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Abstract

Nonnegative matrix factorization is a method of matrix factorization, that can approximate
data by a low-rank representation. This representation can be exploited for reducing the size
of an image file while keeping most of the visual quality. An initialization of the decomposition
algorithm is needed to produce the low-rank approximation. In this work, we propose the
NMFNet neural model to accomplish the task of this initialization. The model is then compared
to other initialization techniques used in practice. Random initialization, NNDSVD initialization
and K-means clustering were chosen for this comparison. Our model was shown to compare
favorably to these methods.

Keywords Image compression, Nonnegative matrix factorization, Nonnegative matrix factor-
ization initialization, Machine learning, Artificial neural network, Autoencoder

Abstrakt

Nezáporná faktorizace matic je metoda maticové faktorizace, která data reprezentuje v prostoru
nižš́ıho řádu. Tato reprezentace může být využita při kompresi obrázk̊u. Algoritmy pro výpočet
tohoto rozkladu potřebuj́ı nějaké prvotńı nastaveńı, tato práce se zabývá problémem hledáńı
tohoto prvotńıho nastaveńı, které vyúst́ı v co nejlepš́ı možnou kvalitu komprimovaného obrázku.
Navrhli jsme neurálńı model NMFNet, který takové prvnotńı nastaveńı najde a tento model jsme
porovnali s technikami běžně použ́ıvanými v praxi. Pro toto porovnáńı byly zvoleny 3 techniky:
náhodná inicializace, NNDSVD inicializace a K-means shlukováńı. Bylo ukázáno, že náš model
má dobré výsledky ve srovnáńı s těmito technikami.

Kĺıčová slova Komprese obrázk̊u, Nezáporná faktorizace matic, Inicializace nezáporné fak-
torizace matic, Strojové učeńı, Umělá neuronová śıt’, Autoencoder
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Introduction

Matrix factorization techniques have been widely used over the past few decades to a great effect
in recommender systems, genome analysis, image processing and many other applications. The
idea behind matrix factorization is to take a large matrix and decompose it into two or more
usually smaller matrices. From these matrices, the original matrix can be reconstructed with
some degree of approximation by multiplying these smaller matrices. The goal of this exercise is
to concentrate the information of the large matrix in useful ways so insights can be extracted.

The other benefit of the decomposition into smaller matrices is the potential reduction in
space needed to store the data, thus it can be used for data compression. This work will use a
Non-negative Matrix Factorization (NMF) based strategy to compress images. We build on the
work of Marek Pikna, who in his master’s thesis proposed an NMF-based compression scheme
and compared it with state-of-the-art compression algorithms[1].

NMF is a method of factorizing non-negative matrices – for example images – into two also
non-negative matrices, that can be much smaller (meaning can have much fewer elements com-
bined) than the initial matrix. This method, however, is highly dependent on the initial setting
of its algorithm. With a good initial setting, NMF can find the solution to the decomposition
much faster and the solution can be of much higher quality. Without it, the algorithms are
not guaranteed to converge at all. Unfortunately, there does not exist a simple rule for picking
the correct initialization method for the problem a researcher is trying to solve. A try-and-see
approach is often chosen for deciding which of the strategies is to be used.

Artificial Neural Networks (ANNs) are state-of-the-art machine learning models, with applica-
tions across almost every domain. Their high adaptability, ability to learn complex relationships
from the data and resistance to the data representation are just some of the advantages they
bring to the table and why they are used so heavily by the machine learning community.

In this work, we try to join these 2 methods, ANN for the initialization and NMF for obtaining
a more efficient representation of the data, for the purpose of image compression. We hope to
improve Pikna’s compression scheme, specifically to reduce the number of iterations in the NMF
step.

1



2 Introduction

Goals

The goal of this work is to use an ANN to find a good first setting of an NMF algorithm and
compare our results with more traditional initialization techniques. The idea of using ANN for
NMF initialization has not yet been explored much in the literature and we hope to gain some
useful insights into the viability of this strategy.

In order to achieve this goal, we must first:

analyze existing NMF initialization strategies,

analyze different ANN architectures useful for image processing,

This will be the loose structure of the theoretical part of this work, the practical part will be
structured as follows:

propose a model for NMF initialization,

choose technologies best suited for our task,

train the model and determine the best possible hyperparameter configuration,

compare our model to more traditional initialization strategies.



Introduction 3

Related works

In his master’s thesis [1], Marek Pikna proposed a compression scheme based on Nonnegative
Matrix Factorization (NMF). He then experimented with different representations of the image
data and the NMF algorithm parameters, namely the rank of the decomposition and the number
of iterations of the algorithm. Some initialization methods were also tried.

His scheme uses an algorithm based on multiplicative updates with squared Euclidean dis-
tance. This algorithm is further discussed in Section 1.1. Much thought was given to the color
representation of the image. The ”naive RGB”, ”separate RGB” and the ”Y’CBCR” compression
schemes were developed. In the naive RGB scheme, the 3 color channels of the image first merged
into a single matrix, this matrix was then decomposed using the NMF algorithm. The separate
RGB scheme used 3 decompositions, each color channel was decomposed by itself.

The Y’CBCR compression was the most interesting. The Y’CBCR color space leverages the
way the human eye perceives colors. The eye is significantly more sensitive to green than the other
two primary colors. Instead of using the 3 color channels for representing the primary colors,
Y’CBCR combines the colors in certain proportions in the Y’ channel of the image. This channel
is called luma. As a result, the luma channel contains the black-and-white representation of
the image, and the CB and CR channels are then used to add color to produce the final colored
image. The compression scheme using the Y’CBCR color space further prevented the loss of
visual quality of the image by compressing only the CB and CR channels of the image, leaving
the luma untouched.

For each of these spaces, the rank and number of iterations variables were tested. The Y’CBCR
scheme performed the best. Three of the NMF initialization methods were used: random initial-
ization, random Vcol initialization and the Non-Negative Double Singular Value Decomposition
(NNDSVD). These methods are described in Section 1.2 of this work. Interestingly the NNDSVD
was significantly outperformed by the random initializations in the image quality tests. On the
other hand, some artifacts were introduced on artificial images (solid color images) by random
initialization. The random and random Vcol initializations performed about the same. The
compression time for decomposition with a small rank, e.g. 10, and 300 iterations is stated to be
around 10 seconds, when increasing the rank to 150, compression time rose to 20 seconds. These
figures however are to be taken as a relative measure because no hardware details were provided.
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Chapter 1

Introduction to Non-negative
Matrix Factorization

▶ Definition 1.1. Non-negative Matrix Factorization (NMF) is a method of matrix
factorization. Given matrix V ∈ Rn×m

0+ , find matrices W ∈ Rn×r
0+ and H ∈ Rr×m

0+ , such that

V ≈WH. (1)

When V is interpreted as a data matrix, where m columns represent m data samples and n
rows represent n features, matrix W is a basis matrix containing r row base vectors, serving as the
latent features, and H is a coefficient matrix by which each data sample can be approximatively
reconstructed by multiplying the corresponding column of H with the base matrix W .[2, 3, 4]

NMF was first described in [2] by Lee and Seung. They proposed this matrix factorization
technique as an alternative to other state-of-the-art machine learning (ML) methods of the
time. They see a parts-based representation as the main advantage of NMF in contrast to for
example Principal Component Analysis (PCA) that describes the data globally. The method
achieves this by constraining the decomposition by non-negativity, in other words only additive
combinations are allowed in the representation.[4] This is perhaps best demonstrated by the now-
famous comparison of the learned representation of images of faces by NMF and PCA algorithms.
As can be seen in Fig. 1.1 the pure additivity of NMF leads to parts-based feature extraction
and thus to better interpretability.

A highly useful property of NMF is the low-rank representation it produces. This property
is particularly useful in the context of data compression and feature extraction. As can be seen
from Def. 1.1, when r is chosen such that r < min(n,m)

2 , the number of elements of the V matrix
is strictly lower than the number of elements of the W and H matrices combined.

Low-rank approximation algorithms have been a topic of discussion in the ML community for
many years. The dimensionality reduction in the data allows for valuable insights to be gained
and great interpretability of the results. It is important to note, that under certain conditions
NMF can even derive the ground truth from the data, and thus can be used as a generative
model.[5, 4]

5



6 Introduction to Non-negative Matrix Factorization

Figure 1.1 Comparion of NMF and PCA representations. The left matrices are the matrices composed
of the learned basis vectors (the W matrix for the NMF). Each square of these basis matrices represents
a single basis vector, which has been folded to the shape of the original image for a better illustration.
The middle matrices are the coordinate vectors corresponding to the original image, the vectors were
folded in the same manner as the basis vectors. The values of the elements of the vectors are represented
using color: white represents 0, the more black an element is, the more positive the value, conversely
the more red, the more negative.[2]

Many subcategories exist for NMF, the most fundamental of which is the Basic NMF. Basic
NMF is the problem described above, the only constraint is the non-negativity of the V , W and
H matrices. The specific algorithms used for computing its solution are described in Section 1.1
below. Exact NMF is a problem where we try to decide if a non-approximating (exact) solution
exists for the factorization, and if so, find the solution. The algorithms for solving Exact NMF
are however proven to be NP-hard, and therefore the algorithms for finding the exact solution
have limited application in practice.[6]

Many Constraint NMF subproblems exist, where additional constraints are imposed on the
decomposition, such as sparseness, orthogonality or discrimination. The goal of additional con-
straints is to improve NMF performance in specific tasks, such as classification or clustering,
or improving the uniqueness of the solution. Generalized versions of the NMF also have their
application: Semi-NMF drops the non-negativity constraint on the V and H matrices, therefore
it can be used on any data matrix; Non-negative Tensor Factorization decomposes tensors (a
generalization of a matrix to multi-dimensional space) instead of matrices.[4]

Since the Exact NMF problem is NP-hard, the other variants often use iterative algorithms
for finding the solution. A direct consequence of this is the need for some initial setting of the
W and H matrices. The reason behind this is the iterative algorithms only improve the previous
solution, instead of computing the solution outright and so some initial setting is required. Plenty
of methods have been explored for this task, they can be categorized into 4 categories: Random,
Clustering, Low-rank and Heuristic.[7] Specific algorithms are described in the section below.

1.1 NMF algorithms

The classic approach to computing a solution of the decomposition is through alternating min-
imalization of an objective function. The two widely used objective functions are the Square
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of Euclidian Distance (SED) and the Generalized Kullback-Leibler Divergence (GKLD). SED
function is based on minimizing the sum of the squares of the entry-wise differences of the V
and WH matrices. The advantage of this function is its simplicity and ease of computation. It
is described by the equation below:

SED(W, H) = 1
2 ∥V −WH∥2

2 . (2)

GKLD is more widely used in practice than the SED. Interestingly the function is not sym-
metrical, and so it cannot be called a distance, instead the function measures the relative entropy
of the matrices. It is described by the equation below:

DKL(V, WH) =
∑
i,j

(Vi,j log Vi,j

(WH)i,j
− Vi,j + (WH)i,j). (3)

It is important to note, that both functions are convex in W and H separately, but not in
both W and H together. This implies that a convergence to a global minimum is not realistic
and only a local minimum convergence can be expected. To be more precise, the algorithm
converges only to a stationary point, as proven by [8]. The original Multiplicative Updates (MU)
algorithm, developed by Lee and Seung[3], is still widely used as a baseline. ”... [The algorithm]
is simple and parameter-free with a low cost per iteration, but [it] converges slowly due to a
first-order convergence rate.”[4]

Algorithm 1: A generic MU framework
Input : V ∈ Rm×n, r ∈ N+
Output: W ∈ Rm×r, H ∈ Rr×n

1 Initialize W and H
2 while Stop condition not reached do
3 Apply the update rule for W
4 Apply the update rule for H

5 end
6 return W, H

For each of the objective functions, different update rules must be derived. For the SED
objective function the update rules are defined as follows:

Hαµ ← Hαµ
(W T V )αµ

(W T WH)αµ
Wiα ←Wiα

(V HT )iα

(WHHT )iα
. (4)
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The update rules for the GKLD objective function are defined as follows:

Hαµ ← Hαµ

∑
i WiαViµ/(WH)iµ∑

k Wkα
Wiα ←Wiα

∑
µ HαµViµ/(WH)iµ∑

ν Hαν
. (5)

Other algorithms of note are the Alternating Non-negative Least Squares[9] and Quasi-
Newton Optimalization[10], these however are not relevant to this work since the compression
scheme proposed by Pikna uses the multiplicative updates algorithm.

1.2 NMF initialization methods

The initial setting of the factor matrices is crucial to fast convergence and quality of the result.
In practice, random initialization strategies are employed most frequently, their advantage being
simplicity and very fast initialization. The disadvantages of these strategies are slow convergence
and results are not reproducible. As a result, factorizations using this method must be performed
multiple times to make sure the solution found was in fact the best possible.[7]

The idea behind the clustering-based algorithms is the NMF is very similar to K-Means
clustering and in some cases even mathematically equivalent.[11] The similarity of these methods
leads in some cases to an initialization that is close to the convergence point of NMF, thus
reducing the number of iterations needed. The method also leads to great interpretability, since
the clustering can summarise the data well. The application of clustering for initialization has
great results in environmental research and signal and image processing.

Low-rank initialization for NMF uses some other low-rank representation method to initial-
ize the factor matrices. The most popular choices are Singular Value Decomposition (SVD),
Non-Negative Double SVD (NNDSVD), Non-negative Principal Component Analysis and Non-
negative Independent Component Analysis. These approaches try to combine the advantages of
NMF with other low-rank representation methods, hence producing a better solution for specific
tasks.[7]

Heuristic initialization is the most recent and the least explored area of the initialization
algorithms for NMF. Some notable algorithms are based on Population-Based Algorithms and
the Genetic Algorithm The problem with using heuristic initialization for NMF is the lack of
proof of convergence, despite that, they can have good results in certain applications.[12]

In the subsections below are listed and briefly described initialization strategies used in lit-
erature. If no initialization strategy is specified for the H matrix, random initialization is used
or the values are computed from W by the least squares method.
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1.2.1 Random-based algorithms

Random initialization sets the factor matrices with random positive values.

Random Vcol initialization constructs each column of W as an average of p randomly selected
columns of V .[13]

Co-occurrence initialization first computes a co-occurrence matrix of the data, then chooses r
of its columns as W .[13, 14]

Gabor wavelet initialization sets the values of W based on the Gabor wavelet[15, 16], it is
particularly useful when extracting features from images. The wavelet generates a specified
number of transformations of the original data, these transformed images are then used as
columns of W .

1.2.2 Clustering-based algorithms

K-means initialization performs standard K-mean clustering on the data, the number of clusters
is chosen as r. The coordinates of the cluster centroids are then used as columns of W

Fuzzy C-means initialization performs C-mean clustering on the data, and the number of
clusters is chosen to be r. This assigns a membership value to each of the data points for
each cluster, this matrix is then used as W .

Hierarchical clustering initialization groups the data attributes instead of the data points
themselves. The matrix rank is used as a distance metric, so linearly dependent attributes
fall into the same cluster.[17]

1.2.3 Low-rank-based algorithms

Singular Value Decomposition initialization first computes SVD of the data, the negative
elements of U and V matrices are set to 0. r first singular values are then chosen and the
corresponding truncated matrices U and V are used as W and H.

Non-Negative Double Singular Value Decomposition initialization is based on two runs
of SVD, the first approximates the data and the second approximates the positive parts of
the first decomposition.[18]

Non-negative Principal Component Analysis initialization performs PCA on the data, the
basis vectors of r first principal components are then used as columns of W with their negative
elements set to 0.
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Chapter 2

Artificial Neural Networks

Artificial Neural Networks are a class of machine learning models, that use units called
neurons to approximate some function based on a sample of data points from that function. As
the reader might have guessed, the use of the term ”neural” in the name of these models is not
a coincidence. The first ANN model was proposed by American psychologist Frank Rosenblatt
in 1958. He described a model, called The perceptron, based on the structure of neurons in the
human eye. This model was then trained and it learned to recognize simple shapes in images.
For example, it could distinguish the letter ”X” from the letter ”E”.[19, 20]

A biological neuron is a type of brain cell with 3 distinct parts: the cell body, the dendrites
and the axons. The dendrites are a part of the cell responsible for receiving signals from other
neurons. Vice versa the axon is responsible for sending signals to the other neurons by connecting
to their dendrites. The more signals are sent over this neural connection, the stronger the link
becomes. It is believed that from this behavior, consciousness and the ability to learn emerges,
though none have yet been able to describe this process fully.[21]

Analogously neuron in an ANN is a function that maps n inputs (a parallel to dendrites) to
usually one output (a parallel to axon), though more outputs are not disallowed. The domain
of inputs and outputs is arbitrary, they can be scalars, vectors, matrices and even tensors over
the real or the complex set. This work focuses on a category of ANNs: Feedforward Neural
Networks. The word feedforward in their name represents the fact they can be expressed by
a directed acyclic graph with source and sink nodes and information flows through them in
accordance with this graph, from the inputs (sources) to the outputs (sinks).

The neurons are generally organized in layers. The first layer of the network is called the
input layer, the final layer is called the output layer. All the layers between the input layer
and the output layer are called the hidden layers. For a better visual representation see Fig.
2.1. The number of layers in a model determines its depth. The number of neurons in a layer
is the layer’s width.

The edges of the ANN graph represent connections between the neurons, each of the con-
nections has a weight. The output of the first neuron is first multiplied by the weight of the
connection and is then given to the second neuron as an input. The values of the weights of the
connections are learned parameters. At the beginning of the learning process, they are initialized
to small random values.

11
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Figure 2.1 A visualization of a simple neural network

The function, which maps the neuron’s inputs to the outputs is called the activation func-
tion. The specific types of activation functions are discussed in Section 2.3 below. The desirable
properties of an activation function are as follows:

the function domain is equal or a superset of the set of all possible inputs,

the function is continuously differentiable1.

The former property is self-explanatory, a situation in which a neuron cannot map an input
to an output is quite undesirable. The latter property is related to the learning process. For each
neuron, we want to be able to compute the gradient of its activation function, in other words, to
tell how quickly each of the input variables changes the output of the neuron and with it, how it
affects the network’s error. If we then know the amplitude of the error of the neuron’s output,
we can adjust the neuron’s weights and parameters based on the derivation. The method of
obtaining the gradient for the neurons is called back-propagation, backprop for short. Backprop
is discussed in Section 2.1 of this chapter.

The process of teaching an ANN is very similar to teaching any other model. First, a loss
function must be defined. A loss function L(y, ŷ) compares the desired output y with the
actual output of the network ŷ and yields a scalar error. As discussed, this error can then
be used together with the neuron gradients to update the network’s parameters. This process
is called optimization. Types of loss functions and optimization algorithms are discussed in
Sections 2.2 and 2.4 respectively.

1Though functions with non-existing differentials at points are also widely used, with explicitly defined point
differentials.
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2.1 Back-Propagation

In this section, we’ll describe the process of computing the neuron gradients. Back-propagation
is the most popular method of obtaining the gradients, but it is not the only method. It is
helpful to think of each layer of an ANN as a function. This function is defined by the activation
functions of the neurons inside the layer. If we find the gradient of the whole layer, implicitly we
have also found the gradients for each of the neurons. The network then can be thought of as a
composite function consisting of these layer functions. Fig. 2.2 helps to illustrate this point.

Figure 2.2 Functional representation of the feedforward network. Variable w serves as the network’s
input, variables x and y are the network’s hidden states and z is the network’s output. The function f
is the representation of the layer transformation, in this case, the network has the same 3 layers.[22]

The network from the example can then be described with this equation:

z = f(f(f(x))), (1)

where x is the input data and z is the prediction.

With this understanding of the model, deriving the gradient of the network’s output with
respect to the inputs can be calculated using the chain rule of calculus. Goodfellow describes
the chain rule of calculus for obtaining the layer function derivatives in [22] thusly:

Let x be a real number, and let f and g both be functions mapping from a real number to a
real number. Suppose that y = g(x) and z = f(g(x)) = f(y). Then the chain rule states that

dz

dx
= dz

dy

dy

dx
.

From this, he then generalizes the rule for vectors and derives this equation, for the calculation
of the network’s gradient:

∆xz = ∂z

∂y

T

∆yz,

where ∂y ∂x is the n×m Jacobian matrix of g.
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With this calculation, we can determine the gradient of every layer with respect to the
output of the network. If we then know the gradient of the output error, we can adjust the
layer’s parameters accordingly.

2.2 Loss functions

The loss function, sometimes called the objective function or the cost function, determines the
model’s error for a given pair of expected and predicted outcomes2. It is important when de-
signing any ML model, to choose the loss function well. The goal of the model is to minimize
the loss function and a bad choice can lead to the model producing undesirable solutions. The
rest of this section is dedicated to describing 3 popular loss functions used in practice.

Mean Absolute Error (MAE) computes the average absolute difference between the ex-
pected and predicted output. This function is useful when we want to fit the model close to
the median of the data since the function minimizes when the areas with high data density
are fitted well. The main problem of this function lies in the failure to punish the error of
the outlying data.

MAE(Y, Ŷ ) = 1
n

∑
|Y − Ŷ |.

Mean Squared Error (MSE) computes the average squared difference of the expected and
predicted output. In comparison with the MAE, MSE minimizes when the mean of the data
is well-fitted. MSE also fits outlying data well, because it punishes the expected-predicted
output distance progressively.

MSE(Y, Ŷ ) = 1
n

∑
(Y − Ŷ )2.

Cross entropy is used mainly for classification tasks. It measures the number of bits needed
to represent the expected probability distribution in the learned predicted probability distri-
bution.

H = −E
X,Y ∈p̂data

log pmodel(Y |X),

where E is the expected value and p is the probability. It is interesting to note, that the for-
mula is very similar to the calculation of entropy for a given discrete probability distribution.

2.3 Activation functions

The field of activation functions is a very diverse one. In fact, most new functions used in practice
are not even published, unless they bring some clear and significant improvement. Here we list
some of the most popular functions used.

Linear Unit (LU) is a very simple activation function. It uses the linear function with w and
b as coefficient and intercept respectively. A network consisting only of linear units is itself
linear and cannot learn to approximate a non-linear function effectively.

2Or a set of expected-predicted output pairs.
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Rectified Linear Unit (ReLU) is a function g(x) = max(0, x). It is used on top of the linear
unit as a non-linearization operator. It is widely used today for its simplicity and great
results. The unit suffers from the ”dead ReLU” problem, where the input of the function is
always negative, and thus the function always outputs a 0. The gradient of the functions is
in this case flat and so the unit never unlearns this behavior. This property can be beneficial
in applications, where sparse parameter space is desired.

Sigmoid function used to be the most popular activation function until it was overtaken by
the ReLU. The sigmoid maps the whole real number line to an interval (0, 1). This is a great
property for binary classification tasks because we can interpret the value of the function
as a probability, that the input belongs to a class. Inversely the function suffers from the
”vanishing gradient” problem. When given an extreme input, positive or negative, a change
in that output has an infinitesimal effect on the gradient. This can lead to a slow convergence
when left unchecked.

Softmax function is a generalization of the sigmoid function for vectors. Values of all the
elements of the vector are bounded to an interval (0, 1) with the additional condition that
L1 norm of the output vector is equal to 1. In other words, we can think of the softmax as a
probability distribution over the input vector’s elements.

Figure 2.3 Linear Unit function Figure 2.4 Rectified Lienar Unit funciton

Figure 2.5 Sigmoid funciton

Figure 2.6 Softmax for a vector (v1, v2)[23]
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2.4 Optimizers

The role of the optimizer in the neural network is to update the parameters of the network
according to the gradient obtained from the back-propagation algorithm. Most optimizers are
based on the Gradient Descent (GD) algorithm. GD is an iterative convex optimization algo-
rithm, i.e. it minimizes convex functions, in our case, it minimizes the loss function. As the
reader might have guessed, the problem in ANNs, and in other ML algorithms where GD is
used, is the loss function is not strictly convex with respect to the model’s parameters. This can
result in the optimization finding some local non-optimal minimum instead of the optimum.

The addition of the so-called ”momentum” to the GD algorithm helps to improve its optimum-
finding performance. The idea of the momentum is to take into consideration the gradients of
the previous training steps instead of just the immediate gradient. The momentum causes the
model to ”overshoot” the local minimum and in so doing can find a path to a better result. The
overshooting, however, causes the convergence to be slower.

To increase the speed of convergence adaptive step size of the update step can be implemented.
This technique increases the magnitude of parameter updates at the beginning of the learning
process and gradually decreases it when approaching the optimum. Here we list a few of the
most popular GD-based optimizer algorithms:

Stochastic Gradient Descent (SGD) is the standard GD algorithm for iterative convex op-
timization,

SGD with momentum uses the previous gradients in concord with the current gradient to
optimize the parameters, the method is more resistant to converging to a local minimum
instead of the global minimum than the standard SGD,

AdaGrad improves the rate of convergence of SGD with adaptive step size, with respect to all
previous steps, however, this can lead to reducing the learning rate to effectively zero,

AdaDelta improves on the AdaGrad by introducing 2nd moment of the previous gradients, also
only a specified number of previous gradients is taken into account,

Adam further improves on AdaDelta by also using momentum, Adam is the most used algorithm
in practice.

Algorithms not based on GD also exist, such as the genetic algorithm and the ant colony
optimization, but these approaches are out of the scope of this work.

2.5 Architecture

The architecture of an ANN dictates, how many layers the network has, how many neurons are
in each of the layers and how the neurons are connected. The rest of this section is dedicated to
describing two architectures used for processing image data.
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Figure 2.7 A visualization under-complete autonecoder

2.5.1 Autoencoders

Autoencoder is a special case of the feedforward network. It consists of two subnetworks, the
encoder and the decoder. The output layer of the encoder acts as the input layer of the decoder,
it is called the code layer or more colloquially the bottleneck. We will focus mainly on a type of
autoencoder called the under-complete autoencoder, where the dimension of the code layer is less
than the dimension of the input layer. Autoencoders with equal or higher dimension exist but are
out of the scope of this work. The encoder and the decoder usually have the same architecture,
just with the direction of the connections reversed. Fig. 2.7 provides some illustration.

The goal of the autoencoder is to reproduce the input of the network as closely as possible and
in doing so learn a low-rank representation of the data on the code layer. Since the dimension of
the code layer is smaller than the input’s, the autoencoder has to represent the most important
features of the data, to reproduce it most closely. This low-dimensional representation can then
be used in many applications, namely data compression, feature representation, data clustering
and others.

When the encoder a the decoder are linear and MSE loss function is used, the representation
is similar to PCA. When used with non-linear functions, the autoencoder can then be interpreted
as a non-linear generalization of the PCA.[24]

A problem one must face when designing an autoencoder is the model’s capacity. When an
autoencoder is too large, i.e. has too many layers or the layers are too wide, it can learn to
encode the training data as an index. A network with even a single neuron in its code layer
can then reproduce the data perfectly. The code representation in this case brings no value to a
researcher and the model is unusable on data outside its training dataset.
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Figure 2.8 An example of a typical CNN network. Specifically, it is an overview of the LeNet-5
architecture.[25]

2.5.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANNs built specifically for image process-
ing3. The problem with processing image data by a simple fully-connected feedforward network
is the sheer number of connections from the input layer to the first hidden layer. Consider a
greyscale 256-by-256-pixel image as an input of a network, for each neuron in the hidden layer,
65,536 connections need to be made, that is 65,536 parameters for the optimizer to optimize.
CNNs sidestep this issue by first reducing the number of inputs to the fully-connected layers, by
introducing alternating convolution and pooling layers. These layers are described below.

A convolution layer convolves the input by a relatively small matrix of parameters. To get
back to our example, given 256-by-256 image as an input, we convolve it by, for example, a 5-by-5
parameter matrix. This operation extracts some features from the otherwise information-sparse
image, to be used by subsequent layers. The convolution layer produces its output by using only
25 parameters instead of the 65 thousand, needed by a fully-connected layer. This approach has
multiple advantages when processing images:

the layer ignores any spatial dependency, which is useful for object detection since we are
indifferent to where in the image the object is,

the use of fixed parameters over the whole image prevents the model from finding features
specific to the dataset.[26]

A non-linear function is often used with the convolution operation, to help with extracting
non-linear features. Usually, after the convolution layer, a pooling layer follows. Pooling opera-
tion condenses the information. It does so by effectively downsampling the data. For example,
one of the most common pooling methods splits the data into 2-by-2 submatrices and selects only
the maximum value from that matrix. This reduces the size of the data by a factor of 4. After
a few convolution-pooling layers a standard feedforward network usually follows to produce the
final output of the model.

3CNNs can and are used on other types of data, e.g. audio data or time-series data.
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2.6 Regularisation

In ML, the goal of regularisation is to reduce the model’s error outside the training data. This
is usually done at the expense of accuracy on the training data. The problem is if the model fits
the training data, which is only a flawed representation of the ground truth, with 100% accuracy.
It then cannot generalize well on the data not contained in the training dataset. This problem
is called overfitting and it is not specific to ANNs, in fact, every ML model experiences this
phenomenon to some extent. The rest of this section describes some standard methods of ANN
regularisation.

Norm penalties are a way to control the parameter space. By adding the L1 or the L2 norm
of the parameters, multiplied by a coefficient, to the loss function we can guide the values of
the parameters in a certain way. The L1 norm helps to induce sparseness in the network by
driving the parameters either to 0 or a large value. The L2 norm is more computationally
efficient and helps to keep the parameters small.

Dropout is a very popular technique to keep the model from overfitting. It is similar to bagging.
When computing the outputs, we remove some hidden units from the network and try to
reduce the error of this sub-model. The units are then returned to the model and another set
of units is removed. In doing so, dropout trains many sub-models, that when put together
resist overfitting by compensating for each other’s errors. Dropout also hastens the training
process, because we do not need to compute the gradients of the removed units.

Drop connect is similar to dropout. Instead of removing units, this technique selects a set of
connections to be removed.



20 Artificial Neural Networks



Chapter 3

Proposed model

As discussed in the introduction of this work, the best-performing scheme from Pikna’s thesis was
the one using the Y’CBCR color space. The scheme achieved good results by compressing only
the CB and CR channels of the image, our goal is to improve the initialization of the algorithm
used in this scheme.

To this end, we developed the NMFNet model. NMFNet is a neural model whose objective
is to produce a good first initialization for the NMF algorithm for the CB and CR image channels.
Since the model has to be able to process any image, we can safely assume, that a single model
can be used for the initialization of both the CB and the CR channels. Consider an image with
some CB and CR channels, there surely exists an image with switched values for the channels
and therefore the sets of all possible evaluations of the channels are the same.

▶ Observation 1. The best possible initialization of the NMF iterative algorithm is the solution
of the decomposition. When the algorithm is initialized this way, no iterations are needed since
the solution is already good enough.

If the NMFNet model can approximate the NMF decomposition sufficiently enough, we can
then effectively skip a number of iterations of the NMF algorithm, potentially cutting down
on the computation time of the decomposition. The ability to approximate the result of the
NMF algorithm was the primary focus when designing the model. The selection of training data
was essential in achieving the approximation. A detailed explanation of data processing and
generation is discussed in Section 3.1 below.

The size of a neural model, i.e. the number of parameters, is an important metric in deter-
mining the size of the dataset needed to train the network and the power of the hardware needed
to perform the training. With an increasing number of parameters, the size of the dataset and
the memory needed to compute the gradients of the network must grow also. For this reason, it
is important not to make the model too big, e.g. to have unnecessarily many layers or to have
too many connections between the layers. The method for reducing the number of parameters
needed in the NMFNet model is described in Section 3.2 below.

21
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3.1 Data modeling

3.1.1 Data aquisition

The images used for the development of the NMFNet model and subsequent validation and
testing are a part of the RAISE raw image dataset[27]. The dataset offers a collection of 8156
unprocessed images from 3 different cameras. The images are further categorized into 7 cate-
gories: Outdoor Photo, Indoor photo, Landscape Photo, Nature Photo, People Photo, Objects
Photo and Buildings Photo. Each photo can belong to multiple categories at once.

The images use the TIFF file format with lossless compression. 3 different resolutions of the
images can be found in the dataset, images taken with the Nikon D7000 have a resolution of
4928 by 3264 pixels, images from the Nikon D90 have 4288 by 2848 pixels and images from the
Nikon D40 have 3008 by 2000 pixels. The file sizes range from around 5 to 25 MB, with the D40
having the smallest files and the D7000 the largest.

3.1.2 Data preprocessing

First, the dataset was standardized. Two of the images were corrupted and consequently were
removed from the dataset. Also, some images were taken in portrait orientation, these images
were transposed. When loading each image into memory, a transformation was made. First, the
images were resized to 308 by 204 pixels, this was required because processing larger images was
computationally challenging. In order to mitigate some overfitting, the images were randomly
flipped in both directions. Finally, the images were converted from the RGB color space to the
Y’CBCR color space, and the pixel values scaled to the interval [0, 1].

Figure 3.1 Left: data from the decompositions before sorting. Right: data from the decompositions
after sorting. It can be observed, that the relationship between the mean and the standard deviation of
each of the matrices is linear. The relationship of the values between the two matrices can be observed
to be inverse: when the mean and standard deviation of one of the matrices are small, the parameters
of the other matrix are large.
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3.1.3 Statistical model of factor matrices

To teach the model to approximate the NMF decomposition well, we need to be able to compare
the model’s output with the real underlying data decomposition, or at the very least, with some
good approximation of it. Since the Exact NMF algorithm is NP-hard and real-world data most
likely does not have an exact decomposition, it is practically impossible to obtain the underlying
decomposition of a real image.

Suppose one is able to randomly generate the W and H matrices. From these artificial factors,
one is then able to fabricate an artificial image by multiplying the artificial factors. Images
generated this way can consequently be used to train the model and the model’s output can be
compared directly with the actual factors, from which the images were generated. The factors
obtained when decomposing real images using NMF are however not fully random matrices. In
this work, we make an assumption, that elements of the factor W come from a normal distribution
NW (µW , σ2

W ) and the elements of the H factor come from a normal distribution NH(µH , σ2
H).

Figure 3.2 Polynomial curves fitted to the mean and standard deviation data of the W and H
matrices. Top left: the model for µW , top right: the model for σW , bottom left: the model for µH ,
bottom right: the model for σH .

With this assumption in mind, a statistical model was developed for each of the distributions’
parameters: µW , σW , µH and σH . This statistical model allows us to emulate factors of real
images to a reasonable precision. An NMF decomposition was first performed on all the images
from the dataset. The chosen values of parameters of the decomposition can be seen in Table
3.1.

A sample mean and standard deviation were calculated for each factor of each image de-
composition, normalized to an interval of [0, 1]. Minimum and maximum values of the data are
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Algorithm Rank Number of iterations
SED-MU 20 400

Table 3.1 The values of parameters chosen for the NMF decompositions.

stored for each parameter, to be able to rescale the parameter back to the original scale. The
values are then put into an array as quadruplets. The array was then sorted by the µ̂W , to reveal
any correlation between the parameters. A strong correlation between the parameters can be
observed in Fig. 3.1.

Figure 3.3 The final statistical models for the mean and standard deviation data of the W and H
matrices. Top left: the model for µW , top right: the model for σW , bottom left: the model for µH ,
bottom right: the model for σH .

With this data in hand, a model we created for each of the variables. The idea is to generate
a random number z in the interval [0, 1], corresponding to the x axis of the right graph in Fig.
3.1 and get corresponding values for our parameters. To this end, a continuous model must be
created since we want to be able to assign parameter values to an arbitrary value of z.

A polynomial curve was first fitted to each of the parameter’s data. A polynomial of the 5th

degree was chosen for the mean and standard deviation of the W matrix and a polynomial of
the 3rd degree was chosen for the mean and standard deviation of the H matrix. A standard
least squares method was used. The fitted curves can be seen in Fig. 3.2. The fitted curves give
us a good middle value of a given parameter for a given z. For our model to be more accurate,
a random variance must be added to the value. This is not needed for µ̂W , since the data was
sorted by this value and therefore it is fully described by fitted curve. For the other parameters,
the standard deviation was calculated for the data of each of the parameters, we shall label these
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values σσW
, σµH

and σσH
.

The variance along the fitted curves is modeled naively, the value of σσ(σµ) is multiplied
by a correction coefficient σc

σ(σc
µ) and a random value from the interval [−1, 1]. The correction

coefficient was introduced to adjust the amplitude of the variance. The values of the correction
coefficient for each parameter were chosen thusly:

σc
µW

:= 0, σc
σW

:= 0.5, σc
µH

:= 1, σc
σH

:= 1.

A visualization of the final models can be seen in Fig. 3.3.

After the base parameter value is generated, the value is rescaled back into the original
scale, using the original minimum and maximum parameter values. Algorithm 2 summarizes the
process of generating a parameter value from the seed value z.

Algorithm 2: Generate the value of parameter α

Input : z ∈ [0, 1]
Input : min ∈ R+0

Input : max ∈ R+0

Input : σα ∈ R+0

Input : σc
α ∈ R+0

Input : p model ∈ [0, 1]→ [0, 1]
Output: Value of the parameter
// Generate a random number

1 variance← random([-1, 1])
// Find the middle value corresponding to z

2 value← p model(z)
// Add the random variance to the value

3 value← value + variance ∗ σc
α ∗ σα

// Rescale the value
4 value← value ∗ (max−min)
5 value← value + min
6 return value

3.2 Description of the model

The NMFNet model consists of two neural networks, called WNet and HNet. The goal of
these submodels is to predict the W or the H matrix respectively, from the image data. The
architecture of these models is the same except for the layer widths. The WNet model processes
the image horizontally, and so its width is determined by the width of the image, and vice versa,
the HNet model processes the image vertically and so its size is determined by the image height.
Considering the submodels are identical, save the width of the layers, only the WNet model
will be described in the rest of the section, the HNet model simply has the input image matrix
transposed.

The WNet model consists of two main components: the sliding window and the semi-
autoencoder. The sliding window is similar in function to the kernel in CNNs, it reduces the
number of parameters needed to process the input by sharing the values of parameters. The
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semi-autoencoder part of the model takes the data from the sliding window and produces a sin-
gle row of the W matrix. The sliding window and the semi-autoencoder are described in more
detail in the subsections below.

3.2.1 Sliding window

▶ Observation 2. When reconstructing the original matrix V by multiplying the factor matri-
ces, the i-th row of the W matrix affects only the i-th row of the approximation, and vice versa,
the j-th column of the H matrix affects only the j-th column.

The sliding window was introduced to exploit Observation 2 from the beginning of this
chapter. By focusing only on a part of the image, we can produce the W matrix by parts, as
opposed to trying to solve the whole decomposition at once. The window selects a number of
adjacent rows from the image and passes to the semi-autoencoder, to be reduced into a single
row of the W matrix. The number of selected rows is called the window width. The window
width must always be a positive odd integer.

Figure 3.4 Example of the sliding window part. On the left, the image data is represented by the
white grid and the sliding window is illustrated by the red rectangle. In the example, the width of the
sliding window is chosen to be 7, using the formula below, we calculate k = 3, and so padding wide 3
pixels is added to the top and bottom of the image data, represented by the gray grids. Data from the
window is then flattened to a vector and processed by the semi-autoencoder, which produces a single row
of the W matrix. The window starts at the top of the data and moves down one pixel in each step. In
the example, 3rd step of the window can be seen, which produces 3rd row of the W matrix, highlighted
by the red rectangle on the right.

To produce all n rows of the W matrix, the window has to be able to make n steps, therefore,
padding rows must be introduced when the window width is larger than 1. Zero padding was
used in our model. k rows are added to both the top and the bottom of the image.

k = (width− 1)
2 .

The window serves a dual purpose. Firstly, it reduces the number of parameters needed to
process the image. The number of parameters in a neural model, that would try to process the
whole image at once, without some means of reducing the number of parameters, would make
it infeasible to train the network in a reasonable time even on today’s cutting-edge hardware.
Secondly, it simulates the locality of the original NMF decomposition.
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3.2.2 Semi-autoencoder

The semi-autoencoder part of the WNet performs the actual encoding of a part of the image,
received from the sliding window, into a row of W . The semi-autoencoder is simply the encoder
part of the autoencoder model discussed in Section 2.5.1. We need just the encoder because the
model is required to produce only the encoding. In our model, the decoder is substituted by the
multiplication of the W and H factors.

The funnel The gooseneck

Figure 3.5 The semi-autoencoder takes the flattened data from the sliding window and reduces it
down, to produce a single row of W . In the example, the funnel consists of the leftmost 2 layers, the
reduction factor is set to 2, hence the width of the second layer is a half of the first. The gooseneck
consists of the 3 layers on the right, ergo the gooseneck depth is 3. The width of the input layer is
dictated by the number of elements in the sliding window, and the width of the output layer is the
number r, in this case, r = 2.

The semi-autoencoder used in our model has two parts: the funnel and the gooseneck. The
function of the funnel is to progressively reduce the width of the layers, down to width r, which
is the final width. It does so with exponential decay of the layer width, each layer is n times
smaller than the one before. n is called the funnel reduction factor and is a hyperparameter
of the model. When the reduction would produce a layer with a width less than r, the width of
the layer is instead set to r.

The gooseneck of the semi-autoencoder directly follows the funnel. The architecture of this
part of the semi-autoencoder is very simple, the gooseneck is just a series of densely connected
layers with width r. The number of layers in the gooseneck is called the gooseneck depth and
is a hyperparameter of the model. The semi-autoencoder must always have a gooseneck depth
of at least 1.

All the layers in the autoencoder except the last use the LeakyReLU activation function.
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LeakyReLU is an augmentation of the classic ReLU function, the difference being, instead of
setting all negative values to zero, it uses the following formula:

LeakyReLU(x) =
{

x, if x > 0.

0.01x, otherwise.

This solves the ”dead ReLU” problem by introducing a small gradient for the negative values.

When training the model, the output layer of the model uses the Linear Unit activation
function. This is desirable because when the model produces a negative number in one of the
outputs, it can correct that behavior since the gradient is non-zero, if the ReLU function would
be used in training, the neuron would become dead. During inference, however, the output
layer’s gradient is inconsequential and so the ReLU activation function is used, to prevent the
model from producing factors with negative elements.
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Implementation

The training loop of the NMFNet model followed the standard training scheme: the training was
done in several epochs, after each epoch a validation of the model was performed; each epoch
was comprised of a number of training steps; in each step, the model was trained on a batch of
data and a gradient descent step was performed.

Normally, the validation after each epoch is performed on the whole validation dataset, for
the sake of expediting the learning process, the validation was only done on a batch of data,
from the validation dataset. In the table below we list the values chosen for our training loop,
the values were determined empirically during the development of our model.

Number of epochs Number of steps in an epoch Training batch size Validation batch size
15 100 32 64

Table 4.1 Values of the training loop hyperparameters.

The Adam optimizer was chosen for the training since it is the best-performing optimizer
today. The optimizer has a number of parameters, which need to be set. We have chosen to
mostly adhere to the values recommended in the PyTorch framework, however, the learning rate
was lowered and a small weight decay was added. The values chosen are listed in the table below.

Learning rate β1 β2 Weight decay
1 · 10−4 0.9 0.999 1 · 10−5

Table 4.2 The values of the optimizer hyperparameters.
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4.1 Chosen technologies

4.1.1 Programming language

The Python programing language was chosen for our implementation. It is the most popular
programming language used in machine learning today.[28] Reasons for Pythons’s large following
are many: the simple syntax and enforcement of indentation in the code lead to very readable
code, the weak type system is great for fast prototype development, a rich ecosystem of libraries
and frameworks allows for most problems to be solved in just a few lines of code and thanks to
the large community of Python users documentation is plentiful and troubleshooting fast.

The greatest weakness of Python lies in its slow runtime. A simple nested iteration can
take multiple times longer in Python when compared to the same implementation in more
performance-minded languages like C or Go.[29] In the machine learning domain, where the
training of a fully performance-optimized model can take weeks or even months, this property
of Python would be quite problematic. The lackluster performance of Python is circumvented
by the use of libraries written in performance-minded languages, so all the critical computation
takes place outside the Python interpreter, and Python itself serves only as a sort of orchestrator
of these high-performance libraries.

Other options were considered, namely C++, Scala and Julia, which are also popular among
ML experts. Pyhon was however chosen over these languages primarily for its mentioned ease of
use. The subjective preference of the language and the expansive ecosystem of tools and libraries
were also major factors.

4.1.2 Jupyter notebooks

In the workflow of an ML expert, it is important to be able to visualize and annotate the data
as one is processing it, Jupyter is an application that provides this ability.

Jupyter works with Jupyter notebooks. A notebook is a file, that is divided into cells. A cell
can either contain code or simple text, Jupyter can then execute these cells using a persistent
environment, called a kernel. The role of the kernel is to interpret the code in the notebook’s
cells and to hold the execution context in memory, so cells can access variables and functions
defined in other cells.

The advantage of this approach is one must not evaluate the entire program from the begin-
ning each time a change is made to the code. When working with a large amount of data, which
can take minutes or hours to be processed, it is beneficial to load the data into the memory
once, and then work with it inside the persistent environment of the Jupyter kernel. Jupyter
notebooks also provide the ability to describe the data in the text cells or to visualize the data
directly inside the notebook, thanks to the ability to show images and plots.

4.1.3 Neural network framework

”Usability over performance” is the first design principle of ML framework called PyTorch. The
framework leads the user to be very explicit with the code they write, making it easy to debug.
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Even though performance is secondary to the PyTorch development team, the framework still has
reasonable performance and can work with hardware accelerators and scale to many machines.[30]
Pytorch is currently the most popular framework among researchers. In recent years, the number
of papers published with PyTorch as their framework of choice has risen sharply, as compared
to TensorFlow, this phenomenon is attributed to PyTorch’s ease-of use.[31]

Another option for our implementation is the TensorFlow framework. It was developed by
Google LLC and it is the most popular ML framework used today for machine learning.[32]
The first implementation attempts of our model were done using the TensorFlow framework,
but unfortunately, some technical issues were encountered when training on multiple graphical
accelerators, which we were not able to resolve promptly. The implementation was then moved
to the PyTorch framework and its less complex and more beginner-friendly structure allowed us
to complete the development.

4.1.4 Supporting libraries

This subsection contains a list of libraries used in the development, training or evaluation of the
NMFNet model.

Numpy is a mathematical library implemented in C. It provides a simple application interface
for working with vectors and matrices in Python while having great performance.

Pillow is a library for working with images in Python. It can load, transform and convert images
in many common formats. In the implementation, it was mainly used for preprocessing the
dataset.

Nimfa is a matrix decomposition library. It implements common NMF algorithms and initial-
ization techniques. In the implementation, the library was used for the development of the
statistical model of the data and the evaluation of the final model.

Scikit Learn is an ML library, which implements many standard ML models such as Decision
trees, Ridge regression and many others. In the implementation, the library was used for the
K-means initialization of the NMF.

Pandas focuses on making the processing of tabular data easy and intuitive. The library was
mainly used in the evaluation phase.

4.2 Training infrastructure

The development, training and evaluation of the NMFNet model were carried out on a system
equipped with Intel® Xeon® Gold 6254 processor with a total of 18 physical cores and 36 threads,
128 GB of DDR4 ECC memory and two Nvidia A100 40 GB graphical accelerators. Access to
this system was granted to us by the Faculty of Information Technology CTU in Prague.

4.3 Hyperparameter tuning

A grid search approach was chosen for tuning the hyperparameter values. In grid search, a
number of hyperparameters were chosen together with ranges of values for each of the hyperpa-



32 Implementation

rameters. For each combination of these hyperparameters, a model was then trained and the best
hyperparameter combination was determined. 4 hyperparameters were chosen in our training,
they are listed together with their chosen values below:

Hyperparameter Values
Loss function MAE, MSE

Sliding window width 1, 3, 5, 7, 9, 11, 13, 15

Funnel reduction factor 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0,
6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0

Gooseneck depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 4.3 Hyperparameters and their values chosen for the grid search

The choice of the ranges of values for each of the hyperparameters was informed by preliminary
testing during the development of the model. The number of combinations of the hyperparameter
values is 2720, for each of these combinations a model was trained. In order to reduce the real-
world training time, the set of all hyperparameter combinations was split into 12 disjunct subsets,
12 models were then trained concurrently, each on one of the subsets.

During the training process, a number of metrics were recorded. For every training step, the
loss of the step was tracked. At the beginning of the training process, an image was randomly
chosen and saved as a reference, after each training epoch has ended, the reference image was
decomposed using the NMFNet model. The image was then reconstructed and the result was
saved. These sample images, taken during the training were invaluable in determining the quality
of the decomposition. At the end of every epoch, the validation loss and SSIM metrics were also
tracked.

Here we list some statistics about the training time and the sizes of the models trained.

Time statistics
Total real-world training duration 4 days and 8 hours

Total computational time 52 days and 8 hours
Average model training time 27 minutes and 42 seconds

Models trained per hour 26 models per hour
Minimum model training time 4 minutes and 57 seconds
Maximum model training time 1 hour and 9 minutes

Model size statistics
Minimum number of parameters 13 920
Maximum number of parameters 20 476 806
Average number of parameters 2 665 834
Median number of parameters 1 622 014

Table 4.4 Grid search result statistics
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The progress of every model during training followed roughly the same path. The models
started with a relatively high loss but quickly improved until a loss function floor was reached.
The models usually reached the loss floor in 200 to 600 steps. This behavior produced an easily
discernable ”elbow” in the graph of the training loss of each model. It was observed that the
models usually exhibited the best subjective performance around the elbow of the graph and
started to overfit from that point on.

An example of the typical progress of the training of a model is illustrated in Fig. 4.1.

Original 100 steps 300 steps 400 steps

500 steps 900 steps 1200 steps 1500 steps

Figure 4.1 Top: three graphs showing the values of metrics in each step of the training. Bottom:
a sample of the images generated during each validation step. During training, each model typically
reached some local minimum, in the example, this happened around step 500, which creates an ”elbow”
in the graph. From the sample images can be seen that the model doesn’t really improve from that point
on, some models even started overfitting, which was indicated by a purple tint.
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Chapter 5

Evaluation

5.1 Choosing best hyperparameter configuration

After the grid search concluded an analysis was performed on the data collected during the
training. The main goal of this analysis was to determine if any of the hyperparameters explored
in the hyperparameter tuning had a significant effect on the quality of the decomposition.

Figure 5.1 Top 3 charts: the results for the MAE loss function. Bottom 3 charts: results for the
MSE loss function. On the x-axis of each chart, the values for each hyperparameter are marked, and
the y-axis corresponds to the maximum value of the loss function reached during the training. Each
of the blue violins indicates the distribution of the maximal loss function values for each choice of the
hyperparameter value. The orange line connects the mean value of the loss for each hyperparameter
value.
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The data was first separated based on the loss function used in the training of the model since
the absolute value of the validation loss is incomparable between the MSE and the MAE. Next,
the data were aggregated by the values of each of the other hyperparameters: the sliding window
width, the funnel reduction factor and the gooseneck depth. Correction of the hyperparameter
values was examined for both the validation loss and the validation SSIM, however, no significant
correlation was discovered between the hyperparameter values and the validation SSIM values
and therefore will not be discussed.

Figure 5.2 Left: the effect of the funnel reduction factor on training time for the MAE loss function.
Right: the effect of the funnel reduction factor on training time for the MSE loss function. The width
of the blue violins describes the distribution of the values for each of the hyperparameter values. The
orange line connects the mean of each violin.

Analysis of the validation loss revealed a number of insights. A strong correlation between
the gooseneck depth and the loss value was identified, a larger number of layers in the gooseneck
corresponds to a smaller loss. A less significant correlation was found for the sliding window
width. Interestingly the lower loss was achieved when the width of the window was small,
contrary to our hypothesis. A wider window was expected to produce a lower loss. No real link
between the funnel reduction factor and the validation loss achieved. To identify a good value
for this hyperparameter, we examined its effect on the training time of the model.

With an increasing funnel reduction factor, the training time of a model decreased. The best
value of the funnel reduction factor was chosen to be 7.5 since the value had good performance
in reducing both the loss function and the training time. Performance of the MAE and MSE
loss functions was then compared. As stated above, the absolute values of these functions are
incomparable, and so the validation SSIM was chosen as the metric for determining, which loss
functions yielded better results. The SSIM values for each of the functions were again aggregated.

Figure 5.3 The two loss functions performed nearly identically. The top horizontal line is the maxi-
mum SSIM achieved, and the bottom horizontal line is the minimum. The middle line is the modus of
the values for each loss function. The width of the violins describes the distributions of the values.

The difference in the performance of the two loss functions was found to be minuscule, but
the MAE loss was found to be slightly better.
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After the analysis of the data collected during the hyperparameter tuning, the best-performing
values of the hyperparameters were chosen for the model used for comparison with the other
initialization methods. The best found hyperparameter configuration is presented in the table
below.

Loss function The sliding window width The funnel reduction factor The gooseneck depth
MAE 1 7.5 10

Table 5.1 The best-found hyperparameter configuration.

Ten models with this configuration were then trained, with the training parameters slightly
tweaked. The number of epochs was increased to 80 and the number of steps in each epoch was
reduced to 20, in total each model was trained in 1600 steps. The model state was also saved
after each epoch in addition to the validation, this allowed us to pick the best possible parameter
configuration based on the subjective analysis of the images generated in each validation step.
The training loss, validation loss and validation SSIM together with the images generated in the
validation steps during training of the model chosen, for the evaluation can be seen in Fig. 5.4.

Original 20 steps 400 steps 480 steps

520 steps 560 steps 1000 steps 1600 steps

Figure 5.4 Top: three graphs showing the values of metrics in each step of the training. Bottom:
a sample of the images generated during each validation step. A sharp elbow can be seen at step 520,
in this step, the sample image also showed a great similarity to the original picture. After the model
started to overfit, as indicated by the purple tint.
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5.2 Comparison with other NMF initialization methods

Three other traditional NMF initialization methods were chosen for the evaluation of our trained
NMFNet model. The random and NNDSVD initialization methods were used in Pikna’s work
and so they were chosen for the comparison. Additionally, the K-means initialization was chosen
as a representative of the more sophisticated methods.

A random sample of 100 images was chosen for the evaluation. Each of the images was
decomposed using the SED-MU algorithm with the various initializations listed above. The
number of iterations was set to 150. For each iteration of the algorithm, the MSE, PSNR and
SSIM metrics were tracked, also an image was generated from the decomposition, to subjectively
track the quality of the decomposition. The results of the 100 decompositions were then averaged
and analyzed.

Figure 5.5 Top: graphs showing the averaged progress of all the initialization methods. Bottom:
same as the top graphs, but with a different scale. For the graph showing the MSE metric, the lower
value is better. For the PSNR and SSIM metrics, the higher value is better.

Fig. 5.5 summarises this analysis. We evaluated the initialization methods based on 3 criteria:
absolute performance, speed of convergence and the quality of the initialization compared to the
random initialization.

The absolute performance criterion compares the maximum value of each of the metrics
reached during the decomposition. The best-performing initialization methods according to
absolute performance are the K-means initialization and the NMFNet. Of the two, the K-means
method performed slightly better. The next best was the random initialization, its performance
was close to the K-means and NMFNet methods, but always strictly lower. The NNDSVD
method suffers from very slow convergence and fails to catch up to the other methods.

The absolute performance of the NMFNet model compared to the other methods is also
illustrated by Table 5.2. As can be seen, the model performed strictly better than the random
and NNDSVD initialization methods most of the time. K-means initialization had a slight edge
in the performance compared to the NMFNet but performed the same in most cases.
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Radnom NNDSVD K-means
MSE and PSNR

Strictly better 97% 100% 98%
Within 0.001% or better 97% 100% 99%

SSIM
Strictly better 90% 100% 25%

Within 0.001% or better 100% 100% 97%

Table 5.2 Percentage of the evaluation dataset on which the NMFNet model performed either strictly
better than or within 0.001% of a given method. The top table shows performance for the MSE and
PSNR metrics, the bottom table shows performance for the SSIM metric.

Original Random NNDSVD K-means NMFNet

Figure 5.6 The images showed were reconstructed by multiplying the initial settings of the W and
H matrices for each of the initialization methods.

The random initialization converges fastest, for the MSE and PSNR metrics it even outper-
forms the NMFNet initialization for a brief period. However, this is mainly because the initial
setting of the decomposition is of poor quality compared to the other methods. Since the other
methods generally initialize the MU algorithm close to the final solution, the gradient of the
error is mild, and the rate of convergence is less. The K-means method also converges rapidly to
the final solution. Although the random initialization converges faster at the start, the K-means
initialization is never outperformed by it. The convergence of the NMFNet is also good, and
after 60 iterations the performance generally reaches the K-means. NNDSVD converges by far
the slowest and requires a very large number of iterations to reach the same performance as the
other methods.

The quality of the initial setting of the NMF algorithm was determined by subjective analysis
of images reconstructed from only the initial settings of the W and H matrices. A sample of
the images can be seen in Fig. 5.6. The random and K-means methods did not approximate
the image well. The purple color means, these values of the CB and the CR are large, near the
upper limit allowed for the values. The NNDSVD initialization is clearly the best of the methods
chosen. It preserves the colors of the images very well, even the small details. The NMFNet
initialization produces a good approximation of the original image, however, the colors of the
images are washed out and have a slight green tint.
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The number of iterations of the Random initialization needed to improve to the level of
each of the other methods’ initial MSE, PSNR and SSIM values was also examined. It took on
average 11 steps for the random initialization to reach the initial SSIM value of the NNDSVD
initialization and on average 6 steps to reach the MSE and PSNR values. The NMFNet and the
K-means initializations performed the same, on average 8 steps of the random initialization were
needed to reach the SSIM value, and 2 to reach the MSE and PSNR values.



Conclusion and future work

In this work, the theory behind the Nonnegative Matrix Factorization was explored together
with an examination of the state-of-the-art initialization techniques. The basics of Artificial
Neural Network models were also surveyed and different components of the models described.
After establishing the theoretical base, the NMFNet neural model for the initialization of the
Nonnegative Matrix Factorization-based image compression scheme was developed, implemented,
trained and evaluated. The model was found to perform well across multiple criteria. In 97 of
the 100 decompositions evaluated the NMFNet model achieved SSIM performance within 0.001%
or better than the K-means initialization, which was the best-performing method evaluated.
Compared to random initialization, the NMFNet SSIM performance was strictly better 90% of
the time and was within 0.001% or better in 100% of the cases. Furthermore, our model was able
to skip on average 8 iterations of the NMF iterative algorithm compared to random initialization.

Our model finds a good initial setting by approximating the NMF decomposition. We believe
that in the future our model could be generalized and be able to initialize the NMF iterative
algorithms for any data. It also could be possible to replace the iterative algorithm outright.

Future work

The NMFNet model was shown to have good performance across the three criteria tested. We
believe the results of the model can be improved with further investigation. For example, the
NMFNet initialization was very slow, it took an average of 0.73 seconds, which is about the
same as the K-means initialization. In comparison, the random initialization took an average
of 0.026 seconds and the NNDSVD 0.12 seconds. After closer examination, a strong correlation
was found between the number of layers the NMFNet model has and the inference time. With
a hyperparameter configuration taking into account the inference time of the model, we could
improve the initialization time while still having similar performance.

The model also has problems, when processing larger images. This issue can be possibly
solved by inserting convolution and pooling layers between the sliding window and the semi-
autoencoder, to further reduce the number of parameters of the model. Another option is to
replace the sliding window altogether with a CNN.

More parameter configurations may too be explored. The model has shown increasing per-
formance when increasing the gooseneck depth, it would be interesting the performance with a
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depth greater than 10. Increasing the number of layers is however in direct conflict with reducing
the inference time and so may not be beneficial.

Also, more values of the parameter r should be explored. The performance of the NMFNet
model may change when reducing r in comparison with the other initialization methods. In this
work, the only value explored is 20, the reason being for each value of r, a new statistical model
of the data must be developed, since the distributions of the W and H matrices change with
it. The development of these models was time-consuming and since it was not the focus of this
work, only one model was developed.
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Abbreviations

ANN Artificial Neural Network
GD Gradient Descent

GKLD Generalized Kullback-Leibler Divergence
LU Linear Unit

MAE Mean Absolute Error
ML Machine Learning

MSE Mean Squared Error
MU Multiplicative Updates

NMF Non-negative Matrix Factorization
PCA Principal Component Analysis

PSNR Peak Signal-to-Noise Ratio
ReLU Rectified Linear Unit
RGB Red-Green-Blue color space
SED Squared Euclidean Distance
SGD Stochastic Gradient Descent

SSIM Structural Similarity
SVD Singular Value Decomposition
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Definitions

r ∈ N+; rank of the NMF decomposition
V ∈ Rn×m

0+ ; data matrix to be decomposed by the NMF
W ∈ Rn×r

0+ ; the left-hand factor matrix of the NMF decomposition
H ∈ Rr×m

0+ ; the right-hand factor matrix of the NMF decomposition

NW normal distribution of elements of the W matrix
µW mean of the W matrix; a parameter of NW

σW standard deviation of the W matrix; a parameter of NW

NH normal distribution of elements of the H matrix
µH mean of the H matrix; a parameter of NH

σH standard deviation of the H matrix; a parameter of NH

α ∈ {µW , σW , µH , σH}; a symbol representing any of the listed parameters
σα standard deviation of parameter α
σc

α correction coefficient of the parameter α
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