
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Toxic Content Recognition in Conversational
Systems

Adam Černý

Supervisor: Ing. Jakub Konrád
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499126 Personal ID number: Černý Adam Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Toxic Content Recognition in Conversational Systems

Bachelor’s thesis title in Czech:

Rozpoznání toxického obsahu v konverzačních systémech

Guidelines:

The goal of the thesis is to devise a method of recognition of toxic content in conversational systems.
1) Review the current methods used for recognizing toxic content, with focus on methods based on embedding clustering
and neural Language Model (LM) methods.
2) Select two LM methods, implement them, and compare the results using datasets such as the Jigsaw toxicity and
Wikipedia toxicity datasets.
3) Evaluate the performance of different models and identify the most suitable method for toxic content recognition.
4) Use appropriate evaluation metrics to compare the results with current state-of-the-art (SOTA) methods in the field.
In addition to technical challenges, this task also includes ethical considerations and challenges, as the definition of toxic
content can vary depending on the context and the use case. Therefore, it's important to carefully choose or extend the
dataset and the evaluation criteria.

Bibliography / sources:

[1] Davidson, Thomas, Dana Warmsley, Michael Macy, and Ingmar Weber. "Automated hate speech detection and the
problem of offensive language." In Proceedings of the international AAAI conference on web and social media, vol. 11,
no. 1, pp. 512-515. 2017.
[2] Xu, Jing, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. "Recipes for safety in open-domain
chatbots." arXiv preprint arXiv:2010.07079 (2020).
[3] Zhao, Zhixue, Ziqi Zhang, and Frank Hopfgartner. "A comparative study of using pre-trained language models for toxic
comment classification." In Companion Proceedings of the Web Conference 2021, pp. 500-507. 2021.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jakub Konrád Department of Cybernetics FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 01.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jakub Konrád
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my gratitude to
my supervisor, Ing. Jakub Konrád, for
his invaluable guidance throughout the
entire duration of writing this thesis. I
would also like to thank Ing. Jan Šedivý,
CSc. and Ing. David Herel for their sug-
gestions and advice that helped me solve
numerous problems. Lastly, I would like
to thank my family for their support and
encouragement.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 24, 2023

Adam Černý

v

Abstract
Conversational AI systems, such as chat-
bots, are becoming increasingly popular
in various industries and are often used
to assist with customer service, help users
navigate websites and perform other re-
lated tasks. However, these systems can
be vulnerable to users who may try to
insult, harm or be offensive to the sys-
tem or deceive the system to make it say
something toxic. In this project, we in-
vestigate the problem of toxic language
recognition in conversational AI systems.
We review the current state-of-the-art in
this area and propose methods to solve the
problem. We evaluate the effectiveness of
proposed techniques through a series of ex-
periments on a dataset of tweets, present
the results and compare them to SOTA
methods. Based on the results, we suggest
potential directions for future research in
the area.

Keywords: natural language processing,
machine learning, text classification,
toxicity recognition

Supervisor: Ing. Jakub Konrád

Abstrakt
Systémy konverzační umělé inteligence,
jako jsou chatboti, nabírají na popula-
ritě v mnoha odvětvích průmyslu a jsou
často používány pro pomoc s péčí o zá-
kazníky, orientací uživatelů na webové
stránce či pro jiné úlohy podobného cha-
rakteru. Tyto systémy mohou mít pro-
blém rozpoznat toxické uživatele, kteří se
je snaží urazit, chovají se k nim nevhodně
či se je snaží zmanipulovat, aby je donutili
říct něco urážlivého. V této práci se na
problém rozpoznání toxickémho obsahu
v dialogových systémech zaměřujeme po-
drobně. Popisujeme aktuální state-of-the-
art metody v oblasti NLP a navrhujeme
postupy, které je možné použít k řešení
problému. Efektivitu navhrhovaných ře-
šení vyhodnocujeme na datasetu. Na zá-
kladě výsledků popisujeme kvalitu jednot-
livých navrhovaných metod, porovnáváme
je se SOTA metodami a navrhujeme směr,
kterým by se mohl ubírat náš budoucí
výzkum v oblasti.

Klíčová slova: zpracování přirozeného
jazyka, strojové učení, klasifikace textu,
rozpoznání toxického obsahu

Překlad názvu: Rozpoznání toxického
obsahu v konverzačních systémech

vi

Contents
1 Introduction 1
1.1 Motivation and goal 1
1.2 Structure . 2
2 Theoretical background 3
2.1 Traditional machine learning 3

2.1.1 Unsupervised learning 3
2.1.2 Supervised learning 3
2.1.3 Logistic regression 4

2.2 Artificial neural networks 6
2.2.1 Feedforward neural networks . 7
2.2.2 Recurrent neural networks . . . 8
2.2.3 Transformers 9

2.3 Natural language processing 10
2.3.1 Text classification 10
2.3.2 Bag of words 10
2.3.3 N-grams 11
2.3.4 Word embeddings 11
2.3.5 Word2vec 11
2.3.6 FastText 12
2.3.7 Language models 14

3 Related work 15
3.1 Definition of toxic content 16

3.1.1 Hate speech 16
3.1.2 Offensive speech 16
3.1.3 Explicit and implicit toxicity 17

3.2 Datasets . 17
4 Method 21
4.1 Supervised fastText 21

4.1.1 Concatenation of sentence
embeddings 21

4.2 RNN language model for text
classification 22
4.2.1 Loss calculation 23
4.2.2 Bidirectional RNN ensemble . 23

5 Experimental setup 25
5.1 Hardware . 25
5.2 FastText . 25

5.2.1 Hyperparameters 26
5.3 RNN language model for text

classification 26
5.3.1 Hyperparameters 26

5.4 Dataset . 27
5.5 Data augmentation 28
5.6 Data preprocessing 29

5.6.1 Preprocessing for fastText . . . 29
5.6.2 Preprocessing for RNN 30

5.7 Metrics . 30
5.7.1 Multiclass metrics 31

6 Results 33
6.1 Supervised fastText 34

6.1.1 Single model 34
6.1.2 Multiple models 35

6.2 RNN language model for text
classification 36
6.2.1 Bidirectional ensemble 37

6.3 Future work 39
7 Conclusion 41
A Bibliography 43
B List of acronyms 51

vii

Figures
2.1 Difference between CBOW and

Skip-gram. 12

4.1 Schematic of our proposed
embedding method - concatenation of
supervised fastText embeddings from
several models. 23

6.1 Normalised confusion matrix of the
classifications made by our best
fastText classifier. 35

6.2 Normalised confusion matrix of our
supervised fastText-based classifier
that uses multiple FT models and is
trained on augmented datasets. . . . 36

6.3 Normalised confusion matrix of the
classifications made by our best RNN
classifier. 37

6.4 Results achieved using our
proposed bidirectional ensemble of
RNN classifiers. 38

6.5 Normalised confusion matrix of the
classifications made by our best
classifier. Both toxic classes are
merged in this figure. 38

Tables
2.1 Example of two documents

encoded into vector space using
BoW. 10

3.1 Difference between hate speech and
offensive speech. 17

3.2 Difference between explicit and
implicit toxic speech. 17

3.3 Comparison of some of the most
widely used and cited datasets for
toxicity and hate speech recognition. 20

5.1 Hyperparameters of the
best-performing supervised FT
models we trained. 26

5.2 Hyperparameters of the best
supervised RNN models we trained. 27

5.3 Approximate training times of our
classifiers. 27

5.4 Comparison of our training
datasets. 29

6.1 Comparison of our results with
other similar works. 34

6.2 Comparison of the models used for
the final FT classifier. 35

6.3 Results achieved using a single
supervised fastText model trained on
the original dataset. 35

6.4 Results achieved using a
combination of three supervised
fastText models trained on different
variations of the original dataset. . 36

6.5 Results achieved using our
proposed RNN classification model. 37

6.6 Results achieved on our best RNN
ensemble. 38

viii

Chapter 1

Introduction

1.1 Motivation and goal

Toxic content recognition has become an important problem in conversational
AI. Such content includes hateful speech such as racism or sexism, trolling or
using offensive language. Detecting toxic content helps dialogue systems and
other platforms to provide a satisfactory user experience by creating a safe
environment.

Besides customer experience, many countries have laws and regulations that
require online platforms to remove toxic content. Failure to comply with
these laws can result in legal action against the platform. Therefore, accurate
identification of toxic content is necessary for compliance and avoiding legal
repercussions.

Moreover, platforms that fail to create a healthy, non-toxic environment may
suffer great harm to their reputation and therefore lose popularity. Thus,
identifying and removing harmful content is critical for maintaining a positive
brand image and reputation as well as an active user base.

Overall, toxicity recognition in conversational AI is a complicated task,
and SOTA models often use context in order to improve performance and
robustness against adversarial attacks [1]. However, such models require
a lot of computation time and memory. In this work, we will explore the
capabilities of methods that are not as computationally expensive. Our
methods could then be used in situations where low memory usage and fast
training are sought-after. We will focus on supervised fastText and recurrent
neural networks and propose our own methods that use these algorithms.
Our classifiers will be designed for toxicity recognition in general - they will
be usable in conversational AI as well as other use cases, such as filtering
toxicity on social media.

1

1. Introduction
1.2 Structure

Firstly, we will provide a theoretical background that is crucial for under-
standing and potentially improving state-of-the-art techniques. Secondly, we
will give an overview of related work introduced to this day, and thirdly we
will propose our own methods for toxicity recognition. We will describe our
proposed methods in detail and illustrate their performance on a dataset.
Lastly, we will compare our methods to state-of-the-art approaches and
provide conclusions and suggestions for future research.

2

Chapter 2

Theoretical background

In this chapter, we will provide an overview of the theory needed to understand
the machine learning, natural language processing and text classification
concepts that will be used in this thesis.

2.1 Traditional machine learning

Machine learning is a subset of artificial intelligence that focuses on the
design and implementation of algorithms and models capable of learning from
and making predictions based on data inputs. These systems are able to
continuously improve their performance through exposure to additional data
without the need for explicit programming for specific tasks, which allows
them to make more accurate predictions.

ML has a wide range of applications, including image and speech recognition,
natural language processing, and predicting outcomes in various industries
such as finance or healthcare.

2.1.1 Unsupervised learning

Unsupervised learning is a type of machine learning in which a model is
trained on an unlabelled dataset and is expected to discover patterns and
relationships in the data on its own. That means unsupervised learning does
not require any predetermined outcomes or labels.

2.1.2 Supervised learning

In supervised learning, a model is trained on a labelled dataset, where the
correct output is provided for each input. The model makes predictions
based on this training and is then evaluated on how well it is able to make
predictions for new, previously unseen data.

3

2. Theoretical background
2.1.3 Logistic regression

Logistic regression is often used as a baseline classifier for supervised learning
tasks in NLP. Since we use it in our experiments, it will be described in this
section.

In its simplest form, logistic regression classifies into two classes - positive and
negative [2]. The classification process is based on estimating the probability
that an input vector x belongs to class 0 or 1. Then the predicted label
y is the one that has a higher probability. Formally, it can be written as
follows:

ŷ =
{

1 if P (y = 1|x) > 0.5
0 otherwise

where P (y = k|x) denotes the probability that an input x belongs to class
k ∈ {0, 1}.

The above-mentioned probability is constructed using a vector w and a bias
term b. The probability of an input x belonging to class 1 is than calculated
using the following formula:

P (y = 1|x) = σ(w · x + b)

Since there are only two classes, the probability of x belonging to class 0 can
be computed as:

P (y = 0|x) = 1− σ(w · x + b)

In both above-mentioned formulas, σ denotes the sigmoid function, which is
defined as:

σ(z) = 1
1 + e−z

This function is used to convert the predicted value to a probability.

Multinomial logistic regression

In many cases, we need to classify inputs into more than two classes. For
these purposes, we can generalize logistic regression into its multinomial form.
The only difference is that to classify an input x, we use separate weights
and biases for each class in order to obtain a vector of predicted probabilities
ŷ.

4

.............................. 2.1. Traditional machine learning

This is done using the softmax function instead of sigmoid. The purpose of
these functions is the same, but softmax can be used to convert a vector into
a probability distribution. It is a generalization of the sigmoid function and
is defined as follows:

softmax(zi) = ezi∑K
j=1 ezj

for i = 1, 2, . . . , K

where zi is the i-th component of an input vector z and K is the number of
classes.

With the softmax function, we can get a vector of probabilities ŷ the following
way:

ŷ = softmax(Wx + b)

where W is a matrix of weight vectors for each class in rows, x is an input
vector and b is a vector of biases for each class.

By following this computation process, we get an output vector ŷ that has K
elements (the number of classes) and the element yk is the probability that
vector x is from class k. We classify an input x as the class that has the
highest probability.

Training

To obtain w and b, we need to train the classifier and to do so, we need to
define an objective (loss) function. For logistic regression, that is typically
cross-entropy loss which determines how different the expected output is from
the actual output. It is defined as:

LCE(ŷ, y) = −
K∑

k=1
yk log(ŷk)

where K is the number of classes, y is the expected output (one-hot vector)
and ŷ is the actual output.

That can be simplified into negative log-likelihood of the correct class, giving
us the following formula:

LCE(ŷ, y) = −log(ŷc)

where ŷc is the output probability corresponding to the correct class c.

The whole learning process consists of minimizing the average value of the loss
function over the training set. This is done using an optimization algorithm -
usually gradient descent or stochastic gradient descent.

5

2. Theoretical background
Gradient descent

Thanks to the fact that the gradient of a function is a vector that points in the
direction of the steepest increase in a function, gradient descent can minimize
a function by moving in the opposite direction than the gradient.

Formally, GD is an iterative algorithm that performs an update of parameters
with the aim to minimize a function. In each step t, it makes the following
computation:

θt+1 := θt − γ∇L(f(x; θ), y)

where θ denotes the vector of parameters (in the case of logistic regression, it
would be (w, b)), f(x; θ) is the representation of our prediction ŷ that shows
that it is dependent on the parameter vector θ, ∇L denotes the gradient of
the loss function with respect to the parameters and γ is the learning rate -
a hyper-parameter that determines how much the algorithm moves on each
step.

Stochastic gradient descent

Stochastic gradient descent is an algorithm that aims to compute similar
results as GD without the need for as many computational resources and as
much time. It achieves this goal by computing the gradient after just one
randomly chosen training example or a mini-batch (small subset) of random
examples instead of going through all the examples like GD does.

For both GD and SGD, it is very important to pick the learning rate carefully
because it determines the step size of the algorithm. It is common to either
pick a fixed value, start with a high learning rate that decreases over time or
use an optimizer such as Adam [3] [2].

For logistic regression, the cross-entropy loss function is convex, and therefore
there is no risk of getting stuck in local minima [2].

2.2 Artificial neural networks

Artificial neural networks are a type of machine learning algorithm that has the
ability to learn and model complex patterns in data. The algorithm is inspired
by the human brain, where information is processed through a network of
interconnected neurons [2]. This concept is relatively old, dating back to
1943 [4]. In recent decades, the idea has really found its use and has achieved
state-of-art results in many areas of machine learning, such as computer vision,
robotics, finance, gaming and natural language processing. In NLP, various

6

............................... 2.2. Artificial neural networks

architectures of ANNs are used for text classification, sentiment analysis,
language translation, named entity recognition or text summarization.

In artificial neural networks, the basic building block is a neuron (sometimes
called a unit), which receives a set of real values as input and produces an
output based on a set of weights and biases. These weights and biases are
learned through a training process that adjusts them to minimize the difference
between the predicted output and the actual output. The computation in
each unit is done as follows:

y = f(w · x + b)

where w is the weights vector, b is the bias term, x is the input vector, and f
is an activation function. The most widely used activation functions include
relu, sigmoid, tanh and softmax. They are defined as follows:. relu(z) = max(0, z). sigmoid(z) = 1

1+e−z. tanh(z) = ez−e−z

ez+e−z = 1−e−2z

1+e−2z. softmax(zi) = ezi∑K

j=1 ezj
for i = 1, 2, . . . , K

Activation functions are important because they can be non-linear and there-
fore allow the model to fit well to data that are not linearly separable.

2.2.1 Feedforward neural networks

In feedforward neural networks, neurons are organised into layers and con-
nected without cycles. That means that the outputs of each layer are passed
to the units in the next layer (hence the name feedforward). Each unit in the
n-th layer of the network is connected to each unit in layers n− 1 and n + 1
(fully connected).

In vector form, a basic feedforward neural network can be computed as
follows:

h = f(Wx + b0)

y = g(Vh + b1)

where x is the input (real valued vector), W and V are weight matrices, b0
and b1 are bias vectors, h is the hidden layer and y is the output.

In text classification, softmax is typically used to get a probability distribu-
tion over the possible classes as output.

7

2. Theoretical background
More layers can be added analogically by using the output of the last layer
(y in the example) as input to compute the next hidden layer.

Training

In supervised text classification, the training data typically consists of an-
notated inputs that are fed to the network and used for optimization. The
network uses the labels in the training data to adjust the weights accordingly
so that the outputs of the network on the training dataset and the expected
(real) outputs are as close as possible.

In this process, it is crucial to define a loss function that can be optimized.
This is typically cross-entropy loss which is described above.

The whole learning process consists of minimizing the average value of the
loss function over the training set. This is done by an optimization algorithm
such as gradient descent or stochastic gradient descent.

To be able to use GD or SGD, we need to know the gradient of the loss
function with respect to each of the parameters. With only one layer and a
sigmoid or softmax activation function (logistic regression), this is straightfor-
ward because we can simply use the derivative of the activation function. In
ANNs, this is not an easy task because they often have millions of parameters
and multiple layers. The problem of computing the partial derivatives of the
weights over all previous layers is solved by an algorithm called backpropaga-
tion [5], which utilizes the chain rule to compute partial derivatives of the
loss function with respect to each of the parameters in a backward pass of
the network.

The optimization problem for multi-layer neural networks is not convex, and
therefore we face the risk of (S)GD getting stuck in a local minimum. This
problem is partially solved by following best practices such as random weights
initialization, using dropout [6] and tuning hyper-parameters.

2.2.2 Recurrent neural networks

A recurrent neural network (RNN) is a type of neural network that is partic-
ularly well-suited for processing sequential data, such as text. RNNs have a
memory component that allows them to maintain information about previous
inputs and use it to inform their processing of subsequent inputs. This makes
them particularly useful for tasks that require an understanding of context
and the relationships between words in a sequence.

In an RNN, each unit in the network has a connection to itself, as well as
connections to the units in the previous and next time steps. The simplest
form of an RNN is an Elman network [7], which consists of an input layer, a
hidden layer and an output layer. In each timestep, the hidden state of the

8

............................... 2.2. Artificial neural networks

network is computed and used in the next timestep in combination with the
input. This allows the network to use information from previous time steps
when processing the current input.

A recurrent neural network can be viewed as an extension of a feedforward
neural network. We only need to add a matrix U that contains the weights
between hidden layers in time t and t− 1 and a bias vector b2 for matrix U.
Computation of the current hidden layer can then be done as follows:

ht = f(Wxt + b0 + Uht−1 + b2)

Other than this addition, we do not need to modify anything, and the process
stays the same as in FNN (previous section). (S)GD and backpropagation
can again be used for optimization. However, backpropagation through time
described in [8] can improve the performance [9].

Such a network can capture context relatively well but has its problems.
Mainly the exploding/vanishing gradient problem [10] where the propagation
of the gradient causes it to be very large/small. Because of this issue, the
model can not efficiently remember long context. This problem can be
partially solved [11] by more complex RNN variants such as long-short-term
memory (LSTM) [12].

2.2.3 Transformers

The transformer architecture was introduced in the 2019 paper called Atten-
tion is All You Need [13]. It has outperformed many preexisting solutions
and helped to create state-of-the-art language models such as GPT4 [14] or
BERT [15], which is a model that is very well suited for finetuning for tasks
such as question answering or language inference.

The key idea behind the transformer architecture is the use of self-attention
mechanisms, which allow the model to attend to different parts of the input
sequence at different times rather than processing the input in a fixed or-
der. This allows the model to capture long-range dependencies in the input
sequence.

The transformer architecture consists of a sequence of encoder and decoder
layers, each of which is composed of multiple self-attention layers and feedfor-
ward layers. The input to the encoder is a sequence of word embeddings, and
the output is a sequence of hidden states that capture the meaning of the
input sequence. The decoder then processes the hidden states and produces
an output sequence.

One of the key advantages of transformer architecture is that it is fully
parallelizable, which means that it can be efficiently trained on large datasets
using multiple GPUs. This has made it possible to train large transformer

9

2. Theoretical background
models that achieve state-of-the-art performance on a wide range of NLP
tasks [2].

2.3 Natural language processing

Natural language processing (NLP) is a subfield of artificial intelligence that
focuses on giving computers the ability to understand, interpret, and generate
human language. There are several tasks that NLP systems are capable
of performing, including language translation, text classification, sentiment
analysis, named entity recognition and question answering.

2.3.1 Text classification

Text classification is a process that involves assigning text to one or more pre-
defined categories based on its content. It is often used to classify documents,
such as news articles or emails into predefined categories or labels, such as
news, spam, or advertisement.

There are several approaches to text classification, including rule-based sys-
tems, which rely on a set of predefined rules to classify text, and machine
learning-based systems, which learn to classify text through training on a
dataset.

2.3.2 Bag of words

The simplest way of representing a word in a dictionary (corpus) is to have
a vector of the size of the dictionary where all elements except the one on
the index of the represented word are zeros. Only the element on the word’s
index is one. This is called one-hot encoding.

To represent a whole sentence, we can add one-hot encoded words together
and get what is called a Bag of Words (BoW). It is clear that the order of
words in the original sentence is ignored in BoW [2].

For example, if we consider the following documents (word sequences):. Document 1: Thomas went out and it was raining. Document 2: Thomas likes it when it is raining

We get the vector representations in table 2.1.

Thomas went out and it was raining likes when is
Document 1 1 1 1 1 1 1 1 0 0 0
Document 2 1 0 0 0 2 0 1 1 1 1

Table 2.1: Example of two documents encoded into vector space using BoW.

10

.............................. 2.3. Natural language processing

2.3.3 N-grams

An n-gram is a sequence of words that appear right after each other. For
example, in the sentence "What a beautiful day!", the bigrams (sequences of
two words) would be "What a", "a beautiful", and "beautiful day!". We can
form trigrams and longer n-grams analogically.

N-grams are used in the simplest language models to capture context and
predict the next word. Frequently occurring n-grams such as "New York" can
also be added to a corpus and viewed as phrases [16].

Besides the above-described word n-grams, we can also add character n-grams
to the corpus to improve the robustness of a model [17].

2.3.4 Word embeddings

Word embeddings are numerical representations of words or phrases in a
high-dimensional vector space. These representations are used to capture
the meaning and context of words in a way that is much more flexible and
powerful than traditional one-hot encoding schemes.

One of the main advantages of word embeddings is that they can capture
complex relationships between words and the context in which they are often
used. That means that two words that are similar in meaning may have very
similar embeddings even though they are not spelled the same and do not
share any common subwords. This allows word embeddings to capture the
semantics of a language in a way that is more robust and generalizable.

We can combine word embeddings with the above-mentioned BoW represen-
tation by averaging the vectors of all words in a sentence to get a sentence
vector.

2.3.5 Word2vec

Word2vec [18] is the first-ever method for learning fixed-length word embed-
dings based on the context in which the word appears in a large corpus of text.
These vectors are learned in such a way that words that appear in similar
contexts are closer to each other in vector space. For example, the vectors
for the words "king", "queen", and "princess" will likely be close together in
vector space.

Simple algebraic operations can be used to capture relationships between
words. For example, embedding("king") - embedding("man") + embed-
ding("woman") results in a vector that is closest to the vector representation
of the word "queen" [19]. However, it is important to note that this only works
in some cases. It has been shown that male-female analogies are one of the
easiest to capture for the algorithm [20]. Popularising such analogies has been

11

2. Theoretical background
criticised for portraying the capabilities of the algorithm in an unrealistic way
and making incorrect conclusions based on them [21].

There are two main approaches used to capture context in word2vec: the
Continuous Bag-of-Words (CBOW) model and the Skip-Gram model.

In the CBOW model, the goal is to predict the current word, given the context
of the words surrounding it. For example, given the sentence "the cat sat",
the goal is to predict the word "cat" given the context "the" and "sat". In
our example, we use a window size of only 1, but in practice, this number
would be larger. Generally, the CBOW model tries to learn the probability
distribution P(w|C), where w is the target word, and C is the context.

On the other hand, in the Skip-Gram model, the goal is to predict the context
given a target word. For example, given the word "cat," the goal is to predict
the words "the" and "sat". The Skip-Gram model tries to learn the probability
distribution P(C|w), where C is the context and w is the target word.

Figure 2.1: The CBOW architecture predicts a word given its context, whereas
Skip-gram predicts the context given the word [18].

2.3.6 FastText

FastText [17] is an algorithm for efficient learning of word representations and
text classification. It was developed by Facebook and is based on the idea of
representing words as a bag of character n-grams rather than as a sequence
of letters. In a way, it is an extension of word2vec. The main difference
between these two algorithms is that fastText uses character n-grams as
opposed to word2vec, which uses whole words. This is why fastText works
well for morphologically rich languages such as Turkish or Finish and misspelt

12

.............................. 2.3. Natural language processing

or infrequent words that contain character n-grams similar to some more
common words. This approach also helps fastText capture partial information
about a word even if it has not been seen in the training data.

Similarly to word2vec, fastText can be trained using either the Continuous
Bag-of-Words (CBOW) model or the Skip-Gram model.

The algorithm can be used for learning both supervised [22] and unsupervised
[17] word embeddings. In this thesis, we mainly use supervised fastText
embeddings, and therefore we describe the training process needed to obtain
them.

Training

The training of supervised word embeddings is very similar to the CBOW
model for unsupervised ones. The main difference is that in supervised
training, the goal label is put in the context instead of the word itself.

FastText is a shallow neural network with an input layer, a linear layer and
an output layer with two weight matrices A and B. A is used to compute
the hidden representation of input vector x (normalized bag of features) as
hidden = A ·x and B represents the weights of a linear classifier (multinomial
logistic regression).

During training, the goal is to minimize the negative log-likelihood over the
classes:

− 1
N

N∑
n=1

yn log(softmax(BAxn))

where N is the number of documents (input sequences), yn is the label (one-
hot vector) of the n-th document, and xn is the normalized bag of features of
the n-th document.

The optimization of this objective function is achieved using SGD.

Classification

To classify an input, we can use the following formula:

ŷ = softmax(BAx)

where B and A are weight matrices, x is an input vector (normalized bag
of features), and ŷ denotes the probability distribution over the classes that
occur in the training data.

13

2. Theoretical background
The computation of softmax can be very expensive. Therefore hierarchical
softmax is used to speed up the process.

2.3.7 Language models

Language models are artificial intelligence algorithms trained to predict and
generate text given some context. These models are designed to understand
the structure and patterns of language to generate coherent, relevant and
grammatically correct text [2].

Language models are built using large amounts of text data, such as books,
articles, and mainly online content, such as Wikipedia or CommonCrawl, and
are trained using machine learning techniques. They use statistical patterns
and algorithms to analyze and learn from this data and then generate new
text based on the patterns they have identified. Language models have a
wide range of applications, from chatbots and virtual assistants to machine
translation and text summarization [2].

RNN language models

Recurrent neural network language models are a revolutionary concept be-
cause, in contrast to FNN LMs [23], they don’t need a fixed context length
[9]. In theory, an arbitrarily long sequence can be stored in the hidden state.
In practice, it is not that simple due to the exploding/vanishing gradient
problem [11]. This problem can be partially solved using a more complex
RNN architecture such as LSTM [12].

14

Chapter 3

Related work

Even though, in some situations, it may seem that toxicity recognition can be
solved by a simple blacklist of banned words that imply toxicity, it is not the
case due to various reasons [24]. The main ones include altering words to fool
the blacklist (e.g. @ss, f!ck etc.), implicit toxicity, sarcasm, context or cultural
differences (some words may be offensive or hateful only in certain cultures)
[25] [26]. From these examples, it is evident that a blacklist would not be a
sufficiently robust solution. Therefore, it is vital to introduce solutions that
are smarter and more effective.

Many papers focused on the topic of toxicity recognition in the past and
presented different approaches and solutions such as decision trees [27], TF-
IDF, POS and custom linguistic features [28], unsupervised fastText [29],
supervised [29] or semi-supervised [26] deep learning, multi-task learning [30]
or language models [29] [31] [32].

Our work focuses on supervised fastText to show that results comparable
to SOTA feature-based approaches are achievable with low dimensional
embeddings and high training efficiency. We believe this will be the case
because supervised fastText was already shown to perform very well compared
to SOTA [22]. Besides fastText, we experiment with training specialised RNN
language models that can learn contextual information. We believe that a
sense of word order and context of words can help the model make more
informed decisions.

Besides designing the best possible classifier, there are other challenges present
in the task. The biggest ones include data collection and annotation and the
definition of categories to detect. The following sections will address these
problems and present an overview of the most widely used datasets.

15

3. Related work.....................................
3.1 Definition of toxic content

Intuitively, toxic content can refer to any harmful, offensive, or dangerous
content to individuals, groups, or society as a whole. However, it lacks a
standardised definition.

There are several categories into which toxic content can be split, but no
generally followed typology exists. Moreover, the distribution of classes is
highly dependent on their definitions and the annotators who assign them. For
example, some messages considered hate speech by [33] were only considered
offensive by [28] [34].

3.1.1 Hate speech

Similarly to toxic content, hate speech has no official, universally agreed-on
definition [24] [34]. Still, there is a general consensus that it is speech that
targets disadvantaged racial, religious, ethnic, national or other social groups
in a manner that is potentially harmful to them [35].

Since we decided to use the dataset collected by Davidson et al. in 2017 [28],
we also use their definition of hate speech, which is the following:

"Language that is used to express hatred towards a targeted group or is intended
to be derogatory, to humiliate, or to insult the members of the group."

This definition is similar to those of Twitter [36], Meta (Facebook) [37], or
OpenAI [38].

Aside from the fact that hate speech is hard to define, it is also often highly
subjective, which brings further complicates its automated detection. For
example, in [28], 5% of the samples in the whole dataset were labelled as hate
speech, and only 1.3% of all samples were decided unanimously.

3.1.2 Offensive speech

It is important to distinguish offensive speech from hate speech because there
are many situations in which vulgar and toxic language is part of regular
communication that often does not need to be censored or processed the
same way as hate speech because it is not meant to insult anyone. These
situations include but are not limited to African-American people using the
word n*gga in everyday communication [39], users quoting explicit song lyrics
[28] and curse words being part of a joke or used to emphasise a strong
emotion [40].

16

...................................... 3.2. Datasets

Hate speech
No police department that hires gypsies, half-breeds, and nigglets should be trusted.
<user> Hit a bitch it’s not like you can see the bruises
You have my word we will RT @JRwrz: @Thotcho beat those fucking faggots pls

Offensive speech
Im just a young niggah tryna live my life long
<user> nah he pussy he won’t
Bad bitch good head I think she ah keeper !

Table 3.1: Illustration of the difference between hate speech and offensive speech.
The examples are taken from [28].

3.1.3 Explicit and implicit toxicity

Toxicity is not always implied by the choice of words. In some cases, the
classified text might consist of words that can be used in non-toxic contexts.
The usage of such context-dependent words makes it harder for both annota-
tors and machines to detect toxicity [34]. Examples of such text are in table
3.2.

Explicit toxic speech
Then i fuck yo bitch
You like them bitch niggas.
this shit so trash lol

Implicit toxic speech
<user> ugly emo trash go cut
#SomethingIGetAlot Are you... asian? black? Hawaiian? gay? retarded? drunk?
People who live in #theNetherlands are unwashed trash.

Table 3.2: Illustration of the difference between explicit and implicit toxic speech.
The examples are taken from [28].

3.2 Datasets

To this day, there is no dataset that could be used as a general benchmark
for classifier evaluation. The reason is closely tied to the previously described
problem of defining what categories of toxicity to recognize and how to define
them [34].

Most available datasets don’t only have two categories but rather aim to
detect various types of toxicity. Several previous works overcame this issue
by binarizing the datasets into two classes - sensitive (toxic) and normal [29]
[26]. This solution allows the authors to test their classifiers in a unified
environment, but it needs to be noted that it dramatically simplifies the

17

3. Related work.....................................
classification task. Another method that allows the usage of datasets that do
not have the same classes is multi-task learning. Using multi-task learning
to improve the robustness and out-of-domain performance was proposed in
[30].

A further problem of commonly used datasets is bias against minorities such
as racial [41] [42] or gender [43] bias. It has been shown that there is a
clear correlation between samples written in African-American English and
samples classified as offensive or abusive [43] and that there are often fewer
examples of offensive or hateful speech written by white people than people
of colour. Therefore, models trained on such datasets are more likely to
be biased and, in the worst-case scenario, might discriminate against the
minority groups they were meant to protect [42]. It is not the scope of our
work to solve this problem, but it is essential to be aware of the possibility of
bias in datasets.

Davidson et al. 2017 Twitter dataset

The data collection process of this dataset began with a lexicon of hate
speech compiled by hatebase.org. 85.4 million tweets containing terms from
the lexicon were extracted using the Twitter API. Then a set of 25k tweets
was sampled randomly, and each was labelled by at least three annotators
using crowdsourcing. The resulting categories are hateful, offensive (but not
hateful), and neither [28].

The dataset is imbalanced because of the usage of hateful and offensive terms
from hatebase.org during data retrieval.

Founta et al. 2018 Twitter dataset

This dataset aims to overcome some of the shortcomings of previously created
datasets. These include. Difficulty of annotators to distinguish between categories. Different occurrence rates for different classes. Scaling up the multi-label annotation process while maintaining the

quality of annotation and time-budget constraints.

To address these challenges, the authors used a three-round annotation process.
In the first two rounds, they allowed the annotators to use more than one label
(category of toxic behaviour). The categories were offensive, abusive, hateful,
aggressive, cyberbullying, spam and normal, and each tweet was labelled by
at least five annotators. After these two rounds, they determined correlations
between the categories and modified the goal labels accordingly. They decided
to merge their original abusive, offensive and aggressive categories into abusive
and remove cyberbullying altogether [44].

18

hatebase.org
hatebase.org

...................................... 3.2. Datasets

The final categories in the dataset are hateful, abusive, normal and spam.
Besides spam, the definitions are similar to [28] because the abusive class
contains various types of toxicity (but not hate speech), which can also be
said about the offensive class from [28].

The spam class was previously discarded in several papers since there are
specialized classifiers to detect spam, and the class is not closely related to
the task of toxicity recognition [45].

Other datasets

There are many different datasets for toxicity recognition [24] that detect
various subcategories of toxicity such as racism and sexism [33] [46], hate
speech against immigrants and women [47], trolling [48] [49], targets of insults
[50] [51] or types and levels of toxicity [52].

Most of the hate speech and toxicity datasets come from Twitter [33] [46] [28]
[50] [53], but other sources include Wikipedia [52], Facebook [54], Reddit [26]
[55], Instagram [56] [57] or niche forums such as Gab [55] [51] and Stormfront
[58].

Some of the datasets were also created for the purposes of a public competition.
For example, the Toxic Comment Classification Challenge held on Kaggle
by Google Jigsaw aimed to distinguish between various categories of toxicity
and allowed multiple labels per input [52]. Another such dataset is OLID
which is annotated on three levels - detection, type and target. Each of these
levels was a separate task in the OffensEval 2019 competition [50] [59].

In table 3.3, we describe some of the most popular datasets. The table clearly
illustrates that it is not simple to create a benchmark corpus for the task at
hand because it is very broad and is often split into different subtasks.

19

3. Related work.....................................

Dataset Class distribution Source Sample count

Davidson et al. [28]
Hate 6%
Offensive 77%
Neither 17%

Twitter 25k

Founta et al. [44]

Hateful 5%
Abusive 27%
Normal 54%
Spam 14%

Twitter 100k

Kaggle (Jigsaw) [52]

Toxic 10%
Severe toxic 1%
Obscene 5%
Threat 0.3%
Insult 5%
Identity hate 1%
Neither 90%

Wikipedia 222k

SemEval 2019 (Task A) [50] Offensive 33%
Not offensive 67% Twitter 14k

Waseem and Hovy [33]
Racism 12%
Sexism 20%
Neither 68%

Twitter 17k

Waseem [46]

Racism 1%
Sexism 12%
Neither 86%
Both 1%

Twitter 7k

De Gilbert et al. [58]

Hate 11%
Not Hate 86%
Relation 2%
Skip 1%

Stormfront 10k

Table 3.3: Comparison of some of the most widely used and cited datasets for
toxicity and hate speech recognition.

20

Chapter 4

Method

In this chapter, we will describe the methods that were used in our experiments
to achieve the presented results.

4.1 Supervised fastText

Supervised fastText has been shown to work very well for typical text classi-
fication tasks such as sentiment analysis [22]. Since sentiment might imply
toxicity in some cases and the task of toxicity recognition is similar to sen-
timent analysis overall, we believe that it will work well for our task as
well.

4.1.1 Concatenation of sentence embeddings

To improve the robustness of a supervised fastText classifier, we experimented
with concatenating the embeddings of a given sentence from several supervised
fastText models trained on different dataset variations.

The motivation for experimenting with this approach is the assumption that
even if one model from the ensemble doesn’t produce a very good sentence
vector, the concatenated embedding can still be saved by other models that
work better in the situation.

Description of the classifier

To get a sentence embedding, we first need to train several models on different
datasets. Then we can feed a sentence to each classifier independently and
concatenate the individual sentence embeddings to form one final embedding
which contains more information than the individual ones.

21

4. Method
After creating the final embeddings, a classifier can be trained and used for
predictions on a test set. We use multinomial logistic regression because it is
a strong baseline classifier often used in NLP [2] and is also used in supervised
fastText classification [22]. However, any feature based classifier could be
used instead.

There are other ways that could be used to combine embeddings from the
classifiers (e. g. average or weighted average). However, the advantage of
concatenation is the fact that the embeddings can be of arbitrary lengths.
This allows the algorithm to use different sentence embedding methods easily
because there is no need to make the vectors all the same length.

The process of embedding one sentence can be described by the following
pseudocode:

Algorithm 1 Function used to acquire a sentence embedding
function get_sentence_embedding(sentence)

e← []
for each c ∈ C do

e← concatenate(e, c.get_sentence_vector(sentence))
end for
return e

end function

where C is a set of supervised FT models that can be used to embed a
sentence, and e is the final embedding.

It can also be illustrated by the schematic in figure 4.1

4.2 RNN language model for text
classification

In this section, we describe a modification of the recurrent neural network
language model architecture [9], that can be used for text classification,

This approach aims to train a language model on a slightly modified dataset
where each line contains a sequence of words followed by a unique end-of-
sentence token and a label. The training data is then processed line by
line.

This way, the model should learn that a label must come after an end-of-
sentence token. And even if the model predicts a different word than a label
as the most likely one, it is possible to pick the highest of the probabilities
for all possible classes.

22

....................... 4.2. RNN language model for text classification

Figure 4.1: In the schematic, we can see the process of acquiring a sentence
embedding. First, a sentence is fed to n individual classifiers (C1 − Cn), which
generate n arbitrarily long sentence embeddings (E1 − En). In the next step,
these embeddings are concatenated to form one final embedding of the input
sentence. This embedding can later be used to train and evaluate a classifier
(e.g. logistic regression).

4.2.1 Loss calculation

Instead of calculating the training loss after each word based on the next
word as is done in [9], we only calculate the loss of the last predicted word
in a sentence (i. e. the label). This way, the model should adjust to the
classification task instead of general word prediction.

4.2.2 Bidirectional RNN ensemble

To make the classifier more robust and counter the exploding/vanishing
gradient problem, we trained two models on the same dataset, with the
difference between them being the word order. In one model, we process
an input sequence normally and in the other, we reverse the word order
completely, process the sequence from the end and predict a label at the start
of a sentence. To make a prediction, we take the prediction scores for each
class from both models, average them out and pick the class with the highest
average prediction score.

Bidirectional recurrent neural networks [60] have been shown to work well
for text classification [2]. Therefore we assume that our bidirectional ap-

23

4. Method
proach, which is very similar to bidirectional RNNs, will improve the model’s
performance, particularly in situations where the words that carry the most
information are at the start of a longer sequence because such words will be
at the end in the reversed model.

24

Chapter 5

Experimental setup

In this chapter, we describe our experimental setup - i.e. the libraries used in
our implementation, hyperparameters and the process of their tuning, the
data used for training and evaluating our classifiers and the hardware used
during our experiments.

5.1 Hardware

All of our models were trained on the same personal laptop with Intel(R)
Core(TM) i5-4210H 2.90GHz CPU, NVIDIA GeForce GTX 960M GPU and
8GB of RAM.

5.2 FastText

For our experiments with supervised fastText, we used the library available
at their website1. This library provides an API to use the fastText algorithm
for various tasks such as training models, embedding words or sentences and
classifying text.

FastText’s website offers pre-trained unsupervised word vectors that were
trained on Wikipedia and CommonCrawl [61] and can be used as a starting
point for supervised embeddings. The dimension of these vectors is 300, but
fastText provides a guide to reduce the dimension. Thanks to that, we were
able to adjust these pre-trained vectors for our experiments to fit our chosen
dimensions.

To classify the fastText embeddings acquired by our method, we used logistic
regression implemented in scikit-learn [62].

1https://fasttext.cc/

25

https://fasttext.cc/

5. Experimental setup
5.2.1 Hyperparameters

For supervised fastText, the hyperparameters we tuned are the follow-
ing:. lr - learning rate. epoch - the number of epochs. dim - dimension of the hidden layer.minn/maxn - mininmal/maximal length of character n-grams.wordNgrams - maximal length of word n-grams

To help with the process of hyperparameter tuning, we used the autotune
validation feature that is built into the fastText library. This feature tries to
optimise the hyperparameters based on a validation dataset automatically.
In practice, we found that in some cases, the hyperparameters returned by
this method can be improved by further hand tweaking, such as adding more
epochs or modifying the learning rate slightly.

During the hyperparameter search, we constrained the maximum model size
to 50MB. This functionality is also implemented in the fastText library.

Dataset pretrainedVectors lr epoch minn maxn wordNgrams

Original None 0.05 10 0 0 0
Balanced wiki.simple 0.05 1 3 6 3
Full wiki.simple 0.05 25 3 6 4

Table 5.1: Hyperparameters of the best-performing supervised FT models we
trained.

5.3 RNN language model for text
classification

The implementation of RNN LM written in PyTorch [63] that we modified for
the purposes of text classification was written by David Herel 2, who plans
to release it publicly but will not be able to do so before the submission date
of this thesis.

5.3.1 Hyperparameters

For RNN language models, the most important hyperparameters include the
following:

2https://davidherel.com/

26

https://davidherel.com/

....................................... 5.4. Dataset

. learning rate [0.1 - 1]. number of epochs [5 - 20]. dropout [0 - 0.3]. size of hidden layer [100 - 400]. number of hidden layers [1 - 3]

We experimented with various combinations of hyperparameters to achieve the
best possible results on our test data. The ranges of hyperparameters we tried
are in square brackets. The hyperparameters of our models could be tuned
further in order to achieve even better results, but since we experimented
with many variations, we believe the difference in performance would not be
significant.

Dataset lr epoch dropout hidden size layers

Balanced 0.3 4 0 200 2
Balanced (reverse) 0.2 10 3 200 2

Table 5.2: Hyperparameters of the best supervised RNN models we trained.

Method Training time Training data

Supervised fastText 0.6s (10m) Original
Concatenated FT embeddings + logistic regression 32s (30m) All datasets
RNN 28m Balanced
Bidirectional RNN ensemble 88m Balanced

Table 5.3: Approximate training times of our classifiers. In brackets, we include
the time we dedicated to autotuning hyperparameters for FT models. All of the
times were measured on the same device.

5.4 Dataset

Although the task of toxicity recognition lacks a universal benchmark dataset,
a few stand out as the most widely used ones. These include the dataset of
25k tweets created in 2017 by Davidson et al. [28].

This is our primary dataset of choice because it focuses on the difference
between hate speech and offensive speech and provides clear and sufficient
definitions for these classes. It is also important for our work that the
categories in the dataset are general (i. e. not focused on a particular
category of toxicity such as racism, threats or targeted insults). It is also
often used by other authors, and therefore, we were able to find results to
compare ours with.

27

5. Experimental setup
The second dataset we decided to use was created by Founta et al. [44] and
is suitable for our use case because it provides us with further examples of all
three recognised classes. Most importantly, hate speech. As stated above, the
definitions of abusive speech in [44], and offensive speech in [28] are similar.
Therefore it is ideal for our experiments with data augmentation.

We split the data into train, test and validation sets. The ratio we used is
70% train, 20% test and 10% validation.

5.5 Data augmentation

Using more data has proven to be an efficient method for improving the
performance of a hate speech classifier [26] [30]. In this thesis, we experiment
with using an additional, larger dataset which distinguishes classes that are
very similar to the original ones. This approach allows us to use external
annotated data without the need to perform semi-supervision. However, the
data are still of lower quality because their retrieval and annotation process
was slightly different compared to the original dataset.

We believe that thanks to this method, we will be able to improve the
performance and robustness of our classifiers because we will show them
more data (even though the data quality won’t be as high as before). This
is especially important for the hate speech label that is present in only ca.
5% of the original dataset. After training our classifiers on an augmented
dataset, we will evaluate them on the original test data to make them directly
comparable to the ones trained on the original dataset.

Using this data augmentation process, we have created two new datasets -
balanced and full. A comparison of these new datasets to the original one is
shown in table 5.4.

Balanced

The first of our datasets is balanced, meaning that the amount of samples
from each class is approximately the same. This was achieved by using all
available hateful tweets from both datasets and an equal amount (randomly
selected) of normal tweets from both datasets and offensive tweets from the
original dataset. We aim to show that if a classifier sees more data from
each class, it should learn to recognize better those classes that were not
as frequent in the original imbalanced dataset. Size-wise, this dataset is
comparable to the original one.

28

.................................. 5.6. Data preprocessing

Full

In contrast to the balanced dataset, the full one uses all the data from both
datasets. It aims to show the difference in results that can be achieved by
adding ca. five times more data. Similarly to the original one, this dataset is
strongly imbalanced.

Data # Samples % Hateful % Offensive % Normal Median len.

Original 17347 5.74 77.28 16.98 7/13
Balanced 16092 33.54 33.38 33.08 9/15
Full 92982 5.74 39.18 55.09 9/16

Table 5.4: Comparison of our training datasets. The median length column
contains values for fastText and RNN LM preprocessing, respectively.

5.6 Data preprocessing

Before classifying the data using our proposed methods, we preprocessed
it to make it more readable for the classifiers. The preprocessing steps are
described in this section.

5.6.1 Preprocessing for fastText

For supervised fastText (and bag of features methods in general), the order
of words is ignored. Therefore besides standard preprocessing, we also
remove stopwords, user mentions and rt strings. The whole process is the
following:..1. Remove multiple spaces..2. Remove URLs..3. Remove user mentions..4. Split camel case after # (i. e. "#helloWorld" becomes "hello World")..5. Remove "RT" string (denotes retweet)..6. Remove all special characters..7. Make all text lowercase..8. Remove English stopwords (using a list from NLTK [64])

29

5. Experimental setup
5.6.2 Preprocessing for RNN

The preprocessing for our RNN approach differs from what we use for super-
vised fastText because, as opposed to FT, RNNs can capture context and
word order. Therefore the classifier could benefit from more information in
the data. We use the following preprocessing procedure:..1. Remove multiple spaces..2. Remove URLs..3. Substitute user mentions with a <user> token..4. Split camel case after # (i. e. "#helloWorld" becomes "hello World")..5. Remove all special characters..6. Make all text lowercase

Besides preprocessing the text, we also modified the data so that it could be
used as input for our RNN LM variation.

Each document from the training data was put on a separate line followed
by a unique end-of-sentence token (<eos>) and a label (0, 1 or 2 for hate
speech, offensive speech and normal speech, respectively).

We also had to use padding tokens (<pad>) to make all sentences uni-
formly long because the code is written in PyTorch [63] in order to run on a
GPU.

5.7 Metrics

In this section, we will explain basic metrics for classification. The notation
used in the formulas for two classes (positive and negative) is explained in
the following list..TP (true positives): The number of samples in the test dataset correctly

classified positive..TN (true negatives): The number of samples in the test dataset correctly
classified as negative.. FP (false positives): The number of samples in the test dataset incorrectly
classified as positive.. FN (false negatives): The number of samples in the test dataset incor-
rectly classified as negative.

30

....................................... 5.7. Metrics

Accuracy

Accuracy measures the ratio between the absolute amount of correct predic-
tions and the number of samples. It is a good baseline metric. However, it has
its shortcomings. Especially for unbalanced datasets, it might be misleading.
For example, given a dataset with two classes that consists of 95% class 0
and 5% class 1, the accuracy would be 95% if the classifier classified every
input as class 0, which seems relatively high. However, it is evident that such
a classifier would not work correctly for the input data in practice because it
would completely overlook the minority class. Therefore other metrics are
often used to ensure that a classifier works as expected.

Accuracy = TP + TN

TP + TN + FP + FN

Precision

This metric measures the proportion of correctly classified instances among
those that were predicted as positive.

Precision = TP

TP + FP

Recall

Recall is the proportion of correctly classified instances among all actual
positive instances.

Recall = TP

TP + FN

F1 score

F1 score is the harmonic mean of precision and recall and provides a single
metric that balances the two.

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN

5.7.1 Multiclass metrics

All the above-mentioned metrics are defined for only two classes - positive and
negative. In practice, it is often necessary to recognise more than just two

31

5. Experimental setup
classes. Therefore various means of the metrics are used. We will only describe
the macro average F1 score in detail since it is the only metric the reader
needs to know to understand the results in the next section correctly.

Macro average F1 score

Macro average F1 score is the arithmetic average over all classes in a dataset.
We decided to use this metric because it has been shown to work better than
micro average F1 on unbalanced datasets [65]. The following formula is used
to calculate this metric:

F1macro = 1
K

K∑
k=i

F1k

where K denotes the number of classes to classify and F1k denotes the F1
score for the k-th class.

32

Chapter 6

Results

In this chapter, we present the results that were achieved using our proposed
methods. First, we compare our methods to other publications, and then we
analyse each of our methods in depth in order to highlight their advantages
and disadvantages.

It is complicated to compare our achieved results to other existing solutions
because most papers report results on their train-test-validation splits that
are not publicly available. However, even though our reported results were
achieved on different splits, it is possible to compare them to other solutions
to get a general understanding of how well they perform.

In table 6.1, we present a comparison of our best results and results that were
published in other works that use the same dataset. We have achieved results
comparable to other embedding-based methods with a much lower embedding
dimension. In [30], the authors (similarly to us) employed an additional
dataset in order to make their model more robust. However, their scope
was to improve the model’s performance on out-of-domain data, whereas our
motivation for augmenting the data was a better performance on the same
single task.

The only feature-based method that outperforms ours by a significant margin
uses custom, Twitter-specific features along with some commonly used ones
such as TF-IDF, POS and word count. This method is effective, but in
contrast to ours, it requires a lot of feature engineering. Moreover, it is only
usable for Twitter data because it employs platform-specific features.

The BERT finetuning method presented in [29] has also outperformed ours
significantly. However, it can be argued that finetuning a large language
model such as BERT requires a lot of time and computational resources as
opposed to fastText models that can be trained in less than a minute on a
single CPU and even our bidirectional RNN models that can be trained in
approximately two hours on a single GPU (see table 5.3).

It is important to note that even though we chose to classify the data into three
classes to separate hateful speech from offensive speech, the most essential

33

6. Results
part of the task is the detection of toxicity as a whole. For this reason, we
present a confusion matrix that was generated by using our best classifier to
predict labels normally and merging both toxic classes into one. In figure 6.5,
we can see that the classifier performs well. It missclassified 8.7% of toxic
tweets and 4.2% of normal tweets from the test set.

Method Macro F1 Dimension

Multiple FT models (ours) 0.722 30
Bidirectional RNN classifier (ours) 0.696

BERT embeddings + Bi-LSTM [29] 0.724 768
Unsupervised FT embeddings + Bi-LSTM [29] 0.723 300
BERT finetuning [29] 0.84

TF-IDF, POS, custom features [28] 1 0.773 170

Multitask learning and BoW features [30] 2 0.723

Table 6.1: Comparison of our results with other similar works.

6.1 Supervised fastText

This section contains a selection of the best results that we achieved using
supervised fastText. In table 6.2, we can see an overview of the best fastText
models that we trained. We see that even though the macro F1 score is very
similar on all variations of the data, it can be improved using our proposed
concatenation method.

In table 6.2, we can also see that even though multiple models outperformed
each one of the single models, the accuracy has lowered (in comparison to the
best performing model). However, if we look at figures 6.1 and 6.2, we can see
a very clear improvement in terms of the amount of correctly classified hate
speech tweets. We believe that recognizing as much hate speech as possible
is crucial in most situations, and therefore, we consider our method to be
better than baseline supervised FT classifiers.

6.1.1 Single model

Using supervised fastText alone, we were able to achieve macro average F1
score of 0.702, which is a result that is comparable (even though it performs
slightly worse) to other feature based approaches such as [30] or [29]. From

1The paper does not report macro F1 score on their test split, but we were able to
calculate it based on their codebase that is available at https://github.com/t-davidson/
hate-speech-and-offensive-language

2The paper only reports precision and recall. We calculated the macro F1 score ourselves.

34

https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language

..................................6.1. Supervised fastText

Dataset Pre-trained vectors Dimension Macro F1 Accuracy
Original None 10 0.702 0.892
Balanced Yes 10 0.701 0.849
Full Yes 10 0.702 0.886
All datasets In some models 30 0.722 0.859

Table 6.2: Comparison of the models used for the final FT classifier.

the normalised confusion matrix depicted in figure 6.1, it is evident that the
classifier can not distinguish hate speech from offensive speech very well. This
is a problem that we can also see in other works that use a feature based
approach [29] [30].

precision recall f1-score support

Hate 0.463 0.255 0.329 290
Offensive 0.926 0.946 0.936 3832
Neither 0.819 0.867 0.842 835

accuracy 0.892 4957
macro avg 0.736 0.689 0.702 4957

Table 6.3: Results achieved using a single supervised fastText model trained on
the original dataset.

hate offensive neither

ha
te

of
fe
ns

iv
e

ne
ith

er

0.26 0.64 0.1

0.02 0.95 0.034

0.011 0.12 0.87

Figure 6.1: Normalised confusion matrix of the classifications made by our best
fastText classifier.

6.1.2 Multiple models

Using the proposed method of concatenating supervised fastText embeddings
and classifying them with logistic regression, we improved the macro F1 score

35

6. Results
to 0.722. This result is comparable to [29], where the authors achieved macro
F1 score of 0.724 using BERT-based embeddings and a bidirectional LSTM
classifier. Even though our score is slightly lower, the computation time and
memory needed to train and use our classifier are significantly lower.

Figure 6.2 depicts the confusion matrix of our best multi-model classifier.
It is clear that this classifier works much better for classifying hate speech,
and the amount of correctly classified hate speech inputs is comparable to
finetuned BERT published in [29]. However, there still is a significant amount
of samples that were annotated as hate speech and classified as offensive
speech.

precision recall f1-score support

hate 0.296 0.579 0.392 290
offensive 0.964 0.868 0.913 3832
neither 0.814 0.915 0.861 835

accuracy 0.859 4957
macro avg 0.691 0.787 0.722 4957

Table 6.4: Results achieved using a combination of three supervised fastText
models trained on different variations of the original dataset.

hate offensive neither

ha
te

of
fe
ns

iv
e

ne
ith

er

0.58 0.32 0.1

0.094 0.87 0.038

0.049 0.038 0.91

Figure 6.2: Normalised confusion matrix of our supervised fastText-based
classifier that uses multiple FT models and is trained on augmented datasets.

6.2 RNN language model for text
classification

This section presents the best results we achieved using the previously de-
scribed method based on RNN LM.

36

....................... 6.2. RNN language model for text classification

In table 6.5, we can see that this approach was less effective than supervised
fastText. Moreover, in comparison to fastText, the training time increased
drastically (from seconds to over an hour, see table 5.3), and the number of
hidden neurons increased as well from 30 to 200.

Even though supervised fastText outperforms our RNN LM architecture
significantly, we can see that the method yields relevant results, and we
believe that it could be improved to match or outperform fastText.

precision recall f1-score support

hate 0.273 0.500 0.353 290
offensive 0.968 0.856 0.909 3832
neither 0.725 0.898 0.803 835

accuracy 0.843 4957
macro avg 0.655 0.752 0.688 4957

Table 6.5: Results achieved using our proposed RNN classification model. The
model was trained on the balanced dataset variant.

hate offensive neither

ha
te

of
fe
ns

iv
e

ne
ith

er

0.5 0.32 0.18

0.083 0.86 0.06

0.081 0.02 0.9

Figure 6.3: Normalised confusion matrix of the classifications made by our best
RNN classifier.

6.2.1 Bidirectional ensemble

The first improvement of our RNN architecture is training a second model
with reverse word order and using an ensemble of these two models to classify
data. In table 6.6, we see that the performance of the classifier did improve
in comparison to a single model (table 6.5).

The best macro F1 score for normal order and reverse order models are 0.688
and 0.676, respectively. From that, it is evident that our method works as
expected and combines both models to form a better classifier.

37

6. Results
precision recall f1-score support

hate 0.283 0.548 0.373 290
offensive 0.970 0.866 0.915 3832
neither 0.743 0.868 0.801 835

accuracy 0.848 4957
macro avg 0.665 0.761 0.696 4957

Table 6.6: Results achieved on our best RNN ensemble.

hate offensive neither

ha
te

of
fe
ns

iv
e

ne
ith

er

0.55 0.29 0.16

0.081 0.87 0.053

0.11 0.019 0.87

Figure 6.4: Results achieved using our proposed bidirectional ensemble of RNN
classifiers. The models were trained on the balanced dataset variant.

hate or offensive neither

ha
te

 o
r o

ffe
ns

iv
e

ne
ith

er

0.96 0.042

0.087 0.91

Figure 6.5: Normalised confusion matrix of the classifications made by our best
classifier. Both toxic classes are merged in this figure.

38

..................................... 6.3. Future work

6.3 Future work

Even though our classifiers return relevant results, we believe they could be
improved further.

First of all, we believe that all of our models would benefit from even more
hate speech data because it would help them better distinguish between hate
speech and offensive speech. This assumption is based on the fact that even
though we trained models on the full dataset, which contained significantly
more offensive and normal examples, the amount of hate speech remained the
same as in the balanced data. The resulting models performed comparably
or worse than those trained on the balanced dataset. We assume that this
was caused by the strong imbalance of classes present in the dataset.

More hate speech data could be gathered from other existing datasets or by
manually annotating further examples. The latter would be more expensive
and time intensive but likely more effective because we could control the
annotation process and definitions of classes. Controlling the annotation
process could also help to eliminate or at least significantly reduce the bias
that is present in currently available datasets [41] [43] [42].

Besides collecting more training data, we believe that finetuning an RNN LM
could also be a viable solution because BERT finetuning has been shown to
perform significantly better than fastText and other feature-based approaches
[29]. However, it needs to be noted that BERT was developed for finetuning
[15], and the process of finetuning an RNN language model would not be as
straightforward.

39

40

Chapter 7

Conclusion

In this thesis, we focused on toxicity recognition. We explained the theory
needed to understand the field of machine learning, natural language process-
ing and text classification in general, as well as the details of algorithms used
throughout this work.

We reviewed related work in the area of toxicity recognition, discussed the
issue of defining the concept of toxicity in conversational systems and some
possible subcategories of toxicity, and compared several of the most widely
used datasets for the task.

After describing related work in the field, we proposed two methods that can
be used for toxicity recognition - one based on supervised fastText embeddings
and one based on recurrent neural networks. After explaining our methods,
we discussed hyperparameters of our models, datasets, implementation details
and metrics to help the reader understand our experimental process and
setup.

We presented the results of our experiments, compared them to SOTA results
published in other works and proposed possible directions for future work
that could improve the performance of our methods.

Our results show that a classifier based on the concatenation of supervised
fastText embeddings can be used as a strong baseline for toxicity recognition.
Even though LM (BERT) finetuning performs significantly better, it requires
considerably more computation. Therefore, we believe that our method is
relevant and could be used when it is desirable to train and classify quickly
with low memory usage.

We have also shown that RNN language models work reasonably well for
toxicity recognition. Although we were not able to outperform fastText with
this method, we believe that RNNs could be used to train a high-quality
classifier. In this case, the first step in the right direction could be one of the
suggestions we presented in section 6.3..

41

42

Appendix A

Bibliography

[1] E. Dinan, S. Humeau, B. Chintagunta, and J. Weston, “Build it break
it fix it for dialogue safety: Robustness from adversarial human attack,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 4537–4546.

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 3rd ed., 2023.

[3] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[4] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp.
115–133, 1943.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[7] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[9] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.” in Interspeech, vol. 2,
no. 3. Makuhari, 2010, pp. 1045–1048.

43

A. Bibliography.....................................
[10] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies

with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[11] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning. Pmlr, 2013, pp. 1310–1318.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[14] OpenAI, “Gpt-4 technical report,” 2023.

[15] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
Advances in neural information processing systems, vol. 26, 2013.

[17] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[19] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continu-
ous space word representations,” in Proceedings of the 2013 conference
of the north american chapter of the association for computational lin-
guistics: Human language technologies, 2013, pp. 746–751.

[20] G. Finley, S. Farmer, and S. Pakhomov, “What analogies reveal about
word vectors and their compositionality,” in Proceedings of the 6th joint
conference on lexical and computational semantics (* SEM 2017), 2017,
pp. 1–11.

[21] M. Nissim, R. van Noord, and R. van der Goot, “Fair is better than
sensational: Man is to doctor as woman is to doctor,” Computational
Linguistics, vol. 46, no. 2, pp. 487–497, 2020.

[22] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of
tricks for efficient text classification,” in Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Valencia, Spain: Association for

44

..................................... A. Bibliography

Computational Linguistics, Apr. 2017, pp. 427–431. [Online]. Available:
https://aclanthology.org/E17-2068

[23] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic lan-
guage model,” Advances in neural information processing systems, vol. 13,
2000.

[24] S. MacAvaney, H.-R. Yao, E. Yang, K. Russell, N. Goharian, and
O. Frieder, “Hate speech detection: Challenges and solutions,” PloS one,
vol. 14, no. 8, p. e0221152, 2019.

[25] S. O. Sood, E. F. Churchill, and J. Antin, “Automatic identification of
personal insults on social news sites,” Journal of the American Society
for Information Science and Technology, vol. 63, no. 2, pp. 270–285,
2012.

[26] C. Khatri, B. Hedayatnia, R. Goel, A. Venkatesh, R. Gabriel, and
A. Mandal, “Detecting offensive content in open-domain conversations
using two stage semi-supervision,” arXiv preprint arXiv:1811.12900,
2018.

[27] E. Spertus, “Smokey: Automatic recognition of hostile messages,” in
Aaai/iaai, 1997, pp. 1058–1065.

[28] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the 11th International AAAI Conference on Web and Social Media,
ser. ICWSM ’17, 2017, pp. 512–515.

[29] A. G. d’Sa, I. Illina, and D. Fohr, “Bert and fasttext embeddings for auto-
matic detection of toxic speech,” in 2020 International Multi-Conference
on:“Organization of Knowledge and Advanced Technologies”(OCTA).
IEEE, 2020, pp. 1–5.

[30] Z. Waseem, J. Thorne, and J. Bingel, “Bridging the gaps: Multi task
learning for domain transfer of hate speech detection,” Online harassment,
pp. 29–55, 2018.

[31] T. Caselli, V. Basile, J. Mitrović, and M. Granitzer, “HateBERT:
Retraining BERT for abusive language detection in English,” in
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH
2021). Online: Association for Computational Linguistics, Aug. 2021,
pp. 17–25. [Online]. Available: https://aclanthology.org/2021.woah-1.3

[32] M. Mozafari, R. Farahbakhsh, and N. Crespi, “A bert-based transfer
learning approach for hate speech detection in online social media,” in
Complex Networks and Their Applications VIII: Volume 1 Proceedings
of the Eighth International Conference on Complex Networks and Their
Applications COMPLEX NETWORKS 2019 8. Springer, 2020, pp.
928–940.

45

https://aclanthology.org/E17-2068
https://aclanthology.org/2021.woah-1.3

A. Bibliography.....................................
[33] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive

features for hate speech detection on twitter,” in Proceedings of the
NAACL student research workshop, 2016, pp. 88–93.

[34] Z. Waseem, T. Davidson, N. Ithica, D. Warmsley, and I. Weber, “Un-
derstanding abuse: A typology of abusive language detection subtasks,”
ACL 2017, p. 78, 2017.

[35] S. Walker, Hate speech: The history of an American controversy. U of
Nebraska Press, 1994.

[36] “Twitter help center - hateful conduct,” accessed: 2023-18-04.
[Online]. Available: https://help.twitter.com/en/rules-and-policies/
hateful-conduct-policy

[37] “Meta transparency center - hate speech,” accessed: 2023-18-
04. [Online]. Available: https://transparency.fb.com/en-gb/policies/
community-standards/hate-speech/

[38] “Openai documentation - moderation,” accessed: 2023-24-04. [On-
line]. Available: https://platform.openai.com/docs/guides/moderation/
overview

[39] S. Stephens-Davidowitz, “The effects of racial animus on voting: Evidence
using google search data,” Unpublished typescript, 2011.

[40] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth, “Cursing in english
on twitter,” in Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing, 2014, pp. 415–425.

[41] M. Sap, D. Card, S. Gabriel, Y. Choi, and N. A. Smith, “The
risk of racial bias in hate speech detection,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 1668–1678. [Online]. Available: https://aclanthology.org/P19-1163

[42] T. Davidson, D. Bhattacharya, and I. Weber, “Racial bias in hate speech
and abusive language detection datasets,” in Proceedings of the Third
Workshop on Abusive Language Online, 2019, pp. 25–35.

[43] J. H. Park, J. Shin, and P. Fung, “Reducing gender bias in
abusive language detection,” in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct.-Nov. 2018,
pp. 2799–2804. [Online]. Available: https://aclanthology.org/D18-1302

[44] A.-M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn,
G. Stringhini, A. Vakali, M. Sirivianos, and N. Kourtellis, “Large scale
crowdsourcing and characterization of twitter abusive behavior,” in
11th International Conference on Web and Social Media, ICWSM 2018.
AAAI Press, 2018.

46

https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://transparency.fb.com/en-gb/policies/community-standards/hate-speech/
https://transparency.fb.com/en-gb/policies/community-standards/hate-speech/
https://platform.openai.com/docs/guides/moderation/overview
https://platform.openai.com/docs/guides/moderation/overview
https://aclanthology.org/P19-1163
https://aclanthology.org/D18-1302

..................................... A. Bibliography

[45] A. M. Founta, D. Chatzakou, N. Kourtellis, J. Blackburn, A. Vakali, and
I. Leontiadis, “A unified deep learning architecture for abuse detection,”
in Proceedings of the 10th ACM conference on web science, 2019, pp.
105–114.

[46] Z. Waseem, “Are you a racist or am i seeing things? annotator influence
on hate speech detection on twitter,” in Proceedings of the first workshop
on NLP and computational social science, 2016, pp. 138–142.

[47] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M.
Rangel Pardo, P. Rosso, and M. Sanguinetti, “SemEval-2019 task 5:
Multilingual detection of hate speech against immigrants and women
in Twitter,” in Proceedings of the 13th International Workshop on
Semantic Evaluation. Minneapolis, Minnesota, USA: Association for
Computational Linguistics, Jun. 2019, pp. 54–63. [Online]. Available:
https://aclanthology.org/S19-2007

[48] R. Kumar, A. K. Ojha, S. Malmasi, and M. Zampieri, “Benchmarking
aggression identification in social media,” in Proceedings of the first
workshop on trolling, aggression and cyberbullying (TRAC-2018), 2018,
pp. 1–11.

[49] J. Golbeck, Z. Ashktorab, R. O. Banjo, A. Berlinger, S. Bhagwan, C. Bun-
tain, P. Cheakalos, A. A. Geller, Q. Gergory, R. K. Gnanasekaran et al.,
“A large labeled corpus for online harassment research,” in Proceedings
of the 2017 ACM on web science conference, 2017, pp. 229–233.

[50] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and R. Ku-
mar, “Predicting the Type and Target of Offensive Posts in Social Media,”
in Proceedings of NAACL, 2019.

[51] B. Kennedy, M. Atari, A. Mostafazadeh Davani, L. Yeh, A. Omrani,
Y. Kim, K. Koombs, S. Havaldar, G. J. Portillo-Wightman, E. Gonzalez,
J. Hoover, A. Azatian, A. Hussain, A. Lara, G. Olmos, A. Omary,
C. Park, C. Wang, X. Wang, and M. Dehghani, “The gab hate corpus:
A collection of 27k posts annotated for hate speech,” 02 2020.

[52] “Toxic comment classification challenge data,” accessed: 2023-
25-04. [Online]. Available: https://www.kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge/data

[53] F. Poletto, V. Basile, M. Sanguinetti, C. Bosco, and V. Patti, “Resources
and benchmark corpora for hate speech detection: a systematic review,”
Language Resources and Evaluation, vol. 55, pp. 477–523, 2021.

[54] F. Del Vigna12, A. Cimino23, F. Dell’Orletta, M. Petrocchi, and
M. Tesconi, “Hate me, hate me not: Hate speech detection on face-
book,” in Proceedings of the first Italian conference on cybersecurity
(ITASEC17), 2017, pp. 86–95.

47

https://aclanthology.org/S19-2007
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data

A. Bibliography.....................................
[55] J. Qian, A. Bethke, Y. Liu, E. Belding, and W. Wang, “A benchmark

dataset for learning to intervene in online hate speech,” 09 2019.

[56] H. Hosseinmardi, S. Arredondo Mattson, R. I. Rafiq, R. Han, Q. Lv,
and S. Mishra, “Detection of cyberbullying incidents on the instagram
social network,” 03 2015.

[57] H. Zhong, H. Li, A. C. Squicciarini, S. M. Rajtmajer, C. Griffin, D. J.
Miller, and C. Caragea, “Content-driven detection of cyberbullying on
the instagram social network.” in IJCAI, vol. 16, 2016, pp. 3952–3958.

[58] O. de Gibert, N. Perez, A. García-Pablos, and M. Cuadros, “Hate
speech dataset from a white supremacy forum,” in Proceedings of
the 2nd Workshop on Abusive Language Online (ALW2). Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp.
11–20. [Online]. Available: https://aclanthology.org/W18-5102

[59] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and R. Ku-
mar, “Semeval-2019 task 6: Identifying and categorizing offensive lan-
guage in social media (offenseval),” arXiv preprint arXiv:1903.08983,
2019.

[60] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681,
1997.

[61] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning
word vectors for 157 languages,” in Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[64] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
analyzing text with the natural language toolkit. O’Reilly Media, Inc.,
2009.

48

https://aclanthology.org/W18-5102
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

..................................... A. Bibliography

[65] Z. Zhang and L. Luo, “Hate speech detection: A solved problem? the
challenging case of long tail on twitter,” Semantic Web, vol. Accepted,
10 2018.

49

50

Appendix B

List of acronyms

ADAM: Adaptive Moment Estimation

AI: Artificial Intelligence

ANN: Artificial Neural Network

BERT: Bidirectional Encoder Representations from Transformers

BoW: Bag of Words

CBOW: Continuos Bag of Words

FT: FastText

GD: Gradient Descent

GPT4: Generative Pretrained Transformer (version 4)

LLM: Large Language Model

LSTM: Long Short Term Memory

ML: Machine Learning

NLP: Natural Language Processing

NLTK: Natural Language Tool Kit

POS: Part of Speech

RNN: Recurrent Neural Network

SGD: Stochastic Gradient Descent

SOTA: State-of-the-art

TF-IDF: Term Frequency-Inverse Document Frequency

51

	Introduction
	Motivation and goal
	Structure

	Theoretical background
	Traditional machine learning
	Unsupervised learning
	Supervised learning
	Logistic regression

	Artificial neural networks
	Feedforward neural networks
	Recurrent neural networks
	Transformers

	Natural language processing
	Text classification
	Bag of words
	N-grams
	Word embeddings
	Word2vec
	FastText
	Language models

	Related work
	Definition of toxic content
	Hate speech
	Offensive speech
	Explicit and implicit toxicity

	Datasets

	Method
	Supervised fastText
	Concatenation of sentence embeddings

	RNN language model for text classification
	Loss calculation
	Bidirectional RNN ensemble

	Experimental setup
	Hardware
	FastText
	Hyperparameters

	RNN language model for text classification
	Hyperparameters

	Dataset
	Data augmentation
	Data preprocessing
	Preprocessing for fastText
	Preprocessing for RNN

	Metrics
	Multiclass metrics

	Results
	Supervised fastText
	Single model
	Multiple models

	RNN language model for text classification
	Bidirectional ensemble

	Future work

	Conclusion
	Bibliography
	List of acronyms

