Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Personal Life Management System

Jan Daniel

Supervisor: Ing. Bozena Mannova, Ph.D.

Study program: Open Informatics

Specialization: Artificial Intelligence and Computer Science
May 2023

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

Student's name: Daniel Jan Personal ID number: 495553
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science

_ Y,
[l. Bachelor’s thesis details

Bachelor’s thesis title in English:

Personal Life Management System

Bachelor’s thesis title in Czech:

Systém pro spravu osobniho zivota

Guidelines:

1. Get to know the issue of personal development, which focuses on increasing self-awareness, tracking life goals, personal
challenges and long-term aspirations.

2. Analyze existing applications available to you and evaluate them.

3. Based on the analysis, design the basic functionalities of the proposed application, such as saving reminders, sending
event notifications, managing personal finances, etc. and supplement them with monitoring personal development.
4.When designing, focus on the use of Al in tracking personal development, such as the possibility of predicting the user's
chance of maintaining existing habits based on their previous activity.

5. Choose the application architecture and technology for implementation.

6. Design a friendly user experience. Also focus on the issue of secure communication.

7. Implement and test the application.

8. Evaluate the results and suggest any additional functionality or other improvements.

9. Use appropriate means of software engineering when solving.

Bibliography / sources:

[1] Roger S. Pressmann Bruce Maxim: Software Engineering: A Practitioner's Approach , ISBN-10: 9780078022128
[2] https://monday.com/blog/project-management/project-management-software-for-individuals/

[3] https://lwww.proprofsproject.com/blog/personal-task-management-tools/

[4] https:/timelyapp.com/blog/best-task-management-app

Name and workplace of bachelor’s thesis supervisor:

Ing. Bozena Mannova, Ph.D. Center for Software Training FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 13.02.2023 Deadline for bachelor thesis submission: 26.05.2023

Assignment valid until: 22.09.2024

Ing. BoZena Mannova, Ph.D. prof. Ing. Tom&s Svoboda, Ph.D. prof. Mgr. Petr Péata, Ph.D.

k Supervisor’s signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.

Bozena Mannova, Ph.D. for her counsel
and guidance throughout the process of
writing this theses.

iv

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 26.5.2023

Jan Daniel

ctuthesis t1606152353

Abstract

The work is focused on the issue of per-
sonal development, which focuses on in-
creasing self-awareness, tracking life goals,
personal challenges and long-term aspira-
tions. As part of this work, an analysis of
existing applications and their evaluation
was carried out. Based on the analysis,
the architecture of the application was
designed and its design was carried out.
The system was implemented and testing,
including user tests, was carried out. The
work also deals with the possibilities of
using machine learning methods for this
type of application.

Keywords: Personal development,
Personal development application,
Personal development system, Django,
Machine learning usage

Supervisor: Ing. Bozena Mannova,
Ph.D.

Study program: Open Informatics
Specialization: Artificial Intelligence and
Computer Science

Department of Computer Science,
Karlovo Namésti 13,

Praha 2

Abstrakt

Prace je zaméfena na problematiku osob-
niho rozvoje, ktery se zamérujice na zvy-
Seni sebeuvédomeéni, sledovani zivotnich
cili, osobnich vyzev a dlouhodobych aspi-
raci. V ramci této prace byla provedena
analyza existujicich aplikaci a jejich vy-
hodnoceni. Na zakladé provedené analyzy
byla navrzena architektura aplikace a pro-
veden jeji navrh. Systém byl implemen-
tovan a bylo provedeno testovani véetné
uzivatelskych testi, Prace se zabyva i moz-
nostmi vyuziti metod strojového uceni pro
tento typ aplikace.

Klicova slova: Osobni rozvoj, Aplikace
osobniho rozvoje, Django, Systém pro
spravu osobniho rozvoje, Vyuziti
strojového uceni

Pfeklad nazvu: Aplikace pro spravu
osobniho zivota

ctuthesis t1606152353

Contents
1 Introduction 1

1.1 My motivation
1.2 Subject matter
2 Motivation as a concept and
research behind habit building 3|
2.1 Motivation 3
2.2 Inspiring intrinsic motivation
2.3 Justification of the leading role of
habits 4
2.4 About habits..................
2.5 How to build a habit 5l

2.6 Plugging habits into motivation .

2.7 Conclusion i
3 A survey of relevant existing
solutions 8

3.1 List of existing application and
research methodology
3.2 Habitica 9

33 Wayoflife...................
3.4 Habitify
3.5 Productive 12l
3.6 Summary and conclusion
4 Requirements and use cases 15|
4.1 General concepts
4.2 General functionality draft
421 USer. . oovveeeee 16/
422 Habit................ ...,
423ToDO..cooeieie 17
424 Calendar..................
4.2.5 Statistics section 17
4.3 Functional requirements
4.3.1 Landing page
4.3.2 Registration
433 Login.........,
4.3.4 User profile
4.3.5 User dashboard 18]
4.3.6 Habit..................... 19
4.3.7 Habit list
4.3.8 TodoS ...ovvvvviii 19
439 Todo list
4.3.10 Calendar................. 19
4.3.11 Calendar events.
4.3.12 Statistics section 20l
4.4 USE CASES oo v eeeeeen 20)
4.4.1 User wants to register

vi

4.4.2 Registered User wants to log in
4.4.3 Registered user wants to log

out
4.4.4 Logged in user wants to change

their personal information
4.4.5 Logged in user wants to delete
their profile

4.4.6 Logged in user wants to see an

overview of their activities 21]
4.4.7 Logged in user wants to see

some upcoming event displayed on

their dashboard

4.4.8 Logged in user wants to see
specific habit/Todo
4.4.9 Logged in user wants to create
an activity L.

4.4.10 Logged in user wants to see
their statistics and analysis of his
current performance and behaviour

4.4.11 Logged in user wants to see
their schedule

4.4.12 Logged in user wants to add a
custom event to their calendar ..

5 Technological stack and

architecture proposal

5.1 Basic software application
architectual patterns
5.1.1 Model View Controller (MVC)
5.1.2 Model View Presenter(MVP)

5.2 Server side Web application

23

frameworks 24]
5.21 Django
5.2.2 Spring Boot
5.3 Database 25
5.3.1 MySQL vs PostgreSQL
5.4 Frontend frameworks 26/
541 VueldS
542 React JS.................. 26/
5.5 CSS Frameworks
5.5.1 Bulma.io.................. 27
5.5.2 Bootstrap
5.6 Technologies selected for the
implementation.................
5.6.1 Web application framework .
5.6.2 Database 29
5.6.3 Frontend framework 29|

ctuthesis t1606152353

5.6.4 CSS Framework
5.6.5 Database model draft....... 30/
6 Implementation 33
6.0.1 Application modules.
6.0.2 Environment preparation ...
6.0.3 Helper structures
6.0.4 Codebooks 35
6.1 Backend development & APIT. ..
6.1.1 Login & Registration
6.1.2 Habits.................... 38|
6.1.3ToDos, [41]
6.1.4 Users Profile 42|
6.2 User interface & Frontend
6.2.1 Landing page
6.2.2 Habits page
6.2.3 ToDopage
6.2.4 Database model
6.3 Experimental scheduler feature .
6.3.1 About Celery..............
6.3.2 Installation. 49|
6.3.3 Implementation............
6.3.4 Running
6.3.5 Tasks implementation
6.4 Next steps: Modules for future
development
6.4.1 Dashboard
6.4.2 Statistics section 52|
6.4.3 Backend & API............ 53l
7 Testing 54
7.1 Automated testing

7.1.1 Example - Testing Delete Habit

Endpoint
7.2 Usability testing
7.2.1 Testing scenario 1..........
7.2.2 Testing scenario 2..........
8 Empowering the application with
Machine Learning 61
8.1 Problem definition 611
8.2 Assumptions
8.3 Possible problem formalizations.

8.3.1 Supervised learning approach

8.4 Goal and advantages
9 Conclusion 68
9.1 Looking back: An assessment of

the process.

vii

9.2 Usage & benefits
9.3 Possible functionality extension &

upgrades.
9.3.1 Messaging inside the

application
9.3.2 An internal social network .. [70
9.3.3 Achievements & streaks.
9.3.4 Public APIL................ [71l
9.3.5 Extend habit type range
9.3.6 Ul facelift [71]
9.3.7 Integration with smart watch

9.3.8 Finishing the implementation of

other modules................. 72|
A Project structure 74
B Application visual appearance 78
Bibliography 84

ctuthesis t1606152353

Figures

5.1 Database Schema 31

6.1 Example of a helper structure

usage in an API endpoint
6.2 Example of a Helper structure

implementation.................
6.3 Codebook database tables 136/
6.4 Login API endpoint
6.5 API endpoint for registering . ..

6.6 The central endpoint for loading of
the Habit page
6.7 The endpoint for creating a Habit
entity
6.8 API endpoint for editing the Habit

plan....... L
6.9 Deletion of Habit and all related

TeCOrdS ..ot 42|
6.10 Login landing page UI........
6.11 Registration page Ul
6.12 Habits page design draft
6.13 Authentication logic database

schema
6.14 Habit database tables schema . 48

6.15 The code responsible for sending
emails with reminders to the users

51

7.1 Setup method of the test to
prepare necessary data for the
testing

B.1 Login page of the application. . .
B.2 Registration page of the

application.
B.3 Habits module page.

B.4 Habits module page modal for
creating new Habit.
B.5 Habits module page modal for

adding a new Habit session.
B.6 Habits module page modal for

deleting a Habit
B.7 Todo module page.
B.8 Todo module page modal for

creating a new Todo.

viii

Tables

3.1 Existing solutions comparsion . .

ctuthesis t1606152353

Chapter 1

Introduction

B 11 My motivation

I have chosen the personal development domain because the constant conflict
between procrastination and the will to do something with myself, better
manage my time and develop in any and all aspects of life is very close to
me. Through my life I have tried countless apps for building habits, keeping
those which are beneficial and getting rid of those which are unproductive
or even harmful. But unfortunately none of them seemed very fitting for
me and it always ended up the same - after a few weeks I forgot that I had
such app and about the habits I wanted to develop and fell right back into
my old routines. It is undeniable that in order to build new habits, manage
ones time and overall grow as a person one needs a lot of self discipline and a
strong willpower, however I believe, that self discipline and willpower alone
are not enough for most people. Motivation fades with excitement and so
does willpower. In my opinion in order to build and application which can
really help people with building new habits and organising both their time
and life one must not only consider a human psyche in the application design,
but the application itself must be based on a research and facts regarding
human psychology of habits, motivation and why people behave the way they
behave and it must go along the way of the reasons there even are habits and
not against it.

1 ctuthesis t1606152353

1.2. Subject matter

B2 Subject matter

Self development applications, or so called "Habit trackers" are applications
which, clearly, focus mostly on building habits. These applications usually
work in a way, that they let one clearly and in detail define the habits they
are either trying to develop, keep or get rid of. They let one define time and
place where the activity should take place, remind them that they should be
getting ready to go running, go to the gym or drink water for an instance.
Most of the times they split certain activities one wants to perform into
specific categories such as habits, goals, tasks, todo’s and many more. There
will be a discussion of the result of a research regarding other, more colorful
and fruitful, methods of motivating people and helping them stick with their
desired habits in further chapters.

2 ctuthesis t1606152353

Chapter 2

Motivation as a concept and research
behind habit building

. 2.1 Motivation

Motivation has been a central concern of psychologists for decades. Other than
it being at core of biological, cognitive and social regulation it is interesting
because of its real world every day consequences. According to this paper (1)
motivation is not a singular but rather a consequence of many internal and
external factors. There are two main types of motivation - intrinsic and
extrinsic.

Intrinsic motivation - According to self determination theory (1)) intrinsic
motivation is what is inadvertently rooted in every person from youth. Ac-
cording to a paper (2)) it is defined as the doing of some activity not for the
subsequent rewards but rather for the inherent satisfaction of performing it.
It has been observed on many animals but most notably on humans. It is
best visible on infants or small children when exploring their surroundings -
tasting, touching and grasping various objects around them does not bring
them any benefits, but they are doing it for the satisfaction of the exploring
itself. It is perhaps best shown in contrast with extrinsic motivation.
Extrinsic motivation - On the contrary to intrinsically motivated actions,
extrinsically motivated actions are done solely for some sort of outcome(3).
It may be not getting punished for not doing something or it can be getting
a reward for doing it.

According to this paper(I]) studies have shown that when some activity is
intrinsically motivated people tend to be more focused, have better confidence,
persistence and more creativity.

B 22 Inspiring intrinsic motivation

The authors of Self Determination Theory (1)) state, that intrinsic motiva-
tion is present from birth in all people and it can be supported to grow
or diminished by external factors and the environment. According to (1))
positive feedback serves well in promoting intrinsic motivation and along with

3 ctuthesis t1606152353

2.3. Justification of the leading role of habits

communication can inspire feelings of competence which have been observed
to enhance intrinsic motivation. However the feeling of competence alone
is not enough, when it is not accompanied by feelings of autonomy and self
determination.

According to the authors of (1)) one must feel related to the activity, compe-
tence to perform it, autonomy (Here autonomy does not mean necessarily
doing it alone, but rather believing in ones ability to perform the task compe-
tently) and understanding why are they performing the activity in order to
be intrinsically motivated. The authors then offer an example of children who
have been led to do some task, which they did not at the time understand the
reason of, and did not have the tools to perform it adequately and so have
subsequently shown low internalization of the activity as well as resentment
for it in the future. In summary one should know what are they doing, why
are they doing it and its benefits, be confident in their ability to perform, feel
competent to do so and most importantly the activity should be aligned with
their beliefs and better yet be a part of their identity.

B 2.3 Justification of the leading role of habits

In order for an application to help people succeed in creating new habits and
become a better person, it needs to go with the natural flow of how and why
the human mind creates habits and not against it. The main issue with many
similar applications is that they let people track their progress, define their
goals, organise their life but they don’t address the core issue why most people
fail which is that they tend to have strong start since they are motivated to
change something, but after few weeks, once the motivation fades away, they
do not have the energy or the willpower to force themselves to do the activity,
to which they have no connection other than that they want to do it since
they have been forcing themselves all that time. However if a person develops
affection for the activity and makes it part of their personality, or rather
changes their personality into someone for whom this activity is aligned with
their beliefs and values, then they can truly succeed, because it is part of
them. This is what is called identity based habits as opposed to outcome
based habits.

B 2.4 About habits

The reason that habits even exist is simple - energy conservation. Human
mind is trying to optimize everything in order to preserve energy and so
if it notices that it is doing one or multiple actions repeatedly in the same
order and same environment at a similar time it tries to automate(4)) that
behaviour so it can be done subconsciously without even thinking about the
task at hand.

Every person at some point notices that they are doing something and are
thinking about something completely different - for example when driving

4 ctuthesis t1606152353

2.5. How to build a habit

home and taking the same route one have taken for years, people notice every
now and then that they are driving completely "on autopilot". This habit
creation is oftentimes very useful, if one had to think about every single partial
task they are doing through the day - consciously tie their shoelaces, brush
their teeth, insert a key into the lock and others, it would be very exhausting.
However sometimes this behaviour is unwanted, counterproductive or even
outright dangerous. Drinking, smoking, biting ones nails etc. These are not
called bad habits by accident. The brain, although very sophisticated, cannot
distinguish between a good and bad habit and when it gets the dopamine
response, it remembers it very well(5). This is frustrating especially because
when one tries to develop a healthy habit, it seems like their mind is sometimes
working against them and refuses to perform the activity one would like to
make into a habit like jogging or exercising. This is where motivation comes
in - a properly motivated person has higher chances of managing to overcome
the unwillingness to do some activity and accomplishing their goals. However
the research behind habit making and changing ones behaviour shows, that
motivation alone is almost never enough and if one tries to build new habit
by forcing themselves into the activity over and over again, they rarely succeed.

B 2.5 How to build a habit

Very often one can read that it takes 21 days to build a habit and that if they
force themselves into some activity for that period of time it will become an
automated habit and they will be done. However that has been shown not
to be true(). The main problem is, that people are focused on the results,
rather than the process. Take, for example, a person, who wants to be fit
and healthy - they set a goal to lose 10kg of weight. They force themselves
to run every other day and to eat mostly vegetables and manage to lose the
weight they set out to lose. But what is next? They have achieved their goal
and have no longer the motivation required to continue and very often slip to
their old ways. The way to build a lasting habit is firstly to make it part of
ones identity and then prove that it really is the case contrary to overdoing it
at the start. Get better every day with small but steady steps. There are
four main laws of building habits - Make it obvious, Make it attractive, Make
it easy and Make it satisfying. This is according to the four step process of
habit activation - One notices a cue which creates a craving for the activity,
which motivates doing it which generates the reward, whatever it may be
which finally satisfies the craving and reaffirms the habit and the connection
between the cue and the reward.

Make it obvious - Habits work best when associated with cues(7)). For
example a cue might be a person coming home after work or seeing a painting
on a wall in front of them when they sit in front of a computer or the smell
of a room when they step into it. A person does not even need to be aware
of these cues for them to work and create a craving. One of the best ways
to start a new habit is to associate existing habit with a new one - which is

5 ctuthesis t1606152353

2.5. How to build a habit

called habit stacking. But in order to do so, one must first be aware of their
existing habits - this is best accomplished by a habit scorecard, which is a
simple list of activities one does through the day and after a few days there
can be visible patterns in ones behaviour. Other useful method for noticing
existing habits is a pointing-and-calling method which means that a person
should point to an object they are about to pickup or a place they are about
to go and state the reason, why they are doing so, out loud.

Make it attractive - It was already said, that one of the main driving
forces in habit making are the rewards(7). The rewards are the reason for a
motivation to perform some activity as a habit is a dopamine driven feedback
loop and it is the expectation of some reward that creates the dopamine
spikes. In order to make a habit attractive, there is an easy method called
temptation bundling - essentially one should do something they already enjoy
after performing the desired activity they want to make a habit from. But
it is also important for this rewarding activity to be aligned with the new
identity one is forming and its values - more about this will be mentioned in
a later section.

Make it easy - The human mind does what it does in order to conserve
energy, it is a relic from times when food and water - the basic needs according
to Maslow’s(8)) research and the pyramid of human needs, were not guaranteed
and people spent most of their time trying to survive. This is however not
an issue anymore for most of the people around the world. However even
though basic needs are not the main issue for humanity anymore, in order to
build a habit we need to conform to the ways our brain has developed over
the millions of years of its evolution - it prefers doing easy things(7). A two
minute rule is a simple tool addressing this issue - it states that rather than
planning for a long time and thinking about how one is going to do something,
it is better to just start doing it for a very short time every day. For example
- exercising for two minutes will not help a person to get in shape, but it will
help to build and standardize the habit and once that is done, it is easier
to start for example running for 10 minutes every day instead of just two.
Another helpful thing is to remove obstacles, rather than overcome them - to
continue with the running example, if one wants to become a runner, they
should prepare running clothes the day before, place them at a visible spot,
plan the route and prepare a playlist to listen to.

Make it satisfying - It is best explained in one sentence - rewarding habits
are repeated while punishing actions are avoided(7). It is known that the
human mind prefers actions with immediate satisfaction but it is not good
at recognising long term benefits of some actions - the key is to reward the
behaviour or actions one wants to internalize "artificially” until the long term
benefits and rewards present themselves. For example to continue with the
running example - people know that if they keep running regularly for long
enough they will get more fit, will be able to run longer distances etc. but it
will be hard and will require a lot of willpower, however if the person decides,
that after every jog they will read the news, take their phone and read what
is new in their social networks feed or generally do something they enjoy

6 ctuthesis t1606152353

2.6. Plugging habits into motivation

the running will get associated with the instant gratification of the reward
activity and it will get easier.

B 26 Plugging habits into motivation

It was presented in the motivation section, people deliver best performances
when intrinsically motivated and intrinsic motivation is best inspired when the
task is aligned with their identity, beliefs and when they feel confidence and
competence. Later then in the section about habits the view of a respected
personality in the field of habits was presented on why habits are important
and also very useful in personal development(9) and how to best create and
keep them. It was stated that in order to build a lasting habit, it should be
aligned with ones personality and their beliefs and if it is not, one should shift
their personality into someone, for whom these activities, they are trying to
transform into habits, are aligned with their core values. After that various
techniques and rules one should keep up with in order to build a habit were
presented, which should not be seen in direct alignment with the principles of
intrinsic motivation inspiration presented by the Self Determination Theory
(I) but rather as "lifehacks" to help a person to internalize the activity and it
in the end becoming intrinsically motivated and aligned with their personality
as well as transforming ones personality into one for whom this activity is
core.

. 2.7 Conclusion

While this chapter was focused on the theoretical part of the solution idea
for a personal development application, in the following chapter there is a
research of existing solutions of similar applications - mostly their features,
philosophy on how to motivate people to stick with their desired habits and
how to help them with it as well as how these applications guide their users
along the way.

7 ctuthesis t1606152353

Chapter 3

A survey of relevant existing solutions

B 3.1 Listof existing application and
research methodology

When searching for other similar applications (10)(11)(12) to research and
take inspiration from the following criteria for picking the applications for
closer inspection were set:

1. Should be habit or task/goal oriented

2. Should not be overly focused on meditation, quotes and/or book recom-
mendations

3. Should be usable for free at least in a limited manner

4. Should have some interesting idea or functionality regarding motivating
users or besides being just a tracker

After setting these criteria the search for similar applications was conducted
in the following order:

1. Search in application stores, specifically App Store and Google Play
2. Blind search on Google for lists of applications

3. Select multiple applications from these lists which follow the second above
listed criteria

4. Pick applications which follow the first and third criteria and are, ideally,
present in multiple lists

5. Pick at least three and up to seven of those applications which have the
most interesting idea behind them

After all of these steps four applications remained which were chosen to
explore in more detail.

8 ctuthesis t1606152353

3.2. Habitica

B 3.2 Habitica

(I3) Habitica is a multiplatform (i0S, Android, Web browser) habit tracking
application. It differs between and tracks four main types of activities:

1. Dailys - The actions one does routinely on a daily basis such as brushing
ones teeth, flossing, meditating and others. One can set a difficulty, add
a note and tags to the action and also set days on which the action
should be repeated as well as define a checklist of subtasks of which this
activity consists of. And finally the application keeps a streak which
means how many times in a row has one performed this activity.

2. Todos - One time actions that need to be done such as writing or reading
an email, calling someone, going shopping etc.. One can create an event,
set a time and date for it and once the time comes they get a notification
reminding them of it. Once the task is done, one can swipe it off in the
application and the task is marked as done and disappears. This type
of activity can also be assigned a difficulty level, subtasks list can be
defined and a due date upon which it should be done.

3. Habits - As the name of the application implies this is the most important
element of the application. One can define the habit, add a note, set
a difficulty which affects the rewards for sticking with the habit and a
counter which can either only be incremented but can also be decremented
when it makes sense. One can also add different tags to the habit which
help with sorting and define a reset period so for example when the
desired frequency of the habit is every two days, one sets reset period of
two days.

4. Challenges - Habitica also has a social aspect which will be discussed
later, but part of it are community challenges which are essentially
pledges which users can participate in, they consist of some task which
can be freely defined and one needs to submit proof of completion in a
given time limit. After completing it the users are rewarded with the
ingame currency.

Habitica introduces a very elaborate and well thought out system of gamifi-
cation which means enhancing users motivation by implementing a game-like
elements into the application. Each user has his avatar, for which they gain
experience and ingame currency by completing different quests, challenges and
sticking to their tasks and habits. One can buy new items with this ingame
currency as well as for example health potion to replenish their characters
health which is lost when for example one does not accomplish a task.

9 ctuthesis t1606152353

3.3. Way of life

Positives Negatives

® Very well implemented gamifica-

tion elements ® Limited functionality besides

from the basic elements of habit
® Good user interface and the abil- trackers
ity to specify activities
® At first the gamification elements
are nice, but do not go deep and
are only superficial so the moti-
8 Multiplatformness vation quickly fades

® Social interaction functions and
elements

B 33 Way of life

(I4) Way of life is, in essence, very simple app for tracking habits and ones
progress with their habits. Although it has passed the criteria of being usable
without paying only technically (It can be used for free but only limited
amount of times per day) given that it was found interesting and that it
offers a one time payment method to use it without limitations instead of
pay-per-month model, it was decided to include it in the list. Another reason
for including it is that even though one must pay in order to use it fully, the
app also guarantees data safety - meaning paying for the application grants
enhanced privacy and the app does not sell ones data which was found to be
a very good and honest business model. It offers the following features:

1. Habit tracking - A feature common to all habit trackers as the name
would imply, but what was interesting specifically about Way of Life‘s
take on habit tracking is that it is using so called chains instead of
streaks, which will be described in more detail later.

2. Notes - Each time one completes or fails to complete a habit, they
can add a note to the habits journal (each habit has its own journal)
describing for example why they did not complete the activity this time
or how did they feel about it which offers a more realistic approach
to habit making, since nobody is perfect and this sort of personalised
approach allows one not to feel bad for not completing the habit and get
demotivated further.

3. Chains - Chains are Way of Life‘s way to approach streaks, one can set
a desired streak length for a given habits so for example if they want to
run every day, but also want to have some breathing room, they set a
length of five days and if they manage to run five times in a row, their
streak is not broken when they take a day off. These chains record a
successful streaks as well as unsuccessful ones meaning how many times
one failed to do the activity they set out to do which is a good indicator
that one is slipping.

4. Data collection - Way of Life collects a lot of data about the user,
which it, as it has been said already, does not sell or pass further, but

10 ctuthesis t1606152353

3.4. Habitify

uses it to create detailed statistics about ones progress which I find very
useful and this data can also be exported from the application in the
form of .csv file, .xlIxs file and other formats.

The most interesting thing about this application is the combination of data
driven approach with its various statistics and graphs, the way the application
approaches realistic expectations about ones ability to perform every single
time and its sober attitude to data protection and subscription model.

Positives Negatives

® Chains feature ® Although very well implemented
and thought out, it is yet again
just a habit tracker with no addi-
tional features

® Approach to data collection and
business model

® Statistics
® Until recently it was not available

® Notes for habits for iOS platform

B 3.4 Habitify

(15)) Habitify is yet another data driven habit application. While it means
challenging the boundaries of the criteria, it was inspiring enough that it was
decided to include it in the list. It offers a very simple design supported on
all platforms - Windows, iOS, Android, smart watch, MacOS and it also has
a in browser option. It offers habit tracking, where one can sort these habits
based on a time of day they should be done at or by a different criteria set
by the user. The most dominant features of Habitify are its statistics section
and well implemented reminders as well as a habit journal which are very
useful.

1. Habits - Each habit can be categorized by its label which can either
be a time of day or a custom category and also each habit has its own
journal and most importantly its own statistics section with streaks for
this particular habit, completion rate and various indicators for possible
future trends.

2. Reminders - Habitify works with an interesting reminder implemen-
tation and while it is not something new it is an important feature,
since reminders and supportive messages are an important factor when
building new habits.

3. Statistics - Besides the statistics for individual activities the application
has a progress section tracking ones overall progress and trends.

The most interesting features worth noting are its statistics, simplicity and
simple yet effective design. Oftentimes it seemed like some other applications
tried to do too much at the same time and one would get eventually lost in
all of their features and possibilites.

11 ctuthesis t1606152353

3.5. Productive

Positives Negatives

B Jts subscription model, although
it offers a lifetime membership
option

® Statistics section

® Lack of additional features - even
® Simple design though its simplicity, it might be
beneficial for example the option
to differenciate between todo and
® Journal a habit.

. 3.5 Productive

(10) The Productive app has some part of everything from the other appli-
cations. The most interesting feature is that before launching the app the
first time one is required to sign a statement that they will try their best to
stick with their habits. It is a small thing but it helps to engage the user and
make the process of habit forming more personal. It is usable without paying,
even though there is a paid premium option, one can use it to a reasonable
degree. The most important and interesting aspect of this application is the
intro questionnaire which determines ones experience in the process of habit
forming and based on the answers the app guides the user and helps them
them stick with their habits. It offers the following features:

1. Habits - The habits feature is similar to the other applications, one can
choose a category from predefined set which is quite vast or create their
own category, habits can be sorted by daytime and place and can be
assigned a timer to measure time set for the particular activity.

2. Challenges - Challenges are activities with set time in the week one is
supposed to perform them, for example the challenge might be to exercise
on Monday and Wednesday and one must sign a pledge to complete the
challenge in order to participate.

3. Articles - There is a section dedicated to various related articles one
may read and find motivation or inspiration in.

4. Statistics - Similarly to other applications Productive too offers a
statistics section recording ones ups and downs and their performance.

The most interesting feature in this application is the guidance one receives
after filling in the initial questionnaire. It offers a sort of relatedness and
may add to users motivation and help them stick with their habits. The
unfortunate factor of this application is, that the entire statistics section is
hidden for non-paying users.

12 ctuthesis t1606152353

Positives

® Simple application design

8 Pledges and guidance along the
way

® Social engagement with chal-
lenges

3.6. Summary and conclusion

Negatives

B Statistics section hidden behind
paywall

® Severe lack of additional func-
tions, even though the basic func-
tionality is very well thought out.

B 36 Summary and conclusion

After reviewing these other applications here are the highlights of some key
concepts I found very useful and worth taking inspiration from.

1. Simplicity of design

Simplicity in both feature design and visual appearance of the app is key to
making a good application which users will return to. Initially it was thought
that the application should have more features, but after seeing and trying
some of these applications the focus has shifted towards simplicity - fewer
functions but very well thought out and implemented.

2. Journaling option and note taking

Journaling is important feature for developing a personal affection for the
activity and reaffirming it as aligned with ones beliefs.

3. Statistics and progress tracking

If well implemented and visually appealing, progress tracking should be one
of the core features of such application. It can offer insight into ones trends
and tendencies and even if not that, it is very appealing for people to see
their progress and is one of the most important motivators.

Application

Positives

Negatives

Habitica

Gamification, UI, Social fea-
tures 2

Otherwise limited functonal-
ity, Short spanned gamifica-
tion attractiveness

ance, Social features

Way of life Approach to data, Statisti- | No additional features
cal features, Note taking
Habitify Statistical features, Design | Subscription model, Lack of
simplicity additional features
Productive Design simplicity, User guid- | Statistical features only for

premium users, Lack of ad-
ditional features

Table 3.1: Existing solutions comparsion

13

ctuthesis t1606152353

3.6. Summary and conclusion

The above table is a summary of the above mentioned positives and
negatives of the individual examined applications.
In conclusion all of the applications above had their pros and cons, the
negatives being mostly the business model and also the lack of tools for the
user to really align their personality with their process and make it part of
them. But on the other hand they offered an interesting insight and helped to
realise some of the key concepts, as mentioned above, on which the application
might be built.

14 ctuthesis t1606152353

Chapter 4

Requirements and use cases

B 4.1 General concepts

In this chapter the functional and non-functional requirements for the appli-
cation will be presented and in later chapters there will be the presentation
of the technological stack upon which the application should be built. But
first there is a presentation of the general concepts which are the philosophy
behind the application. As was presented in the previous chapters, the key
concepts for building an application which helps people stick with and build
their habits are first and foremost to make them aligned with ones personality.
To help with this the take of an author of the book Atomic Habits (7)) was
presented which condenses down to four main rules - make it easy, make it
attractive, make it satisfying and make it obvious. These rules indirectly
correspond with the research of Self Determination Theory (16) and intrinsic
and extrinsic motivation and it will be presented how the concepts, the
application will be built on, implement these rules.

The first concept is for the application to have simple and effective visual
design. When researching other similar applications it was observed that the
most liked applications had a simple and straight forward visual design. This
can also be seen for example with the products of Apple. Should users be
using the application long term, there must be as few obstacles for them as
possible and this includes the design itself. It is believed that a lot of colors
and shapes is a thing of the past and the majority of products today are
leaning towards minimalism as well. It makes the application organised and
enjoyable to use, both of which align with the rules of making the process
easy and attractive.

Second concept is feature minimalism. Too many options are not necessarily
for the best. The application should have clearly defined functionalities
which are easy to understand and use and implement all of the functional
requirements, but do not allow for excessive customization. From experience,
customization of features and the option to over-specify them are attractive
at first, but after a while create a chore, when one must spend extra time
on specifying the details instead of keeping their focus on what is important,
in this case - building habits, making life more organised and spending less
time on management, rather than more. In summary - The users should have

15 ctuthesis t1606152353

4.2. General functionality draft

clearly defined and well thought out options to choose from which provide
for all of their needs, but do not allow for an extra dwelling on the details,
because the users come to the application for help and guidance and it should
provide precisely that.

Data orientation and strong statistics section - people like to see their progress,
although it is an external motivator, it is true and it motivates them to con-
tinue when they see that they have already something behind them. Since
many of activities which are beneficial for people, such as exercising, better
time management, etc. do not offer an immediate reward but rather a delayed
one, in this case a better physical condition or more free time and less stress,
seeing their progress can and often is the motivator to keep them going until
the actual rewards present themselves. This has been specifically argued in
the book Atomic Habits (7)) - not only that keeping track of ones progress
is a good motivator, but also the concept of artificial intermediate reward
until the activity itself starts paying dividends. Another positive side effect
of good record keeping of ones progress is that it can spot negative trends
rising before the user does in real life and can serve as a reminder not to go
down the rabbit hole.

In summary simplicity and efficiency of the visual design, feature minimalism
and strong emphasis on statistics are the key concepts the application should
be built on because they are not only good practice but align with the rules
of making habits and human psychology. In the next section the functional
and non-functional requirements will be presented, which implement the
functionality of the application and adhere to these concepts as well as their
individual importance and estimated difficulty.

B 42 General functionality draft

In this section the functionalities the app will have based on the research
of motivation, habits, habit making and other similar applications will be
introduced.

B 4.2.1 User

User entity is the founding stone of many applications and represents the
user itself in the application.

1. User is created via registration
2. Registration is done via an email bound to this user
3. User has an avatar

4. User can input general information about them such as age, weight,
height, gender and others

16 ctuthesis t1606152353

4.2. General functionality draft

B 4.2.2 Habit

Habit is an event which implements the core functionality of habit as was
explained in earlier section.

1. Habit has name

2. Habit has at least one category or more

3. Habit has a frequency of how often should be performed

4. Habit has specified length of how long does it take to perform it
5. Habit has optional description and a note

6. Habit has its own small statistics section

B 4.2.3 ToDo

Todo is a one time event, which represents a reminder for the user to do
something such as write and email for example.

1. Todo has a name
2. Todo has a category
3. Todo has an importance level

4. Todo has a due date

B 4.2.4 Calendar

A calendar which may be connected with the users other calendars and
contains the planned events like Habits or ToDo’s

1. Calendar contains the events made in the application

2. Calendar can be connected with other calendars

B 4.2.5 Statistics section

A section of its own (compared to the statistics section of each habit) with
overall statistics, trends and various filters.

1. An individual habit trends
2. Overall habit trends
3. Filters for different activities statistics

4. Predictions

17 ctuthesis t1606152353

4.3. Functional requirements

4.3 Functional requirements

4.3.1 Landing page

® When a potential new user finds the application, they must find a pleasant

landing page which will shortly but effectively introduce them into what
the application can do and how can it help them and ideally gets them to
sign up. Must contain a link to either log in or sign up for the application.

Expected difficulty: Low

Priority: High

4.3.2 Registration

An unregistered user must have an option to register for the application
Expected difficulty: Moderate

Priority: Very high

4.3.3 Login

An already registered user must have a way to log in to the application
Expected difficulty: Moderate

Priority: Very high

4.3.4 User profile

A user needs a way to manage their profile, information and data about
them.

Expected difficulty: High

Priority: Medium

4.3.5 User dashboard

When logged in first thing a user sees is an overview of their todos and
habits

Expected difficulty: High

Priority: High

18 ctuthesis t1606152353

4.3. Functional requirements

4.3.6 Habit

User can create a habit event, specify the details, see related statistics
and recommendations. The habit details are defined by their category.

Expected difficulty: High

Priority: Very high

4.3.7 Habit list

User can browse their habits on a side panel of the habits tab.

Expected difficulty: Moderate

Priority: Moderate

4.3.8 Todos

User can create a todo event, select category, specify details and mark it
as done to make it disappear.

Expected difficulty: High

Priority: High

4.3.9 Todo list

User can browse through their todos and filter based on criteria.

Expected difficulty: Moderate

Priority: Moderate

4.3.10 Calendar
User has a personal calendar.
Expected difficulty: High

Priority: Moderate

4.3.11 Calendar events

User can add their planned Todos and Habits to their calendar along
with other custom events

Expected difficulty: Moderate

Priority: Moderate

19 ctuthesis t1606152353

4.4. Use cases

B 4.3.12 Statistics section

® User can see various statistics from their current progress, trends of their
behaviour regarding Habits and Todos and projection of future progress

B8 Expected difficulty: Very high

8 Priority: High

. 4.4 Use cases

In this section the individual ways how one can use the applications, features
and what parts of the application serve these use cases will be introduced.

B 4.4.1 User wants to register

® An unregistered user wants to sign up for the application, so they arrive
at the landing page, which sends them to the sign up form.

B [nvolved entities: Unregistered user, Landing page

® Covered by: Landing page

B 4.4.2 Registered User wants to log in

® An already registered user wants to enter the application, so they arrive
at the landing page, which sends them to the login form.

® Involved entities: Registered user, Landing page

® Covered by: Landing page

B 4.4.3 Registered user wants to log out

® A registered user wants to exit the application, so they click the log out
button on the toolbar and the applications signs them out

B Involved entities: Registered user, log out button

® Covered by: Toolbar, Log out button

B 4.4.4 Logged in user wants to change their personal
information

® A logged in user wants to change some of the information about them,
so they click on his profile icon which sends them to the user profile page

® Involved entities: Logged in user, Toolbar, User profile

® Covered by: Toolbar, User profile

20 ctuthesis t1606152353

4.4. Use cases

4.4.5 Logged in user wants to delete their profile

A registered,logged in user wants to delete their profile, so they click on
their profile icon which sends them to the user profile page

Involved entities: Logged in user, Toolbar, User profile

Covered by: Toolbar, User profile

4.4.6 Logged in user wants to see an overview of their
activities

A logged in user wants to see their current and future events, most
important information, general trends or missed events, so they clicks
onto the User dashboard icon on the navigation bar which sends them
to the User dashboard page

Involved entities: Logged in user, Navigation bar, User dashboard

Covered by: Navigation bar, User dashboard

4.4.7 Logged in user wants to see some upcoming event
displayed on their dashboard

Logged in user wants to see details about an upcoming Todo or Habit
event, so they click onto the event tile on their dashboard which sends
them to the events tab in either Todo section or Habit section

Involved entities: Logged in user, User dashboard, either Habit section
or Todo section

Covered by: User dashboard, either Habit section or Todo section

4.4.8 Logged in user wants to see specific habit/Todo

A logged in user wants to see a specific activity and related details,
so they click the appropriate tab on navigation bar and then find the
specific activity via filter column.

Involved entities: Logged in user, Navigation bar, Habit/Todo section,
Filter column

Covered by: Navigation bar, Filter column, Habit/Todo section

4.4.9 Logged in user wants to create an activity

A logged in user wants to create a new Habit or Todo, so they get via
the navigation bar to the appropriate module where they click on the
add button on the toolbar and fill in the details.

21 ctuthesis t1606152353

4.4. Use cases

Involved entities: Logged in user, Habit/Todo module, Navigation bar,
Tool bar

Covered by: Habit/Todo section, Toolbar

4.4.10 Logged in user wants to see their statistics and
analysis of his current performance and behaviour

A logged in user wants to see their analyzed data, so they get to the
statistics module via navigation bar and select the section they want to
see.

Involved entities: Logged in user, Navigation bar, Statistics section

Covered by: Navigation bar, Statistics section

4.4.11 Logged in user wants to see their schedule

A logged in user wants to see their calendar, so they click on the icon on
navigation bar and get to calendar.

Involved entities: Logged in user, Navigation bar, Calendar

Covered by: Navigation bar, Calendar

4.4.12 Logged in user wants to add a custom event to their
calendar

A logged in user wants to add some event other than Todo or Habit to
their calendar, so they click on the add event button on the toolbar and
fill in the details.

Involved entities: Logged in user, Calendar, Toolbar

Covered by: Calendar, Toolbar

22 ctuthesis t1606152353

Chapter 5

Technological stack and architecture
proposal

In this chapter the results of the research will be introduced regarding the
possible tools such as programming languages, programming frameworks,
database systems etc. that might be suitable for an application such as
this and then discuss the choice of individual tools for each area (Frontend,
Backend, Database, ...) upon which the application will be built.

. 5.1 Basic software application architectual patterns

Software architectural patterns are ways to split the application into parts
each of which has a specific purpose in the application and does specifically
only one thing, ie. one part deals with data manipulation, other handles
requests from Frontend and responses from Backend and another one handles
User interface and rendering of data.

B 5.1.1 Model View Controller (MVC)

(I7) A Model View Controller is the perhaps most used architectural pattern
in applications. The three main parts Model, View and controller each handle
specific tasks for the application.

1. Model - Is the Backend of the application, manipulates and stores data
and returns manipulated data according to the user to the Controller.

2. View - Is the Frontend of the application, defines how the data the user
requested will be organised and look like visually.

3. Controller - Is the middleman between the Frontend and the Backend.
It handles user requests and translates these requests to the Model and
then presents the manipulated data on the Frontend.

B 5.1.2 Model View Presenter(MVP)

(I8)) It is in a way an alternative to the MVC architecture. The difference is
that the View has more "power" and is not static. The View gets user input,

23 ctuthesis t1606152353

5.2. Server side Web application frameworks

creates its presenter and then interacts with the Model via an interface.

1. Model - Same role as in MVC, has data and manipulates them according
to requests from above and returns manipulated data.

2. View - Contains business logic, on input/user requests creates presenter
to interact with Model.

3. Presenter - Handles requests from the View which uses it to communicate
with the Model, prepares the data obtained from the Model and returns
them to the View for presentation

B 5.2 Server side Web application frameworks

As it does not seem useful trying to build the application blocks separately
since there are many frameworks which handle all of these areas at once and
are the most used instead research these frameworks will be researched and
the one which seems most interesting and best made will be chosen.

B 521 Django

(19) Django is a web application framework written in python. It covers all
of the layers of the application architecture, gives emphasis on speed and
security and has a lot of things already implemented, so one can focus on
building an application from the blocks already prepared in Django, instead of
writing everything from scratch. Its advantages are firstly quick development
partly thanks to the python language in which Django is written, security,
versatility and very detailed documentation as well as backwards compability.
The basic building blocks of which Django consists are:

1. Urls - When user types a url in their browser, the request first arrives
at the urls. It is a place in the application where patterns are de-
fined according to individual modules of the application (for example
"www.myapplication.cz/habits") and each request is compared to these
patterns until a match is found in which case the appropriate view is
called. Otherwise an error is returned.

2. Views - View is the center of the application, after a request is routed to
the appropriate View, the view is given the parameters and defines what
should be done, in the above example of "www.myapplication.com /habits"
it queries data from the Habit model, for the logged in user, transforms
them appropriately and does other related tasks and then sends the
queried and formatted data to the Template.

3. Templates - A Template defines what the user sees upon loading the site
they requested. After the View is done, it sends data to the template
which renders them appropriately along with other elements of the web
page and lets the user see them and interact with them. The Template

24 ctuthesis t1606152353

5.3. Database

uses Django Template Language which allows creation of dynamic website
instead of just static representation, but can also be amended with
javascript or typesript or other frontend languages.

4. Model - A Model is a representation of an object in the application
or more specifically representation of a database table. Using Object
Relational Mapping it allows for data manipulation via python code and
generally for handling data in the application logic.

5. Django ORM - Object relational mapping is a way for comfortable
accessing a database from a programming language. Each database table
has a corresponding model which has fields which correspond to the db
table columns. On instances of these objects one can perform various
actions which are translated into an SQL query in the end.

B 5.2.2 Spring Boot

(20) Spring Boot is a web application framework based on the programming
language Java. Its main advantages are scalability, security, easy testing, the
option for multithreading and automatic configuration. Compared to Django
it is more suitable for large projects, but for medium to small projects it
seems too heavy. Also as it is based on Java it is more complicated to get
started and write the application from scratch compared to python. On the
other hand it is much more suitable for large projects with large teams as it is
easier to enforce architecture and coding style in Spring compared to Django.
Spring Boot does not have, as opposed to Django, a hard given structure and
the project structure is defined by developer.

. 5.3 Database

Bl 5.3.1 MySQL vs PostgreSQL

(21)) Initially it was intended to dedicate a subsection to both of these individ-
ually but with more research it became clearer that both of these database
systems have very much in common and for the purposes of this application
there is very little that distinguishes them from each other. Both PostgreSQL
and MySQL are relational database systems which excel in security, speed,
scalability, supported programming languages and both are open source. The
main difference is, that PostgreSQL is more sophisticated and allows for more
data types and is more extensible, which reflects in slightly more effort it
takes to work with it. PostgreSQL also supports multithreading and MySQL
does not. On the other hand it is easier to work with and deploy MySQL
database.

25 ctuthesis t1606152353

5.4. Frontend frameworks

. 5.4 Frontend frameworks

B 54.1 VuelS

(22) Vue is a frontend framework based on Javascript. It has something from
both React JS and Angular (also Javascript frontend frameworks which will be
described later).It has a fast learning curve, meaning it is easy to understand
and use. Also Vue uses a modular approach and is component-based meaning
one creates a component such as for example a button and then it is possible
to include the button on multiple places in the application. The page created
in Vue is an HTML template with mounted Vue functions on elements and
included components. (23])

Advantages:

8 Component based approach

® Uses virtual DOM

Lightweightness
® Customization
Disadvantages
8 Extensive flexibility
8 Low scalability

8 Small community and limited support

B 5.4.2 React JS

(24)) React JS is another Javascript based frontend framework. It also uses a
modular, component based approach and templating. Similar to Vue, React
has a swift learning curve. Compared to Vue, React uses a RJX Javascript
language extension instead of single file components, which essentially means
that the HTML code is integrated into the Javascript code.

Advantages:

® Swift learning curve

® RJX extension

® Scalability

®8 Easy SEO optimization
Disadvantages:

8 Poor documentation

® Really fast development of the library - meaning constant changes

26 ctuthesis t1606152353

5.5. CSS Frameworks

. 5.5 CSS Frameworks

B 551 Bulma.io

(25)(26) Bulma is one many css frameworks, is opensource and its aim is for
its users to code as little as possible. It has lot of built ins and components
and can be imported by parts. It is also a strictly CSS framework, meaning
that compared to some other frameworks it does not rely on Javascript or
Ruby. It also has relatively good default state, meaning that if one wants to
just use its classes and not alter the css, it still looks nice visually.
Advantages

B Very easy implementation
® Easily readable classes - and easy understanding of what they do
® Quick learning curve
® Nice default visual design
Disadvantages
® Hard customization of classes
B Very distinctive visual design which is hard to alter

® Counter-intuitive documentation

B 55.2 Bootstrap

(25)) (26)) (27) Bootstrap is one of the most - if not the most - popular CSS
framework today. It is mobile first and works with separation of the page into
columns and rows. The new Bootstrap 4 is building on the flexbox features
of CSS. While it also is heavily opinionated, meaning the framework has its
way of doing things it deems right, its not as hard to style some elements
differently and still keep unified design, compared to Bulma.

Advantages

® Supported by large company - Twitter
8 Very quick prototyping
B Very large collection of components
Disadvantages
® Less understandable naming of classes
® Rendering can sometimes lead to a lot of HTML code

B8 Requires more work for the site to look unique

27 ctuthesis t1606152353

5.6. Technologies selected for the implementation

M 56 Technologies selected for the implementation

Bl 5.6.1 Web application framework

As for the backend framework, it was decided to use Django framework, for
the following reasons:

1. Is based on python as opposed to Java which seems to allow for clearer
code and more rapid development.

2. Ismore lightweight, which is more fitting for this project as the application
is to be relatively lightweight as opposed to for example an internet
banking application.

3. Is easier to understand and requires less initial effort to get started.

4. As was already mentioned, Django is based on python language which
brings another great advantage and that is the ability to easily integrate
and use its vast libraries and frameworks for statistics and Al which are
intended to be used in the statistics section.

5. The author already has moderately vast knowledge and skill with pro-
gramming in python language and specifically creating and maintaining
Django-based application and would like to deepen their knowledge of
this framework.

B Django security

Security is one of the most important factors to consider when choosing the
frameworks for a web application which will be handling user data. One of
the pillars of Django framework and its pride is its security. Django provides
security measures and protections against the following types of attacks and

many more(28]):
1. Cross-site scripting
2. SQL injections
3. Cross site request forgery
4. Clickjacking

Of course the Django framework, same as any other framework, is not immune
to attacks, but it has a good baseline of security after which it us on the
developer to follow the safe practices in web development. One of these very
important practices is for the frontend application to communicate with the
backend via HT'TPS protocol to assure it is a secure communication.

28 ctuthesis t1606152353

5.6. Technologies selected for the implementation

B 5.6.2 Database

PostgreSQL was selected as the database system for this application, for the
following reasons:

1. As was mentioned before - from the point of view of this project and its
requirements there are many similarities between these two systems. In
the end PostgreSQL was selected solely for its slightly better extensibility
and the possibility to store more datatypes.

B 5.6.3 Frontend framework

For the frontend framework, it was decided to use the React JS framework,
should the need arise for such framework, as Django already has functionality
of a frontend framework to some degree, for the following reasons:

1. It is easier to learn
2. It is widely used today

3. The author would like to extend their technological stack with this
framework.

However if there is no need for larger Frontend framework a Javascript XHR
framework will be used, as it is more lightweight and is better suited if there
will be only a few requests which will have to be sent from the frontend.

B 5.6.4 CSS Framework

And finally for the CSS framework, it was decided to go with Bootstrap,
because:

1. It is widely used

2. The author has worked with both Bulma and Bootstrap and in their
opinion, Bulma is very lightweight, easy to implement and has a nice
default, however it was found very hard to alter the style of the elements,
because then one has to change the appearance of all of the elements,
otherwise the individual ones stick out.

3. Author would like to extend their knowledge of this framework as well.

29 ctuthesis t1606152353

5.6. Technologies selected for the implementation

B 5.6.5 Database model draft

The logical database model will consist of the following tables:
® Users
8 Habits
® Todos
® HabitPlan
® HabitSession

The actual database will have more tables, where for each Habit type there
will be separate Habit<Type>Session and Habit<Type>Plan tables. This
is due to the fact that for each Habit type a different type of information
will be required to be stored - for example for an exercise habit there have to
be columns such as calories burned, kilometers ran, duration, average heart
rate etc., on the other hand for a learning habit there have to be columns
such as subject, pages read, duration and others. The alternative to this is
having sparse tables with many columns where for each row would have most
of the column values empty and this way would be very confusing, prone to
mistakes, vulnerable from the database integrity point of view and would
make the work with Django significantly harder.

B Users table

The users table will contain information about the user such as password,
name, username, age, height, weight and others. There will be only one
row in the Users table for each user and it will be in a one to many (1:N)
relationship with the Habit table and the Todos table.

Il Habits table

The Habits table will contain general information about each Habit for each
user such as date created, title, frequency and other information which must
be kept for all habits regardless of its type. The Habits table will be in a one
to many (1:N) with the users table (from the point of view of the Users table
- meaning one user may have many habits) and then it will also be in a one
to many (1:N) relationship with one from each of the Habit<Type>Session
and Habit<Type>Session tables - meaning each Habit may only have one
type but it has to have one type and there may be many HabitPlans for each
Habit (since the HabitPlan may change over time, but it should be stored
historically) and there will be many HabitSession records for each Habit since
the HabitSession record represents one repetition of the Habit.

30 ctuthesis t1606152353

5.6. Technologies selected for the implementation

Habit
PK | HabitlD
User
Type
PK | UserlD
Frequency
Username
1 Date created
Password
| T———N| Fk | UseriD
MName
Title 1
Age
Height
Weight
N
Habit<Type= Session Habit<Type> Plan
PK | Habit<Type=SessioniD PK | Habit<Type=PlanlD
Habit<Type> Session Habit<Type> Plan
attribute 1 attribute 1
Todo Habit<Type> Session Habit<Type= Plan
attribute 2 attribute 2
PK | TadolD
Title -]
FK | HabitiD FK | HabitiD
Description o
Completed Expiration date
Subtasks
FK | UserlD
Due Date

Note: Due to the spacial complezity of a fully-fledged ER diagram, it was elected to
stmplify it (it would not fit in the document)

Figure 5.1: Database Schema

B Habit<Type>Plan table

There will be one Habit<Type>Plan table for each Habit type and it will
store information about the goal the users set for themselves for the particular
Habit - for example if the user wishes to run 10km in 1 hour every session
and burn 400 kcal then this will be stored in their plan. They can alter the
plan whenever they want, however the past plans will be stored so it will
be possible to calculate precise statistics such as adherence to their plan for
some period of time. The Habit<Type>Plan tables will be in a one to many
relationship with the Habits table (from the point of view of the Habits table)
meaning each Habit may have many plans connected with it.

B Habit<Type>Session table

There will also be one Habit<Type>Session table for each Habit type and it
will contain information about the users actual performance when they do
the activity they wish to make a habit of - for example if the user runs on a

31 ctuthesis t1606152353

5.6. Technologies selected for the implementation

Tuesday and Friday there will be two HabitExerciseSession records and each
record will contain the information about their performance in the session
(to continue with the running example, each record will contain the number
of kilometers the user ran, the number of calories they burned, the duration
of the session, date of the session).

Bl Todos table

On the other hand there will be only one table for Todos as they are defined
only by their title, description, due date, importance and subtasks which are
all user defined (meaning they are text fields and the user can write whatever
they want to store as a Todo into them). The Todos table will be in a one to
many (1:N) relationship with the Users table (from the point of view of the
Users table) meaning one user may have many Todos.

32 ctuthesis t1606152353

Chapter 6

Implementation

In this chapter the actual implementation will be presented as the result of
the previous domain analysis and a documentation of the process as well as a
presentation of the difficulties which were faced and illustrative figures.

B 6.0.1 Application modules

As was proposed in the fourth chapter the application consists of 5 main
modules - Habit module, Todo module, Dashboard module, Calendar & Users
profile where Habits, Todos and Users profile are the core modules of the
application and the most important for the main functionality more emphasis
was put on them.

B 6.0.2 Environment preparation

In order to be able to focus solely on development and make the work easier
a virtual environment was prepared and also the frameworks used to build
the application with were installed.

B Virtual environment

First of all in order to be able to have control of all installed python packages
used in the project a python virtual environment was created using pyenv(29).
Python virtual environment is a closed and encapsulated python environment
which must be activated in order for a person to be able to work with it and
it is isolated from the default system python version. It is very useful when
working on larger project such as this application since it is easy to keep track
of which python packages are installed, in what version and it makes it easier
to be sure that there are no conflicts. (30)

B Installing Bootstrap

There are several ways to install bootstrap, the easiest way was chosen due
the fact that this application is running on Django was and so the python
package django-bootstrap-vb was installed.

33 ctuthesis t1606152353

6. Implementation

B Git

To make development easier, avoid mistakes and split the development into
shorter, achievable and clear steps a git repository was created, using the
faculty gitlab server.

B 6.0.3 Helper structures

In order to keep the code itself clean and clear helper structures were created
for all modules. A helper is a class related to a module in the application
which contains various utility (but not only utility) functions which are used
often and are as general as possible and so can be used in many places in
the Backend of the application (mostly in API). This has helped to keep the
code directly in the endpoint views to a minimal amount and also since the
actual code is stored in one place (in a function of a helper) which is then
called from multiple API endpoints a lot of time was saved when there had
to be changes to the code since the code had to be changed in only one place
instead of rewriting code in each view separately.

class HabitOverviewView(View):

def __init__(self):
super().__init__(Q)

self. = HabitsOverviewHelper()

new *

de

2

get(self, request, *args, *xkwargs):

print(request.user)

if not reqguest.user.is_authenticated:
return redirect('login')

habit_slider_context = self.helper.get_data_for_habit_slider(request.user)
popup_forms = self.helper.get_forms_for_habit_submission()
plan_edit_forms = self.helper.get_data_for_habit_plan_edit(request.user)
habit_creation_form = self.helper.get_forms_for_habit_creation()
hero_habit_data = self.helper.get_hero_display_data(request.user)
ret = {'cards': habit_slider_context,
"habit_category_enum': HabitCategoryEnum.__members__,
"popup_forms': popup_forms,
‘plan_edit_data': plan_edit_forms,
‘create_forms': habit_creation_form,
'hero_data': hero_habit_data}
H return render(request=request, template_name="habits/habits.html", context={'habit_slider_context': ret})

Figure 6.1: Example of a helper structure usage in an API endpoint

34 ctuthesis t1606152353

6. Implementation

class HabitsOverviewHelper:
model = Habit

def __init__(self):...
def get_by_id(self, habit_id: int) -> Optional[Habit]:...
def get_all_by_user_ordered(self, user: User) -> QuerySet[Habit]:...

@staticmethod
def get_value_from_codebook(codebook_category: int, codebook_value: int) -> Optionall[str]:...

@staticmethod
def get_last_completed_planned_session_by_type(habit: Habit):...

@staticmethod
def get_last_session(habit: Habit):...

@staticmethod
def get_next_habit_session_date(habit: Habit):...

def get_last_session_dict(self, habit: Habit):...

Figure 6.2: Example of a Helper structure implementation

As can be seen in the figures above a helper contains functions which may
be used in many other places (general methods like get__by__id or get__all)
and also help with code clarity.

B 6.0.4 Codebooks

Another utility structure is a Codebook. Since there was a lot of work with
categorical values such as a frequency of habit repetition (Every week, every
month, ...) or habit categories, learning subjects etc. there was a need for
many Enum classes. Since storing literal string values of categorical variables
in the database did not seem like a good practice, an Enum was used and when
user for example enters ‘Learning* as a category of their new habit the Integer
value assigned to that value is saved instead. But when loading data from
database to display them to the user there would have been a need for a lot of
if else branching to display the right value which would hurt the code clarity
a lot. In order to prevent this two database tables were created - Codebook-
Category and Codebook. CodebookCategory contains the integer values
assigned to each individual Enum and Codebook table contains a foreign key
column referencing the CodebookCategory table which indicates to which
Enum class this record belongs to and also a ‘name‘ column containing the
literal string value of the variable and finally ‘value‘ column which corresponds
to the value in the Enum class representing the ‘name‘ column. It is then easy
for example when querying a ‘frequency‘ column value from a Habit table
with the value one it is possible to easily query from Codebook table where
category_ value equals to CodebookCategoryEnum.HabitFrequency.value and
value equals to the Habit ‘frequency‘ column value. This has another added
benefit - it allows for easy translation of these categorical variables since it
will be possible to just extend the Codebook table by a column ‘name_eng
which will contain the english translation of the name of the string value.

4

35 ctuthesis t1606152353

6.1. Backend development & API

F codebook_category

¥ name
SRid

category_id:id
|

EE codebook
B9 category_id
= §H value
XH name

Rid

Figure 6.3: Codebook database tables

B 6.1 Backend development & API

In this section the documentation of the implementation process is presented,
it will be shown how the most important features of the application are
implemented and the solution will be discussed. The solution will be presented
in blocks corresponding to the logical modules of the application (such as
Habits, ToDo’s,...).

Bl 6.1.1 Login & Registration

In order to be able to register a user and create their profile in the application
it was neccesary to create a landing page where every potential user or a
logged out user will be redirected every time they visit the application so
they can either sign up for the application or log in if they already have a
profile. At the same time the landing page needed to be a pleasant welcome
for the new users in order to attract them to sign up. Inspiration was drawn

from (31)

36 ctuthesis t1606152353

6.1. Backend development & API

B Login

The already prepared Django functionality for authenticating users and
creating users profiles was used and the creation of record in the table
UsersProfiles with more information was added. Firstly there is a validation,

def login_request(request):
if request.method == "POST":
form = AuthenticationForm(data=request.P0ST)
if form.is_valid():
username = form.cleaned_data['username']
password = form.cleaned_data['password']
user = authenticate(username=username,
password=password)
if user is None:
messages.error(request, "Authentication failed")
return render(request=request,
M template_name="1login/login.html",
context={"'login_form': AuthenticationForm(),
'fail': True})
login(request, user)
users_profile = UserProfile.objects.filter(auth_user_id=user.id).first()
users_profile.last_login = datetime.datetime.now().astimezone(pytz.UTC)
users_profile.save()
return redirect("habit_overview")
print(form.errors)
return render(request=request,
H template_name="login/login.html",
context={"'login_form': AuthenticationForm()})
form = AuthenticationForm()
H return render(request=request, template_name="login/login.html", context={'login_form': form})

Figure 6.4: Login API endpoint

checking that the request is of POST method and that the form sent with
it is valid. After that it is attempted to authenticate the user using the
authenticate function and if that authentication is successful, then user will
be redirected to their dashboard. If any error occurs, an error message will
be passed to the user and they will be asked to try again.

B Registration

Again it was made use of the fact that Django already provides a well adjusted
functionality for handling of logging in, creating users and handling users
rights as well as the submitted data validation such as making sure that the
email address is valid and that the password entered is sufficiently complex.
After that there was added the creation of a record in the UsersProfiles table.
Firstly there is a check of whether the request is of the right method and
whether the Django registration form is valid. If that is the case then two
entities are created - User and UserProfile. The user will then be logged in and
redirected to the Dashboard module so they can start using the application.
And if the form is not valid an error message is displayed to the user and
they are asked to try again.

37 ctuthesis t1606152353

6.1. Backend development & API

Jan Daniel *
def register_request(request):
if request.method == "POST":
form = UserRegistrationForm(data=request.P0ST)
if form.is_valid():
messages.success(request, "Registration successful.")
new_user = form.save()
users_profile = UserProfile.objects.create(username=form.cleaned_data['username'l,
auth_user=new_user,
email=form.cleaned_data['email'],
last_login=datetime.datetime.now().astimezone(pytz.UTC),
is_premium=False)
users_profile.save()
new_user = authenticate(username=form.cleaned_data['username'],
password=form.cleaned_data['passwordl'])
login(request, new_user)
return redirect("habit_overview")
messages.error(request, f"Unsuccessful registration. Invalid information. {form.errors}")
form = UserRegistrationForm()
W return render(request=request, template_name="login/registration.html", context={"register_form": form})

Figure 6.5: API endpoint for registering

B 6.1.2 Habits

The Habits page is the most important module in the whole application and
everything revolves around it so it was carefully planned out what the page
should look like and what functionalities it must have.

B Habit creation

The most basic functionality is the creation of a habit - It was necessary
to create a Django form for submitting the information by the user, while
keeping in mind that there are multiple habit types with different types of
information that had to be saved. As a consequence a parent form was created,
containing the fields which are common to all habit types inheriting from
Django Form class and after that multiple forms which inherited from this
parent form and have extra fields, specific for their habit type were created as
well. There is a common API endpoint used for loading of all the data for the
page for rendering - data for creation of habit, editing a habit plan, adding a
habit session and others. For the other direction - submitting of the data by
user and saving it into the database, there was a specific endpoint created
for creation of a habit. Firstly it is needed to validate the submitted data.
Along with the submitted form data the endpoint gets a URL parameter
habit_ category which indicates what category should the newly created
habit be of. After creating the Habit object itself it is also required to create
a HabitPlan object related to this habit and also plan the next session of the
Habit based on the field days_ to_ repeat which indicates on what days
does the user want to repeat the activity (it is a list of integers, valued from
0 to 6, indicating the weekday). Since it is needed to create multiple objects
which are related to one another an atomic transaction(32)) was used so that
if an error occurs in the middle of creating these objects, none of them would
be saved and the database integrity remains intact.

38 ctuthesis t1606152353

6.1. Backend development & API

class HabitOverviewView(View):

def __init__(self):
super().__init__()
self.helper = HabitsOverviewHelper()

new *
de

2

get(self, request, *args, xxkwargs):

print(request.user)

if not request.user.is_authenticated:
return redirect('login')

habit_slider_context = self..get_data_for‘_habit_slider‘(request.user‘)
popup_forms = self.helper.get_forms_for_habit_submission()
plan_edit_forms = self.helper.get_data_for_habit_plan_edit(request.user)
habit_creation_form = self.helper.get_forms_for_habit_creation()
hero_habit_data = self.helper.get_hero_display_data(request.user)
ret = {'cards': habit_slider_context,
'habit_category_enum': HabitCategoryEnum.__members__,
'popup_forms': popup_forms,
'plan_edit_data': plan_edit_forms,
'create_forms': habit_creation_form,
‘hero_data': hero_habit_data}
W return render(request=request, template_name="habits/habits.html", context={'habit_slider_context': ret})

Figure 6.6: The central endpoint for loading of the Habit page

B Editing of a Habit/Habit plan

The habit entity is, from users point of view, represented by a Habit plan (it
contains the important information for the user) - it represents users goals
for this particular habit and so it must be editable if the user wants to adjust
their goals. Once again Django forms were used where a parent form was
created, containing the fields which are common for all habits, this time using
inheritance from the Django ModelForm class(33) which is a very useful class
- one specifies the model, on which this form is based on in the constructor
and the model then automatically contains all the fields of its model. And
then specific forms for each habit type, inheriting from this parent form. As
was mentioned before, the data for the initial display of the form are sent at
once from the central endpoint but in this case the form has to be pre-filled
its current values. Another specific thing about editing the Habit plan is
that the rows are not overwritten but a new row is created and the old one is
invalidated (expiration date column value is set which means it is no longer
valid and will be used only for statistics computation). This allows to know
what goals the user had in what periods of time and makes it possible to
compute the statistics with regard to the users plan at the time.

B Adding session

Another important functionality is adding of sessions. The process was
similar to the previous endpoints - Creation of a parent form and then forms
inheriting from the parent one. What was different was the logic behind
sessions - Sessions are planned so the record corresponding to the soonest
planned session is already in the database, but the data columns are not filled
in (the user enters their performance of the session after they complete it)
and after the date of the session is up, the session either must be marked as

39 ctuthesis t1606152353

6.1. Backend development & API

def create_habit(request, habit_category: int):
if request.method == "POST":
if habit_category == HabitCategoryEnum.Exercise.value:
form = CreateExerciseHabitForm(data=request.P0ST)
elif habit_category == HabitCategoryEnum.Reading.value:
form = CreateReadingHabitForm(data=request.P0ST)
elif habit_category == HabitCategoryEnum.Learning.value:
form = CreatelLearningHabitForm(data=request.P0ST)
else:
return fail_view(request=request)
if not form.is_valid():
return fail_view(request=request)
week_days_cleaned = [int(day) for day in form.cleaned_data['days_to_repeat']]
frequency = HabitsOverviewHelper().get_habit_frequency(week_days_cleaned)
first_rep = HabitsOverviewHelper().get_first_habit_session_date(week_days_cleaned)
with transaction.atomic():
= try:| ..

except Exception as e:
transaction.set_rollback(True)
print(f"Exception {e} occured, traceback: {e.__traceback__}")
return fail_view(request=request)

else:
return fail_view(request=request)

Figure 6.7: The endpoint for creating a Habit entity

completed by the user or it will be marked as not completed and either way
new session must be planned for the date of the next repetition. Another
special case is if the user enters extra session which was not planned - it
was decided to keep a record of it, for computing statistics, but it does not
affect the sessions schedule, if a session has been recorded and there is a not
completed session planned for that day it will be considered the planned
session and marked as completed, if there is no session planned on that day
it will be kept in the database table but with the is_ planned column value
set to false.

B Deleting habit

Lastly a habit must be deletable as well, this endpoint is a very simple one,
it accepts only DELETE requests with no data and only a single parameter
- habit__id indicating the id of the habit to be deleted. However along with
the habit all Habit plans and Habit sessions must be deleted as well. There
is once again an atomic transaction(32) used since if there was an error while
deleting records related to each other it might threaten database integrity,
even though fortunately a Habit object, binding all the other records together,
cannot be deleted without deleting all other related records first due to the
Foreign Key constraint in all of the related records, it is considered a good
practice.

40 ctuthesis t1606152353

6.1. Backend development & API

def edit_habit_plan(request, habit_id: int):
[) if request.method == "POST":

habit: Habit = Habit.objects.filter(id=habit_id).first()

if habit is None:
return fail_view(request=request)

if habit.category_id == HabitCategoryEnum.Exercise.value:
plan_model = ExerciseHabitPlan
form = EditExerciseHabitForm(data=request.P0ST)

elif habit.category_id == HabitCategoryEnum.Learning.value:
plan_model = LearningHabitPlan
form = EditLearningHabitForm(data=request.P0ST)

elif habit.category_id == HabitCategoryEnum.Reading.value:
plan_model = ReadingHabitPlan
form = EditReadingHabitForm(data=request.P0ST)

else:
return fail_view(request=request)

if not form.is_valid():
return fail_view(request=request)

plan = plan_model.objects.filter(expiration_date__isnull=True,
habit_id=habit.id).order_by('-id_order').first()
if plan is None:
return fail_view(request)
plan.expiration_date = datetime.datetime.now().astimezone(pytz.UTC)
new_id_order = plan.id_order + 1

if habit.category_id == HabitCategoryEnum.Exercise.value:...
elif habit.category_id == HabitCategoryEnum.Reading.value:...
elif habit.category_id == HabitCategoryEnum.Learning.value:...
else:

return fail_view(request)
new_form.save ()|
return redirect('/habits/"')

Figure 6.8: API endpoint for editing the Habit plan

B 6.1.3 ToDos

Todos is the second of the two key components of the application alongside
Habits - together these two modules are crucial for a person to plan out their
tasks and other activities in their life and have them in one place.

B ToDo creation

Once again the first task was to be able to create the ToDo. It required the
creation of a Django Form - A Django ModelForm was used in this case, as
it was the perfect tool for creating a ToDo as it is a one time activity, which,
once completed, ceases to exist and since the fields are in a way defined by
user (ToDo is defined by its description, due date and subtasks, which are
text fields from the database point of view) there was no need to customize
fields for specific types. ToDos differ only by their importance level. The
endpoint for the creation of a ToDo accepts only one parameter - the HT'TP
request itself which contains the data necessary for the Django Form. After
checking that the request is sent with the right method and after checking
of the validity of the data submitted a new ToDo object is created and the
record is saved to the database. Upon successful creation a response with the

41 ctuthesis t1606152353

6.1. Backend development & API

def delete_habit(request, habit_id: int):

[] if request.method == "DELETE":
with transaction.atomic():
try:

habit: Habit = Habit.objects.filter(id=habit_id).first()
if habit is None:
raise Exception
if habit.category_id == HabitCategoryEnum.Exercise.value:
plans = ExerciseHabitPlan.objects.filter(habit_id=habit.id)
sessions = ExerciseHabitSession.objects.filter(habit_id=habit.id)
elif habit.category_id == HabitCategoryEnum.Reading.value:
plans = ReadingHabitPlan.objects.filter(habit_id=habit.id)
sessions = ReadingHabitSession.objects.filter(habit_id=habit.id)
elif habit.category_id == HabitCategoryEnum.Learning.value:
plans = LearningHabitPlan.objects.filter(habit_id=habit.id)
sessions = LearningHabitSession.objects.filter(habit_id=habit.id)
else:
raise Exception
plans.delete()
sessions.delete()
habit.delete()
return HttpResponse(status=200)
except Exception as e:
transaction.set_rollback(True)
return HttpResponse(status=404)

return fail_view(request, 405)

Figure 6.9: Deletion of Habit and all related records

code 200 is sent back to the frontend. In case of an unsuccessful operation
there is a try - catch structure in place to assure a smooth continuation of
the application and an appropriate status code is returned. Of course firstly
there was a need for the user interface to be displayed to the user and so,
same as in the case of Habits, there is a central endpoint used to gather all of
the information for the user requesting the loading of the page and rendering
the page itself together with the data as context. Since there was no need to
handle multiple request methods by one endpoint a method-based View was
used instead of class-based View. Once again there is a Helper structure in
place, so that the code is modulated and more clear. In the ToDoHelper
there are two methods needed for this View - one queries the database for
the users ToDo records and the second one sets up the form for creation of a
ToDo object.

B 6.1.4 Users Profile

The last essential feature of the application is the Users Profile - It consists
of a single form where upon displaying the page the user can see the current
information kept about them such as their first name, last name, email etc.
and may change this information if they wish. For this purpose there was
also added a UserInformation table to the database, which is bound via
Foreign Key to the UserProfile table and contains additional information
about the user ,which might be useful for whatever purpose in the application,

42 ctuthesis t1606152353

6.2. User interface & Frontend

such as height, weight and age.

. 6.2 User interface & Frontend

As was already mentioned the Bootstrap 5 CSS framework was used for
styling of the user interface and the javascript XHR, framework was used for
client side handling of events as well as Django Templates.

Bl 6.2.1 Landing page

Creating the landing page was the first thing which was done since it is the
entrance to the application and the application cannot function without it.
It was elected to make it simple - just two pages where the initial page the
user arrives at is the login page, to make it easier for users which are already
registered, and on that page is a link leading to the second, very similar, page
with the registration form.

Figure 6.10: Login landing page Ul

43 ctuthesis t1606152353

6.2. User interface & Frontend

Figure 6.11: Registration page Ul

Bl 6.2.2 Habits page

The user interface of the Habits page had to accommodate the following
functionalities for the user:

® Add a new habit

8 Edit an existing habit
Delete a habit

® Add a habit session

Furthermore it was intended to make it easy for the user to orient themselves
in the page, be able to see a quick summary of their upcoming Habits (Habits
with upcoming planned sessions) and overall make the page friendly to use.

B Habit slider

An important element of the Habits page is the stripe on top of the page
layout, where a cards with information about individual Habits are rendered,
ordered by how soon is the next session. The Django template language(34)
was used together with a very useful Bootstrap utility - Cards and Card
deck(35). Upon clicking on one of these cards the Habit will render on the
bottom two panels and the user can review their last session and alter their
current plan.

4

=

ctuthesis t1606152353

6.2. User interface & Frontend

Habit name

Kilometers : 27

Dashboard

Calories: 600
Habits Time: 4 hours
ToDo’s
My profile

Habit name Last Edit habit
Habit category session

Calories:
Kilometers : 40
Calori
Session length: 45 minutes Days:
Date: 2711.2029
Kilometers:

Next session: 31.11.2029

Time:

Figure 6.12: Habits page design draft

Bl 6.2.3 ToDo page

As ToDos are not editable and just a one time events, there is no need to
add sessions or editing them. This is why almost all of the space on the page
was used to display individual ToDos. There are three sliders, made with
the use of Bootstraps Card and Card Deck elements(35)) in place which differ
by the level of importance of the ToDos which are contained within them.
This decision was made since ToDos require little attention when it comes to
inspecting them more closely and almost no administrative (such as adding
sessions or editing plans) however there is a need for them to be as easily
accessible as possible and all of the important information about them needs
to be right on hand, when one browses them. Except for these three sliders
there is one additional card which, upon clicking on it, displays a Bootstrap
Modal(36) with the ToDo creation form.

B Frontend Javascript XHR Framework usage

In order to keep the user expirience smooth, there was a need for an inplace
handling of the response from backend Views - the way Django Views work,
they display the data sent from the View onto the page which sent the original
request, unfortunately a way wasn’t found to just return a response indicating
the success of the operation, while keeping the page intact as it was with
just Django alone. This is where the Javascript XHR Framework was made
use of - Upon submitting the creation form the HT'TP request is intercepted
by the Javascript code, the data are converted to FormData type and a new

45 ctuthesis t1606152353

6.2. User interface & Frontend

HTTP request is sent via the Javascript XHR. This is beneficial because the
response from the server is returned to the Javascript code as well, where it is
handled and after only a popup alert is displayed to the user - either telling
them their operation was successful or that the operation was unsuccessful
and asking them to try again.

B 6.2.4 Database model

Since Django framework was used, there is already a default basic database
schema which Django needs for its functionality. It consists of the following
tables - AuthGroup, AuthUser, AuthPermission, AuthGroupPer-
missions, AuthUserGroups, AuthUserUserPermissions, DjangoAd-
minLog, DjangoContentType, DjangoMigrations and DjangoSession.
These are tables for the Django authentication functionality (37) and other
tables which Django uses. As the only table which needed direct interaction
is the AuthUser table, the other tables were left out of the schema.. Also
due to the fact, that the database schema consists of a lot of tables and that
they are interconnected based on the logic behind the applications modules,
the schema is presented in parts which are connected together inside these
groups but the groups are not connected with one another.

B Authentication logic

The authentication logic in this application consists of two tables - the Django
table from Django.contrib.auth package and a custom table UsersProfiles. It
was decided to use the Django authentication logic as there is no need for
creating custom authentication application however there is the need for the
ability to store some additional information about user and represent the
User entity in another way and so an additional table was created which is in
a 1:1 relationship with the Django AuthUser table and contains additional
information about the user such as an email address and others.

B Habits

Regarding habits there are three types of tables - Habit, HabitSession and
HabitPlan where for each habit type there are tables <HabitType>Session
and <HabitType>Plan since every habit type requires a different type of
information which should be kept - for example an exercise habit requires
keeping information about kilometers ran, calories burned etc. whereas a
reading habit requires information about the title of the book which the
user is currently reading. There are three types of habit tables because it is
neccessary to be able to differenciate between a habit session - A one time
occasion where the user has performed the activity they want to make a habit
of and also for the planned sessions which have yet to take place, and a habit
plan, which is the plan or goal for the specific activity which the user has set
for themselves. Finally the Habits table is for keeping all of the habits in one
table and also for storing the information which has to be kept for all types of

46 ctuthesis t1606152353

6.2. User interface & Frontend

ER auth_user

§E password

F last_login
XH is_superuser
IF username
I3 first_name
§E last_name
E email
1F is_staff
1H is_active
1F date_joined
Rid

auth_user_id:id

R users_profiles

1¥ username

1% auth_user_id
AH email

A= last_login

1= is_premium
$gid

Figure 6.13: Authentication logic database schema

habits. Each habit is then bound (via foreign key to the UsersProfiles table)
to one user and in the other direction each plan and each session is bound to
a single habit entity. The relationships are following:

® 1:N between User entity and Habit entity respectively (each user can
have multiple habits.)

® 1:N between Habit entity and HabitPlan entity (user can alter his plan for
a habit, but due to the fact that there is the need to keep the information
about past plans so statistics of the users progress can be made, the
records are not updated but but rather a new record is created for each
plan change and keep information about what plan is the relevant one.)

47 ctuthesis t1606152353

6.2. User interface & Frontend

® 1:N between Habit entity and HabitSession entity (since the habit is
supposed to be an activity performed regularly over time there is the
need to keep track of users actual performance in the given habit to
compare it to their plan or goal.)

B habits

H title

$% user_profile_id auth_user_id:id
35 frequency

® 1H date_created
3H next_repetition
9 category_id & auth_user
I3 week_days_to_repeat H password
Rid H last_login

- M is_superuser

33 username
habit_id:id o 33 first_name

§Hlast_name

user_profile_id:id q
LA K email

M is_staff

MHis_active

E exercise_habit_plan
= calories_burned
H kilometers_ran
H session_length_minutes B8 users_profiles

o 53 habit_id 33 username "

5 date_joined
Rid

H type 1% auth_user_id
13 week_days_to_repeat = A email
¥ id_order i last_login
H expiration_date . I8 is_premium
Rid Rid
. . .

Figure 6.14: Habit database tables schema

B Todos

Fortunately, the way the Todos module is constructed allowed for all data to
be contained within one database table - Todos (the data such as description
and subtasks are user-defined and so may be stored in text fields). The
other information such as Todo category does not require for extra tables as
well. Another fortunate thing is, that Todos are strictly one-time activities
which, once accomplished, can be deleted. In reality, rather than deleting the
Todo, it was elected to keep the Todos in the database but marked as done
- this is so it is possible to calculate statistics regarding Todos. The Todo
table contains above mentioned fields category, description and three fields
for subtasks, due date - the date after which the task must be done, date
of creation of the Todo, category of the Todo and finally a Foreign Key to
the UserProfile table so it can be traced back to the user who created the
Todo. There is only one relationship between entities and that is the 1:IN
relationship between the UserProfile entity and Todos.

48 ctuthesis t1606152353

6.3. Experimental scheduler feature

B UserProfile

As it was already mentioned before, there is a UserProfile table containing
additional information about the user but regarding the User Profile module
in the application there is another table - UserInfo, which is not related to
authentication logic, but contains other information about the user such as
their weight, height, age and gender which are used to compute statistics and
also change the view at the user regarding their progress (for example if a
60 year old and 25 year old users have the same performance, it might be
spectacular performance for the older user but only slightly above average
for the person who is at their physical peak and also it is possible to oversee
weight changes of the users in time). There is once again only one relationship
and that is the 1:1 relationship between the UserProfile table and
the UserInfo table.

B 63 Experimental scheduler feature

Very quickly after beginning the implementation a need for some sort of
mechanism which would execute some tasks periodically presented itself. In
order to be able to automatically create new future habit sessions, based on
the users selection of days on which they wish to repeat it, mark sessions
as not completed, mark ToDos as overdue and plenty other things there
needs to be some sort of scheduler to perform these tasks periodically. After
searching for some framework which would implement this sort of mechanism
the Celery framework was found which is not only built precisely for this
sort of functionality but has integration into the Django framework itself as
well.

B 6.3.1 About Celery

Celery is a distributed task queue framework allowing the execution of
asynchronous tasks. It allows the creation of tasks and scheduling them for
regular execution (38)).

B 6.3.2 Installation

For the functionality that was needed, there were three installations required -
the Celery framework itself, Django-Celery-beat which is a scheduling package
for the Celery framework and Rabbitmq - a message broker which Celery
uses to assign tasks to its individual workers.

B 6.3.3 Implementation

In order to run Celery framework it is necessary to set its configuration into
Djangos settings.py file and create new python files in the core folder of the
project - celery.py and tasks.py - in tasks.py are the definitions of tasks,

49 ctuthesis t1606152353

6.3. Experimental scheduler feature

which should be executed in accordance with the schedule. Task is a python
function with the decorator @app.task.

B 6.3.4 Running

After starting the application itself it is necessary to firstly run the follow-
ing command: celery -A bpProject beat -1 info --scheduler django
_celery_beat.schedulers:DatabaseScheduler which starts the beat sched-
uler for the application bpProject and after that celery -A bpProject
worker -1 INFO for starting a Celery worker to perform the scheduled tasks.

B 6.3.5 Tasks implementation

There are three main problems which needed to be addressed with this
scheduler - Checking for not completed Habit sessions (When the user missed
a planned habit session) and sending reminders to the users every day there
are some upcoming Todos or Habit sessions for the user on that day. In an
ideal scenario, the checking for overdue Habit sessions would be performed
every minute, however due to the overwhelming database server load and
the CPU load this would generate when the number of users rises, it has
been scaled down and is performed every hour, which creates sort of balance
between the computational load and the need for continuous checking. As
for the reminders for upcoming events, since these reminders need to be sent
only once a day it has been set to be sent once every day. When checking for
the overdue Habit sessions, there firstly had to be a query executed, which
yields all of the Habit sessions which are overdue at the moment of checking.
After that these sessions are marked as not completed and saved back and
a new session is created for the date of the next planned repetition of this
habit. Regarding the reminders for upcoming events - this is done for each
user separately, firstly their upcoming Habit sessions and Todos are queried
and then an email is drafted with a list of the upcoming events and finally
sent via the Django send__mail() function to the email the users provided
in registration.

50 ctuthesis t1606152353

6.4. Next steps: Modules for future development

lif not todos and not users_sessions:
continue

email_subject = 'Bubbles: You have some activities due today!'
email_body = ''
if sessions:
email_body += "<h2>You have these habit sessions due today:</h2>\n"
for session in users_sessions:
email_body += f'{session.habit.title} on {session.date}"
email_body += "\n"
if todos:
email_body += '<h2>You have the following Todos due today:</h2>\n'
for todo in users_upcoming_todos:
email_body += f"{todo.title} due {todo.due_date}</1i>"
email_body += "\n"
email_body += "<p>Dont forget to record your activities in your Bubbles account and good luck!</p>"
users_email = user.email
try:
send_mail(
email_subject,
email_body,
EMAIL_HOST_USER,
[users_emaill,
fail_silently=False,
)
except Exception as e:
logger.error(f"""The sending of an email to user {user.username} with id {user.id} failed
with the following exception: {e}""")

Figure 6.15: The code responsible for sending emails with reminders to the users

B 6.4 Next steps: Modules for future development

After the key modules for the application functionality - Login & registration,
Todos, Habits and Users profile, there is a lot of space for improvement and
the remaining modules - Statistics section and Dashboard, will be imple-
mented and tested in the next phase. However as these modules were all but
implemented and tested, they will be presented.

B 6.4.1 Dashboard

The dashboard module is a useful feature of every application, as it is an
overview of all users activities in one place, so the user does not need to go
searching for their upcoming Todos and Habits in the individual modules,
but can just quickly look in the Dashboard module and see their upcoming
activities.

B User interface

The user interface will use similar elements as the Habits and Todos pages -
A horizontal slider of small cards, representing the individual Habits sorted
by the date of upcoming sessions, so for example if the user is supposed to
run tomorrow and read in two days, the former will be first in the list. Upon
clicking on one of the cards a small summary of the habit will be displayed
on the bottom of the page, where the plan for that habit will be available,
together with a small graph representing the users activity in that particular
habit for some period of time (for example for the last two weeks). The page

51 ctuthesis t1606152353

6.4. Next steps: Modules for future development

will also contain three larger cards, each representing the soonest Todo of
each importance category and a few smaller cards, containing just the titles
of other Todos which are due today.

I Frontend

A frontend event handling will be necessary for two features - to display
the specifics of a Habit after clicking on the Habit card in the Habit slider,
specifically a request handler to a GET endpoint to collect the specific data
for the Habit and also a function to dynamically change the page and display
the data from the endpoint response. Another feature is the displaying of a
graph under the Habit card, where the data will be recieved from an endpoint
of the Statistics module and then will be drawn into the page via some
Javascript library for drawing graphs.

Il Backend & API

The backend part of the module will surely contain a central endpoint which
will return the data necessary to display all the features mentioned in the User
interface section. An additional helper for this module will be helpful, as there
will be a need for lot of querying with various parameters and it is a good
practice to modularise this logic into smaller functions and not have the code
directly in the View, where only the function calls and absolutely neccesary
code should be. It will also be useful to reuse functions from the Habit helper
as for example a function for collecting the Habit records for a Habit slider is
already implemented. Another endpoint which will be necessary is a GET
endpoint for an individual Habit, which will return the Habit plan and other
additional data, structured to be displayed in the larger Habit card.

B 6.4.2 Statistics section

The Statistics module, while not essential, is an important part of the appli-
cation functionality as it adds something more to the application than just
the functionality to track ones progress - an insight into what progress are
the users really making, where they might be slipping and how far have they
gotten already.

B User interface

The user interface of the Statistics module itself will be very simple - there
will be one graph, or rather a window, on the page and a menu, where the
user selects what statistics do they want to see (for example whether they
want to see their Todo completion rate, Habit completion rate, their progress
in a specific Habit or something entirely different) and specify parameters,
such as from what period of time do they want the statistic to be calculated
etc. However part of the Ul is not just the module itself, but also a variety of

52 ctuthesis t1606152353

6.4. Next steps: Modules for future development

small windows/graphs which can be included elsewhere for example on the
Dashboard or under a Habit card in the Habits module.

B Frontend

The frontend should function in the following way - there will be of course
the Statistics page containing the graph and menu mentioned earlier, but also
there will be three templates, which will differ in size and the ability to alter
the graph (for example the smallest one should be included in a Habit card
and so there is no space for a menu, however the largest one which might be
included in the Dashboard page might contain a small menu) which will then
be included with different parameters on different places, where they will be
needed.

B 6.4.3 Backend & API

The backend API will consist of the main endpoint, which will once again
provide all the data necessary for the first loading of the statistics module,
however there will be also many other, smaller, endpoints which will provide
different data needed for the various statistics calculation. They will be
parameterized, so there isn’t the need to have an endpoint for each statistic,
however there will also be a limit to this, so the code stays clear. There
will also be another Helper structure for the Statistics module, which will
contain many general functions to query data from the database for a specific
statistic for one user and then functions which will compute the statistics
from this data and structure them in a convenient way for the frontend graph
framework. There needs to be a very strong accent on re-usability of the
code and general functions, which can be plugged together and then used in
a variety of different places.

53 ctuthesis t1606152353

Chapter 7
Testing

In this chapter is described the process of testing of the application. There
were two types of testing that took place - first type are automatic tests,
which are ran each time the application is restarted or after new features
are deployed, which make sure the functionality of the application is not
affected in a negative way. The second type are testing scenarios for usability
testing which were defined in advance and after that multiple users, who were
not using the application before, were asked to perform these tasks in the
application and their feedback has been collected and based on that feedback
the application was either altered if some problems were recognised such
as some bugs were found or some functionality was not clear, or not if no
problem has been encountered in that testing scenario.

B 7.1 Automated testing

A series of automated tests has been created, which should be ran every
time before the application is restarted, to assure that new changes did not
influence the basic functionality of the application in a negative way. All of
the tests were constructed in a similar manner - each test is designed to check
one API endpoint and has two or more methods.

® Setup - The setup method creates data for all subsequent tests and if
possible also creates expected outputs for the given type of input, to
compare with the actual response from the endpoint.

® Test valid - This test sends one or more valid requests (right request
type, authenticated user and valid data) to the endpoint and then collects
the response from the server and checks it for validity either by comparing
the response with the data created in the setup method or otherwise e.g.
checks the testing database for records which are supposed to exist after
this request.

® Test invalid - In this test case the method sends one or more invalid
requests to the endpoint and then checks that the response is controlled,
meaning that if an invalid output is sent, the endpoint returns appropriate

54 ctuthesis t1606152353

7.1. Automated testing

error code along with predefined error data and that the functionality of
the endpoint remains unaffected.

8 Test invalid request type - This method sends the right data to the
endpoint but via either not allowed HT'TP method or just different than
it is supposed to be and again checks that the error response is controled
and that the functionality of the application remains unaffected.

B 7.1.1 Example - Testing Delete Habit Endpoint

The API endpoint this test is supposed to check is the Delete Habit endpoint
- it accepts only requests sent via the HTTP DELETE endpoint and only
one parameter - <habit__id:int> ID of the habit object the user wants to
delete.

B Setup

In the setup method there is firstly the common part to all tests - the setup
of testing user, who will be making this request. This user must be different
for all tests so a situation is prevented, when a user would stay logged in from
previous tests and by that the current user would evade the need to be logged
in (It is very improbable and it shouldn‘t happen as the testing functionality is
provided by Django itself and after each test the testing database is destroyed
and a new one is created, however just to be sure, there is a new user for
each testing scenario). After creating the user the Habit object, which is
supposed to be deleted, must be created along with HabitPlan and one or
more HabitSession objects, so the full range of the endpoint functionality
can be tested. Lastly an ID of a not existing habit must be created, in order
to test the functionality of the endpoint in case that invalid ID is sent in
the parameter - As the IDs of the database rows are created via SERIAL
postgreSQL functionality (meaning that a counter is kept and is incremented
by one for every new record that is created and then its value is set as id for
that record. Also to maintain database integrity, for example if an ID of a
Habit object would be hard-coded at some place and so even after the object
was deleted the ID would be accessible, each counter value is only used once,
so for example if a 1000 Habits are created, new Habit will have ID 1001 but
if 1000 Habits are created and 999 are subsequently deleted, a new Habit will
also have ID 1001 so if for example the ID 2 was hard-coded in the source
code no Habit object will ever by accessible by that ID ever again as it might
create a confusion since it used to identify a different object, which now does
not exist) the invalid Habit ID is created by increasing the highest current ID
of a Habit object in the database by a very high constant, in this case 50000.
This is because the invalid ID still must be valid in the sense that it must be
a positive integer, as for example a -1 would be invalid ID however it would
raise different problems, than this test is supposed to handle.

55 ctuthesis t1606152353

7.1. Automated testing

of def setUp(self):| 5 A10
self.test_user = User.objects.create(username='test_user', password='testing_password')
self.test_user.save()
self.test_user_profile = UserProfile.objects.create(username="test_user',
auth_user=self.test_user,
email='test_delete_email@bubbles.xyz',
last_login=datetime.datetime.now().astimezone(pytz.UTC),
is_premium=False)
self.test_user_profile.save()
self.habit = Habit.objects.create(title='test_habit_delete',
user_profile=self.test_user_profile,
frequency=1,
date_created=datetime.datetime.now().astimezone(pytz.UTC).astimezone(pytz.UTC),
next_repetition=datetime.datetime.now().astimezone(pytz.UTC) + datetime.timedelta(days=1),
category_id=1,
week_days_to_repeat=[datetime.datetime.now().weekday() + 1])
self.habit.save()
self.habit_plan = ExerciseHabitPlan.objects.create(calories_burned=100,
session_length_minutes=200,
kilometers_ran=300,
habit_id=self.habit.id,
type=1,
week_days_to_repeat=self.habit.week_days_to_repeat,
id_order=1,
expiration_date=None)
self.habit_plan.save()
self.session = ExerciseHabitSession.objects.create(calories_burned=100,
session_length_minutes=200,
kilometers_ran=300,
habit_id=self.habit.id,
type=1,
id_order=1,
date=self.habit.next_repetition,
is_planned=True,
completed=None)

Figure 7.1: Setup method of the test to prepare necessary data for the testing

B Test valid

This method is supposed to test the deletion o a valid Habit object and all
related objects. The test data which are supposed to be deleted are already
created by the Setup method which is ran fist before every testing. Firstly
the testing user must be logged in to the application. This is done artificially
via the self.client.login() method of the TestCase (The Django test classes
should inherit from one of the existing Django classes, in this case all of the
tests inherit from a TestCase class). After the user is logged in a request to
the endpoint must be sent, this is done via the self.client.delete() method
of the parent class (There are methods for each request method, for example
for the HTTP POST method there is a method called self.client.post()
and so on). It accepts the following parameters - the URL of the endpoint
and context data - in this case no context data are required to be sent, only
the habit_id URL parameter. After the request is sent, the response is
checked for the correct HT'TP status code, indicating either success or error
of the operation. The check is done via the self.assertEqual() method of
the parent class, which does assertion of equality between its two inputs, in
this case that is the response code and a value 200 to check that all was
successful. Furthermore, if the above assertion is passed, there is a check that
no habit with the id of the habit what was supposed to be deleted exists.
There is no need to check for the HabitPlan and HabitSession objects due to
the PROTECT SQL constraint on the foreign key columns in both tables,
which assure that no object may exist with foreign key value pointing to a not
existing object (All deletion attempts on the referenced row will fail, unless it
is no longer referenced by any row).

56 ctuthesis t1606152353

7.2. Usability testing

B Test invalid

As was already mentioned this method is supposed to send an invalid request
to the endpoint and make sure that the error response is controlled. Firstly
there, once again, must be the authentication of the testing user, to make
sure that the error is with the not existing object to be deleted and not with
the user not being authenticated. After that a request is sent to the endpoint
the same way as above, only the id sent is the invalid Habit ID prepared in
the Setup method, instead of a valid ID. Finally the response code is checked
again via the self.assertEqual() method of the parent class that it is equal
to the appropriate error code, in this case 404 Not Found indicating the
resource (the Habit to be deleted) was not found.

B Test invalid request type

Lastly, this method tests the situation where a request is sent to the endpoint
via an unallowed method (in this case the endpoint only accepts DELETE
requests and the test request is sent via POST method). Once again a
parameter must be sent in the request since if no parameter was sent, there
would be other issues this test is not designed to handle, however the check (in
the endpoint) for validity of the id is after the check for method type. Upon
recieving the response, there is assertion for equality between the response
code and the expected 405 Method not allowed response code.

|) Usability testing

Even though automated testing is important and may spare a lot of time
of debugging and help discover bugs before they present themselves there is
also a need for testing of the entire application by unbiased users. Another
positive aspect of the user testing is that, contrary to the automated tests, in
user testing the application user interface and Frontend functionalities are
tested as well and also the application as a whole is tested in a way that it
will be used on a daily bases, unlike the automated tests which are created by
the developer who created the application which is being tested as well and
are sort of artificial. All of the tests bellow were done by a different user, each
of which was introduced in what the application is for and what it provides,
but were not given any manual to the individual application features in order
to be able to discover functionalities which may not be clear to a possible
future new user.

B 7.2.1 Testing scenario 1

In the first scenario the users were registered and logged in and were told to
follow the following steps:

1. Create a reading Habit with any parameters.

2. Add a session record for this Habit.

57 ctuthesis t1606152353

7.2. Usability testing

3. View details of your Habit.
4. Edit your Habit plan.

5. Delete this Habit.

B Test result - first user

The user found the user interface intuitive, with some exceptions - they were
confused about the functionality regarding displaying of the last performed
session (at the time of the test only planned and completed sessions were
displayed on the habits page and so if the user added a session on a day when
there was no planned session, it got saved for statistics computation, but it
was not displayed). Also a minor bug was discovered, when the user has no
sessions yet, the data for the session are not displayed, but there are units
(so for example the field where the number of calories burned is supposed to
be displayed is empty, but there is the unit ‘kcal).

B Test result - second user

The user had no significant problems with the creation of the habit, they
commented that the tile for creation of the habit is a significant element in
the page. They also had no problem finding out how to add a session. They
were a little confused on how to display the specific habit they just created
(by clicking on one of the small tiles) however they quickly found out how
to do it. Again they were confused about why they cannot see the details of
their last session as, again, they did not plan the session for the same day
and it was again saved, but not displayed. Overall they found it intuitive
with some small remarks mentioned in the text.

B Test result - third user

The third user had some struggles with the application functionality, which
stemmed mostly from the fact that they did not initially understand, what is
the application supposed to do and did not have a strong technical background.
However after some additional explanation, they have managed to perform all
of the steps in this test. Again there was a little confusion about the session
not appearing on the page and so this issue will be addressed.

. Test consequences

As a consequence of these reviews and some following internal analysis
the functionality of displaying last session was changed and now the last
session is displayed, regardless whether it was planned or not. Furthermore
the bug discovered by the first user was fixed. Subsequently a discussion
was had, about the way the application approaches the handling of Habit
sessions, shortly - there may not be a need to distinguish between planned
and unplanned sessions at all, since the information about the regularity with

58 ctuthesis t1606152353

7.2. Usability testing

which the user wants to have the sessions may be used purely for reminding
them on these days, but there is no need to actually distinguish between
planned and unplanned sessions. This idea is further discussed in the next
chapter.

B 7.2.2 Testing scenario 2

The second scenario focused on the switching between tabs and the user
profile module. The user was given this list of tasks they were supposed to
perform.

1. Switch to the user profile tab.

2. Add your information which you did not fill out in registration.
3. Save it.

4. Change any information in your user profile.

5. Save it again.

B Test result - first user

As this test was a little bit simpler, the testing process went very smoothly,
the user was able to perform every action on the list easily. There was one
comment regarding the user interface of the User profile module, which was
understandable as the Ul development was not fully finished at the time,
however it was noted. Another thing found was a minor bug where the
internal logical values were displayed in one of the single choice categorical
fields in the user profile form.

B Test result - second user

The second user had no major issues with accomplishing all of the instructions
mentioned above, they were a little confused due the bug discovered by the
first user, however after a quick instruction as to what that means, there was
no significant issue.

B Test result - third user

The third user, again, had no significant issue, but too pointed out the visual
appearance of the user interface in the User Profile module. They also pointed
out that there is some space for extension of the User Profile module which
were later discussed.

59 ctuthesis t1606152353

7.2. Usability testing

B Test consequence

As a consequence the above mentioned bug was fixed and the user interface
of the module was finished. Also the possible future extensions of the User
Profile were discussed and some preliminary image of the extension of the
User Profile module was established, however there are still a lot of things
left to be thought out properly.

60 ctuthesis t1606152353

Chapter 8

Empowering the application with Machine
Learning

Machine learning algorithms are widely used in many applications, to either
make the user experience better and offer them insights into their data,
in the case of an application similar to this it might mean analyzing their
performance and offering recommendations based on this analysis, or to for
example make more money from ad revenue by targeting advertising based
on the user behaviour. For this analysis the problem of creating personalised
workout schedules for users based on their past exercise data has been chosen.
The reasons are the following:

1. Exercise habits are amongst the most popular habits for users.

2. There is a lot of data suitable for analysis and training a machine learning
model in exercise habits.

B 8.1 Problem definition
The task at hand is to create an optimal running plan for the users based on
their previous performance data, which means:

® All past running habit sessions.

8 The running habit plan and its transformation in time.

Specifically, this either contains already or will contain the following data:
Past running habit sessions:

® Distance ran at each session

Duration of each session

Minimal heart rate at each session

Maximal heart rate at each session

Average heart rate at each session

Time of the day of each session

61 ctuthesis t1606152353

8.2. Assumptions

® Date of each session
® Calories burned at each session
® Average pace or speed of each session
B Oxygen saturation at each session
B Respiratory rate at each session
Demographic data:
® Age of the user
® Weight and height of the user (BMI)
B Fitness level of the user
B Sex assigned at birth
Other data:
® User feedback to their plan
® User perceived intensity of individual sessions
=
From this information, the following features might be engineered:

® Adherence to the plan at the time of the session (for example if the user
ran more or less kilometers than they set to run, if they exercised at the
weekly frequency they set out to, etc.)

® Exercise session intensity for the user based on the physiological data
they provided after the session.

® Running average of session completion per week (meaning how many of
the planned sessions has the user missed per week)

The task is, based on the above features and data, to provide a personalised
running plan in the form of the applications Habit plan - recommended
number of kilometers to run, duration of the exercise, etc.

B s.2 Assumptions

In order to be able to solve such task, there we some assumptions required to
be made, mainly in the form of the application having features it does not yet
have. The application will firstly have to have integration with smart watch,
otherwise it is hard to collect information like heart rate, oxygen saturation
etc. Also the application will have to collect more data, than it already does,
namely - user feedback to their plan and the perceived intensity of their

62 ctuthesis t1606152353

8.3. Possible problem formalizations

sessions, fitness level and also it would be beneficial not to delete the Habit
history if the user is no longer interested in a Habit, since the data will be
valuable for future algorithm training. All of this will also require collecting
users consent to gather their data and analyse them and of course very strict
anonymization policy, to make sure that the data cannot be tied to a user
and used with malicious intent or stolen. Specifically not deleting users habit
history will require additional informed consent, for it to be ethical (Upon
wanting to delete their habit, the user will be informed that their data would
be beneficial for further application development and if they consent, the
data will be anonymized, but kept for further processing, unless they wish
otherwise).

B 8.3 Possible problem formalizations

There are many ways this problem could be formalized as a machine learning
problem, however two of them will be discussed along with their advantages
and disadvantages.

Bl 8.3.1 Supervised learning approach

The problem may be formulated as a supervised learning problem, and solved
by training a neural network, via the Sliding Window approach for training a
neural network model(39).

B Sliding Window

The sliding window method is most commonly used in time series forecasting
problems. It is a way how to use supervised machine learning models for
prediction of a next value from data, which are generated over time. There
are multiple types of time series forecasting problems(40]).

® Univariate time series forecasting - Predicting one variable at step
t+1 from its values at time <= t.

® Multivariate time series forecasting - Predicting two or more vari-
ables at the same time.

8 Multi-step forecasting - Predicting more than one future step of the
time series.

The process is the following - One determines the window size (meaning how
many past examples they want for the future variable to be predicted for),
after that the input/output pairs are created - Assume there is a multivariate
variable for which the future value is to be predicted in the form of a vector
of dimension N and a window of size M is chosen, then the input output
pairs are a matrix of vectors which is the size of NxM where the first column
of the matrix is the value of the variable at time t-M and the last column
is the value of the variable at time t. The output, or a target variable for

63 ctuthesis t1606152353

8.3. Possible problem formalizations

this window, is the value of the predicted variable at time t+1. This way a
new dataset is created which consists of such matrices where the first one
consists of the variable values from time 0 to time M, for the second matrix
its first column is the value of the variable at time 1 and the last column is
the value at time M+1, so if the assumption is that there is overall K samples,
or measurements of the variable value, then the last data point of the new
dataset would consist of vectors at time K-M up to time K. This approach
useful, because the individual running Habit sessions may be treated as a
time series, where the session is a sample at time t. There however needs to
be an alteration to this approach - as the desired output is an, in some sense,
optimal plan, the next value of this series cannot be used as the target variable
for the model learning so there is a need to create a dataset, specifically to
label the existing data with an "optimal plan".

B Learning setup

As was discussed above, there is a need for labeling of, potentially a very
large dataset. Some of the samples of course will have to be labeled manually,
however there are ways how to make the work easier. Assume there is N
users, each of which has K; exercise sessions for all i where holds 0 <=1 <=
N. This means that in order to approach this problem as a conventional
supervised learning problem there are N Z'f\;l K; samples which require
labeling. Assuming that in order to have enough data, there would have to be
thousands of users if not more, each of which should have at least a few dozens
of sessions recorded, that means that there would be dozens of thousands if
not more than a hundred thousand samples to label correctly, which is a lot
of work even for a large team of people and is outright unachievable for a few
people or a single person. There is however a lot of room to formulate this
problem as a semi-supervised learning task. In order to simplify the problem,
it will be first attempted to approach this problem as a classification problem
- classify the session sequences by one of the following labels

B Increase exercise intensity considerably

B Increase exercise intensity by a little

® Don’t increase or decrease the exercise intensity
B Decrease exercise intensity by a little

B8 Decrease exercise intensity considerably

Based on the results of this experiment, the original problem formulation will
follow and it will be attempted to treat the problem as a regression problem
and try to predict exact optimal values of the plan. In simplified version of
the problem, the desired outcome is one of the labels, indicating how should
the user alter their current performance trend and also based on the label an
alternative plan will be suggested with percentage wise altered values based
on the result of the classification. This simplification has the advantage of

64 ctuthesis t1606152353

8.3. Possible problem formalizations

being more achievable since the labeling of the data will require less attention
than if it was supposed to be "labeled" by an optimal plan. Which means
that it will be manageable to label a larger part of the dataset which will
hopefully result in more quality performance of the model. The simplified
proposed setup is as follows:

1. Preprocess and clean the data - normalise, remove incomplete or cor-
rupted samples etc. (The data preprocessing will be dicussed in a later
section in more detail.)

2. Transform the cleaned data into stacks of column vectors (matrices as
described in the previous subchapter.)

3. Manually label a part of the data (at least 5-10% or more, based on the
size of the dataset) and split it into training/testing/validation subsets.

4. Create two LSTM neural networks and apply the Student - Teacher
learning scenario.

5. Train the teacher network on the labeled data (this involves the entire
process of training the network, tuning hyperparameters and the model
architecture, measuring its performance etc.)

6. Choose a treshold of confidence for the data labeled by the teacher
network (let the teacher network classify all of the remaining data and
choose a subset of those, about which the network is most confident for

training of the student network with the predicted labels used as soft
labels)

7. Repeat the training process on the student network with the newly
labeled data and again measure its performance.

8. Assess the results of this process, if the performance on the test set is
satisfactory, deploy the model, if not - repeat the process or potentially
if the results of the student network are not ideal, but not that bad, use
it as a teacher network for another student network.

I LSTM Network architecture

Long Short Term Memory Networks (LTSM) are networks which were in-
troduced in the year 1997 by Sepp Hochreiter and Jirgen Schmidhuber. (41))
They were invented as a way for recurrent networks to be able to grasp a
longer term context as at the time this was a task with which all the recurrent
networks struggled with in practice although theoretically they should have
been capable of it. Recurrent networks in general are, aside from other tasks,
great fit for handling tasks related to time series - predicting the next value,
classification of a series, etc. A LTSM network is structured similarly to
a Convolutional Neural Network - the first few layers of the network are
specialised layers, in this case consisting of LT'SM cells which keep an internal
memory vector for the context keeping (in case of convolutional networks the

65 ctuthesis t1606152353

8.3. Possible problem formalizations

special layers are the convolutional layers). The cells are organised into layers
where each cell has the following parts:

The cell state - the memory component of the cell which stores the
memory which is updated over time.

Input gate - Usualy a sigmoid function, with a real-valued output between
0 and 1 which determines how much of the current input data should be
added to the cell state.

Output gate - Again usualy a sigmoid function, only this gate determines
how much from the updated internal state should be used to compute
the hidden state based on the input vector and the previous hidden state

Forget gate - Again a sigmoid function, determining how much of the
previous internal cell state should be kept, based on the input layer and
the previous hidden state.

Hidden state - The output of the cell, computed from the output gate
value and the updated internal cell state.

(42) As the problem at hand can be looked at as a time series related problem
- the individual sessions act, in this case, as the time series and the Habit plan
can be incorporated via feature engineering as an attribute of an individual
time point in the series, LSTM are a great fit for such task.

Performance measuring

Throughout the process of learning there can arise a situation where a different
metric than those mentioned here will have to be applied, however before the
training process is started, these are the metrics chosen for measuring the
performance of the models:

Accuracy - accuracy is a widely known evaluation metric, in the case of
multiclass classification problem it is calculated as

S K | correcty;

Accuracy = N

where the correct;; means how many samples did the network classify
correctly in the i-th class. Accuracy is a good metric when the dataset
is ballanced in the sense of number of samples of each class, however in
the case that it is not, there is another evaluation metric - F1 score.

F1 score - A more robust metric, good for imbalanced datasets, however
may be harder to interpret.

66 ctuthesis t1606152353

8.4. Goal and advantages

B Data cleaning & transformation

Before the data will be transformed the way which is described above into
matrices (or stacks of column vectors) there is the need to look at the data,
visualise it and perform some cleaning and transformations. Firstly it will
be important to remove any incomplete data points in order to have a only
quality data for the learning process or fill the missing values with for example
mean value. Then it is important to normalize or standardize the continuous
values and either use one-hot-encoding or embedding for some categorical
values. Further there may be some features which need to be engineered - for
example session consistency, heart rate reserve, BMI and other features.

B 8.4 Goal and advantages

The goal of this task is, as has been stated above, to create an optimal exercise
plan for each user, based on their past sessions and plans. The predicted plan
would consist of, for example, the distance, pace, duration and frequency
of repetitions based on the history of the users performance. For example
- if the user has failed to adhere to their schedule for three weeks in a row,
ran two times a week instead of the six times a week they set out to, and
managed to ran five kilometers fewer than they planned each time, it might
be beneficial to lower the plan expectations to run three times a week instead
of six and to run two kilometers more than they actually ran, instead of five,
which is more achievable goal, than the one they set previously but will still
push them to do more and be better than they are, which will eventually lead
to an improvement and over time they might even get to their original goal.
The advanatages of such predictions are clear - people oftentimes incorrectly
estimate themselves and their capabilities, either they set a goal which is
too much for them and after then inevitably fail to live up to their high
expectations, they quit trying altogether. Or, on the other hand, people
underestimate themselves and the challenge they set for themselves is too easy
and they do not feel their progress, as they will not be making any, if they
do not push themselves over their comfort limit. Of course such predicted
plan is not flawless and needs to be presented more as a recommendation
rather than a professional advice. This is of course why the users feedback
must be incorporated and the plan must be changeable, if the situation asks
for it. However it is a very available way how to estimate ones strengths and
weaknesses and advice them on their way to a more active life. From the
perspective of the application this is a great way to get users to stick with the
application and use it and avoid users leaving not because there are problems
with the application, but rather because they feel like they did not achieve
what they wished to achieve.

67 ctuthesis t1606152353

Chapter 9

Conclusion

This chapter is a presentation of the intended uses of this application, dis-
cussion of the benefits of this application and also the discussion of possible
extensions in functionality of the application as well as conclusion and final
assessment.

B a1 Looking back: An assessment of the process

The process started with an analysis of the domain itself, from a psychological
perspective, various psychological concepts were discussed and looked into
more closely. As a result of this analysis the first idea of the philosophy the,
at the moment, future application should uphold was created. After this
analysis there was a close look and analysis of other applications from the
domain of personal development and habit creation, to draw inspiration and
to look at the possible mistakes of others to be able to avoid them. After
acquiring a glance on the psychological point of view of this domain and
seeing how others have attempted to tackle the issue of creating a personal
development application which would truly help people reach their goals
and better their lives there was a formalisation of the, at that time, more
abstract concepts of how the application should look like and what should
its main functionalities be. After specifying and formalising the functional
and non-functional requirements, another analysis took place, this time into
possible technologies upon which the application would be built and the
best suited programming languages and frameworks were selected in order
to achieve the best results. When this solid philosophical and technical
foundation was laid, the implementation of the application itself took place,
which is carefully described in the previous chapters. A high priority was
placed on trying to explain the thought processes of the author regarding the
individual implementation choices. Finally there was a discussion of possible
enhancements of the application via Machine Learning and a structure of
the next steps in this direction was set. The process of implementation of
such functionality is one of the next highest priorities in future development
as well as extending the application functionality in other ways, which are
described in this chapter. Looking back there was a lot to learn and there
were some steps which from the current point of view might have been tackled

68 ctuthesis t1606152353

9.2. Usage & benefits

in a different way. This has helped to shape the authors view at the future
steps and the author will reflect this in the continuation of this process and
an emphasis will be put into not doing the same mistakes twice.

B o2 Usage & benefits

As must be clear at this point, the main point of the application is to make
it easier for the users to organise their lives, keep track of their Habits and
Todos and create new ones in an organised manner. Specifically the Users
can create Habits, choose its type and based on that type track their progress
and record their performance. Also they can setup a goal, or more precisely
a benchmark to which they want to perform in the form of Habit plan, which
they can later edit and change the values of either set a harder goal as they
get better or lower it in case its previous value was too high. Furthermore
the users may track their Todos which may be day-to-day tasks such as to
take out the trash or pick up milk from the store and others or it may be
for example an important event such as a birthday of a close person or a
homework deadline. These Todos also have an importance level and are
separated and grouped together based on this importance level. Also thanks
to the automatic scheduler functionality users get reminders for their events
via an email notification on the day these events take place and do not need
to worry about having to plan their individual habit sessions as they are
planned for them based on the schedule provided. On the other hand the
users are also ‘kept responsible’ if they do not attend their sessions thanks to
this scheduling functionality since their sessions are regularly checked and
if they are overdue, they are marked as not completed, so they can count
on having accurate statistics, which may not be pleasant at all times, but it
gives an important realistic feedback this way.

B 9.3 Possible functionality extension & upgrades

In an application such as this, there is always not only a room for improvement,
but also many functionalities which might make it better and extend its
functionality. Very often developers get the idea for such extensions after
they have started developing the application and they can actually see what
they previously only planned. This section is a presentation and a discussion
of such ideas which might make the application easier to use, extend its
functionalities or make it overall better.

B 9.3.1 Messaging inside the application

The first possible improvement that comes to mind are reminders which would
be in the form of a message inside the application which might remind the user
that their events are about to take place, introduce them to future updates
and the new features that would come with it or allow them to message other

69 ctuthesis t1606152353

9.3. Possible functionality extension & upgrades

users. The lastly mentioned possible usage of such functionality might be
extended to a fully functional social network inside of the application and it
is discussed in the upcoming subsection. Regarding the messaging from the
application and its developer team to its users, on one hand it might not serve
the purpose of luring the users to open the application as an email might,
since in order to get the message they would need to open the application
first by themselves, however this way the current information that is sent to
the user via email might be delivered to them via the in-application message
and instead of a long email, they would only receive a notification via email,
that they have some new messages in their application inbox. This way the
users would get reminded of the application via an email, so this purpose
would be kept, but they could read the news in a controlled environment
of the in-application internal messaging system and there would be smaller
chance, that the information will be lost in a tidal wave of emails every person
recieves every day.

B 9.3.2 An internal social network

There are many arguments for such an extension for an application such as
this, for example:

® A social network might increase the attractiveness of the application
towards potential new users and also to current users who are not sure
whether they wish to keep using it.

® [f implemented well with strong social and competitive features it might
improve the user experience and use competitiveness of users to push
them to better results.

® Might also improve the user experience in a way, that the application
would create and post challenges which the users might pledge to and
besides from other factors, it might guide the users if they had no idea
how to begin with their journey.

A social network inside the application is an idea which is used in many
applications. The user profile module might be extended to serve as a face
of the user in the application, or rather in the social network, show their
successes and recent achievements. Of course the inseparable part of any
social network is a social feature, where users might communicate with each
other, create groups, social events (for example in the form of challenges,
where the users might sign up for a challenge and meet with each other in
order to fulfill it) and connect via a friend list functionality. If the users were
friends in this social network, then they might see more detailed information
about each other such as what the other user is currently doing, how are they
doing and their recent achievements.

70 ctuthesis t1606152353

9.3. Possible functionality extension & upgrades

B 9.3.3 Achievements & streaks

In order to motivate people better a new functionality of Achievements and
streaks could be introduced - Achievements are sort of milestones, each person
can reach and get a reward for it. Streaks would express for how long the user
has managed to stick to their plan or schedule. This would also be very well
integratable with the social features as users would have their public profile
where these achievement badges might be displayed and it would also be a
great opportunity to implement gamification features into the application.
For example - each achievement would equal some amount of points added
to the users avatar, for which they might unlock some type of either bonus
content or customize their application avatar.

B 9.3.4 Public API

A very useful feature for users who want either to control what data is the
application collecting about them, or would like to have the data they gener-
ated by for example exercising for some personal project. Many applications
offer this feature, one of them is for example Habitica(13). Essentially there
would have to be created a public API which would be accessible for anyone
with an API key and they could pull their data via HTTP requests and for
example analyse their performance or try to recognise some patterns in their
behaviour or do whatever they wish to do.

Bl 9.3.5 Extend habit type range

The available types of habit are very limited, which is due to the fact that
the application is still more of a prototype rather than fully finished product.
There is a lot of room to extend the types of habits from which the users
can choose for, add types of information the users can store about their
habits (type of information means for example the duration of session etc.).
Especially the exercise habit type could be extended for example with many
forms of exercise and sports and according fields for each type, for example
for a weight lifting habit the users might record the exercises they did and
number of repetitions and the weights they exercised with. Other important
habit type, which is not available at the moment, but has a lot of promise and
wide popularity amongst users of this type of application, is the recording of
meals the user eats each day. A database of meals and individual groceries
could be made, from which the users might select what they ate and what
amount and subsequently the application could calculate their daily calorie
intake and their macro nutrients which would greatly synergize with the
tracking of their exercise activity.

B 9.3.6 Ul facelift

As the application in its current form is just a prototype, the user interface
has a lot of space for improvement. Both the design and the user experience

71 ctuthesis t1606152353

9.3. Possible functionality extension & upgrades

could be improved. In hindsight since, as is stated in the subsection above,
their is a lot of room for additional habit types and overall information to
track, the current form of displaying habits seems not well extendable. The
habit slider which is present at the moment could be kept, but each habit
would have an individual card (page) where all of this information would be
more clearly displayed and even additional information, computed from the
basic data about the habit, could be computed.

B 9.3.7 Integration with smart watch

Integration with smart watch is a very popular feature and today feels
almost necessary for such an application to succeed. Of course there is a
lot of information the user would still have to manually input, however by
connecting ones smart watch with the application, exercise data such as
minimal, maximal, average heart rate, calories burned, duration of exercise,
type of exercise and many more could be automatically parsed into the
application, the session could be created without users effort and they could
just add some information which cannot be parsed from the watch later.

B 9.3.8 Finishing the implementation of other modules

Before all of the above, there is still a step which will be taken - finishing
of the implementation of the Statistics module. As was mentioned in early
chapters, statistics of ones progress are a great motivators and can also
provide insight into ones performance and allow an analysis of reasons why
is one not performing to the standard they set for themselves or maybe
can provide additional motivation after seeing they are doing great and will
be pleased with themselves which will promote further development. The
implementation phase is already described in the implementation chapter,
however it is grasped from a more technical point of view, however the specific
statistics which will be present are the following:

® Session completion rate for each habit and overall habit completion rate
per period of time (week/month)

® Todo completion rate per week/month

® Various averages over periods of time (such as average kilometers ran
per session/week/month)

® Current trend analysis in various habit parameters, which can be looked
at as a series of numbers (Calories burned, kilometers ran, pages read,

)

After the statistics section there will also be a simple Calendar module inside
the application, which will automatically contain users activities (Todos,
Habits and custom events). It will be done via integration with users prefered
calendar server (there will be several choices to choose from) or, in case the
user either does not wish to or does not use any such calendar service at all,

72 ctuthesis t1606152353

9.3. Possible functionality extension & upgrades

there will be a default integration with a Google Calendar where there will be
a new calendar created for each user. The reason for using integration of third
party services is firstly comfort - many users use various calendar services and
this way they can easily incorporate their personal growth into already known
environment. As for the default use of a Google Calendar service - there is
no need for custom calendar in this application as the functionalities required
are very simple - to create an event, add repetitions, reminders and see when
is the activity taking place, and since there are many, already existing and
well implemented, solutions the author sees no need for a custom calendar
service.

73 ctuthesis t1606152353

Appendix A

Project structure

Bellow is the directory diagram of the enclosed project, which is the result of

the implementation process, with description of individual files functionality.
/bpProject - Main folder encapsulating the entire project

base - Base folder, containing Enums and a BaseModel

| enums - Folder containing all Enum classes used across the project

| codebook_category_enum.py - Enum containing categories

of Enums for easier DB value retrieval

| exercise_type_enum.py - Enum containing the possible types

of exercise

| habit_category_enum.py - Enum containing the possible
habit object types

| habit_repetition_enum.py - Enum containing the possible
habit repetition frequency values

| learning_subjects.py - Enum containing the possible learning
subject values

| todo_importance_enum.py - Enum containing the possible
types of todo importance levels

| week_days_enum.py - Enum containing the individual days
in a week

| base_model.py - Base model; a predecessor for all models
(unused)
| bpProject - A main folder of the Django project
__init__.py - An init class of this module
asgi.py - One of Django’s configuration files
celery.py - Configuration file for the Celery framework
settings.py - Django settings file
urls.py - Django file for defining routes
wsgi.py - Django wsgi configuration file
| dashboard - Prepared folder for the Dashboard module; Contains
only default auto-generated Django files

| habits - Folder containing the Habits module
Lg,helpers - Folder containing the helper classes for the Habits
module

74 ctuthesis t1606152353

A. Project structure

}habits_overview_helper.py - A helper class for the Habits
module; contains many utility functions
| migrations - Django folder containing files neccessary for
Django migrations
| __init__.py - Django generated init file for this module
| admin.py - Django generated file
| apps.py - Django generated file
| forms.py - Python file containing the Forms of the Habits
module
| models.py - Python file containing the Models of the Habits
module
| tasks.py - Python file containing the definition of Celery
tasks for this module
| tests.py - Python file containing the automated tests for
this module

| _views.py - Python file containing the Views (API endpoints)
for this module

| login - Folder containing the Login and registration modules

migrations - Folder containing the Django migrations files
for this module

__init__.py - Django generated init file for this module
admin.py - Django generated file

apps.py - Django generated file

forms.py - Python file containing the Forms for these modules
models.py - Python file containing the Models for these modules
tests.py - Python file containing the automated tests for
these modules

views.py - Python file containing the Views (API endpoints)
for these modules

| static - Folder containing the static content of the application

css - Folder containing .css files generated by Bootstrap
5 framework
icons - Folder containing icons used in the application
js - Folder containing javascript files used in the application
L,custom_js - Folder containing custom .js files for the
pplication
add_habit_popup.js - JS script controlling the interaction
of creating a new Habit
add_todo.js - JS script controlling the interaction
of creating a new Todo
habit_record_list.js - JS script controlling the dynamic
content changes in the Habit page
todo_sliders.js - JS script controlling the interaction
of deletion of a Todo

| templates - Folder containing all HTML templates of the application

75 ctuthesis t1606152353

A. Project structure

| habits - HTML templates for the Habits page
Lg,habits.html - Root HTML file for the Habits page

| login - HTML templates for the Login and Registration pages

login.html - Login page HTML template

registration.html - Registration page HTML template

| modals - HTML templates for various components, which can

be included in multiple places

| todo_modals - HTML templates for modals of the Todo page

| add_todo_fake_card.html - HTML modal for invocation
of the modal for creation of a Todo

| create_todo_popup.html - HTML modal for creation of

a Todo

| fake_todo_card.html - A placeholder displayed if no

Todos have been created yet

| todo_card.html - A template for a single Todo item

| todo_slider.html - A modal used for displaying a row
of multiple Todo cards

| add_habit_fake_card.html - A modal for invocation of creation
of a Habit

| add_habit_popup.html - A modal for creation of a Habit
session

| base_page_with_navbar.html - A root template for all pages
with navigation bar

| create_habit_popup.html - A popup modal for creation of

a Habit

| default_edit_habit_plan.html - The initial modal showing
the current habit displayed upon loading the page

| delete_habit_popup.html - A popup for the deletion of

a Habit (confirmation)

| edit_habit_plan.html - Modal form for editing of a Habit
plan

| error_page.html - An error page shown in case of an error
in the application

| habit_card_basic.html - A template for the Habit card

on top of the page

| habit_main_content.html - A template for the entire Habits
page; included in habits.html

| _habit_record_list.html - Modal for showing multiple Habit
cards on top of the page

| navbar.html - Template containing the navigation bar
| registration - Legacy folder, in which there initially have
been the templates for registration page (unused)

| todos - Folder containing the Templates for the Todo page
L,todos.html - Root template for the Todo page

76 ctuthesis t1606152353

A. Project structure

}user_profile - Folder containing templates connected with
fhe User Profile module
user_profile.html - Template for the User Profile page
| todos - Folder containing the Todos module
| _helpers - Module containing the Helper classes for this module
L,todos_helper.py - The helper class for the Todo module;
contains many utility functioms
| migrations - Django generated folder with files connected
with Django migrations
| __init__.py - Django generated init file
| admin.py - Django generated file
| apps.py - Django generated file
| forms.py - File containing the Django Forms for the Todos
module
| models.py - File containing the Django Models for the Todos
module
| tests.py - File containing the automated tests for the Todos
module

| views.py - File containing the Views (API endpoints) for
the Todos module

| user_profile - Folder containing the User Profile module

migrations - Django generated folder with files connected

with Django migrations

__init__.py - Django generated init file

admin.py - Django generated file

apps.py - Django generated file

forms.py - File containing the Django Forms for the User

Profile module

models.py - File containing the Django Models for the user

Profile module

tests.py - File containing the automated tests for the User

Profile module

views.py - File containing the Views (API endpoints) for

the User Profile module

| celery.log - Log file for the Celery framework

7 ctuthesis t1606152353

Appendix B

Application visual appearance

Bellow are Figures representing the visual appearance of the application.
Please note that the application working title is "Bubbles", and it is the
reason this name is mentioned on several places in these figures.

Figure B.1: Login page of the application.

78 ctuthesis t1606152353

B. Application visual appearance

Figure B.2: Registration page of the application.

Add new habit

Session length
Calores Bured:

Next session:

Test habit exercise

Custom

60

300

March 17, 2023, 2:43

Test habit reading

Repetition:

Session lenth:

Book name:

Pages read,

Next session:

Custom Repatiton:
a5 Session lengih:
1984 Subject

£ Next session:

March 17,2023, 3118

Custom

50

Math

March 17, 2023, 4:19

-

Test habit learning

f

Repetiton Every Week
Session engih 1

Calories Burned: '

Next session: March 22, 2023,

Test habit exercise

Exercise

Last session:
Session length: 69
Date: Saturday, Mar 11
Next session: Tuesday, May 23
Exercise type: Running
Calories burned: 369
Distance: 84

Edit your plan
Session length

Calories burned
Kilometers ran

Repetition days

60
300

10

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Figure B.3: Habits module page.

79

ctuthesis t1606152353

B. Application visual appearance

Create new habit

Choose a habit category: [Exercise

Title: Abc

Exercise type: Running
o Gym

Basketball
Football
AmericanFootball
IceHockey
Handball
Tennis

Calories: 300

Session length: 60

Repetition days Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Figure B.4: Habits module page modal for creating new Habit.

80 ctuthesis t1606152353

B. Application visual appearance

Add session

Calories burned:

Session length:

Distance:

Figure B.5: Habits module page modal for adding a new Habit session.

Confirm Delete

Are you sure you want to delete this habit?

Figure B.6: Habits module page modal for deleting a Habit

81 ctuthesis t1606152353

B. Application visual appearance

Due: Thursday, Mar 30
Add Description:
Ipsum
First subtask: Second subtask: Third subtask:
oolor st amet
Due: Wednesday, Mar 08
Description:
g
First subtask: Second subtask: Third subtask:
s s B
Due: Sunday, Mar 26 Due: Thursday, Mar 09 Due: Saturday, Jul 29
Description: Description: Description:
sit Lorem ™
First subtask: Second subtask: Third subtask: First subtask: Second subtask: Third subtask: First subtask: Second subtask:
Anet Lorem psum Borem Torem rorem B i

Figure B.7: Todo module page.

82 ctuthesis t1606152353

New Todo

Title:

Importance level

Description

B. Application visual appearance

Low
Medium
High

Due date

First subtask:
Second subtask:

Third subtask:

Create todo

Figure B.8: Todo module page

83

modal for creating a new Todo.

ctuthesis t1606152353

Bibliography

[1] R. M. Ryan and E. L. Deci. (2000) Self-determination
theory and the facilitation of intrinsic motivation, social
development and well-being. Accessed: 2022-10-01. [Online].
Available: https://www.researchgate.net/publication/11946306_|
[Self-Determination_ Theory and_ the_ Facilitation_ of Intrinsic_ |
[Motivation__Social _Development__and__Well-Being

[2] Intrinsic motivation definition. Accessed: 2022-10-28. [Online]. Available:
https://www.frontiersin.org/articles/10.3389 /neuro.12.006.2007 /full

[3] Definition of extrinsic motivation. Accessed: 2022-10-02. [On-
line]. Available: |https://www.sciencedirect.com/topics/psychology/
lextrinsic-motivation|

[4] Definition of habit and explanation of why habits exist. Accessed:
2022-10-07. [Online]. Available: https://psyarxiv.com/kbpmy/|

[5] How bad habits connected with pleasure and a dopamine release
are harder to get rid of. Accessed: 2022-10-12. [Online]. Available:
https://newsinhealth.nih.gov/2012/01/breaking-bad-habits|

[6] A text about how the 21 days rule to create a habit has been created
and why it is not true. Accessed: 2022-10-15. [Online]. Available:
https://jamesclear.com /new-habit|

[7] J. Clear, Atomic Habits, 2018, accessed: 2022-09-29.

[8] Maslow’s hierarchy of needs. Accessed: 2022-10-11. [Online]. Available:
https://www.simplypsychology.org /maslow.html|

[9] Personal development definition. Accessed: 2022-10-26.
[Online]. Available: https://ukcpd.co.uk/personal-development /
what-is-personal-development /|

[10] List of similar applications, their advantages disadvantages. Ac-
cessed: 2022-09-28. [Online|. Available: |https://zapier.com/blog/
|best-habit-tracker-app/|

84 ctuthesis t1606152353

https://www.researchgate.net/publication/11946306_Self-Determination_Theory_and_the_Facilitation_of_Intrinsic_Motivation_Social_Development_and_Well-Being
https://www.researchgate.net/publication/11946306_Self-Determination_Theory_and_the_Facilitation_of_Intrinsic_Motivation_Social_Development_and_Well-Being
https://www.researchgate.net/publication/11946306_Self-Determination_Theory_and_the_Facilitation_of_Intrinsic_Motivation_Social_Development_and_Well-Being
https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007/full
https://www.sciencedirect.com/topics/psychology/extrinsic-motivation
https://www.sciencedirect.com/topics/psychology/extrinsic-motivation
https://psyarxiv.com/kbpmy/
https://newsinhealth.nih.gov/2012/01/breaking-bad-habits
https://jamesclear.com/new-habit
https://www.simplypsychology.org/maslow.html
https://ukcpd.co.uk/personal-development/what-is-personal-development/
https://ukcpd.co.uk/personal-development/what-is-personal-development/
https://zapier.com/blog/best-habit-tracker-app/
https://zapier.com/blog/best-habit-tracker-app/

B. Application visual appearance

[11] List of similar applications, their advantages & disadvantages.
Accessed: 2022-09-28. [Online]. Available: https://en.softonic.com/top/
[personal-development-apps|

[12] List of similar applications, their advantages & disadvantages.
Accessed: 2022-09-28. [Online]. Available: https://www.makeuseof.com
self-improvement-android-apps-unlock-potential /|

[13] About habitica application. Accessed: 2022-10-31. [Online]. Available:
lhttps://habitica.fandom.com /wiki/What__is_ Habitica%3F|

[14] About way of life application. Accessed: 2022-11-05. [Online]. Available:
lhttps: //apkcombo.com /way-of-life-habit-tracker /com.wayoflife.app/|

[15] About habitify application. Accessed: 2022-11-06. [Online|. Available:
https://www.dailyhabits.xyz/habit- tracker-app/habitify|

[16] Self determination theory definition. Accessed: 2022-10-01. [Online].
Available: |https://selfdeterminationtheory.org/theory/|

[17) About mvc software architectural pattern. Accessed: 2022-12-02.
[Online|. Available: |https://www.codecademy.com /article/mvc

[18] About mvp software architectural pattern. Accessed: 2022-12-
02. [Online]. Available: https://stackoverflow.com/questions/141912/
[alternatives-to-the-mvc|

[19] About django framework. Accessed: 2022-12-02. [Online]. Avail-
able: |https://developer.mozilla.org/en-US/docs/Learn/Server-side/
Django/Introduction|

[20] About springboot web application framework. Accessed: 2022-12-
04. [Online]. Available: |https://www.digitalocean.com/community/
{tutorials/key-components-and-internals-of-spring-boot-framework|

[21] Comparison of postgresql and mysql databases. Accessed: 2022-12-04.
[Online]. Available: https://kinsta.com/blog/postgresql-vs-mysql/|

[22] About vuejs frontend framework. Accessed: 2022-12-04. [Online].
Available: |https://linuxhint.com/about_ vue js/|

[23] Pros and cons of vuejs frontend framework. Accessed: 2022-
12-04. [Online]. Available: |https://ddi-dev.com/blog/programmingj/
tthe-good-and-the-bad-of-vue-js-framework-programming /|

[24] About reactjs and its comparison to vuejs. Accessed: 2022-12-04.
[Online]. Available: https://hygraph.com/blog/vuejs-vs-react|

[25] About bootstrap, bulma and other css frameworks. Accessed:
2022-12-17. [Online]. Available: |https://www.browserstack.com/guide/
[top-css-frameworks|

85 ctuthesis t1606152353

https://en.softonic.com/top/personal-development-apps
https://en.softonic.com/top/personal-development-apps
https://www.makeuseof.com/self-improvement-android-apps-unlock-potential/
https://www.makeuseof.com/self-improvement-android-apps-unlock-potential/
https://habitica.fandom.com/wiki/What_is_Habitica%3F
https://apkcombo.com/way-of-life-habit-tracker/com.wayoflife.app/
https://www.dailyhabits.xyz/habit-tracker-app/habitify
https://selfdeterminationtheory.org/theory/
https://www.codecademy.com/article/mvc
https://stackoverflow.com/questions/141912/alternatives-to-the-mvc
https://stackoverflow.com/questions/141912/alternatives-to-the-mvc
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://www.digitalocean.com/community/tutorials/key-components-and-internals-of-spring-boot-framework
https://www.digitalocean.com/community/tutorials/key-components-and-internals-of-spring-boot-framework
https://kinsta.com/blog/postgresql-vs-mysql/
https://linuxhint.com/about_vue_js/
https://ddi-dev.com/blog/programming/the-good-and-the-bad-of-vue-js-framework-programming/
https://ddi-dev.com/blog/programming/the-good-and-the-bad-of-vue-js-framework-programming/
https://hygraph.com/blog/vuejs-vs-react
https://www.browserstack.com/guide/top-css-frameworks
https://www.browserstack.com/guide/top-css-frameworks

B. Application visual appearance

[26] About bootstrap, bulma and other css frameworks. Accessed: 2022-12-17.
[Online]. Available: https://geekflare.com/best-css-frameworks/|

[27] About bootstrap and other c¢ss frameworks. Accessed:
2022-12-17. [Online]. Available: https://www.uplers.com/blog/
what-are-the-pros-cons-of-foundation-and-bootstrap/|

[28] About django security measures and why is it secure. Accessed:
2023-03-30. [Online]. Available: |https://docs.djangoproject.com/en/3.2/
{topics/security /|

[29] Installing pyenv and creation of python virtual environment. Accessed:
2023-02-15. [Online]. Available: |https://jordanthomasg.medium.com/
[python-development-on-macos-with-pyenv-virtualenv-ec583b92934c|

[30] What is python virtual environment. Accessed: 2023-02-15. [Online].
Available: https://www.geeksforgeeks.org/python-virtual-environment /|

[31] Guide on how to create a login and registration page in django.
Accessed: 2023-02-16. [Online]. Available: https://ordinarycoders.com
blog/article/django-user-register-login-logout|

[32] Django database transactions. Accessed: 2023-02-20. [Online|. Available:
hhttps://docs.djangoproject.com/en/4.1/topics/db/transactions/|

[33] About django modelform class. Accessed: 2023-02-19. [Online]. Available:
lhttps://docs.djangoproject.com/en /4.1 /topics/forms/modelforms/|

[34] Documentation of the django template language. Accessed: 2023-
02-17. [Online|. Available: https://docs.djangoproject.com/en/4.1/ref/
templates/language/|

[35] Bootstrap cards utility documentation. Accessed: 2023-02-25. [Online].
Available: |https://getbootstrap.com/docs/4.0/components/card /|

[36] Bootstrap modal element documentation. Accessed: 2023-02-27.
[Online]. Available: https://getbootstrap.com/docs/4.0/components,

modal

[37] About django.contrib.auth package. Accessed: 2023-02-16. [Online].
Available: https://docs.djangoproject.com/en/4.1/ref/contrib/auth /|

[38] Documentation of the celery scheduler framework. Accessed: 2023-03-23.
[Online]. Available: |https://docs.celeryq.dev/en/stable/getting-started

intr ion.html

[39] Usage of a sliding window approach in time series prediction
with neural network. Accessed: 2023-04-10. [Online]. Available:
https://www.ripublication.com/ijcirl7 /ijcirv13n5_46.pdf|

86 ctuthesis t1606152353

https://geekflare.com/best-css-frameworks/
https://www.uplers.com/blog/what-are-the-pros-cons-of-foundation-and-bootstrap/
https://www.uplers.com/blog/what-are-the-pros-cons-of-foundation-and-bootstrap/
https://docs.djangoproject.com/en/3.2/topics/security/
https://docs.djangoproject.com/en/3.2/topics/security/
https://jordanthomasg.medium.com/python-development-on-macos-with-pyenv-virtualenv-ec583b92934c
https://jordanthomasg.medium.com/python-development-on-macos-with-pyenv-virtualenv-ec583b92934c
https://www.geeksforgeeks.org/python-virtual-environment/
https://ordinarycoders.com/blog/article/django-user-register-login-logout
https://ordinarycoders.com/blog/article/django-user-register-login-logout
https://docs.djangoproject.com/en/4.1/topics/db/transactions/
https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/
https://docs.djangoproject.com/en/4.1/ref/templates/language/
https://docs.djangoproject.com/en/4.1/ref/templates/language/
https://getbootstrap.com/docs/4.0/components/card/
https://getbootstrap.com/docs/4.0/components/modal/usage
https://getbootstrap.com/docs/4.0/components/modal/usage
https://docs.djangoproject.com/en/4.1/ref/contrib/auth/
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://www.ripublication.com/ijcir17/ijcirv13n5_46.pdf

B. Application visual appearance

[40] About time series forecasting problem in supervised machine learning. Ac-
cessed: 2023-04-10. [Online]. Available: |https://machinelearningmastery|
lcom/time-series-forecasting-supervised-learning/|

[41] S. Hochreiter. (1997) Long short term memory. Accessed: 2023-
04-17. [Online]. Available: https://www.researchgate.net/publication/
(13853244 Long_ Short-term_ Memory|

[42] Summary of the ltsm network architecture design. Accessed:
2023-04-17. [Online]. Available: https://colah.github.io/posts/
2015-08-Understanding-LSTMs/|

[43] Asian research journal of arts & social sciences, july 2018, strategies
for increasing student’s self-motivation. Accessed: 2022-10-01. [Online].
Available: |www.researchgate.net/publication/326556176__ Strategies_|
[for_ Increasing Students’_Self-motivation|

[44] A. Vanyukhin. (2021) Application for personal development - bachelor
theses structure and inspiration for sources to study from. Accessed: 2022-
10-05. [Online]. Available: https://dspace.cvut.cz/handle/10467,/94978

[45] Q. V. Tran. (2022) Systém pro sledovani osobniho rozvoje. Accessed:
2022-10-05. [Online|. Available: https://dspace.cvut.cz/handle/10467/
101722l

[46] Habits formation. Accessed: 2022-10-11. [Online]. Available: |https
// /positivepsychology.com /how-habits-are-formed /|

[47) Comparison of personal project management software tools. Ac-
cessed: 2022-10-24. [Online]. Available: |https://monday.com/blog/
[project-management / project-management-software-for-individuals /|

[48] List and comparison of personal task management tools. Accessed:
2022-10-24. [Online]. Available: |https://www.proprofsproject.com/blog/
personal-task-management-tools/|

[49] List of personal management tools. Accessed: 2022-10-25. [Online].
Available: https://timelyapp.com/blog/best-task-management-app|

[50] How intrinsic motivation is inspired. Accessed: 2022-10-28. [Online].
Available: |https://positivepsychology.com/increase-intrinsic-motivation /|

[51] About habitnow application. Accessed: 2022-11-05. [Online]. Available:
https://myroomismyoffice.com /habitnow-review /|

[52] V. Rydl. (2016) Software pro spravu méfeni. Accessed: 2022-11-24.
[Online]. Available: https://dspace.cvut.cz/handle/10467/65239

[53] Functional requirements definition. Accessed: 2022-11-24. [Online].
Available: https://www.indeed.com /career-advice/career-development /
[functional-requirements-examples|

87 ctuthesis t1606152353

https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
www.researchgate.net/publication/326556176_Strategies_for_Increasing_Students'_Self-motivation
www.researchgate.net/publication/326556176_Strategies_for_Increasing_Students'_Self-motivation
https://dspace.cvut.cz/handle/10467/94978
https://dspace.cvut.cz/handle/10467/101722
https://dspace.cvut.cz/handle/10467/101722
https://positivepsychology.com/how-habits-are-formed/
https://positivepsychology.com/how-habits-are-formed/
https://monday.com/blog/project-management/project-management-software-for-individuals/
https://monday.com/blog/project-management/project-management-software-for-individuals/
https://www.proprofsproject.com/blog/personal-task-management-tools/
https://www.proprofsproject.com/blog/personal-task-management-tools/
https://timelyapp.com/blog/best-task-management-app
https://positivepsychology.com/increase-intrinsic-motivation/
https://myroomismyoffice.com/habitnow-review/
https://dspace.cvut.cz/handle/10467/65239
https://www.indeed.com/career-advice/career-development/functional-requirements-examples
https://www.indeed.com/career-advice/career-development/functional-requirements-examples

B. Application visual appearance

[54] Software architectural patterns types. Accessed: 2022-12-
02. [Online]. Available: https://medium.com/@ankit.sinhal /
[mvc-mvp-and-mvvm-design-pattern-6e169567bbad|

[55] List of web application frameworks. Accessed: 2022-
12-02. [Online]. Available: https://www.geeksforgeeks.org/
ttop-10-frameworks-for-web-applications/|

[56] Installation of bootstrap 5. Accessed: 2023-02-15. [Online]. Avail-
able: |https://django-bootstrap-v5.readthedocs.io/en/latest /installation|
html

[57] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner’s
Approach, Tth ed. McGraw-Hill Education, 2010. [Online]. Available:
https://www.mlsu.ac.in/econtents/16_ EBOOK-7th_ed_software |
lengineering _a_ practitioners__approach by roger_s. pressman_ .pdf]

[58] How to send a csrf token via javascript xhr. Accessed: 2023-03-20.
[Online]. Available: |https://stackoverflow.com/questions/57516816/
[cannot-add-csri-token-to-xmlhttprequest-for-django-post-request|

[59] Source of wuser profile default image. Accessed: 2023-03-
23. [Online|. Available: |https://www.kindpng.com/imgv/JhRRhb_|
laccount-user-profile-avatar-avatar-user-profile-icon/|

[60] Installation guide for rabbitmq framework on a macos machine.
Accessed: 2023-03-25. [Online|. Available: https://www.rabbitmq.com/
[install-homebrew.htmll

88 ctuthesis t1606152353

https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://www.geeksforgeeks.org/top-10-frameworks-for-web-applications/
https://www.geeksforgeeks.org/top-10-frameworks-for-web-applications/
https://django-bootstrap-v5.readthedocs.io/en/latest/installation.html
https://django-bootstrap-v5.readthedocs.io/en/latest/installation.html
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://stackoverflow.com/questions/57516816/cannot-add-csrf-token-to-xmlhttprequest-for-django-post-request
https://stackoverflow.com/questions/57516816/cannot-add-csrf-token-to-xmlhttprequest-for-django-post-request
https://www.kindpng.com/imgv/JhRRhb_account-user-profile-avatar-avatar-user-profile-icon/
https://www.kindpng.com/imgv/JhRRhb_account-user-profile-avatar-avatar-user-profile-icon/
https://www.rabbitmq.com/install-homebrew.html
https://www.rabbitmq.com/install-homebrew.html

	Introduction
	My motivation
	Subject matter

	Motivation as a concept and research behind habit building
	Motivation
	Inspiring intrinsic motivation
	Justification of the leading role of habits
	About habits
	How to build a habit
	Plugging habits into motivation
	Conclusion

	A survey of relevant existing solutions
	List of existing application and research methodology
	Habitica
	Way of life
	Habitify
	Productive
	Summary and conclusion

	Requirements and use cases
	General concepts
	General functionality draft
	User
	Habit
	ToDo
	Calendar
	Statistics section

	Functional requirements
	Landing page
	Registration
	Login
	User profile
	User dashboard
	Habit
	Habit list
	Todos
	Todo list
	Calendar
	Calendar events
	Statistics section

	Use cases
	User wants to register
	Registered User wants to log in
	Registered user wants to log out
	Logged in user wants to change their personal information
	Logged in user wants to delete their profile
	Logged in user wants to see an overview of their activities
	Logged in user wants to see some upcoming event displayed on their dashboard
	Logged in user wants to see specific habit/Todo
	Logged in user wants to create an activity
	Logged in user wants to see their statistics and analysis of his current performance and behaviour
	Logged in user wants to see their schedule
	Logged in user wants to add a custom event to their calendar

	Technological stack and architecture proposal
	Basic software application architectual patterns
	Model View Controller (MVC)
	Model View Presenter(MVP)

	Server side Web application frameworks
	Django
	Spring Boot

	Database
	MySQL vs PostgreSQL

	Frontend frameworks
	Vue JS
	React JS

	CSS Frameworks
	Bulma.io
	Bootstrap

	Technologies selected for the implementation
	Web application framework
	Database
	Frontend framework
	CSS Framework
	Database model draft

	Implementation
	Application modules
	Environment preparation
	Helper structures
	Codebooks

	Backend development & API
	Login & Registration
	Habits
	ToDos
	Users Profile

	User interface & Frontend
	Landing page
	Habits page
	ToDo page
	Database model

	Experimental scheduler feature
	About Celery
	Installation
	Implementation
	Running
	Tasks implementation

	Next steps: Modules for future development
	Dashboard
	Statistics section
	Backend & API

	Testing
	Automated testing
	Example - Testing Delete Habit Endpoint

	Usability testing
	Testing scenario 1
	Testing scenario 2

	Empowering the application with Machine Learning
	Problem definition
	Assumptions
	Possible problem formalizations
	Supervised learning approach

	Goal and advantages

	Conclusion
	Looking back: An assessment of the process
	Usage & benefits
	Possible functionality extension & upgrades
	Messaging inside the application
	An internal social network
	Achievements & streaks
	Public API
	Extend habit type range
	UI facelift
	Integration with smart watch
	Finishing the implementation of other modules

	Project structure
	Application visual appearance
	Bibliography

