
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Custom OpenSSL provider based on CNG

Ladislav Marko

Ing. Josef Kokeš, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

1) Study the OpenSSL cryptographic library. Describe its evolution, features, structure.

2) Focus on the concept of providers available in OpenSSL since version 3: Explain their

purpose, limitations, how they interact with the rest of the library. Explore the built-in as

well as third-party providers available in the wild.

3) Design the structure of a new provider that would eventually be able to offload

certificate work in the SSL/TLS protocols to an alternative cryptographic implementation.

4) Create a proof-of-concept of such a provider based on Microsoft's Crypto New

Generation API.

5) Discuss your results.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 13 February 2023 in Prague.

Bachelor’s thesis

Custom OpenSSL provider based on CNG

Ladislav Marko

Department of Computer Systems
Supervisor: Ing. Josef Kokeš, Ph.D.

May 10, 2023

Acknowledgements

I would like to thank Ing. Josef Kokeš, Ph.D., for his guidance and light-speed
responses. Huge thanks also go to my parents and my significant other for
their endless support. I would also like to show gratitude to everyone that has
helped me with this project from spell checking to code reviews.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ladislav Marko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Marko, Ladislav. Custom OpenSSL provider based on CNG. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Tato práce rozeb́ırá OpenSSL poskytovatele (providers) a jak je implemento-
vat. Práce procháźı procesem implementace poskytovatele, který přenechává
kryptografické operace ohledně certifikát̊u jiným implementaćım algoritmů
než těm z OpenSSL. Konkrétńı zvolenou implementaćı jsou algoritmy Win-
dows Cryptography API: Next Generation. Výsledný poskytovatel umožňuje
TLS 1.3 spojeńı s klientským certifikátem načteným ze systémového úložǐstě
certifikát̊u operačńıho systému Windows.

Kĺıčová slova OpenSSL, provider, CNG

vii

Abstract

This thesis takes a closer look at OpenSSL providers and how to imple-
ment them. The thesis goes through the process of implementing a provider
that offloads certificate operations to other algorithm implementations then
OpenSSL ones. The selected implementation of algorithms is the Windows
Cryptography API: Next Generation. The final provider allows for TLS 1.3
connection using client certificate loaded from the system certificate store of
operating system Windows.

Keywords OpenSSL, provider, CNG

viii

Contents

Introduction 1

1 OpenSSL 3
1.1 Features . 3
1.2 Evolution . 4

1.2.1 LibreSSL . 4
1.2.2 QuicTLS . 5
1.2.3 BoringSSL . 5
1.2.4 Current state . 6

1.3 Structure . 6
1.3.1 libcrypto library . 6
1.3.2 libssl library . 8
1.3.3 openssl . 9
1.3.4 Other command line tools 9

2 OpenSSL providers 11
2.1 Purpose . 11
2.2 Limitations . 12
2.3 Interactions . 12
2.4 Provider infrastructure . 13

2.4.1 Special data types . 14
2.4.2 Operations . 16
2.4.3 Key management . 16
2.4.4 Store management . 17
2.4.5 Digests . 17
2.4.6 Symmetric ciphers . 18
2.4.7 Message authentication codes 18
2.4.8 Key derivation . 18
2.4.9 Key exchange . 19

ix

2.4.10 Asymmetric ciphers . 19
2.4.11 Asymmetric key encapsulation 19
2.4.12 Encoding and Decoding 19
2.4.13 Random number generation 20
2.4.14 Signatures . 20
2.4.15 Algorithm selection . 21

2.5 Built-in providers . 22
2.5.1 Base provider . 22
2.5.2 Default provider . 23
2.5.3 Legacy provider . 23
2.5.4 FIPS provider . 23
2.5.5 Null provider . 24

2.6 Third party providers . 24
2.6.1 PKCS#11 provider . 24
2.6.2 TPM 2.0 provider . 25

3 Provider implementation 27
3.1 Our provider’s core . 27

3.1.1 Initialization function 27
3.1.2 Provider context . 29
3.1.3 Teardown function . 29

3.2 Information exchange . 29
3.2.1 Dispatch table . 30
3.2.2 Parameter tables and parameter getters 30
3.2.3 Query operation function 31

3.3 Key management . 31
3.3.1 Key management implementation 32

3.4 Store . 32
3.4.1 Store context . 32
3.4.2 Opening the store . 33
3.4.3 Loading from the store 33
3.4.4 Closing the store . 33
3.4.5 Setting parameters to store context 33

3.5 Signatures . 34
3.5.1 Signature context . 34
3.5.2 Setting parameters to signature context 34
3.5.3 Signing . 34
3.5.4 Demonstration of the provider 35
3.5.5 Results . 35
3.5.6 Possible improvements 35

3.6 Practical usage . 36
3.6.1 Building and installing the CNG provider 36
3.6.2 Loading the provider . 36

x

Conclusion 39

Bibliography 41

A Acronyms 45

B Contents of enclosed media 47

xi

List of Figures

1.1 Parts of OpenSSL . 6
1.2 Parts of libcrypto . 7
1.3 Parts of libssl . 8
1.4 Command line tools . 10

xiii

List of Listings

2.1 An example dispatch array for provider’s base 14
2.2 OSSL PARAM definition from the documentation 15
2.3 An example usage of OSSL PARAM array 15
2.4 OSSL ALORITHM definition 16
2.5 Example algorithm array . 16
2.6 Example property names . 21
2.7 Example property queries . 22
2.8 Example file scheme usage . 22
3.1 Example parameter table for providers core 30
3.2 Example part of parameter getter for providers core 31
3.3 Building and installing of the provider 36
3.4 Using provider from commandline 37
3.5 Using provider from code . 38

xiv

Introduction

Cryptography is present in our lives on a day-to-day basis. It has gained its
importance over the years and there is no sign of it becoming obsolete any
time soon. As of 2023, there are estimates that more than 5 billion people
are online[1] and their communication needs to be secured. And not only
their communication but their stored personal data as well. Thus the need
for cryptography.

Nevertheless, there is a slight caveat with it. It needs to be simple and
easy to use for the end user to actually be useful.

OpenSSL library and its accompanying tools are one such solution giving
users relative simplicity and ease of use when dealing with cryptography. Al-
though they solve many problems and common scenarios, there are areas in
which they are lacking.

One of these issues is cryptography on dedicated devices such as hardware
tokens. The OpenSSL library is designed to be as self-sufficient as possible
to achieve a high level of security. However, sometimes we as users or devel-
opers may also want to relay part of the trust to other sources as well. One
of these sources might be considered our operating system, particularly its
cryptographic storage.

Fortunately, OpenSSL has ways of dealing with such shortcomings. These
were called engines in the earlier versions and have been superseded by a
concept called providers in version 3.0.0 of OpenSSL. Through them, more
functionalities can be added and easily shared with others by simply load-
ing those providers into the OpenSSL binaries or integrating them into the
OpenSSL code.

In this thesis, we will take a closer look at these providers, then discuss
and implement a provider able to offload certificate work to an alternative
cryptographic implementation. Specifically Cryptograpy API: Next Gener-
ation. This will allow us to take advantage of the strengths of both pieces
of software: general availability, common usage, transparent access to secure
hardware elements and operating system managed crypto storage.

1

Chapter 1
OpenSSL

OpenSSL describes itself as cryptography and SSL/TLS1 toolkit[2]. It is a
mature piece of software used in a variety of contexts, from generating RSA2

keys for users to serving as a cryptographic backend to Nginx or Apache web
servers.

1.1 Features

It comprises two main parts (libcrypto and libssl libraries) and additional
tools. An excellent example of the accompanying tools would be one for visu-
alizing the outputs of cryptographic data or a full-fledged HTTP(S)3 client.
A common, yet not primary use case for OpenSSL is printing human-readable
content of X.509 certificates to the command line interface.

The libcrypto part is a library with a broad spectrum of algorithm im-
plementations. Those range anywhere from symmetric cryptography to cer-
tificate handling. Algorithms implemented in this library are usually used to
facilitate secure online communication. That has to do with the fact that the
libssl library (the second major part of OpenSSL) strongly depends on this
one.

This library can have multiple implementations of different algorithms.
Usually, there are at least two versions of the most important algorithms:
the default implementation available in the toolkit (used by default) and the
FIPS certified version (that needs to be loaded explicitly). FIPS versions of
algorithms are not that common since FIPS being a certification (of the US
National Institute of Standards and Technology) puts additional requirements
on the implementation that are usually unnecessary. Furthermore, comply-
ing with these requirements takes a lot of time and capital since there is a
mandatory certification process.

1Secure Sockets Layer/Transport Layer Security
2Rivest–Shamir–Adleman
3Hyper Text Transfer Protocol (Secure)

3

1. OpenSSL

The second part, the libssl library, is also a library but focused on provid-
ing Secure Sockets Layer, Transport Layer Security and Datagram Transport
Layer Security (DTLS) capabilities to programmers. It allows for creating
secure communication channels over insecure network connections. As have
the standards for online data transfer evolved, so did the OpenSSL library.
Today it offers anything from SSLv3 to TLSv1.3 for packets and DTLS 1.0 to
DTLS 1.2 for datagrams.

As stated previously, libssl is dependent on libcrypto. Each communication
protocol that libssl supports needs different algorithms to fulfill its function.
More often than not, those are bundled in cipher suites. We can take a look at
the smallest modern protocol TLSv1.3, which supports just five cipher suites,
yet needs seven different algorithms for them. Considering that TLSv1.2 has
37 cipher suites, it is clear that it has been an excellent choice to separate
those implementations into a standalone library.

1.2 Evolution

OpenSSL has been in development for many years, starting in 1998 as a fork
of SSLeay. It has been developed under a double license for a long time: the
OpenSSL license and the original SSLeay license[3], both considered open-
source licenses. From version 3.0.0, it is now licensed under the Apache-2.0
license [4][5], thus simplifying its licensing yet maintaining its open-source
status.

The project is not always perfect for every use case and carries with itself a
significant technical debt. However, the functionalities are one of the broadest
available, and the project has solved many problems that usually arise when
creating cryptography software.

OpenSSL’s imperfections lead to the creation of a few big forks. These
were created for various reasons, such as a better and simpler user experience,
minimizing attack surface and legacy code, or QUIC support. Names of these
forks are LibreSSL[6], QuicTLS[7] and BoringSSL[8]. While QuicTLS is rel-
atively new (created in 2021), LibreSSL and BoringSSL were both forked in
2014 after the critical Heartbleed vulnerability was discovered.

1.2.1 LibreSSL

LibreSSL’s primary goal was to modernize the codebase to make it easier to
audit, understand and repair, to apply best practices during the development
process (such as code review and faster release times) and remove obsolete and
broken features and support[9]. It has succeeded with its goals and has been
the primary SSL/TLS library for significant distributions such as OpenBSD
and Alpine Linux for some time.

Unfortunately, some design choices led to it being replaced by OpenSSL
again. As it was supposed to be a drop-in replacement at the beginning, the

4

1.2. Evolution

library names and SONAMEs4 were kept the same as in OpenSSL. This was
not an issue at the start. However, even with little changes to the applica-
tion binary interface (ABI) over time, the differences accumulated so much
that developers of distributions needed to create patches to keep the ABI the
same. So this relatively small and understandable design choice led to poor
maintainability over time.

Also, because it is developed by a smaller team and without a long-lasting
brand, LibreSSL has suffered to keep up as fast as OpenSSL to the intro-
duction of new standards such as TLS 1.3, not to mention that OpenSSL
has extensive support of platform-specific optimizations outside of the x86
architecture, which is something with which a small team cannot compete.

1.2.2 QuicTLS

Another fork is QuicTLS, which aims to add QUIC support to OpenSSL. It
has mainly been a collaboration between Akamai and Microsoft. Its goal was
not to create a standalone project as with LibreSSL; quite the contrary. Being
compatible and allowing for quicker implementation of QUIC into OpenSSL
has played a considerable role in this project.

As of today, there exists a QUIC minimal viable product from QuicTLS
that should be merged into OpenSSL. That should happen in major version
3.2 [10] of OpenSSL, with the current version being 3.1.

1.2.3 BoringSSL

The last mentioned fork is BoringSSL. In comparison to QuicTLS, it is sup-
posed to be its own product. Although it is open source due to the OpenSSL
licenses, it is not intended for general use. It is a collection of patches and
tweaks from Google for OpenSSL rather than an independent project.

The project is still in active development and is in a symbiotic relationship
with both OpenSSL and LibreSSL. Bugs found and their fixes are generally
shared among these three in advance (albeit it has not always been this way
[11]) since they are all based on the same code. BoringSSL code has even been
relicensed to an ISC license[12].

With all these forks being around to this date and still being actively
developed, it is apparent that even after nine years, there are changes to
OpenSSL that can be made to better suit the needs of some big interest
groups.

4SONAME is basically a shared object’s name.

5

1. OpenSSL

1.2.4 Current state

Despite all this, the toolkit is still widely used. The implementations even
adhere to very high standards such as FIPS 140-2[13][14]. There are cur-
rently plans to validate OpenSSL to meet the requirements of the FIPS-140-3
standard[15]. However, this certification is not expected to be completed be-
fore 2024, although the FIPS 140-3 compliant provider has been released a
version before it was initially planned to[15][16]. It is currently undergoing
the certification procedure.

1.3 Structure

As mentioned before, OpenSSL comprises multiple parts. The two main ones
are libssl and libcrypto C libraries. The other parts are command line
tools like openssl as seen in figure 1.1. Unfortunately, there are no graphical
user interface options as a part of the project, but there have been some
attempts at creating them by the community [17].

OpenSSL

libcrypto libssl

additional tools

SSL

TLS

Perl scriptsopenssl executable

DTLS

EVP

providers

...

Figure 1.1: Parts of OpenSSL

1.3.1 libcrypto library

The part of OpenSSL responsible for cryptography is the libcrypto. It stores
all of the implementations of cryptographic algorithms available in OpenSSL
by default. It complements the SSL/TLS library also available in OpenSSL
but can be used on its own.

6

1.3. Structure

libcrypto

EVP providers

EVP_CIPHER

EVP_PKEY

EVP_SIGNATURE

...

default

legacy

fips

...

certificates additional structures

PEM

X.509

DER

PKCS #12

BIGNUM

ASN1_OBJECT

BIO

...

Figure 1.2: Parts of libcrypto - comparable to OpenSSL 1.1.1 version in [18]

To unify the terminology going forward, these are the relevant definitions
from the OpenSSL documentation:

Operation something one wants to do, such as encryption and decryption,
key derivation, message authentication code (MAC) calculation, signing
and verification, and many other options. Operations are discussed in
detail in section 2.4.2.

Algorithm a named method to perform an operation. The algorithms very
often revolve around cryptographic operations but may also revolve
around other types of operations, such as managing certain types of
objects.

Most of the functionality of libcrypto, such as public key cryptography,
random number generation or message authentication codes, is implemented in
providers. We will discuss them later in greater detail. The rest of the library
is an envelope providing APIs5 for using platform resources and providers in
a transparent manner, for example, fetching said algorithm implementations.

When fetching algorithms explicitly (which is more common), one might
use functions such as EVP MD fetch(), EVP CIPHER fetch() or EVP MAC fetch().
These functions take an algorithm name as a parameter and return the re-

5application programming interface

7

1. OpenSSL

quested implementation. There is a possibility to specify this implementation
further with a concept called provider queries, which will be discussed later.

Implicit algorithm fetching happens when the generic operation functions
are called with an object that already has a property query associated with it.
This is a very common scenario for EVP PKEY type structures. These hold the
asymmetric key pair, and when used in conjunction with EVP DigestInit ex(),
their associated property query is automatically used along with information
about the provider from which the PKEY structure comes.

OpenSSL uses contexts to allow concurrent use in threads, and scopes,.
All actions in libcrypto take action in a context; actions taken in different
contexts should not affect each other. These contexts are defined by context
structures that serve as arguments to many API calls where multi-threading
or other concurrent use might be a concern.

1.3.2 libssl library

On top of libcrypto stands the libssl library, which serves as a collection
of Secure Sockets Layer, Transport Layer Security and Datagram Transport
Layer Security protocols. The libcrypto library is its very important de-
pendency since these protocols depend on cryptography algorithms to work
properly.

libssl

Common
SSL_METHOD

SSL_CIPHER

SSL_CTX
...

SSL

TLS

DTLS
DTLS_method()

DTLSv1_server_method()

DTLSv1_2_client_method()
...

TLS_method()

TLSv1_server_method()

TLSv1_2_client_method()
...

SSLv23_method()

SSLv23_server_method()
SSLv23_client_method()

...

Figure 1.3: Parts of libssl

8

1.3. Structure

This library has its own object called SSL CTX, which serves as a way to
keep track of TLS/SSL sessions (SSL SESSION objects), connections (SSL ob-
jects), ciphers (SSL CIPHER) and methods (SSL METHOD, for example, TLS1.3).
Not only does this object keep track of the state the connection is in, but it
also influences the progression of the connection, as details like whether to use
a client certificate or not are also stored in it. Most of these can be set with
SSL CTX set options().

1.3.3 openssl

The executable openssl is the main command line utility (which has the
same name as the project itself). It holds most of the functionality that can
be achieved with code using both libcrypto and libssl. It is divided into
many smaller parts, each one solving problems regarding most common online
cryptography problems.

These range anywhere from RSA and DSA6 key generation, through pass-
word hashing, to full-fledged SSL/TLS clients and servers, not to mention
more niche functionalities like prime number calculations, S/MIME7 support
and SSL server benchmarking.

The most common usage of this utility is key generation and translation. It
can convert between PEM8 and DER9 and multiple cryptography key formats.
Another common task is certificate manipulation. This command can create
certificate authorities, sign certificates, revoke them and perform all the other
necessary tasks when dealing with certificates.

1.3.4 Other command line tools

OpenSSL comes equipped with at least three other tools out of the box: CA.pl,
c rehash.pl and tsget.pl. They are all little known, and two of them have
been, for the most part, reworked into the openssl command line utility.

Perl script CA.pl is a front-end to the openssl command for dealing with
certificates. It allows easy creation, signing, cross-signing, conversion and
revocation. Its abilities are very limited but suffice for simple tasks. This
utility is only available when compiling OpenSSL and copying the Perl script
from the build directory, as it does not get installed automatically and usually
does not come with OpenSSL in any package manager. There are manual
pages available for this script, however.

The script c rehash.pl is also written in Perl. This script has been largely
adopted as a sub-command of openssl called openssl-rehash. It creates
symbolic links to certificates with the hash of said certificate as the link’s

6Digital Signature Algorithm
7Secure/Multipurpose Internet Mail Extensions
8Privacy-Enhanced Mail
9Distinguished Encoding Rules

9

1. OpenSSL

command line tools

openssl executable CA.pl

c_rehash.pl tsget.pl

Figure 1.4: Command line tools

name. This is mainly due to the fact that many programs that use OpenSSL
expect this type of hash-based file structure to find certificates. This tool gets
installed automatically with OpenSSL 3.1.0.

The third utility is tsget.pl, again hidden like CA.pl. This program’s
purpose is to send and receive timestamp requests. It has mostly been adopted
as a sub-command into openssl-ts.

10

Chapter 2
OpenSSL providers

With version 3.0 of OpenSSL came providers. They are a tool to enhance the
library with alternative and new algorithm implementations. They are similar
to engines, a concept that has been available since version 0.9.6 (although they
only appeared in the mainstream from 0.9.7). As with engines, their purpose is
to allow third parties to implement new algorithms into OpenSSL. This is very
helpful when developing with algorithms found to be obsolete, for example,
RIPEMD160 (even though this particular algorithm has an exception [19]) since
they are not necessarily present in the OpenSSL library.

Although OpenSSL maintains a provider for algorithms that were widely
used but are now deprecated. It is called the Legacy provider. We will discuss
this provider in more depth later in section 2.5.3.

Providers offer an advantage over engines in the sense that they are inter-
woven into the library in a tighter way. It is possible to specify which calls
should be made through which provider in a particular application. That can
be achieved either directly through provider queries or via a configuration file.
This gives the programmer a more granular and predictable way to interact
with the OpenSSL APIs when using providers, in contrast to engines.

Providers are also designed to be high-level tools. So, for example, when
implementing an AES encryption, the user will have Init(), Update() and
Final() style functions exposed but nothing like AddRoundKey(). This is in
compliance with the OpenSSL team’s efforts to streamline and simplify the
library’s APIs.

2.1 Purpose

As mentioned before, the main goal of providers is to allow third parties
to provide alternative algorithm implementations. The advantage of using
providers is in the fact that the user can use the rest of the toolkit without
the need to implement those functionalities themselves.

11

2. OpenSSL providers

Providers can be both compiled into OpenSSL for custom builds or can
be dynamically loaded. Compiling them directly and distributing a custom
version of OpenSSL, for example, in the form of packages, can be the easiest
way to share a version that exactly meets the needs of a large company with
specific requirements. On the other hand, the possibility to load the providers
dynamically allows all users of OpenSSL versions that support providers (even
the custom ones!) to use them without the need to recompile the whole
source code, thus allowing for a quick and easy deployment for new algorithm
implementations and functionalities.

There are many use cases for this. One in particular is adding support for
some custom hardware device to OpenSSL. The device manufacturer releases
drivers for their device for an operating system but will not support OpenSSL,
nor will OpenSSL support that device. Using providers, this problem can be
easily solved, as discussed by Pešek in [18]. Another one might be when de-
veloping a tool using proprietary (or non-standardized) algorithms. OpenSSL
will not support them, but all the benefits of OpenSSL infrastructure can be
taken advantage of if they are implemented with providers.

2.2 Limitations

Unfortunately, providers are not the perfect solution to extensibility. While
other software provides plugins, modules or extensions for a broader interac-
tion with it, OpenSSL’s only way to extend the software is to change its source
code or use just the limited scope of providers.

To illustrate: many developers want to take advantage of the QUIC pro-
tocol. It is a transport layer network protocol designed to replace TCP.
OpenSSL, by design, works with TCP to implement TLS to secure such com-
munications. However, adding support for QUIC to OpenSSL is impossible
without modifying the source code. Providers can only be used to implement
algorithms used for cryptography. That includes key exchange, key manage-
ment, random number generation, key derivation functions and many others,
but not transport layer protocols.

As of today, programmers wanting to use developing standards must wait
for official releases tackling these issues or use alternative solutions and forks
such as BoringSSL.

2.3 Interactions

Although providers seem to be self-contained pieces of software, they do not
need to be. There are a few possibilities for interaction and cooperation be-
tween them. It is rare since functionalities that a provider would provide are
often tied to a narrow use case. Still, the OpenSSL libraries allow for it.

12

2.4. Provider infrastructure

One possible way that providers can interact is through decoders. De-
coding functions are special functions used to transform data. Usually, they
are given data loaded from outside the application and are then supposed to
convert it to either something that is understandable by their provider or an
intermediate object that can be processed by another decoder (either from the
same provider or a different one).

This creates a dynamic chain of loaded providers for a particular input
data type. The OpenSSL core will pass the input data format to the first
applicable decoder and then process the format returned from it further with
the rest of the loaded decoders until it can process it no more or has reached
the desired output format10. The intermediate formats can be anything from
well-known formats like PEM or proprietary formats specific to that particular
provider.

Another option are property queries. When developing a program using
OpenSSL, the developer can ask for certain implementations of algorithms.
That is done with property queries which are essentially a string with key-
value pairs (although some other options are available, as discussed later in
section 2.4.15). Any provider can specify its own properties, even ones that
are used by other providers. For example, a custom provider might state that
its algorithms are FIPS compliant and OpenSSL might use those in preference
to the actual FIPS provider ones.

That is not a vulnerability, as only trusted providers should be loaded.
Quite the contrary, the FIPS provider might not provide all the necessary
algorithms one might desire but implement a great amount of them. Adding
a custom provider that implements all of them would be unnecessary and
resource-consuming. But implementing just the missing ones, marking them
as FIPS compliant and letting OpenSSL interchange information between the
FIPS provider and the custom one is most definitely a desired feature.

2.4 Provider infrastructure

In the OpenSSL documentation, providers are defined as follows:

Provider a unit of code that provides one or more implementations for var-
ious operations for diverse algorithms that one might want to perform.

We will refer to the OpenSSL libraries as the OpenSSL core as that is
the terminology for public types used to communicate between the OpenSSL
libraries and providers. To the functionalities of the provider, excluding the
operation functions, we will refer to as the provider base.

10or more precisely, finds the desired algorithm input. More on that later in section 2.4.12

13

2. OpenSSL providers

2.4.1 Special data types

The OpenSSL libraries implement a few new data types, especially for providers.
Their main function is to be a multi-purpose, self-sufficient way for passing
data between providers and the core and sometimes even between providers
themselves.

OSSL DISPATCH

The first data type is an array of OSSL DISPATCH. This is a tuple of a function
pointer and an integer ID describing the function that the function pointer
points to. These IDs are available in <openssl/core dispatch.h> as macros;
their names start with OSSL FUNC .

Each function ID is only usable with the associated operation (which have
been mentioned in section 1.3.1). That is because the actual integer values can
be reused in between operations. OSSL FUNC KDF RESET has the same value as
OSSL FUNC MAC INIT, yet it is perfectly fine since the dispatch arrays should
always be used in the context of a particular operation known to both sides
passing the array.

There is a stopping element defined in the form of {0, NULL}11 that always
needs to be present in the array even if it were to be the only element in it.
The core often implements enumerating this array with a while loop waiting
for this element to show up to cease.

Listing 2.1: An example dispatch array for provider’s base
static const OSSL_DISPATCH cng_dispatch_table [] = {
{OSSL_FUNC_PROVIDER_GETTABLE_PARAMS , cng_gettable_params_voidp},
{OSSL_FUNC_PROVIDER_GET_PARAMS , cng_get_params_voidp},
{OSSL_FUNC_PROVIDER_QUERY_OPERATION , cng_query_operation_voidp},
{OSSL_FUNC_PROVIDER_TEARDOWN , cng_teardown_voidp},
{0, NULL}

};

The expected behavior when reading a dispatch array is to ignore anything
not recognized, thus ensuring backwards compatibility.

When there is the need for this array to be passed, the provider needs
to make sure that the pointer passed back to the core is properly allocated
and that the last item of the array is actually the stopping element. The
core trusts the provider and often does not perform checks, which can lead to
anything from a silent fail to an outright crash.

11This thesis has sparked the idea to implement an OSSL DISPATCH END. Its adoption is
undergoing: https://github.com/openssl/openssl/issues/20710

14

https://github.com/openssl/openssl/issues/20710

2.4. Provider infrastructure

OSSL PARAM

The second custom data type is the OSSL PARAM array. Its purpose is to
transfer parameters. Since parameters themselves can have many different
data types, OSSL PARAM is a way to encapsulate those data types along with
the information that is carried in them.

Listing 2.2: OSSL PARAM definition from the documentation [20]
82 typedef struct ossl_param_st OSSL_PARAM;
83 struct ossl_param_st {
84 const char *key; /* the name of the parameter */
85 unsigned char data_type; /* kind of content in data */
86 void *data; /* value being passed in or out */
87 size_t data_size; /* data size */
88 size_t return_size; /* returned size */
89 };

There are four main data types supported: integers, floating point num-
bers, UTF-8 encoded strings and octet strings. The last one is the most useful
since it allows passing arbitrary data just labeled as an octet string. Though
unsigned integer and pointer variants for both types of strings do exist as well,
they are less common.

There are many predefined constants that can be used in these parameter
arrays, and they are all defined in <openssl/core names.h>.

Listing 2.3: An example usage of OSSL PARAM array
216 static const int object_type_cert = OSSL_OBJECT_CERT;
217 OSSL_PARAM cert_params [] = {
218 OSSL_PARAM_int(OSSL_OBJECT_PARAM_TYPE ,(int *)&object_type_cert),
219 OSSL_PARAM_octet_string(OSSL_OBJECT_PARAM_DATA ,
220 store_ctx ->prevCertCtx ->pbCertEncoded ,
221 store_ctx ->prevCertCtx ->cbCertEncoded),
222 OSSL_PARAM_END
223 };

OSSL ALGORITHM

The third data type is intended for passing algorithm implementations be-
tween the libraries and providers. This data type contains information about
the algorithm names, their common property definitions, OSSL DISPATCH ta-
ble pointer with the actual implementation, and optionally a description. Its
definition can be found in listing 2.4.

It is used when passing information about supported operations from the
providers query operation() function to the OpenSSL core. An example of
such an array that might be passed is shown in listing 2.5.

The algorithm names should be a colon-separated list of names to identify
the desired algorithm. Those can even be object identifiers as per the RFC
8017 appendix C[21] or their canonical decimal text form.

15

2. OpenSSL providers

The last item in such an array should always have its algorithm names
set to a NULL pointer to signal the end of the array; failure to do so might lead
to unexpected behavior.

Listing 2.4: OSSL ALORITHM definition
69 struct ossl_algorithm_st {
70 const char *algorithm_names; /* key */
71 const char *property_definition; /* key */
72 const OSSL_DISPATCH *implementation;
73 const char *algorithm_description;
74 };

Listing 2.5: Example algorithm array
static const OSSL_ALGORITHM cng_keymgmt [] = {

{"RSA:rsaEncryption", CNG_DEFAULT_ALG_PROPERTIES ,
cng_keymgmt_functions , "CNG␣Provider␣RSA␣Implementation"},

{NULL , NULL , NULL}
};

2.4.2 Operations

As stated before, OpenSSL providers can consist of multiple operation groups.
These operations are just bundles of functions performing related tasks to each
other. Some are standalone, though some interchange information between
each other.

The functions present in an operation can be further divided into logical
groups, which we shall refer to as function bundles. Usually, not all bundles
are necessary to implement, yet it is recommended to achieve full functionality
and avoid unexpected refusal of OpenSSL to use your provider.

2.4.3 Key management

The operation that interacts the most with the others. The key management
operation with the operation number OSSL OP KEYMGMT is intended primarily
for the internal use of the provider. Its purpose is to manage the private-public
key pairs. It does it completely transparently to OpenSSL core. The core’s
only concern is the EVP PKEY structure which gets filled with the relevant
information about the key.

The basic bundle contains functions to create, duplicate and destroy a
provider-side key object. Those three are almost always needed. The next
bundle are key generation functions that allow the user to customize and
generate the provider-side key objects. Then there are bundles for import and
export, and finally, a bundle for comparison and one for querying information
about the keys.

There are special constants defined for dealing with parts of keys since
a private-public key pair can consist not only of its private and public parts

16

2.4. Provider infrastructure

but also can contain domain parameters or even other additional data. Those
constants all bear the name of OSSL KEYMGMT SELECT * and are defined in
<openssl/core dispatch.h>. The common combinations of these constants
with the same naming scheme are also available.

2.4.4 Store management

Store management operation is a provider-based backend to the ossl store
API. That means that this operation is designed to return keys, certificates,
certificate revocation lists and additional information in the form of names and
parameters of applicable objects. It has an operation number of OSSL OP STORE

Its intended usage is the same as with the ossl store. The user is ex-
pected to either open a store based on a Uniform Resource Indentifier (URI)
or attach to an existing BIO structure of OpenSSL (which serves as an ab-
straction for any input/output method), then enumerate through the whole
store with a loading function and end when you reach the end of the store.
Additionally, there are functions to set some parameters (such as issuers, fin-
gerprints or aliases) when searching for data in the store and a function to
export a given loaded object to a foreign supported provider format.

When the loading function is called, it is given a callback function into
which it should pass the loaded object in an OSSL PARAM array. In that array,
a parameter with the key OSSL OBJECT PARAM TYPE should be defined to tell
the callback what is actually being passed into it. An array that could be
passed into the callback is shown in listing 2.3.

Stores can also return provider-side objects. For example, when loading a
key, the key can be a provider-side key object, and the OpenSSL core will deal
with it accordingly. That means that it will try to find operations it wants to
perform in the loaded providers and use them. It must be marked so in the
OSSL PARAM array by setting the OSSL OBJECT PARAM REFERENCE key. When
the OSSL OBJECT PARAM VALUE is set, it is assumed that it is DER encoded
data and thus processable by the OpenSSL libraries.

2.4.5 Digests

Implementations of digests are collected in the OSSL OP DIGEST operation.
These implementations serve as a provider backend to APIs like EVP Digest
or EVP Q digest. Their main purpose is to allow the creation of digests.

This operation’s bundles are the base bundle which creates, duplicates and
frees a provider-side digest context. Another one allows for the actual digest
processing, which means initializing, updating and finalizing a digest (or doing
all of that with one one-shot function). The last bundle allows for setting and
getting parameters from the digest itself or the digest context.

17

2. OpenSSL providers

2.4.6 Symmetric ciphers

Operation with the OSSL OP CIPHER operation number. The functions here
serve as a provider backend to OpenSSLs API for encryption and decryp-
tion, mainly functions like EVP Cipher, EVP EncryptInit ex and its opposite
EVP DecryptInit ex. Here are all the different implementations of encryption
and decryption algorithms stored.

Cipher operation bundles are similar to the digest bundles. The base
bundle that creates, duplicates and frees a provider-side cipher context, the
actual cipher bundle, which allows full progress of en/decryption and the last
bundle, which allows for setting and getting parameters from both the actual
cipher or the cipher context.

The last bundle allows for customizing (for applicable ciphers) values like
padding type, number of rounds to be used, or effective key bits.

2.4.7 Message authentication codes

This operation with number OSSL OP MAC is the provider backend to functions
creating message authentication codes like EVP Q mac and EVP MAC init. It is
very similar to the Digest operation in the manner it operates in.

It also consists of three bundles. One for context manipulation, another
one for message authentication code processing and the last one for setting
and getting parameters from either the context or the message authentication
code itself.

2.4.8 Key derivation

Operation for deriving keys with the number OSSL OP KDF. The included func-
tions serve as provider backend to EVP KDF derive and similar functions.
They are used to implement additional algorithms for creating one or more
secret keys from a secret value passed as an input to them.

There are three bundles present. The base bundle, which manipulates the
key derivation context, the derivation bundle, which initializes and derives the
actual key and the parameter bundle, which gets and sets parameters to the
context or the derivation itself.

This operation should not be confused with the Key exchange operation.
They perform similar tasks, but both serve as backends to different APIs.

18

2.4. Provider infrastructure

2.4.9 Key exchange

The Key exchange operation with the number OSSL OP KEYEXCH takes care of
the provider backend of key exchange algorithms. Its functions are part of the
EVP PKEY derive function set.

The bundles present are for context manipulation, the key exchange itself,
and for parameter manipulation, as with previous operations. This operation
can easily be confused with the Key derivation operation since it performs
similar tasks yet belongs to different OpenSSL APIs.

2.4.10 Asymmetric ciphers

OSSL OP ASYM CIPHER is very similar to its symmetric counterpart version.
This operation implements the provider backend to asymmetric cipher algo-
rithms for functions like EVP PKEY encrypt and EVP PKEY decrypt.

There are, once again, three bundles. One for context manipulation, one
for encryption and decryption, and one for getting and setting parameters
from the asymmetric cipher context.

2.4.11 Asymmetric key encapsulation

The Asymmetric key encapsulation operation identified with OSSL OP KEM
serves as provider backend to EVP PKEY encapsulate, its opposite function
EVP PKEY decapsulate and other related functions.

Functions belonging to this operation can be divided into three distinct
bundles: the context manipulation bundle that allows for creating, duplicating
and freeing a key encapsulation context, the actual en- and decapsulating
functions, and the getters and setters for the encapsulation context.

2.4.12 Encoding and Decoding

Those are two operations but are closely tied together. Their respective num-
bers are OSSL OP ENCODER and OSSL OP DECODER. The functions from these
operations are not accessible directly from the normal user space. Instead,
they are used by the OpenSSL core to change the encoding of different ob-
jects.

A typical use case is transforming a PEM-encoded object into its DER form
or vice versa. But these functions can even be used to transform encoding only
one provider understands into an encoding another provider can use. Even
more, the OpenSSL core can chain these encoders and decoders and create the
desired output from a given input with many intermediate encoded objects.
That implies that a conversion from PEM to DER to provider-side object and
the other way around is possible.

19

2. OpenSSL providers

Moreover, there can exist a provider whose whole job is just converting
between different encodings and thus serving as an intermediate layer between
two other providers without doing any other operations at all, essentially
becoming a structural pattern known as a wrapper or an adapter.

These two operations have similar bundles. Both have a bundle for con-
text manipulation, a bundle for getters and setters of parameters of those
contexts, a bundle for selection (which allows selection of different parts of
processed objects if applicable), and finally, each of them has their respective
encoding and decoding bundle, each containing their respective import and
export functions.

2.4.13 Random number generation

The generation of random numbers is handled by the operation with number
OSSL OP RAND. It is the provider backend for functions in the EVP RAND API. It
allows not only for the implementation of pseudo-random number generation
algorithms but true random number sources as well.

It does not have a function for copying its context, unlike all the other
operations, since such behavior is undesirable. This operation’s context ma-
nipulation bundle contains functions for creating and destroying the context
as usual but also has a function for locking and unlocking the context and
thus providing exclusive access.

The random number generating bundle is split into two parts, the NIST
part, which corresponds to NIST SP 800-90A and SP 800-90C, and additional
functions like nonce generation and seed extraction.

The last bundle is dedicated to parameter setting and getting from both
the random number generator and its context.

2.4.14 Signatures

This operation is the most fragmented one. Its number is OSSL OP SIGNATURE,
and it serves as a provider backend to functions like EVP PKEY sign and its
counterpart EVP PKEY verify. Its purpose is to allow the implementation of
various signature schemes (and in conjunction with key management opera-
tion) with various keys.

Into its bundles belong the common context manipulation, the signatures,
signature verification, recoverable signature verification and recovery, digest
signature, digest verification and parameter manipulation twice — once for
the signature itself and once for the message digest.

20

2.4. Provider infrastructure

2.4.15 Algorithm selection

Since all the functions actually implemented by a provider are called through a
higher-level API and multiple providers can implement the same algorithms,
there is a need to be able to distinguish between them and only select the
appropriate implementation. That is where property queries come into play.

Properties in OpenSSL 3.0.0 and higher are basically text representations
of key-value pairs. They are separated into two categories, reserved and user
defined properties. Both are case-insensitive, but OpenSSL uses only lower-
case.

Reserved are the ones defined by OpenSSL. They consist of a single C-
style identifier without a leading underscore. The reserved properties defined
at the writing of this thesis are provider (which should have the provider’s
name as its value), fips (which should refer to whether or not the algorithm
implementation is FIPS certified), type (which refers to the type of data to
be encoded and is defined only for the base provider, more about it in section
2.5.1) and format (which refers to the output format of the base provider’s
encoding).

User defined properties are similar to reserved but consist of two or more
C-style identifiers separated by periods. This creates a kind of namespace
architecture. The recommended usage can be found in lines one and two in
listing 2.6 and an example in lines three and four.

Listing 2.6: Example property names
1 <provider_name >.<property_name >
2 <provider_name >.<algorithm_name >.<property_name >
3 cng_provider.sha256.padding_type
4 cng_provider.deprecated

When using a higher level API function of OpenSSL and trying to perform
a certain operation, the user can, either directly or through a context, set the
desired properties. The queries can be either an equality test, inequality test,
mark of preference or a discard mark to invalidate a previous (higher level)
query. They are represented by =, !=, ? and - respectively.

The queries themselves are comma-separated property query clauses. No
property name can be in one query multiple times, and in case it is, it’s
considered an error. In listing 2.7, we can see in line one a correct query
that asks that the algorithm being fetched has the provider parameter set to
cng provider and does not have the fips parameter set to yes.

The query in the second line says that the algorithm preferably has the key
cng provider.deprecated set to no and the selection mechanism should not
consider anything previously set to cng provider.sha256.padding type.

In the third line, there is an invalid query since it contains the same pa-
rameter name twice, even though it is the same key-value pair.

21

2. OpenSSL providers

Listing 2.7: Example property queries
1 "provider=cng_provider ,fips!=yes"
2 "?cng_provider.deprecated=no,-cng_provider.sha256.padding_type"
3 "provider=cng_provider ,fips=yes ,provider=cng_provider"

2.5 Built-in providers

There are five built-in providers available in the standard build of OpenSSL.
Those are the default, base, legacy, null and FIPS providers. They all serve a
specific purpose to the core of OpenSSL.

2.5.1 Base provider

This provider is quite simple, offering only algorithms for encoding and de-
coding OpenSSL keys. Its property query contains provider=base. Even
though encoding and decoding have little to do with FIPS certification, their
functions do have the fips=yes property set to allow usage with the FIPS
provider.

It has two extra properties defined: the type parameter, which can have
values parameters, private and public, referring to parts of keys, and
format, with values der, pem and text referring to the output format of
the providers encoding.

Operations supported by this provider are thus Encoding and Decoding.
The user can use this provider with the STORE API using the scheme file.
Some valid example calls are in listing 2.8. The first two are for the Windows
environment, and the last two are for the Linux environment. This scheme
demands the scheme name and a slash after the colon to be valid. The normal
URI variant of writing a scheme works as well, but the starting slash still
needs to be present. Only absolute paths are supported.

Listing 2.8: Example file scheme usage
1 OSSL_STORE_open_ex("file:/C:/Users/Ladislav␣Marko/privkey.pem",

NULL , NULL , NULL , NULL , NULL , NULL , NULL);
2 OSSL_STORE_open_ex("file :///C:/Users/Ladislav␣Marko/pubkey.pem"

, NULL , NULL , NULL , NULL , NULL , NULL , NULL);
3 OSSL_STORE_open_ex("file:/home/Ladislav␣Marko/privkey.pem",

NULL , NULL , NULL , NULL , NULL , NULL , NULL);
4 OSSL_STORE_open_ex("file :/// home/Ladislav␣Marko/privkey.pem",

NULL , NULL , NULL , NULL , NULL , NULL , NULL);

This provider’s functionality is also implemented in the default provider.

22

2.5. Built-in providers

2.5.2 Default provider

As the name suggests, it is the provider that is automatically loaded on
any OpenSSL usage unless defined otherwise by explicitly loading another
provider. At that stage, this provider must be loaded explicitly to be used as
well. It contains all of the most commonly used algorithm implementations.
Its property query is provider=default.

Example algorithms implemented in this provider are SHA2, AES, HMAC,
ECDH and RSA. All of the other non-obsolete algorithms are implemented here
as well.

It implements all of the available operations despite the documentation
saying otherwise12.

2.5.3 Legacy provider

This provider serves as an archive of algorithms. It contains algorithms
deemed legacy or deprecated. That includes algorithms that are insecure,
not used commonly anymore, or superseded by other algorithms.

These obsolete algorithms include MD2 (as the Internet Engineering Task
Force has moved it to historic status in RFC 6149[22]), DES (which has been
cracked by the Electronic Frontier Foundation in 1998[23]), RC4 (deprecated
in TLS in RFC 7465 [24]) or PBKDF1 (superseded by PBKDF2 in RFC 2898[25]).

To use the implementations of this provider specifically, the property query
is provider=legacy.

2.5.4 FIPS provider

As stated previously, OpenSSL 3.1.0 has FIPS 140-2 certification. To maintain
this certification easily, all the necessary code is condensed into the FIPS
provider. Thus when auditing, all the code is in one place. It also means
that changes made to the rest of OpenSSL do not result in the need for re-
certification since the boundaries are well set.

This provider has two properties defined, provider=fips and fips=yes.
That is needed because not all algorithms implemented in the FIPS provider
are actually FIPS certified (at least yet; for example, the Triple DES ECB or
EdDSA). So to be FIPS compliant, the property fips=yes should be in the
user’s property query.

There is a slight caveat with this provider as for it to be available, OpenSSL
needs to be built in a special way. During the configuration phase of the
build, the enable-fips flag must be present. This will ensure that the FIPS
shared library will be built and the fips.so (on Unix-based distributions) or
fips.dll will be present and loadable into the OpenSSL libraries and tools.

12The author of this thesis has submitted tickets to the GitHub page of OpenSSL with
numbers 20742 and 20743 regarding this issue.

23

2. OpenSSL providers

The build process even allows the FIPS provider to be built and installed
separately with install fips make command. This allows backporting new
implementations to the OpenSSL system without changing any of the APIs.

The FIPS provider also includes (as the certification mandates) self-testing.
With a series of integrity checks, known answer tests (KAT) and additional
testing, the provider validates itself on each startup. However the KATs can
be disabled with configuration files after being run once during installation.
There is even a callback option so the user can receive the test results directly
with OSSL SELF TEST set callback.

2.5.5 Null provider

Because it supports no operations and algorithms, this provider might seem
like a useless one. Yet it is not. When used, it ensures that no accidental
automatic loading of the default provider will happen. It serves only as a
guarantee that the user will not have algorithms from the built-in providers
available by default.

2.6 Third party providers

The community has been slow to adopt providers, and there are not many
available publicly. This has to do with the fact that providers themselves
are not a very mature concept and are a fairly new addition to OpenSSL.
Additionally, the OpenSSL itself may provide enough functionality that the
use of providers is just not necessary. However, there are at least two notable
mentions of third-party providers.

2.6.1 PKCS#11 provider

There is a maintained version of PKCS#11 provider[26], allowing for access
to hardware and software tokens via the PKCS#11 interface. This provides
OpenSSL with the ability to access compatible storage in suitable environ-
ments.

Unfortunately, the documentation is very bare and not much information
apart from installing and configuring this provider is given.

It is licensed under the Apache 2.0 license and a special license based on
OASIS Intellectual Property Rights policy13.

13https://www.oasis-open.org/policies-guidelines/ipr/

24

2.6. Third party providers

2.6.2 TPM 2.0 provider

Another third-party provider is the Trusted Platform Module 2.0 integrating
one[27]. Its purpose is to allow OpenSSL access to data through TPM 2.0.

It is based on the tpm2-tss-engine, which implemented this functionality
through the now-obsolete engines API of OpenSSL prior to version 3.0.0.
Currently, it is licensed under the BSD 3-clause revised license.

This provider has well-written documentation about the possibilities of its
operations, the installation and the general usage. Additionally, there is also
a mailing list for this provider.

25

Chapter 3
Provider implementation

In this chapter, we will take a closer look at what needs to be implemented in
order to achieve the goal of this thesis: a provider able to offload certificate
work to Cryptograpy API: Next Generation. The main goal will be to load a
certificate and its private key from the CNG store and perform the necessary
digest signing to establish a TLS 1.3 connection via OpenSSL. To simplify
matters, we will only focus on RSA keys and assume that all certificates in
our CNG store have their private keys attached and are set to be able to sign.

From the chapter about operations, we know that we will need the STORE
operation for loading the certificates, the KEYMGMT operation to have our own
representation of keys (because CNG will not give us the actual private key,
just its handle) and the SIGNATURE operation to sign the digest to prove we
own the private key for the certificate being sent during the TLS handshake.

From CNG, we will need to load a client certificate and its public and
private keys (with the private key represented by its CNG handle). Then we
will need to sign a digest with the loaded private key.

3.1 Our provider’s core

First, we will examine the necessary functionality of what the provider needs
to implement and then take a look at how we are going to approach the im-
plementation. The implementation of this section can be found in the header
file cng provider/cng provider.h and its cng provider/cng provider.c.

3.1.1 Initialization function

A provider, being a piece of code loadable by the main OpenSSL libraries,
needs to have a joint meeting point with them. That is achieved with the
initialization function. It is a function defined by the provider developer that
serves as the first exchange spot for the core and the actual provider imple-
mentation.

27

3. Provider implementation

Its purpose is to initialize the communication between the core and the
provider and allow the provider to set up its internal structures. The core
hands the provider two items:

• a dispatch array of base functions that the OpenSSL core provides to
the provider, such as thread, error and memory functions, and

• its handle, which is an object that describes that particular provider to
the core. The handle is, by design, transparent to the provider and only
useful in some cases when the provider calls base functions received from
the core with the handle as their argument.

The provider also passes back two items:

• its own dispatch array of base functions, including functions that allow
querying the provider about useful information, a self-test function of
the provider and a teardown function, and

• the provider-side context, which is meant to allow multiple instances of a
provider running simultaneously. It will often be passed as an argument
from the core to the provider’s own functions. It is transparent to the
core, which will not modify it or try to extract information from it
directly.

The initialization function does not need to be named anything in partic-
ular when the final provider is being compiled directly with OpenSSL. The
only thing it needs to have is the correct signature of OSSL provider init fn
declared in <openssl/core.h>. However, when the provider is supposed to be
dynamically loadable, its initialization function specifically needs to be named
OSSL provider init and be exported.

While not explicitly stated in the documentation, the return value is sup-
posed to be zero when the initialization was successful and non-zero (prefer-
ably 1) otherwise.

Also, care should be taken regarding the outgoing dispatch array. It has to
be a pointer to valid memory and a valid OSSL DISPATCH array. That means
that the last element of the array always has to be {0, NULL}.

Initialization function implementation

Practically, we should do self-testing in this stage and create the necessary
structures that will last over the whole lifespan of the provider. These struc-
tures should be saved in an easily transferable structure which we will call the
provider context.

Since we are essentially building a wrapper around CNG and it does not
need self-tests, we will only allocate memory for the provider context structure
and set its values. More on them in the following sections.

28

3.2. Information exchange

3.1.2 Provider context

To OpenSSL core, provider context is just a void pointer that is being passed
to all functions the core thinks will need it, e.g., functions that initialize op-
erations. It is also passed to functions that are supposed to tell the OpenSSL
core information about the provider.

In case our provider had allocated some structures in the initialization
function, they should be accessible to us via this context in subsequent calls.
Even these calls can modify the context and allocate and free the structures
we deem necessary. As this context will be available to us in the teardown,
it can later be used to free any of the structures we allocated in it during the
provider’s existence.

Provider context implementation

For us, the context is going to be just a structure with one pointer to the
functions passed to us by the OpenSSL core so that we can use them in later
stages. The implementation is going to be called T CNG PROVIDER CTX.

The context is a good place to carry mutexes, results from self-tests and
other additional data, but since we do not need those, we will simply leave
them out.

3.1.3 Teardown function

In the teardown function we should free the allocated memory, and if we saved
some critical information, we should destroy it in a secure manner. This is
where closing open sockets and file descriptors should happen because it is the
last place where we have control.

Teardown function implementation

For us, this function, which we will call cng teardown(), just frees the con-
text we allocated in the initialization function. Since the only object in the
provider context is a constant pointer to OSSL DISPATCH array which we are
not supposed to free, this is enough.

3.2 Information exchange

Since the OpenSSL core wants some information back from the provider, it
is necessary to establish functions and structures that will implement this
exchange.

29

3. Provider implementation

3.2.1 Dispatch table

We talked about dispatch arrays earlier in section 2.4.1. A minimal provider
needs to implement a dispatch table that looks like the one in listing 2.1 (which
is our actual implementation). That means it passes the core information
about which functions to use to ask for what parameters it can get, to actually
ask for the parameters, to ask which operations are supported and how to
access them, and how to tear down the provider itself.

3.2.2 Parameter tables and parameter getters

In general, parameter tables and their respective getter are used throughout
the entire provider, and there is one for the provider itself and one for every
supported operation. It is an array of OSSL PARAM structures discussed in
section 2.4.1.

Parameter tables and parameter getters implementation for the
providers core

Typical values that the provider gives to the core are its printable name,
version, information about how it was built (parameters, platform and other
interesting information), and its status. Ours will look like the one in listing
3.1, although it is possible to write the OSSL PARAM structures directly or use
their respective types for different data types like OSSL PARAM utf8 ptr().
So it will tell the OpenSSL core that it can expect the typical values stated
previously in their typical data types.

Listing 3.1: Example parameter table for providers core
1 static const OSSL_PARAM cng_param_types [] = {
2 OSSL_PARAM_DEFN(OSSL_PROV_PARAM_NAME , OSSL_PARAM_UTF8_PTR , NULL

, 0),
3 OSSL_PARAM_DEFN(OSSL_PROV_PARAM_VERSION , OSSL_PARAM_UTF8_PTR ,

NULL , 0),
4 OSSL_PARAM_DEFN(OSSL_PROV_PARAM_BUILDINFO , OSSL_PARAM_UTF8_PTR ,

NULL , 0),
5 OSSL_PARAM_DEFN(OSSL_PROV_PARAM_STATUS , OSSL_PARAM_INTEGER ,

NULL , 0),
6 OSSL_PARAM_END
7 };

The getter will simply search the given parameter array, and if it finds
a parameter it understands, it will fill the parameter with corresponding
data. There are helper functions available for each data type supported by
OpenSSL. An example part of a function passed to the OpenSSL core in
OSSL FUNC PROVIDER GET PARAMS parameter is shown in listing 3.2.

30

3.3. Key management

Listing 3.2: Example part of parameter getter for providers core
1 p = OSSL_PARAM_locate(params , OSSL_PROV_PARAM_NAME);
2 if (p != NULL && !OSSL_PARAM_set_utf8_ptr(p,

CNG_PROVIDER_NAME_STR))
3 return 0;

These values passed back to the OpenSSL core are only information for
the users; the core does not act upon them, so they can be anything we find
appropriate. We have decided to pass static strings back to the OpenSSL core,
and for the status, we have implemented a function that checks the status of
the provider as it is done this way in the OpenSSL providers. However, we have
not found much functionality for it, so the function cng prov is running() is,
for now, a dummy one that always returns true. It serves as future-proofing,
as when the need arises to tell the core our status, the necessary structures
are in place.

The whole getter’s implementation can be found in cng get params().

3.2.3 Query operation function

This is a function passed to the OpenSSL core in a dispatch array mentioned
earlier. It allows the core to ask the provider for an operation. This function
receives an operation ID and returns a pointer to a OSSL ALGORITHM array
with all the functions implemented in this operation.

Query operation function implementation

For our implementation, cng query operation() is going to be a simple
switch statement as we do not need to use any additional information passed
to us other than the operation id. If we have such an operation implemented,
we pass it. Otherwise, we return NULL.

3.3 Key management

As stated previously, OpenSSL allows us to have our own key representation.
But for it to be able to do its job, it needs to be able to extract some necessary
information about the key. The least amount of information the OpenSSL core
needs about a key is its raw public key, the length of its parts and the number
of security bits as defined in SP800-57, and the maximum size that can be
allocated for a signature.

We will keep this operation separate from the rest of the provider’s code
in the cng provider/keymgmt/ directory.

31

3. Provider implementation

3.3.1 Key management implementation

To implement the minimal provider, we need to provide functions to create,
copy and destroy key objects, be able to load a key from something given to
us by STORE operation (we control what it is and will discuss it later), and be
able to retrieve information from the provider.

The provider-side key object for us is going to be just a NCRYPT KEY HANDLE,
which is how CNG represents keys.

This will cause an unfortunate collision as these handles cannot be dupli-
cated directly, and OpenSSL expects a duplication function for key objects.
To solve it, we need to extract all information about the key and about where
it came from (which key storage provider) and use that in NCryptOpenKey()
to open another copy of that key and gain its handle.

For key object manipulation and parameter exchange, we will use code
very similar to what we used in our provider’s core for context manipula-
tion and parameter exchange, respectively. What is new is the need for
a OSSL FUNC KEYMGMT LOAD function and OSSL FUNC KEYMGMT HAS function
along with functions to export parts of the keys.

Our load function (cng keymgmt load()) will be actually very simple. We
will construct our key object in our STORE operation and just pass it directly
to our KEYMGMT. Here we will duplicate the key, pass it to the OpenSSL core
and let the STORE manage the original.

For the OSSL FUNC KEYMGMT HAS, we need to implement answers for ques-
tions about what parts the key object has. Since the function can return
success even when OpenSSL core asks for domain parameters that do not
make sense in the context of RSA keys, we always return true.

3.4 Store

This operation is easier to implement. We need to be able to open a store
and close it, set parameters for search and have functions to access the store.
Information about the store will be carried in the store-specific context as in
previous cases.

3.4.1 Store context

Our store context, called T CNG STORE CTX, will have to hold information
about the current place in the enumeration of keys and of certificates, in-
formation whether we have reached the end of enumerated items, and for ease
of use, we will hold additional information like the current key and certificate.
We will also want to store the parameter query sent to us by the OpenSSL
core in case we implement multiple algorithms. There is also the option to
store the expected parameter type information that the OpenSSL core might
sometimes give us.

32

3.4. Store

3.4.2 Opening the store

When opening the provider’s store, we actually want to open the NCrypt key
storage provider of CNG and the certificate store to be able to enumerate both
keys and certificates.

Because during development, we weren’t able to receive all private keys
and associate them with certificates with NCryptEnumKeys(), we resorted to
using CertEnumCertificatesInStore() to both enumerate the certificates
and to enumerate their associated keys by enumerating the certificates and
extracting the keys directly.

To prepare for the OpenSSL core asking for keys and certificates, we will
try to load one of each and set the appropriate EOF flags if we don’t find any.

3.4.3 Loading from the store

We need to implement the loading part of the STORE. When the OpenSSL core
asks for a type of object (in our case, a certificate or a key), we need to return
an appropriate object back. That is done through the callback functions that
are passed as arguments.

For certificates, we do not need to do much as we can simply return the
already DER-encoded certificates returned from the CNG certificate store and
prepare by pre-loading another certificate.

For keys, we enumerate the certificates as previously and extract the pri-
vate keys from them. Since CNG won’t allow private key extraction, we save
only the key’s CNG handle and use it to gain access to the key later.

When the CNG store returns EOF, we simply set the EOF to the ap-
propriate provider store part. Our provider will only return EOF when all
possible objects from all stores were depleted.

3.4.4 Closing the store

Closing the store is as easy as using the CNG close function and freeing our
own store context. Since this function can return errors, we should check for
return values of the functions we call and respond accordingly.

3.4.5 Setting parameters to store context

Setting parameters is done in the same way it was done with our provider’s
core. We have a function that returns a table of parameters that our provider’s
store operation can support and another function in which the actual values
are being set.

33

3. Provider implementation

3.5 Signatures

For signatures, we need to implement methods to create, duplicate and free a
signature context, a way to set the signature context parameters and a method
to actually sign a digest. That is the bare minimum for having our private
keys of client certificates stored in CNG.

3.5.1 Signature context

The manipulation of the context is going to be similar to the previous cases.
What is going to differ is its content. We will store the provider’s context,
property query, our provider’s key object, CNG handle of a hash, CNG al-
gorithm identifier for the hash function, flags for the hash and optionally the
PSS salt length.

3.5.2 Setting parameters to signature context

This task is done in the same way as in the previous operations. The OpenSSL
documentation is misleading about what data types the parameters being
passed can have; they have been addressed in an issue on GitHub by the
author of this thesis14.

3.5.3 Signing

To keep the operation’s code separate, our implementation will be located in
cng provider/signature/ directory.

In TLS 1.3, to prove that we own a private key, we only need to sign a
digest with it. Because OpenSSL will give us data from which the digest needs
to be created in the signing operation, we also need to create the digest before
we can sign it.

As the signing process is split into three stages (the initialization, updating
and finalization), we need to implement all three functions.

In the initialization stage, we convert the OpenSSL message digest name
to one that CNG can process and create a CNG object with it. In the update
function, we keep hashing the data we receive, and at the end, in the final
function, we perform the actual signature.

Nevertheless, we need to implement a particular case when the caller does
not give our final function a buffer to write the output into. OpenSSL docu-
mentation demands that we return the maximum size the given signature can
be.

We could try to ask NCrypt for the maximum signature size, but it would
require us to convert the NCrypt key to its BCrypt variant and then query
that version of the key. It is, therefore, easier and more future-proof to do

14Issue number 20707.

34

3.5. Signatures

it through the actual signing function. For that, we need to perform a dry
run of our signature function (that means run NCryptSignHash with NULL as
its pbSignature argument) and only return the size that will be needed for
allocation.

In the final function, we shall also destroy and free all data that has been
allocated during signature initialization.

3.5.4 Demonstration of the provider

OpenSSL provides a simple TLS client. We have modified it to be able to
run on Windows by initializing the winsock API by WSAStartup(). Another
modification was to add support for client certificates by using the OpenSSL
SSL API, in particular, the SSL CTX use certificate() and its accompa-
nying SSL CTX use PrivateKey(). Additionally, we have added support for
providers into the code. All of these modifications can be found as an attach-
ment to this thesis.

3.5.5 Results

Running the aforementioned code against a server that accepts client certifi-
cates with an appropriate client certificate in our CNG store gives us the
desired response from the server, thus proving our provider’s implementation
to be a success. To receive a HTTP 200 status code with the desired content,
we must have enumerated certificates in the system store, choose the desired
one, find a corresponding private key in the store and sign the digest with the
given key with the appropriate signature algorithm given to us by OpenSSL.

3.5.6 Possible improvements

We have limited ourselves to just RSA keys and TLS 1.3. This scope can
be broadened to include support for keys based on elliptic curves by appro-
priately distinguishing between these types in KEYMGMT operation and setting
parameters passed to the OpenSSL core with the given keys. The OpenSSL
manual page about EVP KEYMGMT-EC is a very good start for that. Then the
parameters must be passed in SIGNATURE operation to the corresponding CNG
functions. A good reference for this is the CNG algorithm identifiers manual
page15.

To add more functionality, the appropriate parameters must be passed to
the CNG signature functions through the OpenSSL APIs. However, CNG does
not support all the algorithms; for example, the SHA-224 (used in TLS 1.2)
is unsupported, so the functionality will be limited to the scope of CNG. For
most use cases, the capabilities of CNG should be enough, as it was developed
with Windows in mind.

15https://learn.microsoft.com/en-us/windows/win32/seccng/cng-algorithm-identifiers

35

3. Provider implementation

Another good way to improve the provider is to use OpenSSL’s error han-
dling. Right now the provider uses a debug printf function that handles er-
rors and debug information but the same can be achieved with a pure OpenSSL
solution with better support from the library itself in regards to tracing and
established workflows.

3.6 Practical usage

To be able to use this provider, there are a few steps that need to be taken first.
It needs to be built, installed, loaded into the appropriate code and finally get
executed. This provider is ready to be compiled together with OpenSSL, but
that is out of the scope of this thesis; we will focus on dynamic loading of
providers as it provides more flexibility.

3.6.1 Building and installing the CNG provider

This project has two dependencies, CNG and OpenSSL version 3.0.0 and
higher. CNG is available in Windows Vista and higher versions of Microsoft’s
operating system. OpenSSL needs to be compiled and installed in a standard
location. Our build process relies on the C:
Program Files
OpenSSL
directory as the root folder of OpenSSL. It expects the static version of
OpenSSL.

Other than these dependencies, Microsoft Visual C++ build tools need to
be installed, as well as CMake.

In the project’s code root folder, a CMakeLists.txt file can be found,
which is a configuration file for CMake. To build the provider, the commands
from lines one and two in listing 3.3 should be used. The command in the
third line installs the provider into a location where OpenSSL searches for
providers by default. If this is not done, specifying the path to the provider
will be necessary. This step requires administrator privileges.

The last step builds the example client application.

Listing 3.3: Building and installing of the provider
1 cmake -S . -B ./custom -build -directory
2 cmake --build ./custom -build -directory --target cng_provider
3 cmake --build ./custom -build -directory --target install
4 cmake --build ./custom -build -directory --target client

3.6.2 Loading the provider

Fortunately, OpenSSL allows dynamic loading of providers. That means that
if we have a version of OpenSSL that supports them, we can load a provider
into it without having to recompile OpenSSL.

36

3.6. Practical usage

Command line

This can either be done with the command line utilities that support providers
with a special flag -provider. For example, the s client command can be
invoked as shown in listing 3.4.

Listing 3.4: Using provider from commandline
openssl s_client -provider cng_provider -provider default -

connect cng.ladislavmarko.cz:443 -cert cng:example -key

To find keys and certificates in the CNG store, we need to tell OpenSSL
that it should look for them there. To do this, we need to add a special scheme
to the parameter specifying the certificate location. For us, that is the cng://
scheme (we have registered it to the OpenSSL core in our STORE operation in
algorithm names field of OSSL ALGORITHM array). After the scheme, a system
store recognizable by CNG should be specified. We have implemented the MY,
CA and ROOT options mirroring the naming convention of CNG.

All that implies that a valid URI will be, for example, cng://MY, which
will prompt OpenSSL to use our provider to access the MY system store.

In code

Loading a provider into an application using OpenSSL is as easy as with
the command line option. We can simply use the OSSL PROVIDER load()
function to add our provider to the OpenSSL library context, and from that
time forward, OpenSSL will use our provider when appropriate API calls are
issued until our provider is unloaded with OSSL PROVIDER unload(). A special
case is the NULL context, as it is the default SSL context. An example usage
can be found in the code from OpenSSL documentation in listing 3.5.

37

3. Provider implementation

Listing 3.5: Using provider from code - OpenSSL documentation [28]
#include <stdio.h>
#include <stdlib.h>
#include <openssl/provider.h>

int main(void)
{

OSSL_PROVIDER *legacy;
OSSL_PROVIDER *deflt;

/* Load Multiple providers into the default library context */
legacy = OSSL_PROVIDER_load(NULL , "legacy");
if (legacy == NULL) {

printf("Failed␣to␣load␣Legacy␣provider\n");
exit(EXIT_FAILURE);

}
deflt = OSSL_PROVIDER_load(NULL , "default");
if (deflt == NULL) {

printf("Failed␣to␣load␣Default␣provider\n");
OSSL_PROVIDER_unload(legacy);
exit(EXIT_FAILURE);

}

/* Rest of application */

OSSL_PROVIDER_unload(legacy);
OSSL_PROVIDER_unload(deflt);
exit(EXIT_SUCCESS);

}

38

Conclusion

The goal of this thesis was to study the concept of providers introduced in
OpenSSL 3.0.0 and summarize the learned information. Then try to design
and create a provider that would be able to offload certificate work to CNG
in a TLS 1.3 communication.

The first chapter examined OpenSSL parts and how they interact and
discussed the history of the project.

Then we investigated the purpose of providers, what are their capabilities
and how they interact. We explored their infrastructure in great detail — from
new data types, through operations, to their built-in and publicly available
versions.

In the third chapter we have gone through the process of examining the
actual possibilities of implementation and considered how to implement our
case. First, the basic functionality of a provider and, later, the concrete
operations. Ultimately, we have demonstrated that the implementation was
correct and functioning accordingly.

Overall the implementation in its limited scope was a success. It allowed
for a client certificate to be loaded from the CNG store and the said certificate
to be used to create a TLS 1.3 connection. The provider’s structure allowed for
a straightforward extension of available operations and additional functions.

The greatest obstacle in this thesis was the insufficient documentation of
OpenSSL. It was fragmented, without examples and not united in relevant
sections. As this project was bleeding-edge, it is understandable (even though
OpenSSL does not have a good record of coherent documentation). As a side-
effect, this thesis has led to improvements in the OpenSSL documentation
regarding providers and has helped with the documentation of CNG as well.

The main takeaway from this thesis should be the condensed information
about the OpenSSL providers and how to implement one.

The created provider is now available on GitHub as an open-source project
under the name cng-openssl-provider [29].

39

Bibliography

[1] Roser, M.; Ritchie, H.; et al. WORLD INTERNET USAGE AND POP-
ULATION STATISTICS 2023 Year Estimates. (accessed: 08.04.2023).
Available from: https://www.internetworldstats.com/stats.htm

[2] OpenSSL Project. OpenSSL official website. (accessed: 24.02.2023).
Available from: https://www.openssl.org

[3] OpenSSL project and Young, E. OpenSSL and SSLeay licenses. (ac-
cessed: 04.03.2023). Available from: https://www.openssl.org/source/
license-openssl-ssleay.txt

[4] Caswell, M. The Holy Hand Grenade of Antioch. (accessed: 04.03.2023).
Available from: https://www.openssl.org/blog/blog/2018/11/28/
version/

[5] Apache Software Foundation. Apache License Version 2.0. (accessed:
04.03.2023). Available from: https://www.apache.org/licenses/
LICENSE-2.0.txt

[6] OpenBSD Project. LibreSSL official website. (accessed: 24.02.2023).
Available from: https://www.libressl.org

[7] Akamai; Microsoft. QuicTLS repository. (accessed: 16.03.2023). Available
from: https://github.com/quictls/openssl

[8] Google. BoringSSL repository. (accessed: 24.02.2023). Available from:
https://boringssl.googlesource.com/boringssl

[9] The OpenBSD project. LibreSSL goals. (accessed: 16.03.2023). Available
from: http://www.libressl.org/goals.html

[10] Koci, M. OpenSSL Presentation at ICMC22 Conference. (accessed:
16.03.2023). Available from: https://www.openssl.org/blog/blog/
2022/09/21/OpenSSL-presentation-at-ICMC/

41

https://www.internetworldstats.com/stats.htm
https://www.openssl.org
https://www.openssl.org/source/license-openssl-ssleay.txt
https://www.openssl.org/source/license-openssl-ssleay.txt
https://www.openssl.org/blog/blog/2018/11/28/version/
https://www.openssl.org/blog/blog/2018/11/28/version/
https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.libressl.org
https://github.com/quictls/openssl
https://boringssl.googlesource.com/boringssl
http://www.libressl.org/goals.html
https://www.openssl.org/blog/blog/2022/09/21/OpenSSL-presentation-at-ICMC/
https://www.openssl.org/blog/blog/2022/09/21/OpenSSL-presentation-at-ICMC/

Bibliography

[11] de Raath, T. Re: new OpenSSL flaws. (accessed: 16.03.2023). Available
from: https://marc.info/?l=openbsd-tech&m=140199655122732

[12] Internet Systems Consortium. ISC License. (accessed: 16.03.2023). Avail-
able from: https://www.isc.org/licenses/

[13] Caswell, M. NIST FIPS 140-2 certification for OpenSSL FIPS
provider announcment. (accessed: 16.03.2023). Available from:
https://www.openssl.org/blog/blog/2022/08/24/FIPS-validation-
certificate-issued/

[14] National Institute of Standards and Technology. NIST FIPS 140-2 cer-
tification for OpenSSL FIPS provider. (accessed: 04.03.2023). Avail-
able from: https://csrc.nist.gov/projects/cryptographic-module-
validation-program/certificate/4282

[15] OpenSSL Management Committee. OpenSSL FIPS 140-3 provider plans.
(accessed: 16.03.2023). Available from: https://www.openssl.org/
blog/blog/2022/09/30/fips-140-3/

[16] Caswell, M. OpenSSL FIPS 140-3 provider release. (accessed:
16.03.2023). Available from: https://www.openssl.org/blog/blog/
2022/09/30/fips-140-3/

[17] Patric; The Gitter Badger. YAOG. (accessed: 9.5.2023). Available from:
https://github.com/patrickpr/YAOG

[18] Pešek, J. Podpora CryptoAPI Next Generation v OpenSSL. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2020.

[19] OpenSSL Management Committee. RIPEMD160 and the
Legacy Provider. (accessed: 16.3.2023). Available from: https:
//www.openssl.org/blog/blog/2022/10/18/rmd160-and-the-
legacy-provider/

[20] OpenSSL Project. OSSL PARAM documentation. (accessed: 11.4.2023).
Available from: https://www.openssl.org/docs/man3.1/man3/OSSL_
PARAM.html

[21] Internet Engineering Task Force. PKCS #1: RSA Cryptography Spec-
ifications Version 2.2. (accessed: 17.4.2023). Available from: https:
//www.rfc-editor.org/rfc/rfc8017#appendix-C

[22] Internet Engineering Task Force. MD2 to Historic Status. (accessed:
19.4.2023). Available from: https://www.rfc-editor.org/rfc/rfc6149

[23] Electronic Frontier Foundation and Loukides, M.; Gilmore, J. Cracking
DES: Secrets of Encryption Research, Wiretap Politics and Chip Design.
USA: O’Reilly & Associates, Inc., 1998, ISBN 1565925203.

42

https://marc.info/?l=openbsd-tech&m=140199655122732
https://www.isc.org/licenses/
https://www.openssl.org/blog/blog/2022/08/24/FIPS-validation-certificate-issued/
https://www.openssl.org/blog/blog/2022/08/24/FIPS-validation-certificate-issued/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4282
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4282
https://www.openssl.org/blog/blog/2022/09/30/fips-140-3/
https://www.openssl.org/blog/blog/2022/09/30/fips-140-3/
https://www.openssl.org/blog/blog/2022/09/30/fips-140-3/
https://www.openssl.org/blog/blog/2022/09/30/fips-140-3/
https://github.com/patrickpr/YAOG
https://www.openssl.org/blog/blog/2022/10/18/rmd160-and-the-legacy-provider/
https://www.openssl.org/blog/blog/2022/10/18/rmd160-and-the-legacy-provider/
https://www.openssl.org/blog/blog/2022/10/18/rmd160-and-the-legacy-provider/
https://www.openssl.org/docs/man3.1/man3/OSSL_PARAM.html
https://www.openssl.org/docs/man3.1/man3/OSSL_PARAM.html
https://www.rfc-editor.org/rfc/rfc8017#appendix-C
https://www.rfc-editor.org/rfc/rfc8017#appendix-C
https://www.rfc-editor.org/rfc/rfc6149

Bibliography

[24] Internet Engineering Task Force. Prohibiting RC4 Cipher Suites. (ac-
cessed: 19.4.2023). Available from: https://www.rfc-editor.org/rfc/
rfc7465

[25] Network Working Group. PKCS #5: Password-Based Cryptography
Specification Version 2.0. (accessed: 19.4.2023). Available from: https:
//www.rfc-editor.org/rfc/rfc2898

[26] Sorce, S. PKCS#11 provider for OpenSSL. (accessed: 17.4.2023). Avail-
able from: https://github.com/latchset/pkcs11-provider

[27] Gotthard, P. Provider for integration of TPM 2.0 to OpenSSL 3.x.
(accesssed: 17.4.2023). Available from: https://github.com/tpm2-
software/tpm2-openssl

[28] Pierre, M. S. README-PROVIDERS.md. (accessed: 9.5.2023).
Available from: https://github.com/openssl/openssl/blob/
3868807d2fe5a72aa897ce5f7f7ba7e9cc3c09cb/README-PROVIDERS.md

[29] Marko, L. Openssl provider using Cryptography API: Next Generation.
(accessed: 10.5.2023). Available from: https://github.com/Lipovlan/
cng-openssl-provider/

43

https://www.rfc-editor.org/rfc/rfc7465
https://www.rfc-editor.org/rfc/rfc7465
https://www.rfc-editor.org/rfc/rfc2898
https://www.rfc-editor.org/rfc/rfc2898
https://github.com/latchset/pkcs11-provider
https://github.com/tpm2-software/tpm2-openssl
https://github.com/tpm2-software/tpm2-openssl
https://github.com/openssl/openssl/blob/3868807d2fe5a72aa897ce5f7f7ba7e9cc3c09cb/README-PROVIDERS.md
https://github.com/openssl/openssl/blob/3868807d2fe5a72aa897ce5f7f7ba7e9cc3c09cb/README-PROVIDERS.md
https://github.com/Lipovlan/cng-openssl-provider/
https://github.com/Lipovlan/cng-openssl-provider/

Appendix A
Acronyms

ABI application binary interface.

API application programming interface.

BIO basic input output.

CNG Cryptograpy API: Next Generation.

DER Distinguished Encoding Rules.

DSA Digital Signature Algorithm.

DTLS Datagram Transport Layer Security.

EOF end of file.

FIPS Federal Information Processing Standards.

HTTP(S) Hyper Text Transfer Protocol (Secure).

MAC message authentication code.

PEM Privacy-Enhanced Mail.

PSS probabilistic signature scheme.

RSA Rivest–Shamir–Adleman.

S/MIME Secure/Multipurpose Internet Mail Extensions.

SSL Secure Sockets Layer.

45

Acronyms

TCP Transmission Control Protocol.

TLS Transport Layer Security.

URI Uniform Resource Indentifier.

46

Appendix B
Contents of enclosed media

readme.txt.....................the file with media contents description
bin...................................the directory with compiled code

provider x86.zip.........................provider in 32-bit version
provider x64.zip.........................provider in 64-bit version

src.......................................the directory of source codes
openssl......................................OpenSSL source code
implementation implementation sources

client................modified OpenSSL TLS 1.3 client example
cng provider...........................provider implementation

original client..................OpenSSL TLS 1.3 client example
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

47

	Introduction
	OpenSSL
	Features
	Evolution
	LibreSSL
	QuicTLS
	BoringSSL
	Current state

	Structure
	libcrypto library
	libssl library
	openssl
	Other command line tools

	OpenSSL providers
	Purpose
	Limitations
	Interactions
	Provider infrastructure
	Special data types
	Operations
	Key management
	Store management
	Digests
	Symmetric ciphers
	Message authentication codes
	Key derivation
	Key exchange
	Asymmetric ciphers
	Asymmetric key encapsulation
	Encoding and Decoding
	Random number generation
	Signatures
	Algorithm selection

	Built-in providers
	Base provider
	Default provider
	Legacy provider
	FIPS provider
	Null provider

	Third party providers
	PKCS#11 provider
	TPM 2.0 provider

	Provider implementation
	Our provider's core
	Initialization function
	Provider context
	Teardown function

	Information exchange
	Dispatch table
	Parameter tables and parameter getters
	Query operation function

	Key management
	Key management implementation

	Store
	Store context
	Opening the store
	Loading from the store
	Closing the store
	Setting parameters to store context

	Signatures
	Signature context
	Setting parameters to signature context
	Signing
	Demonstration of the provider
	Results
	Possible improvements

	Practical usage
	Building and installing the CNG provider
	Loading the provider

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed media

