
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Visual Object Detection and Tracking by the Crazyflie

Quadcopter

Artem Redchych

prof. RNDr. Pavel Surynek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

The task is to propose new or modify the existing algorithms for the detection and

tracking of simple objects that are suitable to be executed by an autonomous UAV. It is

assumed that the object to be detected and tracked will be simple such as a ball and will

move smoothly. The proposed algorithms will be implemented within the Crayzflie

ecosystem consisting of a small quadcopter and the localization system. The tasks for

the student are as follows:

1. Study the existing algorithms for visual object detection and tracking.

2. Identify algorithms and techniques that are suitable for implementation within the

Crazyflie ecosystem.

3. Implement the visual detection and object tracking algorithm on the Crazyflie

quadcopter using the on-board camera and the stationary localization system.

4. Perform relevant tests in the Robotic Agents Laboratory.

[1] Karol Hausman, Jörg Müller, Abishek Hariharan, Nora Ayanian, Gaurav S. Sukhatme:

Cooperative multi-robot control for target tracking with onboard sensing. Int. J. Robotics

Res. 34(13): 1660-1677 (2015).

[2] James A. Preiss, Wolfgang Hönig, Gaurav S. Sukhatme, Nora Ayanian:

Crazyswarm: A large nano-quadcopter swarm. ICRA 2017: 3299-3304

[3] Michael Montemerlo, Sebastian Thrun:

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 27 December 2022 in Prague.

Simultaneous localization and mapping with unknown data association using fastSLAM.

ICRA 2003: 1985-1991

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 27 December 2022 in Prague.

Bachelor’s thesis

VISUAL OBJECT
DETECTION AND
TRACKING BY THE
CRAZYFLIE
QUADCOPTER

Artem Redchych

Faculty of Information Technology
Katedra aplikované matematiky
Supervisor: doc. RNDr. Pavel Surynek, Ph.D.
May 7, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Artem Redchych. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Redchych Artem. Visual Object Detection and Tracking by the Crazyflie Quad-
copter. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Acronyms x

Introduction 1

Goal 2

1 Techniques for Object Detection and Tracking 3
1.1 Investigating the Problem . 3

1.1.1 Problem analysis . 3
1.1.2 Techniques investigation . 3

1.2 Justification and Description of Selected Algorithms 14
1.2.1 Monocular distance estimation technique 14
1.2.2 Kalman filter in visual object tracking . 15
1.2.3 Visual object detection using machine learning 16

2 Creazyflie platform 20
2.1 Description . 20
2.2 Crazyflie 2.1 quadcopter . 21
2.3 AI-deck module . 22

2.3.1 GAP8 processor . 22
2.3.2 Camera . 24

2.4 Crazyradio PA . 24
2.5 Loco positioning module . 25

3 Implementation on Crazyflie 27
3.1 Work with Crazyflie quadcopter . 27

3.1.1 Hardware setup . 27
3.1.2 Flying with loco positioning system . 29
3.1.3 Images streaming with AI-deck . 30

3.2 Object detection . 31
3.2.1 Data collection and annotation . 31
3.2.2 Model training . 32

3.3 Distance estimation . 34
3.4 Object tracking . 35
3.5 Final solution and tests . 36

Conclusion 40

Bibliography 41

iii

iv Contents

A XML annotation 45

B teddy ssd mobilenet v2 fnlite.ipynb 46

C Image streamer 56

D Kalman filter 58

E Image processing 60

F Extended possition commander 63

G Object detection and tracking streamer 67

Contents of the attached medium 70

List of Figures

1.1 Haar features, selected for face detection [6] . 4
1.2 Visualization of cascade detection [6] . 4
1.3 An overview of our feature extraction and object detection chain [8] 5
1.4 Example detection obtained with the person model [10] 5
1.5 Architecture of R-CNN [13] . 7
1.6 SPPnet architecture [13] . 7
1.7 Architecture of Fast R-CNN [13] . 8
1.8 Main concern of FPN [13] . 8
1.9 Main concern of YOLO [13] . 9
1.10 The SSD architecture [13] . 9
1.11 The RetinaNet schema [13] . 10
1.12 Classification of object tracking methods [17] . 11
1.13 Cameras position in stereo vision [23] . 13
1.14 Schematic diagram of the imaging geometry [25] 14
1.15 (a) Regular tracking, and (b) the challenging problem of occlusion, with the

Kalman Filter effectively managing the situation [27] 16
1.16 MobileNetV2-SSD architecture [29] . 17
1.17 The difference between residual block and inverted residual [31] 18
1.18 Bottleneck residual block transforming from k to k′ channels, with stride s, and

expansion factor t [31] . 18
1.19 The architecture of MobileNetV2 [31] . 19

2.1 Crazyflie 2.1 without modules [34] . 20
2.2 Crazyflie 2.1 without modules [34] . 21
2.3 AI-deck 1.1 and Crazyflie 2.1 with installed AI-deck module [37] 22
2.4 GAP8 Block Diagram [40] . 23
2.5 Crazyradio PA [44] . 24
2.6 The Loco Positioning system [47] . 25
2.7 Loco positioning deck and Crazyflie 2.1 with installed AI-deck module [48] . . . 25
2.8 8 anchor loco positioning setup from the lab. Anchors are outlined with red circles 26

3.1 Cfclient interface. 27
3.2 Firmware installation interface. 28
3.3 Samples of training images . 31
3.4 labelImg interface . 31
3.5 Training graphs . 33
3.6 Training graphs . 33
3.7 Result images . 36
3.8 Detection success rate graph . 37
3.9 Detection accuracy graph . 37
3.10 Tracking accuracy graph . 38
3.11 Distance estimation accuracy graph . 38

v

List of Tables

3.1 Average values of detection, detection accuracy, IOU and distance estimation . . 39

List of code listings

1 Insatalling a bootloader on AI-deck . 28
2 Moving to the left respecting current yaw . 29
3 Cloning a AI-deck GAP8 examples repository . 30
4 Modifying a wifi-img-streamer.c file . 30
5 Building and flushing images streamer . 30
6 Setting a hyperparameters . 32
7 Distance estimation . 34
8 Annotation in PASCAL VOC format . 45

vi

I want to express my gratitude to my supervisor, prof. RNDr. Pavel
Surynek, Ph.D., for providing guidance throughout every step of the
thesis writing process.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 7, 2023 .

viii

Abstract

In this thesis’s literature review section, contemporary and older methods for visual object detec-
tion, tracking, and distance estimation were investigated. The main components of the Crazyflie
ecosystem were also described. In the implementation part, selected methods were implemented.
For object detection, the MobileNetV2-SSD model with FPNlite was used, the Kalman Filter
was employed for object tracking, and the monocular distance estimation technique was utilized
for distance estimation. Object detection achieved an average accuracy of 87 % and a tracking
accuracy of 74 %. This work’s main result is exploring the potential use of object detection and
tracking methods using the Crazyflie 2.1 drone and its Loco Positioning and AI-deck modules.
In the appendices of the work, one can find key components and the final implementation of the
flying streamer.

Keywords object detection, object tracking, Crazyflie 2.1, machine learning, distance estima-
tion, AI-deck

Abstrakt

V literárńı rešerši této práce byly prozkoumány současné i starš́ı metody pro vizuálńı detekci
objekt̊u, sledováńı a odhad vzdálenosti. Byly také popsány hlavńı složky ekosystému Crazyflie.
V části implementace byly zavedeny vybrané metody. Pro detekci objekt̊u byl použit model
MobileNetV2-SSD s FPNlite, pro sledováńı objekt̊u byl použit Kalman̊uv filtr a pro odhad
vzdálenosti pomoćı jediné kamery. Detekce objekt̊u dosáhla pr̊uměrné přesnosti 87 % a přesnosti
sledováńı 74 %. Hlavńım výsledkem této práce je pr̊uzkum možného využit́ı metod detekce a
sledováńı objekt̊u pomoćı dronu Crazyflie 2.1 a jeho modul̊u Loco Positioning a AI-deck. V
př́ılohách práce lze nalézt kĺıčové komponenty a finálńı implementaci létaj́ıćıho streameru.

Kĺıčová slova detekce objekt̊u, sledováńı objekt̊u, Crazyflie 2.1, strojové učeńı, odhad vzdálenosti,
AI-deck

ix

Acronyms

CC Crazyflie-Client
CNN Convolution Layer
DPM Deformable Part-Based Model

FC Fabric Controller
FC Fully Connected

FPN Feature Pyramid Network
FPS Frames Per Second
IOU Intersection Over Union
KF Kalman Filter

ReLU Rectified Linear Unit
RCNN Region-based Convolutional Neural Networks

ROI Region Of Interest
RPN Region Proposal Network
SSD Single-Shot Detector
SPP Spatial Pyramid Pooling

VOT Visual Object Tracking
YOLO You Only Look Once

x

Introduction

Over the past decade, researchers have made significant advances in computer vision. Machine
learning, which experienced a significant leap in development with the emergence of advanced
convolutional neural networks after 2012, has primarily driven these accomplishments. In addi-
tion, the growth and popularization of these technologies have contributed to the emergence of
tinyML (machine learning on small devices). These achievements, in turn, have facilitated the
application of these technologies in autonomous drones for navigation, detection, and tracking
purposes. [1]

Autonomous drones employing computer vision can perform a wide range of tasks. Various
domains, such as delivery, agronomy, military, surveillance, search and rescue, and many others,
utilize drones. Despite considerable achievements in the field of autonomous drones, numerous
challenges and limitations, both technological and legal, persist. Technical limitations include
limited flight range and duration, poor quality of acquired data, and complexities in data process-
ing. Legal restrictions involve the use of drones in urban settings. Overcoming these challenges
will enhance the accuracy, safety, and productivity of autonomous drones. In this thesis, the au-
thor will focus on addressing the issue of real-time object detection and tracking in low-quality
images obtained from a CrazyFlie drone. Resolving this problem will pique the interest of other
students in the faculty to work with these drones. [2]

The author chose this topic because the author aspired to be the first Faculty of Informatics
and Technology (FIT) student to conduct a thesis in which the author will explore the capabilities
of the CrazyFlie drone in combination with the AI-deck module. Additionally, the capabilities
of the CrazyFlie drone and AI-deck modules’ capabilities still need to be sufficiently explored.
The author’s motivation stems from a desire to work on a project that could benefit people.
The author sees excellent potential in autonomous drones that help people improve their lives
or provide protection.

This thesis addresses computer vision tasks on the CrazyFlie drone, using the GAP8 processor
found in the AI-deck module. This thesis will investigate the problem of object detection using
machine learning, object tracking, and distance estimation to the target using popular algorithms
appropriate for limited computational resources. On the other hand, this study will not address
the problem of object localization in 3D space.

The structure of this thesis is divided into three parts. In the first part, the author describes
the issues, algorithms, and techniques involved in visual object detection, tracking, and distance
estimation. In the subsequent part, the author discusses the Crazyflie platform and all its compo-
nents that were utilized by the author. In the final part, the author presents the implementation
of the chosen algorithms, as well as demonstrates and interprets the test results obtained in the
Robotic Agents Laboratory.

1

Goal

The main goal of this bachelor thesis is to propose new or modify existing algorithms for the de-
tection and tracking of simple objects that are suitable to be executed by autonomous unmanned
aerial vehicles.

The theoretical part aims to identify algorithms and techniques suitable for implementa-
tion within the Crazyflie ecosystem by studying existing visual object detection and tracking
algorithms.

The first goal of the realization part is to implement a new or modify existing visual detection
and object tracking algorithms on the Crazyflie quadcopter using the AI-deck module with an
onboard camera and the stationary localization system. The second goal is to perform relevant
tests on the Crazyflie quadcopter in the Robotic Agents Laboratory.

This bachelor thesis outputs the transfer of object detection and tracking techniques on a
Crazyflie quadcopter that can perform visual object detection and tracking.

2

Chapter 1

Techniques for Object Detection
and Tracking

1.1 Investigating the Problem

1.1.1 Problem analysis
Object detection is a fundamental and complex problem that allows capturing objects from real-
world scenes using camera data, such as human faces, automobiles, animals, and others. The
object detection task is divided into two subtasks. The first is the location of a given object in
the image. The second is the classification of the object [3]. Object recognition is used in the
automotive industry, video surveillance, robotics, and other fields [1, 4]. Object recognition is
sometimes only the end product. Typically, detected objects are used as input data for various
other methods, such as image segmentation, tracking, and image captioning [1].

1.1.2 Techniques investigation
1.1.2.1 Visual object detection
Over the past twenty years, object recognition technology has experienced rapid development.
This development can be attributed to significant advances in machine learning. The work
”Object Detection in 20 Years: A Survey” states that the development of object recognition can
be divided into two periods: before and after the use of deep machine learning. The methods
of the first period are called ”traditional object recognition methods”, while those of the second
period are called ”deep learning-based object detection”. [1]

Traditional object recognition methods include:

1. Viola-Jones Detectors

2. HOG Detector

3. Deformable Part-Based Model [1]

Viola-Jones detectors were invented in 2001 by P. Viola and M. Jones. With this method,
real-time human face recognition was achieved. As the authors note in their article ”Rapid object
detection using a boosted cascade of simple features”, the main contribution of their discovery
consists of three aspects:

3

4 Techniques for Object Detection and Tracking

1. Integral image – a new image representation that allows for fast feature evaluation.

2. A method for building a classifier by selecting a small number of essential features using
AdaBoost.

3. A method for cascading classifier construction, which significantly accelerates the detection
speed of an object in an image. [5]

The working principle of the algorithm is as follows. First, an integral image is generated on
the basis of the pixel values of the image. The calculation is done only once, greatly accelerating
the calculations. Then a sliding sub-window of 24 by 24 pixels is created (the size may vary), in
which the required features are checked in a cascading manner; the example is shown in 1.1. [5]

Figure 1.1 Haar features, selected for face detection [6]

If the sub-window passes the first check, it is tested on the next classifier, and so on. If the
sub-window does not pass the test on any classifier, that sub-window is discarded, and another
sub-window is checked. This cascading classification method enables faster computation time,
as most sub-windows will be discarded in the first and simpler classifiers, with more complex
ones being in the last steps. If a sub-window passes through all classifiers, a positive result for
face detection is produced, indicating that a face is present. The principle of cascading classifier
operation is schematically shown in figure 1.2. [5]

Figure 1.2 Visualization of cascade detection [6]

At first glance, the working principle of the Viola-Jones detector is relatively simple. However,
computing power that was considered immense at that time was required for the calculations. [5]

The HOG Detector, which has been an essential component of numerous object detection
algorithms over the years, was introduced by Dalal and Triggs in 2005 to enhance pedestrian
detection methods. Although the main objective of its development was the detection of people,
it can also be used to detect other objects. [1]

Investigating the Problem 5

The working principle is schematically illustrated in Figure 1.3. ”The method is based on
evaluating well-normalized local histograms of image gradient orientations in a dense grid. The
fundamental idea is that the appearance and shape of a local object can often be characterized
relatively well by the distribution of local intensity gradients or edge directions, even without
precise knowledge of the corresponding gradient or edge positions” [7]. In practice, the detection
process unfolds as follows:

1. A detection window, typically 64x128 pixels in size (which can be adjusted for smaller images),
is selected.

2. This window traverses all possible parts and scales of the image during the detection process.

3. The gradient is calculated for each pixel within the given window.

4. The image is divided into 8x8-pixel blocks and a 9-bin histogram is computed for each of
them. Subsequently, cells are grouped into 2x2, 4x4, and 8x8 blocks.

5. On the basis of the blocks obtained, a feature vector is computed, which is then normalized
and combined with other vectors to create the HOG feature.

6. Finally, the HOG features are fed into a linear SVM classifier, which responds to whether a
human is present in the image [7].

Figure 1.3 An overview of our feature extraction and object detection chain [8]

The Deformable Part-Based Model (DPM) was proposed by Felzenszwalb in 2008 and em-
bodies traditional object detection methods and extends the HOG detector. A vital feature of
this method is its ”divide and conquer” approach, in which object detection is divided into several
smaller tasks. For example, one could first detect individual body parts such as the head, arms,
and legs to detect a person. Upon detecting all these parts, it is then possible to accurately
determine whether a person is present in the image, as illustrated in Figure 1.4. [1, 9]

Figure 1.4 Example detection obtained with the person model [10]

The detection system employs a sliding-window principle. The object model consists of a
primary filter and part models. Each part model includes a spatial model, which indicates
where a specific part of the object may be located, and a corresponding filter. Simplified object
detection can be divided into the following steps:

6 Techniques for Object Detection and Tracking

1. A feature map is constructed using the HOG method.

2. The sliding window traverses each region of the feature map, and the filters are used to check
for template matches. The primary template represents the entire object, while the others
represent object parts.

3. For each region, a detection score is calculated based on the primary and auxiliary filters.

4. The detection result is determined based on the detection score. [9]

Although most modern object detection methods surpass DPM in terms of accuracy, many
incorporate the principles presented within them. In 2010, the authors of the method received
a ”lifetime achievement” award from PASCAL VOC for their significant contributions to the
field. [1]

1.1.2.2 Machine learning for computer vision
Traditional object detection methods are based on hand-crafted features and shallow learning
architectures, which in turn impose limitations on their capabilities. Deep learning methods
significantly outperform them by being able to learn semantics and detect deeper features. [11,
1]

A convolutional neural network (CNN) is a kind of artificial neural network that employs
numerous perceptrons to examine image inputs. It utilizes learnable weights and biases for
different parts of images, enabling them to be distinguished from one another. One benefit
of using a CNN is that it takes advantage of local spatial coherence in input images, allowing
for shared parameters, and thus fewer weights. This approach is notably efficient in terms of
memory and complexity. The fundamental components of a convolutional neural network include
the following:

1. Convolution layer – In the convolutional layer, a kernel matrix is moved across the input
matrix to generate a feature map for the subsequent layer. This is done by performing a
mathematical operation called convolution, which involves sliding the kernel matrix over the
input matrix and executing element-wise matrix multiplication at each position, with the
results summed onto the feature map.

2. Nonlinear activation functions (ReLU) – The activation function is a nonlinear transformation
applied to the input signal, following the convolutional layer. For example, the rectified linear
unit (ReLU) activation function outputs the input if it is positive and zero if it is negative.

3. Pooling Layer – A problem with feature maps from convolutional layers is that they track
exact feature positions, so small changes in the input image can create very different maps.
To solve this problem, a pooling layer is used after the nonlinearity layer, which helps to keep
the output mostly the same even if the input shifts slightly.

4. Fully Connected Layer – In a convolutional neural network, the final pooling layer’s output
serves as input for the fully connected layer(s). Fully connected implies that each node in
one layer is connected to every node in the subsequent layer. [12]

The object detection task consists of localizing the object and then classifying it. Therefore,
two groups of detectors are distinguished: ”two-stage detectors” and ”one-stage detectors.” The
former separately addresses the localization and classification tasks, while the latter solves these
tasks simultaneously. The first group includes the following: Traditional object recognition
methods include:

1. RCNN

2. SPPNet

Investigating the Problem 7

3. Fast RCNN

4. Faster RCNN

5. Feature Pyramid Networks (FPNs) [11, 1]

The RCNN is based on a simple idea that is shown in 1.5 initially employs a selective search to
identify regions of the image, which are then passed to CNN for feature extraction. These features
are then sent to a linear SVM for object classification within the region. However, despite the
significant improvements in object detection achieved by RCNN, there is a substantial drawback
in redundant feature computations in overlapping regions, resulting in inefficient calculations. [11,
1]

Figure 1.5 Architecture of R-CNN [13]

SPPNet resolved the issue of the previous method, which limited the input image sizes and
required feature extraction to be performed in each detection iteration. SPPNet proposed a
solution to these problems by extracting features only once for the entire image and adding
a Spatial Pyramid Pooling (SPP) layer as shown in 1.6, which allows feature maps to be
generated independently of the image size. With almost 20 times the acceleration of RCNN
without sacrificing detection accuracy, SPPNet significantly improved computational efficiency.
However, the problems of multistep training and the fact that SPPNet only fine-tunes its fully
connected layers, ignoring all previous layers, remained. [11, 1]

Figure 1.6 SPPnet architecture [13]

Fast RCNN was introduced in 2015 by Girshick et al. and presented an improvement over
RCNN and SPPNet. Schematically depicted in 1.7, the working principle involves performing
feature extraction on the entire image, unlike its predecessors. Subsequently, a fixed-length

8 Techniques for Object Detection and Tracking

feature vector is created from these features using Region of Interest (ROI) pooling, which is a
specific form of Spatial Pyramid Pooling. Each vector is then passed to the Fully Connected
(FC) layers, sending their output to a classifier and bounding box regressor. Despite addressing
the issues of its predecessors, computational speed problems persisted due to the inefficiency of
proposal detection. [11, 1]

Figure 1.7 Architecture of Fast R-CNN [13]

Faster RCNN was introduced shortly after Fast RCNN by Ren et al. This method was the
first capable of detecting objects almost in real time. This inference speed was made possible
through a Region Proposal Network (RPN), which efficiently locates object-containing regions of
the image (regardless of object class) and then forwards them along with the feature map to the
box-classification and box-regression layers. Limitations of this approach include the resource-
intensive nature of the RPN, which can only identify object-shaped regions and struggle with
large objects of size and shape. [11, 1]

Feature Pyramid Networks (FPNs) were introduced by Lin et al. in 2017. Before this, the
Feature Pyramid principle had been utilized to enhance the detection of images of varying sizes,
but its implementation by the FPN predecessors could have been more efficient. It is also worth
noting that most methods construct detection from the bottom up, which means that increasingly
complex features are composed of more minor features that influence detection. FPN was the
first to adopt an alternative principle, as shown in 1.8, whereby features at lower levels could
significantly affect object detection. This novel approach to feature processing constitutes the
primary contribution of FPN. FPN has become a fundamental component of many contemporary
architectures. [11, 1]

Figure 1.8 Main concern of FPN [13]

Considering their complexity and slow speed, two-stage detectors are rarely used to solve con-
temporary problems. Although one-stage detectors may have lower accuracy, they are frequently
used due to their speed and ability to function on mobile devices [11, 1].

The ”One-stage detectors” group includes:

Investigating the Problem 9

1. You Only Look Once (YOLO)

2. Single-Shot Multibox Detector (SSD)

3. RetinaNet [11, 1]

You Only Look Once was introduced by Joseph et al. in 2015. The main idea, illustrated in
1.9, involves dividing the image into a grid of S x S where each cell is responsible for predicting
whether an object is present and the confidence of the algorithm in this prediction. As a result,
bounding boxes are created. Then, the likelihood of each class being present in a cell is calculated
independently of the number of bounding boxes, and only cells containing a class influencing the
creation of the bounding box. [11, 1]

Figure 1.9 Main concern of YOLO [13]

Single-Shot Multibox Detector was introduced by Liu et al. in 2015. The main contribution
of this method was the significantly improved accuracy of the one-stage detectors. SSD aims to
improve the detection of small objects in groups, an issue with which YOLO needed help. The
SSD architecture, depicted in 1.10, consists of a base CNN with additional convolutional layers
added at the end, which helps to identify candidates for the bounding box with greater preci-
sion. Eight thousand seven hundred thirty-two bounding box candidates are obtained from the
convolutional layers’ output. Subsequently, Nonmaximum Suppression filters only 200 bounding
boxes for each class. [11, 1]

Figure 1.10 The SSD architecture [13]

RetinaNet was introduced by Lin et al. in 2017. All previous one-stage detector methods
shared a common drawback: the calculation process generated excessive (often useless) bounding
box candidates, negatively impacting training results. RetinaNet not only achieved but also
surpassed the accuracy of two-stage detectors by addressing this issue. This detection accuracy
was achieved by applying a new error calculation method during training, which helps focus on
negative results. The RetinaNet schema is shown in 1.11. [14, 11, 1]

10 Techniques for Object Detection and Tracking

Figure 1.11 The RetinaNet schema [13]

1.1.2.3 Visual object tracking
Visual object tracking (VOT) is an essential part of computer vision. With powerful computers,
good quality and affordable video cameras, and the need for automatic video analysis, people
are more interested in object tracking algorithms. There are three main steps in analyzing
videos: finding interesting moving objects, following these objects from one frame to another, and
studying their movement to understand their behavior. Therefore, object tracking is beneficial
for tasks like:

1. Traffic monitoring

2. Industrial robotics

3. Vehicle tracking

4. Vehicle navigation [15, 16]

In its most basic form, tracking refers to the process of determining an object’s path in
the image plane as it moves throughout a scene. In essence, a tracker assigns consistent labels
to objects being tracked across various video frames. Furthermore, depending on the tracking
domain, a tracker can also provide object-specific information, such as orientation, area, or
shape [15]. Researchers have put a lot of work into visual object tracking (VOT) for the past
40 years. However, it remains an open area for computer vision research because of various
challenges. These issues can be described as follows:

1. Occlusion – This problem occurs when a target is partially or fully hidden by another object,
presenting a common challenge during tracking. There is no universal technique to address
it, so strategies are chosen on the basis of the target’s nature and the tracking environment.

2. Changing appearance – Targets can change appearance during motion, so the model must
adapt for long-term tracking. The stability vs. plasticity dilemma is to find the right balance
between stability and adaptability.

3. Changing target size in image – As a target moves closer or farther from the camera, its size
in the image changes, so tracking strategies need to account for this.

4. Noise in the image – If the image from the target scene has noise, some preprocessing is
needed to remove it. [15, 16]

Object tracking methods can be classified in various ways. The authors of ”Object Track-
ing Methods:A Review” described different categories of object detection techniques and used
classification, which is shown in figure 1.12

Feature-based tracking is a simple method where unique features like color, texture, and
optical flow are extracted to distinguish objects. After extraction, the most similar object in the

Investigating the Problem 11

Figure 1.12 Classification of object tracking methods [17]

next frame is identified using a similarity criterion. The challenge lies in extracting unique and
reliable features to differentiate the target from other objects. The feature-based methods use
the following features:

1. Color – Color features represent an object’s appearance and can be used in various ways,
such as color histograms, which display the distribution of colors and the pixel count for each
color in an image. However, color histograms only consider color, not shape or texture, so
two different objects may have the same histogram.

2. Optical flow – Optical flow refers to the perceived motion of brightness patterns in an image,
which may result from lighting changes without actual movement. Optical flow algorithms
measure the displacement of these patterns between frames. Dense optical streaming algo-
rithms calculate displacement for all pixels, while light-flow algorithms estimate displacement
for a select number of pixels in an image.

3. Texture – Texture features, derived from image preprocessing techniques, represent repeated
patterns or structures. They can be combined with color features to better describe an
image or region. Gabor wavelets, which are invariant to illumination, rotation, scale, and
translation, are a popular texture feature. [18, 19]

Segmenting foreground objects from a video frame is essential and critical for visual tracking.
The foreground segmentation separates moving objects from the background scene. To track
these objects, they must be distinguished from the background. There are the following object
tracking methods based on segmentation:

1. Bottom-Up based method – In this tracking approach, two distinct tasks are performed: fore-
ground segmentation followed by object tracking. Foreground segmentation involves low-level
segmentation to extract regions in all frames. Then, features are extracted from foreground
regions and used for tracking based on those features.

2. Joint Based Method – In the bottom-up method, foreground segmentation and tracking
are separate tasks, leading to segmentation errors that propagate and cause tracking errors.

12 Techniques for Object Detection and Tracking

To address this problem, researchers combined the foreground segmentation and tracking
method, which improved the tracking performance. [18, 19]

Estimation methods turn tracking into an estimation problem by representing an object with
a state vector that describes its dynamics, such as position and velocity. Using Bayesian filters,
these methods continuously update the target’s position based on sensor data through a two-
step process: prediction and updating. The prediction estimates the target’s next position, while
updating refines that position with current observations, and this cycle is repeated for each video
frame. There are following object tracking methods based on estimation:

1. Kalman filter – The Kalman filter is utilized in object tracking by designing a dynamic model
for target movement. It estimates the position of a linear system with Gaussian errors. If
the dynamic models are nonlinear, the Kalman filter is not suitable, and alternatives such as
the extended Kalman filter are employed instead.

2. Particle filter – Particle filters help track objects in complex situations using particles and
probabilities. They can handle challenges like non-Gaussian noise but sometimes need re-
sampling to fix issues with high probability particles. [18, 19]

Learning-based methods for tracking learn features and appearances of targets to predict their
positions in future frames. These methods can be categorized into generative, discriminative and
reinforcement learning approaches. [18, 19]

Generative methods concentrate on searching areas similar to the object, with Correlation
Filter-based trackers being a prime example. The main concept involves estimating an optimal
image filter to generate an ideal output in the input image. The target is identified in the first
frame, and the filter is trained on it. Then, at each step, the patch is cropped to its predicted
position for tracking, features are extracted, and a spatial confidence map is obtained. Finally,
the new target position is predicted and the correlation filter is updated accordingly. [18, 19]

Discriminative trackers often treat tracking as a classification issue, differentiating the target
from the background (Siamese tracking, Patch learning tracker,Graph-based tracker). [18, 19]

Reinforcement learning involves an agent that interacts with the environment through trial
and error to select the optimal action to achieve a goal. Some studies use reinforcement learning
for tracking, such as an approach divided into a matching network and a policy network. Given
a frame, a search image is cropped based on previous target information. Using appearance
templates from previously tracked frames, the matching network generates prediction maps.
The policy network then scores each map, selecting the one with the highest score for target
tracking. The policy network is trained to handle various situations. [18, 19]

1.1.2.4 Distance Estimation Techniques
Determining the position of an object using a camera is an essential and complex task in computer
vision. This work will investigate the following techniques that can be employed to calculate the
distance between the camera and the object:

1. Using a single camera

2. Using two cameras (stereo vision)

3. Using machine learning

In work ”A Monocular Vision Advance Warning System for the Automotive Aftermarket,”
a simple method for determining distance is described. For the calculations, it is necessary to
have information about the camera focal length, the height at which the camera is positioned,
the size of the object in the image, and its actual size. This is achieved using geometry and, in
particular, the method of similar triangles. With this formula, the distance can be calculated
quite accurately. [20]

Investigating the Problem 13

In the article ”Depth Estimation Using Monocular Camera,” the authors discuss how the
distance determination from the camera to the object using the previous method encounters the
issue of perspective distortion, which may lead to inaccurate results. In their work, they describe
methods for eliminating horizontal and vertical errors. Vertical errors arise along the camera’s
optical axis, increasing when the object is closer to the camera. Horizontal errors, on the other
hand, are orthogonal to the camera’s optical axis and increase as the object moves away from the
camera. This method helps to achieve greater accuracy in determining the distance, although
not very significantly. [21]

The stereo vision method is a technique that uses two or more cameras to recreate a 3D
scene. This process is usually divided into two steps:

1. Corresponding problem – Calculate how the pixels are shifted to the respective points in the
other image for each point in the image. The results are stored in the disparity map.

2. Triangulation – Calculate 3D coordinates using the disparity map, camera positions, focal
length, and orientation. [22]

In the work ”Stereo Vision Distance Estimation Employing SAD with Canny Edge Detector”,
the authors describe the stereo vision principle using two cameras. A schematic representation
of the cameras and the object is shown in figure 1.13.

Figure 1.13 Cameras position in stereo vision [23]

Using the principle of triangulation, it is possible to calculate the distance to the object from
a stereo system. The fundamental concept is that the disparity between the pixel values at a
given point in the images will be greater if an object is closer. On the contrary, the greater the
distance, the smaller the disparity. It is important to note that the cameras must be positioned
at the same level. [22]

The task of determining the distance from an object to the camera can also be solved using
machine learning. In work ”Multi-DisNet: Machine Learning-Based Object Distance Estimation
from Multiple Cameras,” the authors trained a model to determine distance based on images
of objects with bounding boxes. The closer the object, the larger the rectangle. Using this
approach, we can achieve good accuracy. [24]

14 Techniques for Object Detection and Tracking

1.2 Justification and Description of Selected Algorithms

1.2.1 Monocular distance estimation technique
Each of the methods described in 1.1.2.4 has its advantages and disadvantages. The benefits of
stereo vision and monocular methods are their speed. Calculations are performed in real time
with minimal delay. The main drawback of the stereo system is that the cameras must be parallel
in the same plane; deviations from the correct configuration may cause errors in the calculations.

Since a small drone with a single camera is used in this work, the stereo vision method could
be utilized. The first picture would need to be taken at one place, and then the drone would be
moved to another position, where the second image would be taken. Unfortunately, this is not
feasible because the location and movements of the drone need to be more precise, which could
lead to significant errors in the system’s operation.

Considering the advantages and disadvantages of various distance determination methods,
the author chose to use a monocular system because of its simplicity, speed, and suitability
under laboratory conditions. The author will now describe the working principle of this system.

Figure 1.14 Schematic diagram of the imaging geometry [25]

The height of a projected object located in front of a camera at a distance d will be denoted
as X1, where X1 is given by the formula:

X1 = f · X2
d

(1.1)

Here, X2 represents the actual height of the object and f denotes the focal length of the camera.
This formula was derived using the similarity of triangles: X1

f = X2
d . This concept is schemati-

cally illustrated in 1.14. Knowing the values of X1, X2 and f , the distance d can be determined
using the previous formula. [26]

d = f · X2
X1 (1.2)

Justification and Description of Selected Algorithms 15

1.2.2 Kalman filter in visual object tracking
Considering the objectives and conditions of the experiments for tracking an object, specifically
that the object will move at a low speed and will not exhibit sudden changes in its trajectory or
velocity, the author decided to employ the classical Kalman Filter to address the posed challenges.
This method has demonstrated its speed and effectiveness in single-object tracking. Subsequently,
the author will describe the principles and technical details of the Kalman Filter, drawing on the
works ”Visual object tracking – classical and contemporary approaches” and ”Object tracking:
A survey.” [15, 16]

The Kalman filter(KF) is a statistical parametric recursive algorithm designed for discrete
time systems, specifically linear dynamic systems. It uses a state space representation and
operates in two steps: prediction and correction. The prediction step employs the state model
to estimate the new state of the variables, while the correction step refines the estimates. The
filter assumes the state to be distributed by a Gaussian. State space representation is shown in
the following equations [15, 16]:

Xn+1 = ΦXn + Un, (1.3)

Y n = MXn + V n, (1.4)

The state vector is represented by Xn, with Φ as the state transition matrix, Un as the
system noise vector, V n as the observation noise vector, Y n as the measurement vector and M
as the observation matrix. [16]

The Kalman filter estimates the dynamic system states, accounting for noisy measurements
(Gaussian noise) and model uncertainty. It operates in a prediction-correction cycle, using ob-
served states to correct predicted states and update its gain matrix for improved future predic-
tions, as outlined in equations (1.5)-(1.10). [16]

X∗
n|n = X∗

n|n−1 + Kn(Y n − MX∗
n|n−1) (1.5)

In this context, X∗
n|n denotes the posterior measurement, X∗

n|n−1 signifies the prior mea-
surement, and Kn represents the Kalman gain matrix, which is defined as [16]:

Kn = S∗
n|n−1MT [Rn + MS∗

n|n−1MT]−1 (1.6)

In this case, Rn refers to the observation noise covariance calculated using equation (1.7),
while S∗

n|n−1 denotes the predictor error covariance defined by equation (1.8) where E is the
expected value. [16]

Rn = COV(V n) = E[V nV T
n] (1.7)

S∗
n|n−1 = COV(X∗

n|n−1) = ΦS∗
n−1|n−1ΦT + Qn (1.8)

S∗
n−1|n−1 = COV(X∗

n−1|n−1) = [I − Kn−1M]S∗
n−1|n−2 (1.9)

In this context, Qn represents the noise covariance matrix, which is calculated using equation
(1.10) [16].

Qn = COV(Un) = E[UnUT
n] (1.10)

During the tracking process, the Kalman Filter operates in two modes:

1. Normal tracking mode

2. Occlusion mode [16]

16 Techniques for Object Detection and Tracking

During normal tracking mode, KF predicts the next target coordinates in the image plane
based on measurements to define the optimal search window. During occlusion mode, KF dis-
regards the measured value and uses its predicted value for the next state prediction, effectively
handling short-term occlusion. [16]

Figure 1.15 (a) Regular tracking, and (b) the challenging problem of occlusion, with the Kalman
Filter effectively managing the situation [27]

Figure 1.15(a) demonstrates the normal tracking mode, while Figure 1.15(b) displays the
occlusion mode during tracking, showing that KF effectively addresses the occlusion issue. [16]

1.2.3 Visual object detection using machine learning
The author considered three factors to select the optimal object detection method for this work.
The first factor is the detection speed. It is necessary to detect objects in real-time, specifically
at the frame rate captured by the camera, which is 60 frames per second(FPS). The second factor
is the accuracy of the detection. As the ultimate goal is to track the object after its detection,
sufficient accuracy is required. The third factor is the mobility of the architecture, meaning that
object detection should occur on a device with limited computational capabilities. Finally, a
secondary factor is the ease of implementation and training of the detection model.

Based on all these criteria, the MobileNetV2-SSD model with FPNilte was chosen. Section

Justification and Description of Selected Algorithms 17

1.1.2.2 described the SSD model that uses VGG-16 as the backbone model. Since this model
requires significant storage space and has a relatively slower computation speed, the author
decided to use the lighter and faster MobileNetV2 model. To achieve more accurate object
detection, FPN was also employed. The schematic of the final architecture is shown in figure
1.16. [28]

Figure 1.16 MobileNetV2-SSD architecture [29]

For a complete understanding of the chosen architecture, it is essential to comprehend how
MobileNetV2 works. In the description of this network, the author relies on the work ”Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks”, which first introduced this network
architecture. MobileNetV2 achieves high accuracy and computational speed due to three key
factors:

1. Depthwise Separable Convolutions

2. Linear Bottlenecks

3. Inverted Residuals [30]

Depthwise Separable Convolutions are employed in various architectures because of their
efficiency, which is why MobileNetV2’s authors decided to utilize them when creating the new
architecture. Its principle involves separating the full convolutional operator into two distinct
layers. In the first, a convolutional filter is applied to each input channel, called depthwise
convolution. In the second layer, a 1 × 1 convolution calculates features ”through computing
linear combinations of the input channels”. Generally, to calculate one output tensor Li, a
convolutional filter K ∈ Rk×k×di×dj is applied to an input tensor with dimensions hi × wi × dj .
The number of operations is illustrated in:

hi · wi · di · di · k · k (1.11)

Using Depthwise Separable Convolutions can significantly reduce the number of computational
operations, specifically:

hi · wi · di(k2 + dj) (1.12)

”Effectively depthwise separable convolution reduces computation compared to traditional layers
by almost a factor of k2.” By using a filter size of 3, the number of computational operations
can be reduced by 8 to 9 times at the expense of a slight decrease in accuracy. [30]

18 Techniques for Object Detection and Tracking

In their work, the authors discuss the properties of activation tensors in deep neural networks
and how they form a ”manifold of interest” that can be embedded in low-dimensional subspaces.
They highlight the benefits of using linear bottleneck layers in convolutional blocks to optimize
neural architectures, as reducing dimensionality can improve efficiency and accuracy. However,
the authors also note that non-linear transformations like ReLU can result in information loss
and limit the network’s classification capabilities. They highlight that ReLU can maintain com-
plete information about the input manifold only if it lies in a low-dimensional subspace of the
input space. Based on these insights, the authors suggest using linear bottleneck layers in convo-
lutional blocks to maintain information while introducing complexity into the set of expressible
functions. [30]

Bottleneck blocks are similar to residual blocks, which have an input, several bottlenecks, and
then an expansion. However, based on the idea that bottlenecks have all the needed information
and the expansion layer is just a supporting detail for changing the tensor, the authors connected
the bottlenecks directly with shortcuts. Figure 1.17 shows the differences between the designs.
The reason for adding shortcuts is similar to why we use regular residual connections: to help
gradients flow through many layers. The inverted design saves more memory and works a bit
better in our experiments. [30]

Figure 1.17 The difference between residual block and inverted residual [31]

After describing the theory and principles of operation of this model, the author outlines the
architecture of the MobileNetV2 model. The authors of MobileNetV2 say ”the basic building block
is a bottleneck depth-separable convolution with residuals.” 1.18 displays the specific structure
of this block. The MobileNetV2 architecture consists of an initial full convolution layer with 32
filters, followed by 19 residual bottleneck layers outlined in 1.19. ReLU6 is employed as the non-
linearity due to its stability in low-precision calculations. The network authors consistently use a
3 × 3 kernel size, typical in contemporary networks, and apply dropout and batch normalization
during training. [30]

Figure 1.18 Bottleneck residual block transforming from k to k′ channels, with stride s, and expansion
factor t [31]

The authors of MobileNetV2 managed to create a straightforward network architecture that
can then be used to create other models. This was achieved through the building unit, which,
thanks to its properties, can work efficiently on devices with limited computational capabili-
ties. [30]

Justification and Description of Selected Algorithms 19

Figure 1.19 The architecture of MobileNetV2 [31]

Chapter 2

Creazyflie platform

2.1 Description

Crazyflie is a versatile open source platform created by Bitcraze in 2011. It originated from a
simple idea to make a board fly. Three embedded systems engineers envisioned a small machine
with minimal components that would be suitable for indoor use. Today, Crazyflie is a palm-sized
platform, making it ideal for education, research, and swarm robotics. [32, 33]

For a better understanding, the author suggests examining Figure 2.1, which shows a
schematic representation of the CrazyFlie platform ecosystem. As can be seen, this ecosys-
tem consists of three groups of devices and software. The first group includes the CrazyFlie
2.1 nano quadcopter, the Crazyflie Bolt 1.1 quadcopter controller, and the Roadrunner UWB
positioning tag. Each device has advantages and disadvantages, but they are built on similar
principles and can interact with components from other groups. The second group comprises the
Python client, which runs on the user’s local computer and communicates with devices through
the Crazyradio PA radio transmitter. Finally, the third group consists of positioning systems,
namely the Lighthouse Positioning System and the Loco Positioning System. [32, 33]

Figure 2.1 Crazyflie 2.1 without modules [34]

20

Crazyflie 2.1 quadcopter 21

2.2 Crazyflie 2.1 quadcopter
In this bachelor’s thesis, the author uses the Crazyflie 2.1 quadcopter. This drone is notable for its
take-off weight of 27 grams and small dimensions of 92x92x29mm (motor-to-motor and including
motor mount feet). In addition, its size and weight allow safe use in small indoor spaces, such
as the Robotic Agents Laboratory (RoboAgeLab), which has a designated safe flight zone. [35]

Figure 2.2 Crazyflie 2.1 without modules [34]

Crazyflie 2.1 has a durable construction capable of withstand falls and collisions during ex-
periments. Additionally, it is easy to assemble and requires no soldering, making it accessible to
people without experience with embedded systems. The software is loaded wirelessly, offering
convenience and speed in software development. The quadcopter also has an on-board charging
feature. Another useful feature is real-time logging, graphing, and variable setting, in addition to
the full use of expansion decks when using a Crazyradio or Crazyradio PA and a computer. [35]

The Crazyflie 2.1 board has a dual MCU architecture and features the following onboard
microcontrollers:

1. STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash);

2. nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb SRAM, 128kb
flash);

3. micro-USB connector;

4. on-board LiPo charger with 100mA, 500mA, and 980mA modes available;

5. full-speed USB device interface;

6. partial USB OTG capability (USB OTG present but no 5V output);

7. 8KB EEPROM. [35]

Crazyflie 2.1 has a battery that provides a flight time of 7 minutes and takes approximately
40 minutes to recharge. The drone is able to receive radio signals at a frequency of 2.4GHz
and a range of up to 1 kilometer using Crazyradio PA, broadening the spectrum of tasks it can
perform. In addition, the drone can carry at least 15 grams of weight, allowing for the placement

22 Creazyflie platform

of additional modules such as the Lighthouse Positioning Deck, Loco Positioning Deck, Flow
Deck V2, AI-Deck, and others. The author will use the Loco Positioning Deck and the AI-Deck
in this thesis. [35]

2.3 AI-deck module

The AI-deck 1.1, designed for AI on the edge purposes, is built around the GAP8 RISC-V multi-
core MCU. In addition, the QVGA monochrome camera and ESP32 WiFi MCU, a combination
of which creates a pretty good platform to develop low-power AI on edge for a drone, are also
available on the deck. The AI-deck 1.1 extends the computational capacity of the GAP8 and
enables the implementation of complex workloads based on artificial intelligence that is driven
onboard and can achieve fully autonomous navigation capabilities. [36]

Figure 2.3 AI-deck 1.1 and Crazyflie 2.1 with installed AI-deck module [37]

(a) AI-deck 1.1 module (b) Crazyflie 2.1 with installed AI-deck module

The ESP32 adds WiFi connectivity with the possibility to stream images and handle control.
The developers of the AI-deck believe that this lightweight and low-power combination opens up
many research and development areas for the microsized Crazyflie 2.X UAV. [36]

2.3.1 GAP8 processor
GAP8 is an IoT application processor that enables the massive implementation of low-cost
battery-operated intelligent devices that capture, analyze, classify, and react to the combined
flow of rich data sources such as images, sounds, radar signatures, and vibrations. GAP8 is specif-
ically optimized to perform a wide range of image and audio algorithms, including convolutional
neural network inference and signal processing, with extraordinary energy efficiency. GAP8 al-
lows manufacturers of industrial and consumer products to integrate signal processing, artificial
intelligence, and advanced classification into new classes of battery-operated wireless edge devices
for IoT applications, including image recognition, person- and object-counting, machine health
monitoring, home security, speech recognition, audio enhancement, consumer robotics and smart
toys, as well as intelligent gadgets. By enabling autonomous operation, GAP8 drastically reduces
the cost of deployment and operation of a wide range of smart edge devices. [38, 39]

AI-deck module 23

The hierarchical and demand-driven architecture architecture of the GAP8 processor enables
ultralow power operation by combining:

1. A collection of highly autonomous intelligent I/O peripherals for connection to cameras,
microphones and other capture and control devices.

2. A fabric controller (FC) core for control,communications and security functions.

3. A compute cluster of 8 cores.

4. A Convolutional Neural Network accelerator(HWCE). [38, 39]

Figure 2.4 GAP8 Block Diagram [40]

The GAP8 processor has nine cores, eight working in parallel in a cluster for high-performance
computations, and a single ”Fabric Controller” (FC) core for managing operations. The proces-
sor supports an extended RISC-V instruction set and has specialized instructions for optimizing
targeted algorithms. It has a two-level memory structure: 512KB Level 2 memory accessible to
all processors and DMA units and smaller Level 1 memory for the FC (16KB) and cluster cores
(64KB). There is also access to external memory areas through HyperBus or quad-SPI peripher-
als. Internal memory is preferred over external memory access to optimize energy consumption
and performance. The processor’s capabilities quickly adapt to various applications’ processing
and energy requirements, making it suitable for tasks such as image processing, audio processing,
and signal modulation. [38, 39]

24 Creazyflie platform

2.3.2 Camera
The HM01B0 is an ultralow power CMOS Image Sensor that enables the integration of an
“Always On” camera for computer vision applications such as gestures, intelligent ambient light
and proximity sensing, tracking and object identification. The unique architecture of the sensor
allows the sensor to consume a very low power of 2mW at QVGA 30FPS. [41, 42]

The HM01B0 sensor has the following parameters:

1. Active Pixel Array – 320 x 320

2. Pixel Size – 3.6 µm x 3.6 µm

3. Full Image Area – 1152 µm x 1152 µm

4. Diagonal (Optical Format) – 1.63 mm (1/11”)

5. Color Filter Array – Monochrome and Bayer

6. Effective Focal Length – 0.66 mm [41, 42]

The HM01B0 sensor supports a window mode of 320 by 240, allowing for 60 frames per
second. Additionally, a 2x2 binning can achieve a speed of 120 FPS. Monochrome video is
transmitted through a 1, 2, or 8-bit interface. In order to optimize the power consumption,
the HM01B0 sensor integrates a black-level calibration scheme, an automatic exposure and gain
control loop, an auto-generator, and a motion detection circuit with an interrupt output to reduce
host computations and sensor commands. Taking into account the parameters of this camera, it
fits IoT, wearable devices, smart buildings, smartphones, tablets, and slim notebooks. [41, 42]

2.4 Crazyradio PA
The Crazyradio PA is a ”long-range open USB radio dongle based on the nRF24LU1+ from
Nordic Semiconductor. It features a 20dBm power amplifier, LNA, and comes pre-programmed
with Crazyflie compatible firmware.” Crazyradio PA is depicted in figure 2.5 [43]. Key features
include:

1. Radio power amplifier providing 20dBm output power

2. Over 1km line-of-sight range with Crazyflie 2.X

3. Low latency [43]

Figure 2.5 Crazyradio PA [44]

Loco positioning module 25

In this work, the Crazyradio PA is utilized to communicate with CrazyFlie 2.1 and to install
and update the software on the AI-deck 1.1 module. The Crazyradio PA connects to the computer
via USB, offering 125 radio channels and the capability to transmit information at speeds of up
to 2Mbps. [43]

2.5 Loco positioning module
The Loco Positioning system is a local positioning system based on Ultra Wide Band radio,
which determines the absolute 3D position of objects in space. In many ways, it is similar to a
miniature GPS system. The example is shown in figure 2.6. [45, 46]

Figure 2.6 The Loco Positioning system [47]

The key components of the Loco Positioning system are Anchors and Tags. Anchors are
placed within the indoor environment and serve as reference points, similar to satellites in GPS
systems. Tags are placed on the object whose position we want to track. All information about
the object’s position is located on the tag, which, unlike other systems, does not require addi-
tional communication with other devices. As a result, Loco Positioning expands the autonomy
capabilities of the Crazyflie 2.1 drone. In this thesis, the author uses a loco positioning set-up
with eight anchors and one tag – loco positioning deck placed on the Crazyflie 2.1. The enchor
setup is shown in Figure 2.8. [45, 46]

Figure 2.7 Loco positioning deck and Crazyflie 2.1 with installed AI-deck module [48]

(a) Loco positioning
module

(b) Crazyflie 2.1 with installed Loco positioning
module

26 Creazyflie platform

Figure 2.8 8 anchor loco positioning setup from the lab. Anchors are outlined with red circles

Chapter 3

Implementation on Crazyflie

3.1 Work with Crazyflie quadcopter
During the implementation, the author created several building blocks that enable the drone to
fly to the initial search point, after which the search process takes place. In the search process,
the drone transmits images from its camera to the controlling computer, after which detection
and tracking algorithms are applied to the images and measure the distance to the drone. The
author will further describe each block separately in order to demonstrate and explain how the
system, created using these blocks, successfully accomplishes the assigned tasks.

3.1.1 Hardware setup
The drone and its module configuration process begin with the installation of a specialized
software called crazyflie-client (CC), developed by the same company that manufactures the
drones. The developers have provided comprehensive documentation that describes the steps to
install this program on all popular operating systems, namely Ubuntu, Windows, and Mac OS.
The CC will be actively used in the software development and testing process. Figure 1 shows
the graphical interface of CC.

Figure 3.1 Cfclient interface.

The next step in setting up the drone is connecting the AI-deck 1.1 module and installing
the initial software. The process of installing the module is described in detail in the Crazyflie

27

28 Implementation on Crazyflie

$ git clone https://github.com/bitcraze/aideck-gap8-bootloader.git
$ cd aideck-gap8-bootloader
$ docker run --rm -it -v $PWD:/module/ --device /dev/ttyUSB0 --privileged
-P bitcraze/aideck /bin/bash
-c 'export GAPY_OPENOCD_CABLE=interface/ftdi/olimex-arm-usb-tiny-h.cfg;
source /gap_sdk/configs/ai_deck.sh; cd /module/; make all image flash'

Code listing 1 Insatalling a bootloader on AI-deck

documentation, is relatively straightforward, and does not require experience with hardware.
Two modules can be connected to the Crazyflie simultaneously, one above and one below the
drone’s board. To install, insert the sockets located on the module board into the contacts on
the drone board. Note that each module has a designated installation location. The AI-deck 1.1
had to be installed above the drone’s board. After connecting the AI-deck 1.1, the subsequent
step was to install the Crazyflie and AI-deck firmware. The following steps were required for
installation:

1. Open the bootloader window shown in Figure 2, using ’Connect’ → ’bootloader.’

2. Type the address of the Crazyflie quadcopter, press ’Scan,’ and select Crazyflie’s URI. Choose
’radio://. . . ’ (not ’usb://’). Press ’Connect.’

3. In the ’Firmware Source’ section, select 2023.02 from ’Available downloads.’

4. Press ”Program,” after which the firmware will be installed.

Figure 3.2 Firmware installation interface.

Some versions of the AI-deck 1.1 need to flash the bootloader on the GAP8 separately;
therefore, the module used in this work needed manual bootloader installation. This can only
be done using the Olimex ARM-USB-TINY-H JTAG programmer and only from a native Linux
computer or virtual machine. For this purpose, the author installed Ubuntu 22. The bootloader
was then installed using Docker:

The bootloader installation using the Olimex ARM-USB-TINY-H JTAG programmer only
needed to be performed once. Afterward, only over-the-air flashing was used for software loading.

Work with Crazyflie quadcopter 29

3.1.2 Flying with loco positioning system
In the Bitcraze GitHub repository [49], libraries can be found to work with various modules.
Among them, there is a library for the loco positioning module. The main component of this
library is the PositionHlCommander class, which is responsible for high-level drone control using
the loco positioning module. This class has the following methods:

1. take off – responsible for the drone taking off from the starting position.

2. land – responsible for returning the drone to the initial position.

3. left, right, forward, back – responsible for moving a specific distance to the left, right, forward,
and backward relative to the drone’s initial orientation.

4. up, down – responsible for ascent and descent moving.

5. move distance – responsible for moving the drone a specified distance in three-dimensional
space.

6. go to – responsible for moving the drone to a specified position in three-dimensional space.

A limitation of this class is that all movements occur relative to the drone’s initial orienta-
tion(yaw), which does not change during the flight. To achieve the maximum potential of the
loco positioning system, the author created the PositionExtendedCommander class, which is re-
sponsible for the drone’s orientation during movement. In the new version, the author added the

rotate method, which is responsible for changing the drone’s orientation, as well as the left,
right, forward and back methods, which use sine and cosine geometry to calculate the drone’s
new position. The working principle can be illustrated using the left method:

def left(self, distance_m, velocity=DEFAULT):
"""
Go left

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
perpendicular_angle = self._yaw + math.pi / 2
x_component = math.cos(perpendicular_angle) * distance_m
y_component = math.sin(perpendicular_angle) * distance_m
self.move_distance(x_component, y_component, 0.0, velocity)

Code listing 2 Moving to the left respecting current yaw

The self. yaw variable represents the drone’s orientation at the beginning of the movement,
while the variables x component and y component store the change in the position of the drone
along the x and y axes, respectively. This extension allows changing the drone’s orientation at
any point during the flight. It should be noted that communication between the drone and the
computer running the flight program is carried out using the Crazyradio PA radio communicator.

In general, the flight process proceeds as follows. Upon the start of the script, the communi-
cation channel between the drone and the computer is established. After a successful connection,
the drone assumes its initial position. The drone then begins processing movement commands.
Once the drone stops receiving movement commands or the script reaches its end, it returns to its
initial position and lands. Using the sleep() function from the time library or using loops, the

30 Implementation on Crazyflie

drone can remain in its current position. The code for the entire PositionExtendedCommander
class can be found in Appendix F.

3.1.3 Images streaming with AI-deck
The streaming of images from the AI-deck camera to the computer involves two components.
The first is a streamer program that runs on the GAP8 processor and transmits the image using
the AI-deck’s Wi-Fi module. The second component is a Python script that connects to the
streamer via sockets to receive the images.

The author found a ready-to-use example of an image streamer in a Bitcraze GitHub repos-
itory [49]. Image streaming can occur in two modes: RAW or JPEG. To configure the mode,
the code is in the wifi-img-streamer.c file needs to be modified:

$ git clone https://github.com/bitcraze/aideck-gap8-examples.git

Code listing 3 Cloning a AI-deck GAP8 examples repository

typedef enum
{

RAW_ENCODING = 0,
JPEG_ENCODING = 1

} __attribute__((packed)) StreamerMode_t;

static StreamerMode_t streamerMode = RAW_ENCODING;

Code listing 4 Modifying a wifi-img-streamer.c file

After the initial configuration, it is necessary to build and flash the streamer code as follows:

$ cd aideck-gap8-examples
$ docker run --rm -v ${PWD}:/module aideck-with-autotiler tools/build/make-example
examples/other/wifi-img-streamer image
$ cfloader flash examples/other/wifi-img-streamer/BUILD/GAP8_V2/GCC_RISCV_FREERTOS/
target.board.devices.flash.img deck-bcAI:gap8-fw -w radio://0/80/2M/E7E7E7E7E5

Code listing 5 Building and flushing images streamer

The author modified an existing Python script in the Bitcraze GitHub repository [49] to
receive the images. As a result of the modifications, the images streamer.py script was created.
Its working principle can be described as follows:

1. Import required libraries: argparse, time, socket, os, struct, numpy.

2. Define command line arguments for setting the AI-deck IP address and port, with default
values provided.

3. Establish a connection to the AI-deck using a socket and display a message indicating suc-
cessful connection.

Object detection 31

4. Define a function, rx bytes, to receive a specified number of bytes from the connected socket.

5. In the while loop, the code continuously receives and processes images by unpacking packet
and image headers, reassembling the image stream, updating the image count and perfor-
mance metrics, and converting the image stream into a NumPy array with the correct di-
mensions.

The code of the entire image streaming script can be found in Appendix C.

3.2 Object detection

3.2.1 Data collection and annotation
Initially, the author used a balloon as the object for detection. However, it was discovered
that the balloon was not effectively detected under low image quality and laboratory lighting
conditions. Additionally, the balloon lacked distinctive features necessary for detection.

As a result, the author opted to use a stuffed teddy bear due to its numerous features suitable
for detection in any lighting condition. The model was trained using 1164 images of the teddy
bear captured under laboratory conditions, at various distances and angles. Four photographs
of the teddy bear are shown in Figure 3.3.

Figure 3.3 Samples of training images

During the training process, it was necessary to annotate the object in the photographs. The
”labelImg” program was used to simplify this task by creating annotations and saving them as
XML files in PASCAL VOC format. Figure 3.4 displays the interface of the ”labelImg” program.

Figure 3.4 labelImg interface

32 Implementation on Crazyflie

batch_size = 16
num_steps = 50000
num_eval_steps = 1000

Code listing 6 Setting a hyperparameters

As a result of the annotation, XML files were created. One of the created files will be shown
in the Appendix A. The complete code of data processing is given in Appendix B

3.2.2 Model training
To train and test the SSD MobileNet V2 FPNLite 320x320 model, the author utilized the Google
Colab online service. This decision was made due to its ability to utilize external computational
resources, significantly speeding up the model training process. In addition, Colab offers an
environment where Jupyter notebooks can be executed.

The author created a Jupyter notebook called ”teddy ssd mobilenet v2 fnlite.ipynb,” which
contains step-by-step instructions for training, testing, and exporting the object detection model
for a teddy bear. In the following text, the author will outline several crucial steps of the created
notebook. The code of the entire ”teddy ssd mobilenet v2 fnlite.ipynb” notebook can be found
in Appendix B.

The author used and modified the existing Jupyter notebook [50]. The author used the
TensorFlow2 library to train the model. To begin with, they installed all the required libraries
and dependencies at the beginning of the notebook. Subsequently, training data was prepared
by generating CSV files that included details about the images, such as filename, width, height,
class, xmin, ymin, xmax, and ymax. These CSV files were converted to tf record files, an effective
file format for storing large volumes of data for machine learning purposes. Lastly, the author
fine-tuned the hyperparameters as follows:

1. batch size – The batch size is the number of training samples used in each update of the
model weights during training. A smaller batch size means that the model will update its
weights more frequently, while a larger batch size will result in less frequent updates. The
size of the batch can affect the speed of training and the stability of convergence. In this case,
the batch size is set to 16, which means that the model will use 16 samples in each update.

2. num steps – This hyperparameter specifies the total number of steps (or iterations) that the
training process will take. Each step consists of processing one batch of data and updating
the model weights accordingly. In this case, the model will be trained for 50,000 steps before
stopping. Keep in mind that this is different from epochs, which refer to the number of times
the model goes through the entire training dataset.

3. num eval steps – This hyperparameter specifies the number of steps used to evaluate the
model during the training process. Evaluation is typically done on a separate dataset, known
as the validation or evaluation dataset, to measure the model’s performance on unseen data.
In this case, the model will be evaluated every 1,000 steps. This allows you to monitor the
model’s performance during training and identify potential issues such as overfitting.

After adjusting the hyperparameters, the script is executed to train the model with the input
provided. In the next section, the author will present and clarify the training results using graphs
obtained during the training process.

The learning rate is a key element in training a model that decides how much the model’s
weights are updated. A higher learning rate means that the model will make more significant

Object detection 33

adjustments, whereas a lower learning rate will result in more minor adjustments. Figure 3.5a
shows a graph that illustrates the data from the training process, where the learning rate starts
at 0.08 and decreases to 0 after 50,000 steps. This approach is commonly referred to as learning
rate scheduling, which helps the model to converge to the best possible solution by gradually
decreasing the learning rate over time.

(a) Learning rate graph (b) Classification loss graph

Figure 3.5 Training graphs

The classification loss measures the accuracy of the model in predicting the class labels of the
input samples. The graph in Figure 3.5b shows that the classification loss decreases from 0.11
to 0.0016 during training, indicating that the model’s ability to classify the data has improved
greatly.

When predicting the location of objects in input data, there is an associated error called
localization loss. This is especially important in object detection and segmentation tasks, where
the model must determine the object’s class label and position in the input image. The graph in
Figure 3.6a shows that the loss of localization starts at 0.11 and decreases to 0.0018 throughout
the training process, indicating an improvement in the model’s ability to locate objects.

(a) Learning rate graph (b) Classification loss graph

Figure 3.6 Training graphs

To avoid overfitting, regularization loss is incorporated into the loss function to penalize too
complex models. This involves adding a penalty term based on the model’s weights. As shown in
Figure 3.6b, the regularization loss graph starts at 0.15 and gradually decreases to 0.04 during
training, indicating a decrease in the complexity of the model.

The total loss combines the classification, localization, and regularization loss. The primary
goal of the training process is to reduce this overall goal. The graph in Figure 1 shows the
total loss decreasing from 0.396 to 0.054, which means that the model has successfully learned
to reduce the error in the training data.

The author gained valuable insights into the training process by analyzing these graphs. They
show how the model’s performance in different areas, such as classification, localization, and

34 Implementation on Crazyflie

complexity, changes over time as it learns from the training data. The fact that the classification
loss, localization loss, and total loss values decrease indicates that the model is effectively learning
from the data. However, the decreasing learning rate and loss of regularization suggest that model
complexity is being regulated to avoid overfitting.

3.3 Distance estimation
After obtaining the bounding box as a result of object detection, the estimation of the dis-
tance between the object and the camera is calculated. The calculation is done through the
implementation of the following code:

def distance_to_object(
bbox_height_in_pixels,
real_object_height=88,
effective_focal_length=0.66,
pixel_size=3.6

):
"""
Calculate the distance to the object from the camera.

:param image_height_in_pixels: Height of the object in the image in pixels.
:param real_object_height: Real height of the object in centimeters.

Default is 88 cm.
:param effective_focal_length: Effective focal length of the camera in millimeters.

Default is 0.66 mm.
:param pixel_size: Size of a pixel in micrometers. Default is 3.6 µm.

:return: Distance to the object from the camera in centimeters.
"""
Convert pixel size to millimeters
pixel_size_mm = pixel_size / 1000.0

Convert real_object_height to millimeters
real_object_height_mm = real_object_height * 10

Calculate distance to object
distance =

(real_object_height_mm * effective_focal_length)
/ (image_height_in_pixels * pixel_size_mm)

Convert distance to centimeters
distance_cm = distance / 10

return distance_cm

Code listing 7 Distance estimation

Object tracking 35

3.4 Object tracking
This document describes the steps involved in object tracking using the Kalman Filter and the
choice of parameters used in the given code. The code provided is implemented in Python and
utilizes the OpenCV library.

The object tracking process using the Kalman filter consists of the following steps:

1. Initialize the Kalman Filter with appropriate parameters.

2. Convert the initial bounding box of the object to a state vector.

3. Predict the next state using the Kalman Filter.

4. Update the state with the new measurement.

5. Convert the current state to a bounding box.

The transition matrix, denoted as A, is an 8 × 8 matrix that models the relationship between
the current state and the next state. The matrix A contains values that describe the relationships
between the state variables, which include the center coordinates of the bounding box (x, y), the
width and height (w, h), and their respective velocities (vx, vy, vw, vh). The diagonal elements of
the matrix are set to one, indicating that the state variables are directly carried over from one
time step to the next. Meanwhile, the off-diagonal elements in the first four rows represent how
velocities contribute to the position and size of the bounding box. A is defined as follows:

A =

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.1)

The measurement matrix, denoted H, is a 4 × 8 matrix that maps the state vector to the
measurement vector. The matrix H shows how the observed variables relate to the state variables.
The variables observed in this case are the center coordinates of the bounding box (x, y), as well as
the width and height (w, h). The diagonal elements of the matrix have a value of one, indicating
that the observed variables correspond directly to the state variables. On the other hand, zero
elements in the matrix mean that velocities (vx, vy, vw, vh) do not directly affect the observed
variables. H is defined as follows:

H =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (3.2)

The process noise covariance matrix, denoted as Q, is an 8 × 8 matrix that models the
uncertainty in the state transition. The choice of the process noise covariance matrix in this
code is as follows:

Q = 5 · I8 (3.3)

The measurement noise covariance matrix, denoted as R, is a 4 × 4 matrix that models the
uncertainty in the measurements. The choice of the measurement noise covariance matrix in this
code is as follows:

36 Implementation on Crazyflie

R = 1 × 10−5 · I4 (3.4)

Where I4 and I8 are identity matrices of size 4 × 4 and 8 × 8, respectively. Identity matrices
are square matrices with ones on the diagonal and zeros elsewhere. They have the property that,
when multiplied by another matrix, they do not change the other matrix.

In this context, I4 and I8 are defined as follows:

I4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I8 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.5)

I8 and I4 are used as a base for creating the process noise covariance matrix Q and the
measurement noise covariance matrix R.

The values chosen for the process noise covariance matrix and measurement noise covariance
matrix have a significant impact on how well the Kalman filter can track an object. These
parameters can be adjusted to balance the filter’s responsiveness to state changes and noise
reduction in the state estimates. For instance, increasing the process noise covariance values can
make the filter more responsive to sudden changes in the object’s state, but it may also introduce
more noise in the estimates. Conversely, decreasing the measurement noise covariance values can
increase the filter’s reliance on measurements, which could lead to overfitting the observed data
and reduced smoothness in the state estimates. The code of the Kalman filter implementation
can be found in Appendix D.

3.5 Final solution and tests
The individual building blocks were combined into a single script called flying streamer.py, which
can be found in Appendix G. In the following text, the author will explain how this script works.

Initially, all necessary libraries and dependencies were imported. Subsequently, the object
detection model was initialized. Then, the connection to the drone and the AI-deck was set up.
Subsequently, the drone was given the command to take off and move to the starting point to
start an object search. Once the drone reached the designated position, the object detection
process was started. Upon successful detection, object tracking and distance estimation were
performed. It is worth noting that if the object was not detected in the last ten frames, the
drone would change its orientation and attempt to detect the object again.

Figure 3.7 Result images

Final solution and tests 37

As a result of the testing under laboratory conditions, images were obtained, which can be
seen in Figure 3.7. Upon successful detection, the object is displayed within a green bounding
box. Above the bounding box, the detected class name is displayed; in our case, it is ”teddy”,
along with the detection accuracy. A red rectangle represents the object tracking prediction.
Finally, the distance estimation is printed inside the bounding box.

The testing provided helpful information to analyze the precision and correctness of detection,
tracking, and distance estimation from the object to the drone. The author will now describe
and analyze each of the graphs created from the obtained data.

Figure 3.8 Detection success rate graph

Figure 3.8 shows the object detection success rate graph relative to the number of frames at
a given moment. For example, the graph will display the percentage of successful detection over
the previous ten frames at the point for the tenth frame. This graph shows that the object was
detected in most frames. However, it also highlights segments where the detection rate drops
sharply, indicating that the object was out of the drone’s field of view during those segments.

Figure 3.9 Detection accuracy graph

Figure 3.9 presents the object detection accuracy graph. Upon analyzing this graph, the
author concludes that the object detection accuracy has excellent accuracy and very low variation.

Figure 3.10 displays the tracking algorithm’s success rate graph based on the Intersection

38 Implementation on Crazyflie

Figure 3.10 Tracking accuracy graph

over Union (IOU) metric. IOU measures the degree of overlap between the bounding box created
during detection and the predicted bounding box. The values of this metric range from 0 to 1.
Low values indicate that the object position prediction algorithm is inaccurate, while high values
indicate high accuracy. Figure 3.10 shows that the prediction accuracy varies between 0.5 and
0.9, which the author believes is a good result. It is worth noting that the shallow values on the
graph are associated with a sudden change in the object’s motion. After a low value, there is
always a significant increase, indicating that the algorithm quickly adapts.

Figure 3.11 Distance estimation accuracy graph

Figure 3.11 shows two graphs – the first represents the actual distance of the object from the
camera, and the second represents the distance calculated by the algorithm. It should be noted
that the actual distance may have errors due to drone flight instability. After analyzing the
graphs, the author concludes that there is a systematic error in distance measurement, leading
to nearly 20 percent inaccuracy. In the author’s opinion, this error arises from a combination of

Final solution and tests 39

factors, such as inaccuracies in bounding box dimensions and the drone’s motion.
The average values of detection, detection accuracy, IOU and distance estimation are pre-

sented in Table 3.1. The data in the table demonstrate that, overall, the object detection,
tracking, and distance estimation algorithms perform with good accuracy.

Metric Average Value in %
Detection 87.21
Detection Accuracy 99.78
Intersection over Union (IOU) 74.85
Average distance estimation error 19.62

Table 3.1 Average values of detection, detection accuracy, IOU and distance estimation

Conclusion

The goal of the theoretical part of this thesis was to study existing methods for visual object
detection and tracking. The first goal of the realization part was to implement new or modify
existing visual detection and object tracking algorithms on the Crazyflie quadcopter using the
AI-deck module with an onboard camera and the stationary localization system. The second goal
was to perform relevant tests on the Crazyflie quadcopter in the Robotic Agents Laboratory.

All the set goals for the theoretical part were fully achieved as contemporary and older
methods for visual object detection and tracking were investigated. Likewise, the goals of the
practical part were also fully accomplished, as the object was successfully detected and the
tracking algorithm functioned correctly during testing. Furthermore, the author was able to
investigate and implement distance estimation from the object to the drone using a single camera.

During the process of working on this thesis, the author gained invaluable experience working
with computer vision methods and the Crazyflie platform. Considering the acquired experience,
the author sees great potential in further work with the Crazyflie drone, specifically in extending
the drone’s autonomy and improving the accuracy in performing object detection and tracking
tasks.

40

Bibliography

1. ZOU, Zhengxia; CHEN, Keyan; SHI, Zhenwei; GUO, Yuhong; YE, Jieping. Object Detec-
tion in 20 Years: A Survey. Proceedings of the IEEE [online]. 2023, vol. 111, no. 3, pp. 257–
276. Available from doi: 10.1109/JPROC.2023.3238524.

2. MOHSAN, Syed Agha Hassnain; OTHMAN, Nawaf Qasem Hamood; LI, Yanlong; AL-
SHARIF, Mohammed H.; KHAN, Muhammad Asghar. Unmanned aerial vehicles (UAVs):
practical aspects, applications, open challenges, security issues, and future trends. Intelli-
gent Service Robotics [online]. 2023, vol. 16, no. 1, pp. 109–137 [visited on 2023-05-05]. issn
1861-2784. Available from doi: 10.1007/s11370-022-00452-4.

3. ZHAO, Zhong-Qiu; ZHENG, Peng; XU, Shou-Tao; WU, Xindong. Object Detection With
Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems
[online]. 2019, vol. 30, no. 11, pp. 3212–3232. Available from doi: 10.1109/TNNLS.2018.
2876865.

4. ZOU, Xinrui. A Review of Object Detection Techniques. In: 2019 International Conference
on Smart Grid and Electrical Automation (ICSGEA) [online]. 2019, pp. 251–254. Available
from doi: 10.1109/ICSGEA.2019.00065.

5. VIOLA, P.; JONES, M. Rapid object detection using a boosted cascade of simple features.
In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001 [online]. 2001, vol. 1, pp. I–I. Available from doi: 10.
1109/CVPR.2001.990517.

6. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/document/990517/figures.

7. DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
[online]. 2005, vol. 1, 886–893 vol. 1. Available from doi: 10.1109/CVPR.2005.177.

8. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/document/1467360/figures%5C#figures.

9. FELZENSZWALB, Pedro; MCALLESTER, David; RAMANAN, Deva. A discriminatively
trained, multiscale, deformable part model. In: 2008 IEEE Conference on Computer Vision
and Pattern Recognition [online]. 2008, pp. 1–8. Available from doi: 10.1109/CVPR.2008.
4587597.

10. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/document/4587597/figures%5C#figures.

41

https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/ICSGEA.2019.00065
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://ieeexplore.ieee.org/document/990517/figures
https://doi.org/10.1109/CVPR.2005.177
https://ieeexplore.ieee.org/document/1467360/figures%5C#figures
https://doi.org/10.1109/CVPR.2008.4587597
https://doi.org/10.1109/CVPR.2008.4587597
https://ieeexplore.ieee.org/document/4587597/figures%5C#figures

42 Bibliography

11. ZHAO, Zhong-Qiu; ZHENG, Peng; XU, Shou-Tao; WU, Xindong. Object Detection With
Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems
[online]. 2019, vol. 30, no. 11, pp. 3212–3232. Available from doi: 10.1109/TNNLS.2018.
2876865.

12. TAMMINA, Srikanth. Transfer learning using vgg-16 with deep convolutional neural net-
work for classifying images. International Journal of Scientific and Research Publications
(IJSRP) [online]. 2019, vol. 9, no. 10, pp. 143–150.

13. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/abstract/document/8627998/figures%5C#figures.

14. LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming; DOLLÁR, Piotr. Focal
Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence [online]. 2020, vol. 42, no. 2, pp. 318–327. Available from doi: 10.1109/TPAMI.
2018.2858826.

15. YILMAZ, Alper; JAVED, Omar; SHAH, Mubarak. Object Tracking: A Survey. ACM Com-
put. Surv. [Online]. 2006, vol. 38, no. 4, 13–es. issn 0360-0300. Available from doi: 10.
1145/1177352.1177355.

16. ALI, Ahmad; JALIL, Abdul; NIU, Jianwei; ZHAO, Xiaoke; RATHORE, Saima; AHMED,
Javed; IFTIKHAR, Muhammad Aksam. Visual object tracking—classical and contempo-
rary approaches. Frontiers of Computer Science [online]. 2016, vol. 10, no. 1, pp. 167–188.
issn 2095-2236. Available from doi: 10.1007/s11704-015-4246-3.

17. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/document/8964761/figures%5C#figures.

18. SOLEIMANITALEB, Zahra; KEYVANRAD, Mohammad Ali. Single Object Tracking: A
Survey of Methods, Datasets, and Evaluation Metrics. arXiv preprint arXiv:2201.13066
[online]. 2022.

19. SOLEIMANITALEB, Zahra; KEYVANRAD, Mohammad Ali; JAFARI, Ali. Object Track-
ing Methods:A Review. In: 2019 9th International Conference on Computer and Knowl-
edge Engineering (ICCKE) [online]. 2019, pp. 282–288. Available from doi: 10 . 1109 /
ICCKE48569.2019.8964761.

20. GAT, Itay; BENADY, Meny; SHASHUA, Amnon. A Monocular Vision Advance Warning
System for the Automotive Aftermarket [online]. 2005. [visited on 2023-05-05]. isbn 0148-
7191.

21. SEO, Beom-Su; PARK, Byungjae; CHOI, Hoon. Sensing Range Extension for Short-Baseline
Stereo Camera Using Monocular Depth Estimation. Sensors (Basel, Switzerland) [online].
2022, vol. 22, no. 12, p. 4605. isbn 1424-8220.

22. THAHER, Raad H.; HUSSEIN, Zaid K. Stereo Vision Distance Estimation Employing SAD
with Canny Edge Detector. International journal of computer applications [online]. 2014,
vol. 107, no. 3, pp. 38–43. isbn 0975-8887.

23. GMBH, ResearchGate. Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.researchgate.net/figure/Fig- 1- the- positions- of- two- cameras- and-
their-image-planes-of-projection-Figure-1_fig1_284488453.

24. ABDUL, Haseeb Muhammad; DANIJELA, Ristić-Durrant; AXEL, Gräser; MILAN, Banić;
DUŠAN, Stamenković. Multi-DisNet: Machine Learning-Based Object Distance Estimation
from Multiple Cameras. In: TZOVARAS, Dimitrios; GIAKOUMIS, Dimitrios; VINCZE,
Markus; ARGYROS, Antonis (eds.). Computer Vision Systems [online]. Cham: Springer
International Publishing, 2019, pp. 457–469. isbn 978-3-030-34995-0.

25. GMBH, ResearchGate. Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.researchgate.net/figure/Distance-estimation-of-the-lane-width-at-
the-point-where-the-vehicle-meets-the-road_fig4_261112107.

https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865
https://ieeexplore.ieee.org/abstract/document/8627998/figures%5C#figures
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1007/s11704-015-4246-3
https://ieeexplore.ieee.org/document/8964761/figures%5C#figures
https://doi.org/10.1109/ICCKE48569.2019.8964761
https://doi.org/10.1109/ICCKE48569.2019.8964761
https://www.researchgate.net/figure/Fig-1-the-positions-of-two-cameras-and-their-image-planes-of-projection-Figure-1_fig1_284488453
https://www.researchgate.net/figure/Fig-1-the-positions-of-two-cameras-and-their-image-planes-of-projection-Figure-1_fig1_284488453
https://www.researchgate.net/figure/Fig-1-the-positions-of-two-cameras-and-their-image-planes-of-projection-Figure-1_fig1_284488453
https://www.researchgate.net/figure/Distance-estimation-of-the-lane-width-at-the-point-where-the-vehicle-meets-the-road_fig4_261112107
https://www.researchgate.net/figure/Distance-estimation-of-the-lane-width-at-the-point-where-the-vehicle-meets-the-road_fig4_261112107
https://www.researchgate.net/figure/Distance-estimation-of-the-lane-width-at-the-point-where-the-vehicle-meets-the-road_fig4_261112107

Bibliography 43

26. GAT, Itay; BENADY, Meny; SHASHUA, Amnon. A Monocular Vision Advance Warning
System for the Automotive Aftermarket. SAE Transactions [online]. 2005, vol. 114, pp. 403–
410 [visited on 2023-04-19]. issn 0096736X, issn 25771531. Available from: http://www.
jstor.org/stable/44682447.

27. AG, Springer Nature Switzerland. Figures [online]. 2023. [visited on 2023-05-05]. Available
from: https://link.springer.com/content/pdf/10.1007/s11704-015-4246-3.pdf?
pdf=button.

28. MENG, Jing; JIANG, Ping; WANG, Jianmin; WANG, Kai. A MobileNet-SSD Model with
FPN for Waste Detection. Journal of Electrical Engineering & Technology [online]. 2022,
vol. 17, no. 2, pp. 1425–1431. issn 2093-7423. Available from doi: 10.1007/s42835-021-
00960-w.

29. GOSYSTECH. Figures [online]. 2023. [visited on 2023-05-05]. Available from: https://
www.goozit.com/tutorial/ObjectDetection.

30. SANDLER, Mark; HOWARD, Andrew; ZHU, Menglong; ZHMOGINOV, Andrey; CHEN,
Liang-Chieh. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition [online]. 2018, pp. 4510–4520.
Available from doi: 10.1109/CVPR.2018.00474.

31. IEEEXPLORE.IEEE.ORG. Figures [online]. 2023. [visited on 2023-05-05]. Available from:
https://ieeexplore.ieee.org/document/8578572/figures%5C#figures.

32. AB, Bitcraze. System overview [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.bitcraze.io/documentation/system/.

33. AB, Bitcraze. Bitcraze [online]. 2023. [visited on 2023-05-05]. Available from: https://www.
bitcraze.io/about/bitcraze/.

34. AB, Bitcraze. Bitcraze Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.bitcraze.io/products/crazyflie-2-1/.

35. AB, Bitcraze. Datasheet Crazyflie 2.1 [online]. 2021. Version 3 [visited on 2023-04-30].
Available from: https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/
crazyflie_2_1-datasheet.pdf.

36. AB, Bitcraze. Datasheet AI-deck 1.1 [online]. 2022. Revision 2 [visited on 2023-05-05]. Avail-
able from: https://www.bitcraze.io/documentation/hardware/ai_deck_1_1/ai_
deck_1_1-datasheet.pdf.

37. AB, Bitcraze. Bitcraze Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//store.bitcraze.io/products/ai-deck-1-1.

38. TECHNOLOGIES, GreenWaves. GAP8 IoT Application Processor [online]. 2020. [visited
on 2023-05-05]. Available from: https://greenwaves-technologies.com/wp-content/
uploads/2021/04/Product-Brief-GAP8-V1_9.pdf. Version 1.9.

39. TECHNOLOGIES, GreenWaves. GAP8 Manual [online]. 2020. [visited on 2023-05-05].
Available from: https://greenwaves-technologies.com/manuals/BUILD/HOME/html/
index.html. Generated on Tue Dec 1 2020 15:49:10.

40. TECHNOLOGIES, GreenWaves. GAP8 manual figures [online]. 2020. [visited on 2023-05-
05]. Available from: https://greenwaves- technologies.com/manuals/BUILD/HOME/
html/index.html. Generated on Tue Dec 1 2020 15:49:10.

41. HIMAX TECHNOLOGIES, Inc. HM01B0 Ultralow Power CIS [online]. 2023. [visited on
2023-05-05]. Available from: https://www.himax.com.tw/products/cmos-image-sensor/
always-on-vision-sensors/hm01b0/.

42. HIMAX TECHNOLOGIES, Inc. HM01B0-MNA-01FT870 [online]. 2019. Version 1 [visited
on 2023-05-05]. Available from: https://cdn.sparkfun.com/assets/7/f/c/8/3/HM01B0-
MNA-Datasheet.pdf.

http://www.jstor.org/stable/44682447
http://www.jstor.org/stable/44682447
https://link.springer.com/content/pdf/10.1007/s11704-015-4246-3.pdf?pdf=button
https://link.springer.com/content/pdf/10.1007/s11704-015-4246-3.pdf?pdf=button
https://doi.org/10.1007/s42835-021-00960-w
https://doi.org/10.1007/s42835-021-00960-w
https://www.goozit.com/tutorial/ObjectDetection
https://www.goozit.com/tutorial/ObjectDetection
https://doi.org/10.1109/CVPR.2018.00474
https://ieeexplore.ieee.org/document/8578572/figures%5C#figures
https://www.bitcraze.io/documentation/system/
https://www.bitcraze.io/documentation/system/
https://www.bitcraze.io/about/bitcraze/
https://www.bitcraze.io/about/bitcraze/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/ai_deck_1_1/ai_deck_1_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/ai_deck_1_1/ai_deck_1_1-datasheet.pdf
https://store.bitcraze.io/products/ai-deck-1-1
https://store.bitcraze.io/products/ai-deck-1-1
https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-Brief-GAP8-V1_9.pdf
https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-Brief-GAP8-V1_9.pdf
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://cdn.sparkfun.com/assets/7/f/c/8/3/HM01B0-MNA-Datasheet.pdf
https://cdn.sparkfun.com/assets/7/f/c/8/3/HM01B0-MNA-Datasheet.pdf

44 Bibliography

43. AB, Bitcraze. Datasheet Crazyradio PA 2.4 GHz USB dongle [online]. 2022. Revision 3
[visited on 2023-05-05]. Available from: https : / / www .bitcraze . io / documentation /
hardware/crazyradio_pa/crazyradio_pa-datasheet.pdf.

44. AB, Bitcraze. Bitcraze Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.bitcraze.io/products/crazyradio-pa/.

45. AB, Bitcraze. Loco Positioning System [online]. 2023. [visited on 2023-05-05]. Available from:
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-
system/.

46. AB, Bitcraze. Datasheet Loco Positioning Deck [online]. 2020. Revision 1 [visited on 2023-
05-05]. Available from: https://www.bitcraze.io/documentation/hardware/loco_
deck/loco_deck-datasheet.pdf.

47. AB, Bitcraze. Bitcraze Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.bitcraze.io/documentation/system/positioning/loco-positioning-system/.

48. AB, Bitcraze. Bitcraze Figures [online]. 2023. [visited on 2023-05-05]. Available from: https:
//www.bitcraze.io/products/loco-positioning-deck/.

49. AB, Bitcraze. aideck-gap8-examples [online]. 2022. [visited on 2023-05-05]. Available from:
https://github.com/bitcraze/aideck-gap8-examples.

50. MEHTA, Vidish. ObjectDetection [online]. 2021. [visited on 2023-05-05]. Available from:
https://github.com/VidishMehta001/ObjectDetection. commit 0f16e54.

https://www.bitcraze.io/documentation/hardware/crazyradio_pa/crazyradio_pa-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyradio_pa/crazyradio_pa-datasheet.pdf
https://www.bitcraze.io/products/crazyradio-pa/
https://www.bitcraze.io/products/crazyradio-pa/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/hardware/loco_deck/loco_deck-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/loco_deck/loco_deck-datasheet.pdf
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/products/loco-positioning-deck/
https://www.bitcraze.io/products/loco-positioning-deck/
https://github.com/bitcraze/aideck-gap8-examples
https://github.com/VidishMehta001/ObjectDetection

Appendix A

XML annotation

<annotation>
<folder>teddy_images</folder>
<filename>photo_5357518961123640202_x.jpg</filename>
<path>D:\Downloads\teddy_images\photo_5357518961123640202_x.jpg</path>
<source>

<database>Unknown</database>
</source>
<size>

<width>324</width>
<height>244</height>
<depth>1</depth>

</size>
<segmented>0</segmented>
<object>

<name>teddy</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>105</xmin>
<ymin>30</ymin>
<xmax>164</xmax>
<ymax>172</ymax>

</bndbox>
</object>

</annotation>

Code listing 8 Annotation in PASCAL VOC format

45

Appendix B

teddy ssd mobilenet v2 fnlite.ipynb

46

teddy_ssd_mobilenet_v2_fnlite

April 29, 2023

0.1 Step 1: Mount Google Drive

[]: from google.colab import drive
drive.mount('/content/gdrive')

[]: ## Run this if you want to access models from google drive
import os
print(os.getcwd())
!ls

0.2 Step 2: Install Dependencies

[]: !pip install -U --pre tensorflow=="2.12.0"

[]: import os
import pathlib
os.chdir('/content/gdrive/My Drive/')
print(os.getcwd())

Clone the tensorflow models repository if it doesn't already exist
if "models_teddy" in pathlib.Path.cwd().parts:

while "models_teddy" in pathlib.Path.cwd().parts:
os.chdir('..')

elif not pathlib.Path('models_teddy').exists():
!git clone --depth 1 https://github.com/tensorflow/models models_teddy

[3]: os.chdir('/content/gdrive/My Drive/')

[]: # Object detection API
%%bash
cd models_teddy/research/
protoc object_detection/protos/*.proto --python_out=.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

[]: #run model builder test
!python /content/gdrive/"My Drive"/models_teddy/research/object_detection/
↪→builders/model_builder_tf2_test.py

47

0.3 Step 3: Prepare Image Data

[5]: os.chdir('/content/gdrive/My Drive/')

[]: print(os.getcwd())
os.chdir('models_teddy')
print(os.getcwd())

[]: import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET

def xml_to_csv(path):
xml_list = []
classes_names = []

for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):

print(member[0].text)
value = (root.find('filename').text,

int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)

xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin',␣

↪→'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
classes_names = list(set(classes_names))
classes_names.sort()

return xml_df, classes_names

def main():
for directory in ['train', 'test']:

print(directory)
image_path = os.path.join(os.getcwd(), 'research/object_detection/images/

↪→{}'.format(directory))
xml_df, classes = xml_to_csv(image_path)
print(os.getcwd())

48 teddy ssd mobilenet v2 fnlite.ipynb

xml_df.to_csv('research/object_detection/data/{}_labels.csv'.
↪→format(directory), index=None)

print('Successfully converted xml to csv.')
print(classes)

main()

[]: # Convert csv to tf record files - To switch to a code based version so that the␣
↪→sys.exit dont take place.

from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

def class_text_to_int(row_label):
if row_label == 'teddy':

return 1
else:

None

def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.

↪→keys(), gb.groups)]

def create_tf_example(group, path):
print(path)
print(group.filename)
with tf.compat.v1.gfile.GFile(os.path.join(path, '{}'.format(group.

↪→filename)), 'rb') as fid:
encoded_png = fid.read()

encoded_png_io = io.BytesIO(encoded_png)
image = Image.open(encoded_png_io)
width, height = image.size

filename = group.filename.encode('utf8')

49

image_format = b'png'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []

for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))

tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_png),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),

}))

return tf_example

def main(_):
for directory in ['train', 'test']:

output_path = os.path.join(os.getcwd(), 'research/object_detection/data/{}.
↪→record'.format(directory))

print(output_path)
input_path = os.path.join(os.getcwd(), 'research/object_detection/data/

↪→{}_labels.csv'.format(directory))
print(input_path)
writer = tf.io.TFRecordWriter(output_path)
print(os.getcwd())
path = os.path.join(os.getcwd(), 'research/object_detection/images/{}'.

↪→format(directory))
print(path)
examples = pd.read_csv(input_path)
grouped = split(examples, 'filename')

50 teddy ssd mobilenet v2 fnlite.ipynb

for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())

writer.close()
print('Successfully created the TFRecords: {}'.format(output_path))

if __name__ == '__main__':
tf.compat.v1.app.run()

[]: #checking the pbtxt file
import os
os.chdir('/content/gdrive/My Drive/models_teddy/research/object_detection/data')
print(os.getcwd())
List all files in the folder
file_list = os.listdir(os.getcwd())
print("List of files in folder:")
for file_name in file_list:

print(file_name)
!cat object-detection.pbtxt
os.chdir('/content/gdrive/My Drive/models_teddy/research/object_detection')
print(os.getcwd())
labelmap_path = os.path.join(os.getcwd(), 'data/object-detection.pbtxt')
train_record_path = os.path.join(os.getcwd(), 'data/train.record')
test_record_path = os.path.join(os.getcwd(), 'data/test.record')
print(train_record_path)
print(test_record_path)

0.4 Step 4: Configuring training

[]: batch_size = 16
num_steps = 50000
num_eval_steps = 1000

[]: !wget http://download.tensorflow.org/models/object_detection/tf2/20200711/
↪→ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz

!tar -xf ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz

[8]: fine_tune_checkpoint = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8/checkpoint/
↪→ckpt-0'

[]: !wget https://raw.githubusercontent.com/tensorflow/models/master/research/
↪→object_detection/configs/tf2/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.
↪→config

print(os.getcwd())

base_config_path = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.config'

51

[]: import re

with open(base_config_path) as f:
config = f.read()

with open('model_config.config', 'w') as f:

Set labelmap path
config = re.sub('label_map_path: ".*?"',

'label_map_path: "{}"'.format(labelmap_path), config)

Set fine_tune_checkpoint path
config = re.sub('fine_tune_checkpoint: ".*?"',

'fine_tune_checkpoint: "{}"'.format(fine_tune_checkpoint),␣
↪→config)

Set train tf-record file path
config = re.sub('(input_path: ".*?)(PATH_TO_BE_CONFIGURED/train)(.*?")',

'input_path: "{}"'.format(train_record_path), config)

Set test tf-record file path
config = re.sub('(input_path: ".*?)(PATH_TO_BE_CONFIGURED/val)(.*?")',

'input_path: "{}"'.format(test_record_path), config)

Set number of classes.
config = re.sub('num_classes: [0-9]+',

'num_classes: {}'.format(1), config)

Set batch size
config = re.sub('batch_size: [0-9]+',

'batch_size: {}'.format(batch_size), config)

Set training steps
config = re.sub('num_steps: [0-9]+',

'num_steps: {}'.format(num_steps), config)

Set fine-tune checkpoint type to detection
config = re.sub('fine_tune_checkpoint_type: "classification"',

'fine_tune_checkpoint_type: "{}"'.format('detection'), config)

f.write(config)

[]: %cat model_config.config

[]: print(os.getcwd())
!ls
os.chdir('/content/gdrive/My Drive/models_teddy/research/object_detection')

52 teddy ssd mobilenet v2 fnlite.ipynb

model_dir = 'training/'
pipeline_config_path = 'model_config.config'

0.4.1 Train Model

[]: print(os.getcwd())
!ls

[]: print(pipeline_config_path)

model_config.config

[]: !python model_main_tf2.py \
--pipeline_config_path={pipeline_config_path} \
--model_dir={model_dir} \
--alsologtostderr \
--num_train_steps={num_steps} \
--sample_1_of_n_eval_examples=1 \
--num_eval_steps={num_eval_steps}

[]: import os
print(os.getcwd())
%load_ext tensorboard
%tensorboard --logdir 'training/train'

0.4.2 Export model inference graph

[]: output_directory = 'inference_graph'
print(model_dir)
print(output_directory)
print(pipeline_config_path)

[]: !python exporter_main_v2.py \
--trained_checkpoint_dir {model_dir} \
--output_directory {output_directory} \
--pipeline_config_path {pipeline_config_path}

[]: print(model_dir)

0.5 Step 5: Test the Model

[]: print(os.getcwd())
os.chdir('/content/gdrive/My Drive/models_teddy/research/')
print(os.getcwd())

[13]: import io
import os
import scipy.misc

53

import numpy as np
import six
import time
import glob
from IPython.display import display

from six import BytesIO

import matplotlib
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont

import tensorflow as tf
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

%matplotlib inline

[]: print(os.getcwd())

[14]: def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.

Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.

Args:
path: a file path (this can be local or on colossus)

Returns:
uint8 numpy array with shape (img_height, img_width, 3)

"""
img_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(img_data))
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(

(im_height, im_width, 1)).astype(np.uint8)

[16]: category_index = label_map_util.
↪→create_category_index_from_labelmap(labelmap_path, use_display_name=True)

[17]: os.chdir('/content/gdrive/My Drive/models_teddy/research/object_detection')

[]: tf.keras.backend.clear_session()
model = tf.saved_model.load(f'{output_directory}/saved_model')

54 teddy ssd mobilenet v2 fnlite.ipynb

[20]: def run_inference_for_single_image(model, image):
image = np.asarray(image)
input_tensor = tf.convert_to_tensor(image)
input_tensor = input_tensor[tf.newaxis,...]

Run inference
model_fn = model.signatures['serving_default']
output_dict = model_fn(input_tensor)

num_detections = int(output_dict.pop('num_detections'))
output_dict = {key:value[0, :num_detections].numpy()

for key,value in output_dict.items()}
output_dict['num_detections'] = num_detections

detection_classes should be ints.
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.

↪→int64)
Handle models with masks:
if 'detection_masks' in output_dict:

Reframe the the bbox mask to the image size.
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(

output_dict['detection_masks'], output_dict['detection_boxes'],
image.shape[0], image.shape[1])

detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,
tf.uint8)

output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()

return output_dict

[21]: import cv2

[]: for image_path in glob.glob('images/oof1/*.png'):
print(image_path)
image_np = load_image_into_numpy_array(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)

output_dict = run_inference_for_single_image(model, image_np)
vis_util.visualize_boxes_and_labels_on_image_array(

image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks_reframed', None),
use_normalized_coordinates=True,
line_thickness=8)

display(Image.fromarray(image_np))

55

Appendix C

Image streamer

#!/usr/bin/env python3
import argparse
import socket,struct
import numpy as np
import libs.detection.detection as det

Args for setting IP/port of AI-deck. Default settings are for when
AI-deck is in AP mode.
parser = argparse.ArgumentParser(description='Connect to AI-deck JPEG streamer example')
parser.add_argument("-n", default="192.168.4.1", metavar="ip", help="AI-deck IP")
parser.add_argument("-p", type=int, default='5000', metavar="port", help="AI-deck port")
parser.add_argument('--save', action='store_true', help="Save streamed images")
args = parser.parse_args()

deck_port = args.p
deck_ip = args.n

print("Connecting to socket on {}:{}...".format(deck_ip, deck_port))
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_socket.connect((deck_ip, deck_port))
print("Socket connected")

imgdata = None
data_buffer = bytearray()

def rx_bytes(size):
data = bytearray()
while len(data) < size:

data.extend(client_socket.recv(size-len(data)))
return data

import cv2

count = 0

model = det.load_model('./inference_graph')

56

57

while(1):
First get the info
packetInfoRaw = rx_bytes(4)
[length, routing, function] = struct.unpack('<HBB', packetInfoRaw)

imgHeader = rx_bytes(length - 2)
[magic, width, height, depth, format, size] = struct.unpack('<BHHBBI', imgHeader)

if magic == 0xBC:

Now we start rx the image, this will be split up in packages of some size
imgStream = bytearray()

while len(imgStream) < size:
packetInfoRaw = rx_bytes(4)
[length, dst, src] = struct.unpack('<HBB', packetInfoRaw)
chunk = rx_bytes(length - 2)
imgStream.extend(chunk)

count = count + 1

if format == 0:
bayer_img = np.frombuffer(imgStream, dtype=np.uint8)
bayer_img.shape = (244, 324)
color_img = cv2.cvtColor(bayer_img, cv2.COLOR_BayerBG2BGR)

cv2.imshow('Raw', bayer_img)

key = cv2.waitKey(1) & 0xFF

if args.save or key == ord('s'):
cv2.imwrite(f"stream_out/test/img_{count:06d}.png", bayer_img)

else:
with open("img.jpeg", "wb") as f:

f.write(imgStream)
nparr = np.frombuffer(imgStream, np.uint8)
decoded = cv2.imdecode(nparr,cv2.IMREAD_UNCHANGED)
cv2.imshow('JPEG', decoded)
cv2.waitKey(1)

Appendix D

Kalman filter

import cv2
import numpy as np

Initialize the Kalman Filter
def initialize_kalman_filter():

kf = cv2.KalmanFilter(8, 4)
kf.errorCovPost = np.eye(8, dtype=np.float32) * 1e2

kf.transitionMatrix = np.array([
[1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1]], np.float32)

kf.measurementMatrix = np.array([
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0]], np.float32)

Define process and measurement noise covariance matrices
kf.processNoiseCov = np.eye(8, dtype=np.float32) * 5
kf.measurementNoiseCov = np.eye(4, dtype=np.float32) * 1e-5

return kf

Convert the bounding box to a state vector
def bbox_to_state(bbox):

x, y, w, h = bbox
return np.array([x+w/2, y+h/2, w, h, 0, 0, 0, 0], dtype=np.float32)

def bbox_to_state_oof(bbox):

58

59

x, y, w, h = bbox
return np.array([x+w/2, y+h/2, w, h], dtype=np.float32)

Convert the state vector to a bounding box
def state_to_bbox(state):

x, y, w, h, _, _, _, _ = state
return (int(x-w/2), int(y-h/2), int(w), int(h))

Appendix E

Image processing

import time
import cv2
import sys

root_dir = "/Users/artemredchych/bakalar/project-vision"
sys.path.append(root_dir)

import libs.tracking.kalman as kalman
import libs.detection.final˙detection as det
def distance_to_object(

bbox_height_in_pixels,
real_object_height=88,
effective_focal_length=0.66,
pixel_size=3.6):

"""
Calculate the distance to the object from the camera.

:param bbox_height_in_pixels: Height of the object in the image in pixels.
:param real_object_height: Real height of the object in centimeters.

Default is 88 cm.
:param effective_focal_length: Effective focal length of the camera in millimeters.

Default is 0.66 mm.
:param pixel_size: Size of a pixel in micrometers. Default is 3.6 µm.

:return: Distance to the object from the camera in centimeters.
"""
Convert pixel size to millimeters
pixel_size_mm = pixel_size / 1000.0

Convert real_object_height to millimeters
real_object_height_mm = real_object_height * 10

Calculate distance to object
distance = (

real_object_height_mm * effective_focal_length
) / (bbox_height_in_pixels * pixel_size_mm)

60

61

Convert distance to centimeters
distance_cm = distance / 10

return distance_cm

def init_kalman():
return kalman.initialize_kalman_filter()

def print_distance(image, bbox, text_color=(0, 0, 0)):
image_copy = image.copy()
height, width, _ = image.shape
ymin, xmin, ymax, xmax = bbox
ymin = int(ymin * height)
ymax = int(ymax * height)
xmin = int(xmin * width)
xmax = int(xmax * width)

distance = distance_to_object(ymax - ymin)

dist_label_x = int(xmin + 5)
dist_label_y = int(ymin + ((ymax - ymin) / 2))
dist_label = f'dist: {distance:.2f} cm'
cv2.putText(

image_copy,
dist_label,
(dist_label_x,
dist_label_y),

cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 153, 255), 1

)

return image_copy

def process_image(model, image, kf, is_first):
Run inference on the image
start_time = time.perf_counter()
output_dict = det.run_inference_for_single_image(model, image)
end_time = time.perf_counter()
execution_time = end_time - start_time
execution_time_ms = execution_time * 1000 # Convert seconds to milliseconds
print(f'Function execution time: {execution_time_ms:.2f} milliseconds')

Draw bounding boxes and class names on the image
detection = det.get_bounding_box(output_dict=output_dict, image=image, threshold=0.9)
if detection is not None:

bbox, class_name, score = detection
print(f"Detected bounding box: {bbox}")
print(f"score: {score}")
print(f"class_name: {class_name}")
result_image = det.draw_detection_bbox(image, bbox, score, class_name)
if is_first:

62 Image processing

initial_bbox = bbox
Set the initial state
kf.statePost = kalman.bbox_to_state(initial_bbox)

else:
predicted_state = kf.predict()
predicted_box = kalman.state_to_bbox(predicted_state)
print(f"Predicted bounding box: {predicted_box}")

Update the state with the new measurement
kf.correct(kalman.bbox_to_state_oof(bbox))

Get the current state and convert it to a bounding box
correct_state = kf.statePost
correct_bbox = kalman.state_to_bbox(correct_state)
print(f"After correction: {correct_bbox}\n")

result_image = det.draw_predicted_bbox(result_image, predicted_box, (0, 0, 255))
result_image = det.draw_predicted_bbox(result_image, correct_bbox, (255, 0, 0))
print(det.calculate_iou(bbox, kalman.state_to_bbox(predicted_state)))

return result_image

return None

Appendix F

Extended possition commander

import time
import math
from cflib.positioning.position˙hl˙commander import PositionHlCommander

class PositionExtendedCommander(PositionHlCommander):
seconds for 1 degree
TURNING_SPEED = 0.03
DEFAULT = None

def __init__(self, crazyflie,
x=0.0, y=0.0, z=0.0, yaw=0,
default_velocity=0.5,
default_height=0.5,
controller=None,
default_landing_height=0.0):

super().__init__(crazyflie,
x=x, y=y, z=z,
default_velocity=default_velocity,
default_height=default_height,
controller=controller,
default_landing_height=default_landing_height)

self._yaw = yaw

def __rotate(self, yaw_angle_degrees):
x = self._x
y = self._y
z = self._z
yaw = self._yaw + math.radians(yaw_angle_degrees)

duration_s = math.fabs(yaw_angle_degrees * self.TURNING_SPEED)
self._hl_commander.go_to(x, y, z, yaw, duration_s, False)
time.sleep(duration_s)
self._yaw = yaw

def turn_left(self, angle):
self.__rotate(math.fabs(angle))

63

64 Extended possition commander

def turn_right(self, angle):
self.__rotate(-1 * angle)

def left(self, distance_m, velocity=DEFAULT):
"""
Go left

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
perpendicular_angle = self._yaw + math.pi / 2
x_component = math.cos(perpendicular_angle) * distance_m
y_component = math.sin(perpendicular_angle) * distance_m
self.move_distance(x_component, y_component, 0.0, velocity)

def right(self, distance_m, velocity=DEFAULT):
"""
Go right

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
perpendicular_angle = self._yaw + math.pi / 2
x_component = math.cos(perpendicular_angle) * distance_m
y_component = math.sin(perpendicular_angle) * distance_m
self.move_distance(-x_component, -y_component, 0.0, velocity)

def forward(self, distance_m, velocity=DEFAULT):
"""
Go forward

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
dist_x = distance_m * math.cos(self._yaw)
dist_y = distance_m * math.sin(self._yaw)
self.move_distance(dist_x, dist_y, 0.0, velocity)

def back(self, distance_m, velocity=DEFAULT):
"""
Go backwards

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
dist_x = distance_m * math.cos(self._yaw)
dist_y = distance_m * math.sin(self._yaw)

65

self.move_distance(-dist_x, -dist_y, 0.0, velocity)

def up(self, distance_m, velocity=DEFAULT):
"""
Go up

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
self.move_distance(0.0, 0.0, distance_m, velocity)

def down(self, distance_m, velocity=DEFAULT):
"""
Go down

:param distance_m: The distance to travel (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""
self.move_distance(0.0, 0.0, -distance_m, velocity)

def move_distance(self, distance_x_m, distance_y_m, distance_z_m,
velocity=DEFAULT):

"""
Move in a straight line.
positive X is forward
positive Y is left
positive Z is up

:param distance_x_m: The distance to travel along the X-axis (meters)
:param distance_y_m: The distance to travel along the Y-axis (meters)
:param distance_z_m: The distance to travel along the Z-axis (meters)
:param velocity: The velocity of the motion (meters/second)
:return:
"""

x = self._x + distance_x_m
y = self._y + distance_y_m
z = self._z + distance_z_m

self.go_to(x, y, z, velocity)

def go_to(self, x, y, z=DEFAULT, velocity=DEFAULT):
"""
Go to a position

:param x: X coordinate
:param y: Y coordinate
:param z: Z coordinate
:param velocity: The velocity (meters/second)
:return:

66 Extended possition commander

"""

z = self._height(z)

dx = x - self._x
dy = y - self._y
dz = z - self._z
distance = math.sqrt(dx * dx + dy * dy + dz * dz)

if distance > 0.0:
duration_s = distance / self._velocity(velocity)
self._hl_commander.go_to(x, y, z, self._yaw, duration_s)
time.sleep(duration_s)

self._x = x
self._y = y
self._z = z

Appendix G

Object detection and tracking
streamer

#!/usr/bin/env python3
import argparse
import socket, struct
import numpy as np
import libs.detection.detection as det
import libs.image˙processing as ip
import libs.tracking.kalman as kalman
import time
import cflib.crtp
from cflib.crazyflie import Crazyflie
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
from libs.pos.pos˙commander import PositionExtendedCommander
from cflib.utils import uri_helper

Args for setting IP/port of AI-deck. Default settings are for when
AI-deck is in AP mode.
parser = argparse.ArgumentParser(description='Connect to AI-deck JPEG streamer example')
parser.add_argument("-n", default="192.168.4.1", metavar="ip", help="AI-deck IP")
parser.add_argument("-p", type=int, default='5000', metavar="port", help="AI-deck port")
parser.add_argument('--save', action='store_true', help="Save streamed images")
args = parser.parse_args()

deck_port = args.p
deck_ip = args.n

print("Connecting to socket on {}:{}...".format(deck_ip, deck_port))
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_socket.connect((deck_ip, deck_port))
print("Socket connected")

imgdata = None
data_buffer = bytearray()

def rx_bytes(size):

67

68 Object detection and tracking streamer

data = bytearray()
while len(data) < size:

data.extend(client_socket.recv(size-len(data)))
return data

import cv2

start = time.time()
count = 0
exit_all = False

uri = uri_helper.uri_from_env(default='radio://0/80/2M/E7E7E7E7E5')
model = det.load_model('./inference_graph')
is_first = True
kf = kalman.initialize_kalman_filter()
cflib.crtp.init_drivers()

with SyncCrazyflie(uri, cf=Crazyflie(rw_cache='./cache')) as scf:
last_x = 0.8
last_y = 0.9
last_z = -0.3
with PositionExtendedCommander(

scf,
x=last_x, y=last_y, z=last_z, yaw=0,
default_velocity=0.1,
default_height=last_z + 0.5,
controller=PositionExtendedCommander.CONTROLLER_PID,
default_landing_height=last_z

) as pc:
#go to init position
pc.up(0.6)
pc.right(0.9)

frames_with_bear = 0
frames_without_bear = 0
#start object detection and tracking
while(1):

First get the info
packetInfoRaw = rx_bytes(4)
[length, routing, function] = struct.unpack('<HBB', packetInfoRaw)

imgHeader = rx_bytes(length - 2)
[magic, width, height, depth, format, size] = struct.unpack('<BHHBBI', imgHeader)

if magic == 0xBC:
imgStream = bytearray()

while len(imgStream) < size:
packetInfoRaw = rx_bytes(4)
[length, dst, src] = struct.unpack('<HBB', packetInfoRaw)
chunk = rx_bytes(length - 2)
imgStream.extend(chunk)

69

bayer_img = np.frombuffer(imgStream, dtype=np.uint8)
bayer_img.shape = (244, 324)
color_img = cv2.cvtColor(bayer_img, cv2.COLOR_BayerBG2BGR)
result_image = ip.process_image(

model=model,
image=color_img,
kf=kf,
is_first=is_first

)

if result_image is not None:
is_first = False
frames_with_bear += 1
cv2.imshow('result', result_image)

else:
frames_without_bear += 1
if frames_without_bear > 10:

pc.turn_left(15)
frames_without_bear = 0

cv2.imshow('result', color_img)

count += 1
key = cv2.waitKey(1) & 0xFF
if key == ord('s'):

break

Contents of the attached medium

README.md
text

thesis.pdf ... text of this thesis in PDF format
thesis.. source of this thesis LATEX

data
lab test raw...raw data from the tests
lab test result detection and tracking results
training training dataset with images and labels

inference graph.......................................stored model for object detection
crazyflie-lib-python.......................................python library for crazyflie
libs

detection.. scripts used in object detection
pos...scripts used in drone flying
tracking .. scripts used in object tracking
models...tensor flow libraries

utility...useful scripts
flying streamer.py.....................real-time object detection and tracking streamer
requirements.txt ... python requirements
result.mp4 detection and tracking result in MP4 format
result.mp4..................................detection and tracking result in GIF format
lab test video.MOV.........................video of the flying drone from the laboratory

70

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Goal
	Techniques for Object Detection and Tracking
	Investigating the Problem
	Problem analysis
	Techniques investigation

	Justification and Description of Selected Algorithms
	Monocular distance estimation technique
	Kalman filter in visual object tracking
	Visual object detection using machine learning

	Creazyflie platform
	Description
	Crazyflie 2.1 quadcopter
	AI-deck module
	GAP8 processor
	Camera

	Crazyradio PA
	Loco positioning module

	Implementation on Crazyflie
	Work with Crazyflie quadcopter
	Hardware setup
	Flying with loco positioning system
	Images streaming with AI-deck

	Object detection
	Data collection and annotation
	Model training

	Distance estimation
	Object tracking
	Final solution and tests

	Conclusion
	Bibliography
	XML annotation
	teddy_ssd_mobilenet_v2_fnlite.ipynb
	Image streamer
	Kalman filter
	Image processing
	Extended possition commander
	Object detection and tracking streamer
	Contents of the attached medium

