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Instructions

The objective of this thesis is to develop a method for transferring the pose and 

expression of a source (driving) face image to a target (identity) face image, while 

preserving the identity of the target face [1,2]. The proposed method should be able to 

handle changes in pose and expression in close to real time, and should be able to 

generate realistic images.

It is recommended to use pre-trained GAN models that produce high-quality photo-

realistic output, e.g., [3,4], in a similar spirit as in [5], where a generative part of the 

network is fixed and only an encoder is trained. As a side effect, the method should serve 

as another generative model that would allow to synthesise random identities with 

independently controllable pose and expression. 

(1) Make a literature survey. 

(2) Design a neural network architecture and a training procedure that learns from a 

suitable dataset, e.g., VoxCeleb2 [6].

(3) Evaluate the method on an independent set, e.g., a test split of VoxCeleb2. Measure 

both pose/expression transfer fidelity and face identity preservation. 
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Abstract

This thesis proposes a method for pose and expression transfer between face
images. Given a source and target face portrait, the designed network pro-
duces an output image where the pose and expression from the source face
image are transferred onto the target identity. The architecture consists of
two encoders and a mapping network that maps the two inputs into the latent
space of StyleGAN2, which generates a high-quality image. The training is
self-supervised without the need for labeled data. Our method achieves close
to real-time image generation while also enabling the synthesis of random
identities with independently controllable pose and expression.

Keywords human face generation, expression transfer, pose transfer, Style-
GAN2, deep learning

vii



Abstrakt

Tato práce představuje metodu pro přenos pózy a výrazu mezi portréty. Po
zadáńı dvou obrázk̊u obličeje, zdrojového a ćılového, navržená śıt’ vygeneruje
portrét, kde jsou póza a výraz z obrazu zdrojového obličeje přeneseny na
ćılovou identitu. Architektura se skládá ze dvou enkodér̊u a mapovaćı śıtě,
která mapuje oba vstupy do latentńıho prostoru śıtě StyleGAN2. Ta následně
vygeneruje výsledný obrázek ve vysoké kvalitě. Trénováńı je self-supervised
bez potřeby označených dat. Naše metoda dokáže generovat obrázky téměř v
reálném čase a umožňuje syntézu náhodných identit s nezávisle ovladatelnou
pózou a výrazem.

Kĺıčová slova generováńı lidských obličej̊u, přenos výrazu, přenos pózy,
StyleGAN2, hluboké učeńı
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Introduction

Animating facial portraits in a realistic and controllable manner has numerous
applications in image editing as well as interactive systems. For instance, a
natural-looking animation of an on-screen character with various human poses
and expressions can enhance the user experience in games or virtual reality
applications. Achieving this goal is a challenging task, as it requires repre-
senting the face (e.g. modeling in 3D) in order to control it and developing a
method to map the desired form of control back onto the face representation.
The form of control can be another face portrait. More specifically, in the
task of pose and expression transfer, another face portrait is used to drive the
target image which is the case for this thesis.

With the advent of generative models, it has become increasingly easier to
generate high-resolution human faces that are virtually indistinguishable from
real images. StyleGAN2 [1] achieves the state-of-the-art level of image gen-
eration with high quality and diversity among GANs (Generative Adversarial
Networks) [2].

StyleGAN2 generates human faces by inputting a latent code, which is
a vector sampled usually from Gaussian distribution, to the generator. We
can semantically edit the images in the latent space, enabling us to change
age, gender, smile, and other features. One common technique to do that
is to identify linear semantic directions in the latent space and edit images
by manipulating the latent code in these directions. However, these linear
semantic directions are entangled, resulting in unwanted secondary edits (e.g.
generating a person from a different viewpoint might make them grow a beard,
age, change hairstyle, or change identity completely).

Nevertheless, the generated images are still random, and we want to edit
images of real people. GAN inversion aims to reconstruct an image of a real
person by finding a latent vector that best represents the target image when
sent through the generator. When the corresponding latent code is found, the
aforementioned method can be used for editing. However, it still suffers from
the same shortcomings. That is why we take a look at non-linear edits in the
latent space of StyleGAN2 which we believe have not been broadly studied.
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Introduction

This work aims to develop a method that enables the synthesis of a new
image of an individual by taking both a driving image and an identity image
as input, incorporating the pose and expression of the person in the driving
image into the generated image from the identity image. Our method is self-
supervised, and it does not require labeled data. Additionally, it fully relies on
neural rendering in a one-shot setting without using a 3D graphics model of
the human face. By eliminating the need for a 3D graphics model and labeled
data, our approach provides a more efficient and practical solution for face
synthesis. We review existing methods and evaluate our approach on pose
and expression transfer fidelity as well as on face identity preservation.

The rest of the thesis is structured as follows. Chapter 1 presents related
work regarding human face modeling, generation, and facial pose and expres-
sion transfer. Chapter 2 discusses the technical background of StyleGAN and
its latent space manipulation. The architecture, dataset, and training de-
tails are described in Chapter 3. A baseline method derived from the linear
semantic directions is presented in Chapter 4, along with a comparison and
qualitative and quantitative evaluation of our approach.

We expect the reader to have a basic understanding of fundamental Ma-
chine learning concepts as they will not be discussed in this work. One may
find a comprehensive introduction to Machine learning at e.g [3, 4].

2



Chapter 1
Related Work

There has been a tremendous amount of research put into human face model-
ing/generation, face manipulation, and motion (e.g. pose, expression) trans-
fer. In this chapter, we will go over the most relevant and influential works in
the field.

1.1 Parametric modeling of faces for image
generation

Traditionally, facial animation given an image was performed by fitting a sta-
tistical model such as AAM (Active Appearance Model) [5] or 3DMM (3D
Morphable Model) [6]. To construct a 3DMM, a set of 3D face scans is first
aligned and normalized to remove any variations in pose, expression, and scale.
The aligned scans are then used to construct the shape and texture models,
which capture the statistical variations of the 3D facial shape and texture,
respectively. These models are typically represented using a low-dimensional
subspace spanned by the principal components of their corresponding varia-
tions. By fitting these models to a single input image, facial animation can
be achieved by modifying the estimated parameters with a certain degree of
accuracy. Active appearance models work in a similar way except instead of
using 3D face scans, a set of 2D images are aligned based on facial landmarks
(e.g. the corners of the eyes, the tip of the nose, and the corners of the mouth).

Many works build on top of these statistical models to improve the pose
and expression transfer. MLM (Multilinear model) [7] is an extension of
3DMM. MLM represents the facial shape and texture variations as a ten-
sor, which captures the correlations between different modes of variations.
This means that MLM is able to capture better the complex variations in
facial features, including the relationship between different features. Work
[8] utilizes 3DMM to estimate the parameters that correspond to the facial
expressions of the source actor and applies them to the target actor. The
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1. Related Work

method involves first tracking the facial landmarks of both actors and then
using these landmarks to compute the expression parameters of the source
actor. The estimated parameters are then transferred to the target actor by
warping the target’s face based on the correspondences between the source
and target landmarks. Face2Face [9] builds on top of this work by utilizing a
blendshape model to better model and transfer the facial expressions.

For an in-depth overview of parametric face models and their possible
applications we refer to a survey paper [10].

1.2 Deep Learning-based approaches for image
generation

Many works achieve remarkably good results with the aforementioned statis-
tical models combined with deep learning [11, 12, 13] (just to name a few),
however, these works are not as relevant to our work as the ones which drop
the parametric representation of the face.

Supervised approaches for face control learn to model factors of varia-
tion such as lighting and pose by conditioning the generated image on known
ground truth information which may be head pose, expression, or landmarks
[14, 15, 16]. This requires a training dataset with known pose or expression
information that may be expensive to obtain. These datasets often have a
very limited set of expressions (e.g. smile, frown, neutral, etc.).

That is why unsupervised and self-supervised methods have become in-
creasingly popular in this domain [17, 18, 19, 20]. The so-called Deepfake was
first developed by a Reddit user using an autoencoder-decoder pairing struc-
ture. The autoencoder extracts latent features of face images and the decoder
is used to reconstruct the face images. To swap faces between source images
and target images, there is a need for two encoder-decoder pairs. Given two
sets of images from two different identities, each pair is trained to reconstruct
images from their corresponding set. However, the two pairs share the same
encoder network which enables the encoder to learn all of the mutual features
(e.g. pose and expression), while the decoder is trained to learn person-specific
features. To create a deepfake a source image of the first person is encoded
with the common encoder and decoded with the decoder that was trained to
reconstruct the second person [21].

CycleGAN [22] is another self-supervised method that can be used to trans-
form images from one domain into another. Although it was not originally
developed for this specific task, CycleGAN is trained to be cycle-consistent,
which means that the generated images often retain some semantic similari-
ties to the original images. For instance, if a CycleGAN model is trained to
transform images of one person’s face (domain A) into those of another person
(domain B), it may learn to map the pose, position, or expression of the face
in domain A onto the generated face in domain B [17]. However, both of the
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1.3. Face manipulation with StyleGAN

aforementioned methods can only represent the single identity on which the
model was trained. Recent works aim to develop models that can generate
images for any identity, even those that were not present in the training data.”

X2Face [17] demonstrates that an encoder-decoder architecture with a
large collection of video data can be trained to synthesize human faces condi-
tioned by a source frame without any parametric representation of the face or
supervision. Furthermore, the paper shows that the expression can be driven
not only by the source frame but also by audio to some degree of accuracy.
Similarly, paper [18] employs a GAN architecture with an added embedding
network that maps face images with estimated facial landmarks into an embed-
ding that controls the generator. This allows for conditioning the generated
image only on facial landmarks.

The approach proposed in [19] enables the generation of a talking-head
video from a single input frame and a sequence of unsupervisedly-learned
3D keypoints that represent the motions in the video. By utilizing this key-
point representation, the method can efficiently recreate video conference calls.
Moreover, the method allows for the extraction of 3D keypoints from a differ-
ent video, enabling cross-identity motion transfer.

Recently, Megaportraits [20] have achieved a state-of-the-art level of one-
shot cross-reenactment quality. Their method utilizes an appearance encoder,
which encodes the source image into a 4D volumetric tensor and a global latent
vector, and a motion encoder which extracts motion features from both of the
input images. These features together with the global latent vector predict two
3D warpings. The first warping removes the source motion from the volumetric
features, and the second one imposes target motion. The volumetric features
are processed by a 3D generator network and together with the target motion
are input to a 2D convolutional generator that outputs the final image.

1.3 Face manipulation with StyleGAN

StyleGAN generates human faces by inputting a latent code into the genera-
tor. Its architecture and the overall latent space manipulation will be closely
described in the next chapter 2. Works that focus on StyleGANs ability to
condition the generated image based on pose and expressions will be described
in this chapter.

GANSpace [23] analyzes the latent space of StyleGAN and creates inter-
pretable controls for image synthesis, such as pose, lighting, and simple ex-
pressions. The important latent directions are identified based on PCA that
is applied in the latent space. However, these latent directions are heavily
entangled, meaning that one learned latent direction might influence other
facial attributes as well. For example, given a learned latent direction of a
pose change, when applied, the person might grow a beard, change hairstyle
or even change identity. Similarly, InterFaceGAN [24] introduces a framework
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1. Related Work

for interpreting the disentangled face representation by aligning the learned
semantic directions with a set of annotated facial attributes. This is done
by utilizing a pre-trained classifier to predict various facial attributes, such as
pose, gender, and smile. The classifier is then used to identify the directions in
the disentangled space that are most predictive of each facial attribute. The
paper then demonstrates that this method better preserves identity compared
to PCA baseline. However, since the classifier is trained to predict a very
limited set of facial attributes, the resulting semantic directions only capture
a small subset of the possible facial variations. StyleFlow [25] achieves better
results by modeling StyleGANs latent space through a series of continuous,
invertible transformations, conditioned on input image attributes. This allows
for greater flexibility in manipulating image attributes and results in smoother
transitions between images.

Rather than relying on the linear semantic latent directions of StyleGAN,
StyleRig [26] leverages a 3D Morphable Model (3DMM) to control the se-
mantic parameters of the generated images. This is achieved by utilizing a
pre-trained face reconstruction network that maps a latent code of the source
image to a vector of semantic control parameters of the 3DMM. Addition-
ally, an encoder is used to map the latent code of the target image to a
lower-dimensional vector, which is then combined with the vector of control
parameters via a decoder. The resulting latent code is fed into the StyleGAN
generator to produce the final output image.

6



Chapter 2
Technical Background

In this chapter, we provide an overview of the technical concepts and tools that
are essential for understanding the research presented in this thesis. Firstly,
we introduce Generative Adversarial Networks. In particular, we focus on
StyleGAN as it is utilized in our work. Lastly, we discuss the latent space and
its observed potential for image editing.

2.1 Generative Adversarial Networks

GAN (Generative Adversarial Network) [2] is a framework introduced by
Goodfellow et al. in 2014 consisting of a discriminator and a generator. The
generator tries to match the distribution of the training dataset while the dis-
criminator tries to predict which image is generated and which is from the
original dataset. The training procedure for the generator is to maximize
the probability of the discriminator making a mistake. This corresponds to
a two-player minimax game. Such training process can be very unstable and
often suffers from many issues (e.g. mode collapse or vanishing gradients).
Mode collapse occurs when the generator learns to produce only a limited
set of outputs of the target distribution. Vanishing gradients occur when the
discriminator learns too fast compared to the generator and in that case, the
generator’s gradients approach zero, effectively making the generator unable
to learn anything from the discriminator’s feedback. These issues were dis-
cussed in [27] where DCGAN (Deep Convolutional Generative Adversarial
Network) was introduced and several techniques were proposed to mitigate
these problems, including adding noise to the input and using mini-batch dis-
crimination. Another influential work trying to overcome these issues was
Wasserstein GAN [28] which introduced a new objective function based on
Wasserstein distance.

DCGANs were the state of the art among the GANs in image generation
before the introduction of Progressive Growing GANs in 2017 [29]. The idea
behind Progressive GANs is that the discriminator and the generator are
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2. Technical Background

trained progressively on increasingly higher resolutions of images. This helps
stabilize the training procedure and leads to significant improvements in the
quality of generated images because it allows the generator to capture even
finer details.

2.2 StyleGAN

Traditional Progressive GANs provide the latent code directly into the input
layer (Figure 2.1a). StyleGAN, which was introduced in 2018, deviates from
this approach by excluding the input layer and instead initiates the model
from a learned constant [30]. Given a latent code z in the latent space Z a
non-linear mapping network f : Z → W first produces w ∈ W (Figure 2.1b
left). The w then gets replicated to each layer and through the learned affine
transformation produces styles. The styles control the AdaIN (adaptive in-
stance normalization), which adapts the mean and standard deviation of con-
tent feature maps to match those of style feature maps [31].

Figure 2.1: Comparison of a traditional Progressive GAN architecture (a)
and StyleGAN architecture (b). The style codes control the AdaIN added
after each convolution. Noise is injected to generate stochastic variation. “B”
denotes learned per-channel scaling [30].

8



2.3. Latent space manipulation

The synthesis network (Figure 2.1b right) consists of 18 layers, with two
layers dedicated to each resolution (42 – 10242). Styles in coarse spatial layers
corresponding to resolutions (42 – 82) bring high-level attributes such as pose,
general hairstyle, face shape, and glasses. Styles in middle layers associated
with resolutions (162 – 322) are responsible for smaller-scale facial features,
hairstyle, and whether the eyes should be open or closed. The final layers
which correspond to resolutions (642 – 10242) bring mainly the color scheme
and microstructure. Simultaneously noise is being input at each layer before
the AdaIN operation to ensure some variation in the images. The noise affects
only inconsequential stochastic variation such as differently combed hair, skin
pores, and freckles. It also makes the images look more realistic as without
the noise input the images have a “painterly” look [30].

StyleGAN was trained on the FFHQ (Flickr-Faces-HQ) dataset which con-
sists of more than 70 000 high-quality face portraits crawled from Flickr. The
images have been preprocessed by filtering low-quality images and removing
unwanted backgrounds. The faces have also been cropped and aligned, re-
moving undesirable extreme head poses [30].

2.3 Latent space manipulation

Regarding image editing in the latent space of GANs, paper [27] first noticed
the arithmetic properties of the generator’s latent space. They demonstrate
this effect on many examples such as taking a latent code of a man with
glasses, subtracting a latent code of a man without glasses, and adding a
latent code of a woman without glasses produces a woman with glasses. Since
then, researchers have extensively studied both the linear properties and non-
linear edits that can be made in the generator’s latent space.

Specifically for StyleGAN, a tremendous amount of work has been pub-
lished regarding the latent space exploration [23, 24, 25, 32, 33]. InterFace-
GAN [24] shows that linear semantic directions can be easily found in a su-
pervised manner. First, a large collection of images are synthesized by ran-
domly sampling from the latent space. Then, a pre-trained attribute pre-
diction model is used to assign attribute scores for all of the images which
are then used to train a linear SVM. This produces a decision boundary – a
hyperplane whose normal vector is the semantic latent direction of the pre-
dicted attribute. Figure 2.2 demonstrates a learned semantic direction of yaw
change. The latent directions are heavily entangled, meaning that one learned
latent direction will likely influence other facial attributes as well. For exam-
ple, given a learned latent direction of a pose change, when applied, the person
might change expression, hairstyle, or even identity.

These are still synthesized images. If we want to generate and manipulate
a particular person, we first have to invert the given image which is discussed
in the next section 2.4.

9



2. Technical Background

Figure 2.2: Learned semantic direction of yaw applied over three random
latent vectors. Due to the entanglement of the directions, the pose change
influences the expression, gender, age and identity of a person. With the
increased magnitude of the semantic direction (in this case yaw direction),
artifacts start to emerge [33].

2.4 GAN Inversion

The process of finding a latent code that can generate a given image is re-
ferred to as the task of image inversion [34, 35, 36]. There are two latent
spaces considered for this task. The native StyleGAN latent space W where
a given 512-dimensional latent code w is shared across all of the generator’s
layers. The other one is the extended latent space where each layer is consid-
ered separately, resulting in a larger extended latent space W+ of 18 × 512
dimensions. It has been shown that for the purpose of inverting an image the
extended latent space produces better results [37].

There are mainly two approaches to image inversion. Either through direct
optimization of the latent code to produce the specified image [32, 37, 38, 39]
or through training an encoder on a large collection of images [40, 41, 42].
Typically, direct optimization gives better results, but encoders are faster.
Additionally, encoders display a smoother behavior, producing more coherent
results over similar inputs [43]. We take advantage of this in our work.

It has been demonstrated [39, 42] that in comparison with W+, W pro-
vides a higher degree of editability, meaning latent codes in this space can be
more easily manipulated while maintaining a greater level of realism. However,
W has poor expressiveness, resulting in inversions that are often inconsistent
with target identity. Therefore there exists the so-called distortion-editability
trade-off [39]. Recently paper [38] has shown that this trade-off can be by-
passed by using PTI (Pivotal Tuning Inversion). The idea is that one may
fine-tune the generator around an initial latent code called the pivot. This
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2.4. GAN Inversion

achieves state-of-the-art inversion and a high level of editability. However, this
approach requires storing corresponding generator weights for each individual
inversion.

In our work, we opted to use an encoder for the sake of image inversion,
as we require many training images to be inverted and direct optimization of
each training sample would not be computationally feasible. We chose ReStyle
[41] which uses an encoder in an iterative fashion to refine the initial estimate
of the latent code. This approach is a suitable fit for our purpose as it lever-
ages smoother behavior over similar inputs from encoders as well as better
reconstruction quality from iterative optimization. Currently, encoders sup-
ported in ReStyle are pSp (pixel2style2pixel) [40] and e4e (encoder4editing)
[42]. While both of these encoders embed images into the extended latent
space W+, Tov et al. [42] argue that by designing an encoder that predicts
codes in W+ which reside close to W they can better balance the distortion-
editability trade-off. However, we chose to use ReStyle with a pSp encoder in
our network as the baseline method with e4e encoder – discussed in section
4.1 – had trouble preserving the target identity.
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Chapter 3
Method

Our framework takes two face images as input, a source (driving) face image,
and a target (identity) face image. The network produces an output image
where the pose and expression from the source face image are transferred onto
the target identity.

3.1 Architecture

StyleGAN2Map

Motion
Encoder

Identity
Encoder

Expression
transfer

Figure 3.1: The architecture of the proposed model. The Motion encoder and
Mapping network weights are being optimized, while the Identity encoder and
StyleGAN2 weights stay fixed during training.
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Figure 3.1 depicts the proposed architecture. The network consists of a
motion encoder Em, an identity encoder Ei, a mapping network M , and a
pre-trained generator network G. The encoder Ei embeds the identity of the
target face image. The encoder Em embeds motion – the pose and expression
of the source face image. The mapping network then projects the outputs of
the encoders into the latent space of the pre-trained StyleGAN2 generator.
This approach offers the advantage of generating high-quality images through
StyleGAN while avoiding the intricate training process of GANs. The network
architecture is inspired by [44].

Specifically, a source image s and a target image t are aligned and resized
to 256 × 256 pixels and then fed into their corresponding encoders, where
they get embedded into the extended latent space W+ of 18×512 dimensions.
Embeddings zs for pose and expression of source image s and zt for the identity
of target image t are then concatenated and transformed through the mapping
network into a latent code z ∈ W+ that is then used as an input for the
generator that finally produces an output image g. The image generation can
be formally expressed as

g = G

(
M

(
Em(s) ⊕ Ei(t)

))
,

where ⊕ denotes concatenation.
It has been shown that network architecture ResNet-IR SE 50 can be

trained to embed various entities into the latent space of StyleGAN2 such as
cartoons [40], hair [44] and much more. That is why we utilize this network
for the Em encoder and we adapt it from the repository published alongside
the pSp paper [40]. For encoder Ei, we use a pre-trained ReStyle with the
pSp configuration as discussed in section 2.3. As for the Mapping network
M , we employ one fully connected linear layer. For the generator, we use the
pre-trained StyleGAN2 that outputs high-resolution images of 1024 × 1024
pixels.

3.2 Training

We employ self-supervised training to optimize the parameters of the encoder
Em and the mapping network M , while keeping the parameters of the gener-
ator G and the encoder Ei fixed. The training is performed on an unlabeled
dataset of short video clips, each containing a single person. Figure 3.2 illus-
trates the training procedure.

During each iteration of the training procedure we randomly sample two
pairs (s, t) of frames from two video clips. More specifically, a source and
target frame pair (sA, tA) of identity A are randomly sampled from a video
clip and another source and target frame pair (sR, tR) of a random identity
are randomly sampled from a differnt video. We then generate two images
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3.2. Training

gsA→tA where the source and target frames are from identity A and gsA→tR

where the source frame is of identity A and the target frame is of identity
R. The notation gsA→tR implies that the pose and expression from the source
image sA is imposed onto the indentity R from the target image tR. We
employ the following loss functions:

StyleGAN2Map

Motion
Encoder

Identity
Encoder

StyleGAN2Map

Motion
Encoder

Identity
Encoder

Figure 3.2: Training procedure of the proposed method. Two pairs of
frames are sampled from two videos that are then used to generate one self-
reenactment image and one cross-reenactment image.
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3. Method

Pixel-wise loss. Pixel-wise loss or more specifically L2 loss simply measures
the squared distance of corresponding pixels of the two images. Formally this
can be expressed as

L2 = ∥sA − gsA→tA∥2,

where sA is the source frame of identity A and gsA→tA is a generated image
using both inputs from identity A.

Perceptual loss. The pixel-wise loss falls short in capturing the perceptual
changes that humans notice when viewing images. This can be demonstrated
on blurring an image, which may not cause a significant change in the L2 value
but can still be visually noticeable to a human eye. To address this limita-
tion, the perceptual loss has been developed. Instead of analyzing individual
pixels, perceptual loss compares the higher-level similarities between two im-
ages, such as their content and style. LPIPS (Learned Perceptual Image Patch
Similarity) loss has been proposed in [45], which involves utilizing a dataset
of almost half a million human judgments to compute the perceptual distance
between reference and generated images. This approach improves upon the
limitations of the pixel-wise function and better captures the perceptual dif-
ferences that humans notice when viewing images. We employ a pre-trained
neural network to calculate the perceptual distance

LLP IP S = 1 − ⟨P (sA), P (gsA→tA)⟩,

where P is a perceptual feature extractor that outputs unit-length normalized
features and ⟨⟩ denotes dot product. We again use only images of the same
identity in this loss.

Identity loss. Using only the aforementioned losses worked well in the
self-reenactment scenario, where the source and target frames are from the
same video. However, in the cross-reenactment scenario, where the source
and target frames contain different identities, fails miserably. That is why
we employ the pre-trained state-of-the-art facial recognition model ArcFace
which utilizes the Additive Angular Margin Loss [46]. We calculate it in a
similar fashion as the previous loss:

LID = 1 − ⟨D(gsA), D(gsA→tR)⟩,

where D produces unit-length normalized embeddings, gsA is the inverted
source frame of identity A (Image generated with the latent code produced
by Ei from sA), and gsA→tR is a generated image where the source frame is of
identity A and the target frame is of identity R.

CosFace loss. Finally, we implement the CosFace loss [47] which we use
in a similar manner as in the Megaportraits paper [20]. For this loss only
motion descriptors, that are embedded by Em, are necessary. We separately
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3.3. Dataset and data augmentation

calculate a motion descriptor zR = Em(sR) while also storing the motion
descriptor calculated during the forward pass of the network — zA = Em(sA).
Lastly, the motion descriptors of the generated images zA→A = Em(gsA→tA)
and zA→R = Em(gsA→tR) are calculated. We then arrange them into positive
pairs P that should align with each other: P = (zA→A, zA), (zA→R, zA), and
negative pairs: N = (zA→A, zR), (zA→R, zR). These pairs are then used to
calculate the following cosine distance:

d(zi, zj) = a · (⟨zi, zj⟩ − b),

where both a and b are hyperparameters. This distance is then used to cal-
culate the Large Margin Cosine Loss [47]:

Lcos = −
∑

(zk,zl)∈P
log exp{d(zk, zl)}

exp{d(zk, zl)} + ∑
(zi,zj)∈N

exp{d(zi, zj)} .

The idea behind this loss is that when we randomly sample a source frame
from each of the two different videos, the pose and expression in these frames
will likely differ. In that case, the generated image, using one source frame,
should have a similar motion descriptor to that particular source frame while
also having a dissimilar motion descriptor to the other source frame regardless
of the identity used to generate the image.

We also use crop versions of L2 loss and LLP IP S loss where we crop the inner
part of the face from the aligned image. The resulting cropped face image is
of 188 × 188 pixels from the original 256 × 256 pixels of the aligned image.
The losses L2 crop and LLP IP S crop are used exactly as their aforementioned
counterparts.

To conclude, the total loss which is used to train the network is the
weighted sum of the individual losses:

L = wL2L2 + wLP IP SLLP IP S + wIDLID + wcosLcos

+wL2 cropL2 crop + wLP IP S cropLLP IP S crop

3.3 Dataset and data augmentation

For our goal, we need a large dataset consisting of numerous unique identities
and a wide range of images with varying poses and facial expressions for each
identity. To meet this requirement, it was necessary to resort to using video
data despite the potential trade-off in image quality.

We decided to use the VoxCeleb2 dataset [48] which was created in 2018
originally for speaker recognition and verification. It has since been used
for talking head synthesis, speech separation as well as face generation. It
contains over a million utterances from 6 112 identities, providing us with a
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vast array of subjects to work with. The dataset is primarily composed of
celebrity interview videos, offering a broad spectrum of poses and expressions
to utilize. The videos are categorized by identity, and trimmed into shorter
utterances that range from 5 to 15 seconds in duration. They have also already
undergone preprocessing that includes cropping the frames to the bounding
boxes around each speaker’s face.

Unfortunately the preprocessing step does not match the one required by
StyleGAN as the faces are cropped by the forehead. StyleGAN requires the
images to be of the entire head including the top part that is missing. We use
the official preprocessing script provided by StyleGAN that pads the missing
part of the forehead. This results in all of our training and testing images
having blurred stripes at the top. Although this hinders the quality of the
inverted images as well as the generated ones, it is better than the alternative
datasets that we considered. The alternatives did not have a large collection of
speakers and they were not segregated based on identity, resulting in multiple
individuals speaking in a single utterance.

Another challenge with the dataset is the relatively low resolution of the
videos, typically 224 × 224 pixels. This is problematic since StyleGAN is
designed to generate high-quality images with a resolution of 1024 × 1024
pixels. Nevertheless, finding a large dataset of high-resolution videos featuring
a vast number of distinct individuals is nearly impossible.

As the number of videos per individual differs quite drastically, we tried
to balance it out by only using a maximum number of videos per person. We
extracted 10 frames at half-second intervals from each video. Subsequently, we
filtered the sampled images to eliminate the ones with extreme poses, aligning
them with the image filtering approach implemented in the FFHQ dataset,
which served as the training set for StyleGAN. We also pre-align all of the
images using the official StyleGAN preprocessing script, which uses dlib [49], a
machine-learning library, to detect human faces and Facial Landmarks. If the
image has such a bad quality that the face or the Facial Landmarks are not
detected, the image is dropped as well. The filtered training dataset contains
around 6 000 different identities each with around 10 images from 5 different
video clips, resulting in a little under 300 000 images.

3.4 Training and implementation details

The model, as well as the dataset, is very large and thus we trained it for
a million steps with a batch size of 8. Surprisingly, even after that many
steps, the validation loss kept slowly decreasing. However, we observed a
decline in the ability of the model to accurately capture facial expressions in
the generated images around the one million training step mark, despite the
decreasing validation loss. The loss function does not capture the expression
perfectly and that is the reason why we had to revisit all of the intermediate
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3.4. Training and implementation details

model weights and check if there are better ones even with higher validation
loss. We chose the model weights which transferred the expression the best
on the validation set based on the non-differentiable evaluations discussed in
4.4.

We used the ranger optimizer [50], which combines Rectified Adam al-
gorithm and Look Ahead. We set the learning rate to 1 · 10−5. For our
model with the best performance, we used the following hyperparameters for
the losses: wL2 = 0, wLP IP S = 0.05, wID = 0.3, wcos = 0, wL2 crop = 2,
wLP IP S crop = 0.3. We also set the parameters a = 5 and b = 0.2 in the
CosFace loss. The parameters of our best model heavily rely on crop versions
of the self-reenactment losses. The reason for this is that when we tried to use
full images as input for those losses, the network struggled to learn the desired
facial expression manipulation. It instead had to focus on the background and
hair fidelity and thus failed to transfer the expressions correctly.
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Chapter 4
Experiments

This chapter presents experiments and evaluations of our proposed method.
We begin by introducing the baseline method and then describe the variants of
our method. We compare the results of our approach with the baseline meth-
ods and perform both qualitative and quantitative evaluations to demonstrate
the pose and expression transfer fidelity as well as identity preservation.

4.1 Baseline method

For our baseline method, we take advantage of the arithmetic property of the
StyleGANs latent space. As mentioned before, the latent space has a linear
property, where the latent codes can be added and subtracted for meaningful
edits. However, these edits have difficulties preserving the identity of the
person.

Given two frames A0 and A1 (sampled from the same video) where the
pose and expression of the person differ, the edit vector is represented by the
difference between the latent codes corresponding to the inverted frames. The
pose and expression can then be imposed onto a random person in image R
by adding this latent code of edit to a latent code corresponding to the image
R. Formally this can be written as

zA1→R = zR + α · (zA1 − zA0),

where zR is the latent code of a random person, zA0 is the latent code of the
person A with the initial pose and expression and zA1 is the latent code of
the same person with a different pose and expression. The α represents the
magnitude of the edit and the latent code zA1→R when fed into the StyleGAN
generates a person R with the pose and expression from A1. In our case, we
always set the α to one, because we want the same expression and pose.

However, this approach requires the initial pose and facial expression in
frame A0 to match the pose and expression of the person in frame R. This is
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a very strict requirement as there likely will not be a frame in a video, where
the pose and expression match perfectly the pose and expression in frame R.
Even when two short videos are considered, there might not be two frames,
each from a different video, where the pose and expression match precisely.

Instead of searching for two frames that match pose and expression the
best, we utilize the arithmetic property again. We flip each frame in a video
by the vertical axis and invert them along with their non-flipped counterparts.
Then, we calculate the mean latent code across all of the frames. This results
in a frontal pose with an average expression across the video – typically a
neutral expression. We do this for both of the videos which provides us with
the same pose and a similar expression for the initial frames. We then used
the aforementioned method to transfer pose and expression from one person
to another. The downside of this method is that it does not work with single
images but rather requires a short video of each individual. It also requires
inverting all of the frames within the videos.

We consider two versions of the baseline method. Both of them invert all of
the images with ReStyle [41], but one with the pSp encoder [40] configuration
and the other with the e4e [42] as discussed in detail in section 2.4.

4.2 Experiments with our method

Apart from using the already mentioned parameter configuration 3.4 we also
tried utilizing the CosFace loss function, but unfortunately for our architec-
ture, this slowed down the loss calculation a lot without much-added benefit.
To calculate this loss it is necessary to calculate 3 additional motion descrip-
tors, which means 3 additional forward passes of a large encoder network Em.

Another thing we tried with this architecture was optimizing the pre-
trained generator weights, a similar idea to Pivotal Tuning [38]. The idea
is that by optimizing more parameters, the network could learn more complex
facial expressions, which were proving difficult for the current model.

4.3 Qualitative evaluation

We start by showing the more straightforward case – a self-reenactment sce-
nario, where the source and target image are from the same identity. Figure
4.1 shows that the pose and expression transfer between the same identities
works very well, but the network still struggles with the hairstyle transfer due
to reasons discussed in section 3.4. In the rest of the qualitative and quantita-
tive evaluations, we focus on the cross-reenactment scenario, where the input
identities differ, which is the main focus of the research.

22



4.3. Qualitative evaluation

Text to place on the figure

Source

Target

Figure 4.1: Examples of pose and expression transfer for three distinct iden-
tities in a self-reenactment scenario, where both the target and source images
belong to the same identity. In the leftmost column, the target image is dis-
played. The first row shows the source images while the second row presents
the corresponding generated images.

Although our method works with individual images in a one-shot setting
it can be used to produce videos. The performance can be better observed in
a video format where the range of the pose transfer as well as the expression
transfer can be better appreciated than from static images. A few videos are
included in the attachments.

In figure 4.2 we present several examples of pose and expression transfer
between a variety of identities. The pairs are challenging since they vary
in ethnicity, gender, and illumination. Another challenge is accessories that
people wear such as eyeglasses or earrings.

23



4. Experiments

Original

Inversion

Source Identity 1 Identity 2 Identity 3 Identity 4 Identity 5

Figure 4.2: Pose and expression transfer examples. The Top box depicts
the identity input image along with their inversion. The bottom grid shows
the transfer of pose, expression, and eye movement to different identities.
The identities are preserved column-wise, and the poses and expressions are
preserved row-wise.

The pose and expression are transferred while still preserving the input
identity. The model was able to train to transfer pose, expression, and eye
movement. The network also correctly identifies, that if eyeglasses are present
in the identity image, they should be preserved in the output image. Surpris-
ingly, the network is able to model eye movement even behind the eyeglasses.
The network fails to preserve hair or background correctly as discussed in 3.4.
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Source

Target

Base pSp

Base e4e

Ours Gen

Ours Cos

Ours

Figure 4.3: Pose and expression transfer comparison. The top two rows repre-
sent the input source and target images. The next two rows show the baseline
method results, first with pSp inversion configuration and second with e4e.
The last three rows depict the results of our method, the first with generator
weight optimization, the second with utilizing the CosFace loss, and the last
shows the best model.

In Figure 4.3, we compare the results of the baseline method with the
variants of our proposed method. The baseline method does not use the target
image, but rather a frontal representation with an average expression across
the video of the identity as explained in section 4.1. The Figure shows that the
baseline method has trouble preserving the identity of the target person and
some artifacts are present. Some expressions are transferred more faithfully
compared to our method. However, it can happen, that the average expression
in one video is not the same as in the other, and then the expressions are not
transferred correctly. This can be seen in the second and last columns of the
figure 4.3. Our best model represents eye movement better compared to our
other variants while also generating more realistic images. 25
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Original

Inversion

Source Identity 1 Identity 2 Identity 3 Identity 4 Identity 5

Figure 4.4: Limitations of the pose and expression transfer of our best model.
The Top box depicts the identity input image along with their inversion. The
first two rows show that our model has trouble generating faces with fully
closed eyes and the last row shows the issue with transferring frown expression.

Limitations. Our approach has some limitations, which are illustrated in
Figure 4.4. The model struggles to generate frowning faces or faces with fully
closed eyes. This could be attributed to the pre-trained StyleGAN model,
which was trained on the FFHQ dataset [30]. Since the dataset is mainly
composed of high-quality pictures crawled from Flickr, typical expressions
present are neutral and smiling expressions. Other expressions are underrep-
resented. Additionally, generating frowns is particularly challenging since our
network takes only a single identity image and has no information about the
person’s neutral eyebrows position.

Expression transfer to synthetic faces. Figure 4.5 shows the expression
and pose transfer performed to randomly generated identities via StyleGAN.
We sample a random latent code z from the Gaussian distribution, from which
the StyleGAN’s mapping network produces w ∈ W. To obtain a valid identity
latent code for our network, we first generate an image using StyleGAN with
w and then invert it using ReStyle. This is due to the fact that ReStyle
encodes the images into a specific subspace of StyleGAN’s latent space, and
the model is trained to operate in this subspace. Interestingly, using the w
directly results in severe artifacts.
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Original
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Source Identity 1 Identity 2 Identity 3 Identity 4 Identity 5

Figure 4.5: Pose and expression transfer with randomly generated identities
via StyleGAN. The Top box depicts the identity input image along with their
inversion.

4.4 Quantitative evaluation

We evaluate the proposed method on pose and expression transfer fidelity as
well as on identity preservation. We then compare the results to the baseline
methods and other variants of our method. The evaluation is done on a test
split of the VoxCeleb2 dataset [48] which contains 120 different identities. The
test set is preprocessed in the same way as the training one. Our evaluation
focuses on a cross-reenactment scenario, where the source and target images
are from different identities.
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For pose transfer evaluation, we use a pre-trained CNN called HopeNet
[51] which demonstrates excellent results in head pose estimation. The net-
work outputs the predicted yaw, pitch, and roll, however, we consider only
yaw and pitch as all of the preprocessed and generated images have the same
roll. We calculate the mean absolute error of yaw and pitch between the gen-
erated images and their corresponding driving images. For the evaluation of
identity preservation we use the already mentioned ArcFace [46]. To the best
of our knowledge, there is no straightforward method for measuring expres-
sion transfer fidelity. Therefore, we utilize two different approaches – Facial
Landmarks and Facial Action Units – for this task.

4.4.1 Facial Landmarks

Figure 4.6: The 68 annotated landmarks on a human face.

Facial landmarks are a set of specific points on a human face that are used
to locate and distinguish distinct parts of the face, such as the eyes, nose,
mouth, jaw, and eyebrows. For the prediction of facial landmarks, we utilize
the dlib library [49] which predicts 68 landmarks on a human face as shown
in figure 4.6.

To measure the expression transfer, we utilize facial landmarks for calcu-
lating the aspect ratios of certain facial features [52]. Specifically, we measure
the movement of the eyebrows by calculating the aspect ratio between both
eyebrows and the eyes. To calculate the movement of the mouth and eyes, we
also calculate their respective aspect ratios.
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Query Result 1 Result 2 Result 3 Result 4 Result 5

Figure 4.7: Facial landmark retrieval task where each row corresponds to a
retrieval query. Specifically, the aspect ratios of the eyes, eyebrows, and mouth
of the target face in the first column are queried against the training dataset,
and the 5 best-matching results are retrieved.

Two facial images with the same expression should have similar aspect
ratios of the facial landmarks. Figure 4.7 shows a retrieval task performed on
our training dataset. We Take the 5 calculated aspect ratios of the queried
face and look for the best matching results. We calculate the best matching
results by minimizing the mean squared error of the aspect ratios between the
queried and retrieved image. The results show that this simple approach works
quite well as the query returns people with similar expressions regardless of
pose.

However, this metric does not work perfectly. It does not track eye move-
ment at all and does not measure asymmetric expressions very well (e.g.
mouth movement only on one side). Another issue is that people differ in
their facial structure. That is why instead of evaluating the expression trans-
fer between single images, we calculate the correlation of aspect ratios between
videos. For each frame from a source video, we generate a corresponding out-
put image with a specified identity from a target image. Then, we calculate
the correlation of each aspect ratio between the source and generated images.
Finally, we average these correlations across all aspect ratios to obtain an
evaluation of the expression transfer using facial landmarks.

4.4.2 Facial Action Units

Facial Action Coding System [53] represents the human face by a set of facial
muscle movements called AU (Action Units). Compared with the emotion-
based categorical facial expression model, AUs describe human facial expres-
sions more comprehensively and objectively [54]. Figure 4.8 shows some of
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the Facial Action Units.

Figure 4.8: Examples of the Facial Action Units [55].

Facial AU recognition is a multi-label classification problem as multiple
AUs can be activated simultaneously. For this task, we employ the graph-
based neural network OpenGraphAU [54] which achieves state-of-the-art re-
sults. A recent version of their model has been trained on a dataset of 2
million in-the-wild images and can predict 28 AUs. Using this model, we
can determine the probability score of individual AUs activated in a facial
expression.

Two facial images with the same expression should have the same AUs
activated regardless of the pose or identity of the person. Figure 4.9 shows
a retrieval task performed on our training dataset. We Take the AUs of the
queried face and look for the best matching results. We calculate the best
matching results by minimizing the MSE of AUs between the queried and
retrieved image. Unfortunately, the results show that the AUs are not as
effective as Facial Landmarks for our in-the-wild images.
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Query Result 1 Result 2 Result 3 Result 4 Result 5

Figure 4.9: Facial Action Unit retrieval task where each row corresponds to
a retrieval query. Specifically, the AUs of the target face in the first column
are queried against the training dataset, and the 5 best-matching results are
retrieved.

4.4.3 Overall evaluation

Table 4.1: Quantitative comparison of the baseline method and variants of our
method. The first two rows show the baseline method results, first with pSp
inversion configuration and second with e4e. The last three rows depict the
results of our method, the first with the generator weight optimization, the
second with utilizing the CosFace loss, and the last shows the best parameter
model. Symbol ↑ indicates that larger is better and ↓ that smaller is better.

Method Pose(MAE)↓ FL(CORR)↑ FAU(CORR)↑ ID(CSIM)↑
Base pSp 8.491 0.656 0.210 0.671
Base e4e 8.720 0.621 0.113 0.563
Ours Gen 8.325 0.556 0.002 0.760
Ours Cos 7.968 0.528 0.082 0.762
Ours 7.673 0.620 0.142 0.801

Table 4.1 shows the quantitative comparison of the baseline method and
variants of our method on the VoxCeleb test set. Although the baseline
method does transfer expression slightly better, it struggles with preserving
the identity of the generated person. It also transfers the pose worse than our
approach. The identity preservation is measured by the cosine similarity of
ArcFace [46] embeddings. Our best model achieves a cosine similarity of 0.8,
which is very good considering that the cosine similarity between the origi-
nal and inverted images via Restyle with pSp configuration is 0.83. Therefore,
our method achieves identity preservation close to the maximum possible with
Restyle.
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As mentioned before, the Facial Action Units do not seem to work very
well with our images, which is not only apparent from the qualitative retrieval
task but also from the calculated correlation, which is in all methods close to
zero. That is why we take the correlation of facial landmarks’ aspect ratios as
a better indicator of expression transfer fidelity. For the pose measurement,
an absolute error of yaw and pitch in degrees is calculated as the roll is always
the same because of the alignment process.

Our method performs worse with the added CosFace loss function. While
the loss function improves image illumination, similar to the Megaportraits
paper [20], it significantly slowed down training and hindered the expression
as well as eye movement transfer. The method with added generator weights
also produces overall inferior output compared to the one without such opti-
mization. The generated images suffer from more artifacts while also having
a less realistic color scheme. This is probably a consequence of overfitting.

Computational demands. The speed of inference is a very important cri-
terion. Our method needs to invert the identity image via ReStyle, which
takes approximately half a second on a modern GPU. It can then generate up
to 20 images per second with that identity, given all the images are already
aligned. On the other hand, the baseline method requires the inversion of all
the images from the source video and target video but then can generate up
to 50 images per second. Given two short 5-second videos with 24 frames per
second, which are typical for the VoxCeleb2 dataset, our method generates
each frame from one video with the identity from the other in less than 6
seconds, whereas the baseline method would require a little over 2 minutes.

4.5 Discussion

We tried using Facial Action Units to represent expressions. We utilized a
Multilayer perceptron as the motion encoder Em which would take Facial
Action Units and pose estimate of the source image and encode this to W+.
However, this performed poorly, as the generated image would only have the
pose changed slightly, seemingly ignoring the entirety of Facial Action Units.
The reason is the inaccurate prediction of FAUs on our data as discussed in
4.4.2.
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Conclusion

In the thesis, we presented a method for transferring pose and expression of a
source face image to a target face image, while preserving the identity of the
target face. The proposed method is self-supervised, and it does not require
labeled data. Additionally, it fully relies on neural rendering in a one-shot
setting without using a 3D graphics model of the human face.

We reviewed the existing methods and proposed a new one that is based on
the StyleGAN generator. We extensively evaluated our method on pose and
expression transfer fidelity as well as on identity preservation. We compare
our method to the baseline that utilizes the arithmetic property of StyleGANs
latent space.

Our network can transfer pose, expression, and even eye movement in close
to real-time while maintaining the person’s identity, even under challenging
conditions such as varied ethnicity or gender. The network can handle people
wearing eyeglasses as well. However, our approach has limitations in trans-
ferring certain expressions faithfully (e.g. closed eyes). Additionally, it does
not achieve a perfect HD photo-realism and cannot match the visual quality
of the current state-of-the-art methods that do not utilize StyleGAN.

The performance could surely be improved if we were able to get access
to a better-fitting dataset. We trained on low-quality compressed videos of
224 × 224 pixels, where faces occupied even a smaller area of the image, while
StyleGAN2 produces 1024×1024 images. Another possible improvement could
be achieved by pretraining our own generator because StyleGAN2 does not
offer the desired expression variability as it has been trained on images from
Flickr where closed eyes and strong expressions are heavily underrepresented.
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Appendix A
Acronyms

3DMM 3D Morphable Model

AAM Active Appearance Model

AdaIN Adaptive Instance Normalization

CNN Convolutional Neural Network

DCGAN Deep Convolutional Generative Adversarial Network

FAU Facial Action Units

FL Facial Landmarks

GAN Generative Adversarial Network

MSE Mean Squared Error

PCA Principal Component Analysis

SVM Support Vector Machine
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Appendix B
Contents of enclosed archive

README.md ................................. archive contents description
src ...................................................... source codes

README.md............................instructions for local inference
videos...............................................generated videos
text.......................................................thesis text

BP Jahoda Petr 2023.pdf.................thesis text in PDF format
src.................................LATEX source codes of the thesis
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