embracing gradual typing. To expand on this observation, a more comprehensive analysis
beyond the scope of this thesis would be necessary.

Table 3.2 Overview of type annotations in popular PHP repositories

Repository Name Stars Annotated Comment
Laravel [147] 73.3k Yes Moving towards in-line only.
jQuery-File-Upload [148] 31.0k No Repository archived in 2021.
The Laravel Framework [149] 29.4k Yes PHPDoc / PHPStan
Symfony [150] 28.3k Yes In-line + PHPDoc
Composer [151] 27.6k Yes In-line + PHPDoc / PHPStan
Faker [152] 26.7k Yes PHPDoc. Repository archived in 2020.
Guzzle [153] 22.5k Yes In-line + PHPDoc / PHPStan
NextCloud [154] 22.4k No
DesignPatternsPHP [155] 21.2k Yes In-line
Monolog [156] 20.4k Yes In-line + PHPDoc / PHPStan

The Listing 10 demonstrates how the same code can be written in PHP both with (right)
and without (left) annotations:

Line 3 specifies that types of passed values need to match exactly to the types on annotations

The constructor on line 7 includes type annotations for both input parameters and the return
type. This makes it clear that the constructor accepts two arguments of either int or float
and returns nothing.

The add method, starting on line 17, showcases the use of Union types. The type annotation
for the argument, specified on line 18, demonstrates that it can be either an instance of the
Vec2D class or a scalar value (int or float).
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The add method, on lines 17–31, performs different operations depending on the type of
input. If the other argument is an instance of Vec2D, it performs vector addition. In the
case of scalars (int or float), it first converts them into a Vec2D instance by setting both the
x and y components to the scalar value and then performs the addition.

1 <?php
2 // Untyped code
3

4

5

6 class Vec2D {
7 public $x;
8 public $y;
9

10 public function __construct($x, $y) {
11 $this->x = $x;
12 $this->y = $y;
13 }
14

15

16

17 public function add($other) {
18 if ($other instanceof Vec2D) {
19 return new Vec2D(
20 $this->x + $other->x,
21 $this->y + $other->y
22 );
23 } else {
24 return new Vec2D(
25 $this->x + $other,
26 $this->y + $other
27 );
28 }
29 }
30

31

32

33 public function __toString() {
34 return "( {$this->x}, {$this->y})" ;
35 }
36 }
37

38 $v1 = new Vec2D(1, 2);
39 $v2 = new Vec2D(3, 4);
40 $v3 = new Vec2D(1.5, 2.5);
41

42 echo $v1->add($v2) . " \n" ; // Out: (4, 6)
43 echo $v1->add($v3) . " \n" ; // Out: (2.5, 4.5)
44 echo $v1->add(2) . " \n" ; // Out: (3, 4)

<?php
// Typed code

declare(strict_types=1);

class Vec2D {
public float|int $x;
public float|int $y;

public function __construct(
float|int $x, float|int $y

) {
$this->x = $x;
$this->y = $y;

}

public function add(
Vec2D|float|int $other

): Vec2D {
if ($other instanceof Vec2D) {

return new Vec2D(
$this->x + $other->x,
$this->y + $other->y

);
} else {

return new Vec2D(
$this->x + $other,
$this->y + $other

);
}

}

public function __toString(): string {
return "( {$this->x}, {$this->y})" ;

}
}

$v1 = new Vec2D(1, 2);
$v2 = new Vec2D(3, 4);
$v3 = new Vec2D(1.5, 2.5);

echo $v1->add($v2) . " \n" ; // Out: (4, 6)
echo $v1->add($v3) . " \n" ; // Out: (2.5, 4.5)
echo $v1->add(2) . " \n" ; // Out: (3, 4)

Code listing 10 Comparison of PHP code without and with type annotations
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3.3.5 Tooling
Unlike Ruby or Python, PHP has both type definitions and type checking built into the in-
terpreter. This all-in-one approach decreases the need for tooling supporting gradual typing.
However, there are still some tools available to enhance the gradual typing experience in PHP.

PHPStan. PHPStan is a static analysis tool that works best with annotated PHP code [157].
Table 3.2 demonstrates that at least among the most popular GitHub repositories, PHPStan is
the number one tool for static analysis. It uses the documentation-in-comment format PHP-
Doc for adding more type-related information and for using features not yet supported by the
language, such as generic classes. An example of PHPStan usage:

/** @param array<int, Item> $items */
function foo(array $items) {
...
}

Psalm. Psalm is another static analysis tool that, similar to PHPStan, uses PHPDoc for an-
notations [158]. It supports various type annotations, including variable types, function and
method return types, function and method parameter types, closures, type aliases, import types,
and union types.

Phan. Phan is a static analyzer for PHP that aims to prove incorrectness rather than cor-
rectness [159]. It also uses PHPDoc and checks for type safety. Phan supports various type
annotations, including methods, functions, closures, union types, generic types, and generic ar-
rays (e.g., int[], UserObject[], array{key:string,value:?stdClass}, etc.).

Rector. Rector is a tool for instant upgrades and automatic refactoring [160]. It is capable of
instantly moving codebases between PHP versions and performing automatic refactoring. Rector
specializes in achieving type coverage, which is a metric with the following formula [161]:

Number of type annotations
Number of possible type annotations

In summary, while PHP has both type definitions and type checking integrated into the
interpreter, reducing the need for additional tooling to support gradual typing, several tools are
available to enhance the gradual typing experience in PHP.

3.3.6 Evaluating PHP’s Type System
PHP unlike Python or Ruby does have some type checks built into the language. This is why,
within the rest of the text, it will be discussed on its own without considering any of the above-
mentioned static type checkers. On the one hand, this might be looked at as an unfair comparison.
On the other hand, it allows the reader to compare three distinct approaches: static checks only
(Python with mypy), a combination of static and dynamic checks (Ruby with Sorbet), and
dynamic checks only (PHP).

Type Soundness. To the author’s knowledge, no proof of PHP’s soundness was published and
therefore will be considered type unsound.

Type-Enforcement Strategy. Out of the type enforcement strategies described by Greenman
et al. [24], PHP is closest to the transient strategy as it does type-checking during runtime but
does not type-check untyped code whatsoever.

In conclusion, PHP’s type system can be considered possibly type safe but not type sound
while using the transient type-enforcement strategy.
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3.3.7 Summary
In this section, the gradual typing in PHP was reviewed. The development of gradual typing
in PHP was strongly influenced by Facebook and their creation of the Hack language, a variant
of PHP. Eventually, the core PHP language caught up, and both PHP and Hack now offer
competitive gradual typing features.

It is intriguing to observe two closely related languages implementing gradual typing simulta-
neously and the distinct decisions each language made. While Hack began with a comprehensive
set of gradual typing features, PHP added support incrementally, starting with method annota-
tions and basic built-in types. Subsequently, PHP introduced nullable types, void and iterable,
followed by object, union, mixed, and, most recently, intersection types.

Some noteworthy differences between PHP and Hack include Hack’s support for generic
classes, which PHP lacks, and PHP’s support for union types in a similar way to Python and
Ruby (X|Y), which Hack does not offer. These distinctions showcase how languages with similar
foundations can develop and adopt gradual typing in unique ways, resulting in diverse feature
sets and implementation strategies.

PHP’s implementation of gradual typing is also distinct from other languages. Type defini-
tions and type checking are integrated into newer versions of PHP, as opposed to being separate
tools. This integration further highlights the unique approach PHP has taken in developing and
implementing gradual typing.

3.4 Comparison
As discussed throughout this thesis, Python, Ruby, and PHP are three popular programming
languages, each with its specific strengths and use cases. Python, as outlined in Section 3.1, is a
versatile language with applications ranging from web development to business applications and
scientific computing. Ruby, as presented in Section 3.2, and PHP, as detailed in Section 3.3, are
both particularly popular for web development.

These three languages share several common features. They are all multi-paradigm lan-
guages, meaning they support various programming styles, such as procedural, object-oriented,
and functional programming. Furthermore, they each possess a mature object-oriented system,
making them well-suited for large-scale software projects.

All three languages are open-source, which encourages collaboration and contributions from
an active community of developers. This collaborative environment has led to the continuous
improvement and evolution of these languages over time. Until recently, Python, Ruby, and
PHP were predominantly dynamically typed. However, with the advent of gradual typing, each
of these languages has incorporated optional static typing to improve type safety and enable
better development tooling.

3.4.1 Implementation Strategy
All three languages are following path of the static retrofitting – that is adding static types to
otherwise dynamically typed language. For each of them, however, the initial impulse came from
a slightly different direction.

For Python, the gradual typing journey began with the language’s author, Guido Van Rossum,
who outlined the theoretical foundation. Then syntax for type annotations was added, followed
by the emergence of the popular type checker, mypy. After that, semantics were added to the
core language. Large tech companies recently created their own static type checkers, built on the
foundations set by the core development team. Currently, gradual typing in Python continues to
develop with a strong roster of external tools employing the standards set by the core development
team.
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In the case of Ruby, the journey started in academia with Diamondback Ruby. After several
years of development, the commercial sphere joined in. Both Sorbet and Steep were built on top
of the work done by academia, even adapting their type definitions. The core language started
its gradual typing journey by creating RBS, a special language for Ruby type annotations. While
academic research continues, Sorbet and Steep are currently the only two relevant options for
practical use.

As for PHP, the journey began with Hack, a dialect developed by Facebook. The tech giant
developed Hack for their own needs and released it to the world. The core language subsequently
started to add its own gradual typing features. Unlike Ruby and Python, runtime type checking
was a built-in part of the language from the beginning of this effort. External static type checkers
were developed in parallel with the core language, often adding features not yet supported by the
core language. Both Hack and PHP are actively developed alongside their ecosystems, allowing
developers to choose based on their preferences.

Table 3.3 Comparison of Implementation Strategy

Strategic Aspect Python (mypy) Ruby (Sorbet) PHP
Approach Static Retrofitting Static Retrofitting Static Retrofitting
Initiator Core Dev Team Academic Commercial
Language Syntax Extend Exploit Extend
Type Checking Time Compile Time Both Runtime
Type Checking Responsibility External External Both
Type Definitions Repository Typeshed RBI Central None

As can be seen in Table 3.3, each of the languages opted for a slightly different implementation
strategy. Python and PHP extended existing language syntax allowing for more concise and
readable code, while Ruby did not change its syntax keeping annotation in a separate file, making
it easy to opt in and out from static typing without any change to the source file. While mypy
checks during the compile time, Sorbet does both compile time and runtime checks allowing the
user to opt-out from the runtime ones [162] and PHP itself provides runtime checks with compile
time checking provided by external type checkers. Both Python and Sorbet do have a central
repository with type definitions for standard library as well as external libraries – PHP on the
other hand does not have anything like that. Standard library type definitions are built in the
language while type definitions for external libraries type definitions are either shipped with the
library or can be found in separate packages.

3.4.2 Syntax
Table 3.4 highlights the similarities and differences among the three languages regarding their
syntactic features. The position of type annotations within the code varies across the three
languages. While both PHP and Python have integrated type annotations into their language
syntax, Ruby has taken a different approach. Ruby does not have native language support
for type annotations, except for the RBS language which allows specifying annotations in a
separate file. Consequently, Sorbet developers had to use special methods for type annotations.
The advantage of this approach lies in excellent compatibility with older code and other tools.
However, the downside is a more verbose syntax compared to the other two languages.

After introducing type annotations to a language, not all language features are typically
possible or practical to annotate. In such cases, it might be beneficial to leave some parts of
the code intentionally dynamically typed. All three languages provide syntax for this type of
interaction, such as the any keyword. This type acts like a supertype of all other types, allowing
developers to opt out of static checks. It is particularly useful when annotating a codebase,
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Table 3.4 Comparison of Syntactic Features

Syntax Feature Python (mypy) Ruby (Sorbet) PHP
Annotations – parameters Inline (after) sig method (above) Inline (before)
Annotations – return value Inline (after) sig method (above) Inline (after)
Annotations – variables Inline (after) Inline (let method) Inline (before)
Universal Supertype Any T.untyped mixed
Nullable Types Optional[int] T.Nilable[Integer] ?int
Type aliasing Yes Yes Yes
Union types Yes Yes Yes
Intersection types Yes Yes Yes
Type inference Yes Yes Yes

as it helps distinguish between intentionally dynamically typed expressions and those not yet
annotated.

In dynamically typed languages, all types are typically nullable, with NULL often used as a
sentinel value [8]. However, in many cases, NULL is not needed. This is why the types in all
three gradual type systems are non-nullable by default, providing additional syntax for marking
a type as nullable when necessary.

The common features shared by all three languages also include type aliasing, union types,
and intersection types. These features contribute to a more concise syntax and facilitate a better
programming experience. Type inference is another universally embraced feature, present in all
PHP, Sorbet, and mypy.

3.4.3 Semantics
Table 3.5 summarizes the similarities and differences among the three languages regarding con-
cepts related to type soundness, and polymorphism.

Table 3.5 Comparison of Semantic Features

Semantic Feature Python (mypy) Ruby (Sorbet) PHP
Type Sound No No No
Optional Strictness No Yes Yes
Type-Enforcement Strategy Erasure Hybrid Hybrid
Parametric Polymorphism Generics Type Variables Generics
Nominal Subtyping Yes Yes Yes
Structural Subtyping Protocols Interface Types No
Type Bounds Yes Yes Yes
Covariance / Contravariance Yes No No
Method Overloading No No Yes

The three type systems exhibit minor differences in terms of soundness. While each of the
type systems displays some level of unsound behaviors [128], Sorbet unlike the remaining two
performs both runtime and compile time run checks and behaves soundly in most cases.

Each language employs a different type-enforcement strategy, as discussed in Subsection 2.2.3.
Python uses erasure, which offers runtime speed at the cost of soundness. Sorbet and PHP
provide configurable levels of strictness, allowing programmers to balance the strength of checks
and the runtime performance of the program. As a result, their type-enforcement strategy can
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be considered hybrid, with Sorbet leaning more towards natural enforcement and PHP leaning
more towards transient enforcement.

All three languages support nominal subtyping and the ability to specify type bounds. Al-
though Sorbet employs a different approach to parametric polymorphism, all three languages
offer the same basic functionality.

Both Python and Ruby provide their own flavor of interfaces to offer a statically typed
alternative to duck typing. While PHP also supports interfaces, they are based on nominal
subtyping, requiring an explicit implementation of an interface for type compatibility.

While all three languages exhibit covariant and contravariant behavior, only Python enables
developers to specify which behavior should apply in a given context. Finally, PHP is the only
language that allows for method overloading.

3.5 Other Gradually Typed Languages
The 3 languages were chosen for their popularity, parallels to the R language, and diversity, but
there are many more. For example, TypeScript, Typed Racket, and Typed Lua.

TypeScript, developed by Microsoft, is a gradually typed language based on JavaScript [163].
It has gained significant popularity and widespread adoption, ranking 4th on GitHub’s list of
most-used programming languages in 2022 [9], 5th in the programming, scripting, and markup
languages category of Stack Overflow’s 2022 Developer Survey [10], and 40th on the TIOBE
Programming Community index for April 2023 [11].

Typed Racket is another gradually typed language, which serves as a sister language to
the Racket programming language [164]. Although not explicitly mentioned on the language
leaderboard, it has been used and iterated on in academia, providing valuable insights into the
development of gradually typed languages.

Typed Lua, introduced by Maidl et al. in 2014, is a dynamically typed extension of the Lua
programming language [165]. It offers a novel approach to statically type Lua’s unconventional
metaprogramming features, further expanding the possibilities for gradual typing. Like Typed
Racket, Typed Lua is not explicitly mentioned on the language leaderboard, but its unique
characteristics make it an interesting case study in the context of gradually typed languages.
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Chapter 4

Towards gradually typed R

This chapter introduces the R programming language and discusses its need for gradual typ-
ing. It also discusses various approaches for implementing gradual typing in R, taking into
consideration the insights gained from the previous sections.

4.1 R Programming Language

The R programming language is an open-source language and environment primarily designed
for statistical computing and graphics [166]. R was developed as a dialect of the S language
and environment, which was initially created at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues [166]. Given its focus on statistical and graphical
applications, R can be considered a domain-specific language (DSL) for statisticians.

The philosophy behind R is to provide an easy-to-use and extensible environment, with well-
designed outputs and thoughtful defaults [166]. It supports mathematical notation as output,
making it highly suitable for academic and research applications. The R environment is an
integrated suite that offers effective data handling and a large collection of tools for data anal-
ysis [166]. It can also be extended with packages via the Comprehensive R Archive Network
(CRAN) [166]. R even has its Markdown-like documentation format [167].

According to Morandat et al. [6], the R language can be described as a multi-paradigm, sup-
porting functional, object-oriented, and imperative programming styles. It is dynamic, allowing
users to modify existing code and create new functions at runtime, and interpreted, as it uses an
abstract syntax tree representation for code execution. Similarly to Python and Ruby, it features
duck-typing.

The R programming language is currently supported by the R Foundation, a non-profit
organization founded by members of the R Development Core Team [168]. This foundation
helps to manage and promote the R language and its community.

In terms of popularity, R did not make the top 10 most popular languages on GitHub’s
2022 list [9]. However, it ranked 20th in the programming, scripting, and markup languages
category in Stack Overflow’s 2022 Developer Survey [10] and 16th on the TIOBE Programming
Community index for April 2023 [11]. These rankings indicate that R remains a widely-used
language, particularly within the fields of statistics, data analysis, and scientific research.

To summarize, R is an open-source, domain-specific programming language focused on sta-
tistical computing and graphics. With its rich ecosystem, extensibility, and support for various
programming paradigms, R continues to be a popular choice for researchers and data analysts.

63
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4.1.1 R Built-in Types
R offers a diverse range of built-in types [169], several of which are discussed in this section.
Notably, R’s primitive types are vectorized, meaning that scalars are simply unit vectors [7].
Although there are no explicit types in R, internally the R interpreter works with the following
RunTime Type Information (RTTI):

Numeric Types. Numeric types in R feature integer, double, complex – a vector of integers,
vector of floating point numbers, and vector of complex numbers respectively. The coercion rules
are not global. They are local to each function and follow a convention rather than specification.
That being said, the usual hierarchy goes as follows: logical is a narrower type than integer
which is a narrower type than double which is a narrower type than complex [170].

Enumaration Types. Enumeration types in R include logical and factor. logical is a
vector of boolean values that are unusual in that it apart from TRUE and FALSE also includes
NA – a value that represents missing data. factor is a special compound type used to describe
limited sets of categorical data – in principle similar to enums in C-based languages.

Subrange Types. There are no subrange types in R.

Composite Types. Composite types in R encompass a variety of data structures, including:

character is a vector of text strings.

list is a heterogenous vector of R object, including other lists, vectors, or data frames.

raw is a homogenous vector of raw bytes.

Apart from the types above, R does have other two special types of containers data.frame and
matrix. data.frame is a list of vectors, factors, and/or matrices where each of the vectors has the
same length. In essence, it is a two-dimensional table where columns represent variables and rows
represent observations. Data frames are a fundamental data structure in R for handling tabular
data, as they can store heterogeneous data types and can be easily manipulated, aggregated,
and analyzed. matrix is a two-dimensional array that can store homogeneous data types, such
as numeric or character values. Matrices in R are created with the matrix() function and their
elements can be accessed or modified using row and column indices. Matrices are useful for linear
algebra operations, as well as for organizing and manipulating large sets of homogeneous data.

NA and NULL. Given the nature of the language, the expression NA and NULL deserve a special
mention. While NULL is its own singleton type used for indicating that variable has not been
assigned value or that function does not return a meaningful value, NA represents missing or
unavailable data [169]. NA can be an instance of other data types such as integer, double, or
logical [169]. For a language that is often used for analyzing real-world data, understanding this
distinction is crucial.

4.1.2 Object Oriented Systems
This subsection draws on Advanced R by Hadley Wickham [171, Chapter 3 Data structures],
with original code snippets illustrating the concepts. Unlike most other programming languages,
R has 3 Object Oriented systems dubbed S3, S4, and R6. These systems are independent of each
other and – while not advisable – it is possible to use them together. The following text will
briefly demonstrate the common tasks: the creation of new classes, workarounds for subtyping,
and method manipulation during runtime.
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S3 Object-Oriented System. Listing 11 shows the S3 system. It relies on generic functions
and method dispatch based on the class of the first argument, which allows for easier code
extension and modification. The S3 system doesn’t enforce strict class definitions, and it doesn’t
require the specification of method signatures. This can lead to less robust and maintainable
code compared to the S4 system.

The initial 11 lines define constructor functions for new classes, A and B, each with one at-
tribute. Although traditional subtyping is not supported, workarounds like the one demonstrated
on lines 13–20 are available. Lines 22–31 highlight the addition and usage of methods greet_A
and greet_B for an existing class. Line 33 exhibits the removal of a method during runtime, pre-
venting further calls to the method. The say_hi() function (line 38) accepts an object and calls
its greetA() method, illustrating duck-typing in action. Finally, lines 40–41 show the say_hi()
function working with instances of classes A and SubAB, regardless of their actual types.

S4 Object-Oriented System. Listing 12 demonstrates the S4 system. Similarly to S3, it is
copy-on-write. In contrast to S3, it provides a more formal approach to object-oriented program-
ming. It introduces a stricter class definition and enforces the use of methods with signature
specification, which makes the code more robust and maintainable. The S4 system allows for
multiple inheritance and provides tools for method dispatch based on the classes of multiple
arguments.

Here, classes A, B and SubAB are defined using the setClass() function (lines 1–3), with
constructor functions for A and SubAB. Notice that class SubAB inherits from both A and B.
Methods are created and added for existing classes using the setGeneric and setMethod()
functions (lines 8–14). The say_hi() function (line 22) accepts an object and calls its greetA()
method, illustrating duck-typing in action. Finally, lines 24–25 show the say_hi() function
working with instances of classes A and SubAB, regardless of their actual types.

Overall, the S4 system provides more structure and formality than the S3 system, offering
stricter class definitions, support for multiple inheritance, and method dispatch based on the
classes of multiple arguments.

R6 Object-Oriented System. Listing 13 demonstrates the R6 system. In contrast to the S3
and S4 systems, the R6 system utilizes classes and methods that are explicitly defined within a
single R6Class object. Additionally, R6 supports private methods and fields, which can improve
encapsulation and modularity in the code. While R6 may be more complex than the S3 system,
its reference-based semantics allowing objects to be modified in place and modern features make
it an attractive option for larger projects and developers familiar with other object-oriented
languages.

During the definition of the class 6 (lines 3–8) both its attribute AttrA and method greet are
defined. Lines 10–19 display single inheritance as class SubB inherits from B. Multiple inheritance
is not supported. Classes are instantiated using method new on lines 21–22. Lastly, lines 26–29
are demonstrating that even the R6 system still supports duck-typing.

This example demonstrates that the R6 system is the most similar to modern Object-Oriented
systems as seen in languages such as Python (Listing 1) or Ruby (Listing 7) programming
languages.
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1 create_A <- function() {
2 A <- list(AttrA = "Hello" )
3 class(A) <- "A"
4 return(A)
5 }
6

7 create_B <- function() {
8 B <- list(AttrB = "Bonjour" )
9 class(B) <- "B"

10 return(B)
11 }
12

13 create_SubAB <- function() {
14 A <- create_A()
15 B <- create_B()
16 structure(
17 list(AttrA = A$AttrA, AttrB = B$AttrB),
18 class = c('SubAB' , 'B' , 'A' )
19 )
20 }
21

22 greet_A <- function(object) UseMethod("greet_A" )
23 greet_A.SubAB <- function(object) cat(paste(object$AttrA, "World!" , sep = ' ' ))
24

25 greet_B <- function(object) UseMethod("greet_B" )
26 greet_B.SubAB <- function(object) cat(paste(object$AttrB, "Le Monde!" , sep = ' ' ))
27

28 subAB <- create_SubAB()
29

30 greet_A(subAB) # "Hello World!"
31 greet_B(subAB) # "Bonjour Le Monde!"
32

33 rm(greet_B.SubAB)
34

35 a <-create_A()
36 greet_A.A <- function(object) cat(paste(object$AttrA, "Welt!" , sep = ' ' ))
37

38 say_hi <- function(object) greet_A(object)
39

40 say_hi(a) # "Hello Welt!"
41 say_hi(subAB) # "Hello World!

Code listing 11 Demonstration of R S3 object-oriented system
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1 setClass("A" , representation(AttrA = "character" ), prototype(AttrA = "Hello" ))
2 setClass("B" , representation(AttrB = "character" ), prototype(AttrB = "Bonjour" ))
3 setClass("SubAB" , contains = c("B" , "A" ))
4

5 create_A <- function() new("A" )
6 create_SubAB <- function() new("SubAB" )
7

8 setGeneric("greet_A" , function(object) standardGeneric("greet_A" ))
9 setMethod("greet_A" , "A" ,

10 function(object) cat(paste(object@AttrA, "World!" , sep = ' ' )))
11

12 setGeneric("greet_B" , function(object) standardGeneric("greet_B" ))
13 setMethod("greet_B" , "SubAB" ,
14 function(object) cat(paste(object@AttrB, "Le Monde!" , sep = ' ' )))
15

16 a<- create_A()
17 subAB <- create_SubAB()
18

19 greet_A(subAB) # "Hello World!"
20 greet_B(subAB) # "Bonjour Le Monde!"
21

22 say_hi <- function(object) greet_A(object)
23

24 say_hi(a) # "Hello World!"
25 say_hi(subAB) # "Hello World!"

Code listing 12 Demonstration of R S4 object-oriented system
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1 library(R6)
2

3 A <- R6Class("A" ,
4 public = list(
5 AttrA = "Hello" ,
6 initialize = function() self$AttrA <- "Hello" ,
7 greet = function() cat(paste(self$AttrA, "World!" , sep = ' ' ))
8 ))
9

10 B <- R6Class("B" ,
11 public = list(
12 AttrB = "Bonjour" ,
13 initialize = function() self$AttrB <- "Bonjour"
14 ))
15

16 SubB <- R6Class("SubB" , inherit = B, public = list(
17 initialize = function() super$initialize(),
18 greet = function() cat(paste(self$AttrB, "Le Monde!" , sep = ' ' ))
19 ))
20

21 a <- A$new()
22 subB <- SubB$new()
23

24 subB$greet() # "Bonjour Le Monde!"
25

26 say_hi <- function(object) object$greet()
27

28 say_hi(a) # "Hello World!"
29 say_hi(subB) # "Bonjour Le Monde!"

Code listing 13 Demonstration of R6 object-oriented system

4.1.3 Type Operations
The R programming language offers a set of tools that allow developers to work around the
absence of type annotations and ensure that the correct type is provided [172, 173, 174, 175, 176,
177, 178, 179, 170]. These tools might be useful when prototyping various features connected
with adding gradual typing to the language.

Type Testing. R provides several type testing functions to determine the types of objects and
values [172]. One such function is typeof, which determines the R internal type or storage mode.
It returns values for types as described earlier, along with several other less common or internal
types. For a full list of return values, refer to the documentation [172].

The is.numeric function is an internal generic primitive function that returns true if the
base type of the class is double or integer (but not complex) and the value can reasonably be
regarded as numeric (supports arithmetic and comparison operations) [173].
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The is.double function returns true if its argument is of type double [174], and is.integer
returns true if its argument is of type integer [175]. Similarly, is.complex returns true if its
argument is of type complex [176], is.logical returns true if its argument is of type logi-
cal r_logical, and is.character returns true if its argument is of type character [178].

The is.list function returns true if the argument is a list with a length greater than 0 [179].
The is.matrix function, on the other hand, returns true if its argument is a vector with a ”dim”
(dimensions) attribute of length 2 [170]. Note that a data frame is not considered a matrix by
this test.

Type Conversions. Type conversion functions in R are designed to change the type of an ob-
ject explicitly. Some of the commonly used type conversion functions include as.numeric[173],
as.double[174], as.integer[175], as.complex[176], as.logical[177], and as.character[178].
These conversion functions can be useful when working with gradual typing, as they allow de-
velopers to explicitly specify the desired type for a particular value or object.

As gradual typing is introduced to the language, this methods can be used for prototyping
purposes as well as for understanding how the developers of the language are thinking about the
shapes of values in the language.

4.2 Benefits of Gradual Typing in R
Like in the case of the programming languages discussed throughout Chapter 3, there is a wide
range of ways in which the R programming language could potentially benefit from introduc-
ing optional static types. Most notably reliability, developer experience, documentation and
potential for runtime performance optimizations.

Reliability. While the common interactive use of R is clearly a use case for dynamically typed
code, adding types might come in handy once the analysis is done and the author wants to
double-check the data before presenting it. After all, many data-driven decisions, especially in
areas like finance, policy, public health, or healthcare, might be a matter of life and death! An
even stronger case might be libraries. The R community is built on a foundation of a plethora
of statistical packages [180]. Having a bug or error in one of them might wreak havoc through
many reports and dashboards that utilize it.

Developer Experience. Gradual typing can provide numerous benefits, not only in terms
of reliability but also in enhancing the development experience. Adding type annotations can
significantly improve the developer experience within an Integrated Development Environment
(IDE). As the IDE understands the types, it can suggest relevant completions for the code being
written, allowing developers to quickly navigate to the definition of a particular function or
variable by clicking on its usage. With type information available, IDEs can easily show all
the places where a specific function or type is being used and display relevant documentation
for functions and variables based on their types, making it easier to understand and use them.
Moreover, with type information, developers can experiment with various code paths and receive
immediate feedback, allowing them to iterate faster.

Documentation. Gradual typing can also serve as a form of documentation, making it easier
for developers to understand how a function or library should be used. Type annotations can
convey the expected input and output types, reducing the likelihood of misunderstandings and
errors.

Performance Optimizations. The introduction of type annotations may allow for compiler
or interpreter optimizations. With type information available, the compiler or interpreter can
make better decisions regarding memory allocation and management, and even optimize vector
operations, potentially leading to performance improvements.
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Figure 4.1 Type Language for R [8]

T :: = any top type
| null null type
| env environment type
| S scalar type
| V vector type
| T |T union type
| ?T nullable type
| ⟨A1, . . . , An⟩ → T function type
| list⟨T ⟩ list type
| class⟨ID1, . . . , IDn⟩ class type

A :: = T arguments
| . . . dots

V :: = S[] vector types
| ˆS[] NA vector types

S :: = int integer
| chr character
| dbl double
| lgl logical
| clx complex
| raw raw

In conclusion, the addition of gradual typing to R can greatly benefit the language and its
users. It can improve the development experience, provide better documentation, and potentially
enable optimizations that can enhance the performance of R programs. As R is widely used in
critical domains, introducing gradual typing can contribute to more reliable and efficient data
analysis and reporting.

4.3 Previous Work

Turcotte et al. [8] proposed a type language for R (Figure 4.1), which includes scalar types
for annotating unit vectors, container types like list and vector, and several features previously
discussed in this thesis such as function signatures, union types, nullable types, and a universal
supertype. Additionally, they introduced ... argument types and NA-able types, which are
particularly relevant in the R context.

To test their proposal, the authors used a type inference algorithm to annotate over 25,000
functions across 412 packages from R open-source libraries. They evaluated over 8,500 clients of
these packages and end-user code from the Kaggle competition. Their findings showed that 97%
of function parameters were NA-free, about 95% of function parameters could not be NULL,
and roughly one-third of the parameters were treated as scalars rather than vectors or other
types. Furthermore, they found that approximately 1.5% of function parameters were higher-
order functions, and due to the complexity of R’s object-oriented systems, they decided to leave
type annotations of objects for future research. The study also identified that 10% of all class
parameters of functions were matrices, while 8.15% were data frames.

Turcotte et al.’s results demonstrated that 80% of functions were monomorphic or had one
polymorphic parameter, and 97.6% of parameter types and 87.7% of function types never failed.
These findings indicated that their proposed type system provided a solid foundation for a future
gradual type system.

Another related study by Wrenn et al. [181] focused on the static typing of vectors, arrays,
and matrices. The authors used LiquidHaskell, a statically typed extension to the Haskell pro-
gramming language, to model these R types.

Outputs of both of these works will be considered and extended in the subsequent section
by proposing further improvements in implementation strategy, syntax, semantics, and adoption
strategy.
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4.4 Design Considerations
After a review of the gradual typing implementation in three dynamically typed languages and
the current state of the type system in the R programming language, it is time to discuss the
potential of adding gradual typing to R.

4.4.1 Implementation Strategy
Starting point is an existing language, which offers two implementation approaches: static
retrofitting (adding static typing features to R), and natively gradual (building a new dialect of
R from the ground up). Among the case studies discussed in this thesis, the Hack language (Sub-
section 3.3.3) was the only one to adopt the natively gradual approach. This choice, however,
would require significant effort in developing not only the language itself but also the accompa-
nying tooling. On the other hand, the static extension approach has proven successful in all the
languages discussed, offering the advantage of utilizing the existing tooling and ecosystem and
facilitating adoption since it doesn’t require users to switch tools or learn a new (although very
similar) programming language.

As demonstrated in Subsection 3.4.1, a gradual typing journey can be successful regardless
of whether it is initiated by the core language development team, the academic sector, or the
commercial sector. Any of them will like work just fine for R.

A crucial decision is whether to exploit or extend the existing syntax. The exploit approach, as
exemplified by Sorbet, enables the development of a fully-featured (Subsection 3.2.5), performant,
and popular (Subsection 3.2.6) type system, offering the advantage of smooth interoperability
with existing tools and codebases. However, a comparison of Listing 7 and Listing 1 reveals
that the extend approach leads to greater conciseness and readability. In the author’s opinion,
these benefits outweigh the drawbacks. It is recommended to employ the exploit technique for
prototyping and to utilize the extend technique to drive adoption.

As for the timing of checks, Sorbet’s approach, which involves both runtime and compile-
time checking along with granular settings for the strength of these checks, appears to strike an
optimal balance. This allows the programmer to find the right balance between type safety and
type soundness on one hand, and flexibility and runtime performance on the other. The only
obvious drawback here is the significant effort required to build such a robust system.

Considering that R is a GNU/free software project, the Python approach seems appropriate
from the core language perspective. This involves developing syntax and semantics for a gradual
type system (see Subsection 3.1.8) and allowing the community to develop tools that suit their
needs (see Subsection 3.1.6). A central repository containing annotations for both the standard
library and external packages aligns well with this approach. Inspiration can be drawn from
Python’s Typeshed (see Subsection 3.1.6) and Ruby’s RBI Central (see Subsection 3.2.3). Such
a repository could be hosted on a platform like GitHub, permitting contributions from the wider
community.

4.4.2 Syntax
For prototyping purposes, adapting comments or special methods (like in Sorbet) might be the
right approach to implementing gradual typing, due to its ease of implementation. However, for
wide-scale adoption, inline annotations are preferable because of their conciseness, readability,
and relative distance to the code.

All three studied type systems provide a universal supertype, which is helpful when annotating
code bases and therefore worth considering for inclusion. Nullable types, NA-able (as proposed
by Turcotte et al. [8]), and intersection types are features that allow for more granular typing.
Given their relative rarity [8], non-nullable should be the default option with extra syntax to
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mark their nullability. Intersection types are not explicitly mentioned by Turcotte et al. [8] but
are featured in all 3 reviewed type systems and thus are potential candidates for inclusion.

Type aliases, union types, and type inference have several aspects in common: they lead to
more concise code and are employed by Python, Sorbet, and PHP. This suggests that R should
consider incorporating these features to improve conciseness.

4.4.3 Semantics
Two out of the three studied type systems can be considered type-safe, preventing type errors.
Type soundness, on the other hand, is only observed to a limited extent among the three pro-
gramming languages. Sorbet puts the most effort in this direction by offering a combination of
static type checking and runtime checks. While it prevents array indexing errors [182], it does
not prevent other classes of type errors, such as refinement invalidation errors [182]. Thus, it can
only be considered sound using a very loose definition of the term [14].

There is always a trade-off between type soundness on one side and completeness and run-
time performance on the other [182]. Developing both sound and unsound type systems are
valid approach. A reasonable compromise might be to follow the lead of Sorbet, allowing pro-
grammers to adjust the strictness of type checks according to their needs. In this approach,
for less strict settings soundness is optional, while runtime performance is imperative. For the
strictest setting, soundness is mandatory (or at least an aspirational goal). This implies the
hybrid type-enforcement strategy.

With the R language supporting polymorphism, the inclusion of both parametric and sub-
typing polymorphism into a gradual type system should be seriously considered. Especially as
they are universally adopted across the studied type systems. Combining nominal and structural
subtyping is also advisable as nominal subtyping is used by all three systems and structural sub-
typing by two-thirds of them. Structural subtyping using some form of Sorbet-style interfaces
might be seen as an alternative for duck typing.

Type bounds, given their popularity across the studied type systems, should be also consid-
ered for inclusion. Variance and method overloading, however, have low adoption and should be
considered secondary priorities. Although they might be good to eventually add, they should
not be the starting point.

In the R language, complex compound types, such as matrices and data frames, are com-
mon [8]. Considering their popularity and special behaviors, it might be worth introducing them
as stand-alone types in a gradual type system. Static annotations discussed in Subsection 3.1.5
(Pandas and Statically Typed Pandas packages), might serve as inspiration for handling such
type annotations.

4.4.4 Adoption
Adding static types to a dynamically typed language may be met with cautiousness or even
resistance from both users and developers of the language, especially if the community consists
mainly of statisticians rather than computer scientists. After all, a similar reaction was observed
in Python (see Subsection 3.1.2).

Several strategies employed by the languages discussed in Chapter 3 may help mitigate such
sentiments. For instance, industry tools like Sorbet (Subsection 3.2.3) or Hack (Subsection 3.3.3)
offered runtime performance optimizations and support for popular IDEs from the get-go. Hack
even implemented changes unrelated to gradual typing (Subsection 3.3.3), such as fixing inconsis-
tent behavior for trailing commas and introducing concise syntax for lambda expressions. Such
improvements can make the adoption of gradual typing more palatable, even for programmers
who are not yet fully convinced. If gradual typing is added to R, these strategies should be
considered.
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Another important factor is communication. Early discussions in the Python community (see
Subsection 3.1.2) demonstrate the need to explain what the change entails for users’ programming
language and what it does not (e.g., types are and will remain optional), explain the benefits of
the change, address concerns, and listen and react to feedback.

Two possible approaches to consider for R are the big bang approach and the evolution
approach. With the big bang approach, a fully-featured type system is introduced (like the
industry tools). With the evolution approach, features are gradually introduced to the language.

The big bang approach offers advantages such as users receiving competitive functionality
from day one and potentially fewer compromises. However, it may take a long time to ship and
miss regular feedback from the community. On the other hand, the evolution approach presents
less drastic changes, mitigating knee-jerk reactions and providing continuous feedback from the
community, but the initial product may be inferior in many aspects.

For R, given its governance model is closer to Python than to Sorbet or Hack, the evolution
approach might make more sense. One possible way to implement this approach, inspired by
Python, could be to start with syntax only, so that programmers may use it even if just for doc-
umentation purposes. Then, develop basic semantics alongside the emergence of type checkers,
beginning with function parameters and return values, followed by variable declarations, and
finally addressing classes, higher-order functions, and complex data types.

4.5 Summary
In conclusion, this section introduces the R programming language for statistical programming,
its history, use cases, types, and the three object-oriented systems. Furthermore, it discusses
the benefits of adding gradual typing to this language, such as improved reliability, developer
experience, documentation, and potential performance optimizations.

However, implementing gradual typing in R brings several challenges, including complex data
types like Data Frames and Matrices, three independent object-oriented systems each with differ-
ent behavior that can be combined, and functions with many potentially polymorphic arguments.
For annotating all of these constructs, a sweet spot between conciseness, comprehensibility for
language users, and usefulness of the provided type information needs to be found.

A brief review of prior work is presented, focusing on Turcotte et al. [8], who not only
introduced the first draft of a gradual type system for R but also tested it on a significant
number of popular packages.

Lastly, this section discusses ideas for the next evolution of this concept. For the implemen-
tation strategy, this thesis advocates extending rather than exploiting R’s syntax, utilizing a
combination of compile-time and runtime checks, and offering optional strictness of the checks.
Regarding syntax, this thesis supports the use of in-line annotations. For semantics, the rec-
ommendations include incorporating parametric polymorphism, nominal subtyping for regular
object-oriented systems, structural subtyping using interfaces, and type bounds, and considering
complex container types as stand-alone types.

By taking these recommendations into account, future work on gradual typing in R can build
on the foundation laid by previous research and enhance the language with improved type safety,
readability, and performance.
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Chapter 5

Conclusion

This section summarizes all research conducted throughout this thesis. It summarizes findings
and hints at opportunities for further research in the area.

R is a popular dynamically typed programming language for statistics. As such, it is used to
inform critical decisions in areas such as policy, finance, public health, and healthcare. Having an
error in one of its popular statistical packages could lead to a cornucopia of poor consequential
decisions in all of these areas. A reliable static type system could prevent such issues while
providing a better developer experience, improved documentation, and potential performance
optimizations.

However, retrofitting a static type system to a dynamically typed programming language is a
significant undertaking. In this thesis, cases were introduced where this process took many years
or even decades. R’s unique attributes, such as complex data types, three independent object-
oriented systems, and a common practice of having more than 20 parameters per function,
don’t make this task any easier. Success involves selecting the right implementation strategy,
adjusting or working around the language’s syntax and semantics, and supporting adoption
through a compelling value proposition for programmers and transparent communication with
the language community.

Implementation strategy decisions include whether to add types to the existing language or
create a new separate typed language, whether to integrate static type checking into the language
or provide it as a separate tool, and whether to perform type checks during runtime, compile
time, or both. Syntax considerations encompass exploiting existing syntax through comments,
methods, or decorators, or expanding it with a special syntax for type annotations. Deciding
whether or not to employ a type inference algorithm and evaluating the use of features such as
union types, intersection types, and type aliasing are also important aspects of syntax design.
Semantic considerations involve determining rules for type compatibility, establishing rules for
type conversions and type coercions, and annotating complex composite types both accurately
and concisely. Selecting a type-enforcement strategy for interactions between statically and
dynamically typed code and considering whether type-soundness should be a goal and, if so, how
to ensure it, are also critical aspects of designing a gradual typing system for R.

In Python’s history, the gradual typing effort was initiated by the language creator, starting
with discussions within the community. Subsequently, the syntax for typing was introduced, and
the first static type checkers emerged. Semantics were added to the core language only later, with
mypy becoming the reference type checker. The Python type system has continuously evolved,
with typing features being introduced in every new major release. Python’s approach involves
enhancing the language gradually and leaving static type checking to external tools. Language
semantics and type annotations for the standard library as well as for external packages are
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managed in a central repository.
The history of gradual typing in Ruby began in academia with Diamondback Ruby shortly

followed by several other experimental tools. The commercial sphere, exemplified by Sorbet, built
on the work done by academia, adapting ideas and type definitions while prioritizing runtime
performance. The core language team joined the effort later, introducing a separate language
for type annotations - RBS. Sorbet’s approach involved sharing a mature product with the
community, exploiting existing syntax with special methods, integrating static and dynamic
checking, offering optional strictness of type checks, and centrally managing standard definitions.
Ruby’s approach involved keeping annotations outside the language itself, introducing a special
type annotation language (RBS), and leaving type checking to external tools.

PHP’s gradual typing history started in the commercial sphere with Facebook’s Hack lan-
guage, focusing on runtime speed and IDE support. The core language responded by introducing
its own spin on gradual typing features. Similarly to Python, they are evolving their gradual
type system gradually. In parallel, static type checkers like PHPStan emerged. Gradual typing
in PHP is continuing its evolution, with new features introduced in every major version. PHP’s
approach involves starting small (method annotations and basic types) and gradually enhancing
the type system. The core language performs runtime type checks and leaves static checks to
external tools. Similarly to Sorbet, it offers optional strictness of type checks.

While each of the gradual type systems took distinct approaches and implementation strate-
gies, some decisions are common to all of them. In terms of syntactic features, all three languages
support statically typed method parameters and return values, a universal supertype, nullable
types, type aliasing, union types, intersection types, and type inference. In terms of semantic fea-
tures, all languages strive for type safety and offer parametric polymorphism, nominal subtyping,
and type bounds.

Based on the insights gleaned from other languages and prior research, this thesis suggests
several key takeaways for implementing gradual typing in R. In terms of the implementation
strategy, extending the existing syntax for conciseness and readability could be advantageous in
winning over the existing user base. A combination of compile-time and runtime type checks,
alongside an optional level of strictness, may offer an optimal balance between safety guarantees
and runtime performance. Furthermore, managing type definitions and semantics centrally while
providing type checking outside the language could align well with R’s free software philosophy.

Regarding syntax, adapting comments or special methods might be suitable for initial pro-
totyping purposes, while inline annotations could be a better option for wide-scale adoption.
A special syntax for marking types like Nullable and NA-able types should be given serious
consideration. Union types, intersection types, type aliases, and type inference should also be
considered.

With respect to semantics, the study proposes embracing polymorphism and subtyping, as
well as utilizing structural subtyping for interfaces to serve as a static alternative to duck-typing.
The incorporation of type bounds is also recommended.

For adoption, several strategies can be employed to mitigate resistance from the existing
community. These include introducing gradual typing alongside other improvements, supporting
popular IDEs, and maintaining open two-way communication with the language community.

Potential areas for further research encompass improving the type system proposed by Tur-
cotte et al. [8], focusing on further exploring compatibility, conversion, and coercion rules as
well as appropriate syntax and semantics for annotating matrix and data frame types (Subsec-
tion 3.1.5 could provide inspiration).

In summary, the author believes that by presenting the three case studies and offering these
suggestions, he contributed, to the overarching goal of adding gradual typing to the R program-
ming language.
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MILLER, Heather. Upper Type Bounds. Scala Documentation, [n.d.]. Available also from:
https://docs.scala-lang.org/tour/upper-type-bounds.html. Accessed on May 10,
2023.

19. PIERCE, Benjamin C. Types and programming languages. MIT press, 2002.
20. SIEK, Jeremy; TAHA, Walid. Gradual typing for functional languages. In: 2006.
21. TOBIN-HOCHSTADT, Sam; FELLEISEN, Matthias. The design and implementation of

typed scheme. In: 2008, vol. 43, pp. 395–406. Available from doi: 10.1145/1328897.
1328486.

22. ORTIN, Francisco; ZAPICO, Daniel; GARCÍA PEREZ-SCHOFIELD, Baltasar; RODRÍGUEZ,
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