
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Peer-to-peer Backup Application

David Košťál

Ing. Jiří Dostál, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions
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The goal of this thesis is to work towards that goal and explore creating a peer-to-peer 

backup application. It will allow its users to back up their data to other users while 
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exchange. The implementation will have two parts – a client application that will create 
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data that is being backed up.

 

1. Review existing similar software, e.g., CrashPlan Home or BuddyBackup.

2. Make a threat model.

3. Design a security architecture and protocols.

4. Implement a simple, functional application to demonstrate the concept.

5. Client-side application features: backups to an automatically selected peer for users in 

the same network segment, backup encryption, and authentication. (Support for backups 

to any internet-connected computer is a possible future extension that requires 

implementing NAT traversal).

6. Server-side application features: client discovery and backup management.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 3 January 2023 in Prague.





Bachelor’s thesis

Peer-to-peer Backup
Application

David Košťál

Department of Computer Systems
Supervisor: Ing. Jiří Dostál, Ph.D.

May 11, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 David Košťál. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited
(with exceptions defined by the Copyright Act).

Citation of this thesis: Košťál David. Peer-to-peer Backup Application. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviations x

1 Introduction 1

2 Goals 3
2.1 Client functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Server functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Existing solutions 5
3.1 CrashPlan for Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 BuddyBackup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.1 Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Other software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1 Pluto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Syncthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Nextcloud Backup app . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.4 Storj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.5 Restic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Current situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Analysis 9
4.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Backup data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Backup storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.1 Peer-to-peer connections . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Account management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iii



iv Contents

5 Design 13
5.1 Identity management and authentication . . . . . . . . . . . . . . . . . . 13

5.1.1 Public key authentication . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Backup format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3.1 Incremental backups and file chunks . . . . . . . . . . . . . . . . 17
5.3.2 Directory/file trees and blobs . . . . . . . . . . . . . . . . . . . . 19
5.3.3 Packfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.4 Packfile index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.5 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Other aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.1 Peer discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2 Server metadata storage . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.3 Malicious data mitigation . . . . . . . . . . . . . . . . . . . . . . 22

6 Implementation 23
6.1 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 The Rust programming language . . . . . . . . . . . . . . . . . . 24
6.2 Network communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4.1 Backup process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4.2 Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.3 Networking and identity management . . . . . . . . . . . . . . . 26
6.4.4 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Results 29
7.1 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 NAT traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Backup storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.1 Malicious data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.2 Data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Resiliency and reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.1 Storage proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.2 Data storage redundancy . . . . . . . . . . . . . . . . . . . . . . 34
7.3.3 Peer reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.4 Storage requests and peer discovery . . . . . . . . . . . . . . . . 35
7.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 37

A Threat model 39



Contents v

B User guide 53
B.1 User guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.1.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.2 Server setup guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2.1 Using Docker Compose . . . . . . . . . . . . . . . . . . . . . . . 55
B.2.2 Manual build process . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2.3 Production deployment . . . . . . . . . . . . . . . . . . . . . . . 56

Attachment contents 65



List of Figures

4.1 Threat model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Secrets management hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Authentication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Network communication security architecture . . . . . . . . . . . . . . . 16
5.4 Server-facilited P2P connection handshake . . . . . . . . . . . . . . . . . 17
5.5 P2P file transport encapsulation . . . . . . . . . . . . . . . . . . . . . . 18
5.6 Packfile structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 User interface screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

List of Tables

7.1 NAT types breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



I would like to thank my supervisor, Ing. Jiří Dostál, Ph.D., for
his guidance and helpful advice throughout the whole process.
I’d also like to thank my friend ∼Nebula∼ for working with
me on pluto, the project that started this thesis, as well as
his help with teaching me Rust. Last but not least, I would
like to thank my friends and especially my family for their
invaluable support during my whole studies.

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all
sources of information in accordance with the Guideline for adhering to ethical principles
when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize
this thesis, including any and all computer programs incorporated therein or attached
thereto and all corresponding documentation (hereinafter collectively referred to as the
“Work”), to any and all persons that wish to utilize the Work. Such persons are entitled
to use the Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and quantity.
However, all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and every work
that is created (wholly or in part) based on the Work, by modifying the Work, by
combining the Work with another work, by including the Work in a collection of works
or by adapting the Work (including translation), and at the same time make available
the source code of such work at least in a way and scope that are comparable to the
way and scope in which the source code of the Work is made available.

In Prague on May 11, 2023

viii



Abstract

This bachelor’s thesis explores creating a peer-to-peer backup application that allows
users to create a backup to other randomly selected users — in exchange for some
of their free disk space. The theoretical part of this thesis involves analyzing the
requirements, creating the design, and examining solutions to its deficiencies. The
implementation part features a functional proof-of-concept application that showcases
the concept.

Keywords peer-to-peer data backup, client application, server application, security
analysis, peer-to-peer communication, data encryption, Rust

Abstrakt

Tato bakalářská práce zkoumá možnost vytvoření peer-to-peer zálohovací aplikace, která
umožňuje jejím uživatelům vytvoření zálohy k ostatním náhodně vybraným uživatelům,
výměnou za část volného místa na disku. Teoretická část této práce zahrnuje analýzu
požadavků, vytvoření návrhu a diskuzi nad řešením jeho nedostatků. Implementační část
obsahuje funkční ukázkovou implementaci, která demonstruje koncept této technologie.

Klíčová slova peer-to-peer zálohování dat, klientská aplikace, serverová aplikace,
bezpečnostní analýza, peer-to-peer komunikace, šifrování dat, Rust
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Chapter 1
Introduction

People often don’t pay enough attention to making proper backups, with one of the
reasons being that they take significant effort. However, data loss can have disastrous
consequences. There are many ways one can lose data. Some examples include natural
disasters, theft, malware, or simply hardware failure. Even larger companies and
professional environments have problems with insufficient or unreliable backups [1, 2].
Home users and small companies often pay even less care to back up their data.

In this thesis, I will research a solution that has the potential to make backups
simpler and less expensive: a peer-to-peer backup application. Its function is to back up
local data to other automatically selected users — and provide free disk space for
backups of those users in return.

A peer-to-peer solution is more affordable than commonly used solutions like physical
media (such as external hard drives) and cloud services. It could also be easier to set up
and use. However, this method also has disadvantages, such as concerns about backups
being available for restoration, concerns about privacy, and the complexity of finding
peers. I will mitigate some of these problems, with a particular focus on security risks,
and discuss the solutions for other issues.

I originally got the idea to create an application for peer-to-peer backups in a video
by the YouTube channel Linus Tech Tips [3]. After that, I started working on the
project as an open-source application with a friend — in our free time [4].

While doing that, we realized that our scope is large and it is a complex problem
that would justify writing a bachelor’s thesis. Thanks to the project, we gained a lot of
experience, and I can reuse some of it in this thesis.

I want to pursue this topic because the result could be helpful to me, my surroundings,
and the wider community. Solving security challenges and creating useful programs are
some of my personal interests.

1
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Chapter 2
Goals

In this chapter, I will describe the goals and non-goals of this thesis in further detail.

My thesis aims to create foundations for developing a user-friendly version of said peer-
to-peer backup application. The first chapter of the theoretical part will be dedicated
to researching existing solutions in this area. That will be followed by performing an
analysis to create the application. That will include making a threat model, designing
the security architecture, and developing protocols and data storage formats.

The implementation part will entail creating a proof-of-concept implementation
consisting of a client and a server component. I will compare available technologies
and pick the most suitable ones. The client-side application needs to support creating
simple backups for users in the same network segment. Those backups will need to be
correctly encrypted and authenticated.

The reason for the initial version only supporting backups in the same network
segment is that trying to bypass various networking restrictions (such as NATs or
firewalls) is a nontrivial problem, but one that already has proper solutions — which
are widely used and would not add much to researching this topic.

The server component will ensure that clients can discover peers and find a backup
partner. It will also keep track of created backups and the computers that store them
so that the backups can be later easily restored. The server will be centralized but
cannot access unencrypted backup content.

Due to time constraints, I will not be able to create a robust, production-ready
application. It will also be necessary to exclude some nice-to-have features, such as a
polished user interface or automatic continuous backups with file watching.

2.1 Client functionality

After the first start, the client will give the user the option to either restore an existing
account or register a new one. Registering will create a new identity while using an
existing one will allow the user to restore a previous backup.

When creating a backup, the client application will be able to gather files from a
folder and find the changes that occurred since the last backup. The changed data will
be packaged, encrypted, and transferred to a peer — which the server will automatically

3



4 Goals

assign. The client will also allow viewing the state of backups and display additional
logs.

The client will naturally also be able to receive backups from other clients. It
connects with peers directly and transfers/receives the encrypted backup data. The
application will keep track of how much data was received from each peer. When
restoring a backup from a fresh installation, the client will request data about peers
from the server, try to connect to all computers that store our data, and download the
files.

2.2 Server functionality

All clients are going to connect to a central server. It will keep a database of all the
clients and peers that store their backed up data to enable restoring backups.

Its other function is to match clients that are requesting to create a backup. It is
going to keep track of requests for backups and match peers based on how much space
they are requesting.



Chapter 3
Existing solutions

In this chapter, I will examine existing similar services in this space, as well as
other relevant systems.

In my research, I discovered two services that have functionality comparable to the
goals of this thesis, both of which are no longer operating. I will also look at other
software worth investigating.

3.1 CrashPlan for Home

The first comparable piece of software was CrashPlan for Home by Code42. It was a
full-featured backup application supported on Windows, Mac, and Linux. Users were
able to make local, offsite, and cloud backups. Local and offsite backups were a free
feature for all users. Cloud backups were a subscription service that enabled storing an
unlimited amount of data on a central server using a CrashPlan user account. Local
backups allowed users to use their external media, such as hard drives [5].

The offsite backup destination is the most interesting feature for the purposes of
this thesis. It allowed backing up to a friend’s computer by getting a unique code from
them [6]. CrashPlan for Home was discontinued on October 23, 2018 [7].

3.1.1 Backup

CrashPlan used real-time file watchers to watch changes continuously. It also performed
deduplication on parts of files (blocks). These blocks were compressed and subsequently
encrypted and transmitted to the destination. Users with a paid subscription were able
to pick separate sets of files to include in backups and configure different destinations for
each set. There were extensive configuration options for selecting how many historical
versions to keep and which files to exclude.

The application also allowed for backup seeding, meaning users could transfer initial
backed-up data to the destination using physical media and only use the internet for
subsequent changes [8, 9].

5



6 Existing solutions

3.1.2 Security

CrashPlan for Home had various data encryption configurations, all using the Blowfish
algorithm. 128-bit keys were used for users without a subscription, with 448-bit keys
reserved for paying customers. Users could pick from three types of encryption key
storage. The default one was called standard, where the data encryption key was stored
on Code42’s servers for an easy restoration option.

A more secure configuration was offered, where the key stored on the server was also
encrypted with an additional archive password. There also was an option of a security
question, which was a way to restore a forgotten archive password. The most secure
option was using a custom key, which was not stored on any servers. It was possible to
use a passphrase, generate a new random key, or import an existing one [10, 11].

3.1.3 Summary

CrashPlan for Home was a powerful backup application that offered a lot of functionality
and flexibility but might not always have been the easiest to use. Peer-to-peer backup
functionality wasn’t the headline feature, but it was a good option for users who wanted
to configure it.

3.2 BuddyBackup

The second comparable service was BuddyBackup, a free Windows program launched
in 2010 [12]. The application’s main focus was peer-to-peer data backup to friends
(called buddies). However, it also allowed backups to USB drives or other external
locations as virtual buddies. Peers were added using a username they picked when
creating a BuddyBackup account. The program had an advanced integration with
Windows Explorer [13]. It was discontinued on May 31, 2022 [14].

3.2.1 Backup

This application, similar to CrashPlan, also uses real-time file scanning and allows
continuous backups. With BuddyBackup, the user will configure a set of files to back
up, maximum backup space (upper limit for how much data can be backed up), and
backup safety (number of copies that are spread among different buddies). All buddies
combined will then be allowed to back up the same amount of data as the user’s backup
space. Adding a buddy will automatically allow them to make backups.

The application also keeps local backups apart from just sending data to peers.
That allows for fast restoration of earlier versions of files (which are also backed up to
buddies) or files that have been deleted altogether. Backups are incremental, so only
byte-level differences are transferred.

Restoration of files was made easier by including a guest mode, which users could
run on their buddies’ computers and access their files saved on that device. An option
for seeding backups is also offered here [13].

3.2.2 Networking

BuddyBackup had a number of methods to allow users to connect to each other. If
a direct connection didn’t succeed, BuddyBackup tried to open ports on the router
automatically, using the UPnP protocol. If UPnP isn’t enabled or users are behind
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a NAT or have other networking restrictions, the application offered a feature called
Buddy Connect. This feature allowed users without network restrictions to act as a
relay for their buddies or even all users, depending on the configuration. Thanks to
that, even users without direct options could connect and transport backups [13].

3.2.3 Security

Encryption keys were stored on the central server, encrypted with the user’s password.
By default, user passwords were also saved on the server (for easy recovery), but this
behavior could be disabled. The AES-256 algorithm was used for encrypting backed-up
data. For authenticating buddies, asymmetric cryptography was used, in particular,
the RSA-2048 algorithm [13].

3.2.4 Summary

BuddyBackup offered a comprehensive and free solution for peer-to-peer backups. It
also seems to have been user-friendly and easy to configure.

3.3 Other software

3.3.1 Pluto

The project that my friend and I started as a predecessor to this thesis was called
pluto. Its goal was to be a user-friendly application for peer-to-peer backups, but the
implementation never reached a functional stage. However, working on the project was
a valuable source of experience [4].

For pluto, I designed a backup storage format (explained in detail in chapter 5) that
allows for efficient packaging of files, and their encryption and compression. The code
for this format is adapted and brought into this thesis as well.

3.3.1.1 Networking

Its networking solution of choice is a publish-subscribe protocol called MQTT, which is
especially popular in low-power applications such as Internet of Things. The protocol
is based around publishing and subscribing to path-like topics. MQTT server, called
broker, automatically delivers a message to all clients which are subscribed to a certain
topic whenever a message is posted there. Subscriptions to topics can also include
wildcards, so a client can subscribe to all topics under a certain path. The protocol is
message-based and doesn’t have a request-response flow [15].

This has some advantages — e.g., the message handling server is separate from the
application server, and broadcast messages are straightforward. But the complexity of
using MQTT in our desired way outweighs the advantages, which leads to my decision
to use a different networking solution in this thesis.

3.3.2 Syncthing

Syncthing is a powerful open-source application for peer-to-peer continuous data syn-
chronization. Its primary purpose is not to create backups, so it doesn’t have all features
typical for such usecases. However, it supports file retention and, as a relatively recent
feature, experimental end-to-end encryption of synchronized data, making it suitable
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for mirroring data to peers that are not fully trusted. It also features a mechanism
for automatically finding the best network paths between peers, including using relays

— which could be an inspiration for later versions of the application created by this
thesis [16, 17].

3.3.3 Nextcloud Backup app
Nextcloud is a self-hosted open-source solution for file storage and collaboration, similar
in functionality to the likes of Google Drive. It offers a feature in their Backup app, to
create an encrypted backup of an entire Nextcloud instance to a different instance [18].
This can make it easy for individual users running their own Nextcloud installations to
create backups to, for example, their friends who also use Nextcloud. However, the goal
of this solution is different from the goal of this thesis, which is aimed at individual
desktop users.

3.3.4 Storj
Storj is a service that offers distributed object storage (with an Amazon S3-compatible
API), mainly to companies looking for an alternative to traditional cloud object storage.
The saved files are encrypted using AES-256-GCM and split up into parts using Reed-
Solomon erasure coding for redundancy. After that, all the parts are sent to distributed
voluntary nodes, which get paid for storing files and used bandwidth [19].

The idea of using erasure codes for saving files to a distributed storage can be helpful
for future versions of this project. The ratio used by Storj is 29 data blocks + 51 parity
blocks for a total of 80 blocks stored. Reed-Solomon coding enables restoring data with,
in this case, up to 51 blocks of either type lost [19, 20].

3.3.5 Restic
Restic is a popular open-source solution for creating backups. It doesn’t directly support
backups to other peers using the application, but one has the choice of many backup
backends, including local folders, SFTP, or Amazon S3-compatible cloud services [21].

I am mentioning its project because I took inspiration from its efficient way of
packaging and storing backup data, which resulted in some of the ideas described in
section 5.3 [22].

3.4 Current situation

I looked at two main services that used to provide peer-to-peer backup functionality,
as well as other related software. None of the explored software supports backups to
random peers, which is one of the main goals of this thesis. At present, there are no
working programs fulfilling the same goals — that I am aware of.

It’s worth noting that there are many other ways for users to create safe offsite
backups with robust applications such as the aforementioned restic. However, that
requires significantly more effort than simply installing a program at both ends or even
just installing it for oneself and using an automatically selected peer.

In conclusion, the idea that this thesis pursues is relatively unique. There is a lot of
inspiration to be taken from the existing projects. However, some features, like backups
to automatically selected peers, must be designed from scratch.



Chapter 4
Analysis

In this chapter, I will go over the analysis performed prior to creating the core design
and explain why some key choices were made. The bulk of final design decisions is
described in chapter 5.

4.1 Threat model

Figure 4.1 Threat model diagram.

An essential part of creating a secure system is designing a threat model and
considering possible mitigations for potential security vulnerabilities. The tool used
to help model vulnerabilities was Microsoft Threat Modeling Tool, using the STRIDE
model [23]. The full report is in Appendix A. This section includes the key insights.

The application consists of two main components — the client and the server.

9
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Clients communicate with each other to transport backups and also communicate with
the server to facilitate client discovery and store information essential for restoring
backups. The data that mainly need protecting are the user backups.

4.1.1 Communication
The server is considered to be a trusted source of data. All clients are considered
inherently untrusted by the server and other clients. However, the local storage that the
client application relies on is considered trusted — if a threat actor gained access to the
files of a user account, they could read or modify the backup data directly. Attacking
the backup application would not create any additional threats. Similarly, the database
used by the server application is trusted — it’s deployed in a controlled and isolated
environment. For that reason, client-server and peer-to-peer communication are the
data paths that need protecting. The mechanisms used to protect communication are
explained in section 5.2.

4.1.2 Backup data
Concerning backups, the key goals are to ensure the integrity and confidentiality of the
data. Maximum data availability is not a goal of the current model application. The
protection of peers from receiving illegal or otherwise harmful data sent by attackers
bypassing the encryption is also not considered entirely solved. Still, it uses a mitigation
described in subsection 5.4.3. Solutions for these issues are further explored in chapter 7.

The integrity and confidentiality of backups are ensured by using a storage format
explained in Figure 5.6. It encrypts the contents of files (including their hashes, which
are used for storage deduplication purposes — with one exception explained in the
following paragraphs), names, sizes, and other metadata of files. Deduplication means
that we try to minimize the number of duplicate data, primarily across file changes to
facilitate incremental backups, but also across different files.

Counts or sizes of individual files are also not revealed directly. However, the storage
format can disclose some non-critical information. The absolute size of backups is
inevitably revealed. The incremental nature of the backup will also reveal the magnitude
of files modified over the time period since the last backup. Due to the side effects
of the storage format design (packfile header sizes and index file sizes hinting at the
number of blobs), the receiving peer or an intercepting party can make an estimate
about the nature of the backup, mainly the rough file count.

And while the blob hashes, which could in some cases reveal the contents of the
files, are normally encrypted, there is one exception. After a backup is completed, the
client sends a hash of the backup root directory to the server. It’s unlikely to reveal
any information in real usage, but it’s a potential weak spot. However, it could be
mitigated with extra encryption.

4.2 Backup storage format

I had several requirements for the backup storage format in this application. It needs to
be secure and efficient. And importantly, it must be designed for incremental backups
with incremental file transport, meaning that the application will only add (or delete)
files rather than directly modify existing ones. We don’t have direct access to the
filesystem on the other peer, and the connection might not be very reliable, so I have
chosen to work with entire files only.
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The format needs to store the entire folder user wishes to back up, including the
structure, the contents of the files, and the metadata (such as modification times). For
efficiency, we also only want to store the minimum amount of changes since the last
backup. Saving entire changed files would not achieve that goal, so we will need to
work not with entire files but their parts. However, transferring only parts of files
individually would be inefficient, given that they can be small.

The storage format of the backup program restic already solves a large portion of
this problem. Files are split into chunks, each directory and file data is serialized, and
all of these pieces of data are stored in bigger packaged files called Packs [22]. The
backup storage format in this application uses ideas from restic. There are however
many differences, such as the index being simpler and strictly incremental (data from
newer index files always overwrites the older ones). This format is described in 5.3.

4.3 Network architecture

With the overall architecture of the network, there was a choice between using a fully
decentralized network or a partially decentralized one employing a central server. While
a fully decentralized model is resilient, and there are no operating costs for a central
server, it comes with numerous problems and is challenging to design. Using a central
server will lead to better reliability and a simpler design.

Considering networking protocols for this application, there’s a need to support
transactional requests like logging in — but also respond to real-time events like
connecting with a peer that requested a backup. I also want to consider using standard,
widely used protocols when possible to make the implementation simpler and reduce
the risk of security problems.

For transactional requests from client to server, HTTPS is used for its extreme
popularity. WebSocket is used for real-time notifications from server to client. Web-
Socket is a protocol (based on TCP) that is also widely used in browsers and thus
has extensive support in network infrastructure (like CDNs and reverse proxies) and
software libraries. It’s message based, making it well-suitable for this application. The
authentication and encryption of the traffic between clients and the server are ensured
by TLS, with the server having a set domain and a valid certificate.

4.3.1 Peer-to-peer connections

The core functionality of this software is to make backups to other users. Therefore, we
need a way to transport data between individual users. The simplest way to implement
this would be to relay all peer-to-peer communication through central servers. However,
this comes with several drawbacks: operating this service would use a large amount
of bandwidth, users would likely experience slower speeds, and the server would have
access to more data than is required for running the service.

Therefore, it’s desirable to allow peers to transport backups directly. This is generally
a relatively complicated problem, but our requirements allow us to only be able to
communicate within the same network segment and disregard real-world networking
problems like NATs or firewalls. We can then connect peers directly over a standard
TCP socket to a local IP address instead of a more complicated discovery protocol.
The details of this problem and the possible solutions are explained in chapter 7.

However, even with this simplification, it’s still necessary to establish a connection
and properly secure it from tampering. There is no standard transport security for
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peer-to-peer communication with random clients. PKI is not a viable option in a P2P
environment. For that reason, I’ve designed a protocol that solves this problem. This
protocol is also based on WebSocket to make the implementation easier.

The protocol only supports transporting encrypted backup files and acknowledgment
messages. The design is simple — it only ensures reliability and is not designed for best
efficiency. Security is ensured by wrapping the file in a message, which adds a replay
protection header and a signature on the data header. The message is signed by the
private key of the sending peer, ensuring that we are communicating with the party we
have negotiated. The details are explained in section 5.2.

4.4 Account management

The applications I investigated in chapter 3 use a traditional account system. It’s a
working model, but the user experience can be improved while preserving maximum
privacy. Having a password reset option would necessarily mean that the backup key
would need to be saved on the central server. However, the server should not be able to
decrypt the backup.

Having a password that cannot be reset is also problematic. Forgotten passwords
are a common occurrence — according to [24], the action of resetting a password on a
website was done 15% as often as logging in normally. In this case, this problem will be
even more apparent. The password would be utilized rarely, only when backups need
to be restored. And the consequences of forgetting the password are devastating since
the backup couldn’t be restored.

Another risk associated with traditional user accounts are weak passwords. A
password policy is always a tradeoff between password security and memorability.
For offline cracking of potentially very sensitive data, a strict policy would likely be
necessary. An alternative approach to deriving a key from a password using a KDF
(and eliminating the possibility of offline cracking) would be to store the encryption key
using a hardware security module deployed on the server, which requires a password to
release the key. That, however, needs users to have more trust in the central server and
also is out of scope for this thesis.

For these reasons, I’ve chosen to use a randomly generated value (the root secret)
as a basis for the backup encryption key, as well as authentication keys. The users are
forced to write down that value in a safe place, so it won’t be forgotten when backups
need to be restored. However, just showing the root secret to the user in a usually
formatted way, such as hexadecimal, is annoying and prone to errors when writing it
down.

To help solve that, the root secret is presented to the user in the form of a BIP39
mnemonic. BIP39 is a user-friendly format to display entropy, designed for the Bitcoin
project. For a 256-bit value, like the root secret, it consists of 24 English words. Those
encode the value itself and a checksum. Using common words from a fixed wordlist

— which excludes easily mistaken words — will significantly lower the risk of users
mistyping the phrase and being unable to restore backups later [25].

In conclusion, having a single root secret serve as a user identity is positive for
both security and user convenience. Random generation ensures that a suboptimal
password will never weaken backup encryption. Since the root secret never leaves the
client device, it also guarantees that the central server or other users cannot decrypt
any data.



Chapter 5
Design

In this chapter, I will explain the fundamental design principles behind essential
aspects of the application — mainly around backup key management and the security,
packaging, and transport of backups.

5.1 Identity management and authentication

The software’s identity management is based on having a single random secret value
called the root secret. This value is generated by a TRNG (true random number
generator) on the first start and saved to disk (see Figure 5.1).

After that, and on every subsequent start, the root secret is used to seed a CSPRNG
(cryptographically secure pseudorandom number generator) based on the ChaCha20
cipher. ChaCha20 is a well-respected stream cipher (used, for example, in TLS 1.3 [26]),
making it very suitable as a base for a PRNG that is both fast and cryptographically
secure.

The reason behind using a PRNG and not using the root secret directly is twofold.
The root secret should stay as short as possible for convenience, and at the same time,
the values derived from the secret should remain as independent as possible. That way,
if either key is compromised or either algorithm is discovered to be weak, the other
key is unaffected. And thanks to the random number generator, the design can be
updated to generate more values. This can be useful, for example, when the currently
used algorithms have a vulnerability and need to be replaced. The new algorithm can
then be used with an independent, new, safe secret.

The seeded CSPRNG is then used to generate separate secrets for an authentication
Ed25519 keypair and a backup primary key, a value from which symmetric backup keys
are derived. Ed25519 is an elliptic-curve-based public key signature system. It’s a widely
used algorithm used by a large amount of popular software, such as OpenSSH [27].
The targeted security is stronger than RSA-2048 while providing very compact 256-bit
public keys — used as client identifiers in this software [28].

5.1.1 Public key authentication

After the client generates a root secret and a derived keypair, it will be used to register
and subsequently authenticate with the central server. The public key serves as a

13
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Figure 5.2 Challenge-response authentication flow.

unique identifier for a certain client, both for the server and other clients. The private
key is also used for securing transport between clients. All messages sent by a client to
its peers will be signed by its private key to ensure that they haven’t been tampered
with.

Authentication is performed in a challenge-response scheme (see Figure 5.2), where
the client requests a challenge from the server, which replies with a random nonce.
The nonce is then signed by the client’s private key and sent to the server along
with its public key to verify its identity. If the verification succeeds, the client will
receive a temporary session token — valid for no longer than 24 hours — used for
subsequent authenticated requests. Whenever it becomes invalid, the client will simply
reauthenticate using this scheme.

5.2 Networking

As per the specifications in the assignment, this application currently only supports
the transfer of backups between peers in the same network segment (each peer must
be able to connect to each other directly over TCP). This is implemented by using a
custom protocol based on WebSocket. Authentication and encryption are done on the
application layer.

The connection between peers is always established via the server. It starts with a
client sending an initialization message with the public key of the client it wants to
connect to and a randomly generated nonce. The server then sends the public key of
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the requesting client and nonce to the destination. If the peer wants to accept the
connection (i.e., is aware of the requesting peer), it sends a confirmation message to the
server with its IP address (which needs to be on the same network) and a random port.
The server finally sends the IP address of the destination peer to the requesting peer,
and the original peer can now establish the connection to the IP address (the process is
shown in Figure 5.4).

After the connection is established, the peer that accepted the connection is waiting
for an initialization message from the requesting peer. The initialization message can
either request to restore a backup or request to transport new files. If the requesting
peer sends a request to restore a backup, the accepting peer will start sending all files
that the requesting peer has stored at that location. Otherwise, if the requesting peer
sends a request to send new files, the accepting peer will wait for these and store them.

After the connection is initialized, the peer that is transporting files sends encapsu-
lated messages. The peer that is receiving them sends acknowledgment messages for
a particular message sequence number whenever it receives and saves the file. These
messages are visualized in Figure 5.5.

5.2.1 Security

The protocol is designed for transporting encrypted backup data, so confidentiality is
ensured on the backup layer (see subsection 5.3.3). These encrypted backups are the
data that is subsequently saved to disk.

The integrity of the received data is ensured by encapsulating encrypted backup
data in a message that adds a header with a message sequence number and a random
nonce, and a signature over the header and data. This additional header is designed to
prevent replay attacks. The signature mitigates tampering with messages.

The public keys of the clients and the random nonce are relayed through the server
(over a TLS-secured connection) as part of the handshake that connects the source and
destination peer (see Figure 5.4). The nonce is initially generated by the client that is
requesting the connection. The message sequence number is a counter that starts from
zero and increments with each sent message.

These two values, together with the signature, ensure that messages cannot be
replayed, sent out of order, individually withheld, tampered with, or outright forged.
TCP guarantees the correct order on the network layer, so messages will normally be
delivered in the correct order.
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5.3 Backup format

The security of the backups is paramount, and storage efficiency is also a significant
concern. Therefore, the backup storage format for this application is custom, using
many ideas from the backup program restic [22].

5.3.1 Incremental backups and file chunks
Having incremental backups that conserve as much space as possible is essential,
especially for a peer-to-peer backup application constrained by individual users’ storage
space and bandwidth. Simply backing up changed files only is not sufficient. Therefore
need to use a more granular approach.

All files in the backup directory will be split into chunks. Smaller files under a
certain threshold will consist of one chunk, and larger files will be split into several
chunks. A chunk (sized up to 3 MiB) is the smallest data unit considered for incremental
backups. That way, if a small amount of data is changed in a large file, there’s no need
to save and transport the whole file. The data is split into chunks using a Content
Defined Chunking (CDC) algorithm.
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5.3.1.1 Content Defined Chunking

The naive, traditional way to split files into parts would be simply dividing them
into chunks of fixed length. However, this approach has a major weakness — chunk
boundaries can be shifted very easily by just adding or removing data and thus changing
the length of a chunk. This is especially inefficient when the length of a chunk changes
near the start of the file. In that situation, the hashes of almost all chunks would
change, and most data must be retransmitted.

CDC algorithms solve the problem of unnecessary chunk boundary shifting. They
try to split the files at the same boundaries every time, even if the length of the chunks
changes (if some data is inserted/removed, up to a certain limit). That allows for more
efficient deduplication and incremental backups because the number of changed chunks
is greatly minimized. I have chosen to use the FastCDC algorithm. It’s a modern
state-of-the-art CDC algorithm that implements this concept in an efficient way.

The general idea behind CDC algorithms is using a rolling hash function with a
sliding window (FastCDC uses Gear hash) on the contents of the file, declaring a chunk
boundary whenever the hash has a certain predefined property (e.g., it starts with a set
number of zeros). This randomness is the reason why the length of chunks can vary
significantly, although advanced algorithms like FastCDC take measures to prevent
excessive size differences [29, 30].

5.3.2 Directory/file trees and blobs
Since files are backed up in the form of chunks, we need a way to reconstruct them.
Similarly, we need to keep track of the directory structure. For this reason, we are
introducing trees. Trees come in two types, file trees and directory trees.

File trees contain a list of chunks that make up the actual file data. They also
hold metadata about a file, including the name and creation/modification timestamps.
Directory trees contain the list of file trees representing files contained in that folder.
Similarly, they also contain metadata. For storing in a backup, trees are serialized in
an efficient and safe binary format called bincode [46].

Serialized trees and file chunks are together called blobs. Blobs are the pieces of
data that the entire backup format is based on. In trees, they are represented as
a hash of their contents. The cryptographic hashing function of choice for blobs is
BLAKE3 because of its outstanding performance [31]. Deduplication of blobs is based
on comparing their hashes — if the hashes are identical, blobs are also assumed to be
identical. Since the hash output size is 256 bits long, the chance of collision is extremely
low. For a mere 10−18 chance of getting a collision, it would be necessary to generate
4.8 · 1029 blobs [32].

5.3.3 Packfiles
Blobs are stored in packfiles. A single packfile holds one or more blobs, a header, and
the header length. A packfile header contains as many entries as the number of blobs
stored within the packfile. Each entry holds the type (chunk/tree), hash, length, and
offset from the start of the file for a single blob. When a packfile is read, we first decode
the header and then retrieve the desired blobs based on the data in the header. During
the backup process, the program will create packfiles and send them to the destination,
deleting them afterward.

The main purpose of using packfiles is to normalize the size of stored data. Blobs
don’t have a minimum length since every file or directory will generate at least one
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blob. Storing chunks individually could lead to inefficient transfer of many small files
— so we will bring smaller chunks together. The packfile generator targets a maximum
size and count of packfiles, so if a certain blob is big enough, it will get its own packfile.
Other packfiles can have many small blobs. As a result, all packfiles will have a similar
size (usually megabytes, up to 12 MiB).

The packfile layer is where the data encryption is performed. Chunks are encrypted
individually using AES-256-GCM. Each chunk has a random nonce stored along with
the data itself in the packfile (concatenated as nonce || data). The key used to
encrypt a chunk is derived using HKDF from its hash and the backup primary key.
The header is also encrypted with the same algorithm. A nonce for the header is also
randomly generated, and this value is used as a packfile ID (its file name) to prevent
reusing a nonce (packfile IDs are unique). The key used for the header is derived from
a unique constant value and the backup primary key. The header length is stored as a
plain number and is not encrypted. Encrypting blobs individually has advantages for
parallelization, faster seeking, and easier packfile restructuring.

Compression is also a part of the packfile format. It uses Zstandard, a state-of-the-art
algorithm offering an excellent compression ratio and speed balance [33]. Compression
is performed on each blob individually before encryption.

5.3.4 Packfile index
With the current design, finding a blob would involve scanning the headers of all
packfiles, which would be slow and inefficient. For that reason, we are adding an index,
which is a separate set of files. Index files only contain mappings of blob hashes to
packfile IDs.

Index uses a simple custom incremental storage format. The data is stored in a
directory containing index files named with increasing sequential numbers. Each file
contains one or more mappings of blob hashes to packfile IDs. Like the other storage
formats, the data is also serialized with bincode. The index is also always stored on the
origin machine, unlike packfiles — it’s used during the process of creating a backup.

When working with the index, all the files are deserialized and loaded into memory.
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Newer index files (the ones with higher sequence numbers) always take precedence over
the older ones. The index is append-only, so this is the way to keep it updated as
new packfiles are created. As a next step in loading, mappings are sorted by the blob
hash. Now we can find out where a blob is saved or if it exists at all with binary search
in logn time. Searching for blobs is an operation that is used frequently — both for
deduplication in backups (finding whether the blobs already exist) and for locating
the correct file during restores. Writing is always done by creating new files instead of
modifying existing ones.

The index is encrypted on a file-by-file basis. Each file is encrypted with AES-256-
GCM. The nonce is a null-padded sequential number of the file (which is unique), while
the key is once again derived with HKDF from a string constant and backup primary
key.

5.3.5 Snapshots

Whenever a backup is run, a new snapshot is created. A snapshot is identified by a
hash of a blob that stores the backup root directory tree. This allows us to easily keep
track of the state of the backup directory at any given point.

When restoring a backup, we retrieve the blob with the hash of the snapshot ID we
want to restore. That blob stores a directory tree, which we will treat as a root of the
backup and recursively unpack all data that it references. Only the changes are stored
with each backup, so directories with no changes will still be represented by the same
blob hash.

5.4 Other aspects

5.4.1 Peer discovery

One of the requirements from the assignment is that our backup destination peer has
to be automatically selected. For that reason, we need to create mechanisms to initially
find suitable peers to back up to, keep track of used storage, and retrieve our connections
if we need to restore the backups.

Initial peer matching is performed on the server. The server receives storage requests
from clients for a certain amount of space — and will either put them in a queue or take
existing requests from the queue and match them with the incoming request. When a
new request comes in with the queue empty, it will simply be enqueued. If the queue
already has requests waiting, the algorithm will remove them, subtracting the requested
size from the incoming request. If the whole size of the incoming request hasn’t been
fulfilled, the process continues. The algorithm is done when the queue is emptied, or
the incoming request is fulfilled. If the size doesn’t match exactly, the remaining size
from either the incoming or the already enqueued requests is returned to the queue.

5.4.2 Server metadata storage

For users to be able to restore backups after a system failure and the loss of all
application data, the server needs to store some amount of metadata. The metadata
will be retrieved by the client when trying to restore a backup. Since the user identity is
tied to the root secret, inputting the generated mnemonic from the previous installation
will allow the application to present with the same credentials and retrieve the metadata.
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The server currently stores all peers that have had storage matched together, and
when a peer requests to restore a backup, the server will send a list of these. This could,
however, be improved to make restores more reliable (discussed in section 7.3). The
other type of metadata stored by the server is snapshot hashes, which represent the
state of the folder at the time of backup. These are also required to successfully restore
a backup, the unpacking mechanism needs to know the root directory. At present, the
server will always send the latest snapshot has for a given client. Snaphost hashes are
uploaded by clients to the server whenever they complete a backup and transport all
data to peers.

5.4.3 Malicious data mitigation
Having untrusted peers send data to other users comes with many risks, which this
thesis attempts to mitigate. One of the more complicated problems is mitigating the
risk of peers bypassing the standard protocol and sending malicious data instead of
regular encrypted backups. Problematic data includes illegal content, possessing which
could endanger the receiving user. Another example is data designed to exploit the
software of a receiving peer, ranging from annoyances to more serious attacks. An
example of an annoyance can be a snippet that is harmless but triggers an alert in an
antimalware scanner on the receiving user’s computer. A more serious problem could
arise if, for example, the victim runs software with a vulnerability that is triggered by
specific data in a file.

The mitigation used in the current design is obfuscating the received data before
saving them on disk. This prevents the attacker from having control over the data that
is being saved to storage. The obfuscation consists of generating a random 4-byte key,
unrelated to the root secret, on the first start of the application. The received data is
then, in 4-byte chunks, XOR’d with the obfuscation key, after which it’s finally saved
to the disk. Before sending the data back, this obfuscation is undone by following the
same process. The effectiveness and implications of this mitigation are discussed in
subsection 7.2.1.



Chapter 6
Implementation

In this chapter, I will review the technology and library choices and key points of the
client and server implementations. The entire codebase, as well as the generated
code documentation (with comments), is included in the attached files.

The goal of the implementation is to serve as an experiment and a model for a production-
ready user-friendly peer-to-peer backup application. Therefore, it’s likely for it to be
extended, and technology choices should help that goal whenever possible. One of
my goals also was cross-platform support for the client application, so the underlying
technologies are also chosen based on that goal (it’s currently tested on Linux and
Windows, but should work on other platforms as well).

6.1 Programming languages

My programming language of choice for the vast majority of the application across
both server and client is Rust. The only component that uses a different language is
the web-based user interface for the client, which is implemented in JavaScript and
HTML. I will explain this choice in the rest of this section.

The implementation has a client and a server part, so it was necessary to accommo-
date this property in the programming language selection. A possibility was to choose
different languages for these two parts, but using a single language suited for both
makes cross-communication, shared code, and the whole development process easier.

The client functionality, by its nature, often needs concurrent operations. Especially
when it concerns networking, it may be necessary to communicate with numerous
parties simultaneously. For example, when creating a backup and transferring data to
a peer (or multiple peers at once), we also receive data from other peers simultaneously.
While doing that, a different peer might request a connection to restore their data.
Ideally, we should be able to perform all these operations at once. Real-time networking
capabilities are also a big bonus since many events happen asynchronously.

Another significant consideration for this thesis is security. Picking a language that
is not memory safe would significantly increase the risk of severe security vulnerabilities
and decrease reliability. However, memory safety is not the only consideration in the
area of security. One of the other considerations is threading safety. It is a challenging
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problem, but some languages are better at helping prevent race conditions than others.
Among other notable language features, their type system greatly impacts security.
Weakly typed languages have an increased risk of introducing type-conversion-related
bugs and vulnerabilities.

To pick a language for the implementation, I also need to have a good degree of
familiarity with it. For that reason, besides Rust, I mainly considered C, C++, Python,
PHP, and JavaScript. I am not familiar enough with other popular, potentially suitable
languages such as C# or Java. From the languages that were taken into consideration,
C and C++ have safety problems and are generally unergonomic for such an application.
PHP is not suitable for desktop applications and lacks real-time networking capabilities.
JavaScript is similarly not designed for desktop applications running in the background
and offers lacking language features.

Python is also an acceptable choice. However, it’s slower and less robust than Rust.
Additionally, on the client side, Python applications are harder to distribute and harder
to implement efficiently. On the server side, it offers less scalability.

6.1.1 The Rust programming language

Rust best fulfills all the requirements. It’s a cross-platform language that works well for
both desktop and server applications and supports advanced asynchronous programming.
Security is also a major focus of Rust — it separates safe code from unsafe code. It
features a powerful compiler that statically verifies safe code for memory and type
safety (with strict type checking) at compile time.

Thanks to that, the safe subset of Rust doesn’t allow out-of-bounds memory ac-
cess, use-after-free, and other memory-related vulnerabilities (even without a garbage
collector). The type checker also prevents data races, which is helpful since the imple-
mentation features a lot of threaded code. Unsafe code in Rust must be clearly marked
and delimited and can be avoided almost entirely for most applications, including this
one. This gives the programmer great security guarantees but also the flexibility to
write code that cannot be statically checked to be memory safe — when necessary [34].

Using Rust also provides some additional benefits. It offers built-in comfortable
tooling with access to many good quality 3rd party libraries and produces easy-to-
distribute, self-contained executables. The language is also designed for speed and
memory efficiency, which is useful for a program intended to run in the background.

However, it also has its shortcomings. Some of the notable ones include long compile
times and a large compilation cache. Another disadvantage is that the static compile-
time checks can be overly strict and occasionally slow down the development. It also is a
fast-moving language, so some language features are underdeveloped and less polished.

6.2 Network communication

The library for running an HTTP server and handling incoming requests on the server
side, as well as serving the user interface on the client side is poem [47]. For sending
HTTP requests, I use a library called reqwest [48]. The WebSocket protocol, in both
parts of the application, is handled by the tokio-tungstenite library [49].

All of these projects are popular and well-respected libraries in their respective
areas. Implementation of TLS in both server and client relies on Rustls. This modern
and mature TLS library is not burdened by legacy protocols and is implemented in
Rust, taking advantage of its safety [50].
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The messages are serialized, across the board, using serde [51]. Serde is a powerful
data serialization framework for Rust, which supports safely and easily encoding/de-
coding data in various formats. Data between server and client is utilizing the JSON
format using the serde_json [52] backend. JSON is not as efficient as the bincode [46]
format used in peer-to-peer communication. However, debugging is easier, and the
higher overhead is negligible in client-server messaging.

6.3 Server

The server application is relatively simple, as its only function is facilitating communi-
cation between peers. The server runs a server with regular HTTP API endpoints and
a WebSocket server. It’s designed to run behind a reverse proxy (such as nginx) which
will handle HTTPS connections and certificates — building support for HTTPS directly
into the server is not advantageous since the reverse proxy is more configurable and
integrates with software like Certbot (used for automatically issuing HTTPS certificates
with services like Let’s Encrypt).

The functionality of storage requests and managing sessions and login challenges
for clients is implemented with in-memory structures. Since this data is expected to
be ephemeral, I used in-memory data to reduce the implementation complexity and
database overhead. The list of clients, backups, and matched storage are saved to
a persistent PostgreSQL database. The server application automatically creates the
database structure if it does not exist.

The server also keeps track of WebSocket connections of clients in memory, with a
hash map of client IDs and connection objects. Using this map, the server can easily
dispatch messages to clients. Closing of the connections is listened to by the server and
will trigger the removal of the connection from the map.

6.4 Client

The client portion of the application is divided into several modules. However, those
are still tightly integrated, as the process of creating backups and communication are
intertwined. Those modules include backup creation itself, P2P communication, server
communication, managing local configuration, and serving the UI.

The client part of the implementation is using SQLite [53] as its backend for storing
structured local data, including configuration and information about peers. I chose
SQLite for its universality, powerful querying, and resiliency.

6.4.1 Backup process
The backup creation process consists of packaging files and, at the same time, sending
them to peers. This is implemented by using two asynchronous tasks, which can run
on separate threads and work simultaneously. The synchronization between those parts
is performed using a shared global state. The packing process will generate files until
it reaches a threshold of maximum temporary file size — to not excessively use disk
space. If the threshold is exceeded, the packing task pauses and waits for data to be
sent to peers.

The packing task will first scan the backup path, build an in-memory directory
hierarchy, and put directories into a queue, with the deepest levels of directories at
the start — the hashes of upper levels depend on lower levels due to the hash-based
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storage format. In a second pass, the packer will take directories from the queue and
process (chunk, compress, encrypt) files in the directory. After all files in a directory
are processed, all the hashes of their trees are known, allowing us to build the directory
tree and calculate its hash. This process continues until we get the hash of the root
directory, which is when the backup is completed, and a snapshot is created.

The sending part continuously sends any available files to peers, attempting to
establish new connections if they don’t exist already. It will first try to send to currently
connected peers — if none are connected, then it will attempt to establish a connection
with a known peer that has storage. If both strategies fail, it will send a storage request
and wait for it to be fulfilled, connecting to the newly discovered peer.

The backup process is relatively complex and utilizes a degree of parallelization,
offering great performance even with a large number of small files. However, at present,
it’s lacking in robustness. Since it utilizes in-memory caching and file buffers, it’s
vulnerable to getting into an inconsistent state when the application is terminated while
a backup is in progress. For a more production-ready version, it’s necessary to better
handle shutdowns and detect an inconsistent state.

6.4.2 Restoration

The restoration process will request metadata (snapshot hash and all contacted peers)
from the server, then attempt to connect to each peer and retrieve all the files it
possesses (from the contacting peer). After all the files are received, the unpacker starts
retrieving blobs, starting from the root hash. In the process, it creates all the stored
directories (decoding their structure from blobs and continuing recursively), reassembles
files, and sets their metadata.

At this time, the restoration process is vulnerable to a denial of service attack by a
peer that sends the packfiles back by sending a large number of files since the receiving
peer does not know the backup size. This can be mitigated by saving this information
to the server and validating it while restoring.

6.4.3 Networking and identity management

The application needs to communicate with peers and with the central server. The peer-
to-peer part of the networking code is responsible for retrieving a local IP address and
opening a random port when being requested to open a connection. When requesting a
connection, it will connect to the address it received from the server. It’s also responsible
for enforcing the communication protocol described in section 5.2.

The server-client section of the code involves making HTTP requests and a connection
to the WebSocket server, handling and dispatching all incoming messages. When
receiving a message related to peer-to-peer communication, it’s relayed to the P2P
component. It also handles reconnecting in case the connection terminates, and
performing authentication again if the authentication token expires.

Managing the secrets and keys required to authenticate or encrypt data is performed
by a separate part responsible for deriving the key on-the-fly and keeping them in
memory.

6.4.4 User interface

The user interface in the client is based on web technologies and runs in a browser.
Upon startup, the client launches a local HTTP server and displays a link to open the
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Figure 6.1 Screenshot of the user interface with a backup in progress.

web interface. This solution is chosen because of simple cross-platform support, fast
and easy development, and flexibility — such as headless control from other computers.

The portion that runs in a browser is made in JavaScript and HTML, utilizing the
Vue.js [54] frontend library to make it possible to easily and reliably update the state
with new real-time data. Bootstrap CSS framework is used to style the interface [55].
Updating the UI’s state and sending log messages is facilitated by sending messages
over a WebSocket connection. Triggering actions in the client application, such as
making backups, is also realized by sending a WebSocket message, from the browser to
the client application.
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Chapter 7
Results

In this chapter, I will discuss the usability and problems of the final design and
implementation — as well as explore the possible solutions and a direction for the
future.

From the start of working on this thesis, it was clear that the resulting design would not
be perfect. On top of that, during the research and the development of this application,
various aspects transpired differently than I expected. Creating a reliable and secure
peer-to-peer backup application has proven to be complicated. There are numerous
open questions that might be worth researching, some of which I will discuss in this
chapter.

7.1 Networking

The network connection between the clients and the server uses standard protocols and
works fine. However, the peer-to-peer connection protocol is more complex and has
some unique drawbacks, which are discussed below.

7.1.1 Efficiency
The current design of the peer-to-peer backup transport protocol requires establishing
two separate connections if we want to transport files from both peers at the same time
(i.e., both peers are creating a backup). That would ideally be consolidated, and the
protocol would reuse an existing connection.

The transport acknowledgment messages are implemented on a simple sequential
basis where we wait for an acknowledgment before sending the next file. That reduces
the throughput of the backup transport but provides crucial information about whether
sending a file has succeeded and, therefore, we can delete it. This could be improved,
for example, by implementing a sliding window acknowledgment message technique.

7.1.2 NAT traversal
The obvious main problem with the peer-to-peer networking solution in the current
design is the inability to communicate with peers under network restrictions (such as a
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Port restricted NAT 58.86%
Symmetric NAT 17.06%

Unknown 13.20%
Full cone NAT 5.98%

Not behind a NAT 2.09%
Restricted NAT 1.12%

Symmetric UDP firewall 1.69%

Table 7.1 NAT types breakdown, collected from Syncthing users [36].

NAT), as outlined in the assignment. For the application to be usable in the real world,
with how networking is currently done, it would be mandatory to have an automatic
ability to connect with peers, regardless of their network situation.

NAT is a networking solution that translates IP addresses by modifying packets
passing through a router. The kind of NAT that is widely deployed and that we are
going to focus on is called one-to-many NAT. It maps private IP addresses of many
devices on a certain network to one public IP address. Its primary purpose is to alleviate
the problem of IPv4 address space exhaustion. NAT is overwhelmingly used with IPv4,
its use with the modern IPv6 protocol is fortunately rare. There are several types of
one-to-many NAT, each with different restrictions, but the general problem is that
peers cannot connect directly to each other [35].

7.1.2.1 NAT types

The most problematic kind of NAT is called symmetric NAT. With this type of address
translation, only an external computer that receives data from an internal host can
send data back. Both peers being behind separate symmetric NATs is the worst case for
establishing a connection — in that case, communication is impossible without a relay
(middle-man) server that is not behind a NAT and can establish TCP/IP connections
directly. Both peers will then have to connect to the relay, sending data from one peer
to the other. These techniques for establishing P2P connections are generally called
NAT traversal [35].

For other types of commonly used NAT methods, there are lesser restrictions on
which data is allowed to be transferred. This allows us, in many cases, to use techniques
for establishing a direct connection between peers, with some help from external servers.
This is a complex process, but it’s worth considering. According to data collected from
the users of Syncthing, an application for peer-to-peer data syncing (mentioned in
chapter 3), only about 18% of users had to use relay servers, despite over 80% being
reported as using NAT [36].

7.1.2.2 NAT traversal techniques

This problem already has comprehensive solutions that are used by various software.
One of those is the ICE (Interactive Connectivity Establishment) protocol. The basic
principle of ICE is as follows. The protocol starts by collecting possible candidate IP
addresses. These include LAN-bound address, the public address of the NAT, or an
address allocated by a relay server. To discover the public address of a NAT, ICE
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uses STUN (Session Traversal Utilities for NAT). STUN is a standard mechanism for
detecting the types of NAT and requires running a public server that is contacted by
peers that want to connect. The STUN server can then perform a set of checks and
may output candidate addresses (the NAT public address) for use by ICE.

For the last category of addresses, ICE uses the TURN (Traversal Using Relays
around NAT) protocol. TURN is a type of protocol for relay servers and therefore
requires a lot of bandwidth on the part of the server operator. However, it works in all
cases, even when both peers are using symmetric NAT. After gathering all candidate
adressess, ICE will then use STUN to perform connectivity checks on all pairs of
candidate addresses of both peers — in a specific order to discover the best option.
When a connectivity check succeeds, ICE has concluded, and we have a working route.

There are also other procedures that could be performed — one of them is using
the UPnP protocol to directly try opening ports on supported routers. This might fail
in many cases when the router NAT is also behind a carrier NAT (or UPnP is not
supported), but it doesn’t require any external servers and allows for a direct connection
[39, 38, 40, 41, 37].

7.1.3 Privacy

Another concern raised by direct peer-to-peer communication is that users can see each
other’s IP addresses directly. However, in an environment where there’s no additional
personally identifiable information about the other user — since backups are encrypted,
and users are identified by random keys — I wouldn’t consider this to be a threat.
One solution for this potential issue would be to exclusively communicate using a
central server, which would most likely not be viable for a free service due to significant
bandwidth usage. A different solution would be to use community-run relays, which
might be more financially feasible but still require trusting a 3rd party, and the transfer
speed would likely be slow.

7.1.4 Summary

In conclusion, the networking part of the application requires a sizable amount of work
to allow for seamless peer-to-peer backup transport — NAT traversal in IPv4 is a
complex subject. The current design would need to be amended to support NAT type
detection, enhance the protocol for establishing P2P connections, and add support
for NAT traversal and relaying data, possibly using ICE. Improving the throughput
by enhancing the acknowledgment messages in the transport protocol would also be
beneficial.

7.2 Backup storage

The backups storage format, as designed, works properly and allows for good efficiency.
There are still some problems, however, which are discussed below.

7.2.1 Malicious data

One of the issues of storing data from random users is that they could try to bypass
the encryption and send backup data that is malicious in some way. This problem, as
well as the mitigation in place, is explained in subsection 5.4.3. The currently used



32 Results

mitigation is effective in masking the data on disk, protecting users from attackers
trying to, for example, coax the antivirus program into showing an alert.

However, this protection is unlikely to be effective if the attacker tries to frame the
victim for storing illegal content (e.g., child sexual abuse material) because on-disk
obfuscation is easy to reverse. On top of that, this data would be detectable on the
network layer — there’s no extra encryption on top of the packfile encryption. To
help with network-level detection, it would be possible to introduce encryption on the
network layer as well since all the keys are already in place.

7.2.1.1 Plausible deniability

One of the approaches that can be taken to alleviate the problem with illegal data is to
aid the victim’s plausible deniability and make all backup data signed with the sender’s
private key (and save it to disk with the signature), on top of just the message being
signed. The signatures would be checked before saving the data since the receiving peer
possesses the public key of the sender.

This mechanism wouldn’t be very helpful just by itself with anonymous keypairs
since anyone would be simply able to create multiple identities. Nevertheless, with a
certain kind of real-world identity (such as a phone number) tied to a user’s keypair
could make this approach practical. With this solution, the victim will have proof that
this data was created by someone else.

7.2.1.2 Anomaly detection

Another approach to tackling this issue is to use some form of anomaly detection. The
backup format, as designed, will only contain encrypted data. Therefore, we could
attempt to take steps toward detecting whether the received data is actually encrypted.
This does not have a trivial solution — while encrypted data will necessarily have very
high entropy, many other types of data will also have high entropy (namely data using
lossless or lossy compression, typical in media files).

Nevertheless, there are more advanced methods of data classification apart from
just simple entropy detections. One of these methods is called EnCoD, a neural
network-based approach. It classifies different file kinds, including encrypted data,
lossless compression formats like ZIP and RAR, and media files like JPEG or PNG.
The classifier reaches a detection accuracy of over 90% for encrypted files, on file parts
of just 2 KB (and improves further with larger samples) [42]. Running such a classifier
on the client for received files and marking peers with high rates of unexpected results
could be a good indicator.

Heuristic detection systems will, unfortunately, always have weaknesses and a way
to bypass them — especially if the inner workings are well known. But if we tie this
detection technique in with the reputation system described in subsection 7.3.3 (since
the transport of backups is peer-to-peer), it could serve as a valuable indicator of a
peer’s trustworthiness.

7.2.1.3 Summary

Combining the existing obfuscation approach along with the above-discussed signature
and detection approaches can form a viable framework for protecting users from being
attacked by storing malicious data. However, this subject still needs further research.
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7.2.2 Data retention

As currently implemented, the backup format only adds new data and never removes
old snapshots (described in section 5.3). That allows the user to access the entire history
of backups, but if a user has a longer-running backup, it might stop being practical.
Therefore, having a mechanism to clean older, unneeded data would significantly
improve usability. Due to the peer-to-peer nature of this application, we don’t have
fast access to the filesystem of the peers — so this feature is relatively complicated to
design properly.

A possible way to allow for garbage collection of old data would require locally saving
(along with the index, which is already saved) the list of peers which hold particular
packfiles. During the backup process, the program would then be able to collect hashes
of all blobs needed by the latest snapshot (since all the files exist locally). Allowing to
keep more than the last snapshot would also require saving this list of hashes locally.

After that, cross-referencing with the index, we could determine which sent packfiles
have exclusively or mostly orphaned blobs. Packfiles which contain exclusively orphaned
blobs can simply be deleted (by sending a message to the storing peer). For other
packfiles, we can use a certain threshold for the orphaned peers. If their number crosses
a set value, the packfile will be individually retrieved. Then, the blobs will be copied
into a new packfile (along with any possible new blobs), and the original packfile will
be ordered for deletion. Following that, a new index file will be created, where the
entries for identical blob hashes will automatically supersede old ones.

This mechanism doesn’t allow for garbage collection in the index, but it’s unlikely
to have a significant footprint. 2 500 000 blobs (up to 2 500 000 files or up to about
5 TiB of data) only take up about 110 MiB of the index. Either way, the index only
contains redundant data and can be rebuilt from packfiles. Overall, I would consider
this to be a viable way to implement the cleanup of old data, with some parameters
still needing investigation.

7.3 Resiliency and reliability

As I discussed in chapter 3, the idea of randomly chosen peers for storing backups appears
to be novel. Therefore, the current design has several drawbacks. The restoration
process is unambiguously fragile, as it relies on all nodes a client has ever communicated
with to be online to restore any data. Destination peers are currently able to falsify
actually storing data. The strategy for choosing peers only takes into consideration the
recency of a storage request — no other factors are considered. There is also no way
to manually choose peers (friends) we might want to back up to. All storage is also
treated with a 1:1 ratio — we cannot provide to someone freely nor choose the number
of copies of our data. This section discusses solutions related to these deficiencies.

7.3.1 Storage proofs

In the current design, it’s possible for peers to claim that they store backups while
actually not saving them to disk. That is a significant problem with an enormous
impact. It would allow a malicious user to use space and store backups on drives of
honest users while not contributing anything — and when an honest user attempts to
restore a backup, the malicious user will not give out any data (since they don’t even
store them).
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A mitigation for this issue is adding a storage proof system where the storing peer
would be required to prove that it truly stores the data. A good way to achieve this is
to periodically send challenges. These consist of requesting cryptographic hashes of
random byte ranges of the stored files. The reason for using hashes of random ranges is
twofold — there’s no way to calculate the hash without actually having the file, and it
maximizes storage and bandwidth efficiency.

The storage proof challenges will be generated by the peer that is creating a backup.
The client, during the creation of the encrypted packfiles, generates random ranges of
bytes and calculates cryptographic hashes on the generated files before sending and
deleting them. These challenges — one consisting of the file name, the byte range,
and the hash — will be saved to local storage. The peer that created a backup will
then periodically send these prepared byte ranges and file names to the destination
peer. If the other client responds with the correct hash, the challenge is successful.
Otherwise, the user is alerted that there’s a problem. This system can also be tied in
with the reputation system mentioned subsection 7.3.3, where successfully responding
to challenges will increase the reputation of a peer.

The peer that is backing up will only be able to generate a finite number of challenges
— but thanks to using hashes, these don’t take up a significant amount of space. However,
it will be necessary to have challenges ready for a reasonable timeframe. At the same
time, the trust in the destination peer is initially low. Therefore, initially, the challenges
will be sent often, with the frequently later being reduced as the trust in a peer increases.

7.3.2 Data storage redundancy

There’s undeniably a need for some form of redundancy in a peer-to-peer backup
application, but the design and implementation of such a solution were outside this
thesis’s scope. The easiest solution for redundancy would be to simply send each file
to multiple peers. This would result in an efficiency ratio of 1

n and allow n− 1 peers
to disappear before losing any data, where n is the number of peers storing the files.
However, more efficient ways exist to achieve a good degree of redundancy at the cost
of more complexity.

7.3.2.1 Erasure codes

Erasure codes are a better way to handle redundancy with greater flexibility and
efficiency. They are a form of error correction code that can recover from bit erasures.
Erasure codes split the data into parts, and a certain amount of these might then be
deleted — and the code will still be able to recover the data. The amount of redundant
parts depends on the configuration and the code [43].

Reed-Solomon codes are a broadly used type an erasure code, which are also very
suitable for this application. They are a type of linear code and have very favorable
properties. Reed-Solomon codes would enable us to flexibly split each backed up packfile
into n data parts and k parity parts. Each part would then be transported to a different
peer, so the entire file would be spread among n + k peers. We can then afford to
lose up to k parts (any of them) and still recover the entire file. The efficiency ratio
would then be n

k [20]. The ratio could even be dynamic and vary depending on the
reputation of peers available for storage. I would suggest splitting the file into about 5
parts with 2–4 parity parts. This would be a very valuable addition, but the exact way
to implement this needs further analysis.
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7.3.3 Peer reputation

At present, peers can register into the system without any vetting and immediately start
sending storage requests. That can lead to many problems. For example, a malicious
peer could perform a DoS attack on the storage request queue — by repeatedly sending
large storage requests which would match other peers and subsequently refuse to connect
to those peers, preventing all from creating backups. Another possible problem is peers
who go offline often, have poor internet uplink, or intentionally refuse to give out backup
data. These problems could be alleviated by introducing a peer reputation system.

The idea for this system is to have a score for each registered peer. The score
would start at a low value, growing with the reliability of the peer. One of the possible
components is the time that the peer spends online and connected to the server. Online
time would slowly increase the score, while being offline would decrease it. This portion
of the score could be handled by the server by checking whether the connection is
alive or not. Manipulating this is possible by being connected to the server, while not
actually communicating with peers. However, that shouldn’t have a significant effect in
combination with other components of the score.

One of the other significant components would be a score that signifies whether a
peer receives and actually stores backups. This portion of the reputation score would
work along with the storage proof system. However, designing a robust peer-to-peer
reputation is complicated. Using ideas from [44], we can use a protocol built on top of
storage proofs. A peer that is responding to a storage proof request will send a ticket
signed with its private key. The peer that sent the request will then verify whether the
proof is valid and send the ticket to the server, which will then increment the score for
the peer that served the valid response. The peer that sent the storage proof would
be able to withhold sending the ticket, but it would not give it any advantages. On
top of that, the protocol might give the peer sending the ticket a small increase in its
reputation as well, as a reward.

A severe problem with such a reputation score system is collusion among friendly
peers, which would be able to fake creating backups and unfairly increment each other’s
scores. One of the most well-known systems to implement such a score that combats
this problem is called EigenTrust [45]. Nevertheless, that is beyond the scope of this
thesis, and the implementation of a score such as that needs further research.

7.3.4 Storage requests and peer discovery

The current solution for finding peers to make backups is a simple queue with expiration.
The requests are inserted as they are received by the server and are fulfilled in order.
This process is applied to all storage requests, including if we are already connected to a
peer. Such a solution works; however, it’s prone to problems, including those described
in the previous sections.

Matching peers fairly is a nontrivial problem. During testing, I encountered problems
with peers not being able to complete backups — in a situation where there simply
weren’t any other users who also wanted to backup up data. This problem is amplified
if peers have wildly different backup sizes. However, this issue should get less impactful
with scale and more advanced peer matching. Unfortunately, with a one-to-one ratio
(or other fixed ratio) for storage matching, this will always be a weak point of such a
peer-to-peer system.

Additionally, allowing already connected peers to renegotiate and increase their
storage allocation would reduce fragmentation and increase efficiency. Another signifi-
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cant improvement to the matching system would be allowing one to add certain peers
manually. That would enable users to back up to friends specifically, bypassing the
problems with peer matching and reducing the likelihood of the peer being offline.

7.3.5 Summary
In the current state, the action of restoring a backup only works under ideal conditions.
Adding support for storage proofs, redundancy (ideally with erasure codes), a reputation
score system, and improved storage requests (which support these features) would
improve the reliability immensely. With these enhancements, users would be able to
have trust in the backups.
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Conclusion

In this thesis, I have performed research on existing solutions. Following that, I created
a threat model and designed the application’s protocols and storage formats. Based
on those designs, I implemented a basic demonstration application that is able to
create (and restore) securely encrypted backups to randomly selected peers in the same
network segment.

With that, the goals of the thesis have been fulfilled successfully. However, this
topic is complicated — and, as expected, the created application is not suitable for
production use in its current state. Moreover, I have uncovered some deficiencies in the
original design. These shortcomings and the respective solutions are discussed in detail
in chapter 7.

Given all the work done on this topic, I see peer-to-peer backups (including those to
randomly selected users) as a field that deserves further research — which could lead
to an application that actual users could utilize. Compared to other popular forms of
backups, like cloud storage or external drives, they can be a zero-cost solution and have
a very low barrier of entry. Therefore, they can help users by making backing up data
easier. However, some disadvantages of a peer-to-peer solution include difficulties with
matching peers fairly, poor compatibility with ever more popular mobile devices, the
need to own disks to store backups of other users, or the complexity of developing such
a solution.

There is a lot of potential for future enhancements, including implementing the
numerous design improvements discussed in the previous chapter and making the
application more user-friendly — with features like automatic continuous backups
and improving the user interface. More exploration can also be done to improve the
system’s decentralization and not rely on a central server for metadata storage and
peer discovery.
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Appendix A

Threat model

This appendix contains the Microsoft Threat Modeling Tool output, with all the
generated and custom threats.

Mitigated Weak Authentication Scheme (Receiving encrypted backups)

Category Information Disclosure
Priority High
Description Custom authentication schemes are susceptible to common weaknesses
such as weak credential change management, credential equivalence, easily guessable
credentials, null credentials, downgrade authentication or a weak credential change
management system. Consider the impact and potential mitigations for your custom
authentication scheme.
Justification Mitigated by using randomly generated keys with state-of-the-art
algorithms.

Mitigated Collision Attacks (Receiving encrypted backups)

Category Tampering
Priority High
Description Attackers who can send a series of packets or messages may be able to
overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.
Ensure you reassemble data before filtering it, and ensure you explicitly handle these
sorts of cases.
Justification Mitigated by using a higher-level message-based network protocol.

Needs Investigation Bogus Data Entries to Central Server (Backup management)

Category Denial of Service
Priority Low
Description Clients could spam the Central Server with bogus data like client
registrations or snapshots to perform DoS attacks.
Justification The central server currently doesn’t have rate limiting, but it can be
achieved using a reverse proxy.
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Mitigated Replay Attacks (Receiving encrypted backups)

Category Tampering
Priority High
Description Packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or utilize an existing
communication protocol that supports anti-replay techniques (investigate sequence
numbers before timers) and strong integrity.
Justification Replay attacks on data between clients are mitigated by adding a
header to each message with a sequence number and a random nonce negotiated over a
TLS connection with the server.

Mitigated Weak Authentication Scheme (Sending encrypted backups)

Category Information Disclosure
Priority High
Description Custom authentication schemes are susceptible to common weaknesses
such as weak credential change management, credential equivalence, easily guessable
credentials, null credentials, downgrade authentication or a weak credential change
management system. Consider the impact and potential mitigations for your custom
authentication scheme.
Justification Mitigated by using randomly generated keys with state-of-the-art
algorithms.

Mitigated Collision Attacks (Sending encrypted backups)

Category Tampering
Priority High
Description Attackers who can send a series of packets or messages may be able to
overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.
Ensure you reassemble data before filtering it, and ensure you explicitly handle these
sorts of cases.
Justification Mitigated by using a higher-level message-based network protocol.

Mitigated Replay Attacks (Sending encrypted backups)

Category Tampering
Priority High
Description Packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or utilize an existing
communication protocol that supports anti-replay techniques (investigate sequence
numbers before timers) and strong integrity.
Justification Replay attacks on data between clients are mitigated by adding a
header to each message with a sequence number and a random nonce negotiated over a
TLS connection with the server.

Mitigated Elevation Using Impersonation (Sending encrypted backups)

Category Elevation Of Privilege
Priority High
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Description Destination Client may be able to impersonate the context of Source
Client in order to gain additional privilege.
Justification The clients are authenticated towards the central server with their
private key.

Not Applicable Source Client Process Memory Tampered (Sending encrypted
backups)

Category Tampering
Priority High
Description If Source Client is given access to memory, such as shared memory or
pointers, or is given the ability to control what Destination Client executes (for example,
passing back a function pointer.), then Source Client can tamper with Destination
Client. Consider if the function could work with less access to memory, such as passing
data rather than pointers. Copy in data provided, and then validate it.
Justification Memory pointers are not passed over the network.

Mitigated Elevation Using Impersonation (Receiving encrypted backups)

Category Elevation Of Privilege
Priority High
Description Source Client may be able to impersonate the context of Destination
Client in order to gain additional privilege.
Justification The clients are authenticated towards the central server with their
private key.

Not Applicable Destination Client Process Memory Tampered (Receiving en-
crypted backups)

Category Tampering
Priority High
Description If Destination Client is given access to memory, such as shared memory
or pointers, or is given the ability to control what Source Client executes (for example,
passing back a function pointer.), then Destination Client can tamper with Source
Client. Consider if the function could work with less access to memory, such as passing
data rather than pointers. Copy in data provided, and then validate it.
Justification Memory pointers are not passed over the network.

Mitigated Allowed Backup Size Spoofing (Receiving encrypted backups)

Category Denial of Service
Priority Medium
Description Source client could send more data than would normally be allowed.
Justification Destination client will check the size of received files on a client-by-client
basis.

Mitigated Bogus Data Entries Between Clients (Receiving encrypted backups)

Category Denial of Service
Priority Medium
Description Client could connect to a peer and try to send bogus data to perform
DoS attacks.
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Justification Connection has to be established with the cooperation of the server and
both clients. The client will check that the peer is known — only then is the connection
allowed. The client will not allow receiving over a negotiated amount of data.

Needs Investigation Spoofing of Encrypted Data (Sending encrypted backups)

Category Repudiation
Priority Medium
Description Source client might be able to spoof the data that it sends to the
destination which stores it. That can be abused for exploiting the victim with malicious
code or framing the victim for storing illegal data.
Justification The data is obfuscated on disk to prevent the source to have control
over data on disk of the destination. However, this is a complex issue and there are
other possible mitigations.

Mitigated Impersonation of Other Clients (Backup management)

Category Information Disclosure
Priority Low
Description Clients may be able to impersonate other clients to retrieve a list of
backups.
Justification Mitigated by authenticating the clients with a private key.

Mitigated Weak Encryption (Sending encrypted backups)

Category Information Disclosure
Priority High
Description The destination might be able to decrypt the data if the encryption is
not adequate.
Justification Mitigated by using state-of-the-art algorithms and random keys.

Mitigated Backup Tampering (Receiving encrypted backups)

Category Tampering
Priority High
Description Retrieved backups might have been tampered with.
Justification Mitigated by using an authenticated encryption scheme.

Needs Investigation Destination Client Spoofing Storage (Receiving encrypted
backups)

Category Spoofing
Priority High
Description The destination client might not be storing the backup that it receives,
leading to loss of data for the source and spoofed capacity for the destination.
Justification Could be mitigated using a challenge system, where the destination
has to prove that it stores the data. Source will request hashes of certain ranges of
data, which are impossible to respond to without actually having the data.

Not Applicable Backup Retrieval Impossible (Receiving encrypted backups)

Category Denial of Service
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Priority Low
Description The destination client may be offline or refuse to give out backups.
Justification Out of scope.

Not Applicable Source Client Process Memory Tampered (Backup management)

Category Tampering
Priority High
Description If Source Client is given access to memory, such as shared memory or
pointers, or is given the ability to control what Server executes (for example, passing
back a function pointer.), then Source Client can tamper with Server. Consider if
the function could work with less access to memory, such as passing data rather than
pointers. Copy in data provided, and then validate it.
Justification Memory pointers are not passed over the network.

Mitigated Replay Attacks (Backup management)

Category Tampering
Priority High
Description Packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or utilize an existing
communication protocol that supports anti-replay techniques (investigate sequence
numbers before timers) and strong integrity.
Justification Mitigated using TLS for communication between clients and server.

Mitigated Collision Attacks (Backup management)

Category Tampering
Priority High
Description Attackers who can send a series of packets or messages may be able to
overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.
Ensure you reassemble data before filtering it, and ensure you explicitly handle these
sorts of cases.
Justification Mitigated using TLS for communication between clients and server.

Mitigated Authenticated Data Flow Compromised (Backup management)

Category Tampering
Priority High
Description An attacker can read or modify data transmitted over an authenticated
dataflow.
Justification Mitigated using TLS for communication between clients and server.

Mitigated Weak Authentication Scheme (Backup management)

Category Information Disclosure
Priority High
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Description Custom authentication schemes are susceptible to common weaknesses
such as weak credential change management, credential equivalence, easily guessable
credentials, null credentials, downgrade authentication or a weak credential change
management system. Consider the impact and potential mitigations for your custom
authentication scheme.
Justification Mitigated using a randomly generated key as a credential.

Not Applicable Elevation Using Impersonation (Backup management)

Category Elevation Of Privilege
Priority High
Description Server may be able to impersonate the context of Source Client in order
to gain additional privilege.
Justification Each client has its own public key, and anyone can be a client.

Not Applicable Server Process Memory Tampered (Backup management and
client discovery)

Category Tampering
Priority High
Description If Server is given access to memory, such as shared memory or pointers,
or is given the ability to control what Source Client executes (for example, passing
back a function pointer.), then Server can tamper with Source Client. Consider if
the function could work with less access to memory, such as passing data rather than
pointers. Copy in data provided, and then validate it.
Justification Memory pointers are not passed over the network.

Mitigated Elevation Using Impersonation (Backup management and client dis-
covery)

Category Elevation Of Privilege
Priority High
Description Source Client may be able to impersonate the context of Server in order
to gain additional privilege.
Justification Server is authenticated using a valid TLS certificate with a set domain.

Mitigated Weak Authentication Scheme (Backup management and client dis-
covery)

Category Information Disclosure
Priority High
Description Custom authentication schemes are susceptible to common weaknesses
such as weak credential change management, credential equivalence, easily guessable
credentials, null credentials, downgrade authentication or a weak credential change
management system. Consider the impact and potential mitigations for your custom
authentication scheme.
Justification Server has a valid TLS certificate and a set domain.

Mitigated Replay Attacks (Backup management and client discovery)

Category Tampering
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Priority High
Description Packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or utilize an existing
communication protocol that supports anti-replay techniques (investigate sequence
numbers before timers) and strong integrity.
Justification Mitigated using TLS for communication between clients and server.

Mitigated Collision Attacks (Backup management and client discovery)

Category Tampering
Priority High
Description Attackers who can send a series of packets or messages may be able to
overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.
Ensure you reassemble data before filtering it, and ensure you explicitly handle these
sorts of cases.
Justification Mitigated using TLS for communication between clients and server.

Mitigated Potential SQL Injection Vulnerability for PostgreSQL (Database con-
nection)

Category Tampering
Priority High
Description SQL injection is an attack in which malicious code is inserted into
strings that are later passed to an instance of PostgreSQL for parsing and execution.
Any procedure that constructs SQL statements should be reviewed for injection vulner-
abilities because PostgreSQL will execute all syntactically valid queries that it receives.
Even parameterized data can be manipulated by a skilled and determined attacker.
Justification Mitigated by exclusively using prepared statements.

Not Applicable Spoofing of Destination Data Store PostgreSQL (Database con-
nection)

Category Spoofing
Priority High
Description PostgreSQL may be spoofed by an attacker and this may lead to data
being written to the attacker’s target instead of PostgreSQL. Consider using a standard
authentication mechanism to identify the destination data store.
Justification The connection is set up with a internal local Docker network on the
server.

Needs Investigation Potential Excessive Resource Consumption for Server Ap-
plication or PostgreSQL (Database connection)

Category Denial Of Service
Priority Medium
Description Does Server Application or PostgreSQL take explicit steps to control
resource consumption? Resource consumption attacks can be hard to deal with, and
there are times that it makes sense to let the OS do the job. Be careful that your
resource requests don’t deadlock, and that they do timeout.
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Justification Requests to the database are using a fixed number of pooled connections.
However rate limiting is currently not implemented on the server application.

Mitigated Elevation by Changing the Execution Flow in Source Client (Backup
management and client discovery)

Category Elevation Of Privilege
Priority High
Description An attacker may pass data into Source Client in order to change the
flow of program execution within Source Client to the attacker’s choosing.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.

Mitigated Source Client May be Subject to Elevation of Privilege Using Remote
Code Execution (Backup management and client discovery)

Category Elevation Of Privilege
Priority High
Description Server Application may be able to remotely execute code for Source
Client.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.

Not Applicable Data Flow Backup management and client discovery Is Poten-
tially Interrupted (Backup management and client discovery)

Category Denial Of Service
Priority Low
Description An external agent interrupts data flowing across a trust boundary in
either direction.
Justification Out of scope.

Mitigated Potential Process Crash or Stop for Source Client (Backup manage-
ment and client discovery)

Category Denial Of Service
Priority Low
Description Source Client crashes, halts, stops or runs slowly; in all cases violating
an availability metric.
Justification The server is considered trusted, however all incoming data is properly
validated.

Needs Investigation Potential Data Repudiation by Source Client (Backup man-
agement and client discovery)

Category Repudiation
Priority Low
Description Source Client claims that it did not receive data from a source outside
the trust boundary. Consider using logging or auditing to record the source, time, and
summary of the received data.
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Justification More work could be done to log client communications to the central
server.

Mitigated Elevation by Changing the Execution Flow in Server Application (Backup
management)

Category Elevation Of Privilege
Priority High
Description An attacker may pass data into Server Application in order to change
the flow of program execution within Server Application to the attacker’s choosing.
Justification Server application performs extensive input validation and is designed
to use safe data processing methods.

Mitigated Server Application May be Subject to Elevation of Privilege Using
Remote Code Execution (Backup management)

Category Elevation Of Privilege
Priority High
Description Source Client may be able to remotely execute code for Server Applica-
tion.
Justification Server application performs extensive input validation and is designed
to use safe data processing methods.

Not Applicable Data Flow Backup management Is Potentially Interrupted (Backup
management)

Category Denial Of Service
Priority Low
Description An external agent interrupts data flowing across a trust boundary in
either direction.
Justification Out of scope.

Mitigated Potential Process Crash or Stop for Server Application (Backup man-
agement)

Category Denial Of Service
Priority Medium
Description Server Application crashes, halts, stops or runs slowly; in all cases
violating an availability metric.
Justification The server validates all incoming requests. In case of a crash, the
supervisor will restart the application. The application is designed to safely exit in case
of an unhandled error. Running slowly could be mitigated with more advanced logging.

Not Applicable Potential Data Repudiation by Server Application (Backup man-
agement)

Category Repudiation
Priority Low
Description Server Application claims that it did not receive data from a source
outside the trust boundary. Consider using logging or auditing to record the source,
time, and summary of the received data.
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Justification The server is trusted.

Needs Investigation Potential Data Repudiation by Source Client (Receiving
encrypted backups)

Category Repudiation
Priority Low
Description Source Client claims that it did not receive data from a source outside
the trust boundary. Consider using logging or auditing to record the source, time, and
summary of the received data.
Justification More work could be done to log client communications to the central
server.

Mitigated Potential Lack of Input Validation for Source Client (Receiving en-
crypted backups)

Category Tampering
Priority High
Description Data flowing across Receiving encrypted backups may be tampered
with by an attacker. This may lead to a denial of service attack against Source Client
or an elevation of privilege attack against Source Client or an information disclosure
by Source Client. Failure to verify that input is as expected is a root cause of a very
large number of exploitable issues. Consider all paths and the way they handle data.
Verify that all input is verified for correctness using an approved list input validation
approach.
Justification Received messages are properly validated for authenticity and the client
is designed to use safe data processing methods.

Mitigated Data Flow Sniffing (Receiving encrypted backups)

Category Information Disclosure
Priority High
Description Data flowing across Receiving encrypted backups may be sniffed by an
attacker. Depending on what type of data an attacker can read, it may be used to
attack other parts of the system or simply be a disclosure of information leading to
compliance violations. Consider encrypting the data flow.
Justification The backup data is always encrypted on the application layer.

Mitigated Potential Process Crash or Stop for Source Client (Receiving encrypted
backups)

Category Denial Of Service
Priority Medium
Description Source Client crashes, halts, stops or runs slowly; in all cases violating
an availability metric.
Justification The client validates that messages are of a valid size. Receiving data is
capped by negotiated storage space. Data restoration is rate limited.

Mitigated Spoofing the Source Client Process (Receiving encrypted backups)

Category Spoofing
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Priority High
Description Source Client may be spoofed by an attacker and this may lead to
information disclosure by Destination Client. Consider using a standard authentication
mechanism to identify the destination process.
Justification All messages are signed with a private key of the respective peer.

Not Applicable Data Flow Receiving encrypted backups Is Potentially Inter-
rupted (Receiving encrypted backups)

Category Denial Of Service
Priority Low
Description An external agent interrupts data flowing across a trust boundary in
either direction.
Justification Out of scope.

Mitigated Source Client May be Subject to Elevation of Privilege Using Remote
Code Execution (Receiving encrypted backups)

Category Elevation Of Privilege
Priority High
Description Destination Client may be able to remotely execute code for Source
Client.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.

Mitigated Elevation by Changing the Execution Flow in Source Client (Receiving
encrypted backups)

Category Elevation Of Privilege
Priority High
Description An attacker may pass data into Source Client in order to change the
flow of program execution within Source Client to the attacker’s choosing.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.

Mitigated Spoofing the Destination Client Process (Sending encrypted backups)

Category Spoofing
Priority High
Description Destination Client may be spoofed by an attacker and this may lead
to information disclosure by Source Client. Consider using a standard authentication
mechanism to identify the destination process.
Justification All messages are signed with a private key of the respective peer.

Mitigated Potential Lack of Input Validation for Destination Client (Sending en-
crypted backups)

Category Tampering
Priority High
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Description Data flowing across Sending encrypted backups may be tampered with
by an attacker. This may lead to a denial of service attack against Destination Client or
an elevation of privilege attack against Destination Client or an information disclosure
by Destination Client. Failure to verify that input is as expected is a root cause of a very
large number of exploitable issues. Consider all paths and the way they handle data.
Verify that all input is verified for correctness using an approved list input validation
approach.
Justification Received messages are properly validated for authenticity and the client
is designed to use safe data processing methods.

Needs Investigation Potential Data Repudiation by Destination Client (Sending
encrypted backups)

Category Repudiation
Priority Low
Description Destination Client claims that it did not receive data from a source
outside the trust boundary. Consider using logging or auditing to record the source,
time, and summary of the received data.
Justification More work could be done to log client communications to the central
server.

Mitigated Data Flow Sniffing (Sending encrypted backups)

Category Information Disclosure
Priority High
Description Data flowing across Sending encrypted backups may be sniffed by an
attacker. Depending on what type of data an attacker can read, it may be used to
attack other parts of the system or simply be a disclosure of information leading to
compliance violations. Consider encrypting the data flow.
Justification The backup data is always encrypted on the application layer.

Mitigated Potential Process Crash or Stop for Destination Client (Sending en-
crypted backups)

Category Denial Of Service
Priority Medium
Description Destination Client crashes, halts, stops or runs slowly; in all cases
violating an availability metric.
Justification The client validates that messages are of a valid size. Receiving data is
capped by negotiated storage space. Data restoration is rate limited.

Not Applicable Data Flow Sending encrypted backups Is Potentially Interrupted
(Sending encrypted backups)

Category Denial Of Service
Priority Low
Description An external agent interrupts data flowing across a trust boundary in
either direction.
Justification Out of scope.
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Mitigated Destination Client May be Subject to Elevation of Privilege Using Re-
mote Code Execution (Sending encrypted backups)

Category Elevation Of Privilege
Priority High
Description Source Client may be able to remotely execute code for Destination
Client.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.

Mitigated Elevation by Changing the Execution Flow in Destination Client (Send-
ing encrypted backups)

Category Elevation Of Privilege
Priority High
Description An attacker may pass data into Destination Client in order to change
the flow of program execution within Destination Client to the attacker’s choosing.
Justification Client application performs extensive input validation and is designed
to use safe data processing methods.
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Appendix B

User guide

This appendix contains the guide for the client application and a guide for running
the server. It is also available in a convenient website form in the attachment.

B.1 User guide

This section will explain how to install and use the client application.

B.1.1 Installation

The package contains precompiled executables for Linux (built on Fedora Linux 37,
it might not run on other distributions) and Windows (tested on Windows 10). The
executables are self-contained, only relying on standard system dynamically linked
libraries. When on supported systems, simply run the executable in a terminal, where
a first start guide should be displayed. After setting up the application for the first
time, the web user interface will be available.

B.1.1.1 Building from source

The application can also be built from source. To build it, you will need the Rust
toolchain. However, it’s easy to install by clicking the link and following the guide.

After installing the Rust toolchain, the application (including all Rust libraries)
automatically be built and started by running the following command. Make sure that
you are in the client folder.

Compile-time configuration constants can be changed in the defaults.rs file.

cargo run --release

B.1.2 Usage

The client application needs to connect to a server. The default server address is
127.0.0.1:9999, but it can be overridden with the environment variable SERVER_ADDR.

By default, the clients enforce TLS on HTTPS/WebSocket connections with the
server. This can be overridden by setting the USE_TLS environment variable to 1.
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Important: TLS is only designed to be disabled for testing purposes. It’s mandatory
to use TLS in production.

Backuwup client expects to run in a terminal environment and with ANSI color
escapes supported (works on common Linux and modern Windows versions). When
the application is started for the first time, a command line first start guide will show
up. The user can choose to either set up the application from scratch (when creating a
new backup) or from an existing mnemonic (for restoring an existing backup). When
starting from scratch, it’s necessary to save the displayed mnemonic to be able to
perform a restore later if the application data is destroyed.

After the first setup guide is completed, a web user interface is started. To access
it, simply open the displayed link in a browser. The default address of the web user
interface is http://127.0.0.1:3000 (and is accessible only on the local computer).
This can be overridden by the environment variable UI_BIND_ADDR. For example, setting
it to 0.0.0.0:3001 will change the port to 3001 and allow access from outside the
local computer.

The web user interface offers easy access to main functions with buttons at the top
and displays basic progress graphically. Below the panel at the top, there’s a window
that shows logs. The terminal window where the application is running will show even
more detailed logs.

B.1.2.1 Backups and restores

Before starting a backup or a restore, a path needs to be set. That can be done in the
right section of the user interface.

Backups After a backup is started, backuwup will begin scanning the path and
packaging files for transport.

Storage requests After starting a backup, the client will attempt to negotiate storage
space with other peers (which is done via the server). If no peers are available for
a backup, the backup will be paused, and the client will wait. Packaging files and
transporting them will be done simultaneously, up to a certain specified maximum size
of local files.

The client will send a storage request to the server right after a backup starts. If
there’s no other request received by the server, it will be put in a queue and wait for
storage requests from other clients. After the server receives other requests, they will
be matched. If one request is for a greater amount of space than the other, it will only
match up to the smaller size, and the unfulfilled part will get enqueued again and wait
for other requests to come in.

Note for testing

For creating backups, it’s easiest to have two clients which have data of about
the same size in their backup path. After starting a backup on one client, one
can see that files start getting packaged and then the backup pauses. Starting a
backup on the second client will then send another storage request to the server,
they will get matched, and both clients will be able to complete the backup and
successfully transport data to the other peer.
Having datasets with sizes that differ too much will result in the backup never
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being completed due to not having a storage partner. The matching system is
based on a one-to-one storage ratio (with a certain buffer).

After a backup is completed, the snapshot ID of the completed backup will be sent
to the server.

Peer-to-peer communication The clients can only connect to each other if they
are on the same local network and a firewall is not blocking a direct connection. The
backuwup client will attempt to get the local IP address and a random port, which will
be relayed through a server.

Restores Triggering a backup restore will first request and retrieve all files from
all contacted peers. After all packaged data is retrieved, it will be unpacked into the
backup path.

Currently, when restoring a backup, backuwup will attempt to contact all peers
with any negotiated storage, no matter how many files were saved to that peer. For that
reason, a client needs to be able to connect to all previously used peers to successfully
restore a backup.

B.1.3 Notes

Application data is stored in the paths shown in the following tables. These paths can
be overridden by setting the environment variables CONFIG_DIR or DATA_DIR.

Linux

Type Path

Configuration files
$XDG_CONFIG_HOME/backuwup or
$HOME/.config/backuwup

Data from other clients
and temporary backup/restore files

$XDG_DATA_HOME/backuwup or
$HOME/.local/share/backuwup

Windows

Type Path

Configuration files %LocalAppData%/backuwup
Data from other clients

and temporary backup/restore files %LocalAppData%/backuwup

B.2 Server setup guide

This section will explain how to run the required server application.

B.2.1 Using Docker Compose

The easiest way to run the server is to use the bundled configuration files for Docker
Compose on Linux. Docker will automatically build and launch a container with the
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server executable and the required PostgreSQL database. To use this method, please
ensure you have Docker and Docker Compose installed and are in the root folder of the
implementation code.

Now, run the following command:

docker-compose up --build

After the build process, the server should now be running locally with port 9999.
If you want to destroy all data and run everything again, run this command:

docker-compose down

B.2.2 Manual build process
It’s also possible to run the server without Docker. The server binary can be compiled
and launched in an equivalent way to the client binary, except it depends on PostgreSQL
development libraries instead of SQLite.

The PostgreSQL database needs to be run and managed separately. Credentials for
the database can be set up in the server/.env file.

B.2.3 Production deployment
For production deployment, it’s recommended to use the Docker setup, along with a
reverse proxy (like nginx) that provides TLS support with a valid certificate. Using
TLS in production is mandatory.
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Attachment contents

Implementation

readme.txt................................a summary of the attachment contents
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guide.....................................a website form of guide in Appendix B
doc.........................................generated source code documentation

Thesis

thesis.pdf.........................................the thesis in the PDF format
src...........................................the LATEX source code of this thesis
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