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Abstract

In this thesis, a solution to the problem of drone tracking using a gimballed RGB
camera mounted on a flying UAV is proposed, implemented and tested both in
simulation and real-world experiments. The proposed system uses a combination
of machine learning models for visual detection and tracking to create an online
estimate of the target drone’s 3D position. Two large drone datasets from various
environments were used to train and evaluate the models. The YOLO5 neural net-
work architecture and the MOSSE tracking algorithm were selected for their balance
of speed and accuracy. Genetic programming was used to further optimize the hyper-
parameters of the chosen architecture achieving satisfactory online performance in a
computationally constrained environment of the on-board computer. The resulting
estimates from the detection and tracking pipeline are denoised using a Kalman fil-
ter and used as an input to PID controllers to maintain an approximately constant
distance and a zero altitude difference between the drones.

Keywords Unmanned Aerial Vehicles, Automatic Control, Visual Detection, Track-
ing, Gimbal
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Abstrakt

V této práci bylo navrženo, implementováno a otestováno řešeńı problému sledováńı
dron̊u pomoćı RGB kamery umı́stěné na gimbalu připevněném k UAV v simu-
laci i experimentech v reálném světě. Navržený systém použ́ıvá kombinaci model̊u
strojového učeńı pro vizuálńı detekci a sledováńı k odhadu 3D polohy sledovaného
dronu. Modely jsou natrénovány a vyhodnoceny pomoćı dvou velkých soubor̊u dat
poř́ızených za letu v r̊uznorodých prostřed́ıch. Z výsledk̊u měřeńı bylo zjǐstěno, že
architektura neuronové śıtě YOLO5 v kombinaci s algoritmem MOSSE nab́ıźı op-
timálńı kompromis mezi rychlost́ı a přesnost́ı pro daný problém. K optimalizaci hy-
perparametr̊u zvolené architektury byla využita metoda genetického programováńı,
č́ımž bylo dosaženo uspokojivé přesnosti ve výpočetně omezeném prostřed́ı palubńıho
poč́ıtače. U výsledných odhad̊u je odstraněna část šumu pomoćı Kalmanova filtru
a výstup je předán PID regulátor̊um určuj́ıćım rychlost potřebnou pro udržeńı kon-
stantńı vzdálenosti a relativńı výšky letu dron̊u.

Kĺıčová slova Bezpilotńı Prostředky, Automatické Ř́ızeńı, Vizuálńı Detekce, Sle-
dováńı, Gimbal
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Eagle.One drone hunting platform1.

Unmanned aerial vehicles (UAVs), also known as drones, had traditionally been used
almost exclusively by militaries for surveillance and combat operations [1]. However, drones are
increasingly being adopted for consumer use, leading to concerns about their potential impact
on security, as well as the safety of people, private property, and critical infrastructure [2].
As UAVs are capable of flying over critical facilities such as airports, stadiums, prisons, and
military bases to name a few, restrictions on their use are being put in place to prevent both
accidental and deliberate damage.

Anti-drone technology is catching up as there are now autonomous drones designed
to search and intercept unauthorized intruders using RADAR and LIDAR sensors to guide
the hunter towards its target such as the Eagle.One autonomous aerial interception system2.
Alternative solutions include the use of high-power laser weapons such as the SkyLock system3

or drone jamming systems that disrupt the communication between the drone and its operator.

1Photo courtesy of https://www.svetchytre.cz/a/pTggy/eagleone--ceske-zarizeni-odhali-a-
zpacifikuje-nebezpecny-dron.

2https://eagle.one/
3http://www.itck.co.kr/bbs/download.php
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All these methods require the target to be identified and tracked until the threat is eliminated.
Drones often have RGB cameras attached to their frames, which can be employed to detect
and track their targets using machine-learned models with no additional expensive hardware
required. Another advantage of utilizing a color camera is that human assessment of visible-
spectrum detection is more natural than from other electromagnetic sensors. Finally, for real-
world deployments, it is critical to be able to differentiate between various flying objects such
as a drone, a bird, a kite or a plane, something that can be done efficiently in the visible
spectrum using state of the art visual detection methods.

1.2 Objective

The aim of this work is to design, develop and evaluate a fully autonomous system
that enables a drone equipped with a monocular RGB camera placed on a stabilized gim-
bal mechanism to detect, track and follow a target UAV, although any other object whose
appearance model is supplied may be tracked using the implemented system. The challenge
is for the follower to maintain the target in its line of sight despite the panning and tilting
of the camera caused by the highly dynamic nature of drone flight and while being limited
by the on-board computer’s computational resources. The system is not designed to rely on
assumptions about the target drone’s equipment, hence it does not consider the use of i.e.
ultraviolet markers such as AprilTag [3] or UVDAR [4].

The problem can be viewed as an instance of the leader-follower problem in robotics,
where the leader moves along an assigned trajectory and the follower maintains the desired
relative distance and orientation.

1.3 Related Works

1.3.1 Visual Drone Detection

The first part of this thesis focuses on the detection of drones flying in diverse envi-
ronments, often occupying a small portion of images taken by the on-board camera as shown
later in Subsection 4.2.1. Consequently, models demonstrating good performance on small
object datasets are prioritized for further experiments. The recent research described in [5]
carried out an extensive empirical evaluation of several state of the art object detection ar-
chitectures on a filtered PASCAL VOC 2007 dataset4 and a small object dataset composed
of data from COCO5 and SUN6. YOLOv3 [6] is found to be the most precise of the one stage
methods considered in the article. However, when the generally slower two-stage methods are
also considered, Faster RCNN is the most accurate. For certain objects and scales, the faster
and simpler one stage approach gives similar accuracy as the two stage methods while being
up to over 10 times faster (see the VOC MRA 0.20 subset in [5], where the one stage method
YOLOv3 dominates). This shows that for a particular problem, multiple different models us-
ing various approaches should be tested to find an optimal performer, especially when speed
is a crucial factor in the considered application.

4http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
5https://cocodataset.org/
6https://vision.princeton.edu/projects/2010/SUN/
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In a recent work of the authors of the Det-Fly dataset [7], several state of the art
deep networks are compared on the task of UAV detection. Grid RCNN and Faster RCNN
demonstrate good accuracy and YOLOv3 is deemed an ideal compromise between precision
and inference speed, although it uses smaller input image resolution and in general performs
worse than its more recent iterations (i.e. YOLO5, YOLOX) according to the results presented
in [8].

YOLOv3 is also successfully utilized in paper [9], where the model approaches 90%
accuracy on an unpublished dataset for visual drone detection. The authors achieve a pro-
cessing speed of 30 FPS on the Jetson TX2 embedded computer, although a YOLOv3 model
still achieves only 2.6 FPS on an Intel Core i76920HQ CPU [10], which has a comparable
performance to the processor used on-board the drone in this thesis (see Section 3.2 for a
complete description of the on-board equipment). The camera considered in this thesis is ca-
pable of producing images at 24 FPS, so at 2.6 FPS processing rate, much information would
be unused. This can be addressed by combining the CNN detector with a fast visual tracking
method.

1.3.2 Visual Drone Tracking

In [11], traditional visual tracking algorithms (CSRT [12], MIL [13], MOSSE [14] and
KCF [15]) are compared in the context of UAV research. The benchmark uses implementations
of the trackers provided by the OpenCV library [16]. The CSRT and MOSSE algorithms
achieve the best efficacy of 95.5% and 75.7%, respectively. MOSSE outperforms all the other
trackers in terms of average processing time, achieving 365× faster speed than its second-best
competitor CSRT. This is in contrast to the results presented in [15], where KCF outperforms
MOSSE (73% vs 43% mean precision) while averaging approximately half of MOSSE’s FPS
(292 vs 615 FPS).

A modern alternative to the traditional visual tracking algorithms is deep visual track-
ing, in which the appearance model is a deep neural network, for example a convolutional
neural network [17] or a recurrent neural network (i.e. RTT [18]). The network can be trained
prior to the tracking or online on each incoming frame, or a combination of both. These meth-
ods tend to be slower than their traditional counterparts but offer better tracking robustness
and accuracy [19].

1.3.3 Autonomous Drone Pursuit

In [20], the FollowMe software is proposed, which allows a drone to follow any object
selected by the user from an image taken by an on-board camera. The software uses the TLD
tracking algorithm [21] and adjusts the pursuit speed with a proportional-integral-derivative
(PID) controller.

In a recent work by Liu Xuancen et al. [22], a drone platform with a camera mounted on
a 3-axis gimbal is presented. Similar to the previous paper [20], the target has to be manually
selected and is then tracked using an improved version of the KCF algorithm, which can
also adapt to scale changes and occlusions. A Jetson TX2 Module is connected to the drone
to improve processing speed and allow KCF to be run online. The proportional navigation
guidance law [23] is used to follow the other drone while the gimbal keeps the camera centered
on the target.

CTU in Prague Department of Computer Science
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The paper [24] compares the CNN and depth map based approaches in a real-world
drone leader-follower experiments. A conclusion is drawn that the main source of localisation
error in the CNN-based approach is imprecise distance estimate of the leader caused by
inaccurately predicted size of the output bounding box by the CNN. Despite this, the method
is considered suitable for autonomous pursuit and has several advantages over alternative
methods, such as a larger maximal usable range.

1.4 Structure of the Thesis

In Chapter 2, several object detection and visual target tracking algorithms used in
the rest of the thesis are analyzed and compared. Mathematical models of a camera and its
associated lens distortions are introduced and transformations between the coordinate systems
of a drone, its gimbal stabilization system and camera are derived.

The architecture of the solution, including the detection and localization packages, gim-
bal and flight managers and a visualisation tool is outlined in Chapter 3. The utilized hardware
platform and software frameworks are also presented.

Chapter 4 explains in detail the process of training and model selection for the tar-
get detector. The chosen model is further improved using a genetic algorithm based on the
principles of natural selection. The relationship between the confidence of detection and the
distance of the target is explored. Finally, traditional tracking algorithms are compared to
assess their performance in the low-delay setting.

Chapter 5 and Chapter 6 evaluate the proposed system in simulated experiments using
the Gazebo simulator and in the real world.
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Chapter 2

Theoretical Background

2.1 Object Detection in Images

Object detection is a technology related to computer vision and image processing that
aims to identify and locate objects in an image or video. State-of-the-art object detectors
commonly use deep convolutional neural networks (CNNs) as their feature extractors (also
known as backbones) and fully connected artificial neural networks (FC ANNs) for object
localization and classification [25]. The history of ANNs began with the discovery of the
McCulloch-Pitts neuron [26] in 1943, the CNN was introduced in 1980 under the name of
neocognitron [27] and training using the backpropagation algorithm [28] was described in
1986. However, it was not until 2012 that the performance of ANN-based methods1 surpassed
traditional detection algorithms such as Viola-Jones detector [29] based on the Adaptive
Boosting meta-algorithm [30] or the Deformable Part-based model [31]. According to the
original paper of the AlexNet [32], the depth of the model was essential to its success and
removing even one layer decreased its performance significantly. It was also able to train on
an extensive data set collected from the web, which was not possible when the CNN model
was first described due to hardware constraints at that time.

2.1.1 CNN

A convolutional neural network is a specific type of artificial neural network that uses
convolutional layers. A convolutional layer solves the parameter explosion of an FC ANN
with a large number of features as described e.g. in [33] by exploiting the locality of pixel
dependencies using a number of smaller filters convolved across the image to create feature
maps used for inference. An assumption is therefore made that pixels close to each other are
related and, if grouped together, are more likely to carry semantic information [34], which is
reasonable in the domain of images.

Suppose the image X l of size n × m is the input to a simple convolutional layer l. If
a single k × k filter H is used (assuming k is even for the sake of notational simplicity), the
output Y will have a size of (n − k + 1) × (m − k + 1) × 1. Each additional filter increases
the third dimension by one. The relation between the input and output of the l-th layer of a
CNN can be expressed as

Y l
i,j =

k/2−1∑
u=−k/2

k/2−1∑
v=−k/2

Hu,vX
l
i−u,j−v, (2.1)

1See SuperVision team method description in ILSVRC2012 challenge, available here https://www.image-
net.org/challenges/LSVRC/2012/results.html.
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where Y l
i,j is the value of the feature i, j in the output of the l-th layer. As the indices

i−u, j−v are constrained by the input size, the output must inevitably have smaller dimension
than the input due to the way the filter is being applied and this reduction of dimension is
proportional to the size of the filter.

To control the dimensional shrinkage of the data and avoid losing information at the
edges of the image after filter application, padding may be added to the image before it is
passed through the convolutional layer. For the presented layer, there are k2 weights to be
learned, compared to n · m · (n − k + 1) · (m − k + 1) in case of an FC ANN. Using fewer
weights (or parameters in general) can reduce the time required for a model to converge and
can also prevent overfitting [35].

Another way to reduce the number of parameters in a CNN or downsample the input is
to introduce a pooling layer, which provides a form of non-parametric dimensionality reduction
by summarizing nearby features using e.g. the max or L2-norm function

Y l+1
i,j =

p−1,r−1
max
a,b=0

Y l
2i+a,2j+b, (2.2)

where p, r define the pooling window size.

A non-linear activation function, such as the rectified linear unit (ReLU) or a sigmoid
function, can be applied to each output of the convolutional layer to introduce non-linearity
to the model. This is typically done to improve the model’s ability to learn complex patterns
in the data [36]. Application of the non-linear activation function can be expressed as

Y l+2
i,j = σ(Y l+1

i,j ), (2.3)

where σ(·) is the activation function. An example of an often-used activation function is the
Rectified Linear Unit (ReLU):

σReLU(x) = max(0, x). (2.4)

In Figure 2.1, a typical example of a CNN topology is presented. The network classifies
the content of the entire image, but does not implement the detection of individual objects,
which is the topic of the following subsections.

Figure 2.1: Example of a CNN architecture. Image courtesy of [37].

2.1.2 R-CNN

In 2013, Ross Girshick et al. applied a novel convolutional neural network-based ap-
proach to object detection and proposed a method called the Region-based CNN (R-CNN)
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[38]. The architecture uses an optimized version of selective search [39] to generate around
2000 class-independent region proposals (RPs) using various similarity metrics (color, tex-
ture, size, etc.) to determine the quality of objectness. A 4096-dimensional feature vector is
extracted from each such RP using a CNN described by Krizhevsky et al. [32] with five con-
volutional layers and two fully connected layers. Before the region can be passed to the CNN,
it has to be resized to 227 × 227 pixels due to architectural constraints. The feature vectors
are then utilized by kernelized Support Vector Machines trained for each individual class to
perform classification by comparing the resulting score. Once an object is localized, a greedy
non-maximum suppression is applied that removes overlapping bounding boxes with lower
detection confidence so that only local maxima remain. Finally, the bounding boxes around
them are tightened to further improve the localization performance, for which a non-linear
regression model is trained. In this method, all parameters of the model cannot be trained
simultaneously using a single loss function. Optimizing different model parameters using dif-
ferent loss functions may result in a suboptimal model when judged by the natural objective
function of maximizing i.e. the accuracy of a model compared to the ground truth. Further-
more, the proposed model is slower than its later iterations as it applies the convolution
operation to every region proposal separately.

Fast R-CNN [38] builds on the previous method by generating region proposals on the
output of the convolutional network instead of the whole image. Classification and bounding
box correction are implemented by several fully connected layers, which replace both the SVM
and regression model used in the R-CNN.

Finally, Faster R-CNN [40] removes the only remaining stand-alone component of the
network, the selective search, which it replaces with yet another CNN, the region proposal
network (RPN). Region proposal is again carried out on the output of the feature extractor,
as shown in Figure 2.2. It is implemented as three convolutional layers, one to preprocess
output from the backbone and the other two to compute bounding box offsets and their
corresponding confidences. The offsets move and scale the fixed anchor boxes distributed
throughout the image. This object detection model is end-to-end trainable.

Recently, novel approaches are emerging, replacing the final bounding box regression
with more robust methods such as feature map information fusion used in the Grid R-CNN
[41].

Figure 2.2: Faster R-CNN architecture, courtesy of [40].

CTU in Prague Department of Computer Science



2. THEORETICAL BACKGROUND 10/52

2.1.3 CenterNet

CenterNet [42] is a one-stage detection method as opposed to the Faster R-CNN, as it
skips region proposal and instead performs bounding box inference and object classification
on the feature map. In theory, this improves inference speed but comes at the cost of possibly
lower accuracy and lesser robustness [43].

Anchors used in Faster R-CNN are replaced by keypoints learned from heatmaps. A
disadvantage of using anchors is that a large number of them needs to be generated to ensure
a high intersection over union (IoU) rate with the ground truth labels unless some assumptions
like a known size of bounding boxes can be made, which is not possible in the domain of UAV
detection. Furthermore, the generated anchors are often not aligned with labels [42], which
decreases the ability of the anchor-based models to make informed predictions because part
of every object may be cut from the input.

The CenterNet model is based on CornerNet [44], which detects objects by identifying
keypoints at the top-left and bottom-right corners of the bounding box. The CenterNet model
improves upon this approach by using triplets consisting of the center point in addition to
the corners and by introducing a new corner pooling layer to help the network detect the
corners more accurately. In the CenterNet original paper [42], its authors claim that their
major improvement over the CornerNet architecture is in small object detection performance
since, from a probabilistic point of view, its center keypoint is more easily located than that
of a large object. It matches novel two-stage architectures in accuracy while offering solid
inference speed [42].

2.1.4 YOLO

YOLO [45] is a series of one-stage object detection methods widely used for their speed
and accuracy trade-off, suitable for real-time applications [8].

YOLO1 [46] divides an image into an S×S grid and predicts a vector of bounding boxes
and associated confidences for each cell. These predictions are encoded in the 3-dimensional
tensor output of the CNN with dimensions (S × S × (5 · B + C)) where C is the number of
classes. The input image resolution is limited to 224×224, which makes small object detection
difficult. Furthermore, it has a lower recall than region proposal-based methods such as the
Fast R-CNN [45].

YOLOv2 [45] implements the idea of anchor boxes whose sizes are determined using the
K-Means clustering algorithm on the ground truth. In addition, Darknet-19 is used as the new
feature extractor with resolution increased to 448 × 448, which alone improves performance
by 4% mAP. Multi-scale training is added so that during training, every ten batches the
algorithm chooses a new input image size from 320, 352, ..., 608 (multiples of 32). This enables
the network to learn to predict well at different resolutions. Overall, YOLOv2 outperforms
the first iteration while retaining a fast inference speed.

In YOLOv3 [6], the Darknet-19 backbone is replaced by the Darknet-53. The number
in the name refers to the number of layers in the convolutional network. In addition, residual
block, skip connections, multi-scale prediction and up-sampling are introduced as part of
the feature extractor, as explained in the paper [6]. According to the paper, the network
has significantly improved performance on small object datasets compared to the previous
iterations. This improvement is speculated to be due to the multi-scale prediction feature,
which works by predicting bounding box tensors, merging feature maps at different scales and
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processing the combined map by a final convolutional network that benefits from fine-grained
features from early on in the network.

YOLO5 [47] is based on YOLOv3, uses a slightly modified CSP backbone [48] and
PA-NET neck [49] to boost the information flow and includes mosaic data augmentation ca-
pabilities. In addition, it replaces the convolution-based stem unit in YOLOv3 with the Focus
layer that aims to improve training speed and reduce information loss caused by aggressive
downscaling. See the SpaceToDepth layer described in [50] for details.

YOLOX is an anchor-free method based on YOLOv3 with Spatial Pyramid Pooling [51],
which also applies novel techniques for object detection such as a decoupled head that sep-
arates box coordinate regression and object classification and SimOTA for label assignment,
which solves the problem of label assignment by reducing it to the Optimal Transport problem
[8]. Furthermore, it incorporates strong data augmentation, such as Mosaic and MixUp, into
its pipeline.

2.2 Fast Visual Tracking

Given an initial state as detection in the form of a bounding box, the task of a tracking
algorithm is to locate the (potentially moving) target in subsequent images, assuming the
appearance and position of the target do not change significantly in a short period of time.
In general, this problem is less computationally demanding than object detection, so a fast
visual tracker can suitably complement a relatively slow visual detector. However in practice,
the computation duration depends on the specific algorithm and implementation. Only fast
trackers that utilize linear regression models are considered here.

2.2.1 Correlation Filter

The algorithms presented in the following two sections are based on a correlation filter,
meaning they model the appearance of objects as filters optimized on samples of the target.
The filters are then applied to an image to produce a heatmap, where peaks represent the
most likely position of the tracked object. These peaks may then be transformed into bounding
boxes and given as the output of the tracking algorithm. The filter can be updated with every
new frame to incorporate moderate changes in the target’s appearance into its model.

Repeatedly applying the convolution operator would be computationally expensive.
Hence an optimized approach is utilized, which simplifies the computation by calculating
in the frequency domain of the image instead, as the convolution theorem states that

t(x) = {g ∗ h}(x) x ∈ R, (2.5)

T (y) ≜ F{t}(y) = G(y) ·H(y) y ∈ R, (2.6)

where t(·) is the convolution of the functions g(·) and h(·), F denotes the Fourier operator
and G(·) and H(·) are Fourier transforms of functions g(·) and h(·). When the inverse Fourier
transform is applied to the equation, the following corollary is produced

t(x) = {g ∗ h}(x) = F−1{G ·H}. (2.7)

In other words, convolution becomes element-wise multiplication in the frequency do-
main. The Fast Fourier Transform algorithm computes the discrete Fourier transform, or its
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inverse, in the image domain in O(N2 log(N)), where N is the number of pixels in a row of
an image. Meanwhile, the cost of a single convolution is O(K2), where K is the kernel’s row
size. Hence, for the whole image of N ×N pixels, the complexity of a naive convolution algo-
rithm is O(N2K2). Overall, the ability to formulate the tracking task in the Fourier domain
circumventing the costly convolution operation is what makes the correlation filter approach
so fast [15] and thus suitable for a low-delay tracking task. The effect of the optimization is
further increased when more filters are used.

2.2.2 MOSSE

Figure 2.3: MOSSE input, filter and output example, image courtesy of [14].

Minimum Output Sum of Squared Error filter-based tracker (MOSSE) [14] trains on a
set of input image patches fi and outputs gi. In the original paper [14], gi is generated from
ground truth (i.e. from detection) such that it has a compact Gaussian-shaped peak (σ = 2.0)
centered on the target in fi, see Figure 2.3. The output is defined as the convolution of the
filter hi with the input image

gi ≜ fi ∗ hi. (2.8)

From the convolution theorem
H∗
i = Gi ⊘ Fi, (2.9)

where Gi and Fi are fi and gi decomposed by the Fourier transform, Hi is the filter, the
asterisk in superscript denotes a complex conjugate and the ⊘ symbol represents element-
wise division. The filter is found by minimizing the squared sum of errors resulting in the loss
function LMOSSE(·):

LMOSSE(F,G) = min
H∗

∑
i

|Fi ·H∗ −Gi|2. (2.10)

The optimization problem can be solved in closed form by setting the derivative equal to zero
as

0 =
∂
∑

i |Fi ·H∗ −Gi|
∂H∗ . (2.11)

By solving for H∗, the following expression for the filter is obtained:

H∗ =

∑
iGi · F ∗

i∑
i Fi · F ∗

i

. (2.12)
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Once the initial filter is found, each frame j is updated using the following set of recurrent
equations:

H∗
j =

Aj
Bj
, (2.13)

Aj = rGj · F ∗
j + (1 − r)Aj−1, (2.14)

Bj = rFj · F ∗
j + (1 − r)Bj−1, (2.15)

A0 = G0 · F ∗
0 , (2.16)

B0 = F0 · F ∗
0 , (2.17)

where r is the learning rate, which determines how quickly the effect of previous frames decays
over time. See [14] for the complete derivation. The outline shows why the algorithm is so
efficient as well as its implementation simplicity. It also illuminates some of its limitations and
possible remedies.

The most relevant of these limitations for this work is that scale changes of the target
are unaccounted for because the width and the height of the bounding box from which training
samples are drawn stay constant until the next initialization from a new detection. This results
in noise accumulation in the appearance model as the target ground truth becomes smaller.
On the other hand, as the target grows, more local features are tracked, which tarnishes the
appearance model, and the tracker may begin to drift. Exponentially decaying the learning
rate r might improve the situation by giving more weight to the initial detection.

One issue that can arise when using the MOSSE algorithm for tracking is related to
recovery from losing the target. When the target performs aggressive maneuvers or becomes
hidden from view, for example behind a tree or a pylon, the MOSSE model cannot produce
useful data. However, it is possible to use information from the target’s past trajectory to
continue tracking the target for a limited time, even when a line of sight is lost. This infor-
mation can be extracted using a Kalman filter or a similar algorithm. By incorporating this
information, the tracking algorithm can better handle occlusion and maintain its ability to
locate the target.

2.2.3 KCF

Compared to MOSSE, KCF [15] assumes input data (F ) to be non-linear and uses
the “kernel-trick” [52] to project it to a higher dimension space using a non-linear function
ϕ(·) (e.g. a radial basis function kernel), allowing the use of an efficient linear classifier on
non-linearly separable data

Fi 7→ ϕ(Fi). (2.18)

Furthermore, KCF also adds a regularisation component to the optimization task

LKCF(K,G) = min
H

(|KH −G|2 + λHTKH), (2.19)

where H is the filter, G is the desired response taken from the ground truth, λ is the weight
of the regularizer and K is the kernel consisting of products of elements from the training
patches

Ki,j = ϕ(Fi)
Tϕ(Fj). (2.20)

The solution of the optimization task is then

H = (K + λI)−1G. (2.21)
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The KCF is slower than MOSSE since it works with data in a higher dimensional space, but as
shown in Section 1.3, it can give more precise results and its performance can still be sufficient
for low-delay applications.

2.3 Coordinate Systems

Figure 2.4: Pinhole camera model2.

The 2D position of the leader in the image that is provided by the visual detection
and tracking algorithms can be projected into 3D using a calibrated projection model of the
camera. If no further information is supplied (e.g. the size of the target), the projection of the
2D point corresponds to a line going through the object as illustrated in Figure 2.4. Therefore,
an estimate of a 3D ray going from the camera through the object is sought instead, which
is sufficient for calculating the drone’s and gimbal’s desired orientations but not their precise
distance from the leader. To estimate the exact distance, a stereo camera, a triangulation
method, or a neural network such as DisNet [53] could be used, which might introduce further
inaccuracies due to noise in odometry or the auxiliary model itself (caused by training).

The following reference frames are used in the ensuing calculations inspired by [54]: W is
the world coordinate system (GPS) and B is the frame of reference of the follower with origin
at the base of the drone (the Pixhawk flight controller). G1 is the first gimbal reference frame
with origin at the joint controlling the yaw and G2 is the second gimbal reference frame with
origin at the joint controlling the pitch. The translation vector between G1 and G2 is zero for
the gimbal used in the experiments. FC is the frame of the camera and I is the frame of the
image. The relative angles of the gimbal are yaw (η) and pitch (ε), with roll assumed to be
constant (equal to zero) in this work. See Figure 2.5 for a model of the gimbal system utilized
in this work. There exist isometric transformations between all the mentioned reference frames
except I.

Given two arbitrary reference frames A and B, vector v in the reference frame A and
assuming an isometric transformation exists between A and B, v can be transformed into B
using the following equation:

vB = ARBvA + AtB, (2.22)

2Taken from the OpenCV online documentation: https://docs.opencv.org/4.x/d9/d0c/group calib3d.
html.
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Figure 2.5: Model of a 2-axis gimbal system used in this work. Taken from [55].

where R is the rotation matrix and t is the translation vector with respect to the two reference
frames.

Consequently, assuming a camera mounted on a gimbal, the transformation from I to
G1 may be represented by the following equation

dG1
target =

x
G1
target

yG1
target

zG1
target

 = G2RG1IRG2

(uI − cIx − FC tIx)/fx
(vI − cIy − FC tIy)/fy

1.0

 +

G2tG1
x

G2tG1
y

G2tG1
z

 , (2.23)

where G2RG1 and G1RG2 are estimated from the gimbal’s inertial measurement units (IMUs)
and the translation vectors can be measured before the experiments. The scalars u and v
are coordinates in an image, c is the principal point on the image plane onto which the
perspective center is projected and f is the focal length. The parameters of the camera f and
c are calculated during camera calibration explained later in this section. The resulting dtarget
vector represents the direction of the target in the first gimbal reference frame. Using this
vector, the two desired gimbal angles ηd and εd are calculated

ηd = arctan(
xG1

yG1
), (2.24)

εd = arctan(
xG1

zG1
), (2.25)

which represent how much the gimbal has to turn relative to its current position in order for
the mounted camera to be centered on the target.

The base rotation and translation need to be applied in order to compute the direction
of the target drone in the coordinate frame of the drone

dBtarget = G1RBdG1
target +

G1tBx
G1tBy
G1tBz

 , (2.26)

which can then used to calculate the rotation of the drone necessary for the camera to point
in the direction of the target with the gimbal in its initial configuration (non-rotated joints).
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The projection model used in Equation 2.23 assumes a distortion-free pinhole camera
model as shown in Figure 2.4. But real lenses may have radial and tangential distortion, so the
model described above must be extended by first undistorting the coordinates in the image
frame. Radial distortion causes straight lines to appear curved. In the OpenCV library used
in this work, radial distortion is modelled using the following equations as described in the
OpenCV documentation3:

xundo radial = x/(1 + k1r
2 + k2r

4 + k3r
6), (2.27)

yundo radial = y/(1 + k1r
2 + k2r

4 + k3r
6), (2.28)

where k1,k2,k3 are distortion parameters, x and y are distorted coordinates in the image plane
and

r2 = x2 + y2. (2.29)

Tangential distortion makes certain parts of the image look closer than they really are. This
may be modelled as such:

xundo tangent = x− [2p1xy + p2(r
2 + 2x2)], (2.30)

yundo tangent = y − [p1(r
2 + 2y2) + 2p2xy]. (2.31)

These two systems of equations can be combined into one transformation:[
u
v

]
=

[
{x− [2p1xy + p2(r

2 + 2x2)]}/(1 + k1r
2
t + k2r

4
t + k3r

6
t )

{y − [p1(r
2 + 2y2) + 2p2xy]}/(1 + k1r

2
t + k2r

4
t + k3r

6
t )

]
, (2.32)

where
r2t = x2undo tangent + y2undo tangent. (2.33)

The distortion coefficients
[
k1, k2, k3, p1, p2

]
are calculated during camera calibration.

For camera calibration, a known pattern with a fixed size is used, for example a chess board
with 30mm long squares. Points where four squares intersect are chosen for the calculations, see
Figure 2.6. These points are selected as they are easily detectable. By moving the object around
and thus changing its scale in the image frame, 2D and associated 3D positions are recorded.
A system of equations can be created in such way that its unknowns are the instristic camera
parameters and the knowns are the coordinates. Once the equation is solved, Levenberg-
Marquardt global non-linear optimization algorithm [56] is run to minimize the reprojection
error between the observed and the projected calibration pattern points. The result of the
optimization are the calibrated parameters of the camera model.

3https://docs.opencv.org/4.x/dc/dbb/tutorial py calibration.html
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Figure 2.6: Chess calibration pattern. Taken from the OpenCV on-line documentation [54].
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Chapter 3

Solution Architecture

3.1 Robot Operating System

Robot Operating System (ROS) utilized in the implementation of the proposed system
is a free and open-source set of frameworks that simplifies the development of robotic ap-
plications. It implements low-level device control and abstractions, message passing between
individual components, coordinate frames and transformations among them, package man-
agement, and more1. Each individual computational component in the ROS environment is
called a node, which is an executable that can interface with the aforementioned subsystems.
Nodes are organized in packages, which logically group the functionality of a robotic system.

The MRS UAV System [57] is a set of packages built on top of ROS by the Multi-robot
Systems Group at the Czech Technical University in Prague that implements useful UAV
functionalities. To name a few utilized in this work, the UAV Manager package provides a
high-level interface for takeoff and landing, the Trajectory Generation package can generate a
time-parametrized trajectory from a path, the Reactive Obstacle Bumper prevents the drone
from crashing into obstacles and the Sensor Fusion and Localisation provides full UAV state
estimate including lateral position, velocity, acceleration and heading. It can be used with any
multi-rotor vehicle equipped with a PX4-compatible flight controller.

3.2 Hardware

The solution proposed and implemented as part of this thesis is designed to run on a
drone equipped with a Pixhawk 4 embedded flight stabilizer, a 2-axis gimbal with the Simple-
BGC controller, an RGB camera, and an on-board computer with a Linux-based operating
system capable of running ROS.

In the experimental part of this work, a quadcopter is equipped with a FLIR BlackFly
BFS PGE 50S5C camera mounted inside a 2-axis gimbal controlled by a BaseCam SimpleBGC
microcomputer. The camera is capable of producing images at a rate of 24 FPS having a
resolution of 2448 × 2048 pixels2. The gimbal is mechanically limited to approximately 50
degrees of movement in both the yaw and pitch axes. The drone is also equipped with an Intel
NUC 10i7FNK barebone computer kit running Ubuntu 20.04.4 LTS and ROS Noetic, which
receives the camera’s images over a GigE interface.

1For a more detailed overview, see http://robotics.stanford.edu/∼ang/papers/icraoss09-ROS.pdf.
2The complete camera specification sheet is available on the manufacturer’s website: http://

softwareservices.flir.com/BFS-PGE-50S5/latest/Model/spec.html.
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3.3 Architecture Overview

Figure 3.1: Architecture of the implemented system. The blue boxes are separate packages
and the arrows represent information flow.

The solution depicted in Figure 3.1 transforms input from a monocular RGB digital
camera into instructions for the gimbal driver and the Pixhawk flight controller. Data between
the packages are passed as ROS messages over the TCPROS protocol which uses persistent,
stateful TCP/IP connections3.

At the beginning of the pipeline, an input image received from the camera is passed to
the detection model and a hypothesis with the highest prediction confidence is selected as the
current target to follow. The detection model is significantly slower than the framerate of the
camera, so a fast visual tracker is used to track the position of the target in frames between
the detections.

The inferred position of the target in the world frame including the timestamp of the
corresponding input image is then passed to the gimbal and flight managers, which compute
and update the desired drone and gimbal orientations.

Both the vertical and heading velocities of the follower are regulated by separate PID
controllers whose parameters are tuned in a simulation.

A dashboard package serves as a visualization tool to display images from the camera,
the current target’s location estimates, and other information about the drone state.

3.4 Detection and Localization

3.4.1 Detector

The detector module is implemented as a listener that waits in a sleep state for a message
from the camera driver, which it can receive asynchronously. Once an image is received, it
is resized to a lower resolution (640 × 640 pixels) to improve processing speed and is then
passed as an input to the pre-trained model further described in Chapter 4. If no drone is

3See details on ROS wiki: http://wiki.ros.org/ROS/Technical%20Overview.
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detected with confidence over an empirically inferred threshold (the value of 0.5 was used for
the experiments described in this thesis), the original image is split into 4 × 3 subimages and
each is processed by the model separately without resizing to extract maximum information.

From the resulting list of detections, the target with the highest confidence is selected
and its bounding box is sent to the tracker. Its width is also supplied to the PID controllers.
The output of the detector is noisy, therefore a Kalman filter [58] is applied on the output
width to give a better estimate and to make the drone flight smoother, see Figure 3.2 for a
test result on a static target.

Figure 3.2: Kalman filter smoothing of the width of the target’s bounding box. The time on
the x-axis is in seconds.
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3.4.2 Tracker

The tracker node stores a queue of images with a maximum size of 24 images (1 second
of footage). Once a detection is received, the corresponding image is found by the timestamp
from the detector and a MOSSE tracker with the learning rate set to 0.15 is initialized using
the detection’s bounding box and the image.

As detections may be produced more quickly than the tracker loses its target, if detection
is received and the tracker is still considered valid, the intersection over union between the two
is checked at the timestamp of the detection. If it is over 0.5, the tracker is not reinitialized
to save computation cycles, only the expected width of the target is updated to keep the PID
controllers informed.
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3.5 Gimbal Manager

The gimbal manager node controls the yaw and pitch joints of the gimbal based on the
output from the tracker. The gimbal is either searching for a target if there is none currently
tracked by following a constant circle trajectory or keeping an object in its field of view by
keeping the camera centered on the received coordinates. If the target is lost, the gimbal
remains turned in the direction of its last position for a predefined duration before it switches
back to the searching state. The desired joint angles are calculated according to the equations
derived in Section 2.3. The angles are passed to the gimbal controller (BaseCam SimpleBGC),
which then controls the gimbal’s actuators inside a feedback loop with encoders measuring
the actual angles of the gimbal joints.

3.5.1 PID Controllers

The proportional-integral-derivative controller (PID controller) [59] is a control loop
mechanism that automatically applies a correction to a control function based on feedback.
Assuming a measured process variable w(t), e.g. the width of the target bounding box at time
t, and desired setpoint variable r(t), e.g. the desired width of the target, the process error is
calculated as follows

e(t) = r(t) − w(t). (3.1)

The process error signal is what a PID controller attempts to minimize. The controller
has three parameters p, i and d which can be empirically estimated. It calculates a control
signal u(t) as

u(t) = pe(t) + i

∫ t

e(τ)dτ + d
∂e

∂t
, (3.2)

which is then used to e.g. control the velocity of the drone.

Two separate PID controllers are used in the system. The velocity PID controller takes
as input the process variable the width of the target detection’s bounding box and the width
setpoint (a dynamic parameter) from the tracker. The width process variable from the tracker
is first passed through a Kalman filter. It is approximately equal to the inverse of the leader-
follower distance (see Figure 3.3). For a more detailed derivation of the relation, see [24]. As
can be seen in Figure 3.3, once the target is lost, the setpoint is advertised to the controller
to stabilize the drone. The altitude PID controller receives the desired pitch angle of the
detection (obtained in Equation 2.24) as input and outputs the desired altitude velocity to
control this angle to 0 so that both drones are at the same height.

The parameters of the PID controllers are autotuned using the Ziegler Nichols method
by first only considering the proportional controllers and adjusting the p gains until consistent
and stable oscillations are reached after which the resulting gain and oscillation period are
used to calculate i and d parameters. See [60] for a detailed description of the method. The
parameters are then slightly adjusted to make the drone flight less aggressive. The resulting
gains are: pviv

dv

 =

 0.03
0.01
0.003

 (3.3)
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and paia
da

 =

6
1
4

 (3.4)

for the velocity and altitude PID controllers respectively.

3.6 Flight Manager

To control the flight of the follower, the two PID controllers described in the previous
section are utilized to control the velocity and the altitude of the drone. The desired heading
of the follower is calculated from the relative bearing of the leader drone, so the line of sight
between the gimbal and the drone is not broken due to the gimbal’s limited angular range.

The desired velocity vector of the follower at time t is calculated using the following
equation:

v(t) =

u(t) cos(θ(t))
u(t) sin(θ(t))

a(t)

 (3.5)

where u(t) is the latest control signal from the velocity PID at time t and a(t) is the latest
control signal from the altitude PID at time t. θ(t) is the latest relative bearing of the leader
drone at time t.

Figure 3.3: Relation between distance and the width of the target in simulation. Losing the
target resets the width output of the tracker to the setpoint at t = 49 seconds.
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3.7 Dashboard

The Dashboard is a user interface that provides an overview of the current state of the
follower. This includes visualizations of the target’s current position, the follower’s desired
velocity, altitude, and the time elapsed since the last target detection. The dashboard also
includes a live feed from the follower’s on-board camera, allowing the operator to see what the
drone sees. The dashboard is designed to be simple and easy to use, providing key information
at a glance.
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Chapter 4

Model Selection

4.1 Motivation

Because the overall performance of the system is dependent on the precision and robust-
ness of the detector and visual tracker, care was taken when selecting appropriate methods
for these modules. Multiple algorithms were compared with respect to their average precision,
recall, and inference time, using a merged collection of drone datasets discussed in the next
section.

4.2 Detection

4.2.1 Dataset Exploration

MIDGARD [57] is an automatically annotated open image dataset of UAVs collected
by an RGB camera on board a drone in different environments and under mixed conditions
listed in Table 4.1. The automatic labeling is done by placing UV markers on the targets,
performing detection, reprojecting estimated poses into the camera coordinate space and
building an annotation that also includes target distance and its standard deviation estimates.
The accuracy of the predicted annotations is affected both by the camera parameters and the
distance to the target [57]. In general, the error of the sensor increases with the distance of
the target.

In Figure 4.1, the results of data exploration on MIDGARD are summarized, specifically
the distributions of drone positions and bounding box sizes. Positions appear to be approxi-
mately normally distributed around the center of the image. The significant cluster near the
origin is partially caused by some images having near-zero or even slightly negative bounding
box coordinates. This is expected behavior as explained by the MIDGARD authors in [57],
nonetheless, those samples need to be cropped or ideally culled to not negatively influence
training and accuracy measurements of the predictors. Bounding boxes usually take less than
half of an image, with a small fraction of extremely small targets (less than 1% of an image
or 8 pixels across). These extremely small targets are removed from the dataset as they are
considered hard to distinguish from noise and outside the scope of this work.

Det-Fly is the second dataset utilized in this work, consisting of over 13000 images of
the DJI Mavic 2 drone, again covering a wide range of environments and conditions [7]. The
bounding boxes in the dataset are tighter as it is manually annotated. See the exploration
in Figure 4.2. Drones in the dataset are relatively small, taking on average less than 5% of
the image width. The data is supplied in high-resolution (3840 × 2160 pixels). Assuming the
average bounding box width is approximately 192 pixels, it gets reduced to 32 pixels when
the image is resized to the model input resolution of 640×640. Such a small projection might
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Background Lighting FoV Frames

Fields, hills Direct sunlight 180° 780
Fields, hills Direct sunlight 96° 554
Coniferous forest Direct sunlight 180° 763
Coniferous forest Direct sunlight 96° 769
Semi-urban Direct sunlight 96° 475
Stands Direct sunlight 96° 586
Modern architecture Strong indirect natural light 96° 534
Historical stairwell Low light through windows 96° 319
Church interior Very low mixed light 96° 984
Church exterior Overcast, late evening sky 96° 697
Warehouse interior Low fluorescent lightbulbs 96° 564
Warehouse exit Changes halfway 96° 272
Apartment buildings Overcast sky 96° 300
Total 7597

Table 4.1: Structure of the MIDGARD dataset, courtesy of [57].

still be recognizable, but all targets that would be reduced to less than 8 pixels across are
again removed.

4.2.2 Training Procedure

For all the detection architectures discussed in Chapter 2, after cropped samples are
discarded, images are reduced to the size of at most 640 × 640 pixels and batch size training
parameter is set to 32 images per iteration when possible. All the utilized backbones are
first pre-trained on COCO or ImageNet to speed up convergence during early-training [61].
Aterwards, each model is trained and validated on the MIDGARD dataset.

The nature of the dataset (frames extracted from multiple flights) warrants special
treatment, as there exists a large correlation among consecutive frames, so the dataset cannot
be simply split randomly. Each environment is kept separate and data from one flight is never
used in more than one of the training, validation, and testing stages. The split ratio of the data
is 0.7/0.15/0.15. The training procedure is stopped after 120 epochs (or 80 epochs when the
models’ hyperparameters are optimized before training) if the validation loss stops decreasing
(which was the case for every model tested in this thesis). The time it took the model to reach
its minimum validation loss is reported as the training time.

The algorithm that shows an ideal compromise between accuracy and inference speed
on the test dataset is chosen. Finally, this model is optimized, trained, and tested on the
combined dataset of MIDGARD and Det-Fly.

4.2.3 Accuracy Metrics

A set of detections D with varying confidence is produced by the model. Which de-
tections are chosen to be valid output depends on the threshold parameter θ. The lower the
parameter, the more false positives are produced
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Figure 4.1: Data exploration of the MIDGARD dataset. Shows e.g. distributions of various
(normalized) statistics of the dataset such as widths of the bounding boxes.

Di
out = [Di

confidence > θ]. (4.1)

In order to compare the resulting detections with the ground truth using common
metrics, one needs to define what is still a valid detection in terms of overlap of the predicted
and ground-truth bounding boxes. For this purpose, the Intersection over Union (IoU) metric
is introduced. Let A and B be two convex shapes representing an area of an image. Then, the
IOU of these two shapes is defined as

IoUA,B =
|A ∩B|
|A ∪B|

. (4.2)

If A is a detection (Di) and B is the corresponding ground truth bounding box, a detection
is valid if the IoUA,B is larger than an IoU threshold ψ. Since the dataset used is in part
automatically labeled, a weaker ψ = 0.5 is used. Once the number of true and false posi-
tives (Tp, Fp) and negatives (Tn, Fn) is known, the precision and recall of the model may be
calculated:

Pθ, ψ =
Tp

Tp + Fp
, (4.3)

Rθ, ψ =
Tp

Tp + Fn
(4.4)
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Figure 4.2: Data exploration of the Det-Fly dataset.

The main evaluation metric used in this chapter is the mean average precision (mAP),
which is equal to the average precision (AP) for one-class models. AP is the area under the
precision-recall (PR) curve:

APψ =

∫ 1

θ=0
PRθ,ψdθ, (4.5)

where the PR curve expresses the precision and recall parametrized by θ ∈ [0; 1].

A stricter IoU of ψ = [0.5; 0.95] is also used, which averages an evaluation metric (e.g.
AP) over ψ ∈ [0.5; 0.95] with a 0.05 step size.

4.2.4 Benchmark on Test Set

Refer to the Table 4.2 for the results. Inference speeds are measured on an Intel Xeon
Silver 4110 CPU, which has similar performance to the Intel Core i7-10710U processor installed
in the onboard computer of the drone platform used for later experiments (the Xeon being
slightly slower1). The training time of CenterNet is higher than expected because the authors’
repository does not have batch gradient descent implemented in a way that would utilize the

1According to a benchmark available from here https://gadgetversus.com/processor/intel-core-i7-
10710u-vs-intel-xeon-silver-4110/.
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Method Backbone Accuracy (AP 0.50 IoU) Recall (0.5:0.95 IoU) Inference (ms) Training (h)

CenterNet [42] dla34 0.47 0.22 957 11 (batch size 1)
Faster RCNN [40] x101 64x4d fpn 1x 0.48 0.2 5632 20
Faster RCNN r50 fpn 1x 0.33 0.15 3854 14
Grid RCNN [41] r50 fpn gn-head 2x 0.38 0.28 4375 12
YOLOv3 [45] CSPDarknet 0.43 0.20 350 1
YOLO5 small [47] CSPDarknet 0.49 0.27 243 1.3
YOLOX tiny [8] CSPDarknet 0.43 0.21 186 1
YOLOX small CSPDarknet 0.55 0.28 324 1.5

Table 4.2: Comparison of results of the selected methods on the testing data using several
metrics.

Method Max resolution Accuracy (AP 0.50 IoU) Improvement (%)

YOLO5 640 0.49 -
YOLO5 800 0.56 12
YOLO5 1000 0.58 16

Table 4.3: Effects of increasing input resolution on the accuracy. The models were trained on
640 × 640 images. Giving the model larger input significantly improves its performance.

massive parallelization capabilities of the NVIDIA Tesla V100 SXM2, on which the models
are trained.

Notably, the novel single-stage method YOLOX gives the best average precision while
also offering outstanding inference speed suitable for a low-delay application. The CenterNet
also achieves competitive accuracy while being at least three times slower than the comparable
anchor-less YOLOX architecture. The YOLO5 is a slightly smaller network than YOLOX with
weaker data augmentation offering a good compromise on speed and precision. YOLO5 has
a large number of hyperparameters that can be tuned using e.g. evolutionary algorithms to
further improve its accuracy.

A surprising result is that the relatively simple YOLO architectures greatly outperform
the more complex models – Faster R-CNN and Grid R-CNN. More data and or training time
might be required to truly utilize the large number of parameters in these architectures. The
task at hand is essentially a binary classification problem of image segments that often have
tens of pixels across, hence a large number of parameters might not be necessary and in fact
prove detrimental. When comparing the classifiers based on the size of the target object,
Faster R-CNN demonstrates better performance than YOLOX small model on medium and
large objects2 (0.225 vs 0.195, IoU 0.50:0.95), which further supports this hypothesis.

The influence of input resolution on the testing is also measured and reported in Ta-
ble 4.3. The chosen YOLO5 network is still trained on 640 × 640 images, but the input is
scaled at inference time. While this naturally slows down the prediction, it shows that the
pipeline might be enhanced by e.g. using a sliding window approach or cropping the image to
the area that contained the drone in the last iteration.

Finally, YOLO5 small is trained on the MIDGARD+Det-Fly merged dataset for 120
epochs. The mAP improves by 4% compared to the model trained only on the MIDGARD
dataset. The rest of the experiments are performed using this improved model. See Figure 4.4
for several examples of detections made by the model.

2Small objects are defined as having an area of less than 322 pixels.
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Figure 4.3: Performance comparison of the YOLO5 trained on MIDGARD and on the com-
bined MIDGARD+DetFly dataset.
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Figure 4.4: Prediction performed on a sample by the final model.

4.2.5 Evaluation of YOLO5 in Simulation

Comparison between the two models trained on different datasets is also made exper-
imentally inside a simulation. Two Tarot 650 drones are placed beside each other inside a
simulated nature reserve world. One drone remains static at origin and keeps its gimballed
camera centered on the second drone, which slowly flies away along a straight trajectory.

The result is shown in Figure 4.3. The model trained on MIDGARD only performs
better at distances below 20 meters, while the model trained on both MIDGARD and Det-
Fly is more confident yet predicts incorrect bounding box dimensions for distances below
15 meters, where it picks up local features such as propellers and classifies them as drones
(see Figure 4.5). This is illustrated in the graph by the high confidence peaks below 20 meters
for the Midgard+Det-Fly dataset. This might be due to both the datasets (but especially
Det-Fly) being skewed towards small objects (see Figure 4.2). This might cause the follower
to start accelerating rapidly when close to the leader once deployed as part of the system
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developed in this thesis. This problem should be addressed in later work by adding more large
images of drones to the dataset that were not necessarily taken in flight. In later experiments,
the distance between the drones will be constrained by this model’s limitation.

For targets 20 meters or further from the follower, the MIDGARD+Det-Fly model is
both more confident and produces a tighter bounding box around the target. This might be
due to the fact that the Det-Fly dataset was manually annotated, thus the model contains
less noise from the drones’ surroundings. The model trained on both the MIDGARD+Det-
Fly combined dataset is also preferred due to its higher AP as mentioned in the previous
subsection.

The simulation is less nuanced when compared to a real-world deployment as it contains
no objects like cars, birds, and planes, which could increase the false positive rate of the clas-
sifier, but nevertheless, the result is solid and moreover confirms that the YOLO architecture
can indeed run well on board a UAV and is suitable for the task of drone tracking.

Figure 4.5: At small distances of less than 15 meters, the detector sometimes picks up local
features instead of the whole drone as it was trained on a dataset of mostly small drones.

4.2.6 Hyperparameter Evolution

Figure 4.6: Effect of hyperparameter evolution on training. The x-axis corresponds to the
number of training epochs.
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parameter description original evolved

lr0 initial learning rate (SGD=10−2, Adam=10−3) 0.01 0.0014
lrf final OneCycleLR learning rate (lr0 ∗ lrf ) 0.1 0.04
momentum SGD momentum/Adam beta1 0.937 0.919
weight decay optimizer weight decay 0.0005 0.00046
warmup epochs warmup epochs (fractions ok) 3.0 3.11
warmup momentum warmup initial momentum 0.8 0.95
warmup bias lr warmup initial bias lr 0.1 0.08
box box loss gain 0.05 0.047
cls cls loss gain 0.5 0.467
cls pw cls BCELoss positive weight 1.0 0.714
obj obj loss gain (scale with pixels) 1.0 1.143
obj pw obj BCELoss positive weight 1.0 0.849
mosaic image mosaic (probability) 1.0 0.78

Table 4.4: Evolution of some of the hyperparameters.

YOLO5 has 29 parameters, which is too many to effectively optimize manually, so a
genetic algorithm is utilized. The batch job ran for 3 days on two NVIDIA Tesla V100 125
TFLOPs graphic cards. The fitness being maximized is the weighted combination of the
metrics mAP@0.5 and mAP@0.5:0.95. Mutation genetic operator [62] is used, with a 90%
probability and 0.06 variance to create new offspring based on a combination of the best
parents from the previous generations judged by their fitness. The weights are shown in the
optimization criterion expressed in Equation 4.6 and are consistent with the remark regarding
the label noise discussed in Subsection 4.2.1.

max(0.75 · mAP@0. 5 +0.25 · mAP@0. 5 0. 95). (4.6)

Figure 4.6 shows the considered metrics during 100 training epochs for the original and
evolved values of the hyperparameters. The convergence speed increases considerably and the
achieved average precision improves by 6% on the validation and 5% on the test set. The
initial values as well as the results of the optimization are listed in Table 4.4. Only a subset of
all the 29 parameters is considered as the task is computationally demanding. Each parameter
greatly increases the search space and the network must be repeatedly retrained.

4.2.7 Results

An optimized YOLO5 model was chosen for further experiments as the best classifier
for the given task out of the ones considered. It provides a good accuracy on the task of
drone detection that can be further improved using a deeper architecture while maintaining
a high processing speed suitable for low-delay detection and tracking. In contrast to the work
presented in [7], the single-stage approach has outperformed the two-stage models, which
matches the SotA benchmark referenced in the introduction [5].
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4.3 Tracking

4.3.1 Experiment Set-Up

The KCF and MOSSE algorithms are compared here on a simple task inside a simula-
tion. The follower remains static with the gimbal following the leader according to data from
the tracker, while the leader flies around the follower on an arc trajectory approximately 20
meters away from the target. The tracker is initialized from the detector. The experiment is
run for 2 minutes with each algorithm with the speed of the leader limited to 2 m/s. The
computer used for the benchmark is the same one used for later experiments and listed in
Section 3.2.

4.3.2 Results

Algorithm Efficacy (%) Init speed (ms) Update speed (ms) Average performance (FPS)

MOSSE 0.98 101 15 9.45
KCF 0.88 18 126 4.89

Table 4.5: Results of the tracker benchmark in simulation.

The results are shown in Table 4.5. MOSSE is chosen as the tracker for further work
due to its superior speed which enables the drone to be more responsive to changes in the
leader’s trajectory.

The efficacy metric shows how often the result from the tracker matches ground truth
with IoU threshold set to 0.5. The reason why KCF has lower efficacy than the simpler
MOSSE is partly that it is not running fast enough for the gimbal to keep up with the leader,
especially when the leader suddenly starts moving in the opposite direction. Therefore, it
sometimes happens that the follower flies out of the camera’s line of sight.
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Chapter 5

Experiments in Simulation

5.1 Gazebo Simulator

Figure 5.1: Gazebo GUI with two spawned T650 drones.

Gazebo is used for all simulated experiments in this work. It is1 an open-source 3D
robotics simulator integrating a physics engine for rigid and deformable body dynamics and
collision detection (e.g. ODE, Bullet, Simbody or DART), OGRE for rendering 3D scenes
and various other libraries for sensor generation, GUI, etc. The simulator is separated into
two programs, the gzserver for simulating physics, rendering and sensors, and the gzclient
shown in Figure 5.1, which provides a GUI to visualize and interact with the world. It can be
integrated with ROS via the gazebo ros pkgs2 set of ROS packages.

Simulated robots inside Gazebo are dynamic structures constructed from rigid bodies
connected by joints and represented in the Unified Robot Description Format (URDF) markup
language. All simulated objects may have associated mass, velocity and friction and various
forces and torques may be applied to their surfaces. They are designed to accurately emulate
the behavior of their physical counterparts which allows easy transfer of experiments between
a simulation and the reality with little modification to code necessary thanks to the ROS
interface utilized both by the physical and simulated devices.

1Gazebo architecture is also described in https://gazebosim.org/docs/garden/architecture.
2http://wiki.ros.org/gazebo ros pkgs
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5.2 Experiment Set-Up

Figure 5.2: Experiment set-up in the Gazebo simulation.

Two simulated Tarot 650 (T650) drones are spawned inside a flat grassland Gazebo
world. The follower is equipped with a 2-axis gimbal closely matching the one used in the sub-
sequent real-world experiments in terms of its angular contraints and velocities. The camera
mounted on the gimbal is a simulated Matrix-Vision Bluefox device with parameters modified
to match the camera used in the real-world experiments in terms of maximal FPS, horizontal
and vertical fields of view and output image resolution, see Section 3.2 for details.

Unless specified otherwise, all trajectories in the following experiments are generated
from paths specified as points in the world frame. The utilized method of polynomial trajectory
optimization by solving an unconstrained quadratic program implemented is part of the MRS
UAV system presented in [63].

The goal of the experiments is to demonstrate and asses the ability of the solution
implemented as part of this thesis to maintain distance from the leader without losing line of
sight. In all the experiments in this chapter except the last one, the altitude of both the drones
is kept constant to simplify analysis. Altitude control is tested specifically in Section 5.6.

5.3 Experiment I: Rectangular Trajectory

The first experiment has the leader follow a rectangular trajectory for 150 seconds. See
the detailed path of both the leader and the follower in Figure 5.3. Velocity of the leader is
limited to 2 m/s and kept variable as shown in Figure 5.4. Velocity of the follower is limited
to 2 m/s as well. The width setpoint is set to 300 pixels in this experiment which corresponds
to a distance of approximately 22 meters as shown in Figure 4.3. Once the leader arrives at
its destination, the experiment runs for additional 10 seconds to confirm the position of the
follower has stabilized.

5.3.1 Discussion

The follower does not lose track of the leader at any point during the pursuit and
stabilizes the distance between the two UAVs at the end. The ground-truth distance between
the drones is approximately inversely proportional to the target width, which again confirms
that the width can be used to keep constant distance between the follower and the leader, see
Figure 5.4.
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Figure 5.3: Map of drones’ paths including distances in the first experiment.

Figure 5.4: Results of the first experiment in simulation. Top: The bounding box’s width (and
its setpoint illustrated as a dashed line) and the distance between the leader and the follower
in time. Bottom: Velocity of the leader and the follower in time.

A disadvantage of using width as the controlled variable is that the dependence of
width on distance is not monotonous due to detector’s noise. Thus there may be multiple
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local optima among which the controller may oscillate as seen after t = 140 seconds, although
the effect of noise is reduced by the Kalman filter.

The most challenging part of the flight is when the leader abruptly changes its direction
and starts flying towards the follower since there is a delay in detection and PID controller’s
feedback. When the setpoint width is increased in such a situation to 400 pixels or more,
which corresponds to the distance of approximately 18 meters, the drone does not have time
to react and loses the target due to the appearance model’s lower confidence on large targets
as discussed in Section 4.2. Therefore, in the subsequent experiments, the target width is
limited to fit this constraint, which will have to be addressed in further work.

The average distance between the leader and follower during the experiment is 20.41
meters and its standard deviation is 1.4 meters.

5.4 Experiment II: MRS-Shaped Trajectory

Figure 5.5: Second experiment map.

In this experiment, the follower tracks the leader flying for 300 seconds on a trajectory
with various turns and twists. See map of the trajectory in Figure 5.5. The width setpoint
is reduced to 250 pixels and gimbal movement is also recorded and analyzed as part of this
experiment. Velocities of both the leader and the follower are limited to 3 m/s.

5.4.1 Discussion

As the drones are not exactly opposite to each other, there is a slight drift of the follower
to its left at the beginning of the experiment due to the utilized navigational algorithm. Their
velocities match closely as can be seen in Figure 5.7. At the end, the leader-follower distance
stabilizes at slightly over 26 meters.
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Figure 5.6: Gimbal movement heatmap during the second simulation experiment. The red dot
represents where the gimbal is pointed before any joint rotation.

Figure 5.7: Second experiment velocity and distance.

Although the altitude of the drones is fixed for the duration of the experiment, there is
significant movement of the gimbal on the pitch axis as shown in Figure 5.6. This is caused
by the drone’s tilt during acceleration and deceleration. When a drone accelerates, the front
of the drone turns towards the ground, which causes its gimbal to turn upwards towards its
target assuming it does not significantly change its position. The opposite happens during
deceleration. This shows another benefit of a gimballed camera for this application, as it
allows higher acceleration of the follower without losing the leader from line of sight.

The average distance between the leader and follower during the experiment is 25.85
meters and its standard deviation is 3.9 meters.
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5.5 Experiment III: Random Trajectory

Figure 5.8: Third experiment map.

Figure 5.9: Third experiment velocity and distance.

In the third experiment, the leader behaves stochastically. A parameter is repeatedly
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and uniformly generated from the interval [0; 5] that controls for how long will the leader
fly given the velocity vector

[
vx vy

]
where each element is also generated uniformly from

another interval [−4; 4]. The width setpoint is again set to 250 pixels.

Figure 5.10: Distance histogram with mean and standard deviation.
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5.5.1 Discussion

The pursuit finishes at distance of approximately 26 meters as in the previous experi-
ment. The mean distance is 27.2 meters with 3.3 meters standard deviation, see the distance
distribution in Figure 5.10. This also matches the results of the previous experiment and the
distance expectation given the width setpoint.

5.6 Experiment IV: Altitude Control

The system is tested on an L-shaped flight path where the leader starts at the height of
2 meters after takeoff and flies forwards and upwards to 9 meters on a slant trajectory before
descending back to the initial height while changing its direction by 90 degrees. Altitude is
controlled by the ε gimbal angle depicted in Figure 2.5. Both vertical and horizontal speeds
are again limited to 2 m/s and the width setpoint is set to 300 pixels. See Figure 5.11 for the
result of the experiment.

5.6.1 Discussion

The PID controller does not take into account the tilt of the drone, which might be
the source of the disturbance at t = 30 seconds, which also happens shortly after the leader
changes its direction of flight and causes the follower to accelerate aggresively. This should
be addressed in a later version of the system. In the end, the follower stabilizes slightly above
the initial height of 2 meters. Expected distance between the drones is also maintained which
matches the results of the first experiment, where the same setpoint was used.
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Figure 5.11: Results of the altitude control experiment. The follower maintains similar altitude
and distance to the leader.

0 10 20 30 40 50
time [s]

2

3

4

5

6

7

8

9

10

al
tit

ud
e 

[m
]

leader
follower

40 35 30 25 20 15 10
x coordinate (world frame) [m]

40

30

20

10

0

10

y 
co

or
di

na
te

 (w
or

ld
 fr

am
e)

 [m
]

start

end

start

end

follower
leader

0 10 20 30 40 50
time [s]

19

20

21

22

23

24

25

26

di
st

an
ce

 [m
]

distance

CTU in Prague Department of Computer Science



6. REAL-WORLD EXPERIMENTAL EVALUATION 41/52

Chapter 6

Real-World Experimental Evaluation

6.1 Experiment Set-Up

Figure 6.1: A photo of the field in Temešvár, Czech Republic, where the experiments described
in this section were conducted.

The drones used in the following experiments are described in Section 3.2. The leader is
manually controlled by a pilot during the entire length of its flight. The follower’s autonomy
is gradually enabled for safety reasons. First, the gimbal’s alignment with the target is tested
by activating the gimbal manager, then the follower is allowed to turn around the vertical
axis and lastly the flight manager is turned on, thus giving the drone full autonomy. Speed of
the leader is initially constrained to 0.1 m/s and gradually increased up to over 6 m/s.

Before conducting the experiments, it was necessary to perform camera calibration in
order to accurately estimate the camera parameters described in Section 2.3. This was done
using multiple images of a checkerboard calibration pattern, which allows the algorithm to
determine the intrinsic and extrinsic parameters of the camera. This process is essential for
ensuring the accuracy of the results obtained from the experiments, as it allows the system to
accurately interpret the visual data that the camera captures. See Section 2.3 for explanation
of the estimated parameters.

After adjusting the gimbal manager’s code to use the SimpleBGC API, the system
works out of the box on the drone with the same code as for the simulations described in
the previous section, except for the altitude control, which was not tested due to a mistake
in the system discovered during the experiments. A video from the experiment is available at
https://youtu.be/yzDNcZyWY3c.
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6.2 Experiment I: Straight Pursuit

Figure 6.2: Map of the paths the leader and the follower took in the first experiment.

The first experiment was designed to evaluate the system on a short trajectory including
several turns to test the gimbal manager node’s function. Near the end at t = 330 seconds,
the leader begins to fly towards the follower after changing its direction of flight abruptly, see
Figure 6.3.

6.2.1 Discussion

The leader was successfully detected after takeoff (t = 50 seconds) and followed for over
300 seconds. There were multiple false positive detections during the pursuit which manifest
as abrupt changes in the width of the bounding box as can be seen in Figure 6.3. When the
background contains forests, the detector sometimes detects clusters of branches as drones
with a higher confidence than the actual drone, as shown in Figure 6.4. This may be due in
part to the model’s tendency to have higher confidence in smaller target detections, as shown
in Figure 4.3. The false positive has little effect on the flight itself in this experiment as the
system quickly recovers and redetects the drone correctly. Another difference compared to the
experiments in simulation is that the reaction time of the real drone is significantly slower
due to the camera itself having a measured delay of 0.5 seconds compared to 0.15 seconds in
the simulation before an image is presented to ROS.
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Figure 6.3: Results of the first real-world experiment. Top: Bounding box width and the
ground-truth leader-follower distance over time. Bottom: Velocities of the two drones. There
are multiple visible false positives in the graph showing the width of the target bounding
box at around 200 and 310 seconds. They do not appear to influence the PID controller
significantly and the target is redetected soon afterwards.

Figure 6.4: Tree branches wrongly classified as a drone. The drone is still detected correctly,
but the model has lower confidence in the correct detection. In the next frame, the drone is
correctly localized again.

CTU in Prague Department of Computer Science



6. REAL-WORLD EXPERIMENTAL EVALUATION 44/52

6.3 Experiment II: Escape Manouver

Figure 6.5: The map shows the paths taken during the second experiment.

The second experiment continues after the first one stopped. The leader continues flying
towards the follower and then quickly turns to the left. This maneuver is repeated twice. See
the map of the experiment in Figure 6.5.

6.3.1 Discussion

The follower keeps up with the leader and the gimbal tracks him successfully to the
landing spot.

In the second plot of Figure 6.6, it is shown that first the follower accelerates backwards
to reduce the distance between the two drones. This maneuver is successful, as the desired
width of the bounding box is reached. At approximately t = 395 seconds, there is a false
detection of a tree in the background, causing the follower to start moving backwards and
further increase the distance between the drones. The next detection is correct again. At
t = 410 seconds, the leader starts moving towards the follower, which responds by accelerating
to correct the distance 2 seconds later. At t = 423 seconds, there is the second false detection,
which is again quickly corrected.
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Figure 6.6: The width of the target’s bounding box is depicted in the first plot, and the leader’s
and follower’s velocities are displayed in the second.
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Chapter 7

Conclusion

A system for drone tracking using a gimballed RGB camera placed onboard a flying
UAV was proposed, implemented, and tested both in Gazebo simulations and real-world
experiments. Various models for object detection and tracking were combined to reach an
accurate feedback system capable of running online with the limited onboard computational
capabilities of a UAV. Two large drone datasets MIDGARD and Det-Fly were fused and used
for model training and evaluation, as a result of which the YOLO5 neural network architecture
was determined to be an optimal compromise between speed and accuracy, with a MOSSE
visual tracking algorithm updating the target location in-between the object predictions. The
method of genetic programming was utilized to optimize the hyperparameters of the chosen
best-performing architecture to further improve its accuracy. The proposed object detection
and tracking method achieved sufficient online prediction performance on both a simulated
and real drone.

To keep the gimbal centered on the target, the method was proposed where a 3D ray is
calculated from the camera’s optical center to the target’s position in the image plane. The
gimbal is then rotated by the angle difference between the current gimbal orientation and the
estimated 3D ray.

To map the target location hypothesis to a movement that maintains the distance
between the two drones, a simple strategy was implemented. The drone is turned towards the
target based on stored odometry data from the time the image corresponding to the current
detection was taken. Two PID controllers are used to correct the forward velocity and altitude
of the drone, based on the predicted width of the target in pixels and the corresponding
gimbal orientation. It was demonstrated in real-world experiments that, despite some noise
in the bounding box regression and camera sensor that can cause the width of an object
to not be directly inversely proportional to its distance, it is nevertheless suitable input for
controlling the mutual distance. To further reduce noise, a Kalman filter is applied to the
width hypotheses before they are passed to the controllers.

The main limitations of the implemented system are related to the detection model,
specifically its lower confidence on larger and or closer drones and occasional false positive
detection when there are objects such as tree branches in the background. This means human
supervision during the autonomous flight is still necessary to correct the system’s errors by
e.g. manually tweaking the confidence threshold for the given environment and confirming the
plans of the control system. Nevertheless, as part of this thesis, the suitability of the proposed
method for various UAV tracking applications was demonstrated by an approximately 500
seconds long uninterrupted autonomous flight.
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7.1 Further Work

The detector’s low detection accuracy on drone images having a width larger than 400
pixels is an issue that could be tackled by adding static close-up photos of drones to the
dataset. This could help improve the performance of the larger models by providing them
with more complex training data.

To further improve close target tracking, a LIDAR system can be added to the drone
and its output can be fused with the visual detector. This combination can provide a more
comprehensive tracking system that is more accurate and robust under different lighting
and weather conditions. The LIDAR data can provide a high-resolution 3D mapping of the
environment, which can be used to track the positions of objects more precisely. While adding
a LIDAR system to the drone and fusing its output with the visual detector can improve the
tracking performance, it also increases the complexity and cost of the solution. The LIDAR
system itself is likely to be more expensive than the visual detector, and integrating the
two systems may require additional hardware and software development. Additionally, the
increased computational demands of combining the two systems may require a more powerful
processor, which can also add to the overall cost of the solution.

Different guidance strategies might also be compared such as proportional navigation
which uses the velocity vector of the target in addition to its relative position to control the
follower drone’s motion with the goal of keeping it on the path for interception.

CTU in Prague Department of Computer Science



8. REFERENCES 48/52

Chapter 8

References

[1] P. Fahlstrom and T. Gleason, Introduction to UAV Systems (Aerospace Series). Wiley, 2012,
isbn: 9781118396810. [Online]. Available: https://books.google.cz/books?id=uLsNtm99IWYC.

[2] M. A. Siddiqi, C. Iwendi, K. Jaroslava, and N. Anumbe, “Analysis on security-related concerns of
unmanned aerial vehicle: Attacks, limitations, and recommendations,” Mathematical Biosciences
and Engineering, vol. 19, no. 3, pp. 2641–2670, 2022, issn: 1551-0018. doi: 10.3934/mbe.2022121.
[Online]. Available: https://www.aimspress.com/article/doi/10.3934/mbe.2022121.

[3] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 3400–3407. doi: 10.1109/ICRA.2011.5979561.

[4] V. Walter, N. Staub, A. Franchi, and M. Saska, “UVDAR system for visual relative localiza-
tion with application to leader–follower formations of multirotor UAVs,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2637–2644, 2019. doi: 10.1109/LRA.2019.2901683.

[5] N.-D. Nguyen, T. Do, T. Duc, and D.-D. Le, “An evaluation of deep learning methods for small
object detection,” Journal of Electrical and Computer Engineering, vol. 2020, pp. 1–18, Apr.
2020. doi: 10.1155/2020/3189691.

[6] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” Apr. 2018, arXiv:1804.02767.

[7] Y. Zheng, Z. Chen, D. Lv, Z. Li, Z. Lan, and S. Zhao, “Air-to-air visual detection of micro-UAVs:
An experimental evaluation of deep learning,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1020–1027, 2021.

[8] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO series in 2021,” 2021.
arXiv: 2107.08430 [cs.CV].

[9] D. Xun, Y. Lim, and S. Srigrarom, “Drone detection using YOLOv3 with transfer learning on
NVIDIA jetson TX2,” Jan. 2021, pp. 1–6. doi: 10.1109/ICA-SYMP50206.2021.9358449.

[10] T. Li, Y. Ma, and T. Endoh, “A systematic study of tiny YOLO3 inference: Toward compact
brainware processor with less memory and logic gate,” IEEE Access, vol. 8, pp. 142 931–142 955,
2020.
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Names of root directories on the attached CD storage are listed in Table A.1.

File name Description

thesis.pdf Master thesis in PDF format.
thesis sources Latex code of the thesis.
code Source code of the implemented system.
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