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Abstract

This thesis focuses on winner selection in committee election. We provide an overview of voting
systems for single-winner and multi-winner election. Winner selection is often computationally
hard, therefore we introduce election with structured preferences. In election with structured
preferences, the votes are in some way restricted which may help to create more efficient winner
selection algorithms. We describe some of the known structured preferences.

We provide an overview of the current literature on the topic of structured and nearly struc-
tured preferences. We also review current work on committee election with structured preferences
and usage of ordered weighted average (OWA) in committee election.

We propose polynomial-time algorithms for finding a winning committee for approval election
with OWA vector (0,...,0,1) and interval preference restrictions. In such election, a voter
approves a committee only if she approves all of its members. We use this property and show
two approaches for finding a winning committee.

Keywords election, committee election, multi-winner election, OWA voting systems, struc-
tured preferences, voter interval, candidate interval

Abstrakt

Tato prace se zabyva hledanim vitéze ve volbach komisi. Poskytujeme ptfehled volebnich systémi
pro single-winner a multi-winner volby. Hledani vitéze je casto vypocetné narocné, proto zavadime
volby se strukturovanymi preferencemi. Ve volbach se strukturovanymi preferencemi jsou hlasy
volicth néjakym zptisobem omezené, coz muze usnadnit vytvareni efektivnéjsich algoritmu pro
hledani vitéze. Popisujeme nékteré ze znamych strukturovanych preferenci.

Poskytujeme prehled soucasné literatury tykajici se strukturovanych a témér strukturovanych
preferenci. Zkoumame soucasné prace tykajici se volby komisi se strukturovanymi preferencemi
a pouziti ordered weighted average (OWA) ve volbach komisi.

Predstavujeme polynomialni algoritmy pro hledani vitéznych komisi v approval volbach s OWA
vektorem (0,...,0,1) a intervalové omezenymi voli¢skymi preferencemi. V takovych volbéch,
voli¢ schvaluje komisi pouze pokud schvaluje vsechny jeji ¢leny. Tuto vlastnost pouzivame a
ukazujeme dva pristupy pro hledani vyherni komise.

Klicova slova volby, volby komisi, multi-winner volby, OWA volebni systémy, strukturované
preference, interval voli¢ti, interval kandidatiu
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CI
FPT
OWA
STV
SNTV
VI

Candidate Interval

Fixed Parameter Tractable
Ordered Weighted Average
Single Transferable Vote
Single Non Transferable Vote
Voter Interval
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Chapter 1

Introduction

Elections are typically associated with politics. Citizens vote for their favourite candidates or
political parties in order to choose their representation. However, there are many other situations
where a group needs to come to a collective decision. It can be a group of friends picking a
restaurant, deciding on sights for a family to visit on their holiday, or the process of selecting a
talent show winner. We are surrounded by elections, so it is not surprising that there is a lot of
research focused on their various types.

We distinguish two types of elections. These two types are elections where the winner is a
single candidate and elections where we want to select a set of candidates, a committee, of a fixed
size. Committee election is in some ways more challenging. Instead of selecting simply the best
candidate (whatever the criteria for being the best is), we need to find some set of candidates
to maximize the satisfaction of the voters. However, selecting the committee as the set of best
individually ranked candidates is not a universal solution. Imagine, for example, the process of
selecting a set of meals to serve at a picnic. Nearly everyone loves pizza, so serving only various
kinds of pizzas would make a lot of people happy. Yet, there can be a minority of people who
dislike or even cannot eat pizza. For this reason, there is a many different strategies for selecting
the winner, i.e., voting systems. We focus mainly on the so-called OWA based voting systems
which cover a whole range of committee voting systems.

The task of finding a winning committee is computationally hard in many cases. However,
voters’ preferences are not always random. There can be some sort of structure in their prefer-
ences and that may help us find a winning committee more efficiently. Imagine the process of
selecting movies for a movie night with a group of friends. Most of the friends have a favourite
genre of movies and they would, to a certain extent, enjoy watching any movie of this genre. None
of the voters probably has a horror and a romantic comedy movie as their two most preferred
choices. We describe some of the known ways, how preferences can be structured.

In this thesis, we aim to acquaint the reader with the topic of committee election. We
introduce necessary terminology and review current literature with focus on OWA based election
and structured preferences. Lastly, we aim to create algorithms for winning committee selection
in OWA based election with certain OWA vectors and interval structured preferences.

After building the theoretical background in Chapter |2 and reviewing current literature in
Chapter |3} we propose several original algorithms for winning committee selection in Chapter 4.
We focus on specific voting systems and structured preferences and describe two approaches to
selecting a winning committee.
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Chapter 2

Definitions

This chapter contains an overview of the basic aspects of election. This thesis focuses on the
problem of selecting a winner of an election. Therefore, we introduce a number of methods
(voting systems) for winner selection. We describe some of their properties, however, for a
deeper understanding of the properties of voting systems, we refer the reader to [1, 2].

Selecting a winner of an election is often computationally hard. For this reason, we introduce
structured preferences, selecting a winner in an election with structured preferences can be easier
than in the general case. We explain structured preferences more in detail in Section|2.3| In some
situations, voters’ preferences are structured naturally. In Section|2.3] besides the definitions, we
provide examples of such situations when the preferences are structured. For a more in-depth
overview of preference restrictions, we refer to [3].

Our definitions are mostly adopted from (2, 4].

2.1 Basic terminology

Notation We denote the interval {i € N: a,b € N,a < i < b} as [a,b] and integers a, b as the
lower and the upper bound respectively.

We adopt the notation from [4]. For a positive integer r, we use [r] to denote interval [1,7].
For a logical expression P, we use [P] in the sense of the Iverson bracket where [P] =1 if P is
true and 0 otherwise.

We use (non-strict) linear order to refer to a binary relation < on some set X, that is reflexive,
transitive, antisymmetric and for all a,b € X,a < b or b < a. We use strict linear order to refer
to a binary relation < on some set X, that is irreflexive, transitive, asymmetric and for all
a,be X,ifa#b, thena <borb<a.

» Definition 2.1 (Election). An election E = (C,V) consists of a set of m candidates
C = {c1,...,cm} and a collection of n votes V. = {v1,...,v,}. Fach vote v; is associated
to a voter i € [n] and expresses preference (defined later in Deﬁm’tz’onm andm of the voter
over candidates C.

It is worth noting that in the Definition [2.1| V' is not a set since multiple voters can have the
same preferences.

When referring to voters and candidates, we use “he” and “she
approach is inspired by [1].

We use a certain voting rule (voting system) to determine the winner of an election. The
winner can be one candidate in single-winner election or a set of candidates (committee) in
multi-winner (committee) election.

”

(semi-)randomly. This



Definitions

» Definition 2.2 (Single-winner voting rule). Single-winner voting rule (system) R is a function
that for every given election E = (C,V) selects a (possibly empty) subset of C, which we call
winners.

» Definition 2.3 (Committee voting rule). Committee (multi-winner) voting rule (system) R
is a function that for every given election E = (C,V) and a positive integer k < m selects a
(possibly empty) set of k-element subsets of C, which we call winning committees.

Some voting systems guarantee a unique winner meaning that the winner of the election is
always one candidate (resp. one committee). Such voting systems are called resolute. In the
case of non-unique winner, the voting rule returns a set of candidates (resp. committees) that
tie for winning. If we require to obtain only one winner, we can further apply some tie-breaking
mechanisms (e.g., randomly picking one of the tied candidates as a winner).

There are also rules that for some election do not select a winner, i.e., the returned set is
empty.

Different voting rules require a different form of expressing voters’ preferences. The two most
common are votes in the form of preference order and approval preferences.

» Definition 2.4. In election E = (C,V), V = {v1,...,v,}, a preference order (preference list)
v; 1s a strict linear order over C, where the candidates are ordered from the most preferred one
by voter 1.

We write a >=; b, for a,b € C, if a precedes b in the preference order v;. We interpret a »; b
so that voter i strictly prefers candidate a to candidate b.

In some cases, preference order is defined as non-strict linear order, i.e., voter is allowed to be
indifferent in between candidates. It is referred to as weak preference order, however, we do not
consider such preference order in this thesis. Preferences expressed as a preference order are also
referred to as ordinal preferences.

» Definition 2.5. In election E = (C,V),V = {v1,...,v,}, an approval preference v; of a
voter i is a partition of C in two sets of approved and unapproved candidates.
We write a =; b, for a,b € C, if a is approved and b is unapproved.

We refer to the collection of votes V' in the form of preference orders as ordinal preference
profile and in the form of approval preference as approval preference profile. When the type
or preference profile is clear from the context or both are applicable, we simply use preference

profile or profile.

2.2 Voting systems

In this section, we introduce and categorize some of the basic single- and multi-winner voting
rules. Unless stated otherwise, these rules do not guarantee a unique winner.

2.2.1 Single-winner voting rules

All of the voting rules in this section require the votes V' to be submitted as an ordinal preference
profile, i.e., a collection of preference orders.

2.2.1.1 Scoring rules

A scoring rule selects the winner as a candidate with the highest score. Let pos,(c) be a position
of candidate ¢ in the preference of voter v and v: [m] — R a scoring function. The score of each
candidate is then ) _ v(pos,(c)).

The scoring function is required to be non-increasing, meaning that for candidates ¢; and c;
with pos,(¢;) < pos,(c;) it holds that v(pos,(c;)) > v(posy(c;j).



Voting systems

Plurality Plurality is a scoring rule using a scoring function p(i) = [i = 1]. In other words,
each voter gives a point only to the candidate on the top of their preference list.

Veto (antiplurality) Veto is a scoring rule with a scoring function v(i) = [ < n], which
means that voters give a point to everyone but their least preferred candidate.

t-approval In t-approval, only the ¢ most preferred candidates of each voter receive a point.
We define the scoring function as a;(i) = [i < t] for a fixed t < m.

In some sense, we can perceive t-approval as a generalization of the previous two scoring rules
because both of them can be defined as t-approval with ¢ = 1 for plurality and t = m — 1 for
veto.

Borda rule Borda is a scoring rule with a scoring function b(i) = m — 4, which means that
candidates receive points according to how many candidates are ranked behind them.

Table 2.1 shows, how to determine the winner in plurality, veto, 2-approval and Borda. Note,
that for chosen preference profile, the winner(s) of the election are different for each of these
scoring systems.

Points
Plurality Veto 2-approval Borda

Preferenceorders |a b ¢ d|a b ¢ d|la b ¢ d|la b ¢ d
a-b=c+d 1 0 0 0(1 1 1 01 1 0 03 2 1 o0
a-d=c+b 1 0 0 01 0 1 11 0 O 13 0O 1 2
b-=d-c>a o 1 0 oo 1 1 10 1T O 1|0 3 1 2
b=d>c>a o 1 o0 ofo 1 1 10 1 O 1|0 3 1 2
Score 2 2 0 0|2 3 4 3|2 3 0 3|6 8 4 6

M Table 2.1 Example of an election with different winners for plurality, veto, 2-approval, and
Borda scoring systems

2.2.1.2 Pairwise comparison systems

As the name suggests, pairwise comparison systems compare pairs of candidates in order to
determine a winner. For our pairwise comparison systems, we use ordinal preferences.

In order to describe pairwise comparison more accurately, we define pairwise reduced elections
for election E and candidate ¢, as a set of all elections where the candidates are reduced to a
pair C' = (¢, 7),Vj € C\ {c} and the votes are reduced accordingly.

An important notion for pairwise comparison voting systems is Condorcet winner introduced
by Marquis de Condorcet [5].

» Definition 2.6. In election E = (C, V), a Condorcet winner (resp. weak Condorcet winner)
is a candidate ¢ who is preferred to the other candidate by a majority (resp. at least half) of
voters in all of the pairwise reduced elections for E and c.

Roughly speaking, we compare all candidates in head-to-head contests and the candidate
who wins all of her contests is a Condorcet winner and the candidate who wins or ties all of her
contests is a weak Condorcet winner.

It is not hard to see that if there exists a Condorcet winner, she is unique. Every Condorcet
winner is also a weak Condorcet winner, however, there can be multiple weak Condorcet winners.
In some elections, there is no Condorcet winner. We provide examples for election with Condorcet
winner in Table @, multiple weak Condorcet winners in Table @, and no (weak) Condorcet

(9}



Definitions

winner in Table[2.4. In our example, the notation a?b means a head-to-head contest of candidates
a and b, i.e. election reduced to these two candidates.

Pairwise comparison

Preference orders a?h a’lc b?c
a-b>c a a b
b=c+a b c b
a=-c+b a a c

Winner of comparison a a b

M Table 2.2 Election with a Condorcet winner, candidate a is prefered in all of her reduced elections

Pairwise comparison

Preference orders a?h a’lc b?c
a-b>c a a b
c-axb a c c
c-bra b c c
a=-crb a a c

Winner of comparison a a,c c

B Table 2.3 Election with two weak Condorcet winners, candidates a and ¢ both win or tie all of their
reduced elections

Pairwise comparison

Preference orders a?h alc b?c
a-b>c a a b
b=cra b c b
caxb a c c

Winner of comparison a c b

B Table 2.4 Election with no Condorcet winner

Pairwise comparison can be also visualized as the so-called majority graph. Each candidate
corresponds to a vertex and there is a directed edge from z to y, if y is preferred by majority
of the voters to x and a bidirected edge if x and y tie. Edges are also labeled with comparison
results, e.g. if 3 of 4 voters prefer x to y, the directed edge from y to z is labeled 3 : 1. You can
see such majority graphs, e.g., in Figure|2.1.

When a voting system respects the Condorcet winner, it means that it always selects a Con-
dorcet winner if there is one. All of the voting systems in this section respect the Condorcet
winner.

Condorcet voting Condorcet voting is a simple voting system based on selecting a Condorcet
winner. If there exists a Condorcet winner, he is the winner of our election, otherwise, we have
no winner. It follows that in this voting system we always have one or no winner.

Copeland voting system Uunlike Condorcet voting, Copeland voting always selects a (non-
unique) winner. Candidates are compared in pairs and receive 1 point if they are preferred by a
majority of voters in pairwise comparison, « points with 0 < a < 1 if they tie, and 0, otherwise.
Every candidate with maximal score is a winner.
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2:1
(a) Election from Table (b) Election from Table (c) Election from Table E

B Figure 2.1 Majority graphs for elections in Tables @ and @ We can notice that a (weak)
Condorcet winner is a vertex, which has all adjacent edges directed toward itself. A candidate that loses
every pairwise comparison and has no edges directed toward itself is referred to as a Condorcet loser.

We denote these systems as Copeland®, where « is the number of points received in the case
1
of a tie For example, in Copeland?, candidates receive 1 point if they win pairwise comparison
and 1 5 point if they tie.

Copeland system is named after Arthur Copeland, who proposed a Copeland% system [6],
however, there was a version of Copeland rule in the 13th century proposed by a philosopher
Ramon Llull. The generalization with arbitrary « was brought later by Faliszewski et al. [7].

It is worth pointing out that there can never be a tie in an election with an odd number of
voters and therefore, in that case, the Copeland system is equivalent for all a.

In Example 1| we show an example from [1].

» Example 1. Table|2.5 describes an election. We can express the score of candidates with
arbitrary « as

Copeland®(a) = 1 + 2«
Copeland® (b) = a,
Copeland®(c) = 2,

(

Copeland®(d) = 1 +

Now, depending on the chosen «, there are different winners. For o = 0, the winner is
candidate ¢ with 2 points and for a = 1, candidate a wins the election with 3 points. There are
two winners, candidates a and ¢ for a = %, both with 2 points.

Pairwise comparison

Preference orders a?b | alc|atd | b?c | b?d | c?d
a-d=c+b a a a c d d
c-d-b»a b c d c d c
c-d-bra b c d c d c
b=d=a>c b a d b b d
a-c>=d=b a a a c d c
a-c-b=d a a a c b c

Winner of comparison | a,b a a,d c d c

M Table 2.5 Election with different Copeland winners for different o

Dodgson system This system aims to select the winner to be as close to a Condorcet winner
as possible. It assigns a score to each candidate as a number of swaps with adjacent candidates in
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voters’ preference orders which this candidate needs to become a Condorcet winner. The winner
is then the candidate with the lowest score. If there exists a Condorcet winner, she needs no
swaps, therefore she wins the election.

Young system Similarly to Dodgson, Young system counts the number of changes needed to
make a candidate a Condorcet winner. However, instead of altering the votes, it simply deletes
them. Each candidate is assigned a score based on how many votes need to be deleted in order
to make him a Condorcet winner and a candidate with the lowest score wins.

2.2.1.3 Other voting systems

In this section, we introduce some other important voting rules. Some of them build on the ideas
of simpler already mentioned rules and apply them in stages and some of them do not require
the voters to submit complete preference lists (we state this explicitly).

Some of the systems do not guarantee selecting a winner unless we define a tie-breaking
mechanism. Tie-breaking mechanism is applied when the candidates are rated equally and we
need to choose only one of them. Specifically, we presume that we have a tie-breaking mechanism
for plurality with runoff, Single transferable vote (STV), and voting tree systems.

Plurality with runoff This voting system has two stages. The first stage is the same as
plurality, the top candidate from the voters’ preference lists receives a point. Then, instead of
choosing the candidate with the highest score as the winner, we choose two candidates with the
best score for the second round. After that, all other candidates are deleted, and the votes are
altered so that they are now only preference lists of the two remaining candidates. The overall
winner is the candidate who is preferred by a majority of the voters.

Single transferable vote (STV) In the same way as in plurality, all candidates on the top of
voters’ preference lists receive a point. If there exists a candidate who obtained more than half
of the points, she is the winner. If not, we delete a candidate with the least points and alter the
votes accordingly. After that, we check again, if any candidate has more than half of the points
and we repeat this process until we find a winner.

Voting tree Voting tree is also known as the cup protocol because similar system is used to
decide in sports tournaments in the playoff part. We provide a definition for balanced binary tree
and sibling vertices. We use conventional definitions for basic terms such as tree, binary tree,
leaf, parent vertex, subtree, root, the definitions can be found for example in [8].

> Definition 2.7. A binary tree T = (V, E) is balanced if for every vertex u € V it holds that
|L(u)| — |R(u)| < 1, where |L(u)| (resp. |R(w)|) is the number of vertices in the left (resp. right)
subtree of u.

» Definition 2.8. Sibling vertices of a binary tree are vertices that have the same parent.

In the voting tree voting system, we create a balanced binary tree of sufficient size, so that
we can assign each candidate to a leaf vertex. The candidates in the sibling vertices are then
compared and the one being preferred by a majority of voters moves up to the parent vertex. The
candidates who moved up are then compared again to their siblings and this process is repeated
until there is a winner in the root vertex.

The number of candidates does not necessarily have to be a power of two, if the candidate’s
sibling vertex is empty, the candidate just automatically moves up to his parent. However, the
way how we assign candidates to the leaf vertices for the first round can completely change
the outcome of the election. For example, for election from Table we can see the different
outcomes of the voting tree in Figure 2.2.
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B Figure 2.2 Voting trees for election from Table ’ﬂ, where a different assignment of candidates to leaf
vertices outputs different winners

Approval voting In approval voting, voters do not have to submit complete linear orderings
of candidates, instead, their votes are a set of candidates that they approve. The winner of the
election is the candidate who is approved by most of the voters.

It is important to notice the differences between approval voting and the previously mentioned
t-approval scoring system. In t-approval, voters submit a preference list of candidates and approve
a fixed number ¢ of them, in approval voting, a voter can approve any number of candidates from
0 to m. Naturally, when all voters in approval voting decide to approve exactly ¢ number of
candidates the outcome will be equivalent to t-approval.

Range voting Range voting brings an additional option for voters to express preference be-
tween the approved voters. Candidates submit the set of approved candidates along with a
number expressing their degree of preference, usually in some fixed range. These numbers are
then interpreted as scores, they are summed up for each candidate and the candidate with the
highest score wins.

Although we assign scores of candidates, this system cannot be interpreted as a scoring rule
according to our definition, because the assigned number of points can differ between voters and
therefore we would not be able to define a scoring function.

2.2.2 Committee voting systems

Selecting a committee is more difficult than selecting a single winner because the committee can
represent voters’ opinions in many ways. We have to make a choice, if we want to select a group
of k individually best ranked candidates, create a somehow diverse committee, or represent all
groups of voters.

Voting rules derived from single-winner voting systems that select k of the best candidates
are called best-k rules.

» Definition 2.9. Committee voting rule R is a best-k rule if there exists a single-winner voting
rule F, such that F returns an ordering over candidates and R selects the winning committee as
the k candidates, that are ranked as the top k candidates in F.

Note that not all single-winner systems can be used for best-k rules. We can use only those
systems that return an ordering over all the candidates (or at least the first k of them). Therefore,
we would not be able to use for example Condorcet voting or plurality with runoff, unless we
appropriately modify the definition.

The next section covers committee scoring rules, some of them being best-k rules as well.

2.2.2.1 Committee scoring rules

For a committee S, we define a committee position in a voter’s preference order pos(S) as an
increasing sequence of positions of candidates in voter’s preference order, see Example 2|
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» Example 2. For an election £ = (C,V) with candidates C' = {a,b,c,d}, preference list
v; = (b > ¢ > d > a), and for a committee S = {c, a}; the position of S in the preference order
of i is (2,4).

» Definition 2.10. A committee voting Tule R is a committee scoring rule if there exists
a function for every number of candidates m and committee size k that assigns a score to a
committee based on its position in voters’ preference orders and R selects winning committee as
the committee with the highest sum of these scores.

SNTV SNTV (Single non transferable vote) is a best-k rule derived from plurality. Voters give
a point to every committee, that includes their most preferred candidate.

Bloc This voting system is based on t-approval. We set ¢ = k, so the number of approved
candidates is the same as the number of committee members. We then choose a committee that
has the greatest sum of approval votes.

k-Borda This is a best-k rule based on the Borda system for single-winner election. Voters
assign candidates scores with the Borda scoring function and the committees calculate their score
as a sum of Borda scores of its members.

Chamberlin-Courant and Monroe In this family of rules, we use a satisfaction function
a: N —= N to measure how well each voter is represented. We assign each voter one of the
committee members as their representative with an assignment function ¢ and calculate the
voter’s satisfaction based on the candidate’s position in the voter’s preference.

The overall satisfaction ¢ then may be computed for example by one of the following;:

0(¢) =) a(pos,(¢(v))), Cmin(¢) = min a(pos, (4(v))).

veV
veV

Both Chamberlin-Courant [9] and Monroe [10] find an assignment function ¢ which maximizes
the overall satisfaction £(¢). The winning committee is the committee with the highest overall
satisfaction. The assignment function for the Monroe rule additionally has to satisfy the Monroe
criterion: each candidate in the winning committee is assigned to either [#] or [ 7| voters.

Function ¢, is a utilitarian measure, it calculates the overall satisfaction as a sum of satisfac-
tion of all voters. Therefore, a possible outcome of an election with ¢; is a small group of voters
with high satisfaction and a lot of dissatisfied voters.

Egalitarian measure /,;, prevents this situation, an election with £;,;, maximizes the satis-
faction of the least satisfied voter. However, a different problem can occur when a single voter
with diametrically different opinions can cause that the system does not elect a committee that
would be preferred by all of the other voters.

Note that SNTV, Bloc, and k-Borda can be defined as a Chamberlin-Courant rule with ¢,
and satisfaction functions agnTv (i) = [i = 1], aBloc(?) = [i < K], and o Borda(i) = 1.

OWA based systems Before defining OWA based system, we first define a weighted ordered
average (OWA) operator over k numbers.

» Definition 2.11. OWA operator f over k numbers is a function defined through OWA vector
a® = (aq,...,a1) of k numbers. Let zF) be a vector of k numbers and let x+ = (:ch’, . ,xt) be
the nonincreasing rearrangment of z®) . Then we set

k
famw (x) = Zaixf .
i=1



Voting systems

Let W be a k-sized committee. Let s, y be the vector of scores that voter v assigns to candidates
in W. Then, the score of a committee W in election E = (C,V) is

S(W) = Z fa(k)(Sy’W) .

veV

Informally, we describe calculating the score as follows. Let W be a k-sized committee. For a

voter v, we have a vector s,y of scores she assigns to candidates in W. We order this vector

in nonincreasing order and denote it si w- We then compute the dot product of si w and the

OWA vector a®). This is the score of committee W from voter v. We repeat this for all voters
and calculate the overall score of committee W as a sum of scores from particular voters. The
winning committee is then a committee with the maximal score.

For obtaining the vector s, -, we need each voter to assign scores to candidates. Scores
can be arbitrary but we distinguish two special cases. In the first one, voters assign scores to
candidates based on some single-winner scoring function. Such OWA election is then defined by
the OWA vector, committee size, and the single-winner scoring function.

The second case is approval election. Voters submit lists of approved candidates, these receive
score 1 whereas disapproved candidates receive 0.

OWA based systems provide further generalization of scoring systems. We can define any
best-k rule as an OWA rule with OWA vector (1,1,...,1) and with a single-winner scoring
function for assigning score to candidates.

We explain the process of calculating the score in Example|3 on the election from Table 2.6.

Borda score

a b c
viia=c>b 2 0 1
ve: b-c>a 0 2 1

M Table 2.6 Election with assigned Borda scores

» Example 3. Consider election from Table 2.6 with committee size 2, OWA vector (1,1) and
Borda scoring function. We show how to calculate the score of a committee W = (b, ¢).

For vy, the vector of assigned scores is s,, w = (0,1). We order the elements in nonincreasing
order to get a vector Sil,w = (1,0). We calculate dot product of Sil,w and OWA vector (1,1)
as (1,0)-(1,1) =1-140-1 = 1. The score of committee W obtained from voter v; is 1.

The score obtained from voter vs is calculated the same way. We have a vector s,, w = (2, 1),
order it to get si%w = (2,1). The dot product of si%w and the OWA vector (1,1) is 3.

The overall score of the committee W is then the sum of scores from vy and vs, in this case, 4.

Now, we explain how particular OWA vectors affect the election outcome.

Imagine an example of creating a lunch menu for a restaurant. You need to select some k
meals to offer on a particular day and you want to maximize the satisfaction of your customers,
i.e., the score they would give to this list of & meals.

In this scenario, customers are voters and assign some score to every meal the restaurant is
able to prepare. Since every customer eats only one lunch, he cares only about his most preferred
meal on the list. This can be expressed in the election by choosing OWA vector (1,0,...,0).

However, if your customers also buy a different meal for dinner along with their lunch, you
can simply alter the OWA vector to (1,1,0,...,0). In such an election, the sum of scores of each
customers’ two favourite meals is maximized.

In this imaginary scenario, your customers may have trouble making decisions and having
too many good options bothers them. They can tolerate two good lunch offers on the menu but
more than that makes them unhappy. You can express such situation for example by using OWA
vector (1,1,—1,...,—1).

11



12

Definitions

There are no restrictions on OWA vectors, they do not have to be nonincreasing or binary.
There can be an election where voters appreciate only the second item with vector (0,1,0,...,0)
or election with vector (1,2,..., k) where their satisfaction increases with the growing number
of favourite candidates.

We focus on one specific case of OWA election. In Chapter|4, we propose algorithms for finding
a committee in an election with OWA vector (0, ..., 0, 1) and approval scoring of candidates. This
means that each voter scores the approved candidate with 1 point and disapproved with 0. Let
us illustrate such an election with an example.

Imagine a group of friends creating a party playlist. Each of the friends (voters) approves
some of the songs (candidates). However, if they hear a song they dislike at a party, it ruins
their mood and they are dissatisfied with the party. Therefore, their overall ranking of the party
is only as good as the worst song. This is expressed with the OWA vector (0,...,0,1). Since
they rank the songs with approval votes, we can simply say that the friends (voters) like the
party (committee) only if they like all of its songs (candidates). This simplification later helps
us create algorithms for finding a winning committee in Chapter 4}

2.3 Preference restrictions

In certain situations, we can expect the voters’ preferences to be somehow structured. For ex-
ample, in a political election, there probably will not be many voters, whose two most preferred
candidates are from opposite sides of the political spectrum. Instead, voters will approve candi-
dates, that are in some sense similar. Another example could be roommates who try to decide
on a time to set an alarm clock. Probably, each of them will have a certain time interval they
find acceptable, it does not make much sense for someone to prefer either exactly 9 or 10 am but
disapprove of the times in between.

In this section, we introduce preference (domain) restrictions, certain limitations of how the
voters are allowed to vote. We refer to restricted voter preferences as structured preferences.

2.3.1 Preference list restrictions

Single-peaked preferences One of the basic domain restrictions is single-peaked preferences.
An example of this domain could be a group of voters deciding on the temperature to set on a
thermostat. Everyone has their ideal temperature and the further other temperatures are, the
lower they are in the voter’s preference order.

To define single-peakedness formally, we use top(v;) to denote the most preferred candidate
in the preference list v;.

» Definition 2.12. Let V' be an ordinal preference profile over the set of candidates C' and let <
be a linear order over C'. A preference list v; over C is single-peaked with respect to <, if for
every pair of candidates a,b € C with top(v;) <b<a or a<b<top(v;) we have b =; a.

A preference profile V' over C' is single-peaked with respect to < if every vote in V is single-
peaked with respect to <.

A preference profile V over C' is single-peaked if there exists a linear order < over C' such that
V' is single-peaked with respect to <. We refer to < as candidate axis of the preference profile.

Single-peaked preferences can be visualized on a gr