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Abstract

This thesis delves into advanced tech-
niques for real-time computation of com-
plex direct and indirect illumination, fo-
cusing on Reservoir-based SpatioTempo-
ral Importance Resampling (ReSTIR). It
offers a practical implementation of the
ReSTIR algorithm for direct illumination,
demonstrating a robust approach for bi-
ased and unbiased many-light sampling
that leverages hardware-accelerated ray
tracing. The study includes qualitative
and performance tests validating the al-
gorithm’s effectiveness in various settings.
Furthermore, we propose several optimiza-
tions to enhance computational efficiency
and rendering quality. The thesis con-
cludes with a discussion of potential fu-
ture work, outlining promising directions
for further improvements and expansions
of the ReSTIR methodology.

Keywords: ReSTIR, real-time
rendering, ray tracing, vzorkovani
rezervoaru, fotorealisticky rendering
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Abstrakt

Tato prace se zabyva pokrocilymi techni-
kami pro vypocet komplexniho primého a
nepiimého osvétleni v redlném case se za-
meérfenim na metodu ReSTIR (Reservoir-
based SpatioTemporal Importance Resam-
pling). Soucasti préce je praktickd im-
plementace algoritmu ReSTIR pro primé
osvétleni, kterd demonstruje robustni pii-
stup pro vychylené i nestranné vzorkovani
mnoha svétel vyuzivajici hardwarove akce-
lerovany ray tracing. Prace zahrnuje kva-
litativni a vykonnostni testy, které ovéruji
ucinnost algoritmu v ruznych nastavenich.
Déle navrhujeme nékolik optimalizaci pro
zvyseni rychlosti vypoctu a kvality vy-
kreslovani. Praci uzavird diskuze, ktera
nastinuje slibné sméry pro dalsi vylepseni
a rozsifeni metodiky ReSTIR.

Kli¢ova slova: ReSTIR, real-time
rendering, ray tracing, reservoir sampling,
photorealistic rendering

Pteklad nazvu: Efektivni vzorkovani
pro vypocet komplexniho osvétleni v
realném cCase
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Chapter 1

Introduction

Over the past decade, path tracing has emerged as the standard algorithm for
film production and the simulation of realistic optical effects. The film and
game industries have begun to abandon empirical shading models in favor of
physically-based ones. Moreover, the simplified model of light propagation
via rasterization has necessitated filmmakers and developers to employ ray
tracing methods for accurately calculating reflections, shadows, caustics, and
indirect lighting.

Figure 1.1 : BEEPLE Zero-Day [Winl9| scene rendered with path tracing in
the Falcor rendering framework [KCK™'22|. (Left) Rendered with path tracing
with 1 sample per pixel. (Right) Rendered with path tracing with 1000 samples
per pixel.

In recent years, path tracing for real-time applications has emerged as
a significant challenge in computer graphics research. Even with the help
of newly deployed graphic cards that enable hardware acceleration of ray
tracing, it is currently possible to render only simple 3D scenes with a few
rays per pixel to meet the requirements for a resolution 1920 x 1080 and a
minimum frequency of 30 Hz.

The computation is significantly affected by the structure of the scene,



1. Introduction

whether it is the geometry, the complexity of materials, or the lighting.
Dynamic scenes, which may contain thousands of animated models, are
common in real-time applications and can add further complexity to the
overall computation. Given such constraints, we can only afford to cast a
small number of shadow rays toward the light sources for each pixel. This
results in an image output that contains a substantial amount of noise, which
is typical for path tracing when using a limited number of samples.

An example of the noise resulting from a few samples can be seen in the
left part of Figure|1.1. On the right, we see an image rendered with path
tracing created by accumulating 1000 samples. Although rendering such an
image may take a few seconds, upon closer inspection, subtle noise is still
noticeable.

Denoising constitutes a separate area of research. As a subsequent block
in the ray-tracing pipeline, it attempts to eliminate unwanted noise through
reconstruction algorithms. The two primary denoising approaches involve fil-
tering techniques and algorithms developed through training neural networks.
The quality of the results produced by these algorithms is contingent on the
amount of noise in the input image. Thus, it is necessary to develop methods
that can minimize noise in the shortest possible time for the input of the
denoising algorithm. Consequently, selecting the appropriate light sources
for sampling, which most significantly affect the visual appearance of a given
surface, is crucial for the quality of the final image.

This thesis explores state-of-the-art methods for real-time computation of
complex direct and indirect illumination using Reservoir-based SpatioTempo-
ral Importance Resampling (ReSTIR) [BWP™20]. Additionally, it provides
a practical implementation of the ReSTIR algorithm for direct illumination.
This method constitutes a compelling approach for biased and unbiased
many-light sampling, employing hardware-accelerated ray tracing.

. 1.1 Structure of the Thesis

Chapter [2| outlines the problem addressed in this thesis, introduces funda-
mental concepts, and reviews previous work on this topic. Chapter [3| offers
a theoretical description of the ReSTIR algorithm. Chapter [4] details our
implementation of the ReSTIR algorithm for direct illumination, including a
description of the optimizations utilized. In Chapter |5, we conduct qualitative
and performance analyses of our implementation results. Chapter |6 allows us
to discuss the results obtained in this work and suggest potential avenues for
extending and enhancing the existing method. Finally, Chapter |7 provides a
summary of this thesis’s results.



Chapter 2
Related Work

Addressing the complexity of real-time direct and indirect illumination has
been the focus of numerous contemporary research papers. The methodologies
predominantly involve various sampling techniques or the development of
mathematical models to tackle this challenge.

This chapter will introduce the essential theoretical concepts required
to comprehend this subject matter. Additionally, we will review several
noteworthy papers that have contributed to the field in recent years.

. 2.1 Problem Statement

In this section, we address the primary issue associated with ray tracing,
which is the solution of the rendering equation, and we further discuss the
use of Monte Carlo importance sampling in this context.

B 2.1.1 Rendering Equation

The fundamental problem of ray tracing is solving the rendering equation
[Kaj86], which is an integral equation that describes the outgoing radiance at
point y in direction w,

Lo(y,wo) = Le(y,wo) + /Q Li(y,w;) p(we, w;) (cos 8;) dw; (2.1)

where L, is the total outgoing radiance, L. is the emitted radiance, € is the
hemisphere of directions, L; is the incoming radiance coming toward y from
direction wj, p is the bidirectional scattering distribution function (BSDF),
cos 6; is the clamped cosine of the angle between the surface normal at the
point y and direction w;, and dw; is the solid angle.

The incoming radiance L; can be written as the outgoing radiance at the
visible surface along a ray from y in the direction wj:

Li(y,wo) = Lo(r(y, wo), —wo) (2.2)

where r is the ray casting function that returns the closest point on the
surface hit by the ray. The problem in solving this equation is that it
contains an unknown quantity L on both sides and also under the integral

3



2. Related Work

sign. Therefore, this equation cannot be solved analytically in the general
case.

In some cases, it may be helpful to split the integral of the rendering
equation into two separate integrals over direct and indirect illumination:

Lo(y7 wo) = Ldirect(y7 wo) + Lindirect (yv wo) (23)

In the implementation part of the thesis, we will deal mainly with the
solution of direct lighting. In this context, the equation can be rewritten as
an integral over all light-emitting surfaces A:

Ldirect(ya wo) = /A Le(ya ﬁ) p(woa y?) G(ya .CE‘) V(y7 iL‘) dAz (2'4)

where L. is the emitted radiance, p is BSDF, G is the geometry term, and
V is the mutual visibility between y and x. The geometry term typically
contains inverse squared distance and cosine terms.

This equation will be written for brevity as:

L:/Af(:):)dx (2.5)

B 2.1.2 Monte Carlo Importance Sampling

Given that the rendering equation cannot be analytically solved in general
scenarios, we use a numerical approximation of the solution. The conventional
approach employs the Monte Carlo method, which utilizes the following
estimator:

N
RS SFACT By 2.
(L N ; p(z;) (26)
Employing the traditional Monte Carlo method can yield noisy results.
To mitigate this noise, one could either increase the number of samples
N or attempt to construct a distribution of samples p (Probability Density
Function or PDF) that aligns more closely with the integrand. The first option
is usually impractical in real-time applications due to high computational
costs, while the second can be technically challenging. Optimally, a perfect
importance sampler reduces N to 1, but requires p « f and as PDFs must
integrate to unity, means:

f(z)
= 2.7
P@) = 27)
but requires knowing L in advance.
The shape of the integrand f(z) is influenced by many of factors, given that
it is the product of several different functions. Each one of these constituent

functions can potentially contribute to the presence of noise.

4



2.1. Problem Statement

For instance, the emitted radiance function L. can pose complexity, as
a scene may contain numerous lights with significant intensity variations
(Figure 2.1] (a)). Certain lights might be extremely bright, while others may
be dim, contributing insignificantly to the overall lighting.

The Bidirectional Scattering Distribution Function (BSDF), denoted by
p, can also exhibit complexity as it might contain high frequencies that are
dependent on the viewing angle (Figure [2.1| (b)). This is often observed in
scenes with models that incorporate glossy materials.

The geometric term G can be another source of noise as it depends on
the distance between the light source and the shading point, as well as the
orientation of their respective surfaces (Figure 2.1| (c)).

The visibility function V can pose challenges as well, given that many of
the selected samples may not be visible from a specific point (Figure 2.1 (d)).
This could be the case in a scene with a building with light sources in separate
rooms.

These observations suggest that effectively sampling the product of these
functions can be an immensely challenging, if not impossible, task.

{}(a) {:} %}
W

Vi
(d)

Figure 2.1 : This diagram shows the complexity of the integrand f(z), which
depends on several factors.

The presence of noise can be mitigated by sampling the individual functions
constituting the product f(x) separately. We can select M distinct sampling
strategies—for instance, light sampling and BSDF sampling—and select N,
samples from a specific strategy s.

This approach is called Multiple importance sampling (MIS) and is described
by the following weighted estimator:

(LMY _ % 1 fws(%‘) f () (2.8)
MIS i H N ps(@i)

5



2. Related Work

This estimate remains unbiased if w, holds for the weights M | w,(z) = 1.

Monte Carlo ray tracing provides the ability to render scenes with many
light sources. This is possible as light sources can be sampled stochastically,
and tracing rays can evaluate shadowing effects. This method offers an
advantage over shadow maps, a common practice in rasterization, which don’t
scale effectively when dealing with many light sources.

. 2.2 Previous Work

Efficient sampling for the computation of complex direct and indirect illumi-
nation is especially critical for scenes encompassing many light sources. This
challenge is known within the computer graphics community as "The Many-
Lights Problem." Over the years, numerous research papers have addressed
this issue, focusing on both scenarios involving analytical light sources, such
as point lights or realistic scenes containing area lights.

This section will explore various previously proposed solutions to this
challenge. Furthermore, we will introduce the crucial role of denoising and
reconstruction algorithms, which are essential complements for the real-time
application of path tracing. These algorithms aid in reducing noise and
improving the visual quality of the rendered images, thereby facilitating
real-time performance.

B 2.2.1 Lightcuts

This approach has inspired numerous other methods aimed at computing
realistic illumination. At its heart is an algorithm approximating illumination
from many point lights at a significantly sublinear cost [WEFA™T05].

At the onset of each frame, a so-called light tree is constructed. This binary
tree is global for the whole computation process and contains individual lights
in each leaf. The interior nodes represent clusters of lights, encompassing the
lights below them in the subtree. The quality of these clusters reaches its
peak when they comprise lights that share high similarity in their material,
geometric, and visibility terms. The authors of this paper address this by
grouping lights based on spatial proximity and orientation similarity.

During the selection of lights for shading, a so-called cut through the light
tree is chosen for each pixel, corresponding to a valid cluster partitioning.
The lights corresponding to a chosen cut are used in shading, substantially
reducing the overall complexity and rendering it sublinear. FEach cut presents
a unique cluster partitioning and thus varies in cost and quality. To address
this, the authors employ a relative error criterion that determines whether the
resulting cut is appropriate for use in a given context based on an estimate
of total radiance.

The construction of the tree is a stochastic process to circumvent bias.
However, once the tree is built, the same tree is used for the entire image.
Moreover, each internal node contains a representative light shared with one
of its child nodes. The issue with this method is that the lights at the top of

6
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the tree are more likely to be sampled. For instance, the representative light
of the root node is continuously sampled. This leads to sampling correlation
and temporal instability. Furthermore, this method is unsuitable for real-time
rendering as it still requires a relatively large number of samples to achieve
quality results.

B 2.2.2 Stochastic Lightcuts

Another approach for addressing complex illumination is Stochastic Lightcuts
[Yuk20]. This method is directly inspired by Light Cuts and attempts to
remove its shortcomings, such as temporal instability and high noise, when
using few samples.

The central concept involves the removal of representative lights from the
internal nodes. Instead, each internal node is treated as an aggregation of
light sources beneath its subtree. Then, when sampling a given node, a light
sample is randomly selected. This process effectively removes the flickering,
replacing it with noise.

The light sample is chosen using Hierarchical Importance Sampling. In-
dividual nodes are assigned a probability that determines the likelihood of
their selection during sampling. Each node’s probability is given by a weight
that incorporates the parameters of the subtree. These parameters include
the total light intensity of the subtree, reflectance bound (incorporating both
material and geometric terms), and the minimum distance to the bounding
box of the subtree.

Although this approach was initially designed for offline rendering, the
authors implemented simple modifications to make it more GPU-friendly
[LY20]. The first modification involves using a perfect binary light tree,
which is highly efficient to construct and traverse on the GPU. The second
modification entails sharing cuts between blocks of kxk pixels rather than
calculating a cut for each pixel separately—a process that proves costly for
real-time rendering. The computation pass is executed for each pixel block,
where one of the kxk pixels is selected as the representative pixel. This
representative pixel’s material and geometric properties are used to create
the cut.

B 223 Light BVH

Several researchers have investigated approaches based on building bounding
hierarchies over the light sources and traversing them to sample lights. Conty
Estévez and Kulla [CEKI1S8| proposed constructing a light bounding volume
hierarchy (Light BVH) that aggregates energy, spatial, and orientation data
from the emitters. This facilitates the accurate prediction of the effect a
cluster of lights may have on any given shading point. As a result, instead
of calculating these terms for all light sources, it enables the hierarchical
approximation of these quantities, thus reducing the per-sample complexity
to O(logn).
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While the original method does not accommodate dynamic light sources,
Moreau et al. [MPC22] proposed the creation of a two-level acceleration
structure. Prior approaches utilized a single bounding volume hierarchy
(BVH) that needed complete rebuilding if even a single light source was
moved or had its parameters, such as intensity, altered. This is not ideal for
real-time rendering. The issue with dynamic lights is connected to managing
data structures for ray-intersection testing in dynamic scenes.

Ray tracing APIs employ two-level BVHs that store collections of geometry
(e.g., meshes) in a bottom-level acceleration structure (BLAS) and maintain
a top-level acceleration structure (TLAS) housing the BLASes. The same
principle can be applied to emissive meshes. The authors suggest storing each
emissive mesh in its own BLAS; if the emissive geometry moves, only its own
BLAS and the TLAS must be rebuilt. They further enhance performance
by updating the light BVH via refitting directly on the GPU, preserving its
original topology.

The sampling of the two-level light tree is executed by initially traversing
the top-level acceleration structure (TLAS) down to a leaf node. This is
achieved by evaluating an importance function for each of the current node’s
children and stochastically selecting one. Each leaf node of the TLAS points
to a bottom-level acceleration structure (BLAS), and the same technique is
employed to select a light within it. The probability of sampling a light is
the product of the probability of sampling a given BLAS in the TLAS and
the probability of sampling it within its own BLAS.

B 2.2.4 Importance Resampling for Global lllumination

To reduce noise in Monte Carlo integration, we typically use importance
sampling. In order to use it, we need to be able to generate samples with a
distribution according to the probability density function. The more closely
the PDF aligns with the integrand, the lower the variance of the Monte
Carlo estimate. Three commonly employed techniques include generating
samples using the inversion of the cumulative distribution function (CDF),
rejection sampling, and Metropolis sampling. In their paper, Talbot et al.
[TCEO05] introduce a fourth technique, called Importance Resampling, which
they combine with importance sampling to present a novel variance reduction
method named Resampled Importance Sampling (RIS).

This method allows for better sampling of the function f when the source
PDF ¢ is a poor approximation of this function. The authors show that we
can choose an unnormalized function p (e.g., p x p - L. - G) that is a good
approximation of f and guide the sampling with it.

This approach significantly reduces variance compared to standard im-
portance sampling, mainly when dealing with common rendering challenges
such as direct illumination sampling or BRDF sampling. Furthermore, this
method is the foundational basis for the technique we will discuss in the next
chapter.
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Bl 2.2.5 Denoising and Reconstruction Algorithms

While it is still impossible to generate noise-free images in real-time ray tracing
applications using a single GPU, recent research efforts have concentrated
on eliminating noise in the resulting image while maintaining interactivity.
These strategies are orthogonal to the ones mentioned previously and can be
employed to enhance the output of prior methods.

Denoising algorithms commonly employ three techniques: spatial filtering,
temporal accumulation, and machine learning-based reconstruction. Spatial
filtering leverages the often-present similarities in neighboring pixels. Its
advantage is that it does not induce temporal lag, allowing it to respond
quickly to changes in the scene. However, this method can result in blurring
and temporal instability, leading to flickering. Temporal filtering utilizes
information from previous frames through pixel position reprojection, thereby
avoiding blurring and maintaining temporal stability.

These two techniques are frequently combined, as exemplified in Spatiotem-
poral Variance-Guided Filtering (SVGF'), where the authors utilize variance
estimation to differentiate between noise and detail [SSKT17]. It is also com-
mon in these algorithms to use geometric information from the scene, such
as normal maps or depth, for edge detection as guidance for the denoising
algorithm, which helps prevent image blurring [BEM11].

Direct and indirect illumination is frequently filtered separately using
Equation 2.1.1. This is because the noise patterns of direct and indirect
illumination exhibit different characteristics. Direct lighting often contains
high frequencies, while indirect lighting appears smoother in areas with similar
geometry.

NVIDIA has introduced NVIDIA Real-Time Denoisers (NRD), a collection
of spatio-temporal denoisers that are easily integrated into the rendering
pipeline [nrd22]. NRD offers better image quality than SVGF and supports
denoising various signals, including diffuse reflections, specular reflections,
and shadows.

Machine learning and deep learning algorithms employ neural networks for
signal reconstruction. These networks are trained using a variety of noisy
and reference signals. These algorithms can be temporally unstable and may
require temporal information for guidance. An example of such a denoiser is
the NVIDIA OptiX™ Al-Accelerated Denoiser, based on [CKST17], which
enables the reconstruction of global illumination with extremely low sampling
budgets at nearly-interactive frame rates.



10



Chapter 3
ReSTIR Algorithm Overview

In this chapter, we delve into the details of the algorithm presented in
the paper by Bitterli et al. ﬂm, which forms the foundation of the
implementation aspect of this thesis. This algorithm, primarily designed for
the computation of direct illumination, enables the rendering of fully dynamic
scenes with numerous light sources. Unlike methods previously published,
it does not require complex spatial data structures and utilizes a constant
amount of memory that solely depends on the resolution of the resultant
image. Furthermore, the computational complexity remains constant across
frames, ensuring no fluctuation in the rendering frequency during sudden
changes in the scene.

B 31 Resampled Importance Sampling

This technique was described in the paper as mentioned earlier by Talbot et
al. [TCEOQ5]. Initially, we generate M > 0 initial samples, also referred to as
candidates, according to the source PDF ¢, which is sub-optimal with respect
to f, but easy to sample from (e.g., ¢ < L¢). Subsequently, we randomly
select one candidate, represented by index z, for which the following holds:

p(z | {a1,...,zm)) = ZJ‘Z:ZJ()M (3.1)
w(z) = {;Ef;’; (3.2)

where p(z) is the target PDF, for which no practical sampling algorithm
may exist, and it does not have to be normalized, so we have much freedom
in its choice (e.g., p x L¢ - G - p).

The sample y := x, is selected, and repeating this process and averaging
the results leads to the following N-sample RIS estimator:

N ) M
e S ol (A H S o) ) BT

i=1 p(yl) j=1

This process can be seen as approximating perfect importance sampling
by iteratively applying Monte Carlo integration:
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A A

_ b)) px)
T [(plx)dr T 2 P(z;)
[ia)ds ™ s e
Merging Equation |3.4) into estimator 2.6| gives the RIS estimator |3.3|
Let us define the function W(z, z):

p() (3.4)

M
W(z,z) = ]5(2113z) (Azjz_:lw(x])> (3.5)

which allows the Equation |3.3/ to be written as

N
(L)t = D FW () (3.6)
=1

The function W can be viewed as a weighting factor of the resulting sample
y evaluated by the integrand f.
The estimate above remains unbiased when:

1 [p(x)da
E[W (x,z)] = P P R P (3.7)
which requires E[5; 3° ZE;’Z%] = [ p(x)dx.

The pseudocode for this procedure, where N = 1, can be seen in Algorithm
1l

Algorithm 1: Resampled Importance Sampling (RIS)

Input: M > 1 number of candidates to generate for pixel ¢
Output: Sample y and the sum of RIS weights Zi]\il w(x;)
x <0
w0
Wsym < 0
for i < 1 to M do
generate x; ~ ¢
X xU{z;}
wi = Pg(xi)/q(x:)
Wsym = Wsum + Wi
w < wU{w;}
compute normalized CDF C from w
draw random index z € [0, M) using C' to sample x w,
y
return y, wsym

© O N o otk W Ny

- e e
w N = O

In [WP21], Wyman et al. explore edge cases of the estimator 3.3, For
M =1, RIS becomes a standard Monte Carlo estimator. For small values
of M, the quality of ¢ is crucial for the final estimate. As M grows, RIS
better samples the target PDF p, and for M — oo, the quality of ¢ becomes
irrelevant as RIS perfectly samples p.

12



3.2. Streaming RIS Using Reservoir Sampling

B 32 Streaming RIS Using Reservoir Sampling

The issue with RIS is that all M candidates must be stored to select the
final sample. Bitterli et al. [BWP™20] solved this by combining RIS with
Weighted Reservoir Sampling (WRS).

Reservoir sampling is a family of algorithms that, given a stream of N
elements, can randomly select a K-element subset in a single pass. Often, K
is defined as a small constant, and there is no need to know N in advance.
Each sample is assigned a weight w(x;), such that the sample x; is selected
with a probability proportional to its weight:

P = 7;"(‘“) (3.8)
=1 w(z;)

Thus, WRS processes each element only once and retains only the required
number of elements, K, in the reservoir. The reservoir is updated after
processing each element, maintaining the invariant that after N samples, the
sample x; will remain in the resulting reservoir with a probability proportional
to its weight.

In this discussion, we are focusing on the variant of the algorithm where
the reservoir size K = 1.

This algorithm is described by pseudocode 2| as a function inside the
Reservoir class. Initially, an empty reservoir is created. Then, the sample
stream is traversed to update the reservoir with the chosen samples.

Algorithm 2: Weighted Reservoir Sampling (WRS)
Data: Set of samples S

1 class Reservoir

2 Sample y

3 Weum < 0

4 M+ 0

5 W<«0

6 function update(z;,w;)

7 Wsym ¢~ Wsum + Wi

8 M+—M+1

9 if rand() < (wi/wsym) then
10 ‘ Y <— T;
11 function reservoirSampling(S)
12 Reservoir r
13 for : <1 to M do
14 ‘ r.update(S[i|, weight(S[i]))
15 return r

The combination of RIS and WRS enables selection of a desired number
of samples from a random data stream into the resulting reservoir. The
pseudocode for this combined approach can be seen in [3. In this case, we

13



3. ReSTIR Algorithm Overview

generate a separate reservoir for each image pixel; we then traverse the stream
of M samples, each of which we generate with a probability ¢q. For each of
these samples, we compute the weight according to equation |3.2, which is
then used to update the reservoir. After processing the entire sample stream,
we compute the final reservoir weight W (as per Eq. [3.1)), which serves as a
weighting factor for pixel shading (Eq. 3.1).

Algorithm 3: Streaming RIS using weighted reservoir sampling

Data: Image 1
1 foreach pizelt € I do
| I]t] « shadePixel(RIS(t), t)
function RIS(?)
Reservoir r
for i+ 1 to M do
generate x; ~ q

r.update(z;, pe(z;)/p(x;))

— 1 (_1
rW = 7o) (T_Mr.wsum

return r

© W g0 ks WN

=
o

function shadePixel(Reservoir r, t)
return fi(r.y) - r.W

[y
[y

Indeed, this combined approach of Resampled Importance Sampling (RIS)
and Weighted Reservoir Sampling (WRS) significantly reduces the spatial
complexity from the original RIS, which is O(M ), to a much more manageable
O(1). However, the time complexity remains at O(M). This is particularly
beneficial as it necessitates storing only one reservoir for each pixel, thereby
limiting the total size of the data structure to the size of the image resolution.
This ensures the process remains efficient and manageable, even with high-
resolution images.

B 33 Spatiotemporal Reuse

Streaming RIS combined with Weighted Reservoir Sampling efficiently selects
relatively good samples. However, generating many samples to achieve a good
approximation of the function p (and consequently f) can be time-consuming.
This is especially critical in real-time scenarios where computational resources
and time are typically limited.

Bitterli et al. [BWP™20] exploit the observation of a significant correlation
between the PDFs of p for adjacent pixels. In other words, for p = L. -G - p
(unshadowed illumination), neighboring pixels are likely to exhibit similar
illumination patterns and possess similar material and geometric properties.
Denoising algorithms frequently leverage this correlation.

In real-time applications, camera motion generates a sequence of frames,
allowing for the utilization of information from prior frames to generate a
new one. By employing motion vectors, we can determine the position of
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3.3. Spatiotemporal Reuse

Algorithm 4: Combining the streams of multiple reservoirs

Input: Reservoirs r; to combine
Output: A combined reservoir s

1 function combineReservoirs(t,r1,...,7%)
2 Reservoir s

3 foreach r € {ry,...7} do

4 s.update(r.y, pi(r.y) - r.W -r.M)

5 sSM—ri.M+ ... +rp. M

6

7

s W = m (&#Ms.wsum)

return s

the current pixel in the previous frame (a technique also used by temporal
anti-aliasing methods, such as TAA). This enables us to use the samples
stored in the reservoir from previous frames.

The challenge lies in the need to store all generated samples along with their
respective weights to reuse them spatially or temporally. However, Bitterli
et al. [BWP™T20] demonstrate that it is possible to consider the sample y
in the reservoir as a newly generated sample with a weight of wgy,. This
operation is mathematically equivalent to performing reservoir sampling on
the combined input streams of two reservoirs. Algorithm 4] presents the
pseudocode for combining the input streams of k£ reservoirs, and it executes
in O(k).

Through this process, we can achieve quality sampling where each pixel is
presented with kM candidates and a time complexity of O(M + k). Further-
more, the spatial reuse can be executed in n iterations, resulting in each pixel
being presented with knM candidates and a time complexity of O(M + nk).
The complete pseudocode for this algorithm is depicted in Algorithm [5.

B 3.3.1 Visibility Reuse

While we can obtain a considerable number of samples using spatiotemporal
reuse, p does not perfectly sample the integrand f. This is because p represents
an unshadowed contribution. We could integrate visibility into p, which would
be computationally demanding in real-time.

To mitigate this, after generating M candidates, we perform a visibility
test for each pixel, setting the reservoir’s weight W to 0 if the test fails.
Conducting the visibility test immediately after the initial candidates are
generated also results in the reuse of visibility, as samples in shadowed areas
are not propagated to neighboring reservoirs. Moreover, by identifying early
that a sample in the reservoir is in shadow, the reservoir has a better chance
of acquiring the correct sample in subsequent spatial and temporal reuse.
Both of these outcomes significantly reduce noise.
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3. ReSTIR Algorithm Overview

Algorithm 5: RIS with spatiotemporal reuse
Data: Image 1
Input: Image sized buffer containing the previous frame’s reservoirs
Output: The current frame’s reservoirs
1 function reservoirReuse(prevReservoirs)
2 reservoirs <— new Array[ImageSize]
// Generate initial candidates
foreach pizelt € I do
‘ reservoirs[t] «<— RIS(t)
// Evaluate visibility for initial candidates
foreach pizelt € I do
if shadowed(reservoirs[t].y) then
‘ reservoirs[t].W «+ 0
/ Temporal reuse
8 foreach pizelt € I do
t' +pickTemporalNeighbor(t)
10 reservoirs[t]<— combineReservoirs(¢, reservoirs|t],
prevReservoirs|[t'])

~

// Spatial reuse
11 for i <~ 1 ton do
12 foreach pizelt € I do
13 Q@ « pickSpatialNeighbors(t)
14 R «+ { reservoirs[t’] | ' € Q}
15 reservoirs[t]<—combineReservoirs(t, reservoirs[t],R)

// Shade pixel

16 foreach pizelt € I do

17 | I[t]+shadePixel(reservoirs|t], t)
18 return reservoirs

B 34 Eliminating Bias

The previous section describes how ReSTIR can provide an approximately
perfect importance sampler. However, one detail that needs to be addressed
is that each pixel uses a different integration domain and target distribution
P, which could introduce bias.

Bitterli et al. [BWP™20] demonstrate that the estimate as outlined in
Equation |1| remains unbiased when ¢(x) > 0 whenever p(z) > 0. If source
PDFs vary per sample, then:

1 |Z(x.)]

E[W(x,z2)] = o) M

(3.9)

where |Z(z.)| counts the source PDFs where g;(x,) > 0. This means we
introduce bias if we reuse a sample « for which ¢;(x) = 0. Equation 3.9 can
be used directly for debiasing:

16



3.4. Eliminating Bias

E[W(m,z)ZM ] _ p(l (3.10)

(z2)] )

which leads to the unbiased version of the estimator 3.3t

(LN %Z (Jf(w‘) <’Z L |Z (2 )) L (3.11)

= \p(zi)

Note that when combining reservoirs, we are actually using a multi-iteration

RIS estimator:
Lo () 2 (Polig) ~
Nizzl <ﬁ0(xz) =1 (ﬁl(ﬂfij) Z(xij)| = Z ( ))) ~L (3.12)

where |Z(z;)| counts the number of pq(z;;) > 0 and |Z(z;;)| counts the
number of po(x;ji) > 0, etc.

(b)

T
{:} (2) (c)
y (?5{:}

Figure 3.1 : This diagram shows how bias arises when reusing samples from
neighboring reservoirs. The points x and y simply cannot generate the same
samples as the visibility of the individual samples from these points is different,
and the rotation of their normals n, and ny is also different, causing bias when
reusing x at y or vice versa.

Figure [3.1] provides a more intuitive view of how bias can emerge. Shading
points x and y, which belong to different pixels, cannot generate the same light
samples represented by point lights in the figure. Only point = can generate
a sample from light (a) since the light is located outside the hemisphere of
point y defined by the normal n,. Light (b) can generate a sample for both
points, as it is located within their respective hemispheres and visible to both
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3. ReSTIR Algorithm Overview

points. Light (c) can generate a sample only for point y, as point x is in the
shadow of the teapot. Lastly, light (d) can be sampled only by point y, as
it is not within the visible hemisphere of point x. This inequality in sample
generation may introduce bias into the final rendered image.

Indeed, point x can generate samples (a) and (b), resulting in a total of
Mx = 2 candidates, whereas point y can generate samples (b), (c), and (d),
yielding a total of My = 3 candidates. If we perform a reuse from point y in
favor of point x, we would have a total of My, = My + M, = 5 candidates.

However, if we end up selecting the sample (a) during reuse, we introduce
bias when normalizing with Myy. In this case, we need to normalize with My
instead to ensure unbiasedness. If we neglect this, we may end up with high
values of M, leading to the darkening of the resulting pixels in areas with
substantial differences in depth, normal, or visibility.

Algorithm 6: Unbiased combination of multiple reservoirs

Input: Reservoirs r; to combine and the pixels ¢; they originate from.
Output: A combined reservoir s

1 function combineReservoirsUnbiased(t1, ..., tk,71,...,7k)
2 Reservoir s

3 foreach r € {ry,...7} do
4 ‘ s.update(r.y, pi(r.y) - r.W - r.M)
5 sM+—ri.M+...+r. M
6 Z 0

7 foreach i € {1,...k} do

8 if p,(s.y) > 0 then

9 ‘ Z<—Z+r.M

10 m<+ 1/7Z s W = m(m-s.wsum)

11 return s

The unbiased reservoir combination can be seen in Algorithm [6l The
changes compared to the biased reservoir combination (Algorithm |4 are
highlighted in blue. Compared to the biased combination, we can see that
one more for loop is needed to check whether the selected sample can be
generated by the corresponding pixel ¢;. For spatial reuse, this means an
extra for loop over the total number of spatial samples. Note that if we
want to guarantee unbiasedness even in the visibility framework, we need to
perform a ray cast in Algorithm |6/ on line 8 within p, (s.y).

If we aim to utilize a biased estimator while minimizing darkening as
much as possible, we must employ heuristics when choosing neighboring
pixels. These heuristics could consider factors such as differences in depth,
the orientation of the normals, or the similarity of materials.

Bitterli et al. [BWP™20] also illustrate that the normalization term in
Equation [3.1| can be substituted with an arbitrary weight m(z,):

1 M
W(z,z) = (m(mz) ' w(:L‘j)) (3.13)
j



3.4. Eliminating Bias

This modification permits unbiased reuse given the condition that 3¢ 7,y m(x;) =
1. This approach enables the application of Multiple Importance Sampling
(MIS) - utilizing balanced heuristics for candidate PDFs.
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Chapter 4

Implementation

This chapter outlines our implementation of the ReSTIR algorithm for direct
illumination, grounded in insights from the original paper [BWP™20] and
a subsequent study [WP21]. The latter aims to address the shortcomings,
identify bottlenecks, and optimize the execution time of the initial algorithm.

Since the ReSTIR algorithm is primarily designed for real-time raytracing
and allows efficient implementation for GPUs, we have decided to use DirectX
Ray Tracing (DXR), a feature of the DirectX API. DXR brings to the API an
abstraction over the ray tracing acceleration structure optimized for use on
the GPU and provides several kinds of shaders that can be used to describe
the computation flow of the ray tracing algorithm.

Given that our implementation is focused on a specific segment of the
rendering process, it was fitting to opt for a rendering framework capable
of handling common graphic operations, such as model loading, building,
and utilizing acceleration structures. This framework should include addi-
tional auxiliary tools, such as a profiler and animation player. Consequently,
we selected NVIDIA’s Falcor framework, which not only supports DirectX
RayTracing but is also specifically designed to rapidly prototype ray tracing
algorithms.

B 41 Falcor Rendering Framework

Falcor is an open-source real-time rendering framework developed by NVIDIA
for rapid prototyping and productivity enhancements in research [KCK™22].
It offers many features and is designed to abstract common graphic operations
like shader compilation, model loading, and the detailed aspects of scene
rendering. This design empowers developers to concentrate on the specific
problem at hand.

Falcor supports real-time ray tracing through an abstraction layer over
DX12 and Vulkan APIs. Beyond standalone applications, Falcor enables the
creation of render passes that can be incorporated into the Render Graph
System, thus facilitating a modular, flexible, and easily editable rendering
pipeline. The framework encompasses several basic and advanced render
passes that can be readily extended, with individual render graphs represented
via a Python script. Scene scripting is another feature of Falcor, proving
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4. Implementation

useful for quickly incorporating additional components into a scene, such as
lights, environment maps, cameras, animations, and other scene elements.
The framework is capable of loading standard graphic formats like FBX or
OBJ, including animated scenes, and supports numerous NVIDIA RTX SDKs,
such as DLSS, RTXDI, RTXGI, and NRD. Additionally, the editor includes
a feature for straightforward recording of screenshots and video sequences,
facilitating quick and easy comparisons of results. The user interface of Falcor
can be seen in Figure 4.1.

Figure 4.1 : Falcor rendering framework [KCK™22].

The features offered by the Falcor framework make it an excellent candidate
for prototyping the ReSTIR algorithm. The algorithm’s various components
can be decomposed into render passes, accelerating debugging and develop-
ment processes. The algorithm’s final form can be implemented as a single
render pass, providing a more efficient platform for bottleneck optimization
within the computation process.

. 4.2 Test Scenes

For implementation and measurement, it was necessary to select test scenes
comprising varying numbers of emissive triangles. The following list provides
a basic description of these scenes:

Cornell Box [Bit16]: Traditionally utilized by the com-
puter graphics community to test ray tracing algorithms,
this scene consists of a room with five walls, two boxes
in the middle, and a light source composed of two emis-
sive triangles. Rendered images of this scene are often
compared to photographs of the physical model, allowing
for evaluating the rendering algorithm’s quality. It is apt for the initial
development stage as the simplest among the selected scenes.
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4.3. Rendering Pipeline

Arcade [KCKT22]: This scene, simpler in design, fea-
tures a room with an arcade machine. The machine in-
cludes several dozen emissive triangles forming a display,
buttons, and a signboard. Unlike the Cornell Box scene,
this scene’s objects exhibit more complex and realistic
materials.

Amazon Bistro [Luml7|: This collection comprises two
scenes — an interior (bistro) and an exterior (street). Both
scenes contain thousands of emissive triangles, multicol-
ored and animated in the exterior scene. The implemented
method can be readily tested under these conditions with
an animated camera in both scenes.

BEEPLE ZERO DAY [Winl9|: This scene contains
a mix of glossy and diffuse materials and is illuminated
by thousands of animated emissive triangles. Rapid an-
imations of emissive objects and the camera result in
swift changes in lighting conditions, making this scene a
significant challenge for real-time path tracing.

Emerald Square [NHBI17]: Composed of a park sur-
rounded by roads and buildings, the scene’s light sources
include street lights, windows, traffic lights, and vehicles.
Unique among the other scenes, it features a substantial
amount of vegetation formed by dense triangle meshes.

Veach Door [Bitl16]: This scene is composed of a room

with a table that holds three teapots, each made of a

different material. A partially opened door permits a

modest amount of direct light to infiltrate the room. This

particular setup poses a significant challenge for global

illumination algorithms, as the majority of the scene is lit
primarily by indirect illumination. This scene serves as a testing ground
for our experimental implementation of the ReSTIR GI algorithm.

B a3 Rendering Pipeline

We subdivided the algorithm into several successive rendering passes, forming
a rendering pipeline |4.2. This segmentation simplifies the implementation
process, as each part of the pipeline can be implemented independently. It
also allows for a clear definition of each render pass’s inputs and outputs
and facilitates the detection of potential computational bottlenecks. This
pipeline aligns with the algorithm’s description in the paper [BWP'20|. The
rest of this section is dedicated to describing the individual components of
the rendering pipeline.
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Temporal Sample Spatial Samples

Initial Candidates
Generation — | Temporal Resampling Spatial Resampling |—> Shading
and Resampling

Reservoir for Reuse

Figure 4.2 : Original ReSTIR pipeline [BWP™20).

B 4.3.1 V-buffer

The first segment of the rendering pipeline involves generating a visibility
buffer (V-buffer). During this stage, primary rays identify intersections
with scene objects, creating a visibility buffer that consolidates the object
and triangle IDs into a single value. Additionally, this process stores the
intersection’s barycentric coordinates within the given triangle, furnishing all
necessary information to fetch any other parameters about the intersection
point.

Like the G-buffer, the V-buffer is part of a deferred shading strategy. As
opposed to forward lighting, deferred shading reduces the number of fragment
shader runs in scenes with high-depth complexity. Unlike the V-buffer, the
G-buffer typically requires 16-32 bytes per visibility sample, leading to the
potential wastage of texture bandwidth and storage resources. However,
if a parameter is used multiple times in a pipeline, the G-buffer can serve
as a handy alternative by saving the computation time of multiple fetches.
Falcor also offers the flexibility to use a rasterized variant of the V-buffer and
G-buffer passes, with the raytraced variant potentially being more efficient in
scenes with numerous occluded objects.

We employed a ray-traced V-buffer since most required parameters are
only used once during the rendering process. If specific parameters need to be
used multiple times, we resort to custom buffers that allow for more compact
storage.

B 4.3.2 Initial Candidates Generation

The initial stage of the ReSTIR pipeline involves generating the initial candi-
dates. This stage is executed as a compute shader, with computations for
each image pixel. The input for this stage is a V-buffer, which provides all
the information about the surface hit by the primary ray.

The compute shader produces samples of three different types of lights—emissive
triangles, environment, and analytic lights—with the number of samples for
each type specified by the user. A separate reservoir is created for each light
type, in which generated candidates are resampled. Consequently, each reser-
voir retains one sample of a given light type after this stage. These reservoirs
are integrated into a single reservoir following Algorithm 4| and a visibility
test is conducted to assign a zero weight to the resulting reservoir if the
sample is occluded. As previously noted, this step is crucial for propagating
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visibility in spatial and temporal reuse. Since this pass is implemented as a
compute shader, we utilize the inline raytracing feature of DXR 1.1, which
enables the casting of rays from any type of shader.

We use the source PDF ¢ = L. to generate the candidates, implying
that the probability of generating a sample is proportional to the incoming
intensity. We employ an alias method [Wal77], [AMW21] to sample this
discrete probability distribution, which ensures a constant lookup, unlike the
commonly used inverse of the cumulative distribution function.

The alias table is precomputed on the CPU side and loaded into the GPU’s
global memory. This method proves advantageous when precomputation is
feasible, and the distribution remains unchanged, which would otherwise ne-
cessitate the table’s precomputation for each frame. The LightSampler class,
which is used for light sampling, stores three alias tables—each designated
for emissive triangles, environment maps, and analytical lights, respectively.
This class enables access to the individual elements of the alias tables and
also incorporates sampling methods. Additionally, the LightSampler class
is designed to handle different light types and their associated properties,
allowing for greater flexibility and functionality in the rendering pipeline. It
simplifies the process of sampling different light sources and ensures efficient
utilization of resources by managing these alias tables.

The reservoir structure looks as follows:

struct Reservoir

{
MinimalLightSample sample; ///< Output sample.
float weightSum; ///< Sum of weights.
float W; ///< Weight of the reservoir.
uint M; ///< Number of samples seen
/// so far.
}

To enhance cache coherency and reduce bandwidth, this structure is com-
pressed into a 16-byte PackedReservoir when stored in a structured buffer.

The MinimalLightSample structure comprises a light type, an index into
a global array that stores further information about the light, and the local
coordinates of the sampled point within the light (for instance, barycentric
coordinates in the case of an emissive triangle). When the reservoir is packed,
this structure amounts to 8 bytes per pixel.

Further information can be derived from the MinimalLightSample in the
form of a LightSample structure by referring to the global array of lights:

struct LightSample

{
Type lightType; ///< Type of light (Area, Distant, Point).
float3 posDir; ///< Position or direction
/// (depends on type) .
float3 normal; ///< Normal vector at the sample point.
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float pdf; ///< Source PDF of the light sample.
float Le; ///< Emission.

In addition, this stage creates the SurfaceData structure needed for later
pipeline stages to compute the target PDF for a given pixel and sample. This
structure contains the position of the hit surface, the normal vector at the
hit location, depth (distance from the camera), specular and diffuse weight,
and specular roughness.

The resulting render, produced after executing this pass, is depicted in
Figure 4.3l

Figure 4.3 : Result after generating initial candidates and resamling.

B 4.3.3 Temporal Resampling

The second stage in the ReSTIR pipeline involves temporal resampling. The
primary inputs for this stage are the reservoirs established in the preceding
stage and those from previous frames, as depicted in Figure 4.2.

Another critical input is the 2D motion vector, which indicates the pixel’s
position in the previous frame. These motion vectors are generated by
considering the movements of both the objects and the camera. The previous
pixel’s position allows us to identify the location of the reservoir from the
preceding frame, which we then use for resampling.

This stage is crucial in enhancing the temporal stability of the ReSTIR
algorithm. It reuses lighting information from previous frames, which can
reduce noise and improve the quality of the rendered image, especially in
dynamic scenes where light sources or camera views change over time.

After finding the previous pixel, we use a simple heuristic as a validity test
to reduce the bias. In this test, we compare if the normal vectors of the two
pixels have similar directions and if the difference in depth between the two
pixels is not significant:
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Tnormal < T * n_;;;
|22 — 2| (4.1)

> - 7
Tdepth = hax (22, 2y)

These heuristics are similar to edge-stopping functions in filtering techniques
such as SVGF [SSK™17].

As the number of samples in previous reservoirs can increase without
bound, we introduce a constraint known as M-cap on the maximum value of
M. This cap partially curtails the influence of temporal samples, providing
new candidates with a better opportunity to be chosen during resampling.
Implementing a reasonable M-cap is also necessary to limit correlations
between frames. The M-cap process, illustrated in Equation 4.2 has proven
convenient in our implementation, where we set the history limit to 20.

previous. M = min(previous. M, current.M * historyLimit) (4.2)

Thus, this part of the rendering pipeline outputs the reservoir from the
previous part on which temporal reuse was performed. After generating the
initial candidates and applying this pass, the resulting render can be viewed
in Figure 4.4,

Figure 4.4 : Tllustration of reusing temporal samples.

B 4.3.4 Spatial Resampling

Spatial resampling, the subsequent stage in the rendering pipeline, is imple-
mented as a compute shader, similar to temporal resampling. The inputs
for this phase are derived from the samples of the preceding phase, wherein
temporal reuse has been executed, as illustrated in Figure |4.2.
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During this process, reservoirs within the current pixel’s neighborhood are
selected randomly. This neighborhood is typically set to a default radius of
30 pixels. To ensure the validity of a specific reservoir, the same heuristics
applied in temporal resampling are utilized, as referenced in Equation [4.1.

Figure 4.5 : Comparison of using different number of spatial iterations after
initial candidate generation (without temporal reuse), gathering 5 neighbors at
each step. Left-to-right: no spatial reuse, 1 iteration, 2 iterations, 4 iterations

Spatial resampling can be performed in multiple iterations. However, a
challenge lies in the fact that each pass through this stage necessitates global
synchronization, as the reservoir array from the previous iteration serves as
input. This synchronization has the potential to introduce latency, yet it
becomes critical in situations where the quality of samples from temporal
resampling is not sufficient.

Figure 4.5 compares varying numbers of spatial resampling iterations, each
selecting five neighboring samples. In this comparison, spatial resampling is
applied immediately following the generation of initial candidates, with no
application of temporal resampling.

Figure 4.6 : Temporal disocclusions under motion. (Left) Temporal reuse,
(center) temporal reuse and one spatial sample, (right) temporal reuse and five
spatial samples.

Figure [4.6illustrates the impact of increasing spatial samples on mitigating
temporal disocclusion. It is evident that even a single spatial sample signifi-
cantly reduces noise compared to relying solely on temporal reuse. Although
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using five samples further diminishes the noise, it necessitates extended
computation time, which may not substantially enhance the quality of the
results.

B 4.3.5 Shading

The final stage of the rendering pipeline is shading. It takes as input a
direct illumination sample generated from the preceding stages of the ReSTIR
pipeline. For shading, we utilize Falcor’s standard surface Bidirectional
Scattering Distribution Function (BSDF), which comprises the following
lobes:

® Delta reflection (ideal specular reflection)

Specular reflection utilizing a GGX microfacet model

Diffuse reflection using Disney’s diffuse Bidirectional Reflectance Distri-
bution Function (BRDF)

Delta transmission (ideal specular transmission)

Specular transmission using a GGX microfacet model

Diffuse transmission

The BSDF is a linear combination of these lobes.

This shading phase also incorporates a visibility test for the sample in the
reservoir. As this component is also implemented as a compute shader, we
utilize the inline raytracing feature offered by DXR 1.1.

B 24 Target PDF

A crucial factor influencing the quality and performance of the ReSTIR
method is the selection of the target Probability Density Function (PDF),
denoted as p. This function is evaluated at every resampling step, including
the initial candidate generation phase and during spatial and temporal reuse.
Given that this function does not require normalization, we have considerable
flexibility in its choice. Bitterli et al. [BWP'20| proposed the use of p =
Le-G-p.

The computation of L. is inexpensive since this information is directly
included in the reservoir sample and does not depend on material properties
or geometric characteristics.

The geometric term, denoted as G, requires minor computation. To
calculate G, one only needs the cosine of the light normal with the vector
pointing from the light source to the surface point and the inverse-square law:

—VU - Niight

G = 2

(4.3)
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The p function can take various forms as it often determines the overall
complexity of the p. Rather than computing the complete BSDF, we utilize
a simplified model based on the Trowbridge-Reitz (GGX) microfacet dis-
tribution. We can afford to perform the complete BSDF calculation if we
render offline. However, a simpler BSDF model can be employed in case of
performance constraints.

For the biased version of ReSTIR, we utilize the unshadowed path contri-
bution inside p, as casting rays for shadow computation is computationally
expensive and can take significant rendering time. However, to ensure com-
plete unbiasedness, we need to verify the visibility of the samples during
resampling, which requires ray casting.

B a5 Ray Budget

Bitterli et al. [BWP™20] propose storing 4 reservoirs per pixel (N = 4). This
results in a total of 5 shadow rays per pixel (1 for initial candidates and 4
during shading). In today’s real-time applications, developers have a budget
of < 1 rays per pixel. Wyman et al. [WP21] conclude that reducing the
number of reservoirs to N = 1 does not significantly reduce image quality.
At N = 4, the samples of all the reservoirs were often identical, especially
in areas of the scene where shadows are present, which are the places where
we would expect that a higher number of samples would help reduce noise.
Based on these observations, we also choose N = 1 with a total ray budget of
2. However, as previously mentioned, for the unbiased variant of the ReSTIR
algorithm, extra ray casting is needed during temporal and spatial reuse.

B 46 Improving Cache Coherency

The ReSTIR algorithm theoretically guarantees constant time complexity.
Wyman et al. [WP21] discovered this is not the case when dealing with scenes
that incorporate numerous light sources. We did performance tests on scenes
with many emissive triangles, and in our implementation, we noticed that
the lighting cost varied by up to 30x between scenes.

This difference in performance across different scenes can be attributed
to distinct caching behaviors. In the initial candidate sampling phase, light
samples are chosen randomly. For instance, this method uses cache coherently
for a scene like the Cornell Box, which only contains two emissive triangles.
In contrast, for scenes with complex lighting configurations, such as Emerald
Square, which has 89 thousand emissive triangles, the sampling process leads
to a significant number of cache misses.

B 4.6.1 Light Tiles

Wyman et al. [WP21] proposed using a degenerate RIS estimator that
introduces random stratification and divides the sampling process into two
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steps. In the first step, several light subsets S (termed as light tiles) of the
scene lights L are created, meaning many cache misses occur in this step. In
the second step, each pixel samples the initial candidates from the selected
subset, significantly reducing the occurrence of cache misses. This approach
shifts the incoherent memory access from the inner loop of the algorithm to
the outer loop. However, to eliminate the incoherence, selecting a subset size
|S| < | P| is essential, where |P| denotes the number of pixels.

Algorithm 7: Creating light tiles
Data: Set of scene lights L
1 function reservoirReuse(...)

2 // Create light tiles
3 for i< 1toS do
4 generate |S;| light samples ~ ¢ from L
5 S; «+ set of |S;| samples
6 reservoirs <— new Array[ImageSize]
// Generate initial candidates
7 foreach pizelt € I do
8 S <+ randomSubsetForTile(t, S)
reservoirs[t] <— RIS(¢, S)
10 ;
11 return reservoirs
12 function RIS(¢, S5)
13 Reservoir r
14 for i < 1 to M do
15 pick z; from S uniformly
16 r.update(zi, pe(xi)/p(z:))
17 rW = m (ﬁLMr.wsum)
18 return r

Even better coherence can be achieved at the level of warps, which are
groups of threads on the GPU running simultaneously. It is ideal for each
warp to have its individual threads accessing a similar section of memory, as
the warp runs until it needs to wait for data (from device memory); otherwise,
another warp has a turn. The image can be divided into tiles of size k x k
(pixel tiles), and each tile is assigned a random subset S € S. This process
can be seen in Alg. |7} changes compared to Alg. [3|and Alg. [5| are highlighted
in blue.

We implemented the creation of light tiles using a compute shader, where
each thread samples light according to q. The total number of threads equals
the product of the number of light tiles |S| and the number of samples in each
light tile .S;. The number of shader executions is typically significantly lower
than per-pixel executions, contributing to this pass’s rapidity. Reasonable
parameters may be, for example S = 256 and S; = 1024.

Figure [4.7 showcases the impact of varying pixel tile sizes after generating
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(@) : 4x4 (b) : 8x38

(c): 16 x 16 (d) : 32 x 32

Figure 4.7 : Illustration of using light tiles with different pixel tile sizes after
initial candidate generation (without spatial and temporal reuse). Parameters:
S =256, S; = 1024

initial candidates. It is evident that as the tile size increases, the sampling
correlation between pixels within the same tile also increases. For instance,
some light tiles can receive extremely bright light samples, while adjacent tiles
receive considerably darker ones. This can result in a visible edge delineating
the boundary between the tiles. Spatio-temporal reuse subsequently smooths
these edges, but to prevent flickering effects, we recommend maintaining the
tile size for an image resolution of 1920 x 1080 to be smaller than 16 x 16.

B 47 True Spatiotemporal Reuse

Wyman et al. [WP21] introduced the concept of eliminating the global
synchronization between temporal and spatial reuse in the original pipeline,
as shown in Figure|4.2l The challenge here is that, in order to perform spatial
reuse, it is necessary to wait until all threads from the previous pipeline stage
have completed their operations to access neighboring reservoirs. However,
instead of waiting for the current reservoirs, we can utilize the reservoirs
from the previous frame for spatial reuse, implementing what is referred to

32



4.8. Decoupled Shading

as True Spatiotemporal Reuse. This substitution eradicates the single global
synchronization from the original pipeline, leading to a new pipeline, depicted
in Figure [4.8, that lacks global synchronization and can be implemented as a
single kernel.

Temporal Sample Spatiotemporal Sample

Initial Candidates
Generation — | Temporal Resampling|—»| Spatial Resampling |— Shading
and Resampling

Reservoir for Reuse

Figure 4.8 : True Spatiotemporal Reuse pipeline [WP2]]

The spatial samples are thereby delayed by one frame, which is generally
imperceptible. However, during fast animations or rapid camera movements,
when a new scene segment is unveiled, it might be noticeable that the initial
candidates fail to provide high-quality samples, leading to a noisy portion of
the image. In scenarios where rapid image convergence is required, it remains
necessary to reintroduce global synchronization, using the current reservoirs
for spatial reuse.

B s Decoupled Shading

Wyman et al. [WP21] came up with another alternative version of the pipeline
that preserves the overall ray budget (2 rays per pixel) while providing a better
quality of the resulting image. In this pipeline, shading is separated from
reuse 4.9, After generating the initial candidates, we perform a visibility test
for the resulting candidate and find the temporal and spatiotemporal samples,
so we have three samples that we can use for shading instead of one. However,
a visibility test needs to be performed for the temporal and spatiotemporal
samples giving us a total of three shadow rays. After shading, these three
samples are reused as in the original pipeline and stored as temporal reservoirs
for the next frame.

Temporal Sample Spatiotemporal Sample

Initial Candidates
Generation
and Resampling

Temporal Resampling Spatial Resampling |—> Reservoir for Reuse

Temporal Sample —» Shading
Spatiotemporal Sample —»

Figure 4.9 : Decoupled pipeline [WP21].

This approach dramatically reduces the black pixels representing failed
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Figure 4.10 : Differences of using Original pipeline 4.2 (first row) and Decoupled
pipeline |4.9| (second row).

samples that cannot be used due to visibility. The effect of decoupling shading
from resampling can be seen in Figure 4.10.

B 4.8.1 Cheaper Visibility

The number of shadow rays per pixel in this pipeline can be reduced under
certain conditions or by accepting a minor decrease in quality.

When the scene is static, the visibility of the temporal sample does not
change, allowing us to save one shadow ray per pixel. If the scene is animated,
reusing visibility without a visibility test introduces a one-frame shadow lag,
which is almost imperceptible. Under these circumstances, the shadow ray
can still be omitted.

Omitting the visibility test for the spatiotemporal sample can result in a
noticeable decrease in quality. However, if we aim to trim our ray budget
further, we can designate a distance for the spatiotemporal sample beyond
which we will not cast the shadow ray. This approach is based on the rationale
that the current pixel’s close neighbors are less likely to be shadowed than
distant ones. Doing so prevents potential light leakage in shadowed areas and
can save many shadow rays.

B 49 Checkerboard Rendering

Generating initial candidates represents the most computationally demanding
part of the ReSTIR algorithm. Bitterli et al. [BWP™20] suggested exploring
the use of reservoir resolutions lower than the image resolution, such as
assigning a single reservoir for every four neighboring pixels. Given that
the rest of the pipeline does not directly depend on the origin of the initial
candidates, it is feasible for some pixels to bypass candidate generation and
borrow reservoirs from their neighboring pixels. A rendering technique known
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as checkerboard rendering can be employed here. This technique is based on
partitioning the screen pixels following the color pattern of a checkerboard.
The first type of pixels will go through the entire pipeline and carry out most
of the work, while the second type will only perform temporal reuse, spatial
reuse, and shading. Moreover, the pixels alternate the workload after each
frame. Therefore, in an odd frame, a pixel goes through the entire pipeline,
whereas in an even frame, it only goes through a part of it.

With this approach, only half of the pixels must generate initial candidates.
This signifies saving 1/4 of the total shadow rays for the original pipeline. If
we aspire to push this further, we can adopt an even sparser checkerboard
rendering, generating initial candidates for only one out of every four pixels.

B 4.10 Distribution of Samples among Light Types

ReSTIR offers the capability to sample lights irrespective of their type. It
can sample emissive geometry, analytical light sources, environment maps,
and even light probes. For scenes that include more than one of these light
types, it becomes necessary to determine how many samples will be drawn
from each type of light set. To maintain real-time frame rates, we choose
fewer than 36 light samples and further need to decide how these samples
will be distributed among the various light types.

Our implementation enables the sampling of three types of light sources -
analytical, emissive triangles, and environment maps. We empirically deter-
mined the distribution of light samples based on the following considerations.
In scenes intended for realistic rendering, there is usually only one analytical
light source - a directional light. This represents an infinitely distant light
source and simulates, for instance, the Sun. Therefore, we consider selecting
only one initial candidate from the analytical light sources optimal.

We need to allocate more samples for sampling the emissive geometry to
achieve high-quality results. Emissive geometry is more challenging to sample
than other light types and is widely used in scenes aimed at realistic rendering.
These scenes often comprise tens of thousands of emissive triangles. To stay
within our sampling budget, we found allocating 24 samples for emissive
triangles beneficial.

We distribute the remaining samples (8-11) for sampling environment maps.
This number is sufficient, even for environment maps with significant intensity
differences.

In our current implementation, the sample distribution can be manually
configured. Nevertheless, it is conceivable to implement a heuristic that
adapts the number of samples based on the content of the light sources within
the scene. However, this approach necessitates further investigation and
analysis.
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B a1 Denoising and Upscaling

Spatio-temporal denoisers require an input signal with the lowest possible
variance and a signal that can converge in the shortest time possible. To
evaluate our implementation with denoisers, we used the SVGF denoiser,
executed as a separate render pass in Falcor. This denoiser requires input
from the G-buffer, such as position, normal vector, depth, and motion vector,
as well as results from the path tracer, such as direct/indirect lighting and
albedo.

As mentioned, Falcor also includes a DLSS SDK intended to upscale the final
image. Consequently, we have integrated upscaling into our implementation
as another alternative rendering pipeline, applying it directly after denoising.
This allows us to create a V-buffer/G-buffer, execute the ReSTIR algorithm,
perform the denoising all at a lower resolution (1920 x 1080), and then upscale
the image to a higher resolution (3840 x 2160). This high-level pipeline is
illustrated in Figure |4.11}

V-buffer/G-buffer

. —>| ReSTIR + Shading |— SVGF — DLSS
generation

Figure 4.11 : High-level pipeline with integrated denoising and DLSS.

B 412 ReSTIR GI

The ReSTIR algorithm can also be extended for global illumination. This
algorithm variant is called ReSTIR GI and is described in a paper by Ouyang
et al. [OLK™21]. Out of curiosity, we tried to extend our implementation
with this algorithm.

The core distinction between the ReSTIR for direct illumination (ReSTIR
DI) and ReSTIR GI lies primarily in the samples’ structure and the initial
candidates’ creation process. This approach generates initial samples by
sampling random directions and tracing rays to find the closest intersections
instead of generating random samples on the lights in the scene. Reflected
radiance is computed at these intersections with path tracing. The sample
structure in the context of ReSTIR GI is represented as follows:

struct SampleGI

{
float3 visiblePoint; ///< Visible point.
float3 visibleNormal; ///< Surface normal of the visible
/// point
float3 samplePoint; ///< Sample point.
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float3 sampleNormal; ///< Surface normal of the sample.
float3 Le; ///< Outgoing radiance at sample
/// point.

The visiblePoint in this structure denotes the point on the surface that
is observable from the camera, which is also the sample’s origin. Alongside
this point, the normal at this location is stored as well. On the other hand,
the samplePoint refers to the intersection of the ray that originates from the
visiblePoint, which is stored concurrently with its respective normal. The
total radiance is then computed from this samplePoint, using path tracing
with an arbitrary number of bounces and stored in the Le.

In the ReSTIR GI algorithm, generating each candidate necessitates casting
a ray. Therefore, it is recommended to generate only one candidate at this
stage. In our implementation, this stage is termed as the Trace pass. We use
path tracing with one or two bounces and next event estimation (NEE) to
compute the total radiance at the sample point.

Subsequently, we execute a temporal reuse process, closely mirroring the
operations of ReSTIR DI. The outcome of this pass are temporal reservoirs.

Once the temporal reuse is completed, we move on to the spatial reuse
pass. Here, it is crucial to adjust the target PDF of the spatial samples, given
that the source PDFs of each sample vary. This variation stems from the fact
that the sampling scheme is based on the position of the visible point and
the normal at that point. Such a correction was not required for ReSTIR DI
because, in that case, the lights were directly sampled, irrespective of the
pixel’s local geometry.

If we aim to reuse a sample from pixel ¢ at pixel r, we must transform
its solid angle PDF to match the solid angle of the current pixel. We can
accomplish this by dividing the target PDF of the pixel ¢ by the Jacobian
determinant:

jcos(@5)| [l — ag||”
lcos(¢3)|  ||af — 23|

where z{ and 2z are the first and second vertex of the reused path, 7 is
the visible point from the destination pixel, and ¢4 and ¢} are the angles
formed by the vectors z{ — 2 and z7 — 2 with the normal at 24 [OLK™21].

We adopt uniform hemisphere sampling as our primary sampling technique,
aligning with the methodology outlined by the authors of the original paper,
rather than resorting to cosine-weighted BSDF sampling. Our decision is
rooted in the observation that cosine-weighted sampling is less inclined to
generate directions at grazing angles. While this might be advantageous
under specific circumstances, it can also produce noisy results due to the
disproportionate focus on directions aligned closely with the surface normal.

Uniform hemisphere sampling, on the other hand, provides a comprehensive
and evenly spread coverage over the hemisphere, which can significantly
reduce the potential for noise in the final rendered images by not overlooking
illumination from light sources situated at grazing angles.

|Jqﬁr| = (4-4)
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Since this algorithm only utilizes a few initial candidates, employing a
greater number of spatial samples in multiple iterations is recommended. In
our implementation, we opted for 5 spatial samples across 2 iterations. To
ensure satisfactory convergence and allow the substitution of existing samples
with new ones, we applied an M-cap of 30 for temporal reservoirs and 300 for
spatial reservoirs.

In our implementation, we opt for a spatial radius equivalent to 10% of
the image resolution to select spatial candidates. In situations where the
selection of spatial candidates is unsuccessful, we proceed by reducing this
radius by half. The rationale behind choosing a larger radius lies in the fact
that generally speaking, changes in indirect illumination are relatively subtle
compared to those in direct illumination.

On the recommendation of the original ReSTIR GI paper [OLK™21|, we
chose the simpler p = Le as our target PDF, disregarding the BRDF of
a specific surface. This decision ensures that the reservoir weights are not
influenced by the view vector, which would otherwise impact the BRDF, and
there would not be effective reuse of samples on specular surfaces.
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Chapter 5

Results

In this chapter, we carry out both a qualitative and performance-based
evaluation of the ReSTIR algorithm as implemented as part of this thesis.
This includes a comprehensive analysis of the visual quality of the rendered
images, assessing factors such as lighting accuracy and noise levels. We also
examine the performance of our implementation in terms of computational
speed and efficiency, focusing on scalability across various scene complexities.
Additionally, we compare our results with those obtained from traditional
rendering techniques to highlight the advantages and potential limitations of
the ReSTIR approach. This analysis allows us to draw meaningful conclu-
sions about the effectiveness of the ReSTIR algorithm in real-time rendering
scenarios.

Cornell Box Arcade Bistro
Interior
Scene Info
Scene Triangle Count 36 7,798 1,320,323
Emissive Triangle Count 2 124 3,576
Bistro Zero-Day Emerald
Exterior Square
Scene Info
Scene Triangle Count 2,832,120 6,076,464 10,046,405
Emissive Triangle Count 20,638 10,965 89,279

Table 5.1 : Scene information.
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In Table[5.1], we present information relevant to our following measurements
about the scenes described in Chapter 4. This data indicates the complexity
of each scene, both in terms of geometry and lighting.

. 5.1 Qualitative Results

To evaluate the qualitative results, we compare our results with reference
images, the emissive power sampler, and the Light BVH method, detailed in
Chapter |2

Figure 5.1 : Comparison of the results of the ReSTIR algorithm when sampling
the emissive geometry (top) and sampling the environment maps (bottom).

Figure 5.1 presents the outcome of employing the Original ReSTIR pipeline
4.2/ on the Bistro scene. In the top part of the figure, the night scene is lit
exclusively by the emissive geometry. In contrast, the scene is illuminated
solely by the environment map in the bottom part. In both cases, 32 initial
candidates are generated, upon which resampling is performed, followed
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Figure 5.2 : Visualization of the origin of light samples for each individual pixel.
The colors of the pixels are assigned based on the indices of the light sources,
utilizing a low discrepancy RGB sequence.

by a visibility test on one selected sample. Subsequently, temporal reuse
is conducted conventionally with the history limit of the past 20 frames,
succeeded by a single iteration with a single spatial sample. The spatial
sample is selected within a thirty-pixel radius, and a heuristic is used for
its selection, which considers the angle between the surface normals and the
distance of the surface from the camera. Note that this is a biased variant of
the Original pipeline [4.2] that employs only two shadow rays per pixel. More
shadow rays would be required for an unbiased version. The biased version
might appear slightly darker in the results compared to the unbiased version,
an issue that can be addressed by refining the rules of the spatial sampling
heuristics.

In Figure 5.2, we can see how the algorithm performs in choosing the light
samples. The individual pixels are colored here according to the light index to
which the selected sample belongs. We can see that the algorithm performs
very well in selecting light samples in the neighborhood of the light sources
and concerning their visibility.

Figure 5.3| presents a visualization of the number of spatial samples suc-
cessfully identified out of five. Green signifies more successfully detected
spatial samples, while a red represents a low number. It can be observed
that the identification of a new sample is more successful in geometrically
continuous regions, where there is no significant variation in depth or normal
vectors between surrounding pixels. Spatial resampling is less successful for
vegetation, which in this context consists of dense geometry where the normal
vectors between neighboring pixels are likely to differ substantially. Some
houses in the scene are visible at steep angles, resulting in considerable depth
variation between surrounding pixels, contributing to less successful spatial
resampling.

In Figure [5.4, we observe a comparison between the Light BVH sampling
algorithm and the ReSTIR algorithm. Both results were obtained within the
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The green color represents a high number of successfully identified spatial
samples, whereas the red color indicates a low number.

Figure 5.3 : Visualization of the count of resampled spatial samples

same time frame. With Light BVH, recognizing the contours of some objects
becomes challenging due to the significant amount of noise. Conversely, the
ReSTIR algorithm converges noticeably faster, yielding an image in which the
scene’s structure can be clearly discerned. Moreover, the ReSTIR algorithm
performs better in handling complex light interactions, providing cleaner,
more accurate results in areas with intricate lighting conditions. This further
emphasizes the efficacy of the ReSTIR approach in maintaining image quality
while ensuring faster convergence.

The application of denoisers is standard practice in real-time raytracing
scenarios, given that they significantly enhance the visual quality by reducing
the noise generated by the sampling process. To demonstrate their usefulness,
we employed the SVGF algorithm, a highly effective spatio-temporal denoising
algorithm, on the output of our ReSTIR implementation. This approach
leverages temporal coherence and SVGF’s iterative process to smooth out
the noisy estimates and achieve a more visually pleasing result.

The outcomes of this process can be seen in Figure 5.5 Here, the SVGF
denoiser significantly enhances the clarity and detail of the image. It is
important to note that while the denoiser substantially improves the visual
output, it respects the lighting conditions and does not artificially alter the
scene’s natural lighting distribution, which is a testament to the effectiveness
of our ReSTIR implementation. In this instance, the parameters for the
ReSTIR algorithm remain the same as in the case illustrated in Figure [5.1.

To evaluate image quality, we employed the perceptual metric 1LIP
[ANAT20], which affirms that we uphold or enhance quality compared to
other sampling methodologies. Figure |5.6| presents the perceptual image
error produced by ALIP, illustrating the differences between the biased and
unbiased versions of the Original pipeline relative to the reference image.
It is apparent that the most significant disparities occur in locations where
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Figure 5.4 : Equal-time comparison of Light BVH (left part of the pictures)
and ReSTIR 4.2 (right part of the pictures).

visibility determination is challenging, such as beneath the awnings of the
bistro. These areas experience a darkening effect, which is further pronounced
in the biased variant as we do not carry out correct normalization while
computing the reservoir weight in this case.

Table 5.2| presents a comparative analysis of the emissive power sampler,
light BVH sampler, Original pipeline (both biased and unbiased), and the
decoupled pipeline (biased) across different scenes, employing the RMAE and
HLIP metrics. For both metrics, the smaller the value, the smaller the error
between the compared image and the reference. In all cases, the ReSTIR
algorithm demonstrates a significant advantage over the initial two methods,
underlining its effectiveness.

We observe that optimizing the Original pipeline using the checkerboard
rendering technique does not significantly reduce the visual quality, as these
metrics indicate. However, the resulting speedup of the pipeline can be
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Figure 5.5 : Application of the SVGF denoiser [SSK™17] to the output of the
ReSTIR algorithm.

substantial, as we will see in the next section.

The Decoupled pipeline enhances the image quality compared to the Origi-
nal pipeline. This improvement is attributed to the fact that we shade three
samples (initial, temporal, and spatiotemporal) in a single pass rather than
just one.

The Unbiased Original pipeline exhibits the highest image error among all
ReSTIR pipelines. Although this pipeline converges more slowly, it ultimately
achieves the correct result, unlike its biased counterparts. The unbiased
nature of the pipeline means it does not cut corners for speed, striving
instead for accuracy, even if that means slower convergence. These findings
underscore the trade-offs in balancing speed and accuracy when implementing
the ReSTIR pipeline for real-time rendering.

Rendered images for each pipeline across all scenes, along with reference
images and error visualization via the LIP, are included in the appendix of
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(Left) Biased version of the Original pipeline. (Right) Unbiased version of
the Original pipeline.

Figure 5.6 : Perceptual image error produced by 1LIP [ANA™T2()]
this thesis.

. 5.2 Performance Results

We have organized the performance measures into three separate tables. Mea-
surements were primarily performed on the RTX 4070Ti, and for comparison,
we also utilized the Quadro RTX 3000 Mobile laptop GPU to illustrate
performance on portable devices.

Table |5.3| compares the total lighting computation time across four different
ReSTIR pipelines. We present a more detailed measurement for the biased
Original pipeline, highlighting the computational demands of individual render
passes.

Indeed, generating initial candidates is the most computationally intensive
part of the entire pipeline. This is reflected in the fact that a significant
portion of the optimizations were applied to this stage. The time complexity of
other pipeline parts does not dramatically increase with the scene’s complexity.
However, the time complexity of initial candidate generation increases, as it
is directly related to the number of lights in the scene. By optimizing cache
access with light tiles, as described in the previous chapter, we successfully
managed to reduce the computation time of this render pass significantly.
This was achieved in exchange for adding a new render pass for light tile
creation, which did not exceed 0.03 milliseconds across all scenes on the RTX
4070 Ti. The computation time for Initial Candidates now demonstrates
minimal scaling with the scene’s complexity when processed on a desktop
GPU. For a laptop GPU, however, this is not the case; the computation time
for this render pass significantly increases depending on the scene complexity.
We attribute this behavior to the difference in L1 and L2 cache sizes. The
RTX 4070 Ti features 128 KB L1 cache and 48 MB L2 cache, whereas the
Quadro RTX 3000 Mobile has a smaller 64 KB L1 cache and 3 MB L2 cache.

The efficiency of the ReSTIR algorithm primarily stems from its spatiotem-
poral reuse, which in most cases does not incur more cost than the creation
of initial candidates. The computational time for these two passes is not
as influenced by scene complexity but more by set parameters such as the
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Cornell Arcade Bistro

Box Interior
Relative Mean Absolute Error (RMAE)
Emissive Power Sampler** 0.0962 0.3785 1.0841
Light BVH Sampler** 0.0961 0.4723 1.0792
Original Pipeline* 0.0222 0.0540 0.2572
Original Pipeline w/ Checkerboard* 0.0201 0.0512 0.2501
Decoupled Pipeline* 0.0263 0.0508 0.2491
Original Pipeline** 0.0371 0.0501 0.2681
MLIP [ANAT20)
Emissive Power Sampler** 0.0455 0.0940 0.4327
Light BVH Sampler*™ 0.0457 0.1101 0.3551
Original Pipeline* 0.0227 0.0255 0.1559
Original Pipeline w/ Checkerboard* 0.0258 0.0279 0.1582
Decoupled Pipeline* 0.0211 0.0230 0.1552
Original Pipeline** 0.0399 0.0225 0.1346
Bistro Zero- Emerald
Exterior Day Square
Relative Mean Absolute Error (RMAE)
Emissive Power Sampler** 1.0256 0.8843 0.6841
Light BVH Sampler** 1.1436 0.8135 0.8081
Original Pipeline* 0.5548 0.3832 0.2473
Original Pipeline w/ Checkerboard* 0.5598 0.3854 0.2499
Decoupled Pipeline* 0.5097 0.3261 0.2471
Original Pipeline** 0.5861 0.4132 0.2752
LIP [ANAT20)
Emissive Power Sampler** 0.6347 0.3715 0.3666
Light BVH Sampler*™ 0.5284 0.3259 0.3110
Original Pipeline* 0.2469 0.1540 0.1582
Original Pipeline w/ Checkerboard* 0.2488 0.1582 0.1625
Decoupled Pipeline* 0.2369 0.1532 0.1519
Original Pipeline** 0.2213 0.1432 0.1322

Table 5.2 : Image Error versus Offline Reference. ReSTIR setup: Number of
initial candidates = 32, Temporal history limit = 20, Number of spatial samples
= 1, Number of spatial iterations = 1, Spatial neighborhood radius = 30px,
Pixel tile size = 8 x 8, |S;| = 1024, |S| = 128, Normal threshold = 0.9, Depth
threshold = 0.1.

* Biased, ** Unbiased

number of iterations or spatial samples. In the previous chapter, we noted
that a small number of spatial samples and a single iteration are typically
sufficient. This is the reason why we keep the number of spatial samples to a
minimum in this analysis.

The subsequent pipeline maintains the same architecture as the Original
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Cornell Box Arcade Bistro
Interior
Original Pipeline* 4.2
Creating Light Tiles 0.01/0.03 0.01/0.10 0.02/0.16
Initial Candidates 0.47/1.53 1.05/4.47 1.13/4.49
Temporal Reuse 0.42/0.36 0.49/1.07 0.49/1.70
Spatial Reuse 0.22/0.34 0.31/1.34 0.31/1.73
Shading with Visibility 0.15/0.62 0.36/1.83 0.45/2.67
Total Lighting 1.27/2.88 2.22/8.81 2.40/10.75
Original Pipeline 4.2 with Checkerboard*
| Total Lighting | 101/255 |  1.87/7.55 | 1.98/9.15 |
Decoupled Pipeline* 4.9
] Total Lighting \ 0.84/3.09 \ 2.04/9.96 \ 2.29/11.33 \
Original Pipeline** 4.2
| Total Lighting | 1.17/3.40 |  258/12.08 | 294/16.03 ]
Bistro Zero-Day Emerald
Exterior Square
Original Pipeline* 4.2
Creating Light Tiles 0.02/0.09 0.01/0.07 0.03/0.11
Initial Candidates 1.46/11.63 1.10/9.12 2.54/18.96
Temporal Reuse 0.46,/2.00 0.48/1.07 0.49/1.71
Spatial Reuse 0.31/1.92 0.31/1.23 0.33/1.56
Shading with Visibility 0.71/3.88 0.43/2.77 1.78/11.95
Total Lighting 2.96/19.52 2.33/14.26 5.17/34.29
Original Pipeline 4.2 with Checkerboard*
| Total Lighting |  241/1529 | 1.96/10.90 | 4.02/25.40 |
Decoupled Pipeline* 4.9
| Total Lighting [ 202/19.75 | 221/13.67 | 4.88/30.22 |
Original Pipeline* 4.2
| Total Lighting |  406/27.75 | 293/1948 | 7.93/55.49 |

Table 5.3 : Performance results of various ReSTIR pipelines. Times in millisec-
onds on RTX 4070 Ti / Quadro RTX 3000 Mobile. ReSTIR setup: Resolution
1920 x 1080, Number of initial candidates = 32, Temporal history limit = 20,
Number of spatial samples = 1, Number of spatial iterations = 1, Spatial neigh-
borhood radius = 30px, Pixel tile size = 8 x 8, |.S;| = 1024, |S| = 128, Normal
threshold = 0.9, Depth threshold = 0.1.

* Biased, ** Unbiased

pipeline but incorporates checkerboard rendering optimizations. This opti-
mization cuts the computational time for generating initial candidates by
approximately half. In this report, we present only the total illumination
computation time, which roughly corresponds to the Original pipeline’s time
reduced by half the time it takes to generate the initial candidates.

The Decoupled pipeline typically outperforms the Original pipeline in
terms of speed. This efficiency stems from the Decoupled pipeline being
implemented as a single kernel, except for the light tiles creation process.
As a result, the global synchronization that follows temporal reuse does not
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impede it, leading to a more streamlined execution.

The unbiased version exhibits the poorest performance among all pipelines.
This pipeline necessitates more noise reduction, requiring casting additional
shadow rays. Compared to its biased counterpart, this pipeline is approxi-
mately 1.2 to 2 times slower.

Table 5.4 compares different configurations of light tiles for the biased
Original pipeline.

The initial set of measurements explores different pixel tile sizes. Pixel Tile
Size is the square tile of pixels comprising a group accessing the same light
tile. We fixed the remaining two parameters to measure this parameter at
|Si| = 1024, |S| = 128. At first glance, the performance in generating initial
candidates appears to increase with the size of the pixel tile. This is attributed
to a larger number of adjacent pixels accessing the same memory section,
thereby reducing the number of cache misses. For a resolution of 1920 x 1080,
we suggest a tile size of 8 x 8, as with larger tile resolutions, the correlation
of light samples between neighboring pixels may become more pronounced,
leading to more noticeable tile borders in the final image. However, a greater
tile size may be appropriate for larger image resolutions.

The size of the light tile determines the number of light samples stored in
each tile. As observed, lower values of this parameter lead to a decrease in the
computation time for generating initial candidates. This is due to the high
possibility of light samples from each light tile being cached for neighboring
pixels during memory access. The computation time for generating light tiles
marginally increases with the size of the light tile and is also influenced by
the total number of emissive lights in the scene. The larger the specified
size of the light tile, the lower the correlation will be between the chosen
samples of neighboring pixels. This parameter can significantly impact the
final image quality, and for lower values, individual Pixel Light Tiles may
become discernible in the image, even after performing temporal and spatial
resampling.

As suggested by its name, the number of light tiles determines the total
quantity of light tiles produced. This parameter does not substantially
influence the computation time for the generation of initial candidates but
primarily impacts the creation time of the light tiles. By augmenting the
number of light tiles, we can increase the likelihood of individual pixel light
tiles selecting diverse sets of light samples, thereby introducing a greater
variety of desirable samples into the image.

The final Table 5.5 delves into the performance of the Initial Candidates
pass for three different resolutions. The computation of Initial Candidates
is directly tied to the image’s resolution. Achieving real-time frame rates
is feasible for a 1920 x 1080 resolution, even on a laptop GPU. However,
maintaining these frame rates becomes challenging as resolution escalates.

One potential approach to mitigate this issue is increasing the pixel tile size
with the rise in image resolution. However, further experimentation would be
necessary to fully understand this method’s implications. Alternatively, DLSS
(Deep Learning Super Sampling) upscaling technology might offer a practical

48



5.2. Performance Results

Cornell Box Arcade Bistro Interior
Varying Pixel Tile Size
Ix1 1.63/10.35 4.34/27.95 4.33/29.85
2% 2 0.94/3.97 2.23/11.05 2.26/10.38
4 x4 0.61/2.36 1.54/6.95 1.44/6.71
8% 8 0.47/1.53 1.05/4.47 1.13/4.49
16 x 16 0.37/1.43 0.92/4.18 0.90/4.08
|Si| = 1024, |S| = 128 - Initial Candidates
Varying Size of Light Tiles |S;]
|S;| = 256 0.36 (0.01) 0.91 (0.01) 0.86 (0.01)
S| = 1024 0.47 (0.01) 1.05 (0.01) 1.13 (0.02)
|Si| = 4096 0.71 (0.01) 1.69 (0.01) 1.55 (0.03)
|S| = 128 - Initial Candidates (Presampling), on RTX 4070 Ti
Varying Number of Light Tiles [S|
S| =128 0.47 (0.01) 1.05 (0.01) 1.13 (0.02)
IS| = 512 0.48 (0.01) 1.06 (0.02) 1.12 (0.03)
S| = 1024 0.51 (0.01) 1.07 (0.02) 1.05 (0.04)

|Si| = 1024 - Initial Candidates (Presampling), on RTX 4070 Ti

Bistro Exterior Zero-Day Emerald Square
Varying Pixel Tile Size
1x1 3.63/18.38 4.40/15.76 4.03/24.10
2x2 2.92/17.69 2.56/14.94 3.59/26.32
4x4 1.88/14.94 1.55/12.28 2.80/23.42
8% 8 1.46/11.63 1.10/9.12 2.54/18.96
16 x 16 1.26/8.57 0.95/6.17 2.14/15.52
|Si| = 1024, |S| = 128 - Initial Candidates
Varying Size of Light Tiles |5;]
|S;| = 256 1.15 (0.01) 0.89 (0.01) 2.01 (0.02)
S| = 1024 1.46 (0.02) 1.10 (0.01) 2.54 (0.03)
|Si| = 4096 2.02 (0.03) 1.68 (0.02) 2.97 (0.04)
|S| = 128 - Initial Candidates (Presampling), on RTX 4070 Ti
Varying Number of Light Tiles [S|
[S| =128 1.46 (0.02) 1.10 (0.01) 2.54 (0.03)
IS| =512 1.49 (0.03) 1.09 (0.03) 2.44 (0.05)
IS| = 1024 1.48 (0.05) 1.10 (0.05) 2.57 (0.07)

|Si| = 1024 - Initial Candidates (Presampling), on RTX 4070 Ti

Table 5.4 : Performance results with various light tiles settings of the biased
Original pipeline 4.2, Times in milliseconds on RTX 4070 Ti / Quadro RTX 3000
Mobile. ReSTIR setup: Resolution 1920 x 1080, Number of initial candidates
= 32, Temporal history limit = 20, Number of spatial samples = 1, Number of
spatial iterations = 1, Spatial neighborhood radius = 30px, Normal threshold =
0.9, Depth threshold = 0.1.

solution, as mentioned in the previous chapter 4.11. This approach entails
rendering the image at a 1920 x 1080 resolution, applying denoising, and then
leveraging DLSS for upscaling to 3840 x 2160. This yields satisfactory results
even at higher resolutions without significantly compromising visual quality
or performance.

Another alternative may be to employ a reservoir grid resolution lower than
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Cornell Box Arcade Bistro Interior
Resolution Scaling
1280 x 720 0.22/1.13 0.49/1.89 0.51/2.04
1920 x 1080 0.47/1.53 1.05/4.47 1.13/4.49
3840 x 2160 1.78/7.62 3.72/19.21 3.92/18.33
Bistro Exterior Zero-Day Emerald Square
Resolution Scaling
1280 x 720 0.73/5.33 0.56/3.93 1.16/7.29
1920 x 1080 1.46/11.63 1.10/9.12 2.54/18.96
3840 x 2160 5.84/44.12 4.18/37.55 8.65/59.88

Table 5.5 : Performance results of Initial Candidates pass of the biased Original
pipeline 4.2| for various resolutions. Times in milliseconds on RTX 4070 Ti (and
Quadro RTX 3000 Mobile). ReSTIR setup: Number of initial candidates =
32, Temporal history limit = 20, Number of spatial samples = 1, Number of
spatial iterations = 1, Spatial neighborhood radius = 30px, Pixel tile size =
8 x 8, |S;| = 1024, |S| = 128, Normal threshold = 0.9, Depth threshold = 0.1.

the image resolution. This can be implemented by simply halving the grid
in both dimensions or utilizing the aforementioned checkerboard rendering
technique. For instance, instead of associating each reservoir with a pixel,
multiple pixels could share a single reservoir. This approach could reduce the
computational cost while maintaining an acceptable render quality. However,
these techniques would require careful implementation and testing to ensure
they do not introduce artifacts or negatively affect the quality of the final
image.

B 5.3 ReSTIR Gl Results

Since the practical part of this project encompasses a basic implementation
of the ReSTIR GI algorithm, we have chosen to separate its results from
those of the ReSTIR DI algorithm. Given that our implementation of the
ReSTIR GI algorithm is in its experimental stages, we opted to test it on a
single scene - the Veach Door. A comparison of the efficiency of the ReSTIR
GI algorithm can be observed in Figure [5.7

From the results, we can observe that although this scene presents a
significant challenge for path tracing, given that the direct illumination is
concentrated in a small region, the ReSTIR GI proves to be highly efficient
due to its spatiotemporal sample reuse capabilities.

The total computation time for indirect illumination using the ReSTIR GI
for this scene is 5.06 ms on the RTX 4070 Ti for the biased variant and 6.25
ms for the unbiased variant. On the Quadro RTX 3000 Mobile, these times
increase to 34.11 ms for the biased variant and 47.06 ms for the unbiased
variant.

This method shares similar limitations with ReSTIR DI. A prevalent issue
is the reliance on screen-space buffers for reservoir storage, which may not

50



5.3. ReSTIR Gl Results

be sufficient during fast camera movements, leading to possible artifacts or
inaccuracies. Another substantial challenge is the longer computation time
compared to the ReSTIR DI algorithm, which might be impractical for real-
time applications. Current games allocate minimal frame time for calculating
indirect lighting, often leveraging techniques such as light mapping or light
probes that require considerably less computational time compared to this
method. Therefore, despite its promising results, the practical adoption of
the ReSTIR GI approach in real-time game settings would require addressing
these constraints.
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5. Results

Figure 5.7 : Equal-time comparison of the efficiency of the ReSTIR GI algo-
rithm. (Top) Direct illumination only. (Middle) Output of a Path Tracer with
two bounces and NEE. (Bottom) Output generated by the unbiased ReSTIR

DI+GI.
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Chapter 6

Discussion and Future Work

ReSTIR is proving to be a powerful tool for solving the many-lights problem.
Its clever utilization of spatio-temporal resampling enables the selection of
high-quality light samples, even when computational resources are limited.
Thanks to this feature, ReSTIR can be used for raytracing both in games and
in other applications that run in real-time in the near future. By employing
the ReSTIR algorithm to sample emissive geometry, the scene creation process
for creators and developers can be significantly simplified. There is no longer
a need to approximate these lights with analytical lights that often require
manual placement.

In future research, it would be valuable to explore using ReSTIR with more
complex materials, such as those featuring detailed normal maps or complex
geometry consisting of dense triangular meshes (such as vegetation or scanned
assets). However, one potential challenge in using ReSTIR with such materials
is the granularity of the reservoir grid, which may not be adequate to handle
just one reservoir per pixel. Therefore, further investigation is required to
determine how to optimize the use of ReSTIR in rendering these complex
materials. This could potentially involve implementing a more sophisticated
data structure or refining the existing reservoir grid to better accommodate
the needs of rendering in such scenarios.

One of the disadvantages, which is also a benefit, is that ReSTIR oper-
ates in a screen-space. The advantage of this approach is the simplicity of
implementation and the constant amount of memory independent of the
scene. The disadvantage is that ReSTIR cannot find good samples quickly
during fast animations or camera movements (common in computer games)
because there are simply no reservoirs outside the screen. Boksansky et
al.[BJW2I] have extended the use of the ReSTIR algorithm to world-space.
Their sampling algorithm uses a uniform grid structure storing reservoirs in
world-space. The sampling of lights is divided into two steps. In the first step,
individual cells are assigned samples that can truthfully contribute to that
region. Resampling is performed on the pool of these samples, and samples
with zero contribution for a given cell are culled. In the second step, the
resampling is performed according to the BRDF contribution at the shaded
point. This method proves to be particularly suitable for use with secondary
rays. Screen-space ReSTIR is preferable for primary rays as it uses a smaller
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reservoir granularity. A combination of both methods may be a suitable
solution for many applications.

B 6.1 Other ReSTIR applications

The utility of the ReSTIR algorithm extends beyond addressing many-light
problems and direct illumination, as demonstrated throughout our discussions.
It has potential applications in a variety of lighting situations, including,
but not limited to, indirect illumination, as shown in our experimental
implementation of ReSTIR GI. Its robustness in complex lighting scenarios
makes it an effective technique to explore in advancing real-time rendering
methodologies.

ReSTIR can also be utilized for offline rendering purposes. When rendering
an animated sequence is parallelized across multiple computers, temporal
resampling may not be available. In such scenarios, relying on spatial samples
and increasing the number of iterations is recommended to compensate for
the absence of temporal samples and accelerate the overall convergence. By
adapting the approach this way, the rendering process can be optimized for
offline use, ensuring efficient and high-quality results.

One recent paper that addresses ReSTIR-based samplers is by Daqi Lin
et al. [LKB™22|. In this paper, the authors introduce generalized resampled
importance sampling (GRIS), which extends the RIS theory and enhances its
underlying principles. The authors successfully present a path-traced resam-
pler (ReSTIR PT) that operates interactively on complex scenes, capturing
many-bounce diffuse and specular lighting with just one path per pixel.

ReSTIR applies to traditional surface-based rendering and can also be
effectively employed in volumetric rendering. This was addressed in a recent
paper by Daqi Lin et al. [LWY21]. In this work, the authors applied
ReSTIR to volumetric rendering. They demonstrated the ability to achieve
low-noise, interactive volumetric path tracing while maintaining efficient
performance even on high-resolution volumes. By utilizing ReSTIR for
volumetric rendering, this work contributes to the field and opens up new
possibilities for real-time rendering applications.

ReSTIR can also be employed for cluster rendering, but dealing with global
synchronization and shared memory accesses during spatial reuse can pose
a challenge. True spatiotemporal resampling may be suitable to address
this issue, as used in the decoupled pipeline approach. This eliminates the
need for global synchronization during computation, considerably simplifying
implementation.

An intriguing potential application of ReSTIR could be for ray-tracing in
virtual reality environments. One approach could involve generating light
samples for the left-eye image and applying spatiotemporal resampling. The
resulting reservoirs can then be mapped to the corresponding pixels of the
right-eye image, potentially mitigating an issue known as specular flickering,
which can distort depth perception. However, this method may encounter
problems when one eye has a significantly different viewpoint than the other.
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Both eyes may require independent light sample generation and processing in
such cases.
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Chapter 7

Conclusion

This thesis has addressed the topic of efficiently sampling complex illumination
for real-time rendering applications. We have provided a comprehensive
overview of various algorithms that have been developed to tackle this issue,
with a specific focus on the ReSTIR algorithm, which offers a highly promising
approach to this problem.

We have presented our implementation of ReSTIR in the Falcor rendering
framework, including optimizations inspired by previous work, and demon-
strated its superior performance and quality compared to existing techniques.
Our results demonstrate that ReSTIR is a highly effective approach for
achieving high-quality real-time rendering while maintaining interactive per-
formance.

Moreover, we have explored the potential applications of ReSTIR in various
contexts provided by recent papers, including volumetric rendering, offline
rendering, cluster rendering, and global illumination. Our analysis has
highlighted the strengths and limitations of ReSTIR, and we have identified
potential areas for future research to enhance its effectiveness further and
extend its capabilities.
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Appendix A

Dependencies

NVIDIA Falcor: Real-Time Rendering Framework [KCK*22]
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