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Instructions

We study the NP-hard Maximum Betweenness Centrality problem (MBC), which can be 

defined as follows. We are given a simple undirected and connected graph G=(V,E), a 

function w assigning each vertex its cost, and a budget b.  Our goal is to find a set C, 

where the sum of costs of all vertices in C is at most the budget such that the probability 

of detection of communication between two vertices s,t∊V is maximized. We assume that 

vertices communicate along the shortest (s,t)-paths and that the shortest path used for 

communication is chosen uniformly at random.

1. Make yourself familiar with the Maximum Betweenness Centrality problem [1,2] and 

the framework of parametrised complexity [3].

2. Find reasonable natural parameters for the MBC problem and try to derive the 

computational complexity with respect to these parameters.

3. Study the MBC problem with respect to selected structural parameters.

4. Combine parametrisation from 1. and 2. to obtain additional tractability and hardness 

results.
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Abstract

The Maximum Betweenness Centrality problem consists in picking a group of b nodes from
a social network so that it has the greatest likelihood of detecting communication, assuming that
nodes communicate only along shortest paths, chosen uniformly at random. Finding such groups
is relevant for the study of communication in complex networks. Although this problem has been
studied within the framework of classical complexity, its parameterized complexity has remained
an open question. We close this gap by studying Maximum Betweenness Centrality from a
parameterized perspective. We show that Maximum Betweenness Centrality is W[1]-hard
when parameterized by the budget b, and complement this result with a lower bound of f(b)·no(b)

for any algorithm for Maximum Betweenness Centrality parameterized by the budget b,
under ETH. On a positive tone, we show that Maximum Betweenness Centrality is in
FPT when parameterized by the vertex cover number, by the distance to clique and the budget,
or by the twin cover number and the budget.

Keywords Parameterized complexity, Maximum Betweenness Centrality, Fixed Parameter
Tractable, Vertex cover number, Distance to clique, Twin cover number.

Abstrakt

Problém Maximum Betweenness Centrality spočívá ve výběru skupiny úzlů uživateli zadané
velikosti ze sociální sítě tak, abychom maximalizovali pravděpodobnost zachycení komunikace
probíhající po nejkratších cestách v rámci sítě. Byť Maximum Betweenness Centrality
je poměrně probádáný v kontextu klasické složitosti, jeho parametrizováná složitost představo-
vala dosavaď nezdupanou půdu. Tento nedostatek doplníme multivarietní analýzou. Ukázu-
jeme, že Maximum Betweenness Centrality je W[1]-těžký parametrizován velikostí skupiny.
Tento výsledek doplňujeme dolní mezí f(b) · no(b) pro algoritmy pro Maximum Betweenness
Centrality parametrizován velikostí skupiny b, za předpokladu, že platí ETH. Oproti tomu
ukazujeme že Maximum Betweenness Centrality je v FPT když je parametrizován buďto
parametrem vertex cover number, distance to clique a velikostí skupiny, nebo twin cover number
a velikostí skupiny.

Klíčová slova Parametrizovaná složitost, Maximal Betweenness Centrality, FPT, Vertex
cover number, Distance to clique, Twin cover number.
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BC Betweenness Centrality
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ETH Exponential Time Hypothesis
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Introduction

When studying networks that model communication a natural question arises: are some nodes in
a network more important than others? The notion of centrality was conceived in the second half
of the XXth century in an attempt to answer this question. Social scientists were searching for
tools that would provide them with a better understanding of the structure of social networks.
The observations of Bavelas [1] regarding patterns of centrality in graphs modeling communi-
cation were formalized by Freeman [2] and resulted in the introduction of multiple measures of
centrality. Many new approaches to the measurement of centrality have since been described,
each focusing on different aspects of network interactions. The Degree Centrality of a node is
equal to its number of direct connections. Hence a more directly connected node is more cen-
tral from a Degree Centrality point of view. Calculating the Closeness Centrality of a vertex is
slightly more involved. From the perspective of Closeness Centrality, a node that is “close” to
all others is considered to be more central. We focus on Betweenness Centrality, introduced by
Freeman [2]. Betweenness Centrality gauges centrality based on shortest-path communication.
The Betweenness Centrality of a node is equal to the sum of the fractions of shortest paths that
contain said node for each pair of nodes in a network. Time has shown Betweenness Centrality
to be an useful tool for the analysis of networks modeling communication. It has aided the study
of wireless [3, 4, 5], transportation [6, 7, 8] and biological networks [9, 10, 11], among others.

Group Betweenness Centrality as a natural generalization of Betweenness Centrality was
introduced by Everett and Borgatti [12] in 1999. The group composed of yellow vertices in Fig. 1
is the group of size 4 with maximum Betweenness Centrality. In other words, it is the group
with the greatest likelihood of detecting communication in the network.

Figure 1 An example of a network. The size of each vertex is proportional to its Betweenness
Centrality. The yellow vertices form the set of size 4 with maximum Betweenness Centrality.

Since its introduction, Group Betweenness Centrality has been used for determining ideal

1



2 Introduction

nodes for the monitoring of communication [13] and in general to gain an understanding of the
combined influence of a particular group [12, 14, 15, 16]. Various non-equivalent definitions of
Group Betweenness Centrality have appeared since its introduction, and an explanation of the
differences between them is given in Section 3.2.

We concern ourselves with the Maximum Betweenness Centrality problem, that consists
in finding a group of vertices of given size such that their Group Betweenness Centrality is at
least equal to a particular threshold.

Although calculating the Betweenness Centrality of a group can be done in O(nm) time [12],
by means of the O(nm) algorithm for calculating the Betweenness Centrality of every individual
vertex [17, 18], finding effective exact algorithms for the Maximum Betweenness Centrality
problem has proven to be a demanding task. As the number of possible groups of vertices of
size b is in the worst case equal to nb, a trivial algorithm that calculates the GBC of every
group of size b runs in O(nm · nb) time. In Chapter 3 we introduce two new algorithms for
Maximum Betweenness Centrality. One is based on the algorithm of Puzis et al. [19] for
calculating the Group Betweenness Centrality of a group of size b in O(b3) time, after O(nm) time
preprocessing, and has a running time of O(nm + b3nb). In a similar manner, we use the new
algorithm described in Section 2.2 to calculate the GBC of all groups of size b in O(nm + nb+2).

As Maximum Betweenness Centrality is NP-complete1, the latest research has been
directed towards finding approximation algorithms, which are better suited for the extremely
large instances that occur in natural settings. Mahmoody et al. [20] describes an approxima-
tion algorithm based on random path sampling. Very recently, Lagos et al. [21] presented an
approximation based on integer programming with random path sampling. Although Angriman
et al. [22] focuses on a slightly different problem, they also concern themselves with efficient
approximations of group centrality. Although approximation schemes offer better tractability
results, they are lacking in precision. We take a different approach, and study Maximum Be-
tweenness Centrality from a parameterized perspective.

Parameterized algorithmics excel by being more granular in their analysis of complexity. As
opposed to classical complexity, where the running time is expressed as a function of the total
input size, the running time of a parameterized algorithm is a function of the input size and of a
parameter (or combined parameters), which provides useful information about the structure of
the instance. The addition of the parameter allows for a finer expression of complexity.

The theory of parameterized complexity has been very influential, and is still an active area
of research. In the preface to their textbook Cygan et al. [23] stated that in 2014 Google scholar
listed more than 4 000 works containing the term “fixed-parameter tractable.” At the time of
writing the number has more than doubled, and there are more than 10 000 such works. We
attempt to complement these results by studying Maximum Betweenness Centrality from
a parameterized point of view. The goal of this work is to obtain tractability and hardness
results for the Maximum Betweenness Centrality problem parameterized by reasonable
natural parameters. For a given parameter, we wish to show whether Maximum Betweenness
Centrality is in FPT or in some level of the W hierarchy. If not in FPT, we wish to determine
lower bounds for the computational complexity with respect to the parameter, and compare
them to the results attained by unparameterized algorithms.

1Puzis et al. [19] hints at a proof that Maximum Betweenness Centrality is NP-hard. In Chapter 3, we
show that Maximum Betweenness Centrality is not only NP-hard, but it is even NP-complete.



Chapter 1

Preliminaries

1.1 Basic notation
We refer to sets of elements using capital letters and to their elements using small letters. A set
of sets is denoted by calligraphic capital letters.

The elements of ordered sets, like A = (1, 2, 3), are listed inside of parenthesis, and the
order of the elements indicates their ordering in the set. The elements of unordered sets, like
B = {1, 2, 3}, are listed inside of braces, and any ordering results in an equivalent set.

Let S be a set. A subset of S is any set S′ such that all elements contained in S′ are also
contained in S. The set of all unordered subsets of S of size k is denoted by

(
S
k

)
.

Let A and B be two sets. The cartesian product A× B of A and B is the set of all ordered
sets (a, b), such that a ∈ A and b ∈ B. A2 is used to denote the cartesian product of A with
itself. By A∗ we denote the cartesian product of A with itself an arbitrary number of times.
Hence, for A = {1, 2, 3}, we have (1, 1, 1) ∈ A∗, ∅ ∈ A∗ or (1, 3, 2) ∈ A∗.

1.2 Graph theory
We refer to Diestel et al. [24] for basic graph theory notation.

A simple, undirected graph G = (V, E) is defined as a pair of sets, such that E ⊆
(

V
2
)

and V
is non-empty. The elements of V are called vertices, and the elements of E are called edges. We
use n to denote the number of vertices and m to denote the number of edges of G, respectively.

An u-v edge is written as {u, v}. Vertices u, v ∈ V are adjacent when an {u, v} edge exists.
The u and v vertices are the endpoints of the {u, v} edge, they are incident with the {u, v} edge.

A path with k edges is a sequence of unique vertices v0, . . . , vk, such that an {vi, vi+1} edge
exists for i ∈ {0, . . . , k−1}. An u-v path denotes a path whose endpoints are the u and v vertices.
The distance between two vertices u, v is defined as the length of the shortest u-v path, and is
denoted by distG(u, v). If no s-t path exists, then we have distG(s, t) =∞. A graph is connected
when there is a path between every pair of vertices.

The degree of a vertex v is defined as the number of edges which are incident to v, and is
denoted by degG(v). If all the vertices of G have the same degree r, then G is r-regular, or simply
regular. The neighbourhood of a vertex v is defined as the set of vertices that share an edge with
v, and is denoted as N(v).

Let G = (V, E) be a graph. We say the graph G′ = (V ′, E′) is a subgraph of G when V ′ ⊆ V
and E′ ⊆ E, and write G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges {s, t} with s, t ∈ V ′,
then G′ is an induced subgraph of G. We say that V ′ induces G′ in G, and write G′ ≡ G[V ′].

A clique is a subgraph that is completely connected.

1



2 Preliminaries

1.3 Centrality measures
Let G = (V, E) be a simple, undirected and connected graph. Let s, t be two distinct vertices.
The number of shortest s-t paths is denoted by σs,t. Let v be a vertex. The number of shortest
s-t paths that contain v is denoted by σs,t(v). By this definition, we have σs,t = σs,t(s) = σs,t(t).

Let C be a set of vertices. The number of shortest s-t paths that contain no vertices from C
is denoted by σC

s,t. Similarly, the number of shortest s-t paths that contain a vertex v and that
share no vertices with C is denoted by σC

s,t(v). Note that if every shortest s-t path shares a
vertex with C (i. e. distG[C](s, t) > distG(s, t)), then σC

s,t = 0.
The Betweenness Centrality of a vertex v is a positive real number proportional to the amount

of shortest paths between pairs of distinct vertices which contain v.

Definition 1.1 (Dolev et al. [13]). The Betweenness Centrality (BC) of vertex v is defined as

BC(v) ≡
∑

s,t∈V
s̸=t

σs,t(v)
σs,t

We assume that communication in G occurs between all pairs of vertices with the same prob-
ability. We also assume that when two vertices communicate, all shortest paths between them
have the same probability of being used. Under these assumptions, the Betweenness Centrality
of a vertex v is proportional to the probability that v detects communication between all pairs
of distinct vertices in G.

The Group Betweenness Centrality measure extends the notion of Betweenness Centrality
from a single vertex to groups of vertices. Let C be a set (or group) of vertices. The number of
shortest s-t paths with at least one vertex in common with C is denoted by σs,t(C).

Definition 1.2 (Dolev et al. [13]). The Group Betweenness Centrality (GBC) of a set C ⊆ V
is defined as

GBC(C) ≡
∑

s,t∈V
s̸=t

σs,t(C)
σs,t

Due to our assumptions regarding communication between vertices, GBC(C) is proportional
to the probability that C detects communication between any pair of distinct vertices in G.

1.4 Computational complexity
We use the notation given by Arora and Barak [25].

A natural decision problem, such as “Is there a clique on at least k vertices in G?” can be
represented by a boolean function f : {0, 1}∗ → {0, 1} mapping an input string to a single bit of
output. For this problem, the input string will encode the graph G, and function f will return 1
if a clique on at least k vertices exists in G or 0 otherwise. Thus a decision problem L ⊆ {0, 1}∗

can be defined as {x : f(x) = 1}. The computational problem of deciding the language L is
identical to computing f . In other words, the computational complexity of a problem L is the
complexity of deciding whether an instance of the problem is a yes-instance.

The set of all decision problems that can be decided deterministically in bounded time is
contained in the class DTIME, which is defined as follows

Definition 1.3 (The class DTIME, Definition 1.12 [25]). Let T : N → N be some function. A
language L is in DTIME(T (n)) if and only if there is a Turing machine that runs in time c ·T (n)
for some constant c > 0 and decides L.



Parameterized complexity 3

To capture the notion of efficient computation the class P was introduced.

Definition 1.4 (The class P, Definition 1.13 [25]).

P ≡
⋃
c≥1

DTIME(nc)

To capture the notion of problems whose solution can be efficiently verified the complexity
class NP was introduced1.

Definition 1.5 (The class NP, Definition 2.1 [25]). A language L ⊆ {0, 1}∗ is in NP if there
exists a polynomial p : N → N and a polynomial-time Turing machine M (called the verifier for
L) such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃u ∈ 0, 1p(|x|) such that M(x, u) = 1

To be able to compare the complexity of two different problems, the concept of polynomial-
time reductions was introduced.

Definition 1.6 (Reduction, Definition 2.7 [25]). A language L is polynomial-time reducible to a
language L′ if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for
every x ∈ {0, 1}∗, x ∈ L ⇐⇒ f(x) ∈ L′.

We say that L′ is NP-hard if every language L in NP is reducible to L′. We say that L′ is
NP-complete if L′ is NP-hard and L′ is in NP. No polynomial time algorithm for any NP-hard
problem has been devised, and it is not known whether P ̸= NP. Thus showing that a problem is
NP-hard (usually by reducing from a problem known to be NP-hard) indicates that it is unlikely
that a polynomial time algorithm for said problem exists.

A natural measurement of the complexity of an algorithm is the number of operations required
to execute it. As we are usually not interested in the precise number of operations, it is useful
to ignore low-level details and focus on the dominating sources of complexity. This is achieved
using the Big-Oh notation

Definition 1.7 (Big-Oh notation, Definition 0.2 [25]). Let f, g be two functions from N to N.
We say that

• f = O(g) if there is a constant c such that f(n) ≤ c · g(n) for every sufficiently large n, and

• f = o(g) if for every ϵ > 0, f(n) ≤ ϵ · g(n) for every sufficiently large n.

1.5 Parameterized complexity
We use the notation given by Cygan et al. [23].

The underlying idea behind a parameterized approach to a problem consists in expressing
complexity as a function of not only the size of the input instance, but also of a parameter
providing additional information. We call such a problem a parameterized problem. Formally, a
parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is a fixed, finite alphabet. For an
instance (x, k) ∈ Σ∗×Σ∗, k is called the parameter. Note that as k can be either a single natural
number or a more complex structure.

When solving an instance of a parameterized problem, it is often the case that the parameter k
is small in comparison to the size of the instance. One way to make a problem more practically
solvable (or tractable) is by finding an algorithm that solves an instance of problem L in time
polynomial on the size of the instance for any fixed |k|. This notion is formalized in the concept
of fixed-parameter tractability.

1The class of NP problems was originally defined as the class of problems which can be solved by a non-
deterministic Turing machine in polynomial time. This is discussed in more detail by Arora and Barak [25] in
section 2.1.2.



4 Preliminaries

Definition 1.8 (FPT). A parameterized problem L is called fixed-parameter tractable (FPT) if
there exists an algorithm A, a computable function f : N→ N, and a constant c such that, given
(x, k) ∈ Σ∗ × N, A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c.

The algorithm A is then called fixed-parameter tractable. The complexity class containing all
fixed-parameter tractable problems is called FPT.

Less efficient algorithms, yet also running in polynomial time for a fixed parameter, are
formalized as slice-wise polynomial algorithms.

Definition 1.9 (Slice-wise polynomial). A parameterized problem L is called slice-wise poly-
nomial if there exists an algorithm A, two computable functions f : N → N, g : N → N, and
a constant c such that, given (x, k) ∈ Σ∗ × N, A correctly decides whether (x, k) ∈ L in time
bounded by f(k) · |(x, k)|g(k).

The complexity class containing all slice-wise polynomial problems is called XP.
As with polynomial reductions between decision problems, a parameterized problem can be

reduced to another parameterized problem by means of a parameterized reduction.

Definition 1.10. Let A, B be two parameterized problems. A parameterized reduction from A
to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x′, k′) of B such
that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the running time is f(k) · |x|O(1).

Cygan et al. [23] proves in Theorem 13.2 that if there exists a parameterized reduction from
A to B and B is in FPT, then A is also in FPT.

Finding suitable parameters so that a parameterized problem is shown to be in FPT is the
ideal outcome of a multivariate analysis. Although the running time of slice-wise polynomial
algorithms is polynomial for a fixed parameter, in practice such algorithms are intractable for
even small values of the parameter. Some parameterized problems, however, seem to be more
complex than others. As an analogue to the NP class, the W hierarchy was introduced by Downey
and Fellows [26] in an attempt to classify parameterized problems according to their hardness.
Thus tractability results are complemented by an intractability theory. Because it is unlikely
that FPT = W[1], showing that a parameterized problem is hard for any level of the W hierarchy
can be understood as evidence that there is no FPT algorithm for said problem.

As with classical complexity, reductions between parameterized problems (which are not
necessarily equivalent to polynomial reductions) can be used to show that a problem is at least
as hard as some other parameterized problem. This is a useful tool for proofs of hardness and
also for establishing lower bounds of computational complexity. Of particular interest is the so
called Exponential-Time Hypothesis (ETH). It provides a lower bound for the complexity of the
Satisfiability problem. Since it is believed that ETH holds, parameterized reductions can be
used to give lower bounds on the complexity of parameterized problems, assuming ETH. This
is discussed in detail in Chapter 14 of Cygan et al. [23].

Cygan et al. [23] gives a definition of the W-hierarchy and explains the subject of fixed-
parameter intractability in Chapter 13. Although of great theoretical importance, our concern
with the W-hierarchy is mostly practical, as it is useful to know whether it is unlikely that Max-
imum Betweenness Centrality is in FPT when parameterized by a particular parameter.



Chapter 2

Algorithms for the computation
of Group Betweenness Centrality

We discuss existing algorithms for the computation of Group Betweenness Centrality. In Sec-
tion 2.2, we present a new algorithm for computing the Group Betweenness Centrality of a group
of size k that runs in O(kn2) time, after O(nm) time preprocessing.

2.1 Existing algorithms

2.1.1 Combinatorial shortest path counting
Everett and Borgatti [12] introduced the concept of Group Betweenness Centrality. Along with
providing a formal definition, they describe an O(nm) time algorithm for computing the GBC
of a set C of arbitrary size.

The idea of the algorithm is the following. Let C be a set whose GBC we wish to calculate.
Instead of counting the number of shortest paths that have vertices in common with C, we count
the number of shortest paths that share no vertices with C, and subtract it from the total number
of shortest paths. Hence we can calculate GBC(C) as

GBC(C) =
∑

s,t∈V
s̸=t

σs,t − σC
s,t

σs,t
(2.1)

Because Eq. (2.1) differs from the definition of GBC only by replacing σs,t(C) with σs,t−σC
s,t,

proving the correctness of this algorithm is equivalent to proving the following lemma.

Lemma 2.1. Let G be a connected graph. For all sets C ⊆ V we have σs,t(C) = σs,t − σC
s,t.

Proof. By definition, σC
s,t is equal to the number of shortest s-t paths not covered by C. The

number of shortest s-t paths covered by C is equal to σs,t(C). As every shortest path between
any pair of s, t vertices is either covered or not covered by C, we have σs,t = σs,t(C) + σC

s,t, or
equivalently σs,t(C) = σs,t − σC

s,t.

Finally, the running time of the algorithm is dominated by the time needed for calculating σs,t

and σC
s,t. Brandes [18] describes an algorithm (Algorithm 1, Lemma 3) that calculates σs,t for

all s, t ∈ V in O(nm) time. Because calculating σC
s,t for all s, t ∈ V can be done by using the

same algorithm on a graph G′ = G[V \ C], and G′ contains no more vertices and edges than G,
determining the value of GBC(C) using Eq. (2.1) can be done in O(nm) time.
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6 Algorithms for the computation of Group Betweenness Centrality

Algorithm 1 Group Betweenness Centrality
Input: graph G, set of vertices C
Output: GBC(C)

1: calculate σs,t for all s, t ∈ V
2: calculate σC

s,t for all s, t ∈ V
3: GBC(C)← 0
4: for every distinct s, t in V do

5: GBC(C)← GBC(C) +
σs,t − σM

s,t

σs,t

6: end for
7: output GBC(C)

On a practical note, calculating σM
s,t can be done by running the algorithm described by

Brandes [18] on G while disregarding vertices from M and edges adjacent to M . If this approach
is taken, the distance between two s, t vertices may increase (when every shortest s-t path shares
a vertex with M), and in that case σM

s,t should be equal to 0.
Note that the running time of Algorithm 1 is not dependant on the size of the group whose

GBC is to be determined. In the following section we describe the algorithm given by Puzis
et al. [19], whose running time, after preprocessing, depends only on the size of the input group.

2.1.2 A fast algorithm

Puzis et al. [19] introduced an algorithm that calculates the GBC of a group of size k in O(k3)
time, after preprocessing done in O(nm) time.

In the rest of this section we use the definition of GBC used by Puzis et al. [19]

GBC(C) ≡
∑

s,t∈V \C
s̸=t

σs,t(C)
σs,t

(2.2)

Note that if shortest paths whose endpoints are in C are considered, GBC(C) increases by exactly
|C|2 − |C| and 2 |C| (n− |C|) due to shortest paths with two endpoints and one endpoint in C,
respectively. Hence to calculate GBC(C) as defined by Dolev et al. [13] it suffices to calculate
GBC(C) + |C| (2n− |C| − 1) using the same definition for GBC as Puzis et al. [19].

Before proceeding with an explanation of the algorithm of Puzis et al. [19] we introduce
additional notation.

2.1.2.1 Additional notation
The Path Betweenness Centrality of an ordered set C is proportional to the number of shortest
paths that contain all vertices from C in order.

Definition 2.2 (Path Betweenness Centrality). Let σ̃s,t(C) be the number of shortest s-t paths
that contain the vertices from C in order. Path Betweenness Centrality is defined as

B̃C(C) ≡
∑

s,t∈V
s̸=t

σ̃s,t(C)
σs,t

B̃CM (C) denotes the Path Betweenness Centrality of a set C when paths that share vertices with
M are disregarded.
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We denote the Path Betweenness Centrality of a set C = (v1, . . . , vk) simply by B̃C(v1, . . . , vk).
The following two definitions capture the notion of dependency.

Definition 2.3 (Pair-dependency [18]). The pair dependency of vertices s and t on vertex v is
defined as the ratio of shortest s-t paths that contain v, and is denoted by

δst(v) ≡ σs,t(v)
σs,t

The dependency of a vertex on another vertex indicates the degree to which the latter con-
tributes to the centrality of the former.

Definition 2.4 (Dependency [18]). The dependency of vertex s on vertex v is denoted by

δs•(v) ≡
∑
t∈V

δst(v)

2.1.2.2 Description of the algorithm
The idea of the algorithm given by Puzis et al. [19] is the following. Let C be a set whose GBC
is known. For any v /∈ C it is easy to see that

GBC(C ∪ {v}) = GBC(C) + (GBC(C ∪ {v})−GBC(C)) (2.3)

The term GBC(C ∪{v})−GBC(C) corresponds to the contribution of v to GBC(C ∪{v})1. The
key observation is that this contribution is equal to the total fraction of shortest paths between
all pairs of vertices that traverse v, when only the shortest paths that contain no vertices from C

are considered. This is equivalent to B̃CC(v), the Path Betweenness Centrality of v when vertices
from C are disregarded. Hence the Group Betweenness Centrality of a set C with k elements
can be calculated using the following equation.

GBC(C) = B̃C∅(C1) + B̃C{C1}(C2) + . . . + B̃C{C1,...,Ck−1}(Ck) (2.4)

The algorithmic improvement comes from observing that updating the B̃C of all unaccounted
vertices from C after the contribution of a vertex has been considered can be done in O(k2)
time. Since calculating the first term of the sum in Eq. (2.4) can be done in O(nm) time, and
determining the value of each following term can be done in O(k2) time, this approach results
in the total O(nm + k3) running time.

Let C be a set with k vertices whose GBC we wish to determine. Let M be the set of
vertices whose contribution has already been considered. We show that computing B̃CM∪{v}(s)
and σ

M∪{v}
s,t for all s, t ∈ C \M can be done in O(k2) time, assuming that B̃CM (s, t) and σM

s,t is
known for all s, t ∈ C \M beforehand.

Let v be the vertex whose contribution to GBC(M ∪ {v}) we wish to calculate, and let
s, t ∈ C \M be a pair of vertices whose contribution to GBC(C) is yet to be considered.

We first consider the case when s = t. The value of B̃CM∪{v}(s) decreases exactly by the
contribution of all shortest paths that contain both s and v. The contribution of these paths is
equal to B̃CM (s, v) + B̃CM (v, s), and hence the new B̃C of s is equal to

B̃CM∪{v}(s) = B̃CM (s)−
(

B̃CM (v, s) + B̃CM (s, v)
)

(2.5)

1The term “contribution” is used loosely throughout this chapter, with the goal of aiding an intuitive under-
standing of the described algorithms. Although in a sense GBC(C ∪ {v}) − GBC(C) can indeed be seen as the
contribution of v to GBC(C ∪ {v}), if such an approach were taken then summing the contribution of all vertices
of a set M will result in a value smaller than GBC(M), since some shortest paths contain more than one vertex
from M , assuming that M contains at least 2 vertices.
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As we assume that both B̃CM (s, v) and B̃CM (v, s) were already calculated, this operation can
be done in O(1) time for each vertex, and in O(k) time for all vertices from C \M .

We now assume that s and t are distinct. As earlier, considering the contribution of v
decreases the potential contribution of shortest paths containing s and then t by the contribution
of shortest paths that contain the vertices s, t and v, where s is before t. If any such shortest
path exists, then every path will contain the vertices s, t and v in one of three orders:

B̃CM∪{v}(s, t) = B̃CM (s, t)−


B̃CM (v, s, t) distG(v, t) = distG(v, s) + distG(s, t)
B̃CM (s, v, t) distG(s, t) = distG(s, v) + distG(v, t)
B̃CM (s, t, v) distG(s, v) = distG(s, t) + distG(t, v)

(2.6)

Puzis et al. [19] explains how the B̃C of a group of three vertices can be calculated using only
the B̃C of pairs of vertices.

B̃C(s, t, v) =
σM

s,v(t)
σM

s,v

· B̃CM (s, v) (2.7)

As we assume that σM
s,t and B̃CM (s, t) are known for all s, t ∈ C \ M , in order to calculate

B̃C(s, t, v) we only need to determine the value of σM
s,v(t). Puzis et al. [19] explains how this can

be done in O(1) time.

Lemma 2.5. For all s, t, v ∈ V and M ⊆ V we have σM
s,t(v) = σM

s,vσM
v,t.

Proof. Every shortest s-t path that contains v is composed of two shortest s-v and v-t paths
that have only vertex v in common. If the two paths had any additional vertices in common, a
shorter s-t path could be constructed, which would contradict the assumption that the original
path was a shortest path.

Thus B̃CM∪{v}(s, t) can be calculated in O(1) time for each s, t pair, assuming that σM
s,t is known

for all s, t ∈ C \M .
Finally, we can use Lemma 2.5 to show how σ

M∪{v}
s,t can be calculated in O(1) time for each

s, t ∈ C \M pair.
σ

M∪{v}
s,t = σM

s,t − σM
s,t(v) = σM

s,t − σM
s,vσM

v,t (2.8)

To summarize, we have shown that B̃CM∪{v}(s, t) and σ
M∪{v}
s,t can be calculated for each

pair of vertices in O(1) time, assuming that B̃CM (s, t) and σM
s,t are known beforehand for all

s, t ∈ C \M . Because there are k2 pairs of vertices from C, updating the pair Path Betweenness
Centrality of all pairs of vertices from C after considering the contribution of each vertex from C
to GBC(C) can be done in O(k2). As there are k such steps, this gives a running time of O(k3)
for calculating the GBC of a group of size k, assuming that B̃C∅(s, t), distG(s, t) and σ∅

s,t are
known for every pair s, t ∈ C. Calculating distG(s, t) and σ∅

s,t for all s, t can be done in O(nm)
time using breadth first search. We can calculate the Path Betweenness Centrality of a pair of
vertices using the following equation

B̃C∅(s, t) =
∑
v∈V

δv•(t)
σ∅

v,t(s)
σ∅

v,t

(2.9)

The value of δv•(t) can be calculated for all v, t ∈ V in O(nm) time [18]. This completes the
required preprocessing, with a running time of O(nm).

A result of the previous observations is that the algorithm described by Puzis et al. [19]
calculates the GBC of a group of size k in O(nm + k3) time. Puzis et al. [19] provides pseudocode
for their algorithm. They also compare the efficiency of their implementation to that of previous
state of the art algorithms for calculating GBC, thus practically showing that—even for a small
amount of groups whose GBC is to be calculated—the algorithm they describe outperforms
previous algorithms.
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2.2 A new algorithm
We present an algorithm for calculating the GBC of a group of size k in O(nm + kn2) time, if
the number of shortest paths between every pair of vertices can be determined in O(nm) time.

The intuition behind our approach is similar to that of Puzis et al. [19]. We calculate the
GBC of a set C containing k vertices by gradually considering the contribution of each vertex.
The correctness and the running time of the algorithm is given by the following lemma.

Lemma 2.6. Let G be a connected graph and C ⊆ V . For any vertex v /∈ C, if GBC(C) has
already been calculated and σC

s,t is known for all s, t ∈ V , then calculating GBC(C ∪ {v}) and
σ

C∪{v}
s,t for all s, t ∈ V can be done in O(n2) time.

Proof. Every shortest path covered by C ∪ {v} either has vertices in common with C (and
potentially also contains v) or contains only v and shares no vertices with C. Formally, we have

GBC(C ∪ {v}) = GBC(C) +
∑

s,t∈V
s̸=t

σC
s,t(v)
σs,t

(2.10)

Instead of calculating σC
s,t(v) directly, we make use of the assumption that σC

s,t is known for all
s, t ∈ V , and calculate σC

s,t(v) as σC
s,vσC

v,t (Lemma 2.5). As there are O(n2) pairs of vertices,
calculating the contribution of a single vertex to the GBC of a group can be done in O(n2) time,
assuming that GBC(C) is known.

Finally, calculating σ
C∪{v}
s,t for all s, t ∈ V can be done in O(n2) time using Eq. (2.8).

Theorem 2.7. Let C be a set of size k. There is an algorithm that calculates GBC(C) in
O(nm + kn2) time.

Proof. Let M be the set of vertices whose contribution to GBC(C) has already been considered.
At each step of the algorithm we add a vertex v from C to M , and calculate the increment

to GBC(M) corresponding to paths that contain v but share no vertices with C. The algorithm
terminates when all vertices from C have been added to M , and GBC(M) is equal to GBC(C).

As explained in Lemma 2.6 calculating GBC(M ∪ {v}) and σ
M∪{v}
s,t for all s, t ∈ V can be

done in O(n2) time, assuming that GBC(M) has already been calculated and that σM
s,t is known

for all s, t ∈ V . Since k such steps are necessary for calculating the contribution of all vertices
in C to GBC(C), the running time of the algorithm is O(kn2).

Although at each step of the algorithm σ
M∪{v}
s,t is calculated for all s, t ∈ V , and hence can

be used in the following step, σ∅
s,t must be calculated directly. Brandes [18] describes how the

number of shortest paths between all pairs of vertices can be calculated in O(nm) time. This
results in the total running time of O(nm + kn2).

Note that for an actual implementation only three matrices are needed to store the number of
shortest paths between pairs of vertices. One for the division on Line 8 and two for the number
of paths when vertices from M and M ′ are disregarded, as σM ′

•,• becomes σM
•,• after Line 11.
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Algorithm 2 Group Betweenness Centrality
Input: connected graph G, set of vertices C
Output: GBC(C)

1: M ← ∅
2: GBC(M)← 0
3: calculate σM

s,t for all s, t ∈ V
4: for every v in C do
5: M ′ ←M ∪ {v}
6: GBC(M ′)← GBC(M)
7: for every s, t in V \M do
8: GBC(M ′)← GBC(M ′) + σM

s,vσM
v,t

σs,t

9: σM ′

s,t ← σM
s,t − σM

s,vσM
v,t

10: end for
11: M ←M ′

12: GBC(M)← GBC(M ′)
13: end for
14: output GBC(M)



Chapter 3

Maximum Betweenness
Centrality

In this chapter, we define our problem of interest—Maximum Betweenness Centrality.
Because Maximum Betweenness Centrality is closely related to Group Betweenness Cen-
trality, some instances of Maximum Betweenness Centrality will be yes- or no-instances
depending on the used definition of Group Betweenness Centrality. In Section 3.2, we discuss
the existing definitions of Group Betweenness Centrality, and the effect they have in the results
of algorithms for the Maximum Betweenness Centrality problem.

After showing that Maximum Betweenness Centrality is NP-complete in Section 3.3, we
conclude this chapter by presenting two algorithms for Maximum Betweenness Centrality,
with O(nm + b3nb) and O(nm + bnb+2) running times, respectively, where b is the available
budget.

3.1 Problem definition

The Maximum Betweenness Centrality problem consists in finding a group with maximal
GBC, such that the size of the group is at most equal to a budget. We formulate it as a decision
problem.

Input: A connected graph G, a budget b and a threshold t.
Task: Decide whether a set C of vertices exists such that its size does not exceed the

budget b, and GBC(C) is at least equal to the threshold t.

Maximum Betweenness Centrality

A natural generalization of the Maximum Betweenness Centrality problem is the
Weighted Maximum Betweenness Centrality problem, defined as follows

Input: A connected graph G, a cost function c : V → N, a budget b and a threshold t
Task: Decide whether a set C of vertices exists such that the sum of the costs (or

weights) of its vertices does not exceed the budget b, and GBC(C) is at least
equal to the threshold t.

Weighted Maximum Betweenness Centrality [14]

11



12 Maximum Betweenness Centrality

It is easy to verify that all achieved hardness results carry over directly from Maximum Be-
tweenness Centrality to its weighted variant, as every instance of Maximum Betweenness
Centrality can be seen as an instance of Weighted Maximum Betweenness Centrality
where all vertices have unit weight.

3.2 Alternative definitions
The definitions of Group Betweenness Centrality found in the existing literature have subtle
differences. Table 3.1 lists a selection of existing definitions.

Table 3.1 Comparison of existing definitions of Group Betweenness Centrality.

Source GBC(C) Considered pairs of vertices

Everett and
Borgatti [12]

∑
s,t∈V

s<t
s,t/∈C

σs,t(C)
σs,t

Unordered pairs of distinct vertices
from V \ C

Puzis et al. [14]
∑

s,t∈V
s,t/∈C

σs,t(C)
σs,t

Ordered pairs of distinct vertices that
share at least one vertex with C 1

Dolev et al. [13]
∑

s,t∈V
s̸=t

σs,t(C)
σs,t Ordered pairs of distinct vertices

Veremyev et al. [16]
∑

s,t∈V

σs,t(C)
σs,t

All ordered pairs

Because deciding an instance of Maximum Betweenness Centrality involves finding a
set whose GBC is at least equal to a threshold, different definitions of GBC can potentially lead
to non-equivalent definitions of Maximum Betweenness Centrality.

From the mentioned papers, both Puzis et al. [19] and Veremyev et al. [16] acknowledge
the discrepancy between their definitions and previous ones. Veremyev et al. [16] show how
their definition of Group Betweenness Centrality leads to an increase of GBC by |C| when
compared to a definition of GBC differing only by ignoring v-v paths (like the GBC given by
Dolev et al. [13]). Puzis et al. [19] explains that the GBC of a group C calculated using the

1Originally, the definition given by Puzis et al. [14] uses the phrase “traverses at least one vertex of C,” instead
of “shares at least one vertex with C.” Note that, technically speaking, a definition of GBC that considers only
shortest paths that traverse at least one vertex of C would be more faithfully calculated as∑

s,t∈V
s ̸=t

σs,t(C \ {s, t})
σs,t

If the Maximum Betweenness Centrality problem uses this definition, there is no way to modify instances
of Maximum Betweenness Centrality that use a different definition, since for any given set C there is no
way of knowing the amount of shortest paths that traverse it, where traverse is understood as “goes through.”
Additionally, based on the comments by Puzis et al. [19], it is clear that the definition from Puzis et al. [14]
considers only shortest paths with no endpoints in C, as opposed to shortest paths that contain vertices from C
not only as endpoints.
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definition by Puzis et al. [14] as opposed to that of Dolev et al. [13] will be smaller by exactly
(|C|2 − |C|) + 2 |C| (n − |C|) = |C| (2n − |C| − 1), which corresponds to the contribution of
shortest paths with at least one endpoint in C. Thus, an instance I of Maximum Betweenness
Centrality with Group Betweenness Centrality as defined by Dolev et al. [13] can be obtained
from any other instance of Maximum Betweenness Centrality with a different definition
of GBC by modifying the threshold. We use the definition by Dolev et al. [13] as reference, and
denote by t the base threshold and by t′ the modified threshold. For the definition by Everett
and Borgatti [12], we have t = 2 (t′ + b(2n− b− 1)). The factor of 2 is due to the definition
considering only unordered pairs. Thus, for the definition of GBC given by Puzis et al. [14] we
have t = t′ + b(2n− b− 1). If the definition by Veremyev et al. [16] is used, we have t = t′ − b,
since the only additionally considered pairs of vertices are the b s-s pairs.

With regards to Weighted Maximum Betweenness Centrality, none of the definitions
are equivalent to that given by Dolev et al. [13], assuming arbitrary weights. The problem is
that there is no way of knowing the size of a solution for a given instance, since it may contain
many expensive vertices or few cheaper ones. Therefore establishing a threshold can only be
done when all vertices have either a fixed cost, or a cost exceeding the budget. For the same
reason, none of the definitions are equivalent to that given by Veremyev et al. [16]. Only the
definition by Everett and Borgatti [12] is equivalent to the definition by Puzis et al. [14], since
both differ only by considering ordered or unordered shortest paths.

Although the previous discussion highlights subtle differences between existing definitions of
GBC, and therefore in the resulting Maximum Betweenness Centrality problem (and its
weighted variant), all of the results in this paper remain valid if a different definition for GBC is
used instead of that by Dolev et al. [13].

3.3 Complexity
A formal proof of the NP-completeness of Maximum Betweenness Centrality has not been
published, although Puzis et al. [14] hints that a proof of the NP-hardness of Maximum Be-
tweenness Centrality can be done by reducing from the Vertex Cover problem, defined
as follows.

Input: A connected graph G and an integer k.
Task: Decide whether a set C of at most k vertices exists such that at least one

endpoint of every edge in G is in C.

Vertex Cover [23]

We fulfill this gap by showing that Maximum Betweenness Centrality is not only NP-
hard, but additionally is also in NP, and is therefore NP-complete.

Theorem 3.1. Maximum Betweenness Centrality is NP-complete.

Proof. To show that Maximum Betweenness Centrality is NP-hard, we observe that every
vertex cover C detects all communication between every pair of adjacent vertices, as at least one
endpoint of every edge is in C. The threshold t of a Maximum Betweenness Centrality
instance can then be established so that only instances that contain a group that detects all
communication between every pair of vertices are yes-instances. Finally, a budget equal to k
ensures that only groups that contain at most k vertices are considered.

Formally, we describe a polynomial reduction from the Vertex Cover problem, which is
known to be NP-complete [27]. The reduction, as outlined by Puzis et al. [14], is straightforward.
Let I = (G, k) be an instance of Vertex Cover. We define a new instance J = (G, b = k, t)
of Maximum Betweenness Centrality, where t = n2 − n is equal to the number of pairs
of distinct vertices. The threshold t ensures that only instances of Maximum Betweenness
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Centrality containing groups which detect all communication between every pair of vertices
are yes-instances.

We now show that I is a yes-instance if and only if J is a yes-instance.
If I is a yes-instance, than there is a set C ⊆ V such that |C| ≤ b and C is a vertex cover.

As C contains at least one endpoint of every edge, every shortest path between a pair of distinct
vertices must contain at least one vertex from C. Otherwise an uncovered edge would exist in G,
contradicting the assumption that C is a vertex cover. Because all shortest paths between every
pair of distinct vertices share at least one vertex with C, it follows that GBC(C) = n2 − n, and
thus J is also a yes-instance.

Now let J be a yes-instance. Then a set C exists such that |C| ≤ b and GBC(C) ≥ t.
Pursuing a contradiction, we assume that C is not a vertex cover. Then there is at least one
{s, t} edge such that neither s nor t are in C. Clearly, the only shortest s-t path is the {s, t}
edge not covered by C, and σs,t(C) is therefore equal to 0. Hence GBC(C) is at most equal to
n2 − n− 2. As t = n2 − n ̸= n2 − n− 2, we arrive at a contradiction with our assumption that
GBC(C) ≥ t. It follows that I must also be a yes-instance.

This completes the reduction from Vertex Cover to Maximum Betweenness Central-
ity. To show that the reduction is indeed polynomial it suffices to see that an instance of
Maximum Betweenness Centrality corresponding to an instance of Vertex Cover can
be constructed in polynomial time, as no additional vertices nor edges are introduced with respect
to the original input graph.

To prove that Maximum Betweenness Centrality is NP-complete we must additionally
show that it is in NP. Because a solution for a yes-instance is a subset of n, it can be employed as
a certificate of polynomial length. The O(nm) algorithm given by Puzis et al. [19] can be used
to verify that the GBC of a given solution exceeds the threshold. As every yes-instance has a
certificate of polynomial size that can be verified in polynomial time, it follows that Maximum
Betweenness Centrality is in NP.

To summarize, we have shown that Maximum Betweenness Centrality is NP-hard, and
that it is even in NP. It follows that Maximum Betweenness Centrality is NP-complete.

Note that if s-s shortest paths are considered (the definition of GBC by Veremyev et al. [16]),
the threshold of every instance of Maximum Betweenness Centrality can be modified to
obtain an equivalent instance. For the modified threshold we have t′ = t + b, where the addition
of b corresponds to the b s-s paths covered by the vertices of a solution of size b. Similarly, if
shortest paths with endpoints in C are ignored (the definition of GBC given by Puzis et al. [14]),
for the modified threshold we have t′ = t− (b2 − b)− (2b(n− b)).

Corollary 3.2. Weighted Maximum Betweenness Centrality is NP-complete.

3.4 A trivial algorithm
In this section, we describe a trivial algorithm for Maximum Betweenness Centrality. The
algorithm calculates the GBC of every group containing b vertices.

Theorem 3.3. Let I = (G, b, t) be an instance of Maximum Betweenness Centrality with
budget b and threshold t. There is an algorithm that decides I in O(nm · nb) time.

Proof. The idea is straightforward. Using the O(nm) algorithm for calculating the GBC of a
group, we calculate the GBC of all O(nb) groups of size b. I is a yes-instance if and only if a
group C exists such that GBC(C) ≥ t.

We can attain the previous result because we assume that only subsets of size exactly b
need to be considered. This is not so with regards to Weighted Maximum Betweenness
Centrality. Let C be a set whose cost is below the budget, such that GBC(C) is greater than
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the established threshold t. Now consider the set C ∪ {v}. Although GBC(C ∪ {v}) is certainly
greater than GBC(C), we have no way to ensure that the cost of the set C ∪ {v} remains below
the budget. Hence it is necessary to calculate the GBC of every set of size at most b. Using the
O(nm) algorithm for the calculation of GBC for this task yields an O(nm · ebnb) time 2 algorithm
for Weighted Maximum Betweenness Centrality parameterized by the budget.

Corollary 3.4. There is an O(nm · ebnb) time algorithm for Weighted Maximum Between-
ness Centrality.

In the following section, we introduce two slightly more sophisticated algorithms with asymp-
totically better running times.

3.5 Two algorithms
In this section, we discuss the algorithm for Maximum Betweenness Centrality given by
Puzis et al. [14], and present a simpler algorithm with the same asymptotic running time. Al-
though both algorithms are intractable for large or even medium-sized instances, in Section 4.1.1
we show that both algorithms are asymptotically optimal with regards to n.

Theorem 3.5 (Puzis et al. [14]). Let I = (G, b, t) be an instance of Maximum Between-
ness Centrality parameterized by the budget b. There is an algorithm that decides I in
O(nm + b3nb) time.

Proof. We can decide instance I by calculating the GBC of every subset of V of size b. As
the number of said groups is bounded up by O(nb), using the algorithm of Puzis et al. [19]
to calculate the GBC of each group of size b in O(b3), after O(nm) preprocessing, leads to an
O(nm + b3nb) time algorithm for Maximum Betweenness Centrality.

Corollary 3.6 (Puzis et al. [14]). There is an O(nm + b3ebnb) time algorithm for Weighted
Maximum Betweenness Centrality parameterized by the budget b.

3.5.1 A new algorithm
We present a new O(nm + bnb+2) time algorithm for Maximum Betweenness Centrality.
It is similar to that given by Puzis et al. [14], and it works by calculating the GBC of all groups
of size b.

Theorem 3.7. Let I = (G, b, t) be an instance of Maximum Betweenness Centrality
parameterized by the budget b. There is an algorithm that decides I in O(nm + bnb+2) time.

Proof. As with the previous theorem, we use the algorithm described in Section 2.2 to calculate
the GBC of each of the O(nb) groups of size b in O(bn2) time, after O(nm) preprocessing. This
results in an O(nm + bnb+2) time algorithm for Maximum Betweenness Centrality.

Corollary 3.8. There is an O(nm + bebnb+2) time algorithm for Weighted Maximum Be-
tweenness Centrality parameterized by the budget b.

2We use the following bound for partial sums of binomial coefficients:
b∑

i=0

(n

b

)
≤

b∑
i=0

ni

i!
≤

nb

bb
·

∞∑
i=0

bi

i!
≤ ebnb (3.1)
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Chapter 4

Natural parameters

A good starting point for a multivariate analysis of Maximum Betweenness Centrality is
determining whether it is tractable when parameterized by its natural parameters. In the first
section, we show that Maximum Betweenness Centrality parameterized by the budget is
W[1]-hard, which can be seen as evidence that it is unlikely that it is in FPT. We complement
this result in Section 4.1.1 with a conditional lower bound matching the running time of our
algorithm from Theorem 3.7 based on the well-known ETH [23]. We conclude by discussing
parameterization by the threshold.

4.1 Budget
Our approach is inspired by the one of Fink and Spoerhase [28]. We show that Maximum
Betweenness Centrality is W[1]-hard when parameterized by the budget by reducing from
Partial Vertex Cover, which is defined as follows.

Input: A connected graph G, integers k and ℓ.
Task: Decide whether there exists a set of vertices C of size at most k such that at

least ℓ edges of G are incident to at least one vertex of C.

Partial Vertex Cover [27]

Partial Vertex Cover is known to be W[1]-complete when parameterized by the size of
the cover k [29].

Theorem 4.1. Maximum Betweenness Centrality is W[1]-hard when parameterized by the
budget b.

Proof. We are given an instance (G, k, ℓ) of Partial Vertex Cover, and construct an instance
(G′, b = k, t = 2ℓd2) of Maximum Betweenness Centrality. The number d can be picked
arbitrarily, as long as it is large enough in comparison to n. In Eq. (4.3) we show that d can
be bounded up by nO(1). The goal of the construction is to increase the centrality of vertices
adjacent to edges from E, so that a proportion between the amount of covered edges by a set C
and GBC(C) can be more easily established. We construct G′ as follows.

1. Copy all vertices and edges from G into G′.

2. For every vertex s ∈ V add d additional vertices Ds = s1, . . . , sd to V ′.

3. Add edges to E′ so that the set Ds ∪ {s} forms a clique.

17
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4. For every edge st /∈ E add a vertex zst to V ′.

5. Connect every zst vertex to every vertex of Ds ∪Dt.

The running time of the construction is given by the size of G′. The number of vertices |V |
is bounded up by n + dn + m, and the number of edges |E| is bounded up by m + d2n + 2md. As
adding vertices or edges can be done in O(1), and d can be bounded by nO(1) (inequality (4.3)),
the running time of the construction is nO(1).

This completes the construction. An illustration is shown in Fig. 4.1.

s t

u v

−−−−−→

s1, . . . , sd

Ds

t1, . . . , td

Dt

u1, . . . , ud

Du

v1, . . . , vd

Dv

s t

u v

zsu ztv

Figure 4.1 Construction used in the parameterized reduction from Partial Vertex Cover to
Maximum Betweenness Centrality.

We have described a construction that runs in nO(1) time and that preserves the size of the
parameter—the size of the cover for Partial Vertex Cover and the budget for Maximum
Betweenness Centrality. To prove that the construction constitutes a parameterized reduc-
tion we must additionally show that an instance of Partial Vertex Cover is a yes-instance
if and only if the transformed instance of Maximum Betweenness Centrality is also a
yes-instance.

Let I = (G, k, ℓ) be an instance of Partial Vertex Cover, and J = (G′, b = k, t = 2d2ℓ)
be the instance of Maximum Betweenness Centrality corresponding to I.

The threshold t of J is equal to the minimal GBC of a set covering ℓ edges. Let C be a set
containing b vertices, such that it covers at least ℓ edges from E′. Every {s, t} edge covered by C
corresponds to 2d2 unique shortest paths between vertices added as copies of the s and t vertices,
respectively. Hence GBC(C) is at least equal to 2d2ℓ. It follows that if I is a yes-instance, then
J is also a yes-instance.

We now show that if J is a yes-instance, then I is also a yes-instance. It is easy to verify
that this is equivalent to showing that if I is a no-instance, then J is also a no-instance. Let
C ⊆ V ′ be a set containing b vertices. C covers at most ℓ edges, as otherwise I would be a
yes-instance. We wish to show that the GBC of C is always strictly smaller than the threshold
t. As considering the combined contribution of all vertices leads to a weak bound, we partition
V ′ into three groups, and give upper bounds for the contribution of each of the 6 resulting pairs
of groups. V denotes the original set of vertices, Z denotes the vertices that correspond to two
unadjacent vertices, and D denotes the set of vertices added as copies of vertices from V . It is
easy to verify that every vertex in V ′ is a member of exactly one of the previous groups. Table 4.1
lists upper bounds for the number of pairs from each combination of two groups of vertices.



Budget 19

Table 4.1 Upper bounds for number of pairs between vertices from V , Z and D.

Pairs Count
V -V n2 − n
V -Z 2nm
V -D 2n(nd)
Z-Z m2 −m
Z-D 2m(nd)
D-D d2n2 − dn

Without any further assumptions, it is clear that the upper bound for GBC(C) obtained by
adding the bounds given in Table 4.1 is still not strong enough, as the amount of D-D pairs
easily exceeds 2d2ℓ. We strengthen this bound by observing that the contribution of D-D pairs
to GBC(C) is at most equal to 2d2(ℓ− 1).

For any vertex v ∈ C that is not in V , the contribution of D-D pairs to GBC(C) is maximized
when v is picked from Z, and is at most equal to 2d2. Because picking the endpoint of an
uncovered edge contributes with at least 2d2 to GBC(C), vertices from Z can be replaced with
vertices from V without decrementing GBC(C). Note that there are always enough uncovered
edges to allow for this modification. If this were not the case, C would cover all edges, and as
l − 1 < m, this would contradict the assumption that C covers at most l − 1 edges. Hence we
can assume that C is a subset of V . As C covers at most ℓ − 1 edges, the contribution of D-D
pairs to GBC(C) is at most equal to 2d2(ℓ− 1).

With this stronger bound for the contribution of D-D pairs we can establish an upper bound
for GBC(C).

GBC(C) ≤ (n2 − n) + (2n3) + (2n2d) + (n4 − n2) + (2n3d) +
(
2d2(ℓ− 1− p) + 2d2p

)
≤ n4 + 2n3(d + 1) + 2n2d− n + 2d2(ℓ− 1)

(4.1)

Having determined a bound for GBC(C), we can prove that the GBC of a group that covers
less than ℓ edges smaller than the threshold t for large enough d.

GBC(C) < 2d2ℓ (4.2)
⇕

n4 + 2n3(d + 1) + 2n2d− n + 2d2(ℓ− 1) < 2d2ℓ

⇕
n3 + n2

2 + 1
2

√
n6 + 2n5 + 3n4 + 4n3 − 2n < d (4.3)

It is easy to verify that a large d bounded by nO(1) can be picked so that the last inequality
is fulfilled. From the equivalence of inequalities (4.2) and (4.3), it follows that for large enough
d inequality (4.2) holds. This implies that a value, namely 2d2ℓ, can be chosen so that all sets C
that cover less than ℓ edges in E have a GBC(C) strictly smaller than 2d2ℓ. Thus we have shown
that if I is a no-instance, then J must also be a no-instance. Equivalently, if J is a yes-instance,
then I is also a yes-instance.

This completes the parameterized reduction. To summarize, we showed how an instance
I = (G, k, ℓ) of Partial Vertex Cover can be used to construct an instance J = (G′, k, 2d2ℓ)
of Maximum Betweenness Centrality. We showed that the construction can be done in
polynomial time, and that it preserves the size of the parameter of both instances. Finally, by
proving that instance I is a yes-instance if and only if J is also a yes-instance, we showed that
the construction constitutes a parameterized reduction.

As Partial Vertex Cover is known to be W[1]-complete when parameterized by the size of
the cover [23], the existence of the reduction implies that Maximum Betweenness Centrality
is W[1]-hard when parameterized by the budget.
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Corollary 4.2. Weighted Maximum Betweenness Centrality is W[1]-hard when param-
eterized by the budget.

This result can be understood as evidence against the existence of a FPT algorithm for Max-
imum Betweenness Centrality parameterized by the budget. We complement this result by
giving lower bounds for this problem, and showing that existing state of the art algorithms are
indeed asymptotically optimal.

4.1.1 Lower bounds
Lower bounds on computational complexity are useful for knowing whether an optimal algorithm
has been found. They also prevent the expenditure of many unfruitful hours which would oth-
erwise be devoted to finding algorithms that are provably nonexistent. We show that there is
no f(b) · no(b) time algorithm for Maximum Betweenness Centrality parameterized by the
budget b.

Theorem 4.3. There is no algorithm running in f(b) ·no(b) time for Maximum Betweenness
Centrality parameterized by the budget b, assuming ETH.

Proof. Cygan et al. [23] give in Theorem 13.6 a parameterized reduction from Independent
Set on regular graphs to Partial Vertex Cover that preserves the size of the parameter.
From [23, Observation 14.22, Corollary 14.23] it follows that there is no f(b)·no(b) time algorithm
for Partial Vertex Cover parameterized by the size k of the cover. As the reduction given in
Theorem 4.1 also preserves the size of the parameter, it follows from [23, Observation 14.22] and
from the previous theorem that there is no algorithm running in f(b) · no(b) time for Maximum
Betweenness Centrality parameterized by the budget b.

Corollary 4.4. There is no algorithm running in f(b) · no(b) time for Weighted Maximum
Betweenness Centrality parameterized by the budget b, assuming ETH.

The f(b) ·no(b) lower bound indicates that the nb factor in the running time of the algorithms
described in Section 3.5 cannot be improved, unless ETH fails.

4.2 Threshold
In this section, we discuss the parameterization of Maximum Betweenness Centrality by
the threshold. We begin by giving bounds for non-trivial thresholds.

Lemma 4.5. Let I = (G, b, t) be an instance of Maximum Betweenness Centrality pa-
rameterized by the threshold t. If either t < n or t > n2 − n, then for any budget b instance I
can be trivially decided.

Proof. Clearly, picking any single vertex v will cover at least all shortest paths between v and
every vertex from V \ {v}, hence GBC({v}) will be at least equal to n− 1. On the other hand,
as there are at most n2 − n pairs of vertices in G, and every pair can contribute with at most 1
to the GBC of any group, it follows that there is no group C such that GBC(C) is greater than
n2 − n. Hence any instance with a threshold greater than n2 − n is a no-instance.

Because nontrivial instances will have large thresholds in comparison to n, even if an FPT
algorithm for Maximum Betweenness Centrality parameterized by the threshold were to
be found, it would not necessarily lead to an improvement in computational complexity. Assume
that an f(t) · nO(1) time FPT algorithm for Maximum Betweenness Centrality param-
eterized by the threshold t was found. Although for fixed thresholds the algorithm would be
polynomial in n, for nontrivial instances the running time of the trivial algorithm would be
asymptotically better, unless f = o(nb). To overcome this limitation, we define a variant of
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Maximum Betweenness Centrality whereby the threshold indicates what fraction of the
total number of shortest paths is covered.

Input: A graph G, a budget b, and a threshold t′.
Task: Decide whether a set C of vertices exists such that its size does not exceed the

budget b, and GBC(C)
n2−n is at least equal to the threshold t′.

Maximum Betweenness Centrality with normalized threshold

Similarly, the threshold can be understood as the excess of GBC over n.

Input: A graph G, a budget b, and a threshold t′′.
Task: Decide whether a set C of vertices exists such that its size does not exceed the

budget b, and GBC(C)− n is at least equal to the threshold t′′.

Maximum Betweenness Centrality with shifted threshold

Partial Vertex Cover parameterized by the minimal number of edges to cover is in
FPT either when vertices are unweighted (Kneis et al. [30]) or weighted (Bläser [31]). Thus even
though the reduction used in the proof of Theorem 4.1 does constitute a parameterized reduction
from Partial Vertex Cover parameterized by the number of edges to cover to Maximum
Betweenness Centrality with normalized threshold or with shifted threshold parameterized
by the threshold, we cannot make any inferences regarding the parameterized complexity of
either variant of Maximum Betweenness Centrality (nor its weighted versions).
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Chapter 5

Vertex cover number

The notion that vertices in a vertex cover are more central is somewhat intuitive. The proof of
the NP-hardness of Maximum Betweenness Centrality is based on the fact that no group
can have greater GBC than a vertex cover, as a vertex cover detects all communication between
every pair of vertices.

We study Maximum Betweenness Centrality parameterized by the vertex cover number;
the size of a minimal vertex cover. We show that Maximum Betweenness Centrality is in
FPT when parameterized by the vertex cover number. More precisely, we describe an algorithm
that decides an instance of Maximum Betweenness Centrality in O(nm + (2kk)k

k3) time,
when the GBC of a set of size b can be determined in O(b3) time, after O(nm) time preprocessing.

5.1 Algorithmic results
In this section, we show that the amount of vertices that need to be considered in order to find a
group with maximal GBC can be expressed as a function of the vertex cover number. Note that
although the Maximum Betweenness Centrality problem consists only in deciding whether
a group with GBC at least equal to a certain threshold exists, if we can show that a group with
maximal GBC can be chosen from a subset of vertices, the remaining vertices do not need to be
considered. If the GBC of the group with maximal GBC is below the threshold, then the GBC
of any group will also be below the threshold. Although this approach does not constitute a
kernelization scheme, since the remaining vertices cannot be removed, it reduces the size of the
search space considerably.

Let I = (G, b, t, k) be an instance of Maximum Betweenness Centrality parameterized
by the vertex cover number k. We assume that b is smaller than k, as picking the vertex cover
is otherwise a trivial solution.

We begin by observing that all vertices not in a vertex cover that are connected to the same
vertices from the vertex cover are interchangeable.
Remark 5.1. Let T be a set of vertices such that N(t) is equal for all t in T , and let C be a
group containing d vertices from T . If a group C ′ differs from C only in the particular vertices
from T it contains, then GBC(C) = GBC(C ′).
This stems from the fact that said vertices all have the same neighbourhood, and that they are
pairwise nonadjacent.

We employ this observation to justify the selection of a subset P of vertices from V \M ,
so that a group with maximal GBC can be picked from P ∪M . The algorithmic improvement
comes from observing that the size of P can be bounded up with a function of the vertex cover
number. Consider the graph in Fig. 5.1.
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M

T1 T2

Figure 5.1 A graph with vertex cover M .

For a budget equal to 2, it is easy to see that at most 2 vertices will be picked either from T1
or T2. Since the particular selection of vertices from T1 and T2 is not important, as observed in
Remark 5.1, we can mark only 2 vertices from each set as include and disregard the rest1, thus
reducing the search space for groups with maximal GBC.

Although the unmarked vertices from T1 and T2 do not need to be considered, they may not
be removed from G, since the contribution of the shortest paths that contain these vertices to
the centrality of the unmarked vertices is not constant. Consider the following graph.

v1 v2

v3

v4

Figure 5.2 A small graph.

If the budget b equals 1, then picking v1 is never optimal, as v2 covers at least all shortest
paths that contain v1. Although in this sense v1 can be disregarded when searching for groups
with maximal GBC, it may not be removed from G. If v1 were to be removed, all the remaining
vertices would have the same BC (4). Clearly, only the v2 vertex has the greatest BC.

We can use the previous observations to bound the number of vertices that need to be
considered in order to find a group with maximal GBC.

Lemma 5.2. Let M be a vertex cover of size k. No more than 2kk vertices from V \M need to
be considered in order to find a group with maximal GBC.

Proof. Because M is a vertex cover, the neighbourhood of every vertex not in M is a subset of
M . As M contains k vertices, there are at most 2k vertices not in M with unique neighbourhoods.

Let T be the set of vertices whose neighbourhood is S ⊆M . Consider a group C, such that
it contains p vertices from S ∪ T and there is no group with greater GBC. As described in
Remark 5.1, if C contains p vertices from T then any p vertices can be picked without changing
GBC(C). Combining this with the observation that no more than b vertices can be picked from
T , we can mark b vertices from T as include, and disregard the rest.

Because there are 2k subsets of M , and processing each subset can lead to the inclusion of at
most b vertices, it follows that there are at most 2kb vertices not in M that need to be considered
in order to find a group with maximal GBC. As we assume that the budget is smaller than the
vertex cover number, we can relax this bound to 2kk.

Corollary 5.3. There is an O(nm + (2kk)k
k3) time FPT algorithm for Maximum Between-

ness Centrality parameterized by the vertex cover number k.
1In practice, picking more than |N(T1)| vertices from T1 ∪ N(T1) leads to no increase in GBC, since every

shortest path that contains a vertex from T1 ∪ N(T1) can be covered simply by picking all vertices from N(T1).
Thus only 2 vertices from T1 and 1 vertex from T2 need to be considered in order to find a group with maximal
GBC.
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Proof. Using the algorithm of Puzis et al. [19] to check each of the
(2kk

b

)
groups of size b results

in an O(nm + (2kk)b) time algorithm. We can replace b with k as we assume the vertex cover
number is larger than the budget.

Corollary 5.4. There is an O(nm + (2kk)k
ekk3) time FPT algorithm for Weighted Maxi-

mum Betweenness Centrality parameterized by the vertex cover number k.

The only difference with regards to Weighted Maximum Betweenness Centrality,
appart from the need to check all sets of size at most b, is that only the cheapest b vertices from
any T should be considered when searching for groups with maximal GBC.

As a practical note, although we cannot exclude all vertices that share a neighbourhood when
the size of the common neighbourhood is arbitrary, this is not the case when the degree of all
vertices is equal to 1. In other words, assuming vertices of degree at least 2 are available, vertices
with degree 1 can be safely ignored when looking for a group with maximal GBC. Although
these vertices can be disregarded, they may not be removed, as they affect the centrality of the
remaining vertices in a graph to varying degrees.

5.2 An open question
In the previous section we gave an upper bound for the number of vertices not in a vertex cover
that need to be considered in order to find a group with maximal GBC. In this section we try
to gain a deeper understanding of this bound, and conjecture that a stronger bound may exist.

A good starting point is asking whether a group with maximal GBC can be picked from a
minimal vertex cover. After all, a vertex cover detects all communication between every pair of
vertices, and the notion that vertices in a vertex cover are more central is fairly reasonable. This
is not the case, however, as the examples in Fig. 5.3 show.

M M M

Figure 5.3 Graphs for which a group of size |M | − 1 with maximal GBC is not a subset of a minimal
vertex cover M . The groups of yellow vertices are the groups with maximum GBC.

Note that for each of the graphs from Fig. 5.3, adding a vertex such that it is connected to
every vertex in M leads to every group with maximal GBC becoming a subset of M . An example
is shown in Fig. 5.4.

M

Figure 5.4 Graph for which every group of size at most |M | with maximal GBC is a subset of the
minimal vertex cover M .

This has to do with Remark 5.1. The more vertices that are added to a group of vertices
that shares the same neighbourhood, the more their centrality becomes “diluted,” and the less
convenient it is to pick vertices from said group. Formally, we have the following conjecture.
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Conjecture 5.5. Let S be a subset of a minimal vertex cover M and T the set of vertices whose
neighbourhood is equal to S. Let C be a group containing p vertices from S ∪ T , ps from S and
pt from T . If |S| ≤ |T |, then each of the p vertices chosen from the group with maximal GBC
belongs to S and pt = 0.

In other words, we believe that if a group T of vertices not in M whose neighbourhood is S
contains more elements than S, then a group with maximal GBC exists such that it does not
contain any vertex from T . Note that this is a stronger result than that of the previous section.
Instead of marking at most |S| vertices as include of every T , we mark only those vertices of the
sets T that have less elements than S.

We were neither able to prove nor disprove this conjecture.



Chapter 6

Distance to clique

We show that Maximum Betweenness Centrality is in FPT when parameterized by the
distance to clique and the budget. The distance to clique is defined as follows:

Definition 6.1 (Distance to clique). Let G be a graph. A clique modulator of M is a subset
of V such that G[V \M ] is a clique. The distance to clique of graph G is equal to the size of a
minimal clique modulator. Equivalently, the distance to clique of G is equal to the least number
of vertices that need to be removed from G in order to obtain a clique.

In Remark 5.1 we observed that vertices with equal neighbourhoods are interchangeable, in
the sense that the particular selection of a fixed amount of said vertices has no effect on the
GBC of a group containing them. The structure of a graph indicated by the distance to clique
parameter is slightly different, but we use a similar approach. For any given clique modulator M ,
it is clear that the remaining vertices induce a clique (and hence all induced subgraphs of V \M are
also cliques). Thus, as in Remark 5.1, we can group vertices from V \M by their neighbourhood
in M . We show that vertices from such groups are also interchangeable.

Lemma 6.2. Let G be a graph. Let C be a set containing d vertices from K ⊆ V , such that G[K]
is a clique and all vertices from K are connected to the same vertices from V \ K. Then the
particular selection of a fixed amount of vertices from K has no effect on GBC(C).

Proof. We begin by observing that every shortest path either contains at most one vertex
from K, or is a path of length 1 containing two vertices from K.

It is easy to see that no shortest path contains more than two vertices from K, as G[K]
is a clique. For the same reason, any shortest path containing two vertices from K must have
length 1. With regards to these K-K paths, the particular selection of vertices from K will
always result in the same contribution to GBC, as the number of covered K-K paths is only a
function of the number of picked vertices from K.

We now consider only shortest paths containing a single vertex from K. Every such path
corresponds to |K|−1 shortest paths differing only in the particular vertex from K they contain.
Hence the GBC of a group containing a fixed amount of vertices from K is independent of the
particular selection of vertices from K.

As with Lemma 5.2, we use the previous result to reduce the size of the search space necessary
for finding a group with maximal GBC. Consider the graph in Fig. 6.1. For a budget b = 2,
only 2 vertices from K1 and 2 from K2 need to be considered in order to find a group with
maximal GBC. Note that, as was the case with the vertex cover number, considering only 1
vertex from K2 is not sufficient, since picking all vertices from N(K2) ∩M does not detect all
communication that would be detected if all vertices from K2 were to be picked.
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K1

K2

M

Figure 6.1 Example of a graph G with distance to clique 2. The clique modulator of G is the set M .
The sets K1 and K2 contain vertices that are connected to the same vertices from M , respectively.

Lemma 6.3. Let M be a clique modulator of size k. There are at most 2kb vertices not in M
that can form part of a group with maximal GBC.

Proof. As M is a clique modulator, we can partition V \M into at most 2|M | groups according to
their connections with M . As shown in Lemma 6.2, the particular selection of vertices from any
such group is irrelevant. Hence at most b vertices from each such group need to be considered,
and at most 2kb vertices not in a clique modulator need to be considered in order to find a group
with maximal GBC.

Theorem 6.4. There is an O
(

nm + (2kb)b
b3

)
time FPT algorithm for Maximum Between-

ness Centrality parameterized by the combined parameter distance to clique k and budget b.

Proof. The running time is attained by using the algorithm of Puzis et al. [19] to calculate the
GBC of each of the 2kb groups of size b in O(b3) time, after O(nm) preprocessing.

Corollary 6.5. There is an O
(

nm + (2kb)b
ebb3

)
time FPT algorithm for Weighted Maximum

Betweenness Centrality parameterized by the combined parameter distance to clique k and
budget b.

Note that we cannot assume that the budget is smaller than the distance to clique, as can be
done regarding the vertex cover number. A budget greater than the vertex cover number allowed
picking the vertex cover as a solution, hence detecting all communication. Because we were not
able to prove that picking the clique modulator is always optimal, it is possible that non-trivial
instances of Maximum Betweenness Centrality exist such that the budget is greater than
the distance to clique.



Chapter 7

Twin cover number

In the previous chapters, we have shown that Maximum Betweenness Centrality is in FPT
when parameterized by either the vertex cover number or the distance to clique and the budget.
In this chapter, we study a less restrictive parameter called twin cover number, a generalization
of both the vertex cover number and the distance to clique. The twin cover number is defined
as follows.

Definition 7.1 (Twin cover number [32]). M ⊆ V (G) is a twin-cover of G if for every edge
{u, v} ∈ E either

1. u ∈M or v ∈M , or

2. u and v are twins, i. e. , all other vertices are either adjacent to both u and v, or none.

We then say that G has twin-cover number k if k is the least possible size of a twin-cover of G.

From this definition, it follows that G−M is the disjoint union of potentially multiple cliques.
We show that Maximum Betweenness Centrality is in FPT when parameterized by the

twin cover number k and the budget b.
Consider the graph in Fig. 7.1.

M

K1

K2

K3

T

Figure 7.1 A graph with twin cover M .

As with the vertex cover number and the distance to clique, we can group vertices from V \M
into at most 2k groups, such that all vertices from each group are connected to the same vertices
from M . In this case, the vertices from V \M can be divided into two groups, T = K1 ∪K2 and
K3. We now consider the set T , and denote by S the vertices from M that T is connected to
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(in this particular case S = M). The set R = V \ (S ∪ T ) corresponds to the remaining vertices
from V (in this case K3).

We wish to show that only a small amount of vertices from T need to be considered in order
to find a group with maximal GBC. In order to do this, we observe that, with respect to certain
shortest paths, the particular selection of vertices from T has no effect on the GBC of a group
that contains them.

Lemma 7.2. Let M be a twin cover, and S ⊆ M its subset. Let T ⊆ V \M be a set such that
for all v ∈ T , N(v) = S. Then every shortest path containing vertices from S ∪ T is either a
subset of S ∪ T , or it contains at most one vertex from T .

Proof. We show by contradiction that no shortest path containing vertices from S ∪T and also
from V \ (S ∪ T ) can contain more than one vertex from T .

Let P be a shortest path containing a vertex v from R = V \ (S ∪ T ) and two vertices
t1, t2 ∈ T . It is easy to verify that P contains at least one vertex from S, as vertices from T
communicate with those from R exclusively through S. If t1 and t2 belong to the same clique
from T , then P cannot be a shortest path, as all vertices from T are connected to all vertices
from S. We now assume that t1 and t2 belong to different cliques from T . In this case, P must
contain two vertices from S, since the cliques in T communicate exclusively through S. Clearly,
such a path may be shortened, since the first vertex from S in P is already connected to all
vertices from T , and thus P cannot be a shortest path.

This indicates that, with regards to R, vertices from T are interchangeable. In other words,
the contribution of shortest paths containing vertices from R and from T to the GBC of a group C
containing a fixed amount of vertices from T is independent of the particular selection of vertices
from T .

We extend this property to all but T -T and T -S-T shortest paths, by calculating the exact
contribution of shortest paths that are subsets of S∪T to the GBC of any group. The contribution
of a shortest s-t path to the GBC of any group is equal to 1

σs,t
. Thus the contribution of a set X

to the GBC of a set C can be understood as the sum of the contribution of all shortest paths
that are covered exclusively by X, or equivalently GBC(C)−GBC(C \X).

Let C be a set containing ps vertices from S and pt from T . The number of cliques in T
is denoted by ℓ, and the size of the i-th clique is denoted by ci. Finally, the number of picked
vertices from the i-th clique is denoted by pi. Then the contribution of shortest paths that are
subsets of S ∪ T to GBC(C) is equal to

∑
u,v∈S∪T

u̸=v

σR
u,v(C)
σu,v

=

(|S|+ |T |)2 − (|S|+ |T |) Paths that are subsets of S ∪ T

− 2(|S| − ps)(|T | − pt) Uncovered S-T paths

−
((

(|S| − ps)2 − (|S| − ps)
) |T | − pt

|T |

)
Uncovered S-T -S paths

−
ℓ∑

i=1

(
(ci − pi)2 − (ci − pi)

)
Uncovered T -T paths (in a single clique)

− 2
ℓ−1∑
i=1

ℓ∑
j=i+1

(
(ci − pi)(cj − pj) |S| − ps

|S|

)
Uncovered T -S-T paths

It is easy to see that, for any fixed ps and pt, the contribution of S-T and S-T -S paths is
independent of the particular selection of vertices from S ∪ T . Note that we disregard shortest
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paths containing vertices from R. The contribution of these paths is given either by the particular
selection of vertices from S, or by the total amount of vertices picked from T . Thus none of
this paths is dependent on the particular selection of vertices from T . On the contrary, the
contribution of T -T and T -S-T paths depends on the amounts of picked vertices from each
individual clique in T . If we wish to pick only b vertices from T for consideration when searching
for groups with maximal GBC, we need to ensure that the selection of said vertices minimizes

ℓ∑
i=1

(
(ci − pi)2 − (ci − pi)

)
+ 2

ℓ−1∑
i=1

ℓ∑
j=i+1

(
(ci − pi)(cj − pj) |S| − ps

|S|

)
(7.1)

Before proceeding, we show how this expression can be simplified. For brevity, we denote the
expression in Eq. (7.1) by g(p), where pi is the number of vertices picked from the i-th clique
of T . Then for g(p) we have

g(p) =
ℓ∑

i=1

(
(ci − pi)2

)
− (|T | − pt) + |S| − ps

|S|

 ℓ∑
i=1

ℓ∑
j=1

((ci − pi)(cj − pj))−
ℓ∑

i=1
(ci − pi)2


=

(
1− |S| − ps

|S|

) ℓ∑
i=1

(
(ci − pi)2

)
− (|T | − pt) + |S| − ps

|S|

ℓ∑
i=1

(ci − pi)
ℓ∑

j=1
(cj − pj)


=

(
1− |S| − ps

|S|

) ℓ∑
i=1

(
(ci − pi)2

)
− (|T | − pt) + (|S| − ps)(|T | − pt)

|S|

ℓ∑
i=1

(ci − pi)

=
(

1− |S| − ps

|S|

) ℓ∑
i=1

(
(ci − pi)2

)
− (|T | − pt) + (|S| − ps)(|T | − pt)2

|S|
(7.2)

Thus, for fixed pt and ps, minimizing g(p) can be done by minimizing

ℓ∑
i=1

(ci − pi)2 (7.3)

It is easy to see that this can be done greedily. We begin by setting pi = 0 for all i. Let j
be the index of a term of the sum in Eq. (7.3), such that there is no other term with greater
value. Clearly, the sum decreases the most when pj is increased by one. We can repeat this step
until pt vertices have been picked, ensuring that the sum in Eq. (7.3) is minimal, and thus that
the selected vertices from T cover shortest paths with the greatest contribution.

Note that the set of ideal vertices for pt = d can be picked so that it is a subset of the set
of ideal vertices for pt = d + 1. If this were not so, picking the b ideal vertices would not be
of much use. After selecting the set of vertices from V \M , we still need to find a group with
maximal GBC, and check whether its centrality exceeds the threshold. A potential group might
not necessarily contain exactly b vertices from T , in which case a different set of vertices from T
would need to be considered.

We use the previous observation to justify the selection of only a small amount of vertices
for consideration when searching for groups with maximal GBC. Since the amount of included
vertices can be bounded by a function of the twin cover number, the described algorithm is FPT.

Theorem 7.3. There is an O
(

nm + 2kn log(n) + (2kb)b
b3

)
time algorithm for Maximum Be-

tweenness Centrality parameterized by the twin cover number k and the budget b.

Proof. Let G be a graph, containing a twin cover M of size k. We can partition vertices not
in M into at most 2k groups, such that the vertices from each group are all connected to the
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same vertices from M . Let T be one such group, and S its neighbourhood in M . We denote
by ci the size of the i-th clique in T 1. As explained earlier, b vertices from T can be marked as
include in the following manner. First, sort the values of ci in decreasing order. Since there are
at most n cliques in T , this can be done in O(n log(n)) time using well known algorithms. We
then decrease the values c1, c2, . . . by a total of b, so that maximal values are decreased first.

Thus, processing at most 2k groups can be done in O(2kn log(n)) time, and afterwards at
most O(2kb) vertices are marked as include. We can then use the algorithm by Puzis et al. [19]
to calculate the GBC of each of the

(2kb
b

)
groups of size b in O(nm + (2kb)b

b3) time after O(nm)
preprocessing, which results in the total running time of O(nm + 2kn log(n) + (2kb)b

b3). Note
that, in order for this approach to produce correct results, during the step when vertices are
marked as include, they should be also ordered. Then when the GBC of a set C is being
calculated, if C contains less then b vertices from C, then the vertices from T should be picked
in order.

Corollary 7.4. There is an O
(

nm + 2kn log(n) + (2kb)b
ebb3

)
time algorithm for Weighted

Maximum Betweenness Centrality parameterized by the twin cover number k and the bud-
get b.

Proof. The proof is analogue to that of Theorem 7.3, however instead of calculating the GBC
of all groups of size exactly b, we calculate the GBC of all groups of size at most b.

1We assume that a twin cover is known. It is easy to verify that determining the size of the cliques that have
the same neighbourhood in M can be done in nO(1) time by removing M from G and counting the resulting
number of independent components.



Chapter 8

Conclusion

8.1 Results

In Section 3.3, we showed that Maximum Betweenness Centrality (and its weighted variant)
is not only NP-hard, but also in NP, and thus NP-complete (Theorem 3.1, Corollary 3.2).

From a parameterized perspective, in Section 4.1 we showed that Maximum Betweenness
Centrality is W[1]-hard when parameterized by the budget (Theorem 4.1). To complement
this result we showed in Section 4.1.1 that there is no ETH time algorithm for Maximum Be-
tweenness Centrality parameterized by the budget, assuming ETH (Theorem 4.3).

The following table lists our algorithmic results. Note that all of the results for Maximum
Betweenness Centrality have corresponding results for Weighted Maximum Between-
ness Centrality, usually as corollaries of the main result.

Table 8.1 Algorithmic results.

Group Betweenness Centrality

Parameter Result Reference

Group size k O
(
nm + kn2)

time algorithm Theorem 2.7

Maximum Betweenness Centrality

Parameter Result Reference

Budget b

O
(
nm · nb

)
time trivial XP algorithm Theorem 3.3

O
(
nm + b3nb

)
time XP algorithm Theorem 3.5

O
(
nm + bnb+2)

time XP algorithm Theorem 3.7

f(b) · no(b) lower bound (under ETH) Theorem 4.3

Vertex cover no. k O(nm + (2kk)k
k3) time FPT algorithm Corollary 5.3

Distance to clique k
and budget b

O
(

nm + (2kb)b
b3

)
time FPT algorithm Theorem 6.4

Twin cover no. k
and budget b

O
(

nm + 2kn log(n) + (2kb)b
b3

)
time FPT algorithm Theorem 7.3
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8.2 Further work
We conclude by indicating possible directions for future research.

Finding a more efficient algorithm for computing the GBC of a group would result in more
efficient algorithms for Maximum Betweenness Centrality, since all algorithms we described
rely on reducing the search space and then computing the GBC of all subsets of valid size.

Although we showed that Maximum Betweenness Centrality is W[1]-hard when pa-
rameterized by the budget, a good first step for a future multivariate analysis of Maximum
Betweenness Centrality would be to show whether it is W[1]-hard when parameterized by
the threshold. In Section 4.2, we introduced two variants of Maximum Betweenness Cen-
trality, for which the threshold is potentially smaller than n. Studying the parameterized
complexity of these problems parameterized by the threshold might give useful insights regard-
ing the complexity of the unmodified Maximum Betweenness Centrality problem.

In Section 5.2, we conjecture that there is a stronger upper bound for the number of vertices
that are necessary in order to find a group with maximal GBC. Although showing that this
conjecture is true will not lead to a dramatic asymptotic improvement, the intuition behind it
might be of use when only an approximate result is required.

On a practical note, implementing the algorithms we described might show that some algo-
rithms with poor asymptotic running times perform generally well in practice.

Finally, many additional parameters exist, such that the complexity of Maximum Between-
ness Centrality parameterized by a particular parameter or combination of parameters might
be analyzed. A parameter we studied, without any results, is the treewidth [23], which indicates
how close to a tree a given graph is. Fink and Spoerhase [28] describe a polynomial time algo-
rithm for Maximum Betweenness Centrality on trees, and although their approach cannot
be applied directly to Maximum Betweenness Centrality parameterized by the treewidth,
we believe that progress may be made in this direction.
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