
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Combinatorial Solvers in Deep Reinforcement Learning

Richard Hájek

Mgr. Radoslav Škoviera, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

The objective of this thesis will be to design, implement and debug a deep reinforcement

learning (DRL) architecture in order to solve pathfinding and planning problems using

combinatorial solvers. To enable the fusion of a neural network and a combinatorial

solver, this thesis will be using Blackbox combinatorial solvers (described in this paper:

https://openreview.net/pdf?id=BkevoJSYPB). Since the individual steps of combinatorial

solvers (e.g. the A* pathfinding algorithm) typically do not allow differentiation, it is not

possible to use them in a neural network with gradient descent optimization. The

aforementioned paper proposes a solution that allows using error back propagation with

these solvers, enabling their use as a layer of a standard neural network. Such

combinatorial layer could be used in combination with the reinforcement learning

paradigm to solve pathfinding and planning problems more efficiently than relying on

pure neural network approach.

The task for the thesis will be to find a suitable toy problem and propose and design a

solution for it using a blackbox combinatorial solver. The solution should be compared to

a classical DRL approach. The baseline approach will be Q-Learning.

Tasks for the thesis:

1) Research literature for DRL and Combinatorial solvers.

2) Find a suitable pathfinding or planning problem that can be solved by DRL and develop

a testing environment for it.

3) Propose a DRL algorithm that utilizes a blackbox combinatorial solver and implement

it.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 20 September 2022 in Prague.

4) Compare the performance of the proposed method with basic Q-learning or other

applicable methods.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 20 September 2022 in Prague.

Bachelor’s thesis

COMBINATORIAL
SOLVERS IN DEEP
REINFORCEMENT
LEARNING

Richard Hájek

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Mgr. Radoslav Škoviera Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Richard Hájek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited
(with exceptions defined by the Copyright Act).

Citation of this thesis: Hájek Richard. Combinatorial Solvers in Deep Reinforcement Learning.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbreviations and symbols ix

Introduction 1

1 Deep Learning 3
1.1 Artificial Neural Networks . 3
1.2 Supervised training . 4
1.3 Gradient Descent . 4

2 Artificial Neural Network Key Engineering Components 7
2.1 Artificial Neural Network . 7
2.2 Layers . 8
2.3 Activation Functions . 8
2.4 Loss Function . 8

3 Reinforcement Learning 11
3.1 Core Concepts . 12

3.1.1 Environment . 12
3.1.2 Reward . 12
3.1.3 Observation space . 12
3.1.4 Return . 12
3.1.5 Policy . 12

3.2 Categories . 12
3.2.1 On-policy . 13
3.2.2 Off-policy . 13
3.2.3 Model-based . 13
3.2.4 Model-free . 13

4 Algorithm Overview 15
4.1 Q-Learning . 15
4.2 Double Q Learning . 16
4.3 Deep Q Learning . 17
4.4 SAT . 17

iii

iv Contents

4.5 MaxSAT . 18
4.6 SATNet . 18
4.7 Supervised, unsupervised learning vs reinforcement learning 18

5 Environment to solve 21
5.1 Hydraulic environment with rotation control 21

5.1.1 State space . 22
5.1.2 Observation space . 22
5.1.3 Action Space . 22
5.1.4 Reward . 22
5.1.5 Examples . 23

6 Agent Architectures 25
6.1 Deep Double Q Learning Agent (DQN) 25

6.1.1 Agent Architecture . 25
6.1.2 Learning steps . 26
6.1.3 Exploration . 26
6.1.4 Training the estimator . 26
6.1.5 Deep Neural Network architecture 28
6.1.6 Evaluating the agent . 28

6.2 Double Q Learning SATNet agent . 28

7 Results 29

8 Conclusion 33

List of Figures

2.1 General structure of a deep neural network 7

3.1 Reinforcement learning cycle . 11

5.1 Illustrative image - Water pipes : pipeline game [9] 21
5.2 Implemented environment - shuffled . 23
5.3 Implemented environment - solved . 23

6.1 DQN Agent overview [10] . 25
6.2 Netwrk architecture [11] . 28

List of Tables

7.1 DQN Agent testing results on the environment 30
7.2 SATNet results . 30
7.3 Constant Parameters . 31

List of code listings

4.1 Q-Learning . 15
4.2 Double Q-Learning . 16

v

I would like to thank everyone who supported me during my
work on this thesis. I would like to thank my supervisor, Mgr.
Radoslav Škoviera, Ph.D., whos advice proved to be invaluable
and provided me with motivation troughout the thesis.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the
Czech Technical University in Prague has the right to conclude a license agreement on
the utilization of this thesis as a school work under the provisions of Article 60 (1) of
the Act.

In Prague on May 11, 2023 .

vii

Abstract

This bachelor’s thesis measures the efficiency of alternative methods of modeling logical
relationships between data in deep reinforcement learning. Leveraging SATNet [1],
which can approximate these relationships, this bachelor’s thesis has found that agents
with a SAT solver are comparative in their results to their counterparts without the
SAT solver.

Keywords MaxSAT, deep learning, reinforcement learning, parameter search, python,
ENGLISH

Abstrakt

Tato bakalárska práce měř́ı účinost alternatińıho modelováńı logických vztah̊u mezi
daty v rámci zpětnovazebńıho učeńı. Pomoćı SATNetu, který dokáže tyto vztahy
aproximovat, [1] bylo v bakalářské práci nalezeno, že agenti s SAT solverem v rámci
zpětnovazebńıho učeńı podávaj́ı podobné výsledky jako agenti bez něho.

Kĺıčová slova MaxSAT, hluboké učeńı, posilovaćı učeńı, optimalizace parametr̊u,
python, CZECH

viii

Abbreviations and symbols

ix

x Abbreviations and symbols

Abbreviations

ANN Artificial Neural Network
NN Neural Network

DNN Deep Neural Network
DRL Deep Reinforcement Learning

MAXSAT Maximum Satisfiability
I Total iterations

RLI Check iterations
N Total steps per iteration

BS Replay buffer size
LS Deep learning - started at step

TUI Deep learning - target update interval
γ Discount factor
τ Soft update coefficient

TF Train frequency
EF Exploration factor - ratio of training where interpolated

EIE Exploration factor - initial
EFE Exploration factor - final

LR Deep learning - learning rate
Batch S Deep learning - batch size

Arch Architecture of the policy
T Training time in seconds
R̄ Total return mean

σR Total return standard deviation
FE Feature Extractor

No-Op No Operation or also called Identity function

Introduction

In modern neural networks, it is very difficult to model complex logical relationships.
In order to approximate these, neural networks may use a disproportionate amount of
computing power. As an alternative, we will explore the use of SATNet, which can
model logical relationships in a single layer in an efficient way.

Therefore, we will evaluate a method of differentiating traditionally non-differentiable
algorithms, such as SATNet, in the context of deep reinforcement learning. Due to the
nature of deep learning, non-differentiable algorithms cannot be simply used, and other
approaches are necessary.

We will evaluate the feasibility and viability of the SATNet deep neural network
integrator [1] in the reinforcement learning environment. The original proposed solution
has been to use Differentiation of Blackbox combinators (DFC)[2], however due to the
following reasons SATNet has been ultimately chosen:

The constraint satisfaction nature of the proposed environment has been deemed to
be more suitable to SATNet than DFC

Some parts of DFC require closed source 3rd party software, restricting adaptability
of the code

As for deep Q learning, this thesis will attempt to find a suitable model:

model(obs, w) = action,

[calculation of output of the model, see chapter on deep learning]

which, when used, maximizes the return of the environment:

R =
0∑
n

(rn),

[calculation of the total reward, see chapter on reinforcement learning]

of a learning environment for the reinforcement of hydraulic pipes. Agent will be
rewarded by the following method:

1

Introduction 1

Penalty for any step taken

Penalty for any state which is observed twice

Reward for progress in any direction

The MaxSAT approach will be compared to deep Q-learning in order to estimate
the viability of the method against industry standards.

The comparison will take into account the following:

Total reward R

Time taken T

Steps taken S

2 Introduction

Chapter 1

Deep Learning

This chapter introduces the topic of deep learning. The reader is encouraged to skip it
if they are familiar with the topic.

1.1 Artificial Neural Networks
An artificial neural network, henceforth simply referred to as a neural network, or net-
work, is a collection of mathematical computations organized in nodes. Nodes in the
network represent neurons in a biological brain, and edges between nodes represent
synapses. Computational nodes may henceforth be referred to as neurons or artificial
neurons. The network has an input of arbitrary size and an output of arbitrary size [3].
The network may be thought of as a function accepting network inputs and network
parameters resulting in some output.

model(x, w) = y

The computational functions in neural networks include large numbers of multipli-
cations and sums. In addition to that, each neuron has an activation function which
can be arbitrarily defined, as long as it is differentiable.

Ylayer = factivation(Xlayer ∗Wlayer)

Most common activation functions include rectified linear unit function, sigmoid, or
tanh. The role of activation function in the neural network is to provide nonlinearity
and thus to increase the complexity of the model. Activation functions can be defined
over multiple neurons or over multiple data points in a batch, such as the softmax func-
tion or batch normalization. Artificial neurons may include stochastic behavior, such
as dropout nodes. Artificial neural networks have two stages, training and inference.
During training, the artificial neural network is optimized, that is, the parameter (w)
of the model is being optimized. During inference, no changes are made to the network
and only model output is calculated. Some nodes may behave differently during network
training and inference. For example, batch normalization is typically a no-op during
inference of the neural network.

3

4 Deep Learning

Each network can be defined by a calculation graph and a set number of “param-
eters”. Parameters can be thought of as constant in network inference; their optimal
value is what training hopes to find. Network may contain other variables, which may
change during training; however, are not saved between inference or training, such as
intermediary results in recurrent neural networks.

1.2 Supervised training
This thesis will primarily focus on reinforcement learning, which is based on supervised
training. The objective of supervised training is to predict a set of output values given
a set of input values. A collection of input-output pairs will henceforth be referred to
as the ”dataset“. During training, each set of pairs is input into the network, and the
network produces an output. The error can be computed as the difference between the
expected output values and the inferred values. Minimizing this error is the goal of
training the network, which makes the definition of the error function of paramount
importance.

Each iteration of the training process is referred to as a batch. A batch consists
of a set amount of training data. Larger batch sizes are preferred as they reduce the
time needed to load the data into the RAM or GPU. However, batch sizes cannot be too
large as this may exceed the available memory. A single training pass through the entire
dataset is called an epoch. It may take many epochs to reach the optimal parameters
of the model.

The training algorithm itself may require some parameters or configuration. To dis-
tinguish them from the learnable parameters and because they control the properties of
the learnable parameters, they are called ”hyperparameters“. Selecting the appropriate
hyperparameters is a nuanced process that may involve grid search, random search,
other optimization techniques, or expert knowledge. Details of this process are outside
the scope of this thesis, and this thesis shall use various forms of grid search, due to
their extensibility and ease of use.

1.3 Gradient Descent
Gradient descent is an optimization algorithm used in deep learning to minimize the
error of a model by updating its parameters iteratively. The algorithm starts with an
initial set of parameters, then iteratively updates the parameters in the direction of the
steepest reduction in the error until it reaches a minimum or a stopping criterion is met.

The basic idea behind gradient descent is to calculate the gradient of the cost function
with respect to the parameters and then update the parameters in the direction of the
negative gradient. The gradient represents the direction of maximum increase in the
error, and hence updating the parameters in the opposite direction, i.e. the negative
gradient, would lead to a reduction in the error.

One of the key hyperparameters in gradient descent is the learning rate, which
determines the step size of the update. If the learning rate is too large, the algorithm may
overshoot the minimum and may never converge, while if it is too small, the algorithm
may converge too slowly.

Gradient Descent 5

To overcome the limitations of traditional gradient descent, more advanced optimiza-
tion algorithms, such as RMSProp or Adam, have been developed. These algorithms
allow for more granular control of the parameters’ learning rate.

STD (Stochastic Gradient Descent) is an algorithm for updating the w parameters
of the neural network. It updates each w according to the following formula:

wi = wi − η∇Q(wi)

Where wi is a single parameter, η is the training rate and ∇Q(wi) is the change of
the resulting loss function with respect to this parameter.

RMSprop (Root Mean Square Propagation) is a variant of gradient descent that
uses a moving average of the squared gradient to scale the learning rate for each
parameter.

In this algorithm, one calculates the moving average:

v(w, t) := γv(w, t− 1) + (1− γ)(∇Qi(w))2

Where γ is the “forgetting factor”, a hyperparameter. And uses this to update the
parameter w

w = w − η√
v(w, t)

∇Qi(w)

Adam (Adaptive Moment Estimation) is an optimization algorithm that computes
adaptive learning rates for each parameter based on the previous gradient informa-
tion. Adam is a 2014 improvement to the RMSProp algorithm, and its details are,
due to their complexity, beyond the scope of this thesis. It has however been widely
used since, due to its versatility.

The discussion of advantages and drawbacks of each choice of the training algorithm
is also beyond the scope of this thesis. This thesis will use Ada, due to its adaptability
and versatility.

Given the fundamental nature of gradient descent and related optimization algo-
rithms, they are only applicable to differentiable functions. Nondifferentiable functions,
such as the sign function, lack a gradient and cannot be used without being approxi-
mated. This thesis will focus on the examination and adoption of algorithms that are
capable of addressing these limitations in the context of deep reinforcement learning.

6 Deep Learning

Chapter 2

Artificial Neural Network Key
Engineering Components

2.1 Artificial Neural Network

The artificial neural network is represented as a computational graph with parameters
and inputs. The input and output size may not be known before inference or training.
Any further mentions of “artificial neural network”, “neural network”, “network” or
“model” refer to Artificial Neural Network.

Figure 2.1 General structure of a deep neural network

This image shows an approximation of a deep neural network. There is an input layer, several
hidden layers and one output layer with a single neuron.

7

8 Artificial Neural Network Key Engineering Components

2.2 Layers
The core of each neural network is a succession of layers [3]. A neural network may have
an input layer and multiple output layers. Each of the layers computes its result with its
input from the output of the previous layers. Each layer may have different properties,
but each layer has some input size, some output size, and may have parameters, trainable
and non-trainable.

This bachelor thesis will use the following layers:

Linear layer: The output (before the activation function) is computed by matrix
multiplication.

Convolutional layer: The output is computed by a convolution over the input, with
parameters of the convolution kernel trainable. This layer is widely used in image
recognition, where context of each pixel is very important, whereas the absolute
position of the pixel may not be.

Dropout layer: During training, this layer randomly zeros some of the elements of the
input with probability p using samples from a Bernoulli distribution. This behavior
encourages the neural network to generalize. [4]

2.3 Activation Functions
Each layer in the neural network may be followed by an activation function. Examples
of activation functions include:

Linear activation: factivation(x) = x

ReLu activation: factivation(x) = max(0, x) [5]

Logistic function activation: factivation(x) = (1 + exp(−x))−1

SoftRelu: factivation(x) = ln(1 + exp(x))

For appropriate activation function, neural network designer must consider its non-
linearity and its derivability in expected ranges. It is inappropriate to use linear activa-
tion as activation function, as linear function is not nonlinear.

2.4 Loss Function
A loss function is an important component in training a model [6]. It measures the
difference between the model’s prediction and the true labels. The loss function may be
in other works referred to as cost or objective function.

The loss function is used to evaluate the performance of the model in each iteration
of the training process. The goal is to minimize the value of the loss function, which
in turn means that the model predictions are getting closer to the true labels. The
optimization algorithm afterwards uses the gradients of the loss function with respect
to the model parameters to update the parameters in order to reduce the value of the

Loss Function 9

loss function. In this way, the loss function drives updates to the parameters in the
entire network.

There are many examples of loss functions:

Mean Squared Error (MSE): This is a popular loss function for regression problems
where the goal is to predict a continuous value. MSE calculates the average of the
squared differences between the model’s predictions and the true labels. MSE is
computaed as follows:

L = (y − ŷ)2

Binary Cross-Entropy (BCE): This is a loss function for binary classification prob-
lems, where the goal is to predict one of two possible outcomes. BCE measures the
dissimilarity between predicted probabilities and true labels.

BCE may be computed as:

L = −y log(ŷ)− (1− y) log(1− ŷ)

where y represents the true label (target) for a given sample. It is a binary value
that is either 0 or 1. ŷ represents the predicted output of the model for the given
sample. It is also a binary value that is between 0 and 1, and represents the model’s
confidence that the sample belongs to the positive class (1) or negative class (0).

Categorical Cross-Entropy (CCE): This is a loss function for multiclass classifica-
tion problems, where the goal is to predict one of several possible outcomes. CCE
measures the dissimilarity between the predicted probabilities and the true labels.

CCE may be computed as:

L = − 1
K

K∑
k=1

yk log(ŷk)

where K is the number of classes, yk is the true label (target) of the sample for the
kth class (it is 1 if the sample belongs to class k and 0 otherwise), and ŷk is the
predicted probability of the sample belonging to the kth class.

Hinge Loss: This is a loss function for binary classification problems, particularly
for Support Vector Machines (SVMs). It measures the maximum margin between
the model’s predictions and the true labels.

Hinge Loss may be computed as:

L = max(0, 1− y · ŷ)

Softmax Loss: This is a loss function for multiclass classification problems that is
used in combination with the softmax activation function. It measures the dissimi-
larity between the predicted probabilities and the true labels.

Softmax Loss may be computed as:

10 Artificial Neural Network Key Engineering Components

L = −
K∑

k=1
yk log(ŷk)

This thesis will use Mean Squared Error, due to it’s versatility and ease of use.

Chapter 3

Reinforcement Learning

This chapter introduces the topic of reinforcement learning. The reader is encouraged
to skip it if they are familiar with the topic.

Reinforcement learning is a type of machine learning that deals with the interaction
between an agent and its environment. Agent learns how to behave in environment by
performing actions and observing rewards it receive, like how animals and humans learn
from experiences. This section focuses on core concepts of reinforcement learning, in-
cluding reward signal, return, observation space, and action space, and their importance
in the learning process. This chapter describes definitions as defined in [3]

Figure 3.1 Reinforcement learning cycle

11

12 Reinforcement Learning

3.1 Core Concepts

3.1.1 Environment
The environment in reinforcement learning refers to the system or situation with which
the agent interacts. It provides the agent with information about its state through
observations, and the agent can take actions that affect the environment and receive
rewards based on its actions. The environment represents the task or problem that the
agent is trying to solve and it is through interaction with the environment that the agent
learns to maximize its rewards. The environment can be a physical system, such as a
robot navigating a maze, or a virtual system, such as a video game.

3.1.2 Reward
Reward value is the feedback agent receives after each action it takes. This value guides
agent’s learning by providing information about quality of actions it has taken. The
ultimate goal of the agent is to maximize the total reward it receives over time, known
as return.

3.1.3 Observation space
Observation space is set of all possible observations an observation agent can make
about the environment. These observations provide the agent with information about
the current state of environment, which is used to determine the next action. The action
space is a set of all possible actions an agent can take.

3.1.4 Return
Agent’s objective is to maximize total reward it receives, which is return. This is
achieved by selecting actions that are likely to lead to high rewards in the future.

3.1.5 Policy
Agent may try to achieve the maximum return by using a policy, which maps from
observation to, allegedly, the best actions. Policy is updated over time as the agent
gains more information about environment and rewards it receives for its actions.

3.2 Categories

Reinforcement learning can be divided into several categories, depending on how the
agent learns and updates its policy. These categories are on-policy reinforcement learn-
ing, off-policy reinforcement learning, model-based reinforcement learning, and model-
free reinforcement learning.

Categories 13

3.2.1 On-policy
On-policy reinforcement learning is when an agent updates its policy based on the
current policy. Agent’s current policy is used to select actions that lead to rewards, and
then this policy is updated based on rewards received. This is called ”on-policy” because
updates are made based on current policy. The advantage of on-policy reinforcement
learning is that the agent always follows the most recent and accurate policy. The
disadvantage is that it may introduce feedback loops that make training difficult.

3.2.2 Off-policy
Off-policy reinforcement learning is when the agent updates its policy based on a sep-
arate policy, which is called behavior policy. Behavior policy is used to select actions,
and updates are made based on rewards received from environment. This is called an
“off-policy” because updates are made based on a separate policy. The advantage of
off-policy reinforcement learning is that the agent can learn from experience gathered
by different policies.

3.2.3 Model-based
Model-based reinforcement learning is when an agent uses a model of environment to
make predictions about the future. Model can be used to predict consequences of cer-
tain actions in environment and help agent to select best action to take. This is called
”model-based” because the agent uses a model of environment to guide its learning.
The advantage of model-based reinforcement learning is that the agent can learn faster
because it has access to more information about the environment. The inherent disad-
vantage is that, in many problems, the environment cannot be accurately modeled.

3.2.4 Model-free
Model-free reinforcement learning is when the agent does not use a model of the envi-
ronment. Instead, it updates the policy based on rewards received from environment
without trying to understand the underlying mechanics of the environment. This is
called ”model-free” because the agent does not use a model of environment. The advan-
tage of model-free reinforcement learning is that it is more straightforward and easier
to implement, because the agent does not need to build and maintain a model of the
environment.

This thesis will focus on on- and off-line policy reinforcement learning. This thesis
will focus only on model-free algorithms.

14 Reinforcement Learning

Chapter 4

Algorithm Overview

4.1 Q-Learning

Q-Learning is a model-free reinforcement learning algorithm that is widely used to solve
problems in artificial intelligence and robotics. It is a value-based algorithm, which
means it uses estimates of the expected future rewards of different actions to make
decisions about which actions to take. [3] [7]

The core idea behind Q-Learning is to learn a function Q(s, a), which represents the
expected future reward of taking action a in state s. [3] The algorithm starts with an
initial estimate of the Q-function and then updates it over time through trial-and-error
interactions with the environment. At each time step, the agent selects an action based
on its current estimate of Q and then receives feedback in the form of a reward and the
next state. The agent updates its estimate of Q based on this feedback, and the process
repeats. The agent updates its estimate by the following equation:

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
That entire process has been demonstrated in the following pseudo-code:

Code listing 4.1 Q-Learning
1. Initialize the Q-Table with zeros for all (state , action)
2. Repeat for each episode :

a. Initialize the starting state
b. Repeat for each step in the episode :

i. Choose an action using an exploration strategy (e.g.
epsilon - greedy)

ii. Take the action and observe the next state and reward
iii. Update the Q-Table using the Q- Learning equation :

Q[state , action] = Q[state , action] + learning_rate *
(reward + discount_factor * max(Q[next_state , :]) -

Q[state , action])
iv. Update the current state to be the next state

c. Reduce the exploration rate (e.g. epsilon) for the next

15

16 Algorithm Overview

episode

One of the main advantages of Q-Learning is that it does not require a model of the
environment’s dynamics, which makes it well-suited to problems where the underlying
system is unknown or difficult to model. Additionally, Q-Learning can handle problems
with large or continuous state spaces, and it can also handle problems with nonstationary
environments, where the rewards or transition dynamics change over time.

However, there are also some disadvantages to Q-Learning. One of the main lim-
itations is that it requires a discrete action space, which means that the agent must
be able to represent its possible actions as a finite set of discrete options. [3] This can
make it difficult to apply Q-Learning to problems with continuous action spaces, such
as robotic control or continuous control in video games. Additionally, Q-Learning can
suffer from action overestimation, where the agent overestimates the expected future
rewards of certain actions, leading it to make suboptimal decisions. [7] This can be
mitigated through the use of function approximation techniques, such as deep neural
networks, to represent the Q function.

4.2 Double Q Learning

Double Q-learning is a variation of the Q-learning algorithm. [7] But the main differ-
ence between double Q-learning and Q-learning is how they handle the estimation of
the expected future rewards. In Q-learning, the algorithm uses only one Q-table to
estimate the expected future reward for each action in a given state. This can lead
to an overestimation of the expected reward for certain actions, causing the algorithm
to make suboptimal decisions. Double Q-Learning solves this problem by using two
Q-tables instead of one. The first Q-table is used to select the action to take, while the
second Q-table is used to update the estimate of the expected reward for that action.
This separation of the selection and update processes helps reduce the overestimation
problem in Q-Learning. See the following pseudo-code for an implementation example:

Code listing 4.2 Double Q-Learning
1. Initialize two Q-Tables , Q1 and Q2
2. Repeat for each episode :

a. Initialize the starting state
b. Repeat for each step in the episode :

i. Choose an action using an exploration strategy (e.g.
epsilon - greedy)

based on the sum of the Q- Tables :
Qsum = Q1[state , :] + Q2[state , :]
action = argmax (Qsum)

ii. Take the action and observe the next state and reward
iii. Update one of the Q- Tables using the Double Q- Learning

equation :
if rand () < 0.5:

Q1[state , action] = Q1[state , action] +
learning_rate * (reward + discount_factor * Q2[
next_state , argmax (Q1[next_state , :])] - Q1[

Deep Q Learning 17

state , action])
else:

Q2[state , action] = Q2[state , action] +
learning_rate * (reward + discount_factor * Q1[
next_state , argmax (Q2[next_state , :])] - Q2[
state , action])

iv. Update the current state to be the next state
c. Reduce the exploration rate (e.g. epsilon) for the next

episode

Double Q-Learning is a model-free algorithm, which means that it does not require
a model of the environment’s dynamics. It also works well in problems with large or
continuous state spaces, and non-stationary environments. Just like Q-learning, double
Q-learning requires a discreet action space, and it can be slow to converge, especially in
problems with large state spaces. [3] To address the slow convergence issue, researchers
have developed variants of double Q-learning that incorporate exploration-exploitation
trade-offs, such as epsilon-greedy exploration. [7]

4.3 Deep Q Learning
This algorithm utilizes a neural network, known as the Q network, to approximate the
action value function, which represents the expected return of taking a specific action in
a specific state. The Q network is trained by iteratively updating its parameters based
on the temporal difference error, which measures the difference between the predicted
and actual rewards received after taking an action.

The algorithm is called ”deep“ Q learning due to the utilization of deep neural
networks, which have multiple hidden layers, as opposed to traditional Q learning al-
gorithms that used shallow linear models or a table. The use of deep neural networks
allows the algorithm to handle complex, high-dimensional state, making it applicable to
a wide range of problems. [7]

In order to stabilize the learning process, the algorithm utilizes a technique called
experience replay. Experience replay involves storing experiences, or transitions, in a
memory buffer and randomly sampling mini-batches from this buffer to update the Q
network. This allows the algorithm to learn from past experiences and avoid oscillations
and divergences in the learning process. [7]

In double deep Q learning, another important component of deep Q learning is
the use of a target network. The target network is a copy of the Q network that is
used to estimate the expected return of taking a specific action in a specific state. The
target network is updated less frequently than the Q network, which helps to reduce the
variance in the estimate of the expected return. [7]

4.4 SAT
SAT is a problem in mathematical optimization that attempts to find whether or not
a mathematical formula is satisfiable. The formula may be specified in different math-
ematical languages, such as first-order logic, other n-order logics or propositional logic.

18 Algorithm Overview

For the purposes of this thesis, we will only consider propositional logic, which defines
only infinite number of variables, ∧ and ∨, meaning and and or respectively, ¬ rep-
resenting logical not, and = representing equality. Any formula may be written by
any infinite number of equally valid representations, and for the purposes of SAT, the
formula is converted to CNF, meaning conjunctive normal form. The formula in con-
junctive normal form consists of several clauses, chained with ∧s, where each clause is
in turn composed of atoms chained with ∨s. [1]

4.5 MaxSAT
We may generalize the SAT problem to MaxSAT. MaxSAT problem over a CNF is
defined as finding the maximum number of clauses which are satisfiable at the same
time. MaxSAT is harder than SAT, and any solution to a MaxSAT problem over a
CNF can be used to trivially find the solution to a SAT problem over the same CNF.
Note that the opposite is not the case. [1]

4.6 SATNet
SATNet is an approximate solver for MaxSAT problems defined in CNF that is differ-
entiable. The differentiability of this solver enables us to create a gradient throughout
the solver. A SATNet layer uses a MAXSAT SDP relaxation with weights to gener-
ate informed predictions for the assignments of unknown variables using the discrete
or probabilistic assignments of known MAXSAT variables as input. We analytically
differentiate using the SDP relaxation to produce the backward pass. [1]

4.7 Supervised, unsupervised learning vs reinforce-
ment learning

There are three general paradigms in machine learning: supervised, unsupervised, and
reinforcement learning. These paradigms have different approaches to learning, the types
of data they use, the models they employ, and how they are evaluated and optimized.

One major difference between reinforcement learning and the other two paradigms
is their approach to learning. Reinforcement learning works by trial and error, where an
agent interacts with the environment and receives rewards or punishments as feedback.
On the other hand, supervised or unsupervised learning trains on labeled or unlabeled
data without any external feedback. [3]

Another difference is the type of data for which these techniques are used. Reinforce-
ment learning is typically applied for sequential decision making, where the agent takes
actions over time and receives feedback at each time step. Supervised and unsupervised
paradigms are typically applied to static data like images, video, and text to recognize
complex patterns and relationships in the data.

The models used in reinforcement learning and deep learning are also different. In
reinforcement learning, the agent’s policy is represented by a possibly stochastic function
that maps states to actions. The aim is to learn an optimal policy that maximizes the

Supervised, unsupervised learning vs reinforcement learning 19

cumulative reward over time. In contrast, supervised learning models are typically
feedforward or recurrent neural networks that map inputs vectors to some labels (self-
discovered lables in case of unsupervised learning).

In addition, the evaluation and optimization of reinforcement learning and the other
paradigms also differ. Reinforcement learning models are evaluated based on their long-
term performance, such as total reward over a period of time. The goal is to optimize
the agent’s policy to maximize this long-term performance. The other paradigms, on the
other hand, try to minimize some objective function (e.g., loss for supervised learning).

20 Algorithm Overview

Chapter 5

Environment to solve

5.1 Hydraulic environment with rotation control

This environment represents a popular arcade game colloquially referred to as ”Water
Pipe”, ”Plumber game” or ”Pipes”. The goal of this environment is to rotate a series
of pipes in order to allow water to flow from a singular inlet to a singular outlet. We
implemented the environment in a popular OpenAI Gym framework, which facilitates
communication between the environment and reinforcement learning algorithms [8].

Figure 5.1 Illustrative image - Water pipes : pipeline game [9]

An illustrative image, taken from the Apple App Store, which shows a kids game where the
player must connect pipes from water source to target. We reimplemented this environment

in Python to allow for development of reinforcement learning algoithms.

21

22 Environment to solve

5.1.1 State space
This environment consist of a n× n grid, on each grid any of the following tiles may be
represented:

Empty tile

Straight pipe

Angled pipe

T-pipe

4 way pipe

In addition, each tile may be rotated in any direction of ↑,←, ↓,→.
The state space can therefore be defined with two matricies as follows:

Stile,i,j ∈ {empty, pipestraight, pipeangle, pipeT , pipefourway} | 0 ≤ i, j < n

Sangle,i,j ∈ {0, 1, 2, 3} | 0 ≤ i, j < n

5.1.2 Observation space
This environment is fully observable. The observation space is identical to the state
space and thus the agent can observe the full environment at any point in time.

5.1.3 Action Space
The agent can turn any tile on the grid by 90deg.

Ai,j ∈ {0, 1}n×n

5.1.4 Reward
Agent receives -1 reward for all turns in which the environment is not solved. Agent
additionally receives -100 for each time the agent finds itself in the same observation
as before. Agent receives positive +N reward for all N pipes which were flooded which
weren’t flooded before.

Hydraulic environment with rotation control 23

5.1.5 Examples

Figure 5.2 Implemented environment - shuffled

This image shows the implemented environment in a shuffled state - there are no active flows
of water. The agent must rotate each pipe to direct the flow of water.

Figure 5.3 Implemented environment - solved

This image shows the implemented environment in a solved state - there is a water flow from
the inlet (always top left) to the outlet (always bottom right).

24 Environment to solve

Chapter 6

Agent Architectures

6.1 Deep Double Q Learning Agent (DQN)
The agent used will be a double Q learning algorithm with deep learning as a Q-table
back-end. Therefore, this agent can deal with a large variety of environments including
those defined in the previous chapter. The advantages of this agent is high flexibility,
as this agent can adapt to virtually any input type and shape. The disadvantages are
that the output still has to be a discrete action. Fix for this is so called actor-critic
architecture, which is however outside of the scope of this thesis.

Ultimately, the DQN agent has been chosen because it is the most efficient and is
applicable to this problem.

6.1.1 Agent Architecture

Figure 6.1 DQN Agent overview [10]

This figure shows the data flow of the implemented DQN agent. The core is the replay buffer
which stores past experiences.

25

26 Agent Architectures

This agent contains 3 main components, the replay buffer, the learning algorithm,
and the Q-table backend. All of these have their own hyperparameters. Unless stated
otherwise, none of the hyperparameters are tuned during the training.

The replay buffer are the memories of the agent. The agent puts all experiences
in this ring buffer and forgets the ones that are too old. The replay buffer has some
maximum size, and when its full some memories need to be dropped. In the architecture
of this thesis, the oldest memories are dropped. There are various names for each of
these in the literature; replay buffer may be referred to as just buffer, or more poetically,
memory buffer.

The learning algorithm is double Q learning, as discussed in earlier chapters. This
algorithm is resistant towards noise feedback loops and is suitable for the environments
proposed in this thesis.

The Q-table backend is the estimator of the Q-values. The agent uses various algo-
rithms to improve the estimator and, in turn, achieve more accurate Q-values.

6.1.2 Learning steps
The learning of this agent must balance several steps:

Exploration of the environment

Training the estimator

Evaluating the agent on the environment

Each of these steps has many hyperparameters, use of which we shall discuss in the
following sections.

6.1.3 Exploration
To collect memories, the agent has to explore an environment. Each step, the agent may
either take a random step or a step as recommended by the Q-table. The hyperparameter
exploration_factor controls the ratio of random steps vs recommended steps. Too
high a ratio causes the agent to take too many random steps, effectively slowing down
learning in environments sensitive to small mistakes. However, a small exploration rate
causes the agent to decrease the exploration of the environment and limits its experience.
This hyperparameter starts with a large value, such as 0.5 and may be lowered over time.

The hyperparameter buffer_size controls the maximum size of the replay buffer.
The optimum value chosen for this thesis is in the range of 10,000. This ensures big
enough dataset which takes less than 1 minute to create, allowing for rapid prototyping.

6.1.4 Training the estimator
The estimator must be trained to improve the prediction of the Q-table to enable the
agent to make better choices. Training is run on the memory replay buffer as a dataset.
However, the memory replay buffer contains raw experiences and cannot be used to

Deep Double Q Learning Agent (DQN) 27

train the estimator directly. First, we must calculate the estimated Q values from the
memories using the current estimator.

We have learned, that this introduces a vicious feedback loop, where a bad estimator
causes bad training data. Double Q learning addresses this issue to a certain extent.

The hyperparameters at play here are max_dataset_size, copy_to_target_rate,
learning_rate and discount_factor. This is in addition to the estimators own hyper-
parameters, such as learning_rate, a different one though, or batch_size. The most
important hyperparameter is discount_factor, which controls how much the agent
“consideres” the future when calculating the Q-values. Especially in the beginning, the
discount_factor should be fairly low, as the estimators are unrealiable anyway and its
important to limit the error feedback loop. The *_rate hyperparameters control how
often the estimator is trained, and its tuning mainly affects the speed of training, not
the performance.

28 Agent Architectures

6.1.5 Deep Neural Network architecture
In the deep neural network used in the agent has the following architecture.

Figure 6.2 Netwrk architecture [11]
This is the architecture of the Q-network, which is inside the prediction network in 6.1. The
SatNET layer will be included in the feature extractor part of the network for the SATNet

agent.

Observation is taken directly from the environment. The neural network is divided
into two sections, feature extractor and a fully connected network. It is divided this way
to simplify learning when using other algorithms, which are not relevant in this thesis.

6.1.6 Evaluating the agent
It is important to know how well the agent is doing, which may be difficult to grasp, due
to the exploration_factor. Therefore, every now and then it is important to evaluate
the agent without randomness and estimate the agent’s performance.

6.2 Double Q Learning SATNet agent
The double Q learning agent contains a MaxSAT layer in the feature extractor. MaxSAT
layer also has a fully connected layer preceding it, to help to decrease the dimensionality
of the input.

Chapter 7

Results

In order to establish a reliable comparison between the two methods, a parameter search
was conducted, with repeated runs for each set of parameters and repeated evaluations
of the final agents. For each parameter set, the agent has been trained 5 times and
evaluated on at least 10 episodes, which gives the results statistical significance. The
goal is considered met when R̄ is higher than −20.

We can observe 7.1 that the DQN agent was able to solve the environment several
times. The MaxSAT powered networks have proven themselves to reach the satisfactory
results at roughly the same rate. 7.2

An interested reader might find the source code to repeat the experiments here
https://github.com/richard-hajek/bachelors-thesis/

29

https://github.com/richard-hajek/bachelors-thesis/

30 Results

EF EIE EFE LR Batch S Arch R̄ σR T
0 0.5 1 0.05 0.001 64 [9] -121 95 292
1 0.5 1 0.05 0.0001 64 [9] -140 90 281
2 0.5 1 0.05 1e-05 64 [9] -180 59 261
3 0.5 1 0.05 0.001 64 [18] -42 78 318
4 0.5 1 0.05 0.0001 64 [18] -4 2 310
5 0.5 1 0.05 1e-05 64 [18] -180 59 251
6 0.8 1 0.05 0.001 64 [9] -22 59 252
7 0.8 1 0.05 0.0001 64 [9] -81 96 245
8 0.8 1 0.05 1e-05 64 [9] -140 91 258
9 0.8 1 0.05 0.001 64 [18] -2 1 322
10 0.8 1 0.05 0.0001 64 [18] -23 58 272
11 0.8 1 0.05 1e-05 64 [18] -160 79 259

Table 7.1 DQN Agent testing results on the environment

This table shows the results of parameter search of the DQN agent on the implemented environ-
ment. It shows that for a small amount of the searched parameters, the agent has successfully
adapted to the environment and is able to solve it above the threshold considered success. For
the explanation of the variables, see the abbreviations table.

EF EIE EFE LR Batch S FE Arch R̄ σR T
0 0.5 1 0.05 0.001 64 SATNet [25] -200 0 350
1 0.5 1 0.05 1e-05 64 SATNet [25] -66 47 630
2 0.5 1 0.05 0.001 64 SATNet [9] -16 11 842
3 0.5 1 0.05 0.0001 64 SATNet [9] -21 15 822
4 0.5 1 0.05 1e-05 64 SATNet [9] -14 25 642
5 0.8 1 0.05 1e-05 64 SATNet [9] -47 52 774
6 0.5 1 0.05 0.0001 64 SATNet [25] -50 65 152
7 0.8 1 0.05 0.001 64 SATNet [25] -79 34 485
8 0.8 1 0.05 0.0001 64 SATNet [25] -15 11 468
9 0.8 1 0.05 1e-05 64 SATNet [25] -200 0 436
10 0.8 1 0.05 0.001 64 SATNet [9] -22 10 292
11 0.8 1 0.05 0.0001 64 SATNet [9] -112 80 558

Table 7.2 SATNet results

This table shows results from the parameters search with the SATNet network included in
the agent. The agent was capable of reaching the goal state as did the Q-Learning method,
however did not substantially improve. We also did these tests on a significantly more powerful
machine than the classical DQN ones.

31

Parameter Constant Value
0 Learning iterations 10
1 Check iterations 5
2 Deep learning - started at step 5000
3 Deep learning - target update interval 1000
4 Train frequency 4
5 Total steps per learning iteration 20000
6 Replay buffer size 100000
7 Soft update coefficient τ 1
8 Discount factor γ 1
9 Neural network backend MlpPolicy

Table 7.3 Constant Parameters

These parameters remained unchanged throughout the training process. Each parameter was
tested on Learning iterations ∗ Check iterations ∗ Total steps per learning iteration steps.

32 Results

Chapter 8

Conclusion

We have implemented a discrete-logic focused reinforcement learning environment in
the popular framework Gym.ai, 5.1. This environment is replicating an arcade game,
where a flow of water must be established from a source location to a target location.
For the examples of the environment see figures 5.2, 5.3.

We have compared the results of the classical DQN and of DQN enhanced by a
MaxSAT solver. We have compared them on metrics such as speed of training, mean
return and the deviation of the mean return.

The classical DQN agent was used as a baseline and showed some satisfactory results
7.1, however with mean of -90 and standard deviation of -63. The agent which has been
enhanced by the MaxSAT solver showed viable progress 7.2, however unfortunately,
it did not show substantial gains over the classical DQN agent, in addition to taking
significantly more time to train. The MaxSAT agent showed mean of -70 with standard
deviation of around -30.

We have concluded however that any gains are not substantial enough and would
require more experimentation.

33

34 Conclusion

Bibliography

1. WANG, Po-Wei; DONTI, Priya L.; WILDER, Bryan; KOLTER, Zico. SATNet:
Bridging deep learning and logical reasoning using a differentiable satisfiability
solver. arXiv, 2019. Available from doi: 10.48550/ARXIV.1905.12149.

2. VLASTELICA, Marin; PAULUS, Anselm; MUSIL, Vı́t; MARTIUS, Georg; ROLÍNEK,
Michal. Differentiation of Blackbox Combinatorial Solvers. arXiv, 2019. Available
from doi: 10.48550/ARXIV.1912.02175.

3. RUSSELL, Stuart J.; NORVIG, Peter. Artificial Intelligence: a modern approach.
3rd ed. Pearson, 2009.

4. LABACH, Alex; SALEHINEJAD, Hojjat; VALAEE, Shahrokh. Survey of Dropout
Methods for Deep Neural Networks. 2019. Available from arXiv: 1904.13310 [cs.NE].

5. AGARAP, Abien Fred. Deep Learning using Rectified Linear Units (ReLU). 2019.
Available from arXiv: 1803.08375 [cs.NE].

6. DRÄGER, Simon; DUNKELAU, Jannik. Evaluating the Impact of Loss Function
Variation in Deep Learning for Classification. 2022. Available from arXiv: 2210.
16003 [cs.LG].

7. HESSEL, Matteo; MODAYIL, Joseph; HASSELT, Hado van; SCHAUL, Tom; OS-
TROVSKI, Georg; DABNEY, Will; HORGAN, Dan; PIOT, Bilal; AZAR, Moham-
mad; SILVER, David. Rainbow: Combining Improvements in Deep Reinforcement
Learning. 2017. Available from arXiv: 1710.02298 [cs.AI].

8. BROCKMAN, Greg; CHEUNG, Vicki; PETTERSSON, Ludwig; SCHNEIDER,
Jonas; SCHULMAN, John; TANG, Jie; ZAREMBA, Wojciech. OpenAI Gym. 2016.
Available from eprint: arXiv:1606.01540.

9. Water pipes : pipeline — apps.apple.com [https://apps.apple.com/us/app/
water-pipes-pipeline/id1341680606]. [N.d.]. [Accessed 09-May-2023].

10. ARWA, Erick; FOLLY, Komla. Reinforcement Learning Techniques for Optimal
Power Control in Grid-Connected Microgrids: A Comprehensive Review. IEEE
Access. 2020, vol. 8, pp. 1–16. Available from doi: 10.1109/ACCESS.2020.3038735.

35

https://doi.org/10.48550/ARXIV.1905.12149
https://doi.org/10.48550/ARXIV.1912.02175
https://arxiv.org/abs/1904.13310
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2210.16003
https://arxiv.org/abs/2210.16003
https://arxiv.org/abs/1710.02298
arXiv:1606.01540
https://apps.apple.com/us/app/water-pipes-pipeline/id1341680606
https://apps.apple.com/us/app/water-pipes-pipeline/id1341680606
https://doi.org/10.1109/ACCESS.2020.3038735

36 Bibliography

11. RAFFIN, Antonin; HILL, Ashley; GLEAVE, Adam; KANERVISTO, Anssi; ERNES-
TUS, Maximilian; DORMANN, Noah. Stable-Baselines3: Reliable Reinforcement
Learning Implementations. Journal of Machine Learning Research. 2021, vol. 22,
no. 268, pp. 1–8. Available also from: http://jmlr.org/papers/v22/20-1364.
html.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	Acknowledgments
	Declaration
	Abstract
	Abbreviations and symbols
	Introduction
	Deep Learning
	Artificial Neural Networks
	Supervised training
	Gradient Descent

	Artificial Neural Network Key Engineering Components
	Artificial Neural Network
	Layers
	Activation Functions
	Loss Function

	Reinforcement Learning
	Core Concepts
	Environment
	Reward
	Observation space
	Return
	Policy

	Categories
	On-policy
	Off-policy
	Model-based
	Model-free

	Algorithm Overview
	Q-Learning
	Double Q Learning
	Deep Q Learning
	SAT
	MaxSAT
	SATNet
	Supervised, unsupervised learning vs reinforcement learning

	Environment to solve
	Hydraulic environment with rotation control
	State space
	Observation space
	Action Space
	Reward
	Examples

	Agent Architectures
	Deep Double Q Learning Agent (DQN)
	Agent Architecture
	Learning steps
	Exploration
	Training the estimator
	Deep Neural Network architecture
	Evaluating the agent

	Double Q Learning SATNet agent

	Results
	Conclusion

