
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Combination of Time-Triggered and Event-Triggered
Scheduling with Dedicated Resources and
Precedences

Bc. Lukáš Halaška

Supervisor: Mgr. Marek Vlk, Ph.D.
Supervisor–specialist: prof. Dr. Ing. Zdeněk Hanzálek
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474730 Personal ID number: Halaška Lukáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Combination of Time-Triggered and Event-Triggered Scheduling with Dedicated Resources and
Precedences

Master’s thesis title in Czech:

Kombinace time-triggered a event-triggered rozvrhování s dedikovanými zdroji a s precedencemi

Guidelines:

Cyber-physical systems and communication networks usually incorporate both time-triggered (TT) and event-triggered
(ET) manners of communication. While the TT paradigm is necessary for messages of the highest criticality and allows
more accessible system certification, ET scheduling brings better system properties. The aim of this work is to propose
an algorithm that combines both TT and ET scheduling so as to keep the advantages of both approaches. The student
will investigate existing work on unary-resource scheduling of ET messages [1] and for the combination of ET and TT
messages [2] and will propose an algorithm for scheduling dedicated tasks on multiple resources and with precedences.
The idea is to extend the concept of the schedule abstraction graph [1,3] or the fixation graph [2]. The work will experimentally
evaluate the developed algorithms on at least 1000 randomly generated instances, measuring the speed, the schedulability
ratio, and pessimism (ratio of false negative results).

Bibliography / sources:

[1] Nasri, M, and Brandenburg, B.B. "An exact and sustainable analysis of non-preemptive scheduling." 2017 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2017.
[2] Jaros, M. "Combination of Time-Triggered and Event-Triggered Scheduling." 2022 Diploma Thesis.
[3] Nasri, M., Nelissen, G., & Brandenburg, B.B. A Response-Time Analysis for Non-Preemptive Job Sets under Global
Scheduling. Euromicro Conference on Real-Time Systems, 2018.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Mgr. Marek Vlk, Ph.D. Optimization CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 31.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Mgr. Marek Vlk, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
First, I would like to thank my supervisor
Mgr. Marek Vlk, Ph.D. for his guidance,
advice, and a great amount of support
throughout the entire master’s project.

I would also like to express my gratitude
to prof. Dr. Ing. Zdeněk Hanzálek for
providing me with the possibility to work
on such an interesting topic and for his
insightful comments.

Finally, I would like to thank my family,
my friends, and my girlfriend for their love
and mental support throughout the entire
master’s studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 25. May 2023

v

Abstract
The event-triggered (ET) systems pro-
vide flexible and responsive behavior by
dynamically scheduling tasks based on
events in the system, while the time-
triggered (TT) systems provide robust-
ness and traceability by scheduling tasks
at design time. This thesis aims to com-
bine the advantages of both real-time sys-
tem paradigms by integrating ET schedu-
lability analysis and TT schedule syn-
thesis. We propose algorithms for the
combination of ET schedulability anal-
ysis and TT schedule synthesis, consid-
ering non-preemptive tasks with prece-
dence constraints and a dedicated mul-
tiprocessor platform. The proposed al-
gorithms are based on and extend the
Schedule Abstraction Graph generation
algorithm, proposed by Nasri and Bran-
denburg [RTSS 2017, pp. 12–23]. For the
combination of TT and ET tasks, we pro-
pose two scalable algorithms. The experi-
mental results demonstrate the amount of
pessimism, the schedulability ratio, and
the scalability of the proposed approaches.

Keywords: online and offline
scheduling, non-preemptive tasks,
dedicated resources, precedence
constraints, schedulability analysis,
schedule abstraction graph

Supervisor: Mgr. Marek Vlk, Ph.D.
České vysoké učení technické v Praze,
Český institut informatiky, robotiky a
kybernetiky,
IID: Průmyslová informatika,
OPT: Optimalizace,
Jugoslávských partyzánů 1580,
160 00 Praha 6

Abstrakt
Event-triggered (ET) systémy poskytují
flexibilní a responsivní chování tím, že dy-
namicky rozvrhují úlohy na základě udá-
lostí v systému, zatímco time-triggered
(TT) systémy poskytují robustnost a sle-
dovatelnost rozvrhováním úloh v době ná-
vrhu. Cílem této práce je spojit výhody
obou paradigmat systémů reálného času
prostřednictvím integrace ET analýzy roz-
vrhovatelnosti a TT syntézy rozvrhu. Tato
práce navrhuje algoritmy pro kombinaci
ET analýzy rozvrhovatelnosti a TT syn-
tézy rozvrhu pro nepreemptivní úlohy s
relacemi následnosti a dedikované zdroje.
Navržené algoritmy jsou založeny na al-
goritmu, který zároveň rozšiřují, pro ge-
nerování rozvrhovacího grafu (Schedule
Abstraction Graph), navrženém autory
Nasri a Brandenburg [RTSS 2017, s. 12–
23]. Pro kombinaci TT a ET úloh jsou
navrženy dva škálovatelné algoritmy. Ex-
perimentální výsledky demonstrují míru
pesimismu, rozvrhovatelnost a škálovatel-
nost navrhovaných přístupů.

Klíčová slova: online a offline
rozvrhování, nepreemptivní úlohy,
dedikované zdroje, relace následnosti,
analýza rozvrhovatelnosti, rozvrhovací
graf

Překlad názvu: Kombinace
time-triggered a event-triggered
rozvrhování s dedikovanými zdroji a s
precedencemi

vi

Contents
1 Introduction 1
1.1 Related work 1
1.2 This thesis . 2
2 Formal description of the problem 3
2.1 Multiprocessor platform 3
2.2 Event-triggered tasks and jobs . . . 3
2.3 Scheduling of ET jobs and
scheduling policy 5

2.4 Execution scenario and
schedulability 6

2.5 Time-triggered tasks and jobs . . . 6
2.6 Scheduling of TT jobs 8
2.7 Combining ET and TT tasks 8
3 ET solutions 9
3.1 Brute force approach to
schedulability analysis 9

3.2 Worst-case approach to
schedulability analysis 12

3.3 Schedule Abstraction Graph
approach to schedulability analysis 12
3.3.1 Schedule Abstraction Graph . 13
3.3.2 SAG generation 13
3.3.3 Expansion phase 14
3.3.4 Merge phase 14
3.3.5 Parameters of vertices and
edges . 15

3.3.6 Job eligibility 15
3.3.7 Pseudocode 16
3.3.8 Discussion and example 21

4 ET solution evaluation 27
4.1 Model of the multiprocessor
platform . 27

4.2 Instance generation 28
4.2.1 Generated datasets 29

4.3 Evaluation of pessimism in the
SAG approach and evaluation of the
worst-case approach impact 30

4.4 Evaluation of schedulability and
runtime of the SAG approach 31

5 ET+TT solutions 35
5.1 Brute force algorithm 35
5.2 Fixation Graph Generation
algorithm . 38
5.2.1 Fixation graph structure 38
5.2.2 Description of the FGG 39

5.2.3 Fixation phase 39
5.2.4 Pseudocode 40
5.2.5 Discussion 44

6 ET+TT solution evaluation 45
6.1 Instance generation 45
6.1.1 Generated datasets 46

6.2 Evaluation of pessimism in the
FGG algorithm and the FGG-EB
algorithm . 46

6.3 Evaluation of schedulability and
runtime of the FGG algorithm and
the FGG-EB algorithm 47

7 Conclusion 53
Bibliography 55

vii

Figures
3.1 The example of the generated SAG.
The inside of each vertex v is divided
into two columns. The left column
contains all applicable jobs in the
vertex and their respective earliest
and latest release time in the vertex,
which is denoted as
Ei,j,k :

(
v.rmini,j,k, v.r

max
i,j,k

)
. The right

column contains the finish time
intervals of all processors in the
vertex. The finish time interval of a
processor π is denoted as
π : [v.EFTπ, v.LFTπ]. Each level of
the SAG is labeled with a set of
vertices that constitute the
corresponding level. Each edge is
labeled with a scheduled job. 25

4.1 Example of the network model.
The edges correspond to the
processors. Therefore, they are
labeled with a unique index
π ∈ {1, . . . , 8}. 28

4.2 Runtimes of the SAG approach to
schedulability analysis for datasets
Da1 , . . . ,Da9 relative to the number of
ET tasks. 32

4.3 Runtimes of the SAG approach to
schedulability analysis for datasets
Da1 , . . . ,Da9 relative to the number of
ET jobs. 33

6.1 Runtimes of the FGG algorithm for
datasets Db1, . . . ,Db9 relative to the
number of TT tasks. 48

6.2 Runtimes of the FGG-EB
algorithm for datasets Db1, . . . ,Db9
relative to the number of TT tasks. 49

6.3 Runtimes of the FGG algorithm for
datasets Db1, . . . ,Db9 relative to the
number of TT jobs. 50

6.4 Runtimes of the FGG-EB
algorithm for datasets Db1, . . . ,Db9
relative to the number of TT jobs. 51

Tables
3.1 Example of ET task parameters for
calculation of NE ,
E = {E1, E2, E3, E4}. 11

3.2 Parameters of ET tasks used in the
SAG generation example,
E = {E1, E2}. 22

3.3 Parameters of ET jobs used in the
SAG generation example, E =
{{{E1,1,1, E1,1,2}} , {{E2,1,1, E2,1,2}}}. 22

4.1 Values of parameters Ar, Ad, Aj ,
and Ac used for generation of
datasets Da1 , . . . ,Da9 30

4.2 Results of the schedulability
analysis of Da0 using the brute force
(BF) approach, the SAG approach,
and the worst-case (WC) approach. 31

4.3 Schedulability of instances from
datasets Da1 , . . . ,Da9 . Each cell
corresponding to a dataset contains
the total number of schedulable
instances, the total number of
unschedulable instances, and the
total number of instances that
reached the time limit in this order. 32

5.1 Example of TT task parameters for
calculation of NT ,
T = {T1, T2, T3, T4}. 37

6.1 Values of parameters Ar, Ad, Aj ,
and Ac used for generation of
datasets Db1, . . . ,Db9. 46

6.2 Resulting schedulability of the
instances from Db0 for the brute force
(BF) algorithm, the FGG algorithm,
and the FGG-EB algorithm. 47

viii

6.3 Schedulability of instances from
datasets Db1, . . . ,Db9. Each cell
corresponding to a dataset contains
two rows. The first row contains the
results of the FGG algorithm and the
second row contains the results of the
FGG-EB algorithm. Each row in a
cell corresponding to a dataset
consists of the total number of
schedulable instances, the total
number of unschedulable instances,
the total number of instances that
reached the time limit, and the total
number of instances that reached the
memory limit in this order. 49

ix

Chapter 1
Introduction

Event-triggered (ET) systems and time-triggered (TT) systems are the two main paradigms
of real-time systems. In the ET systems, tasks, which are released as a consequence of an
occurrence of an event in the system, are scheduled online (dynamically) based on a scheduling
policy in the online scheduler. This allows for more flexible and responsive system behavior
as tasks are dispatched as needed rather than being tied to fixed time slots. However, the
ET systems lack traceability since the runtime executions may vary. To impose guarantees
on the completion times of the tasks, the schedulability analysis of the ET system, which
may be computationally expensive, is conducted in advance before the system is run in
real-time. In contrast, in the TT systems, tasks are executed at predetermined start times.
Therefore, the tasks in the TT system are scheduled offline (at design time). This allows for
the robustness and dependability of the TT systems. Moreover, the deterministic nature of
the TT systems provides better traceability than in the case of the ET systems. Nevertheless,
the TT systems lack flexibility since the fixed schedule for the tasks is computed in advance,
which is computationally expensive. Consequently, many real-time systems combine both ET
and TT paradigms to keep their advantages.

The main aim of this thesis is to provide the integration of both ET schedulability analysis
and TT schedule synthesis on multiple dedicated resources to keep the advantages of both.

1.1 Related work

The combination of ET and TT scheduling has been addressed in [1, 2]. Other works focus on
the usage of the combination of ET and TT scheduling in specific domains such as ethernet-
based networks [3, 4], time-sensitive networks (TSNs) [5, 6, 7, 8], distributed automotive
networks [9, 10, 11], or the FTT-CAN protocol [12, 13].

In many current works, no prior information about the release times and the execution
times of the ET tasks is considered. Moreover, many of these works address only preemptive
scheduling. Non-preemptive scheduling, i.e., scheduling of tasks that must finish their execution
without any interruption once their execution has started, usually poses a more challenging
problem to tackle. A solution for the combination of non-preemptive ET and TT tasks on
a single unary resource was proposed in [14, 15], where prior information about the release
times and the execution times of the ET tasks is assumed. Moreover, [14, 15] improves and
corrects the scalable schedulability analysis of non-preemptive ET tasks proposed in [16].
The schedulability analysis from [16] introduced a novel framework of Schedule Abstraction
Graphs (SAGs). Further scalability improvements of the schedulability analysis from [16] were

1

1. Introduction ...
proposed in [17]. Other works [18, 19] propose a scalable schedulability analysis for multiple
resources (multiprocessor platforms) using the SAG framework. In [19], tasks are considered
to be restricted by precedence constraints, which are modeled with Directed Acyclic Graphs
(DAGs). Nevertheless, both of these works consider parallel resources, however, the dedication
of tasks to processors is not considered.

1.2 This thesis

In this thesis, we tackle a scheduling problem with two types of tasks, namely ET tasks and
TT tasks. For the ET tasks, we assume fixed priority, release jitter, and execution time
variation. Moreover, we assume a lower bound and an upper bound for both the release times
and the execution times of the ET tasks. This information is assumed to be known a priori.
For the TT tasks, we assume fixed release and execution times.

All tasks are periodic and non-preemptive. Furthermore, all tasks have deadlines. Moreover,
both types of tasks are restricted by precedence constraints. In this work, we consider only one
specific type of precedence constraint, namely the precedence chains. All tasks are executed
on dedicated resources that form a multiprocessor platform. Each processor can be occupied
by the execution of at most one task at any time. The goal is either to find start times for the
TT tasks such that they meet their deadline and the ET tasks are guaranteed to meet their
deadlines as well in any execution scenario or to decide that no such schedule for the TT tasks
exists. The start times for the TT tasks are computed offline. The ET tasks are analyzed
offline as well and then scheduled online during the runtime. The schedulability analysis
simulates the work of an online scheduler. The online scheduler is assumed to schedule the
ET tasks based on a work-conserving policy, i.e., a scheduling policy that does not allow any
idle time when there is an ET task that can be executed. To summarize, we do a schedule
synthesis for the TT tasks and a schedulability analysis for the ET tasks such that no collisions
and no deadline misses occur during the online scheduling.

The contribution of this thesis is a formal description of the scheduling problem that
combines the scheduling of ET and TT tasks restricted by precedence constraints on dedicated
resources, algorithms for the ET schedulability analysis, algorithms for the TT schedule
synthesis ensuring schedulability of all tasks, and the empirical evaluation of all proposed
algorithms. The source codes of the implemented algorithms and the instances used for the
empirical evaluation are publicly available on GitHub1.

The rest of this thesis is structured as follows. Chapter 2 provides a formal description of
the problem. Chapter 3 focuses on the ET schedulability analysis. The proposed approaches
to schedulability analysis are evaluated in Chapter 4. Analogously, Chapter 5 focuses on
our solutions for the combination of ET and TT tasks. The proposed algorithms for the
combination of ET and TT tasks are evaluated in Chapter 6. The conclusion of this thesis is
situated in Chapter 7.

1https://github.com/halasluk/ETTT_dedicated_multicore

2

https://github.com/halasluk/ETTT_dedicated_multicore

Chapter 2
Formal description of the problem

This chapter provides a formal description of the ET tasks and their scheduling. Moreover,
the TT tasks, their scheduling, and their combination with ET tasks are described. All
parameters described in this chapter can have only integer values. All proposed algorithms in
later chapters work only with integer values. Moreover, most of the notation and terminology
in this chapter is consistent with [14, 15, 16].

2.1 Multiprocessor platform

The multiprocessor platform is considered to consist of m processors. Each processor in our
multiprocessor platform is assigned a unique index π ∈ {1, . . . ,m}. For simplicity, processors
are called by their indexes.

2.2 Event-triggered tasks and jobs

The set of ET tasks is defined as E = {E1, . . . , En}, where n is the total number of ET tasks.
Each ET task Ei ∈ E is defined by its period τETi , deadline dETi , earliest release time rmini ,
latest release time rmaxi , shortest execution time cmini , longest execution time cmaxi , priority
pi, and sequence of processors σi = (σi,1, . . . , σi,li), where li is the length of this sequence,
which corresponds to a chain of processors that Ei is assigned to. The values of ET task
parameters are assumed to satisfy the following constraints:

rmaxi + li · cmaxi ≤ dETi ≤ τETi ,

0 ≤ rmini ≤ rmaxi ,

1 ≤ cmini ≤ cmaxi ,

pi ∈ N0.

Each ET task Ei consists of its periodic occurrences (task’s occurrences). Therefore, we
define each ET task as Ei = {Ei,1, . . . , Ei,hi}, where hi is the total number of occurrences of
task Ei. We compute hi for each ET task from set E as

hi = η

τETi
,

3

2. Formal description of the problem....................................
where η is a hyperperiod, which is computed as

η = LCM
(
τET1 , . . . , τETn

)
,

where the function LCM computes the least common multiple of its arguments. The hyper-
period η gives us the time window in which we are conducting the schedulability analysis.
Thanks to the assumption that dETi ≤ τETi , we do not need to analyze a larger time window
than η.

Furthermore, we define each occurrence of each ET task as a set of ET jobs, which are
dedicated to processors given by σi. Therefore, we define Ei,j = {Ei,j,1, . . . , Ei,j,li}, where job
Ei,j,k ∈ Ei,j is dedicated to be executed on processor σi,k, which corresponds to k-th element
of the sequence of processors σi. Therefore, we can see that the dedication of an ET job
to a processor does not depend on the occurrence of the corresponding ET task. In other
words, Ei,j,k is dedicated to processor σi,k, ∀j ∈ {1, . . . , hi}. Each ET job Ei,j,k also has
deadline dETi,j,k, shortest execution time cmini,j,k, longest execution time cmaxi,j,k , and priority pi,j,k.
For k = 1, each ET job Ei,j,1 is also defined by its earliest release time rmini,j,1 and latest release
time rmaxi,j,1 . The values of ET job parameters are assumed to satisfy the following constraints.
∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , hi}, ∀k ∈ {1, . . . , li},

dETi,j,k = dETi + (j − 1) · τETi − (li − k) · cmaxi ,

cmini,j,k = cmini ,

cmaxi,j,k = cmaxi ,

pi,j,k = pi,

and, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , hi},

rmini,j,1 = rmini + (j − 1) · τETi ,

rmaxi,j,1 = rmaxi + (j − 1) · τETi .

The constraints show that each ET job inherits execution times and priority from the
corresponding ET task. Release times of ET jobs Ei,j,1 are shifted according to the occurrence
of the corresponding ET task as well as the deadline of each ET job Ei,j,k which is in addition
tightened by (li − k) · cmaxi . This additional shift of deadline will be discussed shortly. To
sum up, we can express E as a set of ET jobs in the following way:

E = {{{E1,1,1, . . . , E1,1,l1} , . . . , {. . . , E1,h1,l1}} , . . . , {. . . , {. . . , En,hn,ln}}} .

Another important property of such defined ET jobs is that some ET jobs precede other
ones. When

Ei,j,kx ≺ Ei,j,ky ,

we say that Ei,j,kx precedes Ei,j,ky . This means that Ei,j,kx needs to finish its execution before
Ei,j,ky is released. An ET job that has some predecessors is released when all its predecessors
finish their execution. The precedence constraint is considered to be present only among ET
jobs of the same occurrence of a given ET task. Thanks to our definition of ET jobs, it always
holds that

kx < ky ⇔ Ei,j,kx ≺ Ei,j,ky , ∀i ∈ {1, . . . , n} , ∀j ∈ {1, . . . , hi} .

4

.............................. 2.3. Scheduling of ET jobs and scheduling policy

Moreover, we can observe that ET jobs of the same occurrence of a given ET task form a
precedence chain, which is a special case of precedence constraint. Therefore, we consider
only precedence chains consisting of ET jobs as precedence constraints restricting ET jobs in
this work. The precedence chain can be expressed as

Ei,j,1 ≺ · · · ≺ Ei,j,li , ∀i ∈ {1, . . . , n} ,∀j ∈ {1, . . . , hi} .

The fact that ET jobs of the same occurrence of a given ET task form a precedence chain
causes the position of an ET job Ei,j,k in the precedence chain to affect its deadline dETi,j,k. That
is why dETi,j,k is tightened by (li − k) · cmaxi . Note that meeting deadlines dETi,j,k, ∀k ∈ {1, . . . , li},
ensures that the deadline of the j-th occurrence of a given ET task Ei is always met.

2.3 Scheduling of ET jobs and scheduling policy

Let us now define a few important terms regarding the scheduling of ET jobs. A priori
unknown release time rETi,j,k ∈

[
rmini,j,k, r

max
i,j,k

]
of each ET job Ei,j,k is revealed during runtime of

the ET system. The fact that rETi,j,k is from a closed interval is referred to as release jitter.
Once the value of rETi,j,k is known, we say that Ei,j,k is released at time rETi,j,k. ET job Ei,j,k can
start its execution at time te only if it is released and if the processor dedicated to this job is
not occupied by executing another ET job. If Ei,j,k starts its execution at time te, then it
occupies its dedicated processor during interval

[
te, te + cETi,j,k

)
, where cETi,j,k ∈

[
cmini,j,k, c

max
i,j,k

]
is a

priori unknown execution time. The fact that cETi,j,k is from a closed interval is referred to as
execution time variation. ET job Ei,j,k is finished when it finishes its execution, otherwise it
is termed unfinished. If Ei,j,k finishes its execution at time te + cETi,j,k > dETi,j,k, then a deadline
miss occurs.

Another important aspect of scheduling ET jobs that we have to consider is the scheduling
policy. First, we define ER to be a set of released ET jobs. Furthermore, Eπ is defined as
a set of all ET jobs dedicated to processor π, i.e., a set of jobs Ei,j,k for which σi,k = π,
∀i ∈ {1, . . . , n} ,∀j ∈ {1, . . . , hi} , ∀k ∈ {1, . . . , li}. In this work, scheduling policy is defined
as a function P

(
t, π, ER ∩ Eπ

)
, which takes a given time t, a given processor π, and the

intersection of given sets ER and Eπ as its inputs and returns a job Ei,j,k that should be
scheduled next. Such job Ei,j,k must be released by the time t and the processor π must
not be occupied by executing another job. The scheduling policy is invoked whenever a job
finishes its execution or when a new job is released. We can observe from the definition of
the scheduling policy that it is invoked for each processor independently. Therefore, the
scheduling policy can be invoked more than once at time t if multiple jobs dedicated to
different processors are released or finish their execution at the same time. It is possible for
the scheduling policy not to return any job. This happens when ER∩Eπ = ∅ or when a newly
released job at time t is dedicated to a processor which is occupied by executing another job
at time t.

In this work, there is only one type of scheduling policy considered and utilized. It is the
fixed priority – earliest deadline first (FP-EDF) policy. As mentioned earlier, the FP-EDF
policy is called for each processor separately, i.e., the FP-EDF policy always picks a job
from ER ∩ Eπ. The FP-EDF policy picks a job that should be scheduled next based on the
following decision rules. It chooses a job with the highest priority, i.e., a job that has the

5

2. Formal description of the problem....................................
lowest value of p. If multiple jobs have the same highest priority, then it picks a job with the
lowest deadline dET . If there are multiple jobs with the same highest priority and the same
lowest deadline, then it picks a job Ei,j,k with the lowest index i, which is an additional rule
that ensures deterministic behavior of the FP-EDF policy.

2.4 Execution scenario and schedulability

For a set of ET jobs E, we define an execution scenario as γ = {R,C}. Here, R corresponds
to a set of release times rETi,j,1 of ET jobs Ei,j,1, ∀i ∈ {1, . . . , n} , ∀j ∈ {1, . . . , hi}, and
C corresponds to a set of execution times cETi,j,k of ET jobs Ei,j,k, ∀i ∈ {1, . . . , n} , ∀j ∈
{1, . . . , hi} ,∀k ∈ {1, . . . , li}. The set of release times is defined as R = {R1, . . . , Rn}, where
Ri =

{
rETi,1,1, . . . , r

ET
i,hi,1

}
, where rETi,j,1 ∈

[
rmini,j,1 , r

max
i,j,1

]
. The set of execution times is defined

as C = {C1, . . . , Cn}, where Ci = {Ci,1, . . . , Ci,hi}, where Ci,j =
{
cETi,j,1, . . . , c

ET
i,j,li

}
, where

cETi,j,k ∈
[
cmini,j,k, c

max
i,j,k

]
. In other words, an execution scenario γ specifies one possible combination

of release times and execution times of ET jobs in E. It should be noted that rETi,j,k of
Ei,j,k, ∀i ∈ {1, . . . , n} ,∀j ∈ {1, . . . , hi} ,∀k ∈ {2, . . . , li} cannot be part of such definition of
execution scenario as they depend on the time when their predecessors in the precedence
chain finish their execution, which depends on the scheduling policy.

We say that a set of ET tasks E is schedulable under a policy P if there exists no execution
scenario γ which results in a deadline miss using P. In other words, each ET job in E must
finish its execution before its respective deadline in each possible execution scenario for E to
be schedulable under policy P.

Since one of the aims of this work is to develop a scalable schedulability analysis of a set
of ET tasks, we will rigorously define three different types of schedulability analysis. The
definitions of these types of schedulability analysis are taken from [20].

A schedulability analysis is termed sufficient if all instances of a given scheduling problem
that are deemed schedulable according to the analysis are indeed schedulable. A schedulability
analysis is termed necessary if all instances of a given scheduling problem that are deemed
unschedulable according to the analysis are indeed unschedulable. A schedulability analysis
that is both sufficient and necessary is referred to as exact.

2.5 Time-triggered tasks and jobs

The set of TT tasks is defined as T = {T1, . . . , Tn′}, where n′ is the total number of TT
tasks. Each TT task Ti ∈ T is defined by its period τTTi , deadline dTTi , release time rTTi ,
execution time cTTi , and sequence of processors σ′i =

(
σ′i,1, . . . , σ

′
i,l′i

)
, where l′i is the length of

this sequence, which corresponds to a chain of processors that Ti is assigned to. The values of
TT task parameters are assumed to satisfy the following constraints:

rTTi + l′i · cTTi ≤ dTTi ≤ τTTi ,

0 ≤ rTTi ,

1 ≤ cTTi .

6

.....................................2.5. Time-triggered tasks and jobs

Each TT task Ti consists of its periodic occurrences (task’s occurrences). Therefore, we
define each TT task as Ti =

{
Ti,1, . . . , Ti,h′

i

}
, where h′i is the total number of occurrences of

task Ti. We compute h′i for each TT task from set T as

h′i = η

τTTi
,

where η is a redefined hyperperiod, which is computed as

η = LCM
(
τET1 , . . . , τETn , τTT1 , . . . , τTTn′

)
.

The redefined hyperperiod η provides us with a sufficient observation time window thanks to
the assumption that the deadlines of all tasks do not exceed their respective periods.

Each occurrence of each TT task consists of a set of TT jobs, which are dedicated to
processors given by σ′i. Therefore, we define Ti,j =

{
Ti,j,1, . . . , Ti,j,l′i

}
, where job Ti,j,k ∈ Ti,j is

dedicated to be executed on processor σ′i,k, which corresponds to k-th element of the sequence
of processors σ′i. Note that the dedication of a TT job to a processor does not depend on
the occurrence of the corresponding TT task. Therefore, Ti,j,k is dedicated to processor
σ′i,k, ∀j ∈ {1, . . . , h′i}. Each TT job Ti,j,k has deadline dTTi,j,k and execution time cTTi,j,k. For
k = 1, each TT job Ti,j,1 is also defined by its release time rTTi,j,1. The values of TT job
parameters are assumed to satisfy the following constraints. ∀i ∈ {1, . . . , n′}, ∀j ∈ {1, . . . , h′i},
∀k ∈ {1, . . . , l′i},

dTTi,j,k = dTTi + (j − 1) · τTTi −
(
l′i − k

)
· cTTi ,

cTTi,j,k = cTTi ,

and, ∀i ∈ {1, . . . , n′}, ∀j ∈ {1, . . . , h′i},

rTTi,j,1 = rTTi + (j − 1) · τTTi .

The constraints show that each TT job inherits its execution time from the corresponding TT
task. Release time of jobs Ti,j,1 is shifted according to the occurrence of the corresponding TT
task as well as the deadline of each TT job Ti,j,k which is in addition tightened by (l′i − k) ·cTTi .
This additional shift of deadline will be discussed shortly. To sum up, we can express T as a
set of TT jobs in the following way:

T =
{{{

T1,1,1, . . . , T1,1,l′1

}
, . . . ,

{
. . . , T1,h′

1,l
′
1

}}
, . . . ,

{
. . . ,

{
. . . , Tn′,h′

n′ ,l
′
n′

}}}
.

The definition of precedence constraints restricting TT jobs is similar to that of ET jobs.
When

Ti,j,kx ≺ Ti,j,ky ,

we say that Ti,j,kx precedes Ti,j,ky . This means that Ti,j,kx must finish its execution before
Ti,j,ky is released. If a TT job has some predecessors, then it is released when all its predecessors
finish their execution. The precedence constraints are considered only for TT jobs of the same
occurrence of a given TT task. Thanks to our definition of TT jobs, it always holds that

kx < ky ⇔ Ti,j,kx ≺ Ti,j,ky , ∀i ∈
{
1, . . . , n′

}
, ∀j ∈

{
1, . . . , h′i

}
.

Similar to ET jobs, we can observe that TT jobs of the same occurrence of a given TT task
form a precedence chain. Therefore, we consider only precedence chains consisting of TT

7

2. Formal description of the problem....................................
jobs as precedence constraints restricting TT jobs in this work. The precedence chain can be
expressed as

Ti,j,1 ≺ · · · ≺ Ti,j,l′i , ∀i ∈
{
1, . . . , n′

}
, ∀j ∈

{
1, . . . , h′i

}
.

The fact that TT jobs of the same occurrence of a given TT task form a precedence chain
causes the position of a TT job Ti,j,k in the precedence chain to affect its deadline dTTi,j,k. That
is why dTTi,j,k is tightened by (l′i − k) · cTTi . Note that meeting deadlines dTTi,j,k, ∀k ∈ {1, . . . , l′i},
ensures that the deadline of the j-th occurrence of a given TT task Ti is met.

2.6 Scheduling of TT jobs

The main difference between the scheduling of ET jobs and TT jobs is that TT jobs have to
start their execution at predetermined time points. Therefore, the main goal of scheduling
TT jobs is to find a set of start times which is defined as

S =
{
s1,1,1, . . . , s1,1,l′1 , s1,2,1, , s1,h′

1,l
′
1
, s2,1,1, , sn′,h′

n′ ,l
′
n′

}
,

where si,j,k is a start time of TT job Ti,j,k, ∀i ∈ {1, . . . , n′}, ∀j ∈ {1, . . . , h′i}, ∀k ∈ {1, . . . , l′i}.
The scheduling of TT jobs in the dedicated multiprocessor setting is done incrementally due
to the precedence constraints. The release time of each TT job Ti,j,k+1, for k < l′i, is revealed
after assigning the start time to each of its predecessors in the precedence chain. Therefore, it
holds that rTTi,j,k+1 = si,j,k + cTTi,j,k, for k < l′i, ∀i ∈ {1, . . . , n′}, ∀j ∈ {1, . . . , h′i}. Moreover, we
define Tπ to be a set of all TT jobs dedicated to processor π, i.e., set of jobs Ti,j,k for which
σ′i,k = π, ∀i ∈ {1, . . . , n′} ,∀j ∈ {1, . . . , h′i} ,∀k ∈ {1, . . . , l′i}.

The set of start times S is feasible if all deadlines are met, i.e., si,j,k ∈
[
rTTi,j,k, d

TT
i,j,k − cTTi,j,k

]
,

∀i ∈ {1, . . . , n′} , ∀j ∈ {1, . . . , h′i} ,∀k ∈ {1, . . . , l′i}, and if the executions of jobs dedicated to
the same processor do not overlap, i.e.,

[
si,j,k, si,j,k + cTTi,j,k

)
∩
[
si′,j′,k′ , si′,j′,k′ + cTTi′,j′,k′

)
= ∅,

for all pairs of different TT jobs Ti,j,k, Ti′,j′,k′ ∈ Tπ, ∀π ∈ {1, . . . ,m}.

2.7 Combining ET and TT tasks

When combining ET and TT tasks, all TT jobs must start their execution at predetermined
start times. This must be considered when conducting the schedulability analysis for the
ET jobs. Since all jobs are considered to be non-preemptive, the execution of an ET job
cannot be interrupted by the online scheduler to allow a TT job to start its execution at its
predetermined start time. Therefore, there must not be an ongoing execution of an ET job on
a processor π at the time when some TT job dedicated to processor π is scheduled to start its
execution. The situation when some TT job cannot start its execution at its predetermined
start time due to an ongoing execution of an ET job is referred to as a collision.

Given a set of ET tasks E, a set of TT tasks T, a number of processors m, and a scheduling
policy P , the set of start times S is referred to as valid if S is feasible and if E is schedulable
under policy P (i.e., no execution scenario results in a deadline miss) and if each TT job Ti,j,k
always starts its execution at its predetermined start time si,j,k (i.e., no collisions occur). The
main goal of combining ET and TT tasks is to find a set of start times that is valid. The
problem of finding a valid set of start times may be infeasible, e.g., when E is not schedulable
under policy P.

8

Chapter 3
ET solutions

This chapter describes and thoroughly explains the algorithms used for the schedulability
analysis of a set of ET tasks and their implementation. The baseline brute force approach
to schedulability analysis is described in Section 3.1. Section 3.2 describes the worst-case
approach to schedulability analysis. The novel approach to schedulability analysis based on
the SAG framework is described in Section 3.3.

3.1 Brute force approach to schedulability analysis

The first approach to schedulability analysis, which is described in this section, is the brute
force schedulability analysis. The main idea of this algorithm is quite simple as it simulates
the work of an online scheduler for every possible execution scenario.

The pseudocode of the brute force schedulability analysis can be seen in Algorithm 1. The
pseudocode consists of three functions. The brute force schedulability analysis is launched by
calling the function BRUTE_FORCE_ANALYSIS. A set of ET tasks E as well as the number
of processors m are passed to this function and it assigns release and execution times to the
corresponding jobs for each execution scenario. After each such assignment, the function
SIMULATE_EXECUTION_SCENARIO is called to determine whether the given execution
scenario results in a deadline miss or not. If there is no such execution scenario that results
in a deadline miss, then the instance is schedulable.

Furthermore, the decision of which job should be scheduled next is made in the function
SCHEDULING_POLICY that requires finish times of all processors FT, a set of applicable
jobs EA, and time t as its inputs. We define applicable jobs EA as set that contains ET jobs
Ei,j,k that satisfy the following conditions:

Ei,j,k is unfinished ∧
(

(j = 1 ∧ k = 1) ∨

(j > 1 ∧ k = 1 ∧ Ei,j−1,li is finished) ∨ (k > 1 ∧ Ei,j,k−1 is finished)
)
.

In other words, the set of applicable jobs always contains at most one ET job of each ET
task. It is always the first unfinished job of the corresponding task. If there is no finished
job of the corresponding task, then it is the job of the task’s first occurrence that has no
predecessors. If all jobs of an occurrence of the corresponding task are finished, then it is
the job of the task’s next occurrence that has no predecessors. If there are some but not all
finished jobs within one occurrence of the corresponding task, then it is the job within the
same occurrence whose predecessors are all finished. We can also observe that it holds that

9

3. ET solutions ...
∣∣∣EA∣∣∣ ≤ n. Setting the jobs to be either unfinished or finished is taken care of by the function
SIMULATE_EXECUTION_SCENARIO on lines 14 and 28, respectively.

Furthermore, we define finish times of all processors as FT = {FT1, . . . , FTm}, where FTπ
is a time until which processor π is occupied.

Lines 17-21 in the function SIMULATE_EXECUTION_SCENARIO set the finish times
of all processors in such a way that enables the function SCHEDULING_POLICY to return
some job Ei,j,k each time it is called. This change to the finish times of all processors on line
21 can be done since no unfinished job can start its execution before time t. Moreover, line
27 in the function SIMULATE_EXECUTION_SCENARIO shows that successors in the
precedence chain have their release times revealed based on when their direct predecessor
finished its execution.

Algorithm 1 Brute force approach to schedulability analysis
Input: set of ET tasks E, number of processors m
Output: true if the set of ET tasks E is schedulable under policy P, false otherwise

1: function BRUTE_FORCE_ANALYSIS(E,m)
2: for each unique execution scenario γ = {R,C} do
3: for each job Ei,j,1 ∈ E do
4: set rETi,j,1 according to γ
5: for each job Ei,j,k ∈ E do
6: set cETi,j,k according to γ
7: if ¬SIMULATE_EXECUTION_SCENARIO(E,m) then
8: return false
9: return true . No execution scenario resulted in a deadline miss

10: function SIMULATE_EXECUTION_SCENARIO(E,m)
11: for π = 1 to m do
12: FTπ ← 0
13: FT ← {FT1, . . . , FTm}
14: set all jobs from E to unfinished
15: EA ← applicable jobs from E
16: while EA 6= ∅ do
17: t←∞
18: for each Ei′,j′,k′ ∈ EA do
19: t← min(t, max(rETi′,j′,k′ , FTσi′,k′))
20: for each FTπ ∈ FT do
21: FTπ ← max(FTπ, t)
22: Ei,j,k ← SCHEDULING_POLICY(FT,EA, t)
23: if FTσi,k + cETi,j,k > dETi,j,k then
24: return false . Deadline miss
25: FTσi,k ← FTσi,k + cETi,j,k
26: if Ei,j,k has a direct successor Ei,j,k+1 in the precedence chain then
27: rETi,j,k+1 ← FTσi,k

28: set Ei,j,k to finished
29: EA ← applicable jobs from E
30: return true . Each job finished its execution with no deadline miss
31: function SCHEDULING_POLICY(FT,EA, t)
32: ER ← subset of EA with only released jobs . Job Ei,j,k ∈ ER ⊆ EA iff rETi,j,k ≤ t
33: π ← arbitrary processor st. FTπ = t ∧ ER ∩ Eπ 6= ∅ . Eπ is a set of all ET jobs dedicated to π
34: Ei,j,k ← P

(
t, π, ER ∩ Eπ

)
35: return Ei,j,k . Job picked by the scheduling policy

10

............................. 3.1. Brute force approach to schedulability analysis

The implemented function SCHEDULING_POLICY works with unfinished released jobs
ER at time t. ER is a subset of applicable jobs EA. Note that time t, which is obtained
on line 19 in the function SIMULATE_EXECUTION_SCENARIO and then used as an
input of the function SCHEDULING_POLICY, guarantees that ER is not an empty set.
Moreover, there is always at least one processor that satisfies the conditions on line 33
thanks to the change to finish times of all processors on line 21 in the function SIMU-
LATE_EXECUTION_SCENARIO. Since the scheduling policy P is defined to be invoked for
each processor independently, we can choose an arbitrary processor satisfying the conditions
on line 33. The policy P then picks some ET job Ei,j,k based on its decision rules.

One of the main advantages of this algorithm is that it provides exact schedulability
analysis since it simulates all possible execution scenarios and it does not add any execution
scenarios that are not possible to occur for a given set of ET tasks. Therefore, it is used as a
baseline approach in empirical verification. Another advantage of this algorithm is its simple
implementation. Moreover, the brute force schedulability analysis is modular concerning
decision rules of the scheduling policy P. Therefore, the FP-EDF policy, which is considered
in this work, can be replaced by any other work-conserving policy while preserving the
correctness of the brute force schedulability analysis.

The only disadvantage of the brute force schedulability analysis is that it suffers severely
from combinatorial explosion. The number of execution scenarios, which the algorithm
simulates, can be enormous. For a given set of ET tasks E, the number of execution scenarios
NE can be expressed using the parameters of ET jobs in a closed form as

NE =
n∏
i=1

hi∏
j=1

(rmaxi,j,1 + 1− rmini,j,1

)
·
li∏
k=1

(
cmaxi,j,k + 1− cmini,j,k

) ,
or it can be equivalently expressed using the parameters of ET tasks as

NE =
n∏
i=1

((
rmaxi + 1− rmini

)
·
(
cmaxi + 1− cmini

)li)hi
.

Let us consider the following example given by Table 3.1 to show how enormous can NE be
even for a relatively small instance. Only 4 ET tasks are considered in this example.

ET task rmin rmax cmin cmax h l

E1 0 9 1 10 1 5
E2 0 9 1 10 2 4
E3 0 9 1 10 4 3
E4 0 9 1 10 8 2

Table 3.1: Example of ET task parameters for calculation of NE , E = {E1, E2, E3, E4}.

For E given by Table 3.1, we can calculate NE as

NE =
(
10 · 105

)1
·
(
10 · 104

)2
·
(
10 · 103

)4
·
(
10 · 102

)8
= 1056.

This means that there are in total 1056 possible execution scenarios to be simulated by the
brute force schedulability analysis in this example.

11

3. ET solutions ...
3.2 Worst-case approach to schedulability analysis

The worst-case approach simulates the work of an online scheduler for one specific execution
scenario. In this specific execution scenario γ = {R,C}, the set of release times R is considered
to consist of the latest release times and the set of execution times C is considered to consist of
the longest execution times. If a deadline miss occurs during the simulation of this execution
scenario, then we know that the entire instance is unschedulable. This is the reason why we
call this approach “worst-case”.

The pseudocode of the worst-case approach can be seen in Algorithm 2. It simply initializes
the execution scenario by setting release times to the respective latest release times and by
setting execution times to the respective longest execution times. The execution scenario is
then simulated using the function SIMULATE_EXECUTION_SCENARIO from Algorithm 1.
If a deadline miss occurs during the simulation, then the instance is unschedulable. Otherwise,
the algorithm deems the instance schedulable.

However, note that the term worst-case is a mere name. This approach provides only a
necessary schedulability analysis. This means that this approach can deem some instances
schedulable even though they are in fact unschedulable. In other words, we cannot be sure that
such a specifically chosen execution scenario leads to the true worst-case execution. In fact,
considering ET jobs to be non-preemptive causes scheduling anomalies to occur. Therefore,
we cannot say in advance which execution scenario would lead to the true worst-case execution
without simulating all of them.

Algorithm 2 Worst-case approach to schedulability analysis
Input: set of ET tasks E, number of processors m
Output: true if the worst-case execution scenario for E does not result in a deadline miss, false otherwise

1: function WORST_CASE_ANALYSIS(E,m)
2: for each job Ei,j,1 ∈ E do
3: rETi,j,1 ← rmaxi,j,1

4: for each job Ei,j,k ∈ E do
5: cETi,j,k ← cmaxi,j,k

6: return SIMULATE_EXECUTION_SCENARIO(E,m)

The main advantage of this approach is that it is computationally inexpensive. Therefore,
it is used as a potential speedup in the SAG approach, which can be seen later in Section 3.3.

3.3 Schedule Abstraction Graph approach to schedulability
analysis

Another approach to schedulability analysis for tasks on dedicated resources with precedences
is based on the so-called Schedule Abstraction Graph (SAG) framework, which was introduced
in 2017 by Mitra Nasri and Björn B. Brandenburg in [16]. This framework provided an exact
and scalable ET schedulability analysis for non-preemptive tasks on a single processor. The
SAG in their work encompasses all possible execution scenarios and merges similar scenarios,
thus making the algorithm scalable.

This section describes what SAG is and how it is utilized in the dedicated multiprocessor

12

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

setting. Furthermore, a high-level description of the SAG generation procedure, which is
inspired by [14, 15], will be provided. A low-level description of the SAG generation with
pseudocode will be provided afterward. Finally, an example demonstrating the SAG generation
procedure step-by-step is given. Also, note that this section makes use of OOP notation to
express the parameters of objects.

3.3.1 Schedule Abstraction Graph

The SAG can be intuitively described as a directed acyclic graph. Each vertex of the SAG
represents a state that contains a set of finished jobs and an occupation state of each processor
represented by a time range that corresponds to times when the processor may finish the
execution of a job. Each edge of the SAG characterizes the execution of an ET job. The time
ranges are utilized due to the presence of release jitter and execution time variation. The
SAG is generated to find out whether a set of ET tasks E is schedulable under policy P.

The SAG starts with a root vertex with no finished jobs and the time ranges of all processors
initialized to [0, 0]. The SAG is then gradually built from the root vertex. It picks a job that
should be scheduled next based on rules that will be explained later. After a job is picked, a
new edge and a new vertex are added to the SAG. The new edge connects the vertex where
the job was picked to the new vertex. Each vertex can have multiple edges emanating from
the vertex, i.e., multiple jobs can be picked in each vertex. After the branching of the root
vertex is done, we end up with another layer of vertices. Therefore, it is useful to see the SAG
as a directed level-structured graph. We repeat the same expansion procedure for each layer
of vertices. Moreover, vertices of the same layer can be merged before their expansion under
conditions described later.

Formally, we define the SAG as a directed acyclic graph GSAG =
(
VSAG, ESAG

)
, where

each vertex has a label that consists of the earliest finish time EFT and latest finish time
LFT of each processor. State of occupation of processor π is therefore defined by finish
time interval [EFTπ, LFTπ]. This interval represents times when the processor may finish
the execution of the last scheduled job and thus may become unoccupied. Finish time
intervals of all processors are defined as a set FTI = {[EFT1, LFT1] , . . . , [EFTm, LFTm]}.
Therefore, for each vertex v ∈ VSAG, we denote finish time intervals of all processors as
v.FTI = {[v.EFT1, v.LFT1] , . . . , [v.EFTm, v.LFTm]}. Furthermore, each edge e ∈ ESAG
corresponds to a single job labeled with e.J . There can be multiple edges in the SAG with
the same label.

Since the SAG is a directed level-structured graph, VSAG can be divided into disjoint sets
of vertices based on their distance from the root vertex vr. Distance of vertex v from vr is
the length of any directed path from vr to v. We define Vι as a set of all vertices from VSAG
with distance from vr equal to ι. Moreover, V0 = {vr}.

3.3.2 SAG generation

The generation algorithm begins with initializing the root vertex vr. It sets vr.FTI to
{[0, 0] , . . . , [0, 0]} and V0 = {vr}. Then it keeps alternating between two different phases. The
first one is called expansion phase and the second one is called merge phase. In the expansion
phase, all vertices of Vι are expanded and a new layer of vertices V ex

ι+1 is generated. The
merge phase is then performed upon vertices from V ex

ι+1. The merge phase tries to merge
some vertices from V ex

ι+1 with each other. After the merge phase is done, we end up with the

13

3. ET solutions ...
layer of merged vertices Vι+1. The algorithm keeps repeating the expansion phase and the
merge phase until a layer V|E| is generated, where |E| is the total number of ET jobs in E. The
procedure of SAG generation can also terminate earlier when a deadline miss occurs. If a
deadline miss occurs during SAG generation, then E is not schedulable under policy P . If the
entire SAG is generated without encountering a deadline miss, then E is schedulable under
policy P.

3.3.3 Expansion phase

Each vertex v ∈ Vι is characterized by finish time intervals of all processors v.FTI and by
applicable jobs in this vertex, which is denoted as v.EA. The applicable jobs are acquired
based on the position of the vertex in the SAG. Jobs that are the labels of edges along any
directed path from root vertex vr to v constitute a set of finished jobs v.EF . The set of
applicable jobs in vertex v is then acquired based on v.EF . With knowledge of v.FTI and
v.EA some jobs from v.EA are picked to be executed next. This adds new edges and vertices
to the SAG. After each vertex of Vι is expanded, a set of newly generated vertices V ex

ι+1 is
processed in the merge phase.

3.3.4 Merge phase

The merge phase takes a set of newly generated vertices V ex
ι+1, which is the result of the last

expansion phase, and tries to merge some vertices from this set with each other. Note that
the earliest and the latest release time of each ET job that has some predecessors in the
precedence chain are not part of the problem definition as their values depend on the time
when the predecessors finish their execution. Consequently, each such ET job may have a
different earliest or latest release time in two different vertices in the SAG. Therefore, for each
vertex v ∈ VSAG and for each ET job Ei,j,k ∈ v.EA, we define v.rmini,j,k and v.rmaxi,j,k to be the
earliest and the latest release time of Ei,j,k in vertex v, respectively. Two vertices v, w ∈ V ex

ι+1
can be merged if each of the following three conditions holds.. v.EF = w.EF .. [v.EFTπ, v.LFTπ] ∩ [w.EFTπ, w.LFTπ] 6= ∅, ∀π ∈ {1, . . . ,m}.. ∀Ei,j,k ∈ v.EA ∩ w.EA st. k > 1 ∧

(
v.rmini,j,k 6= w.rmini,j,k ∨ v.rmaxi,j,k 6= w.rmaxi,j,k

)
the following

condition must be satisfied. Considering EFTmax ← max
(
v.EFTσi,k , w.EFTσi,k

)
, if

v.rmaxi,j,k = w.rmaxi,j,k , then v.rmini,j,k ≤ EFTmax ∧ w.rmini,j,k ≤ EFTmax must hold, otherwise
v.rmaxi,j,k ≤ EFTmax ∧ w.rmaxi,j,k ≤ EFTmax must hold.

If these conditions are met, then v and w are merged. This means that all edges incident
to w are redirected to be incident to v, both earliest and latest release times of some jobs
in v.EA are updated to their respective modified versions, which is thoroughly described in
pseudocode of the merge phase, and the finish time intervals of all processors in vertex v are
updated as [v.EFTπ, v.LFTπ] ← [v.EFTπ, v.LFTπ] ∪ [w.EFTπ, w.LFTπ], ∀π ∈ {1, . . . ,m}.
Finally, vertex w gets deleted from the SAG. The merge phase terminates when there are no
pairs of vertices left in V ex

ι+1 that can be merged. The result of the merge phase is a set of
vertices Vι+1. Afterward, the expansion phase is called upon this set and the process repeats.

14

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

3.3.5 Parameters of vertices and edges

Regarding the parameters of vertices, each vertex v ∈ VSAG has the finish time intervals of
all processors v.FTI and the set of finished jobs v.EF from which we can derive the set of
applicable jobs v.EA. These parameters are already defined. Moreover, each vertex v has
a set of incoming edges denoted as v.in and a set of outgoing edges denoted as v.out. The
parameters of each edge e ∈ ESAG are its job label e.J , source vertex e.s, and destination
vertex e.d.

3.3.6 Job eligibility

This part explains the main rules based on which jobs are picked during the expansion phase
in some vertex v ∈ VSAG. Job eligibility provides us time widows when a job may start its
execution. First, we define a few terms regarding the release state of an ET job and the
occupation state of a processor. Given a set of applicable jobs v.EA, we say that an ET
job Ei,j,k ∈ v.EA is possibly released at time t when v.rmini,j,k ≤ t < v.rmaxi,j,k , and that Ei,j,k is
certainly released at time t when v.rmaxi,j,k ≤ t. Furthermore, given finish time intervals of all
processors v.FTI, we say that a processor π is certainly occupied at time t when t < v.EFTπ,
that it is possibly occupied at time t when v.EFTπ ≤ t < v.LFTπ, and it is unoccupied at
time t when v.LFTπ ≤ t.

Given a set of applicable jobs v.EA, a processor π, and jobs Ei,j,k, Ei′,j′,k′ ∈ v.EA ∩ Eπ,
we say that job Ei,j,k has higher policy priority than job Ei′,j′,k′ if the scheduling policy
P
(
∞, π,

{
Ei,j,k, Ei′,j′,k′

})
returns Ei,j,k. That is, the scheduling policy would pick Ei,j,k given

that both Ei,j,k and Ei′,j′,k′ are certainly released. In this work, the FP-EDF scheduling policy
is considered as policy P. However, without loss of generality, any other work-conserving
policy can be used as policy P instead.

For a given set of applicable jobs v.EA, a processor π, and time t, an ET job Etce is
certainly-eligible at time t if Etce is certainly released at time t, if processor π to which Etce
is dedicated is not certainly occupied at time t, and if there is no other certainly released
applicable job at time t that is dedicated to processor π with higher policy priority than Etce.
Formally, Etce ∈ v.EA ∩ Eπ is certainly-eligible at time t if

Etce.r
max ≤ t ∧ v.EFTπ ≤ t ∧ @Ei,j,k ∈ v.EA ∩ Eπ st.

Ei,j,k 6= Etce ∧ v.rmaxi,j,k ≤ t ∧ Ei,j,k = P
(
∞, π,

{
Ei,j,k, E

t
ce

})
.

We can observe that for each processor there may be at most one certainly-eligible job at time
t. We say that Etce dedicated to processor π does not exist when there is no certainly-eligible
job at time t dedicated to processor π.

Furthermore, for a given set of applicable jobs v.EA, a processor π, and time t, an ET
job Ei,j,k is possibly-eligible at time t if Ei,j,k is possibly released at time t, if processor π to
which Ei,j,k is dedicated is not certainly occupied at time t, and if either Etce dedicated to the
same processor as Ei,j,k does not exist or if Ei,j,k has higher policy priority than Etce. Note
that there can be multiple possibly-eligible jobs at time t dedicated to the same processor.
Formally, assuming dedication of Etce to processor π, we define the set of possibly-eligible jobs

15

3. ET solutions ...
at time t dedicated to processor π as{

Ei,j,k

∣∣∣∣Ei,j,k ∈ v.EA ∩ Eπ ∧ v.rmini,j,k ≤ t < v.rmaxi,j,k ∧ v.EFTπ ≤ t ∧(
Etce does not exist ∨ Ei,j,k = P

(
∞, π,

{
Ei,j,k, E

t
ce

}))}
.

3.3.7 Pseudocode

Expansion phase

The pseudocode of the expansion phase can be seen in Algorithm 3. The expansion phase
begins with a set of vertices Vι and it gradually expands each vertex v ∈ Vι by calling the
function GET_NEXT_NODES that returns a set of vertices V v that are the result of the
expansion of vertex v. The pseudocode of the function GET_NEXT_NODES provides a
high-level view of how a vertex gets expanded. If the vertex has no applicable jobs left, then
we know that we reached the last layer of the SAG. Otherwise, a time window [tmin, tmax]
is acquired on lines 14-15. Here, tmin corresponds to the minimal time when some job from
v.EA is either possibly or certainly-eligible. Furthermore, tmax corresponds to the minimal
time when some job from v.EA is certainly-eligible and it is dedicated to a processor that is
unoccupied at that time. Considering a larger time window would result in considering not
possible execution scenarios. The earliest start time (EST) and the latest start time (LST)
on lines 19-20 give us the boundary values of times when the corresponding job may start its
execution.

The function EXPAND_VERTEX generates a new vertex and a new edge in the SAG.
In the new vertex, the finish time interval of the processor to which the scheduled job Ei,j,k
is dedicated is modified accordingly as can be seen on lines 26-27. Moreover, if Ei,j,k has
a direct successor in the precedence chain, then the earliest and the latest release time of
such direct successor are assigned the earliest and the latest time when Ei,j,k may finish its
execution, respectively.

Detailed version of GET_NEXT_NODES

Algorithm 4 provides a low-level explanation and implementation of the function
GET_NEXT_NODES from Algorithm 3. The main idea of Algorithm 4 is that we are
searching for time windows when jobs are either possibly or certainly-eligible. Since we
consider only work-conserving policies, namely the FP-EDF policy, there is potentially only
one such time window for each job in each vertex of the SAG. In other words, if a job ceases to
be either certainly-eligible or possibly-eligible without consequently becoming certainly-eligible
in some vertex v in the SAG, then the job can never become possibly or certainly-eligible again
in this vertex. Recall that the time window when a job is either possibly or certainly-eligible
corresponds to times when the job may start its execution. Moreover, this procedure is done
for each processor separately.

Variables CEπ and PEπ, which are initialized on lines 5-6 in Algorithm 4, are utilized
to store a certainly-eligible job and a set of possibly-eligible jobs dedicated to processor π,
respectively. In this algorithm, the null pointer is used to express that something does not exist,
e.g., that Etce does not exist. The algorithm then iterates over all times t ∈ [tmin, tmax + 1],

16

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

Algorithm 3 Expansion phase
Input: set of vertices Vι
Output: set of vertices V exι+1

1: function EXPANSION_PHASE(Vι)
2: V exι+1 ← ∅
3: for each v ∈ Vι do
4: V v ← GET_NEXT_NODES(v)
5: V exι+1 ← V exι+1 ∪ V v

6: return V exι+1

7: function GET_NEXT_NODES(v)
8: if v.EA = ∅ then
9: return ∅ . All jobs are finished

10: V v ← ∅
11: tmin ←∞
12: tmax ←∞
13: for each Ei,j,k ∈ v.EA do
14: tmin ← min(tmin, max(v.rmini,j,k, v.EFTσi,k))
15: tmax ← min(tmax, max(v.rmaxi,j,k , v.LFTσi,k))
16: for each Ei,j,k ∈ v.EA do
17: if max(v.rmini,j,k, v.EFTσi,k) > tmax then
18: continue . The job cannot be scheduled within the given time window
19: [EST,LST]← all times when Ei,j,k is possibly or certainly-eligible converted to closed interval
20: [EST,LST]← [EST,LST] ∩ [tmin, tmax]
21: w ← EXPAND_VERTEX(v,Ei,j,k, EST, LST)
22: V v ← V v ∪ {w}
23: return V v

24: function EXPAND_VERTEX(v,Ei,j,k, EST, LST)
25: w ← new vertex with w.FTI ← v.FTI, w.EF ← v.EF ∪ {Ei,j,k}, w.out← ∅
26: w.EFTσi,k ← EST + cmini,j,k

27: w.LFTσi,k ← LST + cmaxi,j,k

28: if Ei,j,k has a direct successor Ei,j,k+1 in the precedence chain then
29: w.rmini,j,k+1 ← w.EFTσi,k

30: w.rmaxi,j,k+1 ← w.LFTσi,k

31: e← new edge with e.J ← Ei,j,k, e.s← v, e.d← w
32: w.in← {e}
33: v.out← v.out ∪ {e}
34: w.EA ← applicable jobs based on w.EF
35: return w

17

3. ET solutions ...
where tmin and tmax are obtained in the same way as in Algorithm 3, and, for each time t,
the algorithm iterates over all processors.

On line 18, a certainly-eligible job at time t dedicated to processor π may not exist. In that
case, Etce is set to null. If Etce exists and if it is different from the job stored in CEπ, then we
know that we obtained a new certainly-eligible job dedicated to processor π. In that case, if
there is some job stored in CEπ, then the vertex v gets expanded since the job stored in CEπ
is no longer certainly-eligible at time t. This expansion can be seen on line 21. Moreover, if
Etce was already stored in the set of possibly-eligible jobs dedicated to processor π, then it
gets deleted from this set since it became certainly-eligible. Etce is stored in CEπ afterwards.
Furthermore, if some job from PEπ is no longer possibly-eligible at time t, then the vertex v
gets expanded, which can be seen on line 28, and the job gets deleted from PEπ. Finally, we
add jobs dedicated to processor π that became possibly-eligible at time t to PEπ.

Algorithm 4 Detailed version of GET_NEXT_NODES
Input: vertex v
Output: set of vertices V v

1: function GET_NEXT_NODES(v)
2: if v.EA = ∅ then
3: return ∅
4: for π = 1 to m do
5: CEπ ← null
6: PEπ ← ∅
7: V v ← ∅
8: tmin ←∞
9: tmax ←∞

10: for each Ei,j,k ∈ v.EA do
11: tmin ← min(tmin, max(v.rmini,j,k, v.EFTσi,k))
12: tmax ← min(tmax, max(v.rmaxi,j,k , v.LFTσi,k))
13: for t = tmin to tmax + 1 do
14: for π = 1 to m do
15: if t = tmax + 1 then
16: Etce ← dummy job st. Etce = P

(
∞, π, {Ei,j,k, Etce}

)
for any job Ei,j,k ∈ v.EA ∩ Eπ

17: else
18: Etce ← certainly-eligible job at time t from v.EA ∩ Eπ or null
19: if Etce 6= null ∧ Etce 6= CEπ then
20: if CEπ 6= null then
21: w ← EXPAND_VERTEX(v, CEπ,max(CEπ.rmin, v.EFTπ), t− 1)
22: V v ← V v ∪ {w}
23: if Etce ∈ PEπ then
24: PEπ ← PEπ \ {Etce}
25: CEπ ← Etce
26: for each Ei,j,k ∈ PEπ do
27: if Ei,j,k is not possibly-eligible at time t then
28: w ← EXPAND_VERTEX(v,Ei,j,k,max(v.rmini,j,k, v.EFTπ), t− 1)
29: V v ← V v ∪ {w}
30: PEπ ← PEπ \ {Ei,j,k}
31: for each Ei,j,k ∈ v.EA ∩ Eπ do
32: if Ei,j,k is possibly-eligible at time t ∧ Ei,j,k /∈ PEπ then
33: PEπ ← PEπ ∪ {Ei,j,k}
34: return V v

18

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

The last iteration of the outermost for-loop in Algorithm 4, i.e., when t = tmax + 1, ensures
that the vertex v gets expanded according to the remaining possibly and certainly-eligible jobs
across all processors. This is done by creating a dummy job Etce on line 16 that has higher
policy priority than any other job. Considering the FP-EDF policy, this can be achieved by
setting Etce.p = −1.

Merge phase

The pseudocode of the merge phase can be seen in Algorithm 5. The merge phase keeps
merging vertices until there is no pair of vertices left that satisfies the three conditions that
allow a pair of vertices to be merged.

The first condition v.EF = w.EF is explicitly stated on line 2. The second condition
is expressed by the function FTI_INTERSECT which checks whether the corresponding
finish time intervals of vertices v and w intersect. The third condition is described by
functions MERGEABLE_JOBS and RELEASE_TIMES_CONDITION. The main idea of
this condition is that a job that has some predecessors in the precedence chain can have
different earliest or latest release times in two different vertices in the SAG. Therefore, if
we want to merge a pair of vertices v, w, then the earliest and latest release times of the
job in vertices v and w must have one of two properties that are described in the function
RELEASE_TIMES_CONDITION. The first property, which can be seen on lines 27-28, is
that if the latest release times are the same, then the earliest release times must be less than
or equal to EFTmax that was precomputed on line 22. The second property, which can be
seen on lines 30-31, is that if the latest release times are different, then the latest release
times must be less than or equal to EFTmax, which, if satisfied, also guarantees the earliest
release times to be less than or equal to EFTmax. To put it another way, these two properties
guarantee that at each time t ≥ EFTmax a job is either possibly released in both vertices v,
w or it is certainly released in both vertices v, w. Note that merging two vertices when there
is a job that is simultaneously possibly released in one of the vertices and certainly released in
the other vertex at some time t ≥ EFTmax would lead to considering an impossible execution
scenario.

If the merging conditions are satisfied, then the algorithm merges vertices v and w into
one vertex v, and the parameters of v are updated. First, all jobs that have different earliest
or latest release times in vertices v and w get their respective earliest and latest release
time updated, which can be seen on lines 5-6. The line 5 corresponds to acquiring the
minimum time across both vertices v, w when a job may become possibly-eligible. The line 6
corresponds to acquiring the minimum time across both vertices v, w when a job may become
certainly-eligible. Afterward, finish time intervals of all processors in vertex v are updated as
stated on lines 7-9. Furthermore, all edges incident to w are redirected to be incident to v.
Finally, the vertex w gets removed from the SAG.

Complete SAG generation

Algorithm 6 provides the pseudocode of the complete SAG generation procedure. As can be
seen on line 2, the procedure starts with conducting the worst-case approach to schedulability
analysis, which is described in Algorithm 2 in Section 3.2. This can potentially significantly
reduce the runtime of the SAG procedure since we know that if an instance is deemed

19

3. ET solutions ...
Algorithm 5 Merge phase

Input: set of vertices V exι+1
Output: none, changes are done locally

1: function MERGE_PHASE(V exι+1)
2: while ∃v, w ∈ V exι+1 st. v.EF = w.EF ∧FTI_INTERSECT(v, w)∧MERGEABLE_JOBS(v, w) do
3: for each job Ei,j,k ∈ v.EA ∩ w.EA do
4: if k > 1 ∧ (v.rmini,j,k 6= w.rmini,j,k ∨ v.rmaxi,j,k 6= w.rmaxi,j,k) then
5: v.rmini,j,k ← min(max(v.rmini,j,k, v.EFTσi,k),max(w.rmini,j,k, w.EFTσi,k))
6: v.rmaxi,j,k ← min(max(v.rmaxi,j,k , v.EFTσi,k),max(w.rmaxi,j,k , w.EFTσi,k))
7: for π = 1 to m do
8: v.EFTπ ← min(v.EFTπ, w.EFTπ)
9: v.LFTπ ← max(v.LFTπ, w.LFTπ)

10: for each edge e ∈ w.in do
11: e.d← v
12: v.in← v.in ∪ {e}
13: remove w
14: function FTI_INTERSECT(v, w)
15: for π = 1 to m do
16: if [v.EFTπ, v.LFTπ] ∩ [w.EFTπ, w.LFTπ] = ∅ then
17: return false
18: return true
19: function MERGEABLE_JOBS(v, w)
20: for each job Ei,j,k ∈ v.EA ∩ w.EA do . v.EA = w.EA

21: if k > 1 ∧ (v.rmini,j,k 6= w.rmini,j,k ∨ v.rmaxi,j,k 6= w.rmaxi,j,k) then
22: EFTmax ← max(v.EFTσi,k , w.EFTσi,k)
23: if ¬RELEASE_TIMES_CONDITION(EFTmax, v.rmini,j,k, v.r

max
i,j,k , w.r

min
i,j,k, w.r

max
i,j,k) then

24: return false
25: return true
26: function RELEASE_TIMES_CONDITION(EFTmax, v.rmini,j,k, v.r

max
i,j,k , w.r

min
i,j,k, w.r

max
i,j,k)

27: if v.rmaxi,j,k = w.rmaxi,j,k then
28: if v.rmini,j,k ≤ EFTmax ∧ w.rmini,j,k ≤ EFTmax then
29: return true
30: else
31: if v.rmaxi,j,k ≤ EFTmax ∧ w.rmaxi,j,k ≤ EFTmax then
32: return true
33: return false

unschedulable by the worst-case approach, then the instance is indeed unschedulable, and,
therefore, the generation of the SAG for such instance is needless.

If an instance is not deemed unschedulable by the worst-case approach, then the SAG
generation starts with initializing a root vertex vr. The initialization of vr can be seen on
lines 4-9. The first layer of vertices V0 consists of the root vertex. The algorithm then keeps
alternating between the expansion phase and the merge phase until there are no unfinished jobs
left or until a deadline miss occurs. Each expansion phase generates a new set of vertices V ex

ι+1.
This set is then processed by the merge phase resulting in a set of vertices Vι+1 which is then
used as the input of the next expansion phase. Note that even though not stated explicitly,
both the expansion phase and the merge phase have access to the inputs of Algorithm 6, i.e.,
to E and m.

If a deadline miss occurs after the expansion phase at any point of the SAG generation,
then the algorithm concludes that the instance is unschedulable. If no deadline miss occurs
during the entire SAG generation procedure, then the algorithm concludes that the instance

20

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

is schedulable.

Algorithm 6 Complete SAG generation
Input: set of ET tasks E, number of processors m
Output: true if the set of ET tasks E is schedulable under policy P, false otherwise

1: function GENERATE_SAG(E,m)
2: if ¬WORST_CASE_ANALYSIS(E,m) then
3: return false . Deadline miss occurred while conducting worst-case schedulability analysis
4: vr ← new vertex with vr.EF ← ∅, vr.in← ∅, vr.out← ∅
5: vr.E

A ← applicable jobs based on vr.EF
6: for π = 1 to m do
7: vr.EFTπ ← 0
8: vr.LFTπ ← 0
9: vr.FTI ← {[vr.EFT1, vr.LFT1], . . . , [vr.EFTm, vr.LFTm]}

10: V0 ← {vr}
11: for ι = 0 to |E| − 1 do . |E| is the total number of ET jobs in E
12: V exι+1 ← EXPANSION_PHASE(Vι)
13: for each v ∈ V exι+1 do
14: Ei,j,k ← e.J where v.in = {e} . e is the only edge in v.in
15: if v.LFTσi,k > dETi,j,k then
16: return false . Deadline miss
17: MERGE_PHASE(V exι+1)
18: Vι+1 ← V exι+1

19: return true . No deadline miss occurred during SAG generation

3.3.8 Discussion and example

The proposed SAG approach to schedulability analysis is unfortunately not exact. However, it
provides us a sufficient schedulability analysis, i.e., it may deem some instances unschedulable
even though they are in fact schedulable. Therefore, this approach is safe since it never deems
an instance schedulable when the instance is in fact unschedulable, which would be a critical
flaw.

The cause of the inexactness stems from the following fact. When a new vertex w is
generated by expanding a vertex v with a job Ei,j,k that has a direct successor Ei,j,k+1 in the
precedence chain, then the earliest and the latest release time of Ei,j,k+1 in the vertex w are
considered to be equal to the earliest and the latest time when Ei,j,k may finish its execution,
respectively. This allows for scalability of the SAG approach to schedulability analysis,
however, it also causes the schedulability analysis to be pessimistic, i.e., the schedulability
analysis accounts for some impossible execution scenarios as well.

The following example shows the manifestation of pessimism in the SAG approach to
schedulability analysis. Let us consider set of 2 ET tasks E = {E1, E2}, 2 processors, and
the FP-EDF policy. The parameters of the ET tasks can be seen in Table 3.2. Given the
parameters of the ET tasks, we can express E as a set of ET jobs. The parameters of the
ET jobs can be seen in Table 3.3. E is in fact schedulable under the FP-EDF policy, which
can be checked using the exact brute force approach, however, the SAG approach deems E
unschedulable under the FP-EDF policy. The entire generated SAG can be seen in Figure
3.1. A detailed description of the SAG generation follows.

Since the worst-case approach deems the example instance schedulable, the SAG generation

21

3. ET solutions ...
ET task τET dET rmin rmax cmin cmax p σ h l

E1 6 6 1 1 1 1 1 {1, 2} 1 2
E2 6 4 0 0 1 2 2 {1, 2} 1 2

Table 3.2: Parameters of ET tasks used in the SAG generation example, E = {E1, E2}.

ET job dET rmin rmax cmin cmax p σ

E1,1,1 5 1 1 1 1 1 1
E1,1,2 6 - - 1 1 1 2
E2,1,1 2 0 0 1 2 2 1
E2,1,2 4 - - 1 2 2 2

Table 3.3: Parameters of ET jobs used in the SAG generation example, E =
{{{E1,1,1, E1,1,2}} , {{E2,1,1, E2,1,2}}}.

procedure starts by initializing the root vertex vr with no jobs finished. Therefore, the set of
applicable jobs in vr consists of jobs E1,1,1 and E2,1,1, which are both dedicated to processor
1. Finish time intervals of both processors 1 and 2 are initialized to [0, 0]. The expansion
phase on V0 = {vr} considers inspecting only time t = 0 since job E2,1,1 is certainly released
at t = 0 and processor 1 is unoccupied at that time. The expansion phase concludes that
the FP-EDF policy would pick E2,1,1 at t = 0 since E1,1,1 is not released at that time in any
execution scenario. Therefore, a new vertex v1 is created with finish time interval of processor
1 updated as [v1.EFT1, v1.LFT1] =

[
0 + cmin2,1,1, 0 + cmax2,1,1

]
= [1, 2]. Moreover, job E2,1,2, which

is a successor of E2,1,1 in the precedence chain, is added to the set of applicable jobs in
vertex v1 with v1.r

min
2,1,2 = v1.EFT1 = 1 and v1.r

max
2,1,2 = v1.LFT1 = 2. Additionally, a new

edge emanating from vr and incident to v1 is added to the SAG with the label corresponding
to the picked job E2,1,1. This concludes the expansion phase on V0. The merge phase is
executed next but it does not change the SAG in any way since the expansion phase resulted
in generating only one new vertex.

The algorithm continues with expansion phase on V1 = {v1}. When expanding v1, all times
from a time window [1, 2] have to be inspected. Note that E1,1,1 is dedicated to processor
1, whereas E2,1,2 is dedicated to processor 2. At t = 1, E1,1,1 is certainly released and it
would be picked by the FP-EDF policy if the processor 1 would not be occupied at that
time since there is no other released job dedicated to processor 1. If E2,1,2 releases at t = 1,
then it would also be picked by the FP-EDF policy since processor 2 is unoccupied at that
time and there is no other released job dedicated to processor 2. At t = 2, the processor 1
becomes unoccupied and E1,1,1 is picked by the FP-EDF policy. Simultaneously, E2,1,2 is
certainly released at t = 2, and therefore, E2,1,2 is also picked by the FP-EDF policy since it
is dedicated to a different processor than E1,1,1. To summarize, the FP-EDF policy always
picks both E1,1,1 and E2,1,2 in time window [1, 2]. In other words, both E1,1,1 and E2,1,2
may start their execution as early as t = 1 and as late as t = 2. This results in creating
two new vertices v2 and v3 where [v2.EFT1, v2.LFT1] =

[
1 + cmin1,1,1, 2 + cmax1,1,1

]
= [2, 3] and

[v3.EFT2, v3.LFT2] =
[
1 + cmin2,1,2, 2 + cmax2,1,2

]
= [2, 4]. Moreover, job E1,1,2, which is a successor

of E1,1,1 in the precedence chain, is added to the set of applicable jobs in vertex v2 with
v2.r

min
1,1,2 = v2.EFT1 = 2 and v2.r

max
1,1,2 = v2.LFT1 = 3. This concludes the expansion phase.

22

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

The merge phase does not merge vertices v2 and v3 since v2.E
F 6= v3.E

F .
The expansion phase on V2 = {v2, v3} individually expands both v2 and v3. When expanding

v2, all times from a time window [1, 2] have to be inspected since time t = 2 is the earliest time
when there is a certainly released job dedicated to an unoccupied processor, namely E2,1,2.
The set of applicable jobs in v2 consists of jobs E1,1,2 and E2,1,2, which are both dedicated to
processor 2. If E2,1,2 releases at t = 1, then it would be picked by the FP-EDF policy since
there is no other released job dedicated to processor 2. At t = 2, there are two different possible
execution scenarios. If E1,1,2 releases at t = 2, then the FP-EDF policy would pick E1,1,2 since
it has higher priority than E2,1,2, which is certainly released at that time. If E1,1,2 does not
release at t = 2, then E2,1,2 would be picked by the FP-EDF policy instead. This results in
creating two new vertices v4 and v5 where [v4.EFT2, v4.LFT2] =

[
2 + cmin1,1,2, 2 + cmax1,1,2

]
= [3, 3]

and [v5.EFT2, v5.LFT2] =
[
1 + cmin2,1,2, 2 + cmax2,1,2

]
= [2, 4]. When expanding v3, all times

from a time window [1, 2] have to be inspected since E1,1,1 is certainly released at t = 1,
however, E1,1,1 is dedicated to processor 1 which becomes unoccupied at t = 2. E1,1,1 would
be picked by the FP-EDF policy at both times t = 1 and t = 2 since there is no other
released job dedicated to processor 1 at both t = 1 and t = 2. Therefore, a new vertex
w is created where [w.EFT1, w.LFT1] =

[
1 + cmin1,1,1, 2 + cmax1,1,1

]
= [2, 3]. Moreover, job E1,1,2,

which is a successor of E1,1,1 in the precedence chain, is added to the set of applicable jobs
in vertex w with w.rmin1,1,2 = w.EFT1 = 2 and w.rmax1,1,2 = w.LFT1 = 3. This concludes the
expansion phase on V2. The merge phase merges vertices v5 and w since v5.E

F = w.EF ,
[v5.EFT1, v5.LFT1] ∩ [w.EFT1, w.LFT1] 6= ∅, [v5.EFT2, v5.LFT2] ∩ [w.EFT2, w.LFT2] 6= ∅,
v5.r

min
1,1,2 = w.rmin1,1,2, and v5.r

max
1,1,2 = w.rmax1,1,2. The merge is done by redirecting the edge

emanating from v3 so that it becomes incident to v5. In this case, the parameters of v5 do not
change in any way as a result of the merge since v5.r

min
1,1,2 = w.rmin1,1,2 = 2, v5.r

max
1,1,2 = w.rmax1,1,2 = 3,

min(v5.EFT1, w.EFT1) = min(2, 2) = 2 = v5.EFT1, max(v5.LFT1, w.LFT1) = max(3, 3) =
3 = v5.LFT1, min(v5.EFT2, w.EFT2) = min(2, 2) = 2 = v5.EFT2, max(v5.LFT2, w.LFT2) =
max(4, 4) = 4 = v5.LFT2. The vertex w gets removed from the SAG afterward, which is
illustrated by using light gray color for w in Figure 3.1.

The final iteration of the expansion phase starts on V3 = {v4, v5}. The expansion phase
individually expands both v4 and v5. There is only one unfinished job for both v4 and v5.
When expanding v4, we see that E2,1,2 is certainly released at time t = 2, however, processor
2, to which E2,1,2 is dedicated, is certainly occupied until t = 3 when it becomes unoccupied.
Therefore, E2,1,2 is picked by the FP-EDF policy at t = 3. This results in creating a new
vertex v6 where [v6.EFT2, v6.LFT2] =

[
3 + cmin2,1,2, 3 + cmax2,1,2

]
= [4, 5]. When expanding v5,

all times from a time window [2, 4] have to be inspected since E1,1,2, which is dedicated to
processor 2, may release as early as t = 2, however, processor 2 may be occupied until t = 4.
If E1,1,2 is released at t = 2 and if processor 2 is not occupied at that time, then E1,1,2 is
picked by the FP-EDF policy. The same holds for time t = 3. At t = 4, processor 2 is
unoccupied and E1,1,2 is certainly released, and therefore, E1,1,2 is picked by the FP-EDF
policy. To summarize, the FP-EDF policy always picks E1,1,2 in time window [2, 4]. This
results in creating a new vertex v7 where [v7.EFT2, v7.LFT2] =

[
2 + cmin1,1,2, 4 + cmax1,1,2

]
= [3, 5].

This concludes the expansion phase on V3. At this point, it is found out that a deadline miss
occurred when v6 was created since v6.LFT2 = 5 > 4 = dET2,1,2. This is illustrated by using
red color for v6.LFT2 in Figure 3.1. Therefore, the SAG generation procedure terminates
with V ex

4 = {v6, v7}, i.e., without carrying out the final iteration of the merge phase. To

23

3. ET solutions ...
summarize, the SAG approach to schedulability analysis results in deeming the example
instance unschedulable since a deadline miss occurred during the SAG generation.

Such a result is a consequence of considering impossible execution scenarios during the
SAG generation. Vertex v2 in Figure 3.1 states that E1,1,2 may release in time interval [2, 3]
and that E2,1,2 may release in time interval [1, 2]. However, it is impossible for both E1,1,2
and E2,1,2 to release simultaneously at time t = 2. This stems from the scheduling of E1,1,1
and E2,1,1 which are the predecessors of E1,1,2 and E2,1,2 in the precedence chain, respectively.
E2,1,1 always starts its execution at t = 0. If E2,1,1 finishes its execution at t = 1, then E2,1,2
releases at t = 1, E1,1,1 starts its execution at t = 1, finishes its execution at t = 2, and E1,1,2
releases at t = 2. If E2,1,1 finishes its execution at t = 2, then E2,1,2 releases at t = 2, E1,1,1
starts its execution at t = 2, finishes its execution at t = 3, and E1,1,2 releases at t = 3. These
are the only two possibilities of how E1,1,1 and E2,1,1 can be scheduled using the FP-EDF
policy.

To summarize, considering Ei,j,k+1 to be released within a time interval which is equivalent
to the time interval when Ei,j,k may finish its execution is the root cause of pessimism in the
SAG approach to schedulability analysis. On the other hand, it allows for the scalability of
the SAG approach. We have yet to come up with a scalable solution that would provide exact
schedulability analysis in the dedicated multiprocessor setting. The amount of pessimism in
the SAG approach is evaluated in Section 4.3.

24

...................... 3.3. Schedule Abstraction Graph approach to schedulability analysis

E1,1,1 : (1,1)
E2,1,1 : (0,0)

1 : [0,0]
2 : [0,0]

V0 = {vr}

vr

E1,1,1 : (1,1)
E2,1,2 : (1,2)

1 : [1,2]
2 : [0,0]

V1 = {v1}

v1

E2,1,1

E1,1,1 : (1,1) 1 : [1,2]
2 : [2,4]

V2 = {v2, v3}

v3

E1,1,2 : (2,3)
E2,1,2 : (1,2)

1 : [2,3]
2 : [0,0]

v2

E1,1,1 E2,1,2

E1,1,2 : (2,3) 1 : [2,3]
2 : [2,4]

V3 = {v4, v5}

v5

E2,1,2 : (1,2) 1 : [2,3]
2 : [3,3]

v4

E1,1,2 : (2,3) 1 : [2,3]
2 : [2,4]

w

E1,1,1

E1,1,1E1,1,2

E2,1,2

1 : [2,3]
2 : [3,5]

V
4

ex
= {v6, v7}

v7

1 : [2,3]
2 : [4,5]

v6

E1,1,2E2,1,2

Figure 3.1: The example of the generated SAG. The inside of each vertex v is divided into two
columns. The left column contains all applicable jobs in the vertex and their respective earliest
and latest release time in the vertex, which is denoted as Ei,j,k :

(
v.rmini,j,k, v.r

max
i,j,k

)
. The right

column contains the finish time intervals of all processors in the vertex. The finish time interval of
a processor π is denoted as π : [v.EFTπ, v.LFTπ]. Each level of the SAG is labeled with a set of
vertices that constitute the corresponding level. Each edge is labeled with a scheduled job.

25

26

Chapter 4
ET solution evaluation

This chapter discusses the evaluation of the proposed approaches to schedulability analysis
of a set of ET tasks. The evaluation is done empirically, i.e., the results are derived from
experiments and measurements conducted on datasets of randomly generated instances, which
are publicly available on GitHub1. The proposed algorithms from Chapter 3 are implemented
in C++. The implementation supports the C++20 standard. The experiments were run on a
system with 2x Intel R© Xeon R© E5-2690 v4 CPU, 14 Cores/CPU; 2.6GHz; 35 MB SmartCache;
with 256 GB DDR4, ECC. Each instance was run on a single core and the memory available
to each instance was restricted to 8 GB. The time limit was set to 10 minutes.

4.1 Model of the multiprocessor platform

The experiments were conducted for one specific application of our problem. The application
is inspired by considering ET scheduling in networks such as Ethernet TSN [5]. The network
model is similar to the model described in [21]. The network is modeled as a connected
directed graph GNET =

(
VNET , ENET

)
. VNET is a set of nodes in the network and ENET is

a set of links connecting the nodes. We consider a full-duplex network for the experiments.
This means that, for two different nodes v, w ∈ VNET , there is a link (v, w) ∈ ENET iff there
is a link (w, v) ∈ ENET . The ET tasks correspond to data streams being transmitted from a
node v ∈ VNET to a node w ∈ VNET . The routing is done by finding the shortest path in the
network. Each link in our network model can transmit data of at most one data stream at a
time. Therefore, each link in the network model corresponds to a processor in our formal
definition of the multiprocessor platform.

The network model is utilized to determine σi for each ET task Ei. An example of the
network model can be seen in Figure 4.1. To demonstrate how σi is determined, let us consider
the following example for the network model in Figure 4.1. Let us assume that sending data
from node v to node w corresponds to ET task E1. The shortest path from v to w contains
links 7, 3, and 5 in this order. Therefore, σ1 = (7, 3, 5).

Note that a tree topology is considered for the network model in this work. This means
that there is always exactly one path connecting two different nodes v, w ∈ VNET such that
the path does not visit any link and any node more than once.

1https://github.com/halasluk/ETTT_dedicated_multicore

27

https://github.com/halasluk/ETTT_dedicated_multicore

4. ET solution evaluation...

v

x
1

2
y

3

4
z

5

6
w

7 8

Figure 4.1: Example of the network model. The edges correspond to the processors. Therefore,
they are labeled with a unique index π ∈ {1, . . . , 8}.

4.2 Instance generation

The instances were generated randomly using the following procedure. Note that the randomly
generated values are assumed to be generated uniformly at random. The procedure utilizes
the following input parameters:.Number of nodes

∣∣∣VNET ∣∣∣ – Total number of nodes in the network model..Number of ET tasks n – Total number of ET tasks of the instance..Target hyperperiod Aη – Maximum possible hyperperiod of the instance..Minimum period Aτ – Minimum possible period of a task..Maximum utilization U – Maximum utilization of each processor of the instance..Maximum release time shift percentage Ar – The maximum amount of shift of
release time from the beginning of a period for each task..Maximum deadline shift percentage Ad – The maximum amount of shift of deadline
from the end of a period for each task..Maximum release jitter percentage Aj – The maximum amount of release jitter for
each task..Maximum execution time variation percentage Ac – The maximum amount of
execution time variation for each task..Minimum priority pmin – The highest priority a task can have..Maximum priority pmax – The lowest priority a task can have.

The procedure works as follows. First, the network model with a random tree topology is
generated such that it has

∣∣∣VNET ∣∣∣ nodes. Then, for each of n ET tasks, two different nodes
from the generated network model are chosen and the shortest path between them is found.
This determines σi. Furthermore, we can determine which links in the network model are
utilized by at least one task. This provides us with the number of processors m. The period
τETi is chosen randomly such that Aτ ≤ τETi and Aη is divisible by τETi .

28

... 4.2. Instance generation

When generating cmaxi , the aim is that the utilization of each processor is at most equal to
U . Therefore, we define

U = max
π∈{1,...,m}

Uπ,

where Uπ is the utilization of processor π, which is calculated as

Uπ =
∑

{Ei∈E|π∈σi}

cmaxi

τETi
.

The latest release time rmaxi is generated randomly such that

rmaxi

τETi
≤ Ar.

Then, the deadline dETi is generated randomly such that

τETi − dETi
τETi

≤ Ad.

Note that the procedure also ensures that rmaxi + li ·cmaxi ≤ dETi ≤ τETi holds. We can observe
that Ar and Ad restrict the time window when the jobs of a task’s occurrence may execute
without missing their deadlines. This time window will be referred to as slack time. The
higher Ar and Ad, the more restricted slack time.

Afterward, rmini is generated randomly such that

rmaxi − rmini

rmaxi

≤ Aj ,

for rmaxi > 0. If rmaxi = 0, then rmini = 0. Similar to rmini , cmini is generated randomly such
that

cmaxi − cmini

cmaxi − 1 ≤ Ac,

for cmaxi > 1. If cmaxi = 1, then cmini = 1. We can observe that Aj and Ac influence the
number of execution scenarios for the instance. The higher Aj and Ac, the higher the number
of execution scenarios.

Finally, for a task Ei, the priority pi is generated randomly such that pmin ≤ pi ≤ pmax.
Note that the values of all parameters that represent percentages, i.e., U , Ar, Ad, Aj , and Ac,
can be set to any real number from a closed interval [0, 1].

4.2.1 Generated datasets

First, one dataset Da0 was generated for the experiments in Section 4.3. Da0 contains 10000
instances. The generation of the instances slightly differed from what is described in Section
4.2. The reason for this slight change is thoroughly explained in Section 4.3. The instances
were generated with the following parameters: n = 4, Aη = 12, Aτ = 6, U = 0.3, Ar = 1,
Ad = 1, pmin = 1, pmax = 4. Note that

∣∣∣VNET ∣∣∣ was not provided, therefore, no network
model was generated. Instead, we manually set σ1 = (1), σ2 = (1, 2, 3), σ3 = (2), σ4 = (2, 3),

29

4. ET solution evaluation...
and, therefore, m = 3. Moreover, Aj and Ac were not provided. Instead, the instances were
generated such that rmaxi − rmini ≤ 1 and cmaxi − cmini ≤ 1, for each ET task Ei.

Then, we generated 9 datasets for the experiments in Section 4.4. These datasets were
generated according to the procedure described in Section 4.2. Each of these datasets contains
1000 instances. For the generation of these 9 datasets, a single network model was generated
with

∣∣∣VNET ∣∣∣ = 10. Each of these datasets was then generated with the following parameters:
1 ≤ n ≤ 20, Aη = 107, Aτ = 106, U = 0.3, pmin = 1, pmax = 5. Furthermore, each of these
datasets was generated with a different combination of values of parameters Ar, Ad, Aj , and
Ac. The combination of values of these parameters for each dataset can be seen in Table 4.1,
e.g., dataset Da6 was generated with Ar = Ad = Aj = Ac = 0.3.

Ar = Ad = 0.1 Ar = Ad = 0.2 Ar = Ad = 0.3
Aj = Ac = 0 Da1 Da2 Da3
Aj = Ac = 0.3 Da4 Da5 Da6
Aj = Ac = 0.6 Da7 Da8 Da9

Table 4.1: Values of parameters Ar, Ad, Aj , and Ac used for generation of datasets Da1 , . . . ,Da9 .

Datasets Da1 , . . . ,Da9 contain arguably harder instances than dataset Da0 since the instances
consist of up to 20 ET tasks and since the target hyperperiod is nearly 106 times larger than
the target hyperperiod of the instances from Da0 .

4.3 Evaluation of pessimism in the SAG approach and
evaluation of the worst-case approach impact

To evaluate the amount of pessimism in the SAG approach, we needed to generate a dataset of
sufficiently small instances such that the exact brute force approach can verify the schedulability
of each instance in a reasonable amount of time. We struggled to find a dataset such that
there is at least one instance that is schedulable according to the brute force approach but is
deemed unschedulable by the SAG approach. This already suggested that the manifestation
of pessimism in the SAG approach is quite rare. Ultimately, we generated dataset Da0 . The
results of the schedulability analysis of the instances from Da0 can be seen in Table 4.2. We can
observe that the false negative rate of the SAG approach is approximately only 0.27 %, i.e., the
SAG approach deems an instance unschedulable even though it is in fact schedulable in 0.27 %
of the instances. Therefore, the true positive rate of the SAG approach is approximately
99.73 %, i.e., the SAG approach deems an instance schedulable when it is indeed schedulable
in 99.73 % of the instances.

Moreover, we evaluate the worst-case approach to schedulability analysis in this section.
Recall that the worst-case approach is used as a speedup in the SAG approach. When the
worst-case approach deems the instance unschedulable, it is indeed unschedulable. Therefore,
we evaluate the true negative rate of the worst-case approach. The results of the worst-case
approach to schedulability analysis can be seen in Table 4.2. We can observe that the
worst-case approach deems an instance unschedulable when it is indeed unschedulable in
approximately 81.54 % of the instances.

30

.......................4.4. Evaluation of schedulability and runtime of the SAG approach

All instances BF schedulable only BF unschedulable only
BF schedulable 5866 5866 0
BF unschedulable 4134 0 4134
SAG schedulable 5850 5850 0
SAG unschedulable 4150 16 4134
WC schedulable 6629 5866 763
WC unschedulable 3371 0 3371

Table 4.2: Results of the schedulability analysis of Da0 using the brute force (BF) approach, the
SAG approach, and the worst-case (WC) approach.

4.4 Evaluation of schedulability and runtime of the SAG
approach

The runtime of the SAG approach was measured for datasets Da1 , . . . ,Da9 . Figure 4.2 shows
the runtimes relative to the number of ET tasks of each instance for each dataset. Figure 4.3
shows the runtimes relative to the number of ET jobs of each instance for each dataset. Note
that the layout of the subfigures in both Figure 4.2 and Figure 4.3 corresponds to the layout
of datasets Da1 , . . . ,Da9 in Table 4.1 in Subsection 4.2.1, i.e., the runtimes for dataset Da1 , for
example, are shown in the subfigure in the top left corner of Figure 4.2 and Figure 4.3.

We can observe that the instances from datasets with higher release jitter and execution
time variation have longer runtimes. This is caused by the fact that the branching factor of
the SAG is much higher for these instances. Therefore, the smallest instance from datasets
Da7 ,Da8 ,Da9 that reached the time limit consists of 63 ET jobs, whereas the smallest instance
from datasets Da4 ,Da5 ,Da6 that reached the time limit consists of 117 ET jobs. Recall that
the time limit was set to 10 minutes. Note that the runtimes of instances from datasets
Da1 ,Da2 ,Da3 are quite low because these datasets were generated with no release jitter and no
execution time variation. Moreover, the low runtimes of many unschedulable instances across
all datasets are the consequence of the worst-case approach speedup. The largest instance
with non-zero release jitter and execution time variation that was verified to be schedulable
by the SAG approach to schedulability analysis consists of 350 ET jobs.

The schedulability of the instances from each dataset is shown in Table 4.3. Note that
the layout of Table 4.3 corresponds to the layout of Table 4.1 in Subsection 4.2.1. Each
cell in Table 4.3 that corresponds to a dataset contains the total number of schedulable
instances, the total number of unschedulable instances, and the total number of instances that
reached the time limit in this order. When we inspect Table 4.3 column-wise, we can observe
that the datasets with the largest slack time, i.e., datasets Da1 ,Da4 ,Da7 , contain the maximal
number of schedulable instances in their respective rows. For datasets with smaller slack
time, the number of schedulable instances decreases, whereas the number of unschedulable
instances increases. Moreover, the number of schedulable instances also decreases with the
increase of release jitter and execution time variation which is caused by the increase in
the number of instances that reached the time limit. To summarize, dataset Da1 has the
highest schedulability ratio of 82.4 %, whereas dataset Da9 has the lowest schedulability ratio
of approximately 49.9 %.

31

4. ET solution evaluation...

Ar = Ad = 0.1 Ar = Ad = 0.2 Ar = Ad = 0.3
Aj = Ac = 0 824, 176, 0 781, 219, 0 694, 306, 0
Aj = Ac = 0.3 601, 224, 175 560, 276, 164 482, 344, 174
Aj = Ac = 0.6 449, 198, 353 399, 265, 336 358, 360, 282

Table 4.3: Schedulability of instances from datasets Da1 , . . . ,Da9 . Each cell corresponding to a
dataset contains the total number of schedulable instances, the total number of unschedulable
instances, and the total number of instances that reached the time limit in this order.

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of ET tasks

10 2

100

102

104

106

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout

Figure 4.2: Runtimes of the SAG approach to schedulability analysis for datasets Da1 , . . . ,Da9
relative to the number of ET tasks.

32

.......................4.4. Evaluation of schedulability and runtime of the SAG approach

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106
Ti

m
e

[m
s]

0 100 200 300 400 500
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400 500
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

0 100 200 300 400
Number of ET jobs

10 2

100

102

104

106

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout

Figure 4.3: Runtimes of the SAG approach to schedulability analysis for datasets Da1 , . . . ,Da9
relative to the number of ET jobs.

33

34

Chapter 5
ET+TT solutions

This chapter describes and thoroughly explains the algorithms used for scheduling the
combination of ET and TT tasks in the dedicated multiprocessor setting. Given a set of ET
tasks E, a set of TT tasks T, a number of processors m, and a scheduling policy P, the main
aim is to find a valid set of start times S for the TT jobs. As mentioned in Section 2.7, S is
valid if S is feasible and if no execution scenario results in a deadline miss and if each TT job
Ti,j,k always starts its execution at its predetermined start time si,j,k when the ET jobs are
scheduled online.

First, a simple but non-scalable brute force algorithm is proposed in Section 5.1. The brute
force algorithm is exact, i.e., the algorithm either finds a valid set of start times if it exists
or proves that a valid set of start times does not exist. Section 5.2 describes the novel and
scalable algorithm that is safe but pessimistic, i.e., if the algorithm finds a solution, then the
solution is indeed a valid set of start times, however, the algorithm may not always be able to
find a solution even if it exists. Note that this chapter makes use of OOP notation to express
the parameters of objects.

5.1 Brute force algorithm

First, we need to describe a method that, for a set of ET tasks E, a set of TT tasks T, a
number of processors m, a scheduling policy P, and a set of start times S, checks whether
S is a valid set of start times. This can be done by transforming the TT tasks T into ET
tasks and subsequently launching the brute force schedulability analysis of the combination
of the transformed TT tasks and the ET tasks E. Formally, TT job Ti,j,k becomes fixed at
start time si,j,k ∈

[
rTTi,j,k, d

TT
i,j,k − cTTi,j,k

]
when it is transformed into an ET job Efi,j,k such that

Efi,j,k.r
min = Efi,j,k.r

max = si,j,k, Efi,j,k.cmin = Efi,j,k.c
max = cTTi,j,k, E

f
i,j,k.d

ET = si,j,k + cTTi,j,k,
Efi,j,k.p = 0, and Efi,j,k is dedicated to processor σ′i,k.

The set of TT tasks T becomes fixed when each TT job Ti,j,k is fixed. The set of fixed TT
tasks is denoted as Ef . We can check whether, for the set of ET tasks E, the set of TT tasks
T, the number of processors m, and the scheduling policy P , a set of start times S is valid by
launching the brute force schedulability analysis of the set E ∪ Ef , where Ef was obtained
using S. The set of start times S is valid if the set E ∪ Ef is schedulable under policy P, i.e.,
no execution scenario results in a deadline miss. Note that a constraint pi,j,k > 0 is added for
each ET job Ei,j,k ∈ E to make sure that the fixed TT jobs are always prioritized over the ET
jobs when the FP-EDF policy is considered as policy P.

35

5. ET+TT solutions...
The pseudocode of the brute force algorithm can be seen in Algorithm 7. The pseudocode

consists of two functions. The brute force algorithm is launched by calling the function
RUN_BRUTE_FORCE which simply initiates recursive fixing of the TT jobs. As the
name suggests, the function FIX_RECURSIVELY finds all possible start times for each TT
job recursively starting with T1,1,1. This function also makes use of an auxiliary set Stemp
that stores already-found start times. Stemp is initialized to ∅ within calling the function
FIX_RECURSIVELY for the first time since no TT job has its start time assigned yet. Lines
13-18 ensure that the executions of the TT jobs dedicated to the same processor do not
overlap. This is done by checking whether the execution of Ti,j,k overlaps with the execution
of any TT job dedicated to the same processor as Ti,j,k that has its start time already assigned
when considering a start time si,j,k for Ti,j,k. Line 20 describes that a TT job Ti,j,k+1 is
released when its direct predecessor in the precedence chain Ti,j,k finishes its execution.

When i > n′, we know that a feasible set of start times S was found. To check whether S
is valid, Ef is created using S, and then the brute force schedulability analysis is launched on
line 7 by calling the function BRUTE_FORCE_ANALYSIS, which is described in Algorithm
1 in Section 3.1, with inputs E ∪ Ef and m. Note that even though not stated explicitly,
the function FIX_RECURSIVELY has access to all inputs of Algorithm 7, i.e., not only
to T but also to both E and m. Moreover, it should be noted that when launching the
function BRUTE_FORCE_ANALYSIS with its first input being E ∪ Ef , then Efi,j,k.rET =
Efi,j,k.r

min = Efi,j,k.r
max is considered, i.e., Efi,j,k.rET is considered to be revealed, ∀Efi,j,k ∈ Ef .

Therefore, ∀Efi,j,k ∈ Ef , lines 26-27 in Algorithm 1 are ignored.
If, for the set E ∪ Ef , no execution scenario results in a deadline miss, then the set of

start times S is valid. In that case, Algorithm 7 terminates and returns S by propagating
it through the recursive calls. Otherwise, ∅ is returned as can be seen on line 28 and the
function FIX_RECURSIVELY continues to find a different feasible set of start times S. If
there exists no feasible set of start times S that is also valid, then Algorithm 7 terminates by
returning ∅.

The main advantage of the brute force algorithm is that it is exact. The disadvantage of
this algorithm is that it heavily suffers from combinatorial explosion. The runtime of the
brute force algorithm depends on the number of execution scenarios NE , which is defined in
Section 3.1, as well as on the number of feasible sets of start times. Given an instance of the
combination of ET and TT tasks, we cannot easily compute how many feasible sets of start
times there are. However, we can estimate that number with an upper bound. If we only
consider that deadlines have to be met for all TT jobs, then the number of sets of start times
that satisfy this condition can be expressed using the parameters of TT tasks in a closed form
as

NT =
n′∏
i=1

(
dTTi − rTTi − l′i ·

(
cTTi − 1

)
l′i

)h′
i

,

where dTTi −rTTi − l′i ·
(
cTTi − 1

)
= dTTi −rTTi − l′i ·cTTi + l′i ≥ l′i holds thanks to the assumption

that, for each TT task Ti ∈ T, rTTi + l′i · cTTi ≤ dTTi ⇒ dTTi − rTTi − l′i · cTTi ≥ 0. This means
that the brute force schedulability analysis may be launched up to NT times. Therefore, for
the combination of ET and TT tasks, the total number of execution scenarios to be simulated
is upper bounded by NE ·NT .

Let us now consider the following example of the combination of ET and TT tasks. First,
for a set of ET tasks E, let us consider the same set as in the example in Section 3.1 given

36

.. 5.1. Brute force algorithm

Algorithm 7 Brute force algorithm for ET+TT
Input: set of TT tasks T, set of ET tasks E, number of processors m
Output: valid set of start times S if it exists, ∅ otherwise

1: function RUN_BRUTE_FORCE(T, E,m)
2: return FIX_RECURSIVELY(T, 1, 1, 1, ∅) . Initial call to recursive fixation of TT jobs
3: function FIX_RECURSIVELY(T, i, j, k,Stemp)
4: if i > n′ then . n′ is the total number of TT tasks
5: S ← Stemp
6: Ef ← set of fixed TT tasks T using S
7: if BRUTE_FORCE_ANALYSIS(E ∪ Ef ,m) then
8: return S
9: else

10: π ← σ′
i,k . σ′

i,k is a processor to which the TT job Ti,j,k is dedicated
11: for si,j,k = rTTi,j,k to (dTTi,j,k − cTTi,j,k) do
12: overlap← false
13: for each TT job Ti′,j′,k′ ∈ Tπ st. si′,j′,k′ ∈ Stemp do . Tπ is a set of all TT jobs dedicated to π
14: if [si,j,k, si,j,k + cTTi,j,k) ∩ [si′,j′,k′ , si′,j′,k′ + cTTi′,j′,k′) 6= ∅ then
15: overlap← true
16: break
17: if overlap then
18: continue
19: if k + 1 ≤ l′i then
20: rTTi,j,k+1 ← si,j,k + cTTi,j,k . Release time of the TT job Ti,j,k+1 is revealed
21: S ← FIX_RECURSIVELY(T, i, j, k + 1,Stemp ∪ {si,j,k})
22: else if j + 1 ≤ h′

i then
23: S ← FIX_RECURSIVELY(T, i, j + 1, 1,Stemp ∪ {si,j,k})
24: else
25: S ← FIX_RECURSIVELY(T, i+ 1, 1, 1,Stemp ∪ {si,j,k})
26: if S 6= ∅ then
27: return S
28: return ∅

by Table 3.1. For this E, we computed that NE = 1056. For T, let us consider a set of 4 TT
tasks given by Table 5.1.

TT task dTT rTT cTT h′ l′

T1 54 27 12 1 2
T2 38 6 10 2 3
T3 20 9 4 4 2
T4 10 2 2 8 3

Table 5.1: Example of TT task parameters for calculation of NT , T = {T1, T2, T3, T4}.

For T given by Table 5.1, we can calculate NT as

NT =
(

5
2

)1

·
(

5
3

)2

·
(

5
2

)4

·
(

5
3

)8

= 1015.

This means that there are up to 1015 feasible sets of start times in this example. To summarize,
for this particular combination of ET and TT tasks, the total number of execution scenarios
to be simulated is upper bounded by 1056 · 1015 = 1071.

37

5. ET+TT solutions...
5.2 Fixation Graph Generation algorithm

This section describes a scalable algorithm that, for the combination of ET and TT tasks in
the dedicated multiprocessor setting, finds a valid set of start times for the TT jobs. This
algorithm is an extension of the SAG generation procedure described in Section 3.3. It adds
a new phase called fixation phase and the resulting graph of the algorithm is called fixation
graph. Therefore, this algorithm is called Fixation Graph Generation (FGG). The terminology
and the main ideas of the FGG algorithm are inspired by [14, 15].

First, the structure of the fixation graph will be described. Furthermore, a high-level
description of the FGG will be provided. A low-level description of the FGG with pseudocode
will be provided afterward. Finally, the sources of pessimism in this approach and possible
improvements will be discussed.

5.2.1 Fixation graph structure

The structure of the fixation graph is very similar to that of the SAG. The fixation graph
can be described as a directed acyclic graph. Similar to the SAG, the fixation graph starts
with a root vertex vr. Vertices and edges of the fixation graph inherit their parameters from
vertices and edges of the SAG, respectively. Each edge in the fixation graph corresponds to
either a single ET job or a single TT job. Therefore, the vertices of the fixation graph can be
expanded by both ET and TT jobs. Expanding a vertex with a TT job will be called “fixing
a TT job” to distinguish it from expanding a vertex with an ET job. A TT job is fixed after
determining its start time.

So far we have considered one set of finished jobs in vertex v consisting of ET jobs. From
now on, v.EF will be called the set of finished ET jobs in vertex v. Furthermore, in each
vertex v of the fixation graph, we will distinguish between the set of finished ET jobs v.EF
and the set of finished TT jobs v.TF . The set v.EF is therefore redefined to consist only of
ET jobs that are the labels of edges along any directed path from the root vertex vr to v. The
set v.TF is defined to consist only of TT jobs that are the labels of edges along any directed
path from the root vertex vr to v.

Furthermore, from now on, v.EA will be called the set of applicable ET jobs. In each vertex
v of the fixation graph, we will distinguish between the set of applicable ET jobs v.EA and
the set of applicable TT jobs v.TA. The set v.TA is defined to consist of TT jobs Ti,j,k that
satisfy the following conditions:

Ti,j,k is unfinished ∧
(

(j = 1 ∧ k = 1) ∨

(
j > 1 ∧ k = 1 ∧ Ti,j−1,l′i is finished

)
∨ (k > 1 ∧ Ti,j,k−1 is finished)

)
.

Note that this definition differs from the definition of applicable ET jobs only by substituting
TT jobs for ET jobs. Moreover, note that v.EA and v.TA are computed from v.EF and v.TF ,
respectively.

Similar to the SAG, the fixation graph is a directed level-structured graph, which means
that its vertices can be divided into disjoint sets based on their distance from the root vertex
vr. However, the main difference between the SAG and the fixation graph is that the layers

38

..................................5.2. Fixation Graph Generation algorithm

of vertices in the fixation graph are generated recursively. From now on, a layer of vertices
will be denoted as V .

Moreover, when fixing a TT job, given a layer of vertices V , all vertices v ∈ V get expanded
by the TT job. Hence, we say that the fixation of a TT job is done on the entire layer of
vertices V .

5.2.2 Description of the FGG

The FGG algorithm begins with initializing the root vertex vr. In the root vertex, all ET
and TT jobs are unfinished and the finish time interval of each processor is set to [0, 0]. The
initial layer of vertices, therefore, consists only of vr. Then, the main loop in the algorithm is
launched on the initial layer of vertices. The main loop in the algorithm gradually performs
three phases: the fixation phase, the expansion phase, and the merge phase. The fixation
phase determines whether there are any applicable TT jobs on layer V that may be fixed
by finding suitable start times for them. If there is a TT job that may be fixed on the layer
V , then a new layer V fix is generated by fixing that job, and the main loop is recursively
relaunched on V fix. If no TT job may be fixed on the layer V , then the expansion phase is
performed upon V . This results in generating a new layer of vertices V ex. The merge phase
is then performed upon V ex. Note that the expansion phase and the merge phase correspond
to those described in the SAG generation. After obtaining the layer of merged vertices, the
algorithm continues with the next iteration of the main loop on this layer. If a deadline miss
occurs during the FGG, then the algorithm backtracks to the last layer of vertices when a TT
job was fixed, i.e., it returns from the last recursive call and removes all vertices and edges
that were added to the fixation graph after the last TT job fixation. If there is a different TT
job that may be fixed, then the algorithm fixes it. Otherwise, the algorithm resumes the main
loop and executes the expansion phase. The algorithm terminates when it generates a layer of
vertices with no unfinished ET and TT jobs. In this case, the TT jobs are fixed in such a way
that no execution scenario results in a deadline miss. Therefore, we obtain the valid set of
start times S by gathering the start times of the fixed TT jobs. However, if all combinations
of the fixed TT jobs considered by the FGG algorithm result in a deadline miss, then the
algorithm terminates and returns ∅ since it was not able to find a valid set of start times S.

The FGG algorithm uses a tabu list L to speed up the computation by pruning the search
space. To put it simply, L stores all combinations of the fixed TT jobs and their start times
that caused a deadline miss to occur during the generation of the fixation graph. Therefore,
when fixing a TT job Ti,j,k, we check whether the combination of Ti,j,k and its start time
si,j,k with the already-fixed TT jobs and their start times is stored in L. If the combination
is stored in L, then the algorithm does not fix Ti,j,k at si,j,k since we already know that this
combination results in a deadline miss.

5.2.3 Fixation phase

The main aim of the fixation phase is to find the start times at which the TT jobs may be
fixed. As mentioned before, the fixation of a TT job is done on the entire layer of vertices V .
Moreover, we know that when the FGG algorithm backtracks to a layer V , all vertices and
edges that were added to the fixation graph after fixing a TT job on layer V are removed.
Therefore, we can see that, for any layer V in the fixation graph, all vertices v ∈ V have the
same set of finished TT jobs and, therefore, the same set of applicable TT jobs. Moreover,

39

5. ET+TT solutions...
similar to the ET jobs, the release time of each TT job that has some predecessors in the
precedence chain depends on the time when the predecessors finish their execution. Therefore,
for each vertex v in the fixation graph and for each TT job Ti,j,k, we define v.rTTi,j,k to be the
release time of Ti,j,k in vertex v. However, note that, for any layer V in the fixation graph,
an applicable TT job Ti,j,k has the same release time in all vertices v ∈ V . To summarize,
given a layer of vertices V , it holds that v.TF = w.TF , v.TA = w.TA, and v.rTTi,j,k = w.rTTi,j,k,
for each Ti,j,k ∈ v.TA ∩ w.TA and for each two different vertices v, w ∈ V .

The fixation phase finds the start times as follows. First, it computes the earliest possible
time across all vertices of the layer V when some applicable ET job may start its execution.
Then, it computes the earliest start time si,j,k for each applicable TT job Ti,j,k such that Ti,j,k
is released and σ′i,k is unoccupied in all vertices of V . If the computed start time si,j,k causes
the applicable TT job Ti,j,k to miss its deadline, then the fixation phase concludes and the
FGG algorithm has to backtrack since we know that Ti,j,k cannot be fixed without missing its
deadline on any other layer of vertices resulting from further expansion of V . If the earliest
possible time when some applicable ET job may start its execution is not strictly less than
si,j,k, then Ti,j,k may be fixed at si,j,k. In other words, this condition ensures that no collision
can occur in any execution scenario.

5.2.4 Pseudocode

Fixation phase

The pseudocode of the fixation phase can be seen in Algorithm 8. The fixation phase begins
with a set of vertices V . It returns either a set Sfix or the null pointer. Sfix contains pairs.
Each pair (Ti,j,k, si,j,k) ∈ Sfix consists of a TT job Ti,j,k that may be fixed at start time
si,j,k. The set Sfix is initialized to ∅. Recall that all vertices from V contain the same set of
applicable TT jobs, and each applicable TT job has the same release time in all vertices from
V . Therefore, when we want to inspect the applicable TT jobs and their release times, we
can pick an arbitrary vertex w ∈ V as can be seen on line 3. If all TT jobs are finished, then
there are no TT jobs left to be fixed, and, therefore, ∅ is returned.

The algorithm continues by computing tf on lines 6-9 which is the earliest possible time
across all vertices of V when some applicable ET job may start its execution. In other words,
tf provides us with an upper bound on the time at which an applicable TT job may be fixed.
Fixing an applicable TT job at some time greater than tf is not allowed since a collision may
occur. Then, the earliest start time si,j,k is computed for each applicable TT job Ti,j,k. The
computation of si,j,k ensures that there is no ongoing execution of any job at si,j,k in any
execution scenario, i.e., the processor σ′i,k is unoccupied at si,j,k in all execution scenarios. If
si,j,k causes Ti,j,k to miss its deadline, then the null pointer is returned as shown on line 15
to signal that there is an applicable TT job that cannot be fixed on V without missing its
deadline. If si,j,k is less than or equal to tf , then the pair (Ti,j,k, si,j,k) is added to Sfix as
can be seen on line 17. The fixation phase terminates by returning Sfix. Note that Sfix may
be an empty set if there is no applicable TT job that may be fixed before or at tf .

Fixation of TT jobs in the fixation graph

The fixation of a TT job Ti,j,k at si,j,k can be seen in Algorithm 9. Note that the fixation is
done on the entire layer of vertices V . This means that each vertex v ∈ V is expanded with

40

..................................5.2. Fixation Graph Generation algorithm

Algorithm 8 Fixation phase
Input: set of vertices V
Output: set Sfix or null

1: function FIXATION_PHASE(V)
2: Sfix ← ∅
3: w ← arbitrary vertex from V
4: if w.TA = ∅ then
5: return Sfix . All TT jobs are finished
6: tf ←∞
7: for each v ∈ V do
8: for each Ei,j,k ∈ v.EA do
9: tf ← min(tf , max(v.rmini,j,k, v.EFTσi,k)) . The latest time when some TT job may be fixed

10: for each Ti,j,k ∈ w.TA do
11: si,j,k ← w.rTTi,j,k
12: for each v ∈ V do
13: si,j,k ← max(si,j,k, v.LFTσ′

i,k
) . The earliest possible start time of Ti,j,k

14: if si,j,k + cTTi,j,k > dTTi,j,k then
15: return null . Deadline miss
16: if si,j,k ≤ tf then
17: Sfix ∪ {(Ti,j,k, si,j,k)}
18: return Sfix

Ti,j,k. The structure of the function EXPAND_BY_FIXING is similar to that of the function
EXPAND_VERTEX from Algorithm 3 in Subsection 3.3.7. When creating a new vertex w,
we can observe that w.EFTσ′

i,k
= w.LFTσ′

i,k
since we know that Ti,j,k finishes its execution

exactly at si,j,k + cTTi,j,k. Moreover, if Ti,j,k has a direct successor Ti,j,k+1 in the precedence
chain, then Ti,j,k+1 is released at the time when Ti,j,k finishes its execution, which can be seen
on line 8. The algorithm terminates when all vertices v ∈ V are expanded, and it returns a
new layer of vertices V fix.

Complete FGG procedure

Algorithm 10 provides the pseudocode of the complete FGG procedure. The main loop in
the FGG algorithm is situated in the recursive function GENERATE_RECURSIVELY. This
function accepts a layer of vertices V and a set Stemp as its input parameters. The set Stemp
locally stores the fixed TT jobs and their start times in the form of pairs (Ti,j,k, si,j,k). The
FGG is launched by calling the function FGG_INIT. As can be seen on line 1, the tabu list L
is a global variable initialized to an empty list when launching the FGG. The FGG starts with
initializing a root vertex vr. The initialization of vr can be seen on lines 3-9. The first layer of
vertices V consists of the root vertex. The function FGG_INIT then makes the first recursive
call to the function GENERATE_RECURSIVELY with V and ∅ as the input parameters.

The main while-loop in the function GENERATE_RECURSIVELY starts with checking
the condition on line 14. We will skip it for now and come back to it later since it is a
terminating condition. The algorithm then performs the fixation phase described in Algorithm
8 upon V . There are two possible outcomes of the fixation phase.

The first outcome of the fixation phase is that there is an applicable TT job that cannot
be fixed on V without missing its deadline. In that case, the null pointer is returned from

41

5. ET+TT solutions...
Algorithm 9 Fixation of TT jobs in the fixation graph

Input: set of vertices V , TT job Ti,j,k, start time si,j,k
Output: set of vertices V fix

1: function EXPAND_BY_FIXING(V , Ti,j,k, si,j,k)
2: V fix ← ∅
3: for each v ∈ V do
4: w ← new vertex with w.FTI ← v.FTI, w.EF ← v.EF , w.TF ← v.TF ∪ {Ti,j,k}, w.out← ∅
5: w.EFTσ′

i,k
← si,j,k + cTTi,j,k

6: w.LFTσ′
i,k
← si,j,k + cTTi,j,k

7: if Ti,j,k has a direct successor Ti,j,k+1 in the precedence chain then
8: w.rTTi,j,k+1 ← si,j,k + cTTi,j,k

9: e← new edge with e.J ← Ti,j,k, e.s← v, e.d← w
10: w.in← {e}
11: v.out← {e}
12: w.EA ← applicable ET jobs based on w.EF
13: w.TA ← applicable TT jobs based on w.TF
14: V fix ← V fix ∪ {w}
15: return V fix

the fixation phase, and the algorithm backtracks by returning ∅ from the current recursive
call of the function GENERATE_RECURSIVELY, which can be seen on line 19.

The second outcome of the fixation phase is that Sfix is a set containing pairs (Ti,j,k, si,j,k)
and, therefore, some TT jobs may be fixed. The algorithm then iterates over all pairs
(Ti,j,k, si,j,k) ∈ Sfix. Note that Sfix can also be an empty set. In that case, there are no pairs
to iterate over, and the algorithm continues with executing line 29. For a pair (Ti,j,k, si,j,k),
the algorithm first checks whether the combination of (Ti,j,k, si,j,k) with the already-fixed TT
jobs and their start times is known to result in a deadline miss. This is done by checking
the condition on line 21. If this condition is satisfied, then Ti,j,k is not fixed at si,j,k and
the algorithm continues by picking another pair from Sfix. Otherwise, Ti,j,k is fixed at si,j,k
and a new layer of vertices V fix is generated as described in Algorithm 9. The function
GENERATE_RECURSIVELY is then recursively called with V fix and Stemp∪{(Ti,j,k, si,j,k)}
as the input parameters. The function GENERATE_RECURSIVELY returns either a valid
set of start times S if it is found or an empty set. Therefore, the condition on line 25 ensures
that the valid set of start times S gets propagated through the recursive calls. Returning an
empty set signals that the algorithm backtracked since the current combination of the fixed
TT jobs and their start times caused a deadline miss to occur. In that case, the combination
Stemp ∪ {(Ti,j,k, si,j,k)} is added to the tabu list L. Moreover, all vertices and edges that
were generated as a result of fixing Ti,j,k at si,j,k on layer V are removed from the fixation
graph, which is expressed on line 28. If other TT jobs may be fixed on V , then the algorithm
continues by fixing them one by one.

If all fixations of the TT jobs on V resulted in a deadline miss, then the algorithm continues
with executing line 29. This line states that if all ET jobs are finished, then the algorithm
needs to backtrack since it was not able to fix the unfinished TT jobs in such a way that all
deadlines are met. If there are some unfinished ET jobs on V , then the expansion phase,
which is described in Algorithm 3 in Subsection 3.3.7, is performed upon V . Note that when
expanding a vertex v using the function EXPAND_VERTEX from Algorithm 3, the new
vertex w is additionally initialized with w.TF = v.TF , and, therefore, with w.TA = v.TA in

42

..................................5.2. Fixation Graph Generation algorithm

Algorithm 10 Fixation Graph Generation
Input: set of TT tasks T, set of ET tasks E, number of processors m
Output: valid set of start times S if it is found, ∅ otherwise

1: L ← [] . Tabu list L is a global variable
2: function FGG_INIT(T, E,m)
3: vr ← new vertex with vr.EF ← ∅, vr.TF ← ∅, vr.in← ∅, vr.out← ∅
4: vr.E

A ← applicable ET jobs based on vr.EF
5: vr.T

A ← applicable TT jobs based on vr.TF
6: for π = 1 to m do
7: vr.EFTπ ← 0
8: vr.LFTπ ← 0
9: vr.FTI ← {[vr.EFT1, vr.LFT1], . . . , [vr.EFTm, vr.LFTm]}

10: V ← {vr}
11: return GENERATE_RECURSIVELY(V , ∅)
12: function GENERATE_RECURSIVELY(V , Stemp)
13: while true do
14: if v.EA = ∅ ∧ v.TA = ∅, ∀v ∈ V then
15: S ← collected start times from Stemp
16: return S . Valid S found
17: Sfix ← FIXATION_PHASE(V)
18: if Sfix = null then
19: return ∅ . Deadline of some applicable TT job cannot be met
20: for each (Ti,j,k, si,j,k) ∈ Sfix do
21: if L contains Stemp ∪ {(Ti,j,k, si,j,k)} then
22: continue . Stemp ∪ {(Ti,j,k, si,j,k)} is known to result in a deadline miss
23: V fix ← EXPAND_BY_FIXING(V , Ti,j,k, si,j,k)
24: S ← GENERATE_RECURSIVELY(V fix,Stemp ∪ {(Ti,j,k, si,j,k)})
25: if S 6= ∅ then
26: return S . Propagate valid S
27: add Stemp ∪ {(Ti,j,k, si,j,k)} to L
28: remove all edges and vertices beyond V
29: if v.EA = ∅, ∀v ∈ V then
30: return ∅ . All ET jobs are finished
31: V ex ← EXPANSION_PHASE(V)
32: for each v ∈ V ex do
33: Ei,j,k ← e.J where v.in = {e} . e is the only edge in v.in
34: if v.LFTσi,k > dETi,j,k then
35: return ∅ . Deadline miss
36: MERGE_PHASE(V ex)
37: V ← V ex

43

5. ET+TT solutions...
the fixation graph. If a deadline miss occurs during the expansion phase, then the algorithm
backtracks as can be seen on line 35. Otherwise, the merge phase, which is described in
Algorithm 5 in Subsection 3.3.7, is performed upon the result of the expansion phase V ex. The
main loop then starts its next iteration with the result of the merge phase being assigned to
V . Note that even though not stated explicitly, the function GENERATE_RECURSIVELY
and all functions called within GENERATE_RECURSIVELY have access to the inputs of
Algorithm 10, i.e., to T, E, and m.

When the condition on line 14 is satisfied, then we know that all ET and TT jobs are
finished and no deadline miss occurred. Hence, the TT jobs are fixed in such a way that
their start times form a valid set of start times. Therefore, we obtain the valid set of start
times S simply by collecting the start times of the fixed TT jobs from Stemp, i.e., the second
element of each (Ti,j,k, si,j,k) ∈ Stemp is collected. S is then propagated through the recursive
calls of the function GENERATE_RECURSIVELY. Eventually, Algorithm 10 terminates
and returns S. If all combinations of start times of the TT jobs found by the FGG algorithm
result in a deadline miss, then Algorithm 10 terminates and returns ∅ to signal that it was
not able to find a valid set of start times.

5.2.5 Discussion

As already mentioned, the proposed FGG algorithm is safe but pessimistic. We have identified
three main sources of pessimism in the FGG algorithm. First, the FGG inherits the expansion
and the merge phase from the proposed SAG approach to schedulability analysis. Therefore,
the FGG algorithm also inherits the pessimism rooted in the expansion phase from the SAG
approach. The second source of pessimism stems from the fact that the FGG is not able to
find all possible start times for the TT jobs since the fixation phase only considers vertices of
a single layer. The fixation phase would have to operate on multiple levels of the fixation
graph. The third source of pessimism stems from the fact that TT jobs are always fixed as
early as possible, and, therefore, not all possible combinations of start times are considered.
The second and the third source of pessimism are discussed in [14, 15] as well. We have yet to
come up with a scalable solution that would eradicate the inexactness of the proposed FGG
algorithm in the dedicated multiprocessor setting.

However, we propose a speedup for the FGG algorithm. The logic behind this speedup
is that when fixing the TT jobs, the algorithm backtracks more eagerly. Specifically, when
the algorithm finds out that the combination of the fixed TT jobs and their start times is
in the tabu list L, we make the algorithm backtrack instead of continuing to fix other TT
jobs on the current layer. Therefore, this speedup can be simply achieved by substituting the
“continue” on line 22 in Algorithm 10 for “return ∅”. We will call the modified version of
the FGG algorithm Fixation Graph Generation with Eager Backtracking (FGG-EB). Note
that this approach has another source of pessimism stemming from the possibility of not
considering some combinations of start times found by the fixation phase. The performance
of both FGG and FGG-EB is evaluated in Chapter 6.

44

Chapter 6
ET+TT solution evaluation

This chapter discusses the evaluation of the proposed algorithms from Chapter 5. The
algorithms are implemented in C++. The implementation supports the C++20 standard. The
evaluation is done empirically, i.e., the results are derived from experiments and measurements
conducted on datasets of randomly generated instances, which are publicly available on
GitHub1. The experiments were run on a system with 2x Intel R© Xeon R© E5-2690 v4 CPU,
14 Cores/CPU; 2.6GHz; 35 MB SmartCache; with 256 GB DDR4, ECC. Each instance was
run on a single core and the memory available to each instance was restricted to 8 GB. The
time limit was set to 10 minutes.

6.1 Instance generation

The instances were generated utilizing the generation procedure from Section 4.2. This
procedure is described to generate instances consisting of ET tasks. However, it can be easily
modified such that it generates instances of both ET and TT tasks. First, the network model
from Section 4.1 can be utilized for the TT tasks in the same way as it is utilized for the
ET tasks. The generation procedure additionally utilizes parameter n′ that determines the
total number of TT tasks of the instance. Moreover, for the generation of the TT tasks,
the parameters Aj , Ac, pmin, and pmax are not considered since the TT tasks are defined to
have no release jitter, no execution time variation, and no priority. The values for τTTi , rTTi ,
and dTTi are obtained analogically to τETi , rmaxi , and dETi , respectively. Furthermore, when
generating cTTi and cmaxi , the aim is that the utilization of each processor is at most equal to
U . Therefore, Uπ, which is the utilization of processor π, is calculated as

Uπ =
∑

{Ei∈E|π∈σi}

cmaxi

τETi
+

∑
{Ti∈T |π∈σ′

i}

cTTi
τTTi

when an instance consisting of both ET and TT tasks is generated. To summarize, for the
combination of ET and TT tasks, the generation procedure utilizes its input parameters as
follows:.Parameters utilized for both ET and TT tasks –

∣∣∣VNET ∣∣∣, Aη, Aτ , U , Ar, Ad..Parameters utilized exclusively for ET tasks – n, Aj , Ac, pmin, pmax..Parameters utilized exclusively for TT tasks – n′.
1https://github.com/halasluk/ETTT_dedicated_multicore

45

https://github.com/halasluk/ETTT_dedicated_multicore

6. ET+TT solution evaluation
6.1.1 Generated datasets

First, one dataset Db0 was generated for the experiments in Section 6.2. Db0 contains 10000
instances. For the generation of Db0, a single network model was generated with

∣∣∣VNET ∣∣∣ = 4.
The instances were generated with the following parameters: n = 3, n′ = 3, Aη = 12, Aτ = 6,
U = 0.3, Ar = Ad = 0.6, Aj = Ac = 0.6, pmin = 1, pmax = 3. Therefore, Db0 contains rather
simple instances since they consist of only 3 ET tasks and 3 TT tasks and since their target
hyperperiod is very low.

Then, we generated 9 datasets for the experiments in Section 6.3. Each of these datasets
contains 1000 instances. For the generation of these 9 datasets, a single network model was
generated with

∣∣∣VNET ∣∣∣ = 10. Each of these datasets was then generated with the following
parameters: n = 8, 1 ≤ n′ ≤ 20, Aη = 107, Aτ = 106, U = 0.3, pmin = 1, pmax = 4.
Furthermore, each of these datasets was generated with a different combination of values
of parameters Ar, Ad, Aj , and Ac. The combination of values of these parameters for each
dataset can be seen in Table 6.1.

Ar = Ad = 0.1 Ar = Ad = 0.2 Ar = Ad = 0.3
Aj = Ac = 0 Db1 Db2 Db3
Aj = Ac = 0.3 Db4 Db5 Db6
Aj = Ac = 0.6 Db7 Db8 Db9

Table 6.1: Values of parameters Ar, Ad, Aj , and Ac used for generation of datasets Db1, . . . ,Db9.

Datasets Db1, . . . ,Db9 contain arguably harder instances than dataset Db0 since the instances
consist of 8 ET tasks and up to 20 TT tasks and since the target hyperperiod is nearly 106

times larger than the target hyperperiod of the instances from Db0.

6.2 Evaluation of pessimism in the FGG algorithm and the
FGG-EB algorithm

To evaluate the amount of pessimism in the FGG algorithm and the FGG-EB algorithm,
we needed to generate a dataset of sufficiently small instances such that the exact brute
force algorithm can verify the schedulability of each instance in a reasonable amount of time.
Therefore, dataset Db0 was generated. The schedulability of the instances from Db0 for each of
the evaluated algorithms can be seen in Table 6.2. We can observe that the false negative
rate of the FGG algorithm is approximately 17.56 %, i.e., the FGG algorithm is not able to
find a valid set of start times even though it exists in 17.56 % of the instances. Therefore, the
true positive rate of the FGG algorithm is approximately 82.44 %, i.e., the FGG algorithm is
able to find a valid set of start times when it exists in 82.44 % of the instances.

Furthermore, we evaluate the false negative rate and the true positive rate of the modified
FGG algorithm, i.e., the FGG-EB algorithm. We can observe that the false negative rate
of the FGG-EB algorithm is approximately 19.61 %. Therefore, the true positive rate of the
FGG-EB algorithm is approximately 80.39 %.

To summarize, the FGG algorithm is slightly more successful in finding a valid set of start
times when it exists than the more pessimistic FGG-EB algorithm. The difference amounts

46

.......... 6.3. Evaluation of schedulability and runtime of the FGG algorithm and the FGG-EB algorithm

All instances BF schedulable only BF unschedulable only
BF schedulable 8373 8373 0
BF unschedulable 1627 0 1627
FGG schedulable 6903 6903 0
FGG unschedulable 3097 1470 1627
FGG-EB schedulable 6731 6731 0
FGG-EB unschedulable 3269 1642 1627

Table 6.2: Resulting schedulability of the instances from Db0 for the brute force (BF) algorithm,
the FGG algorithm, and the FGG-EB algorithm.

to approximately 2.05 % of the instances when the solution exists.

6.3 Evaluation of schedulability and runtime of the FGG
algorithm and the FGG-EB algorithm

The runtimes of the FGG algorithm and the FGG-EB algorithm were measured for datasets
Db1, . . . ,Db9. Figure 6.1 and Figure 6.2 show the runtimes of the FGG algorithm and the
FGG-EB algorithm, respectively, relative to the number of TT tasks of each instance for each
dataset. Figure 6.3 and Figure 6.4 show the runtimes of the FGG algorithm and the FGG-EB
algorithm, respectively, relative to the number of TT jobs of each instance for each dataset.
Note that the layout of the subfigures in each of these figures corresponds to the layout of
datasets Db1, . . . ,Db9 in Table 6.1 in Subsection 6.1.1, i.e., the runtimes for dataset Db1, for
example, are shown in the subfigure in the top left corner of each of these figures. Note that
the label “Memout” is used for instances that reached the memory limit, which is set to 8 GB.

For both FGG and FGG-EB, we can observe that the instances from datasets with higher
release jitter and execution time variation tend to have longer runtimes. Recall that release
jitter and execution time variation are considered only for ET tasks, and each instance contains
8 ET tasks. Therefore, even the smallest instances from datasets Db7,Db8,Db9 that contain just
a few TT jobs reached the time limit of 10 minutes, for both FGG and FGG-EB. Moreover, for
both FGG and FGG-EB, we can observe a general pattern, especially for datasets Db1, . . . ,Db6,
that the schedulable instances tend to have lower runtimes than the unschedulable instances.
This stems from the fact that, for schedulable instances, the algorithms terminate when a
solution is found, however, for infeasible instances, the algorithms explore a much larger
search space. Furthermore, the smallest instance that reached the memory limit across all
evaluated datasets contained 45 TT jobs when running the FGG algorithm, whereas the
smallest instance that reached the memory limit across all evaluated datasets contained 126
TT jobs when running the FGG-EB algorithm. The largest solved instance consists of 404
TT jobs and 128 ET jobs. Note that both FGG and FGG-EB were able to find a solution for
this instance.

The schedulability of the instances from each dataset is shown in Table 6.3. Note that the
layout of Table 6.3 corresponds to the layout of Table 6.1 in Subsection 6.1.1. Each cell in
Table 6.3 that corresponds to a dataset contains the results for both FGG and FGG-EB. When
we inspect Table 6.3 column-wise, we can observe that the datasets with the largest slack
time, i.e., datasets Db1,Db4,Db7, contain the maximal number of schedulable instances in their

47

6. ET+TT solution evaluation

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]
0 2 4 6 8 10 12 14 16 18 20

Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout Memout

Figure 6.1: Runtimes of the FGG algorithm for datasets Db1, . . . ,Db9 relative to the number of TT
tasks.

respective rows, for both FGG and FGG-EB. For datasets with smaller slack time, the number
of schedulable instances decreases, whereas the number of unschedulable instances increases.
Moreover, we can observe that the number of instances that reached the time limit or the
memory limit is lower for FGG-EB across all evaluated datasets. However, for each evaluated
dataset, the FGG algorithm was able to solve more instances than the FGG-EB algorithm
even though the FGG algorithm reached the time limit or the memory limit more often than
the FGG-EB algorithm. To summarize, for the FGG algorithm, dataset Db1 has the highest
schedulability ratio of approximately 96.4 %, whereas dataset Db9 has the lowest schedulability
ratio of 57.5 %. For the FGG-EB algorithm, dataset Db1 has the highest schedulability ratio of
approximately 89.8 %, whereas dataset Db9 has the lowest schedulability ratio of approximately
36.5 %. Therefore, although the FGG-EB algorithm is faster than the FGG algorithm, the
FGG-EB algorithm yields poorer results in terms of schedulability than the FGG algorithm.

48

.......... 6.3. Evaluation of schedulability and runtime of the FGG algorithm and the FGG-EB algorithm

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105
Ti

m
e

[m
s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

0 2 4 6 8 10 12 14 16 18 20
Number of TT tasks

10 1

101

103

105

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout Memout

Figure 6.2: Runtimes of the FGG-EB algorithm for datasets Db1, . . . ,Db9 relative to the number of
TT tasks.

Ar = Ad = 0.1 Ar = Ad = 0.2 Ar = Ad = 0.3

Aj = Ac = 0 891, 33, 0, 76
879, 100, 0, 21

815, 52, 1, 132
778, 187, 0, 35

796, 65, 6, 133
750, 202, 0, 48

Aj = Ac = 0.3 838, 37, 37, 88
833, 139, 1, 27

745, 75, 53, 127
735, 230, 4, 31

574, 115, 123, 188
554, 382, 17, 47

Aj = Ac = 0.6 736, 74, 77, 113
727, 195, 38, 40

528, 135, 171, 166
523, 368, 63, 46

345, 255, 226, 174
329, 572, 49, 50

Table 6.3: Schedulability of instances from datasets Db1, . . . ,Db9. Each cell corresponding to a
dataset contains two rows. The first row contains the results of the FGG algorithm and the second
row contains the results of the FGG-EB algorithm. Each row in a cell corresponding to a dataset
consists of the total number of schedulable instances, the total number of unschedulable instances,
the total number of instances that reached the time limit, and the total number of instances that
reached the memory limit in this order.

49

6. ET+TT solution evaluation

0 100 200 300
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105
Ti

m
e

[m
s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout Memout

Figure 6.3: Runtimes of the FGG algorithm for datasets Db1, . . . ,Db9 relative to the number of TT
jobs.

50

.......... 6.3. Evaluation of schedulability and runtime of the FGG algorithm and the FGG-EB algorithm

0 100 200 300
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300
Number of TT jobs

10 1

101

103

105
Ti

m
e

[m
s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

0 100 200 300 400
Number of TT jobs

10 1

101

103

105

Ti
m

e
[m

s]

Schedulable Unschedulable Timeout Memout

Figure 6.4: Runtimes of the FGG-EB algorithm for datasets Db1, . . . ,Db9 relative to the number of
TT jobs.

51

52

Chapter 7
Conclusion

This thesis addressed the problem of the combination of TT and ET scheduling with dedicated
resources and precedences. The first part of this thesis addressed the ET schedulability
analysis in our setting. We described an exact yet non-scalable brute force approach to
schedulability analysis. Furthermore, we proposed a scalable approach to schedulability
analysis based on the SAG generation algorithm, which is safe but pessimistic. The SAG
approach also incorporates a speedup in the form of a necessary worst-case approach to
schedulability analysis. The proposed algorithms utilized the FP-EDF policy.

Then, the proposed algorithms were empirically evaluated on datasets of randomly generated
instances. First, we measured the amount of pessimism in the SAG approach by comparing
its results to the results of the exact brute force approach on small instances. We found out
that the SAG approach successfully verifies that the instance is schedulable in 99.73 % of the
instances. Moreover, the SAG approach is able to verify that the instance is unschedulable
in a matter of tens of microseconds in 81.54 % of the unschedulable instances thanks to the
worst-case approach speedup. The runtime of the SAG approach increases with the amount
of release jitter and execution time variation. The largest instance with non-zero release
jitter and execution time variation that was verified to be schedulable by the SAG approach
within the time limit of 10 minutes consisted of 350 ET jobs. The schedulability ratio of the
SAG approach decreases with the decrease in slack time. For the evaluated datasets, the
schedulability ratio of the SAG approach ranged from 49.9 % up to 82.4 %.

The second part of the thesis addressed the problem of finding a valid set of start times
for the TT jobs. We described an exact yet non-scalable brute force algorithm. Moreover,
we proposed the FGG algorithm that extends the SAG generation algorithm. The FGG
algorithm is scalable and safe but pessimistic. Furthermore, we proposed a slightly modified
version of the FGG algorithm which we call the FGG-EB algorithm.

The proposed algorithms for finding a valid set of start times for the TT jobs were empirically
evaluated on datasets of randomly generated instances as well. First, we measured the amount
of pessimism in both FGG and FGG-EB by comparing their results to the results of the exact
brute force algorithm on small instances. We found out that the FGG algorithm is able to
find a solution when it exists in 82.44 % of the instances, whereas the FGG-EB algorithm
is able to find a solution when it exists in 80.39 % of the instances. Therefore, the FGG
algorithm is less pessimistic than the FGG-EB algorithm. Similar to the SAG approach to ET
schedulability analysis, the runtimes of both FGG and FGG-EB increase with the amount of
release jitter and execution time variation as the runtimes depend not only on the number of
TT jobs but also on the number of ET jobs. The largest solved instance consisted of 404 TT

53

7. Conclusion..
jobs and 128 ET jobs. Both FGG and FGG-EB were able to solve this instance. Furthermore,
for all evaluated datasets, fewer instances reached the time limit of 10 minutes or the memory
limit of 8 GB when running the FGG-EB algorithm than in the case of the FGG algorithm,
however, the schedulability ratio of the FGG algorithm was higher than that of the FGG-EB
algorithm. Similar to the SAG approach to ET schedulability analysis, the schedulability
ratios of both FGG and FGG-EB decrease with the decrease in slack time. For the evaluated
datasets, the schedulability ratio of the FGG algorithm ranged from 57.5 % up to 96.4 %,
and the schedulability ratio of the FGG-EB algorithm ranged from 36.5 % up to 89.8 %. To
summarize, the FGG-EB algorithm requires less time and memory than the FGG algorithm,
however, the FGG algorithm provides better results as it is able to solve more instances than
the FGG-EB algorithm.

54

Bibliography

[1] J. Real, S. Sáez, and A. Crespo, “A hierarchical architecture for time- and event-triggered
real-time systems,” Journal of Systems Architecture, vol. 101, p. 101652, Dec. 2019,
https://doi.org/10.1016/j.sysarc.2019.101652.

[2] B. Potteiger, A. Dubey, F. Cai, X. Koutsoukos, and Z. Zhang, “Moving target defense
for the security and resilience of mixed time and event triggered cyber–physical systems,”
Journal of Systems Architecture, vol. 125, p. 102420, Apr. 2022, https://doi.org/10.1016/
j.sysarc.2022.102420.

[3] A. Finzi and S. S. Craciunas, “Integration of SMT-based Scheduling with RC Network
Calculus Analysis in TTEthernet Networks,” in 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE, Sep. 2019, pp.
192–199, https://doi.org/10.1109/etfa.2019.8869365.

[4] A. Finzi, S. S. Craciunas, and M. Boyer, “A Real-time Calculus Approach for Integrating
Sporadic Events in Time-triggered Systems,” 2022, https://doi.org/10.48550/arXiv.2204.
10264.

[5] S. Srinivasan, G. Nelissen, and R. J. Bril, “Work-in-Progress: Analysis of TSN Time-
Aware Shapers using Schedule Abstraction Graphs,” in 2021 IEEE Real-Time Systems
Symposium (RTSS). IEEE, Dec. 2021, pp. 508–511, https://doi.org/10.1109/rtss52674.
2021.00052.

[6] L. Leonardi, L. L. Bello, and G. Patti, “Combining Earliest Deadline First Scheduling
with Scheduled Traffic Support in Automotive TSN-Based Networks,” Applied System
Innovation, vol. 5, no. 6, p. 125, Dec. 2022, https://doi.org/10.3390/asi5060125.

[7] M. Barzegaran, N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, “Real-Time Traffic
Guarantees in Heterogeneous Time-sensitive Networks,” in Proceedings of the 30th
International Conference on Real-Time Networks and Systems. ACM, Jun. 2022, pp.
46–57, https://doi.org/10.1145/3534879.3534921.

[8] A. Berisa, L. Zhao, S. S. Craciunas, M. Ashjaei, S. Mubeen, M. Daneshtalab, and
M. Sjödin, “AVB-aware Routing and Scheduling for Critical Traffic in Time-sensitive
Networks with Preemption,” in Proceedings of the 30th International Conference on
Real-Time Networks and Systems. ACM, Jun. 2022, pp. 207–218, https://doi.org/10.
1145/3534879.3534926.

55

https://doi.org/10.1016/j.sysarc.2019.101652
https://doi.org/10.1016/j.sysarc.2022.102420
https://doi.org/10.1016/j.sysarc.2022.102420
https://doi.org/10.1109/etfa.2019.8869365
https://doi.org/10.48550/arXiv.2204.10264
https://doi.org/10.48550/arXiv.2204.10264
https://doi.org/10.1109/rtss52674.2021.00052
https://doi.org/10.1109/rtss52674.2021.00052
https://doi.org/10.3390/asi5060125
https://doi.org/10.1145/3534879.3534921
https://doi.org/10.1145/3534879.3534926
https://doi.org/10.1145/3534879.3534926

Bibliography ..
[9] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed time/event-

triggered distributed embedded systems,” in Proceedings of the tenth international
symposium on Hardware/software codesign - CODES 2002. ACM Press, 2002, pp.
187–192, https://doi.org/10.1109/CODES.2002.1003623.

[10] A. Albert et al., “Comparison of event-triggered and time-triggered
concepts with regard to distributed control systems,” Embedded World,
vol. 171902, pp. 235–252, Jan. 2004. [Online]. Available: https:
//www.researchgate.net/publication/228803355_Comparison_of_event-triggered_
and_time-triggered_concepts_with_regard_to_distributed_control_systems

[11] Y. Itami, T. Ishigooka, and T. Yokoyama, “A Distributed Computing Environment
for Embedded Control Systems with Time-Triggered and Event-Triggered Processing,”
in 2008 14th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE, Aug. 2008, pp. 45–54, https://doi.org/10.1109/rtcsa.
2008.38.

[12] P. Pedreiras and L. Almeida, “Combining event-triggered and time-triggered traffic in
FTT-CAN: analysis of the asynchronous messaging system,” in 2000 IEEE International
Workshop on Factory Communication Systems. Proceedings (Cat. No.00TH8531). IEEE,
2000, pp. 67–75, https://doi.org/10.1109/wfcs.2000.882535.

[13] L. Almeida, P. Pedreiras, and J. Fonseca, “The FTT-CAN protocol: why and how,”
IEEE Transactions on Industrial Electronics, vol. 49, no. 6, pp. 1189–1201, Dec. 2002,
https://doi.org/10.1109/tie.2002.804967.

[14] M. Jaroš, “Combination of time-triggered and event-triggered scheduling,” Master’s
thesis, Czech Technical University in Prague, 2022. [Online]. Available: http:
//hdl.handle.net/10467/101699

[15] M. Vlk, M. Jaroš, and Z. Hanzálek, “Combining Event-Triggered and Time-Triggered
Scheduling Based on Fixation Graph,” Under review.

[16] M. Nasri and B. B. Brandenburg, “An Exact and Sustainable Analysis of Non-preemptive
Scheduling,” in 2017 IEEE Real-Time Systems Symposium (RTSS). IEEE, Dec. 2017,
pp. 12–23, https://doi.org/10.1109/rtss.2017.00009.

[17] S. Ranjha, G. Nelissen, and M. Nasri, “Partial-Order Reduction for Schedule-Abstraction-
based Response-Time Analyses of Non-Preemptive Tasks,” in 2022 IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, May 2022,
https://doi.org/10.1109/rtas54340.2022.00018.

[18] M. Nasri, G. Nelissen, and B. B. Brandenburg, “A Response-Time Analysis for Non-
Preemptive Job Sets under Global Scheduling,” in 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018), ser. Leibniz International Proceedings in Informatics
(LIPIcs), S. Altmeyer, Ed., vol. 106. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, pp. 9:1–9:23, https://doi.org/10.4230/LIPIcs.ECRTS.
2018.9.

56

https://doi.org/10.1109/CODES.2002.1003623
https://www.researchgate.net/publication/228803355_Comparison_of_event-triggered_and_time-triggered_concepts_with_regard_to_distributed_control_systems
https://www.researchgate.net/publication/228803355_Comparison_of_event-triggered_and_time-triggered_concepts_with_regard_to_distributed_control_systems
https://www.researchgate.net/publication/228803355_Comparison_of_event-triggered_and_time-triggered_concepts_with_regard_to_distributed_control_systems
https://doi.org/10.1109/rtcsa.2008.38
https://doi.org/10.1109/rtcsa.2008.38
https://doi.org/10.1109/wfcs.2000.882535
https://doi.org/10.1109/tie.2002.804967
http://hdl.handle.net/10467/101699
http://hdl.handle.net/10467/101699
https://doi.org/10.1109/rtss.2017.00009
https://doi.org/10.1109/rtas54340.2022.00018
https://doi.org/10.4230/LIPIcs.ECRTS.2018.9
https://doi.org/10.4230/LIPIcs.ECRTS.2018.9

.. Bibliography

[19] M. Nasri, G. Nelissen, and B. B. Brandenburg, “Response-Time Analysis of Limited-
Preemptive Parallel DAG Tasks Under Global Scheduling,” in 31st Euromicro Confer-
ence on Real-Time Systems (ECRTS 2019), ser. Leibniz International Proceedings in
Informatics (LIPIcs), S. Quinton, Ed., vol. 133. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019, pp. 21:1–21:23, https://doi.org/10.4230/LIPIcs.
ECRTS.2019.21.

[20] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM Computing Surveys, vol. 43, no. 4, pp. 1–44, Oct. 2011, https://doi.org/
10.1145/1978802.1978814.

[21] K. Brejchová, “Heuristics for Periodic Scheduling,” Bachelor’s thesis, Czech Technical
University in Prague, 2019. [Online]. Available: http://hdl.handle.net/10467/82385

57

https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814
http://hdl.handle.net/10467/82385

	Introduction
	Related work
	This thesis

	Formal description of the problem
	Multiprocessor platform
	Event-triggered tasks and jobs
	Scheduling of ET jobs and scheduling policy
	Execution scenario and schedulability
	Time-triggered tasks and jobs
	Scheduling of TT jobs
	Combining ET and TT tasks

	ET solutions
	Brute force approach to schedulability analysis
	Worst-case approach to schedulability analysis
	Schedule Abstraction Graph approach to schedulability analysis
	Schedule Abstraction Graph
	SAG generation
	Expansion phase
	Merge phase
	Parameters of vertices and edges
	Job eligibility
	Pseudocode
	Discussion and example

	ET solution evaluation
	Model of the multiprocessor platform
	Instance generation
	Generated datasets

	Evaluation of pessimism in the SAG approach and evaluation of the worst-case approach impact
	Evaluation of schedulability and runtime of the SAG approach

	ET+TT solutions
	Brute force algorithm
	Fixation Graph Generation algorithm
	Fixation graph structure
	Description of the FGG
	Fixation phase
	Pseudocode
	Discussion

	ET+TT solution evaluation
	Instance generation
	Generated datasets

	Evaluation of pessimism in the FGG algorithm and the FGG-EB algorithm
	Evaluation of schedulability and runtime of the FGG algorithm and the FGG-EB algorithm

	Conclusion
	Bibliography

