
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Simple Object Machine implementation in functional

programming language

Filip Říha

doc. Ing. Filip Křikava, Ph.D.

Informatics

Computer Science

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

The Simple Object Model (SOM) is a minimal smalltalk dialect used for research in Virtual

Machines. It already has nine main implementations in various programming languages.

However, they are all done using imperative and object-oriented programming styles.

This thesis aims to create a new implementation in a purely functional programming

language. The main contribution next to the actual compiler and virtual machine is the

comparison of this approach to the imperative ones.

The steps should be:

- Familiarize yourself with SOM and one of its implementation.

- Design and implement a compiler and a virtual machine for SOM.

- Compare the implementations.

In the implementation prefer clarity over raw performance. The implementation should

reasonably documented and tested.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 16 January 2023 in Prague.

Bachelor’s thesis

SIMPLE OBJECT
MACHINE
IMPLEMENTATION IN
FUNCTIONAL
PROGRAMMING
LANGUAGE

Filip Řı́ha

Faculty of Information Technology
Katedra teoretické informatiky
Supervisor: doc. Ing. Filip Křikava, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Filip Ř́ıha. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Ř́ıha Filip. Simple Object Machine implementation in functional programming
language. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Background 3
1.1 SOM language . 3

1.1.1 Object model . 4
1.1.2 Class definition . 4
1.1.3 Methods . 4
1.1.4 Expressions . 6
1.1.5 Variable scoping . 7
1.1.6 Built-in constructs . 8

1.1.6.1 Literal types . 8
1.1.6.2 Blocks . 9
1.1.6.3 Control flow . 11

1.2 Existing SOM implementations . 11
1.2.1 SOM-based languages implementations 13

1.3 Haskell compilers and virtual machines . 13

2 Design 15
2.1 Source files . 15
2.2 Compilation . 15

2.2.1 Compiler frontend . 16
2.2.2 Abstract Syntax Tree . 16
2.2.3 Compiler backend . 18

2.3 Runtime environment . 18
2.4 Bytecode . 18
2.5 Runtime execution . 19
2.6 Garbage collector . 21

3 Implementation 23
3.1 Compiler . 23

3.1.1 Lexer . 24
3.1.2 Parser . 24
3.1.3 Abstract Syntax Tree . 26
3.1.4 Bytecode compiler . 26

3.2 VM Runtime . 26
3.2.1 Runtime state . 26

iii

iv Contents

3.2.1.1 Object representation . 27
3.2.1.2 Global object and classes representation 28
3.2.1.3 Method representation . 28
3.2.1.4 Literal representation . 29
3.2.1.5 State of execution . 29
3.2.1.6 State management . 30

3.2.2 Garbage collector . 30
3.2.3 Primitive functions . 31
3.2.4 Interpreter . 31

4 Assessment 35
4.1 Correctness . 35

4.1.1 Test suite . 35
4.2 Comparison with SOM++ . 36

4.2.1 Compiler . 36
4.2.2 Bytecode . 36
4.2.3 Runtime representation . 36
4.2.4 Garbage collector . 37
4.2.5 Primitive functions . 37
4.2.6 Execution speed . 37

List of Figures

1.1 State of execution of listing 1.7 . 10

2.1 Compiler pipeline . 16
2.2 Abstract Syntax Tree schema . 17
2.3 Illustration of calling convention of listing 2.1 of method call on line 3 20

List of Tables

1.1 Overview of official SOM implementations as listed on the official SOM website[1] 13

4.1 Comparision of individual Are We Fast Yet micro benchmarks 38

List of Listings

1.1 A simple SOM Hello world example . 3
1.2 EBNF grammar for classes . 4
1.3 Class definition example . 5
1.4 Example of undefined behavior . 6
1.5 Variable shadowing example . 8
1.6 Block examples . 9
1.7 Non-local return example . 10
1.8 Implementation of iteration methods in Integer class [3, Smalltalk/Integer.som] . 11
1.9 FizzBuzz example . 12

2.1 Calling convention code example . 20

3.1 Lexer and parser examples . 25
3.2 Partial definition of the VMObject . 27
3.3 Definition of VMClass . 28
3.4 Definition of VMMethod . 28
3.5 Definition of CallFrame . 29
3.6 Implementation of primitive method global:put: in class System 31

v

vi List of Listings

3.7 Definiton of the interpret function, simplified without a tracing 32
3.8 Definition of the executeInstruction function 33
3.9 Definition of SET GLOBAL instruction execution, with the signatures of helper func-

tions . 33

I would like to thank my supervisor doc. Ing. Filip Křikava, Ph.D.
for helping me with this thesis and for his patience and advices.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6) of
the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including
any and all computer programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only,
in any way that does not detract from its value. This authorization is not limited in terms of
time, location and quantity

In Prague on May 11, 2023 .

viii

Abstract

This thesis provides an implementation of a Smalltalk programing language dialect called Simple
Object Machine (SOM) in Haskell, a purely functional language. It explores the syntax and
semantics of a SOM program and analyses already existing implementations. Then it provides the
design and implementation details of the virtual machine, that is based on bytecode instructions
and a bytecode interpreter. The parts of the VM are individualy explored, which are lexer,
parser, compiler, runtime environment and garbage collector.

Keywords Runtime System, Virtual Machine, Object-oriented Programming, Simple Object
Machine, Haskell

Abstrakt

Tato práce se zabývá implementaci dialektu programovaćıho jazyka Smalltak nazývaného Sim-
ple Object Machine (SOM), a to v čistě funkcionálńım programovaćım jazyce Haskell. Práce
zkoumá syntaxi a sémantiku SOM programu a analyzuje již existuj́ıćı implementace. Následně
je prezentován návrh, design a implementačńı detaily virtuálńıho stroje, který je založený na
bajtkódových instrukćıch a bajtkodovém interpeteru. Jednotlivé části virtuálńıho stroje jsou
jednotlivě popsány, což jsou lexer, parser, překladač, běhové prostřed́ı a garbage collector.

Kĺıčová slova běhové prostřed́ı, virtuálńı stroj, objektově orientované programováńı, Simple
Object Machine, Haskell

ix

List of abbreviations

ANTLR ANother Tool for Language Recognition
AST Abstract Syntax Tree
BNF Backus-Naur Form

EBNF Extended Backus-Naur Form
GC Garbage collector

GHC Glasgow Haskell Compiler
JIT Just-in-time

OOP Object-oriented Programming
REPL Read-Eval-Print Loop
SOM Simple Object Machine

VM Virtual Machine

x

Introduction

There has been a trend with many popular programming languages running on some virtual
machine, as opposed to being compiled to a native binary. Even though this is almost always
at a cost of performance when compared to a compiled language, it comes with many benefits
including, but not limited to, write once, run anywhere architecture, memory safety or faster
programmer feedback loop.

Even with this trend, the development and inner workings of virtual machines are still some-
times seen as a black box, especially when compared to other parts of a compiler/interpreter
pipeline, namely lexer and parser, as these have been researched extensively. Moreover, imple-
menting a new virtual machine for an already existing programming language is very complex,
as they tend to have feature-rich syntax and strong requirements, thus they are not ideal for
research and teaching. This is where Simple Object Machine language comes in.

Simple Object Machine (SOM) is a dialect of Smalltalk, a purely object-oriented program-
ming language, used for teaching and researching virtual machines[1], originating from Aarhus,
Denmark. Like Smalltalk, it aims to be a minimal language with only a few built-in constructs
and a small standard library. This allows the implementations to focus on the design of runtime
instead of the lexer and parser. Nonetheless, it is still a very functional language with some
real-life applications.

At the time of writing, there are 9 main implementations of SOM, all of which are written
in an imperative or OOP language (Java, C, C++, Python, Rust, JavaScript and Smalltalk).
This comes naturally because runtime environments are by their definition mutable and therefore
managed more easily in an imperative/OOP paradigm.

The goal of this thesis is to design and implement a new compiler and virtual machine for
SOM. The language of the implementation is Haskell, a lazily evaluated purely functional pro-
gramming language. The goal is not to compete with other implementations in the performance
of the VM, but to compare the difference in approach to VM implementation in a functional
programming paradigm compared to a classical imperative or object-oriented implementation.

Goals
Design and implement a compiler and VM for SOM in Haskell.

Benchmark the implementation’s speed.

Compare the implementation details with SOM++ implementation.

1

2 Introduction

Chapter 1

Background

In this chapter, we introduce the Simple Object Machine language, its code structure, built-in
concepts and existing implementations. We also briefly introduce the Haskell programming
language used for the implementation presented in this thesis.

1.1 SOM language

Simple Object Machine (SOM) is “a minimal Smalltalk for teaching of and research on Virtual
Machines.”[1] It originates from the University of Aarhus and it was first used in 2001 for teaching
object-oriented VMs and runtime systems.[2] The listing 1.1 shows an example of a simple SOM
Hello World program.

1 Hello = (
2 run = (
3 'Hello World!' println.
4)
5)

Code listing 1.1 A simple SOM Hello world example

It features dynamically loaded classes with fields and methods, single inheritance, dynamic
method dispatch, global variables and closures with non-local returns. There is a small official
standard library (under 1900 lines of code) that contains the basic definitions for integer and
floating point arithmetics, string manipulation, collections (arrays, vectors, dictionaries, hashta-
bles and sets) and provides methods for printing into the standard output and loading text files.
It mainly aims to be small enough to be understood, but still big enough to be useful.

SOM has an official syntax specification with an ANTLR grammar[3, specification/SOM.g4],
but it lacks a semantic specification. On the other hand, it has several official implementations,
so the semantic details can be inferred from these other implementations.

3

4 Background

1 Class = className "=" [superclassName] "("
2 InstanceFields { instanceMethod }
3 [Separator ClassFields { classMethod }]
4 ")" ;
5

6 InstanceDefinitions =
7 ["|" { instanceField } "|"];
8

9 ClassDefinitions =
10 ["|" { classField } "|"];
11

12 Separator = "----" { "-" } ;

Code listing 1.2 EBNF grammar for classes

1.1.1 Object model
Being a dialect of Smalltalk, SOM is a purely object-oriented language, meaning that everything
is an object and the computation progress by passing messages between objects. SOM employs
a class-based system with single inheritance, so each object is an instance of some class.

Objects are not only instances of classes, as we may know it from other popular object-
oriented programming languages like C++ or JavaScript, but also classes, primitives like num-
bers, booleans or strings, and built-in constructs like closures (called blocks in Smalltalk languages)
or arrays. This provides a nice uniformed way to work with all objects, classes and constructs
in SOM and greatly simplifies reflection, but can pose performance hits, as primitive functions
like number arithmetics and boolean evaluations are compiled to calling methods.

1.1.2 Class definition
The core of SOM code is the class definition, outlined by the grammar in listing 1.2. Each class is
defined in its own file and contains the name of the class, its superclass, instance fields, instance
methods, class fields and class methods. If the name of the superclass is omitted, the Object
superclass is implicitly supplied.

Instance methods contain the code executed on passing the corresponding message to an
object that is an instance of the given class, while class methods is code executed upon passing
the given message to a class.

Instance fields are variables available to an instance and class fields are variables that can be
used in class methods.

A class can be accessed globally by its name. Class methods can be invoked by directly
sending the message to the class and by sending the message new, we create a new instance of
the class. For example, in listing 1.3 on line 30, the class Vector is accessed and a new instance
is created.

1.1.3 Methods
Each class defines methods for a given class and its instances. The body of the method is either
composed of expressions or annotated by a primitive keyword. The functionality of these
primitive methods is provided by the runtime.

SOM language 5

Code listing 1.3 Class definition example

6 Background

1 UndefinedBehavior = (
2 foo = ('foo1' println.)
3

4 foo = ('foo2' println.)
5

6 run = (self foo.)
7)

Code listing 1.4 Example of undefined behavior

There are three types of method signatures:

unary methods, identified by a single keyword and no parameters (e.g., code listing 1.3 on
lines 8–10, the definition of unary method increment),

binary methods, identified by a sequence of given special symbols with exactly one parameter
(e.g., code listing 1.3 on lines 13–15, the definition of method += with a parameter by),

and keyword methods identified by a sequence of keywords, each ending with a colon, and
with a parameter after each keyword (e.g., code listing 1.3 on lines 18–20, the definition of
method set: with a parameter value).

A method is identified by its name without arguments and with no spaces, so the signature
of the method in example 1.3 defined at lines 23–25 is ifZero:ifNotZero:.

Classes inherit all methods of their superclass, meaning we can send the same message to an
instance of a class as we can send to an instance of its superclass. If a class defines a method
with the same signature as a superclass, we override the inherited method and when called, the
body of the overriding method is executed.

SOM has no concept of access modifiers and all methods are public, as opposed to languages
like Java or C++, which allow methods to be declared as private or protected.

It is undefined behavior if a class has two method definitions of the same signature. For
example, when we execute the code in listing 1.4 in the SOM++ implementation, it prints foo1,
whereas the SOM-RS prints foo2.

1.1.4 Expressions
A method or nested block body consists of zero or more expressions separated by a period.

Exit expression is denoted by the symbol ˆ and is followed by another expression. Upon
reaching an exit statement, the contained expression is evaluated. The result of the evaluation is
used as a return value and the method is exited. Exit expressions have different semantics inside
of a nested block, where they behave as non-local returns (discussed later in this chapter).

For assignation is used the := operator. Since assignation is also an expression, its result can
be used as a value.

Evaluation consists of sending messages to objects. As we have three different method sig-
natures, we also have three different types of messages, each one corresponding to an invocation
of a type of method:

Unary messages are sent to an object without any arguments. In this example, we are sending
a unary message not to an object true.

true not

SOM language 7

Binary messages are sent to an object with exactly one argument. Unlike the mathematic
notion of binary operators being a function of two arguments, here the first object is the
receiver of the message with the second as an argument. In the following example, we are
sending a binary message + with argument 2 to an object 1, both instances of Integer.

1 + 2

Keyword messages have one argument for each keyword of its signature. In the following ex-
ample, we are sending a keyword message to an object Pair, where withKey: and andValue:
are keywords and ’foo’ and ’bar’ are arguments.

Pair withKey: 'foo' andValue: 'bar'

There is no operator precedence and all messages are left-associative. For example, 5 + 2 / 3
is the same as (5 + 2) / 3. In terms of mixing different types of methods, unary methods
have the highest precedence, then binary methods, keyword methods, and lastly assignations.
Therefore

a := '10' asInteger negated to: 1 abs + 3 abs

is the same as

a := (('10' asInteger) negated) to: ((1 abs) + (3 abs))

1.1.5 Variable scoping
Each SOM variable has a scope, which defines how it can be accessed and modified.

Local variables, method arguments and block arguments are accessible from the method or
block they are defined in.

Instance fields are accessible in all instance methods and each instance of a class has its own
variables. They are not accessible to the other objects directly, not even to other objects of
the same class. This is different from most other programming languages, where for example
in Java, two objects of the same class can access and modify each other’s private fields. The
instance fields of a superclass are also accessible in a method.

Class fields are accessible in all class methods. They cannot be accessed from an instance
method, unlike for example static fields in Java and C++.

Class objects, i.e. objects representing a class, can be accessed globally. There is always one
class object for one class defined in the current runtime.

Global variables are also accessed globally and they are defined by the virtual machine. New
global variables can be defined in the runtime with the global:put: instance method of the
System class. In SOM, there are four global variables by default,

true, an instance of the True class,
false, an instance of the False class,
nil, an instance of the Nil class, representing an empty value,
and system, an instance of the System class, representing the runtime enviornment.

8 Background

1 Shadowing = (
2 | x |
3

4 foo = (
5 | x | "Shadows the instance field"
6 x := 'Hello'. "Assigns to the local variable"
7)
8

9 bar = (
10 x := 'World'
11 self foo.
12 x println. "Always prints 'World'"
13)
14)

Code listing 1.5 Variable shadowing example

In a body of a method, the currently executed object is available by the self reserved
keyword. If we want to execute the method as it is defined in the superclass, we can send it a
message via the super reserved keyword.

Name shadowing is valid in SOM. One can define a variable or field in a context with the
same name that is already in scope and the new definition is used when referring to this name.
An example can be seen in listing 1.5, where a local method variable x in method foo shadows
an instance field. The self and super built-in keywords can also be shadowed this way.

Naming two or more variables with the same name in one scope definition is also valid in
SOM and effectively, one of the variables shadows the others, meaning they cannot be accessed
normally. There are however primitive methods instVarAt: and instVarAt:put: that can be
used to get and set the value of any instance variable by their index, even the ones that are
shadowed.

1.1.6 Built-in constructs
The SOM language has a small set of built-in constructs and little to no syntactic sugar. Like
in Smalltalk, the aim is to keep the syntax as minimal as possible.

1.1.6.1 Literal types
Literals allow us to represent a fixed value or constant. In the runtime, there is no difference
between a literal type and an instance of an object, as these literals are represented as regular
objects. This allows us to call SOM a purely OOP language. This is very different from another
highly popular OOP language Java, where primitive types are not treated equally to other
objects. The types of literals in SOM are

strings, enclosed by single quotes (e.g. 'Hello world!'),

symbols, prefixed by the hash symbol # (e.g. #hello),

arrays, enclosed within #(and) with individual items separated by whitespaces
(e.g. #('hello' 'world' 10).),

integers,

and floats.

SOM language 9

1 "Block with no parameters"
2 ['Hello world' println].
3

4 "Block with two parameters"
5 [:i :j | i + j].
6

7 "Block with two parameters
8 and one local variable"
9 [:i :j |

10 | a |
11 a := i + j
12].

(1.6.1) Block syntax example

1 ClosureExample = (
2 foo = (
3 | block a |
4 block := [a println]
5 a := 'Hello world!'.
6 ˆ block.
7)
8

9 bar = (
10 | a |
11 a := 'Not hello'.
12 "Prints 'Hello world!"
13 (self foo) value.
14)
15)

(1.6.2) Block closure example

Code listing 1.6 Block examples

1.1.6.2 Blocks

A block expression or a nested block is a closure with a body composed of expressions. It is
very similar to lambdas, arrow functions or anonymous functions in other languages. When a
block in a code is reached, it is created, but not executed until invoked. In the runtime, it is
represented as an object and as an instance of the class Block1, Block2 or Block3 depending
on the number of parameters (zero, one or two respectively).

A block can define parameters, denoted by a leading colon followed by the variable identifier.
Blocks can define local variables, which are lexically scoped to the body of the block. An example
of this syntax is in listing 1.6.1.

A block can be executed by sending the value method if it has no parameters, with value:
if it has one parameter and with value:with: if it has two parameters. Blocks with three or
more parameters are not supported in SOM.

When a new block is defined, it closes over the current lexical scope, traditionally called home
context[4, p. 306]. All of the non-local variable lookups of a block are done in this home context
where it was created, not from the context of block execution, including the keywords self and
super. The home context contains not only the method and object it is created in, but also the
exact point in execution, i.e. the current call frame. In a code example 1.6.2, we can see that
the local variable in a method foo is closed over and later still valid in the method bar.

The exit expression inside of a block has a different meaning than inside of a method, as
it invokes a non-local return. When a non-local return is evaluated, it rolls back the call stack
to the method where the block was created and then returns from it with the value of the exit
expression. Non-local return can be analogous to an exception, where the “thrown” (returned)
value is “caught” in the method of home context and then returned from this point.

This behavior is represented in image 1.1, where a block is created in a method foo, and
then evaluated in method bar. Upon evaluating, the non-local return is executed, exiting both
the methods foo and bar.

When a non-local return is evaluated and the method where the block was created is no
longer on the call stack, the method escapedBlock: with the current block as an argument is
called on the object where the block execution was invoked.

Unlike in a method body, when an exit expression is not used, the implicit return value of
the block is not the reference to self, but the value of the last expression body.

10 Background

1 NonLocal = (
2 foo = (
3 self bar: [ˆ'Hello'].
4 ˆ'world'. "this line is never executed"
5)
6

7 bar: block = (
8 block value.
9 'Hello from bar' println. "this line is never executed"

10)
11

12 run = (
13 (self foo) println. "prints 'Hello'"
14)
15)

Code listing 1.7 Non-local return example

Figure 1.1 State of execution of listing 1.7

Existing SOM implementations 11

1 to: limit do: block = (
2 self to: limit by: 1 do: block
3)
4

5 to: limit by: step do: block = (
6 | i |
7 i := self.
8 [i <= limit] whileTrue: [block value: i. i := i + step]
9)

Code listing 1.8 Implementation of iteration methods in Integer class [3, Smalltalk/Integer.som]

1.1.6.3 Control flow

Where most of the other languages have special control structures like if or for, SOM imple-
ments control flow as plain objects and methods. This ties into the “everything is an object”
philosophy of Smalltalk languages, while also simplifying the language syntax.

Braching: The Boolean class and it’s subclasses True and False define methods ifTrue:,
ifFalse: and ifTrue:ifFalse:. The arguments of these methods are blocks that are
conditionally executed depending on the class of the boolean they are passed to (True method
executes the blocks passed to the ifTrue: method and False executes on ifFalse: call).

Loops: Instead of while statement, the Block class define whileTrue: and whileFalse:
methods. The code condition whileTrue: runThis executes the block runThis until the
block condition stops returning true, analogous for whileFalse:.

Iterating: The Integer class defines methods to:do: and to:by:do:. These capture the
basic usage of for expression in languages like C and Java, where i to: limit by: step
do: block repeatedly invokes block with the argument in the closed range from i to limit
with the step size of step. Internally, this is implemented as a whileTrue: loop, as we can
see in listing 1.8.

An example usage of control flow usage can be seen in a simple FizzBuzz code example 1.9.

1.2 Existing SOM implementations

At the time of writing, SOM has 9 main implementations as listed on the official SOM website[1],
each one with different goals and approaches to VM implementations. They are either based on
AST or bytecode interpretation and have varying levels of optimizations. The following is a brief
description of them:

SOM was the first implementation. It is written in Java and is bytecode-based with very
basic optimizations. It is the implementation used for teaching at the University of Århus in
Denmark.

CSOM, written in C, was the first implementation in another language than Java. It is
bytecode-based with a mark/sweep garbage collector and does not have any optimizations.
It can be compiled into WebAssembly.

12 Background

1 FizzBuzz = (
2 run = (
3 | vec i |
4 vec := Vector new.
5 i := 1.
6

7 [i <= 100] whileTrue: [
8 | str |
9 str := ''.

10 (i % 3) = 0 ifTrue: [str := str + 'Fizz'].
11 (i % 5) = 0 ifTrue: [str := str + 'Buzz'].
12 (str = '')
13 ifTrue: [vec append: i asString]
14 ifFalse: [vec append: str].
15

16 i := i + 1.
17].
18

19 1 to: vec size do: [:j |
20 (vec at: j) println
21]
22)
23)

Code listing 1.9 FizzBuzz example

PySOM is both AST and bytecode-based implementation in Python. It is either compatible
with RPython with metatracing-based JIT compilation, or pure Python with no dependen-
cies. At first, there were three Python implementations for SOM (PySOM, RPySOM and
RTruffleSOM), but since the end of 2020, all of these codebases were merged into one[5,
README.md].

AweSOM is a Smalltalk implementation based on bytecode with no optimizations.

TruffleSOM is an AST interpreter written in Java using the Truffle framework[6] and Graal
compiler [7]. It claims that this makes it highly optimized and based on the Are We Fast Yet
benchmarks[8], it is the fastest SOM implementation.

SOM-RS and ykSOM are two implementations in Rust. Both offer a bytecode-based VM.
The former has also an AST interpreter. ykSOM is “partly a test bed to experiment with good
ways of structuring Rust interpreters, balancing correctness, performance, and readability”[9]
and is planned to eventually use meta-tracing system Yorick[10] to produce a JIT-compiling
VM.

JsSOM is an AST interpreter written in JavaScript that can be run both on Node.js and in
browsers. It is the VM behind the REPL shell on the official site.

SOM++ is an implemenation in C++. It is bytecode-based with jump bytecodes, meaning
the main interpretation loop is implemented as a goto jump based on the current bytecode
code. It can be compiled with three different garbage collectors (copying, mark-and-sweep
and generational) and optionally supports tagged or cached integers.

There is also an unofficial implementation in C++ written as a part of a master’s thesis at the
Faculty of Information Technology, CTU. It uses the official ANTLR grammar as the basis for

Haskell compilers and virtual machines 13

Name Type of interpreter Language Type of garbage collector
SOM bytecode Java none
CSOM bytecode C mark-and-sweep
PySOM AST and bytecode Python none
AweSOM bytecode Smalltalk none
TruffleSOM AST Java (Truffle framework) none
SOM-RS AST and bytecode Rust none
ykSOM bytecode Rust Rust built-in
JsSOM AST JavaScript none
SOM++ bytecode C++ copying, mark-and-sweep or generational

Table 1.1 Overview of official SOM implementations as listed on the official SOM website[1]

lexer and parser generation, custom bytecode as a compilation target, a custom virtual machine
for executing this bytecode and a simple mark-and-sweep garbage collector.[11]

1.2.1 SOM-based languages implementations
“SOM has been a platform for research that inspired a range of language implementations.”[1]
These are mostly used for further research of virtual machines and runtime environments.

The biggest has been SOMns, a Newspeak implementation based on TruffleSOM, imple-
mented using the Truffle framework[6] and using the Graal compiler [7] for JIT compilation. This
allows SOMns to reach performance that can compete with state-of-the-art VMs for dynamic
languages.[12]

Built on top of SOMns is the Moth, an interpreter for Grace programming language[13]. It
is mostly used as a platform for research on concurrency and tooling.

As an extension to TruffleSOM, TruffleMATE has more standard Smalltalk support. It also
implements the Mate approach to building virtual machines which expose their whole structure
and the behavior to the language level.[14]

1.3 Haskell compilers and virtual machines
Haskell is a statically-typed, purely functional language with lazy evaluation. It is a popular
choice for lexing, parsing, compiling and transpiling code, mostly because these operations can
be more or less described as transformations without side effects and therefore are easily managed
in the context of pure functional language such as Haskell.

Notable examples of compilers written in Haskell include Idris 1, a general-purpose functional
programming language with dependent types that compiles into C or JavaScript[15], Agda, a
dependently typed programming language and proof assistant with target backend being GHC
Haskell or JavaScript[16], or Elm, a purely functional language for building web-apps.

While it is popular for compilers, Haskell is not that popular for building interpreters, virtual
machines and runtime environments. The main reason for this is performance. As a purely
functional language with lazy evaluation, it is hard to compete with languages that offer direct
memory access. More details will be provided in later chapters.

Nonetheless, there are some languages whose runtime is implemented in Haskell. The Write
Yourself a Scheme in 48 Hours[17] is a tutorial book for writing a custom Scheme interpreter
in Haskell, while also providing its own reference implementation. There are also some smaller
and/or incomplete projects with little to no documentation, like RType[18]a Ruby interpreter, or
HST [19], a Smalltalk interpreter1. A more complete list of these can be found at [20].

1The only pieces of evidence of this project mention that it exists, but the source code is not available

14 Background

Chapter 2

Design

This chapter outlines the general design of the implemented virtual machine: the compiler
frontend and backend, bytecode instructions, runtime environment and garbage collector.

The whole virtual machine is composed of two main parts, source code compilation and bytecode
execution. Compilation compiles the source codes into a bytecode representation, which is then
executed in the runtime environment. The compilation pipeline is illustrated on image 2.1.

This design of the VM being split into individual parts allows us to swap individual parts of the
VM pipeline for different ones. Effectively this means that the compiler can target a different
VM with a new backend, or we can extract the runtime environment and have a completely
different compiler that targets our VM.

Usually, SOM virtual machines are designed with dynamically loaded classes, so that the
initial runtime has only basic classes loaded and when the execution comes across a class that
is not in the runtime environment, it is only then compiled from the classpath. Our VM is
not designed with this dynamic class loading and before the execution of the runtime, all of the
classes on the provided classpath are compiled and are introduced to the runtime. This simplifies
the execution step but can be a performance issue, mostly because even classes that are never
actually used are always compiled and loaded and are taking space on the heap.

2.1 Source files
The SOM classes are defined in plain text source code files with the suffix .som. There is always
one class defined in one source file and the files follow a convention that its name is the same as
the name of the file without suffix (e.g. class Boolean is defined in a file named Boolean.som).
This naming is crucial for dynamic loading, as it allows for loading classes based on the file name
without the need to parse the content first. The files do not have to follow any folder structure
but can be located inside folders freely.

There are no classes available to the runtime that are not provided as a source code, so even
classes from the standard library have to be defined in a .som files. The standard library is
provided by the official SOM repository [3].

2.2 Compilation
The compilation is composed of a frontend and a backend. The frontend is the transformation
of the source code to an abstract syntax tree (AST), and the backend is the transformation of
this AST to the target representation, the bytecode instructions.

15

16 Design

Figure 2.1 Compiler pipeline

There is no analysis done on the outputted AST. If there is a semantic error, like a circular
dependency of classes or an undefined class, it is identified during compilation and only then an
error is raised.

2.2.1 Compiler frontend
The compiler frontend transforms the plain text source code representation of a class to an
abstract syntax tree. This transformation is further split into two parts, lexical and syntax
analysis. Both of these compilation steps are specified by the ANTLR grammar in the official
SOM repository, therefore giving a formal definition of how a source code file should be structured.

Lexical analysis (also called lexing or scaning) is the process of transforming the plain text
of a file into a list of tokens, i.e. individual strings with assigned meaning.

These tokens are then consumed by the parser as a syntax analysis. Parser consumes the
sequence of tokens and transforms them into an intermediate representation of the code. Usu-
ally, this representation is an abstract syntax tree (including our compiler), but it can be also
transformed into a different representation or directly into the target representation, therefore
eliminating the need for a backend compiler stage.

2.2.2 Abstract Syntax Tree
The abstract syntax tree (AST) is a structural representation of a SOM class. One class definition
is transformed into one tree and the whole program is composed of a collection of these ASTs.
The diagram outlining the AST structure can be seen in image 2.2.

Compilation 17

Figure 2.2 Abstract Syntax Tree schema

The individual nodes of an AST are:

a class, the root node of the AST, containing the class name, superclass name (if it has one),
instance and class methods definitions and instance and class fields definitions,

a method, composed of a method type (unary, binary or keyword signature), the name of the
method, its parameters (if there are any) and a method body, which is either a primitive
method definition or a block definition,

a block definition, yielding the definitions for local variables and a body composed of a se-
quence of expressions,

an expression, which is either an exit expression, assignation, a method call or a primary
expression (either a variable, nested block or a literal),

a nested block, composed of parameters and a block definition,

or a literal, which is one of five types, an array with a list of nested literals, a symbol, a string,
an integer number or a double precision floating point number (usually shortened to double).

18 Design

2.2.3 Compiler backend
The backend of a compiler generates a runtime representation of a class from the AST. For
each class given in its AST form, two classes are created, one holding the instance methods and
fields definition (called an instance class) and the second holding the class methods and fields
definition (called a metaclass). It also provides these classes represented as an object, which
holds the actual value of class fields, as classes themselves are not represented as objects in the
runtime. This allows us to insert to have the static representation of class inserted as a value in
an object and thus have the methods of an instance closer to the instance object.

If a method is not primitive, it is compiled into a sequence of bytecode instructions. Literals
and blocks defined in these methods are brought into the global context.

If a method is defined as primitive, its implementation has to be provided by the compiler.
If it is not, it is simply not available in the runtime and no error is raised.

2.3 Runtime environment
The runtime environment consists of:

Heap, where all of the currently available objects live. The heap is managed by the garbage
collector.

Globals, a collection of global objects, which are either classes or instances of objects. Indi-
vidual global objects can be accessed with a global index that can be interned from a symbol
with globals interner.

Literals, a collection of literal objects, which are integers, doubles, strings, symbols and blocks.
Literals are accessed with a literal index. Each literal value is given a unique index through
literals interner. This interning allows us to share one literal index for one literal across
multiple classes and methods.

Execution stack, a first-in-first-out collection of objects, where the message receiver and mes-
sage arguments are passed by.

Call stack, which consists of call frames. A call frame contains local variables, that is the
currently executed method message receiver (available with the variable self), arguments
and the local variables. The call frame also contains the currently executed method, the
instruction counter in this method and the class of the method, which is used for searching
methods in a superclass. If the current execution context is inside of a block, the call frame
also contains the home context of the block. This capturing is used for accessing variables
defined in the outer contexts as well as non-local returns. A new call frame is pushed on the
call stack upon entering a new method (including primitive methods) and it is popped from
the call stack after the method is exited.

Each object in the runtime holds its own fields, the class it is an instance of and, if it is a
primitive object like Integer or String, it holds its primitive underlying value.

Each class holds the methods it has defined, a superclass (if it has one) and the representation
of this class as an object.

2.4 Bytecode
The bytecode represents individual instructions given to the runtime environment. It consists
of instructions for manipulating the stack, heap, literals and globals and also instructions for
calling and exiting methods.

Runtime execution 19

The instructions work as follows:

HALT exits the runtime environment gracefully without any exceptions.

DUP gets the value on top of the stack and pushes a duplicate of it.

POP discards the top item of the stack.

PUSH LITERAL i pushes the literal on the given index to stack, transforming it to an object.
If the literal is a block, it also captures the current top call frame in the call stack.

PUSH LOCAL i i pushes a variable from the current local scope on top of the stack. The first
index is used for identifying the call frame to look in, 0 meaning the current call frame, 1 the
captured call frame, 2 is the captured call frame of the current captured call frame and so
on. The second index is then the field index in the given call frame.

PUSH FIELD i pushes to stack a field on the given index of the current object context (the
object accessed as self).

PUSH GLOBAL i gets a global value on a given index and pushes it as an object to the stack.
This means that if the global is an instance of a class, it’s pushed directly, and if it is a class,
it pushes the object representing the class. If no global value of a given index is defined, the
runtime exits with an exception.

SET LOCAL i i, SET FIELD i and SET GLOBAL i pop the top value from the stack and sets
the local variable, current context object or a global to this value respectively.

CALL i calls a method of a given identifier on the object on top of the stack, pops the required
amount of arguments and pushes a new call frame on the call stack with the popped valued
as locals. It also reserves space for locally scoped variables and defaults their value to the
nil value. This instruction expects that the arguments are ordered on the stack from bottom
to top, meaning the last argument is popped next after the message target. This calling
convention can be seen illustrated in image 2.3. If no method of the given identifier is defined
on the receiving object, a runtime exception is raised and the execution of the virtual machine
is halted.

SUPER CALL i calls a method with the same calling convention as CALL, but starts the search
for the appropriate method in the superclass of the class where the currently executed method
is defined.

RETURN exits the currently executed method, popping the top of the call stack. The return
value is passed through the stack.

NONLOCAL RETURN is an exit expression executed inside of a block. It gets the currently
captured call frame and validates that it is still present on the call stack. If it is, the call
stack pops the frames until it is reached. If it is not, an exception is raised and the runtime
is exited with error.

2.5 Runtime execution
The virtual machine gets always one class as the main class. The runtime then expects that this
class implements either run or run: instance method, which will be treated as an entry point
into the program execution. This method is equivalent to the main function in C-like languages.

The execution of a SOM runtime is started by calling the method initialize: on the global
object system with an array of arguments, where the first one is the main class to be executed

20 Design

1 Calling = (
2 foo = (
3 self exec: 1 with: 2 and: 'Hello'
4)
5

6 exec: x with: y and: z = (
7 | a |
8)
9)

Code listing 2.1 Calling convention code example

Figure 2.3 Illustration of calling convention of listing 2.1 of method call on line 3

Garbage collector 21

and the rest of the arguments are given on the command line. This method then loads the main
class, creates a new instance of it and if it implements the method run:, it calls it with the
arguments array, otherwise it calls the method run without arguments.

2.6 Garbage collector
Since SOM does not provide a mechanism for manual memory management, it expects that it
will be managed by the runtime environment. To correctly free up memory that is no longer
used, a garbage collector is employed. There are many strategies for correctly evaluating which
memory can be freed. Our implementation uses a simple mark-and-sweep algorithm[21, p. 18],
which is composed of two stages:

mark all currently reachable objects (on execution stack, as local variables or as global objects)
and subsequent objects reachable from them,

and sweep, i.e. delete unmarked objects and remove marking from marked objects.

The advantage of this algorithm is its simplicity. It is however usually very slow, as it stops
the current execution of the runtime and has to go through every object on the heap.

22 Design

Chapter 3

Implementation

In this chapter, we explore the implementation details of the HaSOM virtual machine: the
used technologies and libraries, compilation steps, the intermediate representations and the
representation of the runtime state.

The HaSOM virtual machine is written in Haskell, a purely functional programming language. It
uses The Glasgow Haskell Compiler (GHC) with the Haskell Stack Toolchain[22] for compiling,
executing, testing and building the documentation. It has no other external dependencies.

The Stack Toolchain is used in combination with Stackage, a stable set of Haskell packages.
This allows us to specify a snapshot version and have a guarantee of compatibility between
external packages. The snapshot used by HaSOM is LTS Haskell 19.33, which uses GHC version
9.0.2, as at the time of creating the project it was the newest snapshot that supported Haskell
Language Server, a development tool for writing Haskell.

For testing, the HSpec[23] testing framework is used in combination with QuickCheck[24],
a library for randomly testing individual expected properties, and a hspec-golden[25] package
for executing golden tests on the lexer and parser. These golden tests (also sometimes called
snapshot tests) generate a file with the expected result and on further executions validate that
the newly outputted file content is the same as the initial snapshot.

Code documentation is written directly in the Haskell source files and is then generated using
Haddock[26].

The Git versioning system is used for maintaining a code repository and a Git submodule
dependency is linked to the official SOM Github repository, as it provides the standard library,
various examples and a test suite.

The code is hosted on GitLab. It uses the GitLab CI/CD, a continuous integration and
continuous delivery tool, for automated testing of the code.

3.1 Compiler

The compiler transforms the definitions of classes from plain text to their runtime representation.
The compilation process is split into three parts, scanning the input into tokens with lexer, parsing
these tokens into an abstract syntax tree and finally transforming all classes from AST to an
initial runtime environment.

23

24 Implementation

3.1.1 Lexer
The HaSOM lexer is written in Alex[27], a tool for generating lexical analyzers similar to lex and
flex for C/C++. It expects a file with the suffix .x and generates a Haskell file with a defined
alexScanTokens function. The Alex tool is invoked during the Stack build phase.

The Alex tool allows us to use one of many built-in wrappers. We chose a posn-bytestring
wrapper, as it allows us to have the information about the token position in the source file for
better error messages, as well as defining the input as ByteString, thus allowing us to have a
UTF-8 encoded source files.

The output of the lexer is a list of PosToken type. It has two fields, first is the AlexPosn
data type that defines the position of the token in the source string, and the second is the Token
data type defined in the module HaSOM.Lexer.Token and is the actual token type.

Alex tokens are defined as regular expressions and when it is matched, it either yields a
token output (defined as a Haskell code enclosed in curly braces) or it is ignored (denoted by a
semicolon).

An example of HaSOM tokens definition can be seen in listing 3.1.1. First, we have defi-
nitions for $digit and $alpha macros which define a digits group and a group of alphabetical
characters. Next, we have the tokens section, where the individual tokens are defined. First
is a SOM comment definition on line 5, which is enclosed in double quotes and is ignored by
the lexer, as well as a whitespace regular expression on line 6, also ignored in the output. On
line 8 we see an Identifier token definition, which is an alphabet character followed by zero or
many alphanumerical symbols and/or underscores. When this regular expression is matched, an
Identifier token is yielded with the matched string as its field.

The Alex tool was chosen because the syntax of the Alex file is very similar to the official
ANTLR grammar definition and the transformation from the official definition is pretty straight-
forward.

3.1.2 Parser
For a parser, we use the Happy parser generator [28] that generates a Haskell code from a grammar
specification in Backus-Naur form (BNF). It works similarly to the yacc tool for C.

A Happy grammar is defined in a .y file. We use a convention, where tokens start with an
uppercase letter and parser rules start with a lowercase letter. Each production is composed of
a non-terminal symbol on the left, separated by a colon and followed by one or more expansions
on the right, separated by |. Each production then has some Haskell code associated, enclosed
in curly braces. In these code snippets, a $n holds the value n-th token or non-terminal rule in
the expansion.

In the code example 3.1.2 in the rule classdef, we see the structure of a class definition. In
the first expansion, the constructor AST.MkClass is called with the arguments

Identifier ($1),

superclass ($3),

instanceFields ($4),

the first methodStar ($5),

classFields ($7),

and the second methodStar ($8).

The parser runs in a monad Either Text, so the result of parsing is either an error message
or the constructed abstract syntax tree.

Compiler 25

The HaSOM parser definition is mostly based on the official ANTLR grammar definition, but
since ANLTR is based on the Extended Backus-Naur form, the transformation is not one-to-one,
as repetitions and optional expansions have to be explicitly denoted. For example in the code
snippet 3.1.2, the rule variableStar corresponds to an ANTLR rule variable*, where the *
symbol is an EBNF notation.

1 $digit = 0-9
2 $alpha = [a-zA-Z]
3

4 tokens :-
5 \" (\n | ˜\")* \" ;
6 $white+ ;
7

8 $alpha [$alpha $digit _]* { tokT Identifier decode }

(3.1.1) An example of HaSOM tokens definition in Alex

1 classdef :: { AST.Class }
2 classdef : Identifier Equal superclass instanceFields methodStar
3 Separator classFields methodStar
4 EndTerm
5 { AST.MkClass $1 $3 $4 $5 $7 $8 }
6 | Identifier Equal superclass instanceFields methodStar
7 EndTerm
8 { AST.MkClass $1 $3 $4 $5 [] [] }
9

10 superclass :: { Maybe AST.Identifier }
11 superclass : Identifier NewTerm { Just $1 }
12 | NewTerm { Nothing }
13

14 instanceFields :: { [AST.Variable] }
15 instanceFields : {- empty -} { [] }
16 | Or variableStar Or { $2 }
17

18 classFields :: { [AST.Variable] }
19 classFields : {- empty -} { [] }
20 | Or variableStar Or { $2 }
21

22 variableStar :: { [AST.Variable] }
23 variableStar : {- empty -} { [] }
24 | variableStar variable { $2 <:> $1 }

(3.1.2) An example of HaSOM parser definition in Happy

Code listing 3.1 Lexer and parser examples

26 Implementation

3.1.3 Abstract Syntax Tree
The abstract syntax tree generated from the parser is implemented as a plain Haskell algebraic
data type with nodes of types Class, Method, Block, Expression, NestedBlock and Literal.
It is simplified from the tree generated by the parser, most notably it does not have different node
types for expressions, evaluations, message receivers (also called primaries) and literal numbers,
but rather groups all of them under a single Expression type.

We also define a fold algebra on this AST in the package HaSOM.AST.Algebra. Folding on
a tree structure is the process of reducing the nodes of a tree via a given set of functions, from
leaves to the final root node. These functions do not have to recursively process the children of
the node but rather handle them in their transformed representation as the recursion is handled
implicitly by the higher-order folding function.

This fold algebra is implemented because it greatly simplifies the transformation of the AST
to a different form. It is used by the AST pretty printing function, the bytecode compiler and
could be also used to perform analysis and optimizations of the AST.

3.1.4 Bytecode compiler
The bytecode compiler, defined in the package HaSOM.Compiler transforms a list of abstract
syntax trees and transforms them into their runtime representation. The result of a compilation
is a global variables collection, literals collection, the collection of core classes and the initial
heap structure, that is objects to be added to a heap with the index to put them on.

As defined in chapter 2.2.3, each abstract syntax tree is transformed into an instance class,
metaclass and objects representing these classes.

For a class to be compiled, its superclass has to be compiled first, because its fields have to
be known. If the superclass is not defined or a cyclical inheritance is detected, the compilation
halts and an error message is returned. Otherwise, the compiler takes the field definitions of the
superclass and proceeds to run a compiling fold algebra on the AST.

If a method is defined as primitive, the compiler tries to find the primitive function in the
global context. If none is found, the method is silently dropped and not present in the runtime.

When a literal or a nested block is encountered, it is added to the literals table and it is
represented by the LiteralIx type. When a global variable name is encountered, it is interned
by the globals table and then represented as the GlobalIx data type.

3.2 VM Runtime
The execution of the program is initialized by the doExecute function in package HaSOM.Run.
It takes the compilation result from the compiler, initializes an empty garbage collector heap to
the expected state and creates a new empty execution stack and empty call stack. Then it runs
the bootstrap function, which effectively puts a system global variable on the execution stack
with the command line arguments as an array and sends the initialize: message to it. The
execution is then passed to the interpreter, described later in this chapter.

3.2.1 Runtime state
The state of the HaSOM runtime is composed of a heap, a garbage collector, an execution stack,
a call stack, a collection of literals and a collection of global variables.

Each type of runtime object (SOM object, global variable, literal, object field and local
variable) has its separate associated index type denoted by the suffix Ix. These are defined
as newtypes of Int and defined in the package HaSOM.VM.Object.Ix. A newtype in Haskell
creates a new data type that cannot be implicitly converted to other types, but via the deriving

VM Runtime 27

mechanism can inherit properties of the contained type. This allows us to strongly separate
different index types as we cannot for example query a global variable by a literal index.

Most of the internal objects of the VM are parametrized by the type of primitive function
they use. Because we want the primitive function to be typed by the runtime state and then
the primitive functions are fields inside the state, not being parametrized would create a circular
dependency. This could be solved by defining all of the runtime objects in one package, but
it is not a good programming practice. Nonetheless, we create type synonyms in the package
HaSOM.Universe, where these objects are specialized to the used type of primitive function.
They are named with the Nat suffix.

3.2.1.1 Object representation

A SOM object in the runtime has two representations, either an index ObjIx that is unique for
each reachable object or the VMObject type. The ObjIx works similarly to pointers, as when one
object is in the runtime in multiple places, it is represented by this index and needs unwrapping
through the heap in order to get the VMObject representation. This approach was chosen because
Haskell does not provide a simple way to work with pointers to values. It has the IORef and
STRef types that work similarly to pointers in the IO and ST monads respectively, but these also
require explicit unwrapping and are generally harder to optimize by the Haskell compiler as they
are not pure functions, thus may also lead to a slower execution.

The VMObject is a Haskell algebraic data type. Each type of built-in object has an associated
constructor, as they all define their underlying fields. All objects created by the method new on
an Object class are constructed with the InstanceObject constructor.

We see an example of this in code listing 3.2. Here, the ClassObject, represents a class as
an object and has a classOf field that is an index this object is created from. The IntObject,
an instance of Integer class, has a field that holds the integer primitive value. All objects also
hold the class they are an instance of and an array of their fields.

1 newtype Fields = MkFields {runFields :: Arr.VMArray FieldIx ObjIx}
2

3 data VMObject f
4 = InstanceObject
5 { clazz :: VMClass f,
6 fields :: Fields
7 }
8 | ClassObject
9 { clazz :: VMClass f,

10 fields :: Fields,
11 classOf :: GlobalIx
12 }
13 | IntObject
14 { clazz :: VMClass f,
15 fields :: Fields,
16 intValue :: Int
17 }

Code listing 3.2 Partial definition of the VMObject

All objects live on the heap, which is managed by the garbage collector. The heap then allows
us to create new objects (get a unique ObjIx and have it represent a given VMObject), dereference
the ObjIx and modify an object on given ObjIx.

28 Implementation

3.2.1.2 Global object and classes representation

All of the global objects are in a VMGlobals collection which stores two types of values, an object
on heap represented as ObjIx or a class represented by the VMClass type. Global objects are
passed as GlobalIx for the same reasons we use the ObjIx. The VMGlobals also exposes a
function for interning a global index from its string representation, used when a global variable
is accessed by its name.

In listing 3.3, we see the definition of a VMClass. It holds the name of the class, the definitions
of its instance fields, its superclass as a GlobalIx (if it has one), instance methods and the
asObject field that represents the class as an object.

1 data VMClass f = MkVMClass
2 { name :: Text,
3 instanceFields :: VMArray FieldIx Text,
4 superclass :: Maybe GlobalIx,
5 asObject :: ObjIx,
6 methods :: VMMethods f
7 }

Code listing 3.3 Definition of VMClass

The runtime also contains a collection of core classes, which are needed for constructing
primitive objects.

3.2.1.3 Method representation

A method in the runtime is represented by the VMMethod algebraic data type (defined in listing
3.4). It has a signature (name of the method and the class where it is defined), the number of
parameters and local variables and the body of the method. If it is a primitive (also called a
native method), the body is defined as a pure Haskell function and has the type it is parametrized
on. Otherwise, the body is a sequence of bytecode instructions, contained in the data type Code.
Primitive methods do not use the local fields as bytecode methods do, so the localCount value
would always be zero, thus this field is omitted from the NativeMethod constructor.

1 data VMMethod f
2 = -- | Method represented in bytecode
3 BytecodeMethod
4 { signature :: Text,
5 body :: Code,
6 parameterCount :: Int,
7 localCount :: Int
8 }
9 | -- | Method represented by Haskell function

10 NativeMethod
11 { signature :: Text,
12 nativeBody :: f,
13 parameterCount :: Int
14 }

Code listing 3.4 Definition of VMMethod

VM Runtime 29

3.2.1.4 Literal representation
The literals collection contains all numbers, strings, symbols, arrays and nested blocks used by the
compiled methods. Other bytecode-based implementations usually define a separate collection
of constants and blocks for each method, as they are indexed by a byte and therefore limited to
256 unique values, which could be less than needed if a global collection was used. Because we
are indexing literals by an LiteralIx type that internally uses Int, we are not constrained by
this limitation and can use a global literals collection, therefore reducing duplication of literals
and increasing memory effectiveness.

3.2.1.5 State of execution
For storing the information about currently executed methods, a call stack is needed. It is a
first-in-first-out data structure composed of individual call frames. Each call frame is then either
a pure value, or if it has been captured by some block as its home context, it is encapsulated
in IORef. This wrapping allows the block to share the values of the variables at the time of
execution, not at the time of creation.

A call frame, represented by the type CallFrame and defined in listing 3.5, has the values of
local variables, the currently executed method and the class that holds this method (for executing
a call to superclass). It then has the height of the execution stack at the time of creating the
call frame, which is used when a restart is called on the block, as it reset the values on the
execution stack. If the call frame is a context for a block execution, it also holds the captured
home context of the block.

The local values are sorted as follows: first is the object context of the method (the value of
self), then the values of arguments in the order they are defined and lastly the values of local
variables.

1 data CallFrame f
2 = MethodCallFrame
3 { methodHolder :: VMClass f,
4 method :: VMMethod f,
5 pc :: InsIx,
6 locals :: VMArray LocalIx ObjIx,
7 objStackHeight :: Int
8 }
9 | BlockCallFrame

10 { methodHolder :: VMClass f,
11 method :: VMMethod f,
12 pc :: InsIx,
13 locals :: VMArray LocalIx ObjIx,
14 objStackHeight :: Int,
15 capturedFrame :: IORef (CallFrame f)
16 }

Code listing 3.5 Definition of CallFrame

For passing arguments to a method, the execution stack is needed. It is implemented as
a first-in-first-out collection with elements of type ObjIx. The calling convention for passing
arguments is described in the chapter 2.4.

The runtime state also contains a garbage collection flag of type GCFlag. It signals if the
garbage collection should be run. Contained is also the runtime start time for measuring the
execution time.

30 Implementation

3.2.1.6 State management
Since Haskell is a purely functional language, the state of a program cannot be represented with a
mutable variable. We can explicitly pass the state as an input and output to individual functions,
but this leads to a lot of boilerplate code and increases the complexity of the code. A typical way
to overcome this is encapsulating a computation in a State monad that passes the state around
implicitly and defines get and set functions for manipulating the value of the state inside this
monad. This way, the computation is still a pure function with immutable values, but the code
looks like it is using mutable variables and is much more concise.

The problem then becomes the usage of multiple monads, as they do not compose well and
when used in their pure form they need a lot of boilerplate code to individually handle the
nested monads. This constraint is usually overcome with monad transformers, as they allow the
composition of multiple monads in a more accessible way. The package usually used for this is
transfomers[29] in combination with mtl[30]. The drawback of monad transformers is a static
ordering of the monads, meaning that we specify the ordering of monads and this has to stay
the same across all functions using these monads. It also does not allow for multiple monads of
the same type (e.g. Reader, State) to be used more than once.

For our implementation, we chose an alternative to monad composing, a library called Ex-
tensible effects[31]. It is based on the idea of effects, where each function specifies which effects
are used (e.g. which monads need to be instantiated for it to be run) but not how they are
ordered. It also allows us to split the state of the runtime environment into individual states and
specify which parts of the environment are used by which function. We use the State monads in
combination with the Reader monad, a type of state monad that can be read, but not changed,
the Exc exception effect to raise an error that halts the execution of runtime, as well as use the
IO monad for manipulating the command line output, the file system and the IORef data type.
The state of the whole runtime (called the Universe) is then defined as a composition of these
effects in the package HaSOM.VM.Universe as UniverseEff.

As an example, the type of a function to transform a global index into a VMClassNat data
type is

getClass :: (GlobalsEff r, Member ExcT r) => GlobalIx -> Eff r VMClassNat

where GlobalsEff r is an alias to Member (State VMGlobalsNat) r and ExcT is a speci-
fication of exception monad as Exc Text. From the type of the function, we can see that this
function is accessing the globals collection and that it can fail with a Text error message.

A drawback of using Extensible effects is the need for explicit type declarations, as the Haskell
compiler cannot infer the types of used effects.

3.2.2 Garbage collector
The garbage collector holds the heap and a stack of currently available indices. The heap is
represented as an array indexed by the ObjIx type. When a new object is created, it is first
checked if the free capacity (size of the stack with indices) is under 10% of the overall capacity.
If this is true, the state of GCFlag is set to RunGC as a signal to the interpreter that collection
should be run, as described later in this chapter. Then the GC pops the top index from the
indices stack and initializes that object to the nil value. If the stack is empty, the heap is
expanded and the new indices are made available to allocate.

The garbage collector uses the mark-and-sweep algorithm mentioned in the chapter 2.6. When
a garbage collection is invoked, the runtime collects all currently available object indices from call
frames, globals, execution stack and other objects into a HashMap. It then passes the collected
object into the GC for the collection phase.

The runtime cannot run the garbage collection instantly when the low capacity is detected,
as some of the objects may not be reachable in the mark phase, but still needed by the runtime
to be valid.

VM Runtime 31

3.2.3 Primitive functions
The type of a primitive function is (UniverseEff r, Lifted IO r) => Eff r (Maybe Int).
This means that primitive functions have access to the whole runtime state and the IO monad
for printing into the standard output and accessing the file system. The return value is a flag
signifying halting the runtime, see the next chapter.

We also define a helper function pureNativeFunction that takes a function with more re-
stricted access to the state, where all of the UniverseEff effects are available, except the exe-
cution stack and call stack. This restricted function then gets its specified amount of arguments
and the self object, and has to return a return value of type ObjIx, which is pushed to the
execution stack. After executing this restricted function, the current call frame is popped from
the call stack.

This helper allows us to work with most of the primitive functions in a uniform and safe
way so that we execute all of the necessary operations like validating the arguments count and
leaving the call stack and execution stack in the desired state.

In the listing 3.6, we can see the usage of this helper function. We expect two arguments
to this method, denoted by the type parameter @N2. Then we pass the pureNativeFunction a
lambda function, whose first argument is self and the second is the list of two arguments named
g and val. On line 3 we then cast the ObjIx to a Symbol object, extracting the underlying string
representation of the symbol. Then we intern this string to a GlobalIx on line 4 and set a global
object on this index to the value of argument val on line 6. Lastly, the primitive function returns
the self object.

1 globalPut :: NativeFun
2 globalPut = pureNativeFun @N2 $ \self (g :+: val :+: Nil) -> do
3 symbol <- castSymbol g
4 idx <- internGlobalE symbol
5

6 setGlobalE idx (ObjectGlobal val)
7 pure self

Code listing 3.6 Implementation of primitive method global:put: in class System

3.2.4 Interpreter
The interpreter is the main entry point to the runtime execution. It is defined in the package
HaSOM.Interpreter as the function interpret (see the listing 3.7). This function defines the
used effect Lifted IO, so the individual instructions and primitive function have access to the IO
monad, a UniverseEff effect containing the state of the runtime described earlier in this chapter,
and a TraceEff containing flags that signify if tracing should be written into the standard output.

When interpreting, we first extract the top of the current call stack (on line 3). We then
pattern match on the contained method (on line 4). If the current method is a primitive func-
tion (case of NativeMethod), its body is executed. Otherwise, it is a bytecode method (case of
BytecodeMethod), it fetches an instruction from this method on the current program counter
(lines 7–10), advances the program counter by one (line 12), and executes the instruction (line
13).

The result type of both instruction execution and native function is a Maybe Int. If the
result is some integer value, the runtime exits with this value as an exit status. Otherwise, the
interpreter loop continues. This pattern matching is done by the function maybe on line 19.

The function mbyRunGC executes a garbage collection if the state of GCFlag is set to RunGC.
It is invoked if the executed instruction was CALL, SUPER CALL or a primitive function.

32 Implementation

1 interpret :: (Lifted IO r, UniverseEff r, TraceEff r) => Eff r Int
2 interpret = do
3 cf <- getCurrentCallFrame
4

5 r <- case method cf of
6 BytecodeMethod {signature, body} -> do
7 ins <-
8 throwOnNothing
9 ("Index " <+ showT (pc cf) <+ " fell out of code block")

10 (getInstruction (pc cf) body)
11

12 advancePC
13 res <- executeInstruction ins
14 mbyRunGC
15 pure res
16 NativeMethod {signature, nativeBody} -> do
17 runNativeFun nativeBody
18

19 maybe interpret pure r

Code listing 3.7 Definiton of the interpret function, simplified without a tracing

Upon entering the executeInstruction, defined as in listing 3.8, the current instruction is
pattern matched. If it is the HALT instruction, the virtual machine exits gracefully with the exit
code 0. Otherwise, a specific action is called with the arguments from the bytecode instruction.
These actions are defined in the module HaSOM.VM.Universe.Instructions.

As an example of an action, we use the instruction SET GLOBAL and its associated action
doSetGlobal in listing 3.9. From the signature of the function, we see that it accesses the
execution stack (ObjStackEff), a globals collection (GlobalsEff) and that it can fail (Member
ExcT). It has a type of GlobalIx as a parameter. The action pops a ObjIx from the execution
stack (function popStack), passes it into ObjectGlobal constructor, and sets a global variable
on the given index to this value.

We omit the implementation of the helper functions to keep this example small and provide
only their type. Still, we can see that the popStack function is accessing the execution stack, can
fail and returns a ObjIx, whereas the setGlobalE modifies the globals collection with a given
ObjIx and a global object definition.

VM Runtime 33

1 executeInstruction ::
2 (Lifted IO r, UniverseEff r, TraceEff r) =>
3 Bytecode ->
4 Eff r (Maybe Int)
5 executeInstruction HALT = pure $ Just 0
6 executeInstruction bc = do
7 case bc of
8 DUP -> doDup
9 POP -> doPop

10 PUSH_LITERAL li -> doPushLiteral li
11 PUSH_LOCAL env li -> doPushLocal env li
12 PUSH_FIELD fi -> doPushField fi
13 PUSH_GLOBAL gi -> doPushGlobal gi
14 SET_LOCAL env li -> doSetLocal env li
15 SET_FIELD fi -> doSetField fi
16 SET_GLOBAL gi -> doSetGlobal gi
17 CALL li -> doCall li >> mbyRunGC
18 SUPER_CALL li -> doSupercall li >> mbyRunGC
19 RETURN -> doReturn
20 NONLOCAL_RETURN -> doNonlocalReturn
21 pure Nothing

Code listing 3.8 Definition of the executeInstruction function

1 -- In package HaSOM.VM.Universe.Instructions
2 doSetGlobal :: (ObjStackEff r, GlobalsEff r, Member ExcT r) => GlobalIx -> Eff r ()
3 doSetGlobal gi = popStack >>= setGlobalE gi . ObjectGlobal
4

5 -- In package HaSOM.VM.Universe.Operations
6 popStack :: (ObjStackEff r, Member ExcT r) => Eff r ObjIx
7 setGlobalE :: (GlobalsEff r) => GlobalIx -> VMGlobalNat -> Eff r ()

Code listing 3.9 Definition of SET GLOBAL instruction execution, with the signatures of helper func-
tions

34 Implementation

Chapter 4

Assessment

In this chapter, we evaluate the correctness of our implementation of Simple Object Machine
and compare the implementation with SOM++.

4.1 Correctness

As previously mentioned, the Simple Object Machine language has specified syntax with an
ANTLR grammar but does not have a semantics specification. The strategy we chose for im-
plementing most primitive methods and runtime execution cases was to follow the official imple-
mentations, mostly SOM++. Still, there are some cases where our VM works differently from
other implementations:

Various SOM runtime errors are handled differently. These include non-local return in a
block that has escaped its home context, reacting to an object not understanding the message
and encountering an unknown global variable. On each of these errors, a method corresponding to
the error type (escapedBlock:, doesNotUnderstand:arguments: or unknownGlobal:) should
be called on the object where this error has occurred, allowing potential error recovery. Our
implementation instead prints an error message and halts the execution of the VM.

HaSOM uses internally the Int Haskell data type for representing Integer values, which is
guaranteed to be able to hold values as a 32-bit signed integer, as specified by the Haskell2010
report[32, p. 181]. The SOM language does not set any expectations, but other implementations
represent them with at least a 64-bit signed integer or an arbitrary precision integer.

The implementation of method objectSize in class Object always returns the integer -1, as
measuring the size of an object in Haskell proved to be challenging. Methods inspect and halt
in Object are not implemented and they currently only print a message to standard output.

4.1.1 Test suite
The SOM repository provides a complex test suite[3, TestSuite]. It is written directly in SOM
and tests most of the language constructs and primitive functions.

The test suite cannot be executed directly with our VM, because of the different behavior
described above. Our implementation provides a custom SOM test runner that ignores these
crashing tests. Despite this restriction, our compiler can compile all of the classes in the test
suite.

In total, out of the 205 provided tests, our implementation passes 195 of them, where 7 tests
are ignored because of the crashing behavior described previously.

35

36 Assessment

4.2 Comparison with SOM++
The biggest difference between HaSOM and SOM++ is the implementation language. SOM++
is written in an object-oriented paradigm in C++, whereas HaSOM contains purely functional
Haskell code apart from the lexer and parser definitions. The SOM++ repository contains almost
13000 lines of code, whereas the HaSOM code base is less than 6500 lines of code, both including
tests.

Both HaSOM and SOM++ are bytecode-based, but SOM++ employs a variety of optimiza-
tions. These include directly compiling ifTrue: and ifFalse: methods to C++ if statements,
optional caching of integers or usage of tagged integers.

4.2.1 Compiler
The SOM++ compiler is written in pure C++ and is composed of a lexer and parser. It does
not generate an abstract syntax tree, but rather directly compiles into the target representation.
The parser is written in a recursive-descend style.

The SOM++ compiler allows the array to be only defined with number literals elements,
both integers and doubles, whereas the HaSOM implementation allows for any literal to be
nested inside of the array, including another array.

The C++ implementation also implements the dynamic loading of classes, so a class is not
parsed and compiled until it is needed or explicitly called.

4.2.2 Bytecode
The bytecode instructions of SOM++ are very similar to the ones implemented by HaSOM
but have still some differences. Whereas local variables and arguments in HaSOM are grouped
into one array, SOM++ has different instructions for manipulating these, namely POP LOCAL,
POP ARGUMENT, PUSH LOCAL and PUSH ARGUMENT. SOM++ has also special instructions JUMP,
JUMP IF TRUE and JUMP IF FALSE. These are used in the compiler as optimized jumps in the
method execution.

The code of a SOM++ method is an array of bytes. If a byte in this array is interpreted as
an instruction, its operands are followed directly after. On the other hand, HaSOM bytecode
instructions are an algebraic data type and each instruction holds its operands. This means that
HaSOM instructions are more type-safe, as an instruction cannot be interpreted as an operand
and vice versa, but it is less cache efficient, as the Haskell data types are boxed and internally
represented as pointers.

4.2.3 Runtime representation
Both interpreters have a similar structure of the interpreter loop, but where the Haskell im-
plementation fetches an instruction, does pattern matching on it, extracts the operands from
it directly and advances the program counter by one, the C++ implementation does a goto
jump based on the byte value of the instruction, then has to fetch individual operands separately
and advance the program counter differently on each instruction, depending on the number of
operands.

The big difference between the two implementations is in object representation. Whereas
in HaSOM, objects are represented with ObjIx, a simple wrapper around Int that needs to be
passed to the global garbage collector in order to get the actual VMObject data type, SOM++
uses two main types of pointers, GcOop* and VmOop*. The former is a heap value, a pointer to an
object that needs to be first handled with a read barrier when a generational garbage collector
is used, and the latter is a value pointer, an object that has been handled and its inner structure

Comparison with SOM++ 37

can be accessed. The heap contains all pointers to the objects but does not need to be called
when an object is dereferenced.

The fields in a C++ object are also managed differently. When a new object is being created,
additional space is allocated directly after the newly created object which is then used for storing
object fields. This is faster than having a separately allocated array of fields, as they are as close
to the actual object as possible.

The overall structure of both runtimes is very similar, employing a universe with heap and
garbage collection, a call stack and a collection of global objects. In HaSOM, there is a global
collection of literals, that includes all of the currently available strings, symbols, integers, doubles
and blocks. SOM++ has a global collection of symbols, but strings, symbols, number constants
and blocks are uniquely stored in each method. The stack for passing arguments and callable
objects that is global in HaSOM is encapsulated for each call frame in the call stack in SOM++.
SOM++ also differentiates between local fields and arguments, as they are stored separately.

4.2.4 Garbage collector
SOM++ can be compiled with different types of garbage collecting strategies, at the time of
writing being copying GC, generation GC and mark-and-sweep GC. HaSOM has only one type
of garbage collector that uses a mark-and-sweep algorithm. Both mark-and-sweep collectors
function the same, the HaSOM mark phase is marking objects by collecting them into a set data
structure, and SOM++ marks an object pointer as marked by changing its member variable.

Both implementations run garbage collection after a method call if the collection was trig-
gered. SOM++ also runs the collection after pushing a block or a global variable on the execution
stack.

4.2.5 Primitive functions
When a primitive method is executed in SOM++, it gets passed an Interpreter and the current
call frame (which also holds all previous call frames) and it has to manually manipulate these
primitives. Primitive method execution does not get a new call frame inserted on the call stack
as it is executed instantly.

On the other hand, HaSOM implements a variety of helper functions to handle most of the
primitive functions. These helpers include the manipulation of self field, the arguments count
and values, return value and the casting of objects to their correct type. A primitive function
also gets a new call frame in the call stack which it has to pop because its execution is handled
in the interpreter loop.

4.2.6 Execution speed
For comparing the two implementations, we used the Are We Fast Yet benchmarks[8], which
are also used by the official SOM site to compare individual implementations. We used the
included micro benchmarks, each executed with the default parameters. Unfortunately, we were
not able to run the Mandelbrot and NBody benchmarks, as these returned wrong results on both
implementations and thus were not able to finish.

As we can see in the table 4.1, the gap between the speed of the implementations is significant.
This is to be expected, as SOM++ is among the fastest SOM implementations[1]. It is still
interesting to see HaSOM is at least a hundred times slower.

The largest disparity is in the Storage test, where the Haskell implementation is over 1500
times slower. We assume that this is because the test is focused on stressing the garbage collector
and since our garbage collector does not reduce the size of the heap once it is expanded, it slows
down the garbage collection.

38 Assessment

Benchmark name Execution time in SOM++ Execution time in HaSOM++
Bounce 71ms 13 637ms
List 106ms 38 086ms
Permute 105ms 10 038ms
Queens 85ms 13 997ms
Sieve 90ms 15 318ms
Storage 66ms 104 689ms
Towers 104ms 11 023ms

Table 4.1 Comparision of individual Are We Fast Yet micro benchmarks

These benchmarks should not be taken as concrete values, as factors such as cold starts
and longer running programs were not taken into consideration, but serve only to illustrate the
preformance difference between the two runtimes.

Conclusion

This thesis gives an overview of a Simple Object Machine (SOM), its syntax and semantics. It
explores the official existing implementations and then provides a new implementation written
in Haskell.

The implementation is very basic but provides a working virtual machine for the compilation
and execution of SOM programs. All of the language constructs are available, including classes,
objects and literals, message passing and execution of non-local returns. It implements all of
the primitive methods of the standard library, excluding the methods objectSize, inspect and
halt.

Our implemented VM is based on bytecode instructions and the runtime implements a simple
garbage collector based on the mark-and-sweep algorithm. It does not implement any optimiza-
tions.

The code base greatly uses the features of Haskell, including a strong type system, no side
effects (only explicitly typed effects), lazy evaluation and immutable data. It allows for a def-
inition of a framework for manipulating the individual parts of runtime without the need to
redefine this behavior. This comes at the cost of speed, as the design of Haskell does not allow
direct manipulation of memory and therefore abstractions and less optimized constructs have to
be used.

Compared to other implementations, our virtual machine deviates in error handling, where
instead of calling methods from the standard library, built-in constructs stop the execution and
print an error message.

When compared to the C++ implementation of SOM, our implementation exhibits a con-
siderable performance gap, most notably when the garbage collector is stressed. On the other
hand, the code base is much more concise, as many functions are reusable.

Future work
The speed performance of our virtual machine is poor, especially when compared to other im-
plementations. There are a few ways that it could be improved, by rewriting the runtime using
a mutable state and with strict evaluation or by using a more advanced and robust garbage
collector. Still, it is unlikely that the execution speed could be comparable to other SOM imple-
mentations, due to the limitations posed by Haskell.

Another approach could be taken, extracting only the implemented compiler and targeting
another runtime. Using the abstract syntax tree and its fold algebra, there is already a framework
for implementing optimization on the AST. Also, by employing the Haskell strong type system
and pattern matching, further optimizations could be implemented easily.

39

40 Assessment

Bibliography

1. SOM: Simple Object Machine [online]. 2022. [visited on 2023-03-29]. Available from: https:
//som-st.github.io/.

2. MARR, Stefan. Another Decade of SOM Language Implementation. 2019. Available also
from: https://stefan-marr.de/2019/04/simple-object-machine/.

3. SOM - Simple Object Machine [online]. GitHub, [n.d.] [visited on 2023-04-08]. Available
from: https://github.com/SOM-st/SOM.

4. BERGEL, Alexandre; CASSOU, Damien; DUCASSE, Stéphane; LAVAL, Jannik. Deep Into
Pharo. Lulu. com, 2013.

5. PySOM - The Simple Object Machine Smalltalk [online]. GitHub, [n.d.] [visited on 2023-
04-16]. Available from: https://github.com/SOM-st/PySOM.

6. WIMMER, Christian; WÜRTHINGER, Thomas. Truffle: A Self-Optimizing Runtime Sys-
tem. In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Appli-
cations: Software for Humanity. Tucson, Arizona, USA: Association for Computing Ma-
chinery, 2012, pp. 13–14. SPLASH ’12. isbn 9781450315630. Available from doi: 10.1145/
2384716.2384723.

7. ORACLE. GraalVM [online]. [N.d.]. [visited on 2023-05-08]. Available from: https://www.
graalvm.org/.

8. MARR, Stefan; DALOZE, Benoit; MÖSSENBÖCK, Hanspeter. Cross-language compiler
benchmarking: are we fast yet? ACM SIGPLAN Notices. 2016, vol. 52, no. 2, pp. 120–131.

9. ykSOM [online]. GitHub, [n.d.] [visited on 2023-04-16]. Available from: https://github.
com/softdevteam/yksom/.

10. yk [online]. GitHub, [n.d.] [visited on 2023-04-16]. Available from: https://github.com/
ykjit/yk.

11. ROVŇÁK, Rudolf. Implementace Virtualniho Stroje SOM. 2021. MA thesis. České vysoké
učeńı technické v Praze. Vypočetńı a informačńı centrum.

12. SOMns - A Simple Newspeak Implementation [online]. GitHub, [n.d.] [visited on 2023-04-
16]. Available from: https://github.com/smarr/SOMns.

13. A Graceful Blog [online]. [N.d.]. [visited on 2023-04-16]. Available from: http://gracelang.
org/applications/home/.

14. CHARI, Guido; GARBERVETSKY, Diego; MARR, Stefan; DUCASSE, Stéphane. To-
wards Fully Reflective Environments. In: 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!) Pitts-
burgh, PA, USA: Association for Computing Machinery, 2015, pp. 240–253. Onward! 2015.
isbn 9781450336888. Available from doi: 10.1145/2814228.2814241.

41

https://som-st.github.io/
https://som-st.github.io/
https://stefan-marr.de/2019/04/simple-object-machine/
https://github.com/SOM-st/SOM
https://github.com/SOM-st/PySOM
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://www.graalvm.org/
https://www.graalvm.org/
https://github.com/softdevteam/yksom/
https://github.com/softdevteam/yksom/
https://github.com/ykjit/yk
https://github.com/ykjit/yk
https://github.com/smarr/SOMns
http://gracelang.org/applications/home/
http://gracelang.org/applications/home/
https://doi.org/10.1145/2814228.2814241

42 Bibliography

15. BRADY, Edwin. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of Functional Programming. 2013, vol. 23, pp. 552–593. issn
1469-7653. Available from doi: 10.1017/S095679681300018X.

16. AGDA GITHUB COMMUNITY. Agda 2 [online]. GitHub, [n.d.] [visited on 2023-03-29].
Available from: https://github.com/agda/agda.

17. WIKIBOOKS. Write Yourself a Scheme in 48 Hours — Wikibooks, The Free Textbook
Project [online]. 2020. [visited on 2023-04-16]. Available from: https://en.wikibooks.
org/w/index.php?title=Write_Yourself_a_Scheme_in_48_Hours&oldid=3664801.

18. YOSHIDA, Yuichi. RType: Yet Another Ruby Interpreter, written in Haskell [online]. 2014.
[visited on 2023-04-16]. Available from: http://research.nii.ac.jp/˜yyoshida/rtype.
html.

19. LSTEPHEN. Completing the Spike [online]. 2007. [visited on 2023-04-16]. Available from:
http://research.nii.ac.jp/˜yyoshida/rtype.html.

20. HASKELLWIKI. Applications and libraries/Compilers and interpreters — HaskellWiki [on-
line]. 2020. [visited on 2023-04-16]. Available from: https://wiki.haskell.org/index.
php ? title = Applications _ and _ libraries / Compilers _ and _ interpreters & oldid =
63265.

21. JONES, Richard; HOSKING, Antony; MOSS, Eliot. The garbage collection handbook: the
art of automatic memory management. CRC Press, 2016.

22. COMMERCIAL HASKELL SIG. stack: The Haskell Tool Stack [online]. Hackage, 2022
[visited on 2023-05-07]. Available from: https://hackage.haskell.org/package/stack.

23. HENGEL, Simon. hspec: A Testing Framework for Haskell [online]. Hackage, 2023 [visited
on 2023-05-07]. Available from: https://hackage.haskell.org/package/hspec.

24. CLAESSEN, Koen. QuickCheck: Automatic testing of Haskell programs [online]. Hackage,
2020 [visited on 2023-05-07]. Available from: https://hackage.haskell.org/package/
QuickCheck.

25. STACK BUILDERS. hspec-golden: Golden tests for hspec [online]. Hackage, 2023 [visited
on 2023-05-07]. Available from: https://hackage.haskell.org/package/hspec-golden.

26. MARLOW, Simon; WAERN, David. haddock: A documentation-generation tool for Haskell
libraries [online]. Hackage, 2022 [visited on 2023-05-07]. Available from: https://hackage.
haskell.org/package/haddock.

27. DORNAN, Chris; MARLOW, Simon. alex: Alex is a tool for generating lexical analysers in
Haskell [online]. Hackage, 2023 [visited on 2023-05-07]. Available from: https://hackage.
haskell.org/package/alex.

28. GILL, Andy; MARLOW, Simon. happy: Happy is a parser generator for Haskell [online].
Hackage, 2023 [visited on 2023-05-07]. Available from: https://hackage.haskell.org/
package/happy.

29. ANDY GILL, Ross Paterson. transformers: Concrete functor and monad transformers [on-
line]. Hackage, 2023 [visited on 2023-05-07]. Available from: https://hackage.haskell.
org/package/transformers.

30. GILL, Andy. mtl: Monad classes for transformers, using functional dependencies [online].
Hackage, 2022 [visited on 2023-05-07]. Available from: https://hackage.haskell.org/
package/mtl.

31. KISELYOV, Oleg; SABRY, Amr; SWORDS, Cameron; FOPPA, Ben. extensible-effects:
An Alternative to Monad Transformers [online]. Hackage, 2019 [visited on 2023-05-07].
Available from: https://hackage.haskell.org/package/extensible-effects.

32. MARLOW, Simon et al. Haskell 2010 language report. 2010.

https://doi.org/10.1017/S095679681300018X
https://github.com/agda/agda
https://en.wikibooks.org/w/index.php?title=Write_Yourself_a_Scheme_in_48_Hours&oldid=3664801
https://en.wikibooks.org/w/index.php?title=Write_Yourself_a_Scheme_in_48_Hours&oldid=3664801
http://research.nii.ac.jp/~yyoshida/rtype.html
http://research.nii.ac.jp/~yyoshida/rtype.html
http://research.nii.ac.jp/~yyoshida/rtype.html
https://wiki.haskell.org/index.php?title=Applications_and_libraries/Compilers_and_interpreters&oldid=63265
https://wiki.haskell.org/index.php?title=Applications_and_libraries/Compilers_and_interpreters&oldid=63265
https://wiki.haskell.org/index.php?title=Applications_and_libraries/Compilers_and_interpreters&oldid=63265
https://hackage.haskell.org/package/stack
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/hspec-golden
https://hackage.haskell.org/package/haddock
https://hackage.haskell.org/package/haddock
https://hackage.haskell.org/package/alex
https://hackage.haskell.org/package/alex
https://hackage.haskell.org/package/happy
https://hackage.haskell.org/package/happy
https://hackage.haskell.org/package/transformers
https://hackage.haskell.org/package/transformers
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/extensible-effects

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Background
	SOM language
	Object model
	Class definition
	Methods
	Expressions
	Variable scoping
	Built-in constructs
	Literal types
	Blocks
	Control flow

	Existing SOM implementations
	SOM-based languages implementations

	Haskell compilers and virtual machines

	Design
	Source files
	Compilation
	Compiler frontend
	Abstract Syntax Tree
	Compiler backend

	Runtime environment
	Bytecode
	Runtime execution
	Garbage collector

	Implementation
	Compiler
	Lexer
	Parser
	Abstract Syntax Tree
	Bytecode compiler

	VM Runtime
	Runtime state
	Object representation
	Global object and classes representation
	Method representation
	Literal representation
	State of execution
	State management

	Garbage collector
	Primitive functions
	Interpreter

	Assessment
	Correctness
	Test suite

	Comparison with SOM++
	Compiler
	Bytecode
	Runtime representation
	Garbage collector
	Primitive functions
	Execution speed

