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Abstract
The focus of this work is interactive visu-
alization of scatterplots with hundreds of
thousands of data points where the points
are organized into hierarchy of clusters.
The visualization automatically selects
color palette for the clusters of selected
level. The selected level of the cluster
hierarchy and the color palette are dy-
namically adjusted by zooming the scat-
terplot. Furthermore, the visualization
improves visibility of the displayed clus-
ters by reducing occlusion of the overlap-
ping clusters. The visualization technique
is demonstrated using two real medical
datasets containing 2D coordinates of hun-
dreds of thousands points.

Keywords: hierarchical data, cluster,
visualization, scatterplot, dynamic color
palette

Supervisor: Ing. Čmolík Ladislav, PhD.
E-418,
Karlovo náměstí 13,
12000 Praha 2

Abstrakt
Cílem této práce je interaktivní vizuali-
zace bodových diagramů s statisíci hierar-
chicky seskupenými datovými body. Vizu-
alizace automaticky vybírá barevnou pa-
letu pro shluky na vybrané úrovni hierar-
chie. Úroveň hierarchie i barevná paleta
se automaticky přizpůsobují podle úrovně
příblížení bodového diagramu. Dále, tato
vizualizace zlepšuje viditelnost zobraze-
ných shluků snížením jejich vzájemného
zákryvu. Tato vizualizační technika je de-
monstrována na dvou reálných datových
sadách obsahujících 2D souřadnice stati-
síců bodů.

Klíčová slova: hierarchická data, shluk,
vizualizace, bodový diagram, dynamická
barevná paleta

Překlad názvu: Vizualizace
hierarchicky seskupených dat pomocí
bodového diagramu
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Chapter 1
Introduction

Data analyses of large amounts of observations provide novel insights into
the observations, allowing for a better understanding of various artificial or
natural processes, for example in the medical field [1][17]. Such an analyses
usually consists of hierarchical clustering of data points representing individual
observations based on their mutual proximity and reduction of the dimension
of the data points to 2D to allow for their visualization.

Hierarchical clustering as a method of cluster analysis that aims to build
a hierarchy of similar clusters to identify informative natural clusters of
observations adds additional complexity to the visualization. The visualization
aims to present the properties of such datasets, that is the hierarchical
structure, the density of the clusters, and their mutual overlaps as well.

The clustering algorithms can be divided into hierarchical and partitioning.
Hierarchical clustering algorithms can be subdivided into agglomerative
(bottom-up clustering) and divisive (top-down), which perform recursive
partitioning. Since the boundaries of the clusters cannot be objectively
defined, hundreds of clustering algorithms have been proposed, each with
different priorities. Thus, it cannot be said which algorithms are better or
worse, as the algorithm’s performance is often dependent on the characteristics
of the information demanded as well as on the dataset itself.

To present the data, a reduction from n-dimensional to 2D or 3D space is
needed. Based on the deformation of space caused by the dimension reduction,
the dimension reduction algorithms can be divided into linear, nonlinear, and
those that have been implemented in both linear and nonlinear variants. PCA
is a commonly used linear method that flattens the data along axes of minimal
variance. NMF is a matrix factorization method, similarily to PCA, but it
creates factorization with both produced matrices having only non-negative
values [12]. t-SNE, a nonlinear method, aims to separate clusters in the data
and avoid overlap of clusters of different categories, which may distort the
data as the clusters might have overlapped in the original data. MDS has been
implemented both as linear and nonlinear. This method reduces dimension
while minimizing distortion of mutual distances between data points. An
overview of the clustering and dimension reduction algorithms is provided by
Wenskovitch et al. [19].

There are visualization techniques that conduct dimension reduction im-
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.......................................... 1. Introduction

plicitly. These are the star coordinates and the parallel coordinates. The star
coordinates replace the axes of the high dimensional space with linearly depen-
dent axes in the 2D space. The axes are displayed as a number of concentric
line segments pointing in user-given direction, allowing the user to change the
parameters of the dimension reduction. The parallel coordinates technique
allows to visualize data in original n-dimensional space by representing the
clusters as a polyline connecting points on a number of parallel lines, each of
the lines representing a single dimension. The thickness and density of the
line communicates the distribution of the cluster’s points in given direction.
Hierarchical structure can be also communicated by subdividing the line into
a number of thinner lines, representing the subclusters [8].

This work deals with the design of a scatterplot visualization of a large
number of n-dimensional data points organized into a hierarchy of clusters.
Hierarchy is given as a tree, whose leaves contain the data points projected
to 2D space. The hierarchy subdivides data points into clusters based on
their mutual proximity. At the same time, some of the nodes in the hierarchy
maintain the assignment of all their child nodes to a certain population,
representing the category of measurements. These nodes are disjunctive
and provide complete coverage, meaning that every point in the data set is
associated with exactly one population. Therefore, while the nodes of the
hierarchy signify spatial proximity and clustering in the data points, some of
the nodes also categorize the clusters into populations. Overlaps of clusters
of different populations signify interactions of the populations.

The challenges of visualizing such observations are the scale of the data,
namely the high count of points, which causes heavy overdraw, and the high
number of categories, which is only amplified by the hierarchical structure
of clusters. The next challenge is the overlapping of points of different
categories, which makes the separation of points difficult. The characteristics
of the data also rule out the utilization of position as a visual channel, as
the data are represented as a set of hundreds of thousands of points, whose
original n-dimensional position is projected into 2D using dimension reduction
techniques (e.g., PCA, NMF, t-SNE). This leaves us to separate clusters only
by color since high point count limits the utilization of visual channels such
as the size and shape of points as well.

The goals of the created visualization are real-time visualization rendering,
allowing interactive close-up examination of visualized data, color separability
of clusters and their identification in the hierarchy and finally, the identification
of cluster density and their overlaps.

Throughout the work, we will analyze the techniques that tackle the
same or similar issues and select the ones suitable for our purposes and
design a visualization that will employ these techniques to fulfill our goals.
We will go through color separability, identification of cluster density and
overlaps in scatterplot visualization of a point cloud, reduction of overdraw
in the scatterplot, and then evaluate the options for placing labels in the
visualization. Our next focus will be a visualization of data aggregated by
point density estimation. Finally, we will present the solution and document
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.......................................... 1. Introduction

its implementation, and then we will conduct a user evaluation, conclude
results and discuss possible improvements.
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Chapter 2
Design

There is number a of techniques developed for the visualization of various
types of data on a scatterplot. The techniques address issues such as overdraw
in the case of large datasets or visualization of high-dimensional data. The
overdrawing issue can be reduced by data abstraction techniques, such as
binning [9], contouring the density function (that is, converting dense parts of
the clusters into areas while outliers are displayed as points), or subsampling
of the data [6]. The need for discernability of a large number of categories is,
however, unaddressed.

The options for visualization of high-dimensional data on a scatterplot
are dimension reduction or pairwise visualization of the dimensions in a set
of connected views. Each of the views displays different pair of dimensions,
therefore the number of views is given by the number of pairs in a set of
n elements, where the elements are individual dimensions. The number of
pairs is quadratic (precisely (n − 1)(n

2 )), which makes this technique suitable
only for a low number of dimensions. The datasets we visualize contain
20-dimensional and 26-dimensional points, which would require 190 and
325 views respectively. Therefore, the visualization of points with reduced
dimension is the remaining choice.

The visualization now available is an R script that displays clusters by
plotting all their points, places labels on individual clusters, and displays
their hierarchical grouping as a tree, all using data visualization features of
the language. The data contains the order of hundreds of thousands of points,
and since the R language is designed primarily for statistical analysis and
data processing, and its visualization functions are only auxiliary, it is not
designed for the large volume of data we are working with, and the data takes
several seconds to render, making interactive viewing by highlighting areas of
interest, zooming, or panning impossible.

Also, the color palette used in the current visualization offers an insufficient
amount of distinguishable shades. At least twenty distinguishable shades are
needed for our application, which is due to the nature of the data, where
the number of groups ranges from twenty-two to fifteen, and at the same
time, each group is assigned a letter of the alphabet, which suggests that the
number of groups will typically be smaller than the range of the alphabet,
which is 26 characters.

4



..................................... 2.1. Dynamic color palette

2.1 Dynamic color palette

The color separability of many categories can be improved by using a dynamic
color palette, that takes advantage of situations where only some categories
have significant representation on the screen. Such a technique was developed
by Waldin et al. [16]. The technique, named Chameleon, also provides
a hierarchical subdivision of the color space, which too is desired for our
purposes.

Chameleon is designed for coloring the internal structures of viruses and
cells. Here, at the highest level of the hierarchy are the structures of the
virus, such as the lipid envelope and the capsid, where the individual proteins
can be distinguished after zooming in, as well as the domains and the atomic
structure of the proteins. When gradually zooming in, only one or a few
structures from higher levels of the hierarchy can fit on the screen, so there
is no need to divide the color space among all of them but only among the
visible ones. Thus, for each structure on a higher level, a larger part of the
color space can be allocated, which can be further divided to be allocated to
lower structures, as can be seen in Figure 2.2.

We based the method of coloring data points on Chameleon, but with
regard to the different characteristics of the data, several modifications
have been made. The first modification is given by the fact that the data
are individual points, not forming distinguishable continuous objects such
as proteins. Therefore, it is impossible for the color spaces of individual
hierarchy nodes to overlap, thereby reducing the space available to nodes at
lower levels of the hierarchy. Furthermore, the number of hierarchy levels can
be greater than it is in the case of visualizing a virus or cells. Therefore, the
dynamic palette method [16] is applied at all levels of the hierarchy, except for
the last one, where we do not have to consider the needs of any subclusters,
and thus maintaining color discernability remains the only priority. The color
space is thus – in correspondence to the hierarchy – recursively divided into
smaller and smaller sections (Figure 2.2).

Figure 2.1: Zoom to levels of hierarchy. Image courtesy of Waldin et al. [16]

To prevent one dominant cluster from taking up all the color space,
Waldin et al. [16] have imposed a limit on the maximal size of the color
wedge allocated to a single cluster. This way, the maximal size of one single
color wedge at the k-th level of the hierarchy is ak, where a, ranging from 0 to

5



..................................... 2.1. Dynamic color palette

a) b) c)

Figure 2.2: Hierarchical subdivision of color when zooming in on certain cluster.
a) Color wedges are allocated only for the top level of hierarchy. b), c) With
increased zoom, lower levels of hierarchy are visualized with distinct colors. The
size of the color wedges corresponds to the hypothetical relative representation
of individual clusters and subclusters on the screen.

1, is the size limit. To maintain the distinguishability of colors at lower levels
of the hierarchy, the size limit a was set to a value higher than recommended
by Waldin et al., namely 0.75 instead of 0.5. Also, because the number of
subclusters may vary significantly across clusters, the size limit may be too
high for some clusters with only a few subclusters. Thus, we have imposed an
additional size limit at the top level of the hierarchy. The limit is the number
of descendants ni of a i-th cluster at the top level of the hierarchy multiplied
by an appropriately chosen constant of 0.08. In conclusion, the maximal size
for a cluster at k-th level of the hierarchy being a descendant of i-th top-level
cluster is

min(0.08ni, 0.75) · 0.75k−1. (2.1)

The original method sets the size of the color wedge allocated to individual
clusters proportionally to the number of subclusters visible on the screen. In
our case, even at a high level of zoom, most subclusters are present on the
screen due to the wide scattering of the clusters. This results in almost no
color space being released when zooming. Therefore, we have decided to size
the color wedge proportionally to the number of points in the given cluster
located on the screen. Allocating by the number of points is very aggressive,
which achieves a good distinction of points according to their belonging in
the hierarchy. On the other hand, in certain situations, the assigned colors
may change significantly when the view changes, possibly confusing the user.
The limits imposed on the maximal size of color wedges reduced this artifact.
Other applicable methods are normalizing the number of points in individual
clusters, weighting by the square root of the number of plotted points, or
blending uniform and weighted color allocation.

The position and mutual distances of color wedges are balanced by a force
method – every wedge is attracted to its initial position and at the same time
repelled from other wedges. The attracting force ensures that the wedges will
not stray away from their initial position and the clusters will maintain their
original color. The repelling force is given by size and distance of the wedges,
that is, their overlap. The repelling force is linearly dependent on the size of
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......................................... 2.2. Color model

the overlap and it only drops to zero after the distance between borders of
neighboring wedges exceeds some minimal margin. The margin reduces the
possibility of overlap or too small distances between the wedges in a balanced
state of the forces. In conclusion, the resulting force for i-th cluster is

fi = sigdist(gi, Ii) +
n,i ̸=j∑
i=1

dir(gi, gj)max(ri + rj − dist(gi, gj), 0), (2.2)

where g is the current position of a wedge, I is the initial position a r is
the radius of a wedge plus margin. The force attracting the color wedge to
its initial position is weighted by a factor of 0.1 against the force repelling
the color ranges from each other. This reduces the overlap in the case of
several large wedges located next to each other in the color space. To prevent
oscillation and jitter, a damping factor of 0.25 is then applied to both forces.

2.2 Color model

HCL is a family of color models having channels hue, chroma, and luminance.
HCL models are isoluminant and perceptually uniform and thus often used in
computer visualizations [16][6][13]. We have used the implementation of the
HCL color model developed by Zeilies et al. [20], which contains an HCL-to-
RGB conversion chain. Part of the chain is XYZ-to-RGB conversion, where
we have used Catalano’s implementation [5] instead since in our experience
it better satisfies the property of isoluminance (see Figure 2.3). The HCL
color model is implemented as CIELAB with axes A∗ and B∗ transformed to
polar coordinates. The hue channel is used to differentiate the clusters, as it
is the only one that does not visually imply sorting.

a) b)

Figure 2.3: a) HCL implementation by Zeileis et al. [20]. HCL implementation
from the Catalano framework [5] satisfies the isoluminant property better, notably
in the dark green part of the spectra.

But, since the first level of the hierarchy of visualized data contains over
twenty nodes, comparing to the data, for which the dynamic color palette
developed by Waldin et al. [16] was designed, where the first level of the
hierarchy only contains up to ten nodes, the hue channel alone proved to
be insufficient to reliably distinguish clusters of data points (see Figure 2.4).
This is also due to the used model CIELAB not being perfectly hue uniform
[11][14] and in the area of the blue hues, the distance between distinguishable
hues is greater than it is for the other color hues.

Therefore, two channels, hue, and luminance, are used in the coloring of
the first level of the hierarchy. The chroma channel is not utilized for its
interference with hue. Hue is used as the primary channel, where each group

7



.....................................2.3. Color assignment order

uses a different hue. Luminance is used as a complementary channel, although
it provides more levels of resolution than hue, to ensure that coloration does
not visually imply alignment and to avoid blending in with the background.
Because the technique of color optimization designed by Waldin et al. [16]
is only designed for optimizing the color palette in one dimension, a low
number (five) of fixed luminance levels are used, assigned to successive nodes
in the cluster hierarchy. The order of the levels is permuted so that adjacent
sections in the hue channel are not assigned adjacent luminance levels, thereby
increasing the tonal distance of the colors assigned to successive clusters. All
nodes in the hierarchy are colored using the same luminance level as their
parent. The use of two channels improved the separability of clusters, as can
be seen in Figure 2.4.

a) b)

Figure 2.4: a) coloring using hue only. b) coloring using hue and luminance.

2.3 Color assignment order

Looking at Figure 2.5, we notice that some very close or overlapping clusters of
points are colored in similar colors, thus merging and creating the impression
of a single group, for example, the two clusters a) and b), labeled in the figure,
colored in a similar shade of green. At the same time, an easy distinction
between those two clusters could be achieved by permuting the order of colors
so that the co-located clusters are colored by colors that are distant in the
color space, as proposed by Lu et al. [13]. But this may create a problem
of two distant clusters dyed with a similar color creating the impression of
one disjointed cluster, as shown in Figure 2.5 by clusters c) and d). Similar
shades of color are easier to recognize if placed close to each other. Thus, we
decided not to permute the color spaces.

2.4 Cluster selection

Waldin et al. mention improving the discernability of user-selected area of
interest by desaturation of the surroundings. In our case, the cluster selection
aims to give a full overview of clusters of the hierarchy. However, since the
mere desaturation of the surroundings turned out to be an insufficiently dis-
criminating channel (see Figure 2.6b), the luminance channel was additionally

8



.................................... 2.5. Point cloud visualization

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)

Figure 2.5: a),b) Co-located groups colored with a similar shade. c) Disjointed
cluster. c) and d) might create the impression of a single disjointed cluster.

used to brighten the surroundings. Desaturation needs to be used together
with brightening, as brightening alone makes colors appear more saturated.
Saturated background is undesirable, as it draws users’ attention away from
the selected context. Desaturation and brightening are already sufficiently
distinctive, but there remains the problem of covering the highlighted cluster
with a denser cluster (2.6c), which can be solved by moving the highlighted
cluster to the foreground, but this results in the suppression of the context,
and we lose information about the background of the marked cluster (2.6d).
The user is given the option to switch between these two methods since it
cannot be conclusively said which one is better. Comparing to 2.6a, we can
now see that the cluster selection gives us an overview of a cluster that would
otherwise remain unknown.

The context can be selected by clicking on the cluster of interest, or by
clicking on a node in the hierarchy tree (Figure 2.7), that was added to the
visualization for this purpose. While clicking directly on a cluster selects a leaf
cluster in the hierarchy, clicking into the tree allows selecting a node at any
level of the hierarchy. Multi-select is also possible, both in the cluster and the
tree visualizations. The tree visualization also communicates the number of
points in individual clusters by the size of the tree nodes, where the node edge
length is proportionate to the number of points in the corresponding cluster.
The nodes of the top-level clusters are also labeled with the population of
the corresponding clusters. The nodes are also tinted by cluster color.

2.5 Point cloud visualization

The point cloud visualization is based on drawing individual data points.
This visualization is augmented with methods aimed at reducing overplotting,
improving the identification of clusters, and improving the perception of

9



.................................... 2.5. Point cloud visualization

a) b)

c) d)

Figure 2.6: A comparison of context highlighting methods: a) No context
highlighting. b) Highlighting with chroma. c), d) Highlighting with chroma and
luminance. d) Highlighted cluster is brought to front, thus not overlapped by
any cluster.

density and overlaps.
Perception of density can be improved by rendering the data points trans-

parent, but, as explained in 2.1, the luminance channel is also used for coloring
the clusters, and this excludes the rendering of points using transparency.
This is because in the case of a white1 (achromatic in general) background,
luminance interferes with transparency, that is, the difference in the brightness
of the colors of individual clusters is not discernible; darker clusters only
look sparser. Also, when transparency is used, colors will be mixed, which
will worsen the distinctness of individual clusters, and new colors may even
appear.

Opaque rendering, that is, without transparency, does not suffer from this
1Visualization uses black background by default, as it makes clusters stand out better,

white background mode was added for print.
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.................................... 2.5. Point cloud visualization

Figure 2.7: Hierarchy visualization

issue, but two other problems arise: the dependence of the visualization
results on the rendering order (Figure 2.8a, b), which distorts the information
about clusters overlap, and the loss of the data density information.

Although some of these problems can be solved, transparent rendering
overally allows for a better perception of density, and opaque rendering for
better identification of clusters. Therefore, both approaches were implemented.
The visualization is also provided with the option of subsampling the data
[6].

2.5.1 Opaque rendering

The rendering order issue was resolved by turning on the depth test and
assigning a random depth to each point. In this way, the overlap of the groups
depends on their density; a denser group has a statistically greater chance
that out of the number of points falling within one pixel on the screen, its
point will have the smallest depth of all. This technique also achieves proper
visualization of cluster overlaps without color mixing. Figure 2.8 compares
the differences on two overlapping clusters, the blue one linearly falling off in
the down direction and the brown one linearly falling off in the left direction.

We will now demonstrate that the probability of a cluster being on top in
a given pixel corresponds to its relative representation at the pixel. The CDF
function of the depth of cluster X contributing to pixel p with l samples is a
minimum of l samples of an uniform random variable ranging from 0 to 1.
Probability of one such sample being lower than x ∈ ⟨0; 1⟩ is x. Therefore,
probability of l samples being lower than x is xl, which is the CDF function
of cluster depth at the pixel. Thus, when cluster X is contributing to a pixel
with l samples, and all other clusters (Y ) combined contribute with k samples,
probability of X being on the top is calculated as the difference between two
random variables with CDF functions

FX(x) = xl, (2.3)
FY (y) = yk. (2.4)

Sum of two random variable is calculated as a convolution. The formula
for sum can be modified to difference as such:

P (X + Y ≤ z) =
∫ ∞

−∞
fX(x)FY (z − x)dx, (2.5)

P (X − Y ≤ z) =
∫ ∞

−∞
F ′

X(x)FY (z + x)dx, (2.6)
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although in case of difference, the formula is not commutative anymore. The
formula can be further modified to

P (X ≤ Y ) =
∫ 1

0
lxl−1xkdx. (2.7)

The result of the integral is

P (X ≤ Y ) = l

l + k
. (2.8)

As we can see now, when k + l is normalized to 100, then l is the percentage
share of points of cluster X at pixel p and at the same time the percentage
probability of X being on the top in the pixel.

a) b) c) d)
Figure 2.8: a),c) Blue over brown. b),d) Brown over blue. a),b) No depth test.
c),d) Depth test with randomized point depth.

2.5.2 Transparent rendering

As for visualizing the data density, the transparency settings of the plotted
points have been made available to the user so that s/he can view the density
if necessary, even though this decreases the cluster discernability. At the
same time, it is also necessary to disable the depth test so that no points
are neglected, and to disable the use of the luminance channel, as it would
distort the perceptual transparency.

When visualizing data density using transparency, we find that for high
transparency settings, very sparse areas where there are only a few points,
surrounded by a black background, are hard to see, and at low transparency
settings, the difference in density between the rims and the centers of the
clusters cannot be discerned. We cannot increase transparency, as due to
alpha blending, clusters drawn last would cover earlier drawn clusters, as can
be seen in Figure 2.9c, top right, where the blue cluster incorrectly covers
the brown cluster. Therefore, a non-linear dependence between transparency
and density is needed. We implemented this as rendering with transparency
in two stages.

At first, all points are rendered with a transparency lower than the user
set, and on each pixel of the screen, only the first point that fell into the pixel
is rendered. Then all the data are re-rendered over the previously drawn data
using the transparency level set by the user. In both passes, the points are
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drawn in the same order, so that the distortion given by color mixing is the
same in both passes.

The size of the points increases with the zoom level to maintain color
discernability at a high level of zoom, where the clusters become sparser.

a) b) c)
Figure 2.9: a) Single-pass rendering. b) Two-pass rendering. c) Single-pass
with lower transparency causes order-dependent result. Unlike in Figure 2.8, an
exponential falloff is used here.

2.5.3 Subsampling

To reduce overdraw of the scatterplot, Heimerl et al. [9] designed a technique
of binning data points into a honeycomb, with each cell containing a bar
graph or pie chart representing the distribution of individual categories in the
cells. The background of the cell can also be saturated to communicate the
density of the data points. However, the often complex structure of clusters
in our data and rapid changes in cluster density would require a high number
of cells to keep the visualization representative. Breaking continuous areas
of single color into a number of small icons, coupled with the much higher
number of categories than Heimerl et al. planned for, would lead to visual
clutter and decrease the discernability of categories significantly.

Chen et al. [6] in their article demonstrate reducing the number of points by
sampling a density function in the space of original data, reducing overdrawing
while preserving density information and relative representation of data
categories compared to original data. Reducing the number of points will
also allow drawing points larger, which aids with recognizing colors.

Chen et al. have utilized the multi-class blue noise sampling technique
designed by Wei [18]. The blue noise sampling provides an alias-free spatial
distribution of the samples of individual classes while preserving densities,
that is, the spatial distribution of the class points in the original data. Blue
noise sampling is simply implemented as choosing each of the random samples
from the most underfilled class. This also ensures consistent fill rates of the
classes and prevents the creation of new points, that were not present in the
original data, which would happen with sampling in a continuous domain.
The fill rate of a class is calculated as the number of samples of its total
samples over the number of accepted samples. During the sampling, a chosen
sample can be only accepted if there are no other already accepted samples
within a given radius r. However, Wei has shown, that to maintain alias-free
distribution, removing existing samples is necessary. Samples in conflict with
incoming sample can be removed, when:
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. It is impossible to add sample to the class cI of the incoming sample,. Every conflicting sample belongs to class with lower r than cI ,. Every conflicting sample belongs to class at least as filled as cI .

If all samples conflicting with the incoming sample can be removed, they
are removed and the incoming sample is accepted. In our case, the second
condition does not have an effect, as we use equal r for all classes. The
possibility to add a sample is checked approximately by simple timeout
mechanism – if adding a sample fails t times, where t the is timeout, adding
the sample is considered impossible.

Chen et al. have extended this technique with hierarchical subsampling.
The subsampling is precomputed for several consecutive zoom levels, each
being double of the previous zoom level. At first, subsampling is computed
for the first, most coarse, level with some initial radius r. The r is halved
for the next level of zoom and the samples accepted in the previous level are
used as initial state. Removing samples accepted in previous levels is not
allowed, as this would cause some points to disappear when zooming in.

The number of casted samples n is, however, not specified. We estimated
the number of samples in the first level as

n0 = S

r2
0

, (2.9)

where S is the area of the bounding box of the dataset points and r0 is the
minimal distance between the data points at the first level.

The number of samples for the next levels, ni, is calculated as

ni =
(

ri−1
ri

)2
mi−1, (2.10)

where mi is number of samples accepted at the i-th level. The value of m
is usually much smaller than n, leading to improvement of the algorithm
performance. Since the radius is halved after each zoom level, this formula
can be simplified to

ni = 4mi−1. (2.11)

2.6 Area visualization

Chen et al. [6] also provide visualization of aggregated data by thresholding
the density function of the data. This is a technique where the density
function is compared to a certain threshold and areas of values larger than
the threshold are used to represent the associated cluster. It is a common
approach when handling large datasets. The areas are drawn semitransparent,
which allows seeing overlaps of clusters, but overlapping of clusters will cause
color mixing, which will reduce the discernability of colors, on the other hand,
continuous clearly bounded areas will provide both better color and cluster
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discernability than point clusters. Points in the below-threshold areas are
subsampled and drawn as points rather than to be aggregated into an area.

The density function can be also visualized using contouring, where only
the boundary would be drawn and the inner areas would be fully transparent.
Relief shading of the areas can be used to give the impression of the density
of the clusters. Altogether, the performance of such visualization might still
be comparable to or even better than the visualization of individual points.

The density function is created using kernel density estimation (KDE). The
value of the density function f at position x is the sum of distances to every
point in the dataset, weighted by the kernel function:

f =
i<n∑
i=1

K(x − xi). (2.12)

This is implemented as drawing every point with a Gauss kernel. There are
several methods of visualizing the density function, such as direct visualiza-
tion (where density is mapped to transparency or luminance), visualization
by contouring or by relief shading. The relief shading and contouring are
techniques that are used for communicating terrain relief in topographical
maps.

2.6.1 Contouring

Contour is a closed loop line produced by cutting the heightmap surface by
a horizontal plane. Usually, contouring is done by placing a set of contours
equidistant in the height dimension. In our case, we contour clusters separately
with contour lines colored correspondingly to the associated cluster. This
means that there will be many contour lines per one level of density contoured
and that the contour lines will cross each other, creating visual clutter and
overplotting, which would be strongly amplified by multiplying the total
number of contour lines several times. Thus, we have decided to contour only
one density level at a time. The contoured density value can be user-edited.

Figure 2.10: Contouring of the density function
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2.6.2 Relief shading

The relief shading assumes interpreting density function as a 2D heightmap
by mapping the density to height. Having one heightmap per each cluster,
the clusters form a set of overlapping 2D surfaces in 3D space. This technique
simulates the lighting of the heightmap surface by a directional light source,
giving an impression of the surface shape. This allows us to communicate
both the height and the slope of the surface. The lighting calculation requires
light direction and surface normal direction. The light direction is chosen
to be vertical down, as any other direction would distort the perception of
the slope based on the direction of the slope face. The surface normal is
estimated by a cross-product of surface tangents. The surface tangents are
a pair of vectors tx, ty, whose direction in the horizontal plane is given by
two-dimensional canonical vectors ex and ey. At position p, the tangents are
constructed as

tx =
(
ex,x s · (f(p + ex) − f(p)) ex,y

)T
, (2.13)

ty =
(
ey,x s · (f(p + ey) − f(p)) ey,y

)T
, (2.14)

where f is the density function and s is the vertical scaling factor. This
parameter regulates the steepness of the slopes.

With this construction of tangents, slope steepness depends on the absolute
difference of densities, not the relative one, which makes slopes in low-density
areas unnoticeable. This can be tackled, although at the expense of perception
of absolute density, by normalizing the samples taken at each fragment by
dividing them by f(x) + ϵ, where ϵ prevents division by zero. The approaches
are compared in Figure 2.11. The normalized relief shading (2.11a) gives
more detailed information about shape, but the distribution of density inside
a cluster appears to be more even than with absolute (not normalized) relief
shading (2.11b). The knowledge of the density distribution in a cluster allows
us, for example, to distinguish between the dense center of the cluster and an
area of outliers.

Relief shading together with transparency allows for visualizing density
and overlaps of reliefs of different clusters at the same time. The height of
the reliefs must be considered when using transparent rendering because the
composition of transparency is order dependent and therefore we need to draw
reliefs sorted by height. Since the height of the reliefs varies per fragment
the sorting also needs to be done per fragment. This is achieved with the
technique of depth peeling (also known as order-independent transparency),
which was designed specifically for the correct composition of transparency
[7]. With this technique, geometry is sorted by depth into several layers, as
depicted in Figure 2.12. Usually, four layers give enough precise results, even
if there are areas on the screen with more geometry overlapping. The first
layer contains fragments closest to the camera, the second layer fragments
second closest to the camera, etc. Two depth buffers are needed to achieve
this, the first one to discard fragments closer to the camera than fragments
rendered to the previous layer (black thick lines in Figure 2.12), the second
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a) b)
Figure 2.11: a) Absolute relief shading. b) Normalized (relative) relief shading.

one to discard fragments further from the camera than fragments rendered
to the current layer (gray thick lines in figure 2.12). Since OpenGL only
supports one depth buffer per framebuffer, one of the depth buffers must
be implemented in the fragment shader. The fragment shader will sample a
depth texture and perform the depth test on the sample and the fragment
depth. Texture bound to a shader cannot be written into, because sampling
texture that is concurrently written into would produce undefined results due
to caching and thread races. This means that the depth buffer sampled from
the fragment shader cannot change during the rendering of a layer. Luckily,
the depth buffer that contains the depth of the previous layer does not change
during the rendering of the current layer, therefore this is the one that has to
be sampled from the fragment shader.

As can be seen in Figure 2.13, the overlaps of clusters are now visible
much better than with point cloud visualization. We can see too, that the
discernability of clusters is maintained, as long as there are not too many
clusters overlapping each other. Practically, such visualization is clear for
two clusters overlapping each other. For three mutually overlapping clusters

17



........................................2.7. Label placement

1)

0 depth 1

2)

0 depth 1

3)

0 depth 1
Figure 2.12: Depth peeling. Adapted from "Order independent rendering" [7].

the clarity varies per situation, for more than three, the visualization is not
clear anymore, as shown in Figure 2.14.

a) b)
Figure 2.13: a) Point cloud visualization. b) Density function with transparency.

2.7 Label placement

There are two basic approaches to label placement – external and internal
labeling. In internal labeling, the label is placed over its target, while in
external labeling, the labels are placed outside the visualized object and are
connected to the target by a leader line. Placing labels outside clusters makes
finding the label of a cluster more difficult, but placing the label over the
cluster may lead to obstruction of the area of interest or even to ambiguous
labeling in case of cluster overlap. This can be noted in the picture from the
original application 2.15, where label h, marked red, is located at the area
of dominant occurrence of population n; a more suitable placement of the
label is marked by the green cross. Obstruction of the area of interest is not
a problem in the case of labeling just by letter of the alphabet instead of
labeling by the whole name of the population, which can also be seen in the
figure.

It is also possible to combine these two approaches and use internal labeling
for large, continuous, and non-overlapped cluster, while external labeling is
used for small, disjoint, or overlapped clusters. Using multiple leader lines
for a single label may be needed in case of disjointed clusters. The visual
match between a label and a target cluster can be improved by highlighting
the label by the color of the cluster.

Čmolík and Bittner [21] have developed a library for external label place-
ment in semi-transparent objects. Input for the computation of label place-
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Figure 2.14: Too many clusters overlapping.

ment is 2D texture, where each pixel represents a bitmask. The value of each
bit of the bitmask determines the presence of a corresponding cluster on the
pixel. Based on four properties, the optimal placement of label anchors is
evaluated from the texture. The properties are the opacity of the target, the
opacity of objects overlapping the target, the number of objects overlapping
the target, and the distance from the edge of the target. This would prevent
an ambiguous placement of labels (leader lines in external labeling), which
does occur in the original application. Evaluation of these properties may be
influenced by methods of creation of the bitmask texture, such as changing
point size, subsampling of the data, and use of the depth test. The temporal
coherency of the labeling can be improved by anchoring the position of the
labels and penalizing changes in label positions between frames [10]

2.8 Application control

The application window is split into visualization view, and visualization
configuration. The visualization view contains hierarchy visualization, point
cloud visualization and area visualization. The views of point cloud and
area visualizations are connected, meaning that zooming or panning in either
of these two visualization is mirrored to the other one. The mouse cursor
is also mirrored to the other visualization. This helps the user to exactly
match positions between those two views. Cluster selection can be done in
the point cloud and the hierarchy visualizations. In case the user gets lost
after accidentally moving the view out of the scope of the data, the view
position can be reset to the initial value in the view item in the menu bar.

The configurations allow the user to switch modes of visualization and
configure them as needed. Some of the configurations are not intended to

19



...................................... 2.8. Application control

Figure 2.15: Confusing placement of label h (marked red); a more suitable
placement is marked by the green cross.

provide another useful views on the data, but to compare successful and
unsuccessful approaches. The configuration panel is divided into three sections.
First one switches dark and light mode of the visualization. The visualization
is designed for the use of the dark mode; light mode was only added for
creation of printable figures. The distinction of colors and shapes is actually
worse with the light mode.

The next section contains the configurations of the point cloud visualization.
The value of the point size slider is used to multiply the size of the drawn
points. The opacity slider sets the opacity of the points. When opacity is
lower than one, the visualization enters the density mode, which means that
the depth test and the use of the luminance channel are deactivated. The
next four input fields set the zoom level at which coloring at a given level of
hierarchy is activated. The subsampling checkbox activates the subsampling
of the data points.

The remaining controls of this section allow us to view less successfull
approaches and therefore are not relevant to the user. The last section
contains controls for the area visualization. The contour mode checkbox
switches between contouring and relief shading of the density function. The
contour height slider sets the density level where the density function is
contoured. The normalize relief checkbox activates the normalization of
the density in the relief shading. The min density and max density sliders
crop the rendered relief by density by discarding fragments outside the density
range specified by the sliders. The opacity slider sets the opacity level of the
rendered reliefs. The minimal density setting allows increasing clarity of the
visualization by cropping out areas of low significance. The maximal density
setting is intended for the use case where opacity is set to one and then
decreasing the maximal density will crop out the tops of the dense clusters,
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allowing us to see beneath them.

Figure 2.16: Application window
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Chapter 3
Implementation

The application is written in the Java language in consideration of the possible
use of the library for label placement [21], which is written in Java too. The
JOGL library, which is Java binding for OpenGL graphical interface, was
used to achieve real-time visualization of the datasets. Since Java bytecode is
significantly slower than native code, the application was initially designed
for utilization of the GraalVM JVM, which allows for the compilation of Java
bytecode to native code. This led to the decision to use the SWT graphical
toolkit because AWT and Swing are not stable when compiled on GraalVM.
However, the performance of the visualization was revealed as sufficient after
the implementation of the first prototype, reaching 60 FPS and the limiting
factor being the GPU rather than the CPU. Therefore, the use of GraalVM
was abandoned.

Since the data provided did not contain the hierarchical subdivision of the
data points (only subdivision on the first level of the hierarchy was available,
that is a linear list of data points and their population), it was necessary to
create the hierarchy artificially for the testing purposes. The K–means++
algorithm was used to subdivide the data points into a three-level hierarchy.
K-means++ is the heuristic approximation of hierarchical clustering and it is
often used in statistical analysis of data.

3.1 Project structure

The project code is contained into three packages, gui, data, and hclust,
except for the class Main, which is in root folder. The hclust package is
contained in the data package. The projects resource’s contains folder gui
with textures and GLSL shader source files. hclust contains the algorithm
for hierarchical clustering, implemented by Behnke [4], but it is not used
currently. Instead, the Kmeans++ algorithm is used, implemented in class
KMeans in package data. This implementation is developed by Altschuler [2].

The entry point of the application is the Main class, which creates SWT
application window, loads the default dataset and runs the SWT main loop.
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3.1.1 GUI

Package gui contains classes creating GUI, such as VisualizationView
class, which creates a GUI panel that can be drawn on using OpenGL,
and the VisualizationConfig class which creates a panel with controls for
configuring the visualization parameters. Then there are helper classes for
the visualization. These are theHCL class, providing conversion between HCL
(polar LAB) and RGB, the Chameleon class for the dynamic color palette,
and finally, the Shader class for loading and compiling shaders. Items, that
are not the source code of the application, such as shader sources and textures
are stored as resources.

Shader

This class loads the shader sources and compiles them in its loadShaders
procedure. The shaders are represented as instances of this class and assigned
to its static variables, which can be accessed from other classes through getters.
There are seven shaders. Shaders verts, tree, mask, and dens draw data
points transformed by the view matrix. The tree is used for rendering the
hierarchy tree and the second mouse cursor. Shaders tex, merge, gauss, and
peel are used for compositing and postprocessing of rendered textures. The
geometry used by these shaders is a quad spanning over the whole viewport.
Some of the shaders are multipurpose, that is they can be configured to
different modes in order to perform different tasks. This is because switching
shaders is expansive and fewer shaders means less switching per one frame.
The multipurpose shaders are the tex and tree shaders.

verts. This shader draws the data points. When subsampling is used, this
shader will discard fragments belonging to a higher LOD level than the
visualization zoom level. Color of the fragment is given by vertex attribute
id and the color shader storage buffer, which is indexed by the id.

tree. Used to draw the hierarchy tree visualization and the second mouse
cursor in the connected view. The tree visualization consists of edges, labeled
points, and unlabeled points. This shader needs to be configured separately
to render each of these meshes.

This shader can use color from the shader storage buffer at the index given
by vertex attribute id, just like the vert shader, or a gray color. The coloring
method is switched by an uniform boolean parameter. The shader can also
add texture color to the color or crop the rendered point to a rectangular
shape by discarding fragments by their uv coordinate. These two features
are also activated and deactivated by an uniform boolean parameter. The
texturing coordinate can are transformed by an uniform vector variable. This
allows using a single texture for every label. The texture contains all the
letters in the alphabet and the uv coordinates are transformed so that just a
single letter would appear on the label. The texture color is scaled to range
⟨−1, 1⟩. This allows to use the texture to both subtract and add color.
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mask. Renders the bitmask texture of cluster distribution from the data
points. The bitmap is intended to be the input for label placement. The
output of the fragment shader is a 128bit long mask, represented as a vector
of four unsigned integer values. The vector is passed to the shader as an
uniform variable. The bitmask texture is composed using logical or between
fragment shader output and value accumulated in the texture. The operation
is set by glLogicOp(GL_OR).

dens. creates the density field of a cluster. Data points of the cluster are
rendered using a Gauss kernel. This process is equivalent to convolution with
Gauss kernel or smoothing. Density is composed using alpha blending, with
the weights of both incoming fragment and accumulated value set to one by
glBlendFunc(GL_ONE, GL_ONE).

gauss. This shader can be used for creating the density texture of a cluster
with the utilization of the linear separability of the Gauss kernel. This would
reduce the computational complexity of the convolution from θ(nh2) to θ(nh),
where n is the number of pixels of the density texture and h is the size of the
kernel. This shader is currently not used.

peel. Implements the depth peeling. The depth peeling requires two depth
buffers, the second one is implemented in the fragment shader. The inputs of
this shader are a density texture, depth texture, and uniform color vector.
The fragment color is given by the uniform color. The fragment depth is
negatively proportionate to density. Fragments with lower depth (higher
density) than the one in the depth texture are discarded.

tex. This shader is used to create the final image for the visualization of
the clusters using the density function. The shader has two modes. The first
mode renders the contour of the density function. The density function is
texture representing the density function of a single top-level cluster. The
color of the contour is set by an uniform vector variable.

The second mode creates a semi-transparent relief visualization of the
density function. The inputs are layer textures created by the depth peeling
procedure. Each layer contains density and color. The density and color are
used to render the relief. The normal vector of the relief is estimated from
the density. The transparency level is set by an uniform variable.

merge. This shader is used for merging textures of cluster densities into
a single texture using a virtual framebuffer. The depth and opacity of the
output fragments are given by the input density texture. This shader is
currently unused.

VisualizationView

This class is used to create a GUI panel for displaying the visualization
and reading user input. This class extends the swt.GLCanvas class. The
constructor of the VisualizationView class initializes the global state of
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OpenGL for the visualization, loads and compiles shaders using the method
loadShaders of the Shader class. The VisualizationView draws a given
array of objects implementing an interface defined by the static abstract class
Drawable, defined in the VisualizationView. This way, the implementation
of VisualizationView is independent on the visualization itself. The class de-
fines the methods boolean needsRedraw(float view, float zoom), void
draw(float[] view, float zoom, GL4 gl) and public abstract void
click(int[] pos, GL4 gl).

The array view represents the two-by-two row-major transformation matrix
used for rendering data. The zoom parameter gives the zooming level, which
is for setting the level of detail for subsampling, setting point size, and for
determining which level of hierarchy should be visualized, that is at what
level should clusters be colored with different colors. Both view and zoom
are actualized by the mouse input. The return value of needsRedraw tells if
there are any changes in the object, that would require redraw.

In case of change in any of the objects drawn on the canvas, all objects are
redrawn, because the objects, in general, may overlap and thus redrawing of
one object might interfere with objects drawn in the previous frame. The
click method passes information about click on the canvas to the object.

VisualizationConfig

This class creates a GUI panel that exposes the visualization parameters to
the user. The user can read and adjust the parameters with this panel. The
implementations of VisualizationView and VisualizationConfig do not
depend on each other in any way.

Chameleon

This class implements the dynamic color palette [16]. The constructor pa-
rameters are the number of color wedges and the maximal iteration count
of the force model computation per one update. The force model update is
implemented in the recalculate method. The setWeights method sets the
weight of the individual wedges and updates the force model by calling the
recalculate method. Therefore, if weights are set in every frame, it is not
needed to call recalculate explicitly.

The class contains methods for calculation direction, distance, and signed
distance between two wedges as if they were in a cyclical space. That means
that distance between two wedges is a minimum of three distances: a simple
distance and a distance where the border of the linear space is crossed. In
the latter case, the order of the pair of color wedges cannot be handled just
by changing the sign, therefore it is handled as two separate cases.

The color wedges are represented by the inner class Node. The member
pos of the class is the center of the color wedge, the outPos member is the
left bound of the wedge. The difference between pos and oldPos is used to
detect convergence in the recalculate method. The class also maintains
the radius and margin of the wedges.
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The class contains an auxiliary draw method, that can be used to visualize
the current state of the force model, from which the created color palette can
also be inferred.

HCL

This class is used to convert from the perceptually uniform HCL color space
to the physical RGB screen color space. The conversion takes place in
several steps through the polar CIELAB, CIELAB, XYZ, and finally RGB
color spaces, for which functions polarLABtoLAB, LABtoXYZ, and XYZtoRGB2
(alternatively XYZtoRGB) are used. All the functions, excluding XYZtoRGB2
which is sourced from the Catalano framework [5], are from the implementation
by Zeileis et al. [20]. The XYZtoRGB2 and XYZtoRGB have equivalent functions
but are implemented differently and resulting conversions are also different.
The difference in implementation is raising the RGB channels to a power
of 0.4166 (possibly it is a gamma correction) in the XYZtoRGB2 function, as
shown in the sample of the implementation:
if ( rgb[0] > 0.0031308f ){rgb[0] = 1.055f * ( (float)Math.pow(rgb[0],

0.4166f) ) - 0.055f;}
else{rgb[0] = 12.92f * rgb[0];}

Conversion with the use of XYZtoRGB creates darker color and performs worse
in the property of isoluminance, which is observable even better, if luminance
is equalized to the level of the conversion with the use of XYZtoRGB2 (for
comparison, refer to the section 2.1, Figure 2.3).

3.1.2 Data

This package contains classes used for loading, representation, and visualiza-
tion of the cluster data. There is the Kmeans class, that implements the clus-
tering algorithm [2]. Next is the class ClusterData, which loads and parses
the data from a file. The data are converted to a tree of clusters (abstract class
Cluster). The Cluster class is implemented by classes RootCluster, which
is also responsible for visualization, and the ClusterNode and ClusterLeaf
classes.

Kmeans

This class contains the implementation of the Kmeans++ algorithm. The
Kmeans++ is the improved version of Kmeans, delivering greater accuracy
and lower running time [3]. The improvement lies in the method of choosing
initial cluster centers. While with the Kmeans algorithm, initial centers are
usually placed spatially uniform, the Kmeans++ chooses the first center
uniformly random and the next one in a data point chosen randomly with
the probability

P (x) = D(x)2∑
x∈X D(x)2 , (3.1)
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where D(x) is the distance between the point x and the closest of already placed
initial centers. This is repeated k centers are placed and then the algorithm
proceeds with the standard Kmeans algorithm. This means assigning every
point to its closest cluster center and then repositioning the cluster center to
the center of mass of the associated points. This step is repeated until the
position of all cluster centers no longer changes.

ClusterData

This class loads cluster data and then uses the RootCluster class to create
the data structure for the visualization, draw the visualization, and produce
the output for the library for label placement. The class uses the singleton
design pattern, meaning that there can only ever be one instance of this class.
The class inherits from VisualizationView.Drawable, which allows to draw
a visualization on the GLCanvas2 canvas.

The class retrieves the data in its getVertices method in CSV format table,
where each row represents one point. Point position projected into two-
dimensional space is stored in the columns EmbedSOM1 and EmbedSOM2, which
are the fifth and sixth columns from the end of the table. The assignment of
point to a cluster is given by the Population and ClusterKey columns, which
are the last and pre-last columns of the table respectively. The information in
these two columns is identical, the Population column identifies the cluster
by letter of the alphabe and the column ClusterKey by number. The method
returns an array of points having 2D coordinates and cluster identifiers
Population and ClusterKey.

The data points are loaded from CSV and sorted according to their cluster
in the load method. Since the number of clusters is small, the counting sort
algorithm is used. Sorted points are used to initialize the RootCluster class.
The clusters of points are then subdivided using the subdivide method of
the ClusterLeaf class. Once the hierarchy construction is complete, the
subclasses of RootCluster are initialized. Lastly, the Subsampling class is
used to assign the points level of zoom at which they should appear when
the subsampling option is activated in the application settings.

Cluster

Abstract class representing the nodes of the cluster hierarchy tree. The
cluster tree consists of leaves, represented by the ClusterLeaf class, nodes
represented by the ClusterNode, and the root, which is the RootCluster.
All of these classes are subclasses of the Cluster abstract class. Each node
and leaf of the tree has a unique identifier. The leaf identifier is written as an
attribute in all vertices belonging to the given leaf. Based on this attribute,
a color from a single color field is assigned in the vertex shader. The leaf
identifier is also rendered by the ClusterLeaf class into the stencil buffer,
allowing clusters to be selected by mouse click. The identifier is also used
when generating output for the label placement library, which implies that the
identifier can have a maximum of 128 different values (refer to section 2.6.2 for
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details). The class contains abstract methods that must be implemented by
all derived subclasses. These methods are draw, which draws a given cluster
as a point cloud, drawMask, which draws the cluster as a mask for the label
placement library, drawDensity, which draws the cluster as a density field,
getN, which returns the total number of vertices in the cluster and all its
descending subclusters, getChildren, which returns the array of the cluster
subclusters, and finally, the updateWeights, which returns the total number
of fragments drawn given cluster and all its subclusters. In the case of node
(non-leaf) clusters, the method will also update the dynamic color palette of
the node with the number of fragments drawn in its individual children.

ClusterLeaf

The draw of the class ClusterLeaf draws the part one vertex array shared
across all leaves, which contain points belonging to this cluster. The method
performs GL query on the number of fragments passed. The query result
is read in the updateWeights method after rendering is completed. This
prevents CPU to GPU synchronization after every cluster is drawn, increasing
performance two-fold to three-fold.

The ClusterLeaf class also implements the method subdivide, which
subdivides the leaf using the Kmeans++ algorithm [2] and returns node
ClusteNode having the newly created leaves as its children. The new leaves
are also assigned new unique identifiers, that are also written back into
attributes of corresponding vertices.

ClusterNode

ClusterNode represents the inner nodes of the cluster tree. Each node
subdivides its allocated color wedge into sub-wedges using the dynamic
palette method. The draw method of the node calls draw on all its children,
to which it also passes the allocated sub-wedges. The updateWeights method
calls updateWeight on its children too. The children return the number of
fragments rendered in their subtree. The node updates the state of its color
palette with these counts and returns the sum to its parent, which then
updates its color palette with this value.

RootCluster

RootCluster contains all the methods for data visualization. This class
maintains the cluster tree data structure used to draw the clusters, and
the visualization parameters, and also creates and renders the hierarchy
tree visualization. The RootCluster drawing methods are called from the
ClusterData class.

RootCluster creates a tree of depth 1 in its constructor, where each leaf
corresponds to one cluster as defined by the Population attribute in the
original data. A deeper hierarchy is created by subdividing the leaves using
the Kmeans++ algorithm. It also creates a single vertex buffer object from
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the ordered points, allowing for rendering on the GPU. The parts of the
vertex buffers representing individual clusters are rendered in corresponding
leaf nodes. The attributes of the vertex array object are four-element vectors
containing 2D position, depth, identifier and a single float value containing the
LOD, which is a zoom threshold, above which the point should be discarded.
This value is the output of the subsampling algorithm [6][18] and the points
are only discarded when the subsampling option is checked in the visualization
configuration.

The point cloud visualization is rendered recursively using the draw method
of the class. The method calls draw on all the children of the root node,
similarily to ClusterNode. The method also draws the second cursor.

The RootCluster class also contains methods for the selection of clusters
in the cluster hierarchy. The entry point of the selection procedure is the
click method. This method is called by the VisualizationView class with
the mouse position and a boolean parameter indicating wherever is the shift
key pressed. If shift is not pressed, the recursive function select will
select subtree with given ID (that is, cluster with the given ID and all its
subclusters). All other clusters are unselected. If shift is pressed, the
recursive function selectSubtree will add subtree with given ID to the
selection, if it is not selected, and remove it otherwise. Finally, the recursive
function subtreeState is called. This function unselects all clusters that
have none of their subclusters selected.

The RootCluster class also contains three subclasses. The first one,
TreeVisualizer, visualizes the hierarchy tree, the second one, Density
Visualizer maintains the visualization of the data using the density function
and the last one, TypeMask creates the bitmask, that could be used by the
library for label placement in the future. These classes are initialized in their
init methods, rather than in their constructors, because they are constructed
in the RootCluster, but the final cluster hierarchy, which is necessary for the
initializations, is created later by the ClusterData class. The ClusterData
class constructs the RootCluster, then it extends the cluster hierarchy by
subdividing the clusters, and then the init methods of the subclasses are
called.

All of the subclasses draw to the same GL context because GL shaders,
buffers and textures cannot be shared between different contexts and cloning
each of these resources to every context is ineffective. The scissor test ensures
the separation of the visualizations in a sense that rendering output or clearing
of color or stencil of one visualization will not affect the others.

TreeVisualizer. Builds and draws the geometrical representation of the
hierarchy tree. The nodes of the tree contain their own selection state. The
selection state of the clusters and the tree visualization nodes is maintained
and synchronized by the RootCluster class. The space between the leaves of
the tree is proportional to the number of points in the leaves and so is the
leaf size. The top-level nodes of the tree are labeled by the population of the
corresponding cluster, as given by the visualized dataset.
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DensityVisualizer. Renders the density function in its drawDensity method.
The density function is rendered into a separate texture for each top-level
cluster once at the first frame. The channel format of the textures is 32-bit
float, because drawing the densities means adding a lot of very small values
to a single value and the 8-bit per channel precision is not enough precise
to compose the density correctly. The textures are then sampled by the
drawPeel and drawContours methods. The drawPeel method implements
depth peeling and relief shading. Output of the depth peeling are four textures
with each fragment containing color and density. The area visualization is
rendered by the draw method. This method sets the parameters of the shader
tex and then uses either the drawContours or the drawPeel method to
render the visualization based on the visualization configuration.

TypeMask. Creates input texture for the label placement in the draw
method. The texture has four 32-bit unsigned integer channels. The value
of the i–th bit marks the presence of a point belonging to the i-th leaf in
the hierarchy of clusters. The method recursively draws the tree of clusters,
similarly to the draw method of the RootCluster class, except it does neither
count fragments nor allocate color wedges. Here, every leaf is drawn with
a color equal to a 128-bit vector with a value of 1«LeafID. To compose
the vectors when points with different IDs are drawn on a single pixel, new
fragment value is composed using logical or between incoming fragment and
accumulated value. The operation is set by glLogicOp(GL_OR).

Subsampling

The Subsampling class implements the method of subsampling data points
with the dart throwing technique to reduce the overdraw of the scatterplot
[6][18].

The subsampling algorithm requires acceleration of spatial search of the
data points and tracking of fill rates of vertices of individual classes. The data
points are given in a form of a vertex array. The output is the zoom level of
individual vertices written back into the vertex array as the fifth attribute in
the vertex array. The vertices also have the "killed" state, meaning that they
are currently set to not be part of the visualization. This state is maintained
by setting the vertex zoom level to a very high value (1000.0f). All the vertices
are initialized to this state.

The spatial search is accelerated using a uniform grid. Each cell of the grid
is represented by the IntVector class. This class represents a dynamically
resizeable vector of integers. This way, the storage capacity at each cell is
dynamically resized to accommodate the required number of data points as
they are being sorted into the cells. The points are stored as indices to the
vertex array. The data points are then assigned to one of three zoom levels.
Not all points will be assigned even after the last level is built; many will
remain killed after the end of the procedure.

The tracking of fill rates is done by the ClassStat subclass. There is one
instance of this class per each top-level cluster in the dataset. The class

30



....................................... 3.1. Project structure

contains array data of all points belonging to a given cluster as indices to the
vertex array. The vertex indices are sorted by the corresponding vertex state.
The left part of the array contains the killed vertices, and the right part the
accepted vertices, as shown in Figure 3.1. The class provides methods accept
and kill, which will update the state of the vertex and move it to the part
of the array according to its new state. The kill method is used by the
algorithm to kill conflicting vertices as obtained by query to the uniform grid.
The query result is an array of indices q to the vertex array, but we do not
know where in the data to find the indices contained in q. Searching linearly
the data array would be computationally expansive, therefore the ClassStat
class contains helper array keys with the same length as the data array. The
keys array is indexed by indices to the vertex array and its elements are
indices to the data array. This way, the keys array is the inverse mapping of
the data array. The indexing between the vertex array, the data, and the
keys arrays is shown in Figure 3.1.

Figure 3.1: Schema of indexing. Indexing between vertex array and keys is
linear, mappings between keys and data and between data and vertex array
are permutations.

But the indexing of the keys array is not straightforward. Let us imagine
a dataset with 100000 points and a top-level cluster with 100 points. The
data array in this case would be 100 elements long, but the keys array is to
be indexed by value up to 100000. Luckily, the points in the vertex array are
already sorted by population, that is by the top-level cluster they belong into.
This means, that the difference between the smallest and the largest index of
points in the cluster equals the number of total points in the given cluster.
The smallest possible index is known; therefore it can be subtracted from a
given index. Now we have a value ranging from 0 to 99, that can be used to
index the keys array. The vertex array contains the attribute population,
that identifies the instance of ClassStat that manages the state of a given
point.

The tracking of fill rates and spatial search acceleration is utilized during
the building of the zoom levels. Each zoom level is built by the buildLevel
method. The method takes as input the data points and attempts to add a
given number of random yet unassigned points to the currently built level of
zoom. Each of the attempts is performed k times. The attempt fails when
the point when the chosen point p is closer than r to some of the already
added points (checked by the IsConflict method) and the points too close
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to p can not be removed (checked by the conflictsRemovable method). The
conditions for removing conflicting points are described in the 2.5.3 section.

The subsampling algorithm is implemented in the constructor of the
Subsampling class. Since the output of the subsampling algorithm is written
back into the input vertex array, the return value of the constructor can be
ignored.
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Chapter 4
Results

An application visualizing clusters of real measured hierarchically grouped
data in real-time was created. The visualized properties are the density
of the clusters, their mutual overlaps, and the hierarchical structure. The
application is written in the Java language and utilizes GPU accelerated
rendering through the JOGL library, which is a Java binding for OpenGL.
Running on AMD Ryzen™ 5 3500U APU with integrated Radeon™ Vega 8
GPU, we have measured 29 FPS on a dataset with 250 000 points and 68 leaf
nodes in the hierarchy and 30 FPS on a dataset with 800 000 points and 50
leaf nodes. When rendering point visualization alone, the framerate was 60
on both datasets, but it was 40 and 45 FPS when rendering area visualization
only, showing that area visualization is computationally more expansive than
rendering of a point cloud.

This is because the area visualization is created by rendering n density
textures over the whole visualization view, where n is the number of top
level clusters. In the depth peeling procedure, four layers are created by
the composition of the density textures. This means 4n draw commands
are issued in each frame in total. The size of the actually rendered area the
draw commands is cropped to the size of the area visualization view using
the scissor test. With n being 22 and the view size being 304x349 after the
scissor test, we get 9.3M fragments drawn per frame. For comparison, a 4K
screen with a resolution of 3840x2160 has only 8.3M pixels. The number
of fragments drawn per frame could be decreased further by cropping not
only to the extent of the area visualization view but only to the extent of
the currently drawn cluster. However, this is not possible with the current
implementation of depth peeling, where fragments with zero cluster density
write to depth texture. Therefore, even areas with no cluster occurrence
cannot be neglected.

The gluegen-rt library, used by the JOGL library, contains a bug that
causes an illegal reflective access operation. This is an operation, where
perpetrating module uses Java reflection API to gain access to non-public
methods of other modules at runtime. Since Java 9, such an operation will
be detected and result in a warning, but in Java 17 and above, this is not
allowed, and the application is terminated.

On some Intel GPUs, the GLSL layout qualifier location is ignored for
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variables zoom, view, and useLod of the shader vert and a different location
is assigned. Therefore, the location of these variables is queried at runtime
using glGetUniformLocation.

Due to the unavailability of hierarchy data, cluster data were additionally
divided into subclusters using the Kmeans++ method [2], resulting in three
levels of hierarchy.

The point cloud visualization allows to distinguish individual clusters in a
multilevel hierarchy, as shown in Figure 4.2, where zoom at three consecutive
levels is depicted. Individual clusters at any level of the hierarchy can be
highlighted (Figure 4.3) by clicking on the cluster of interest. To make
selection easier and to allow the selection of an entire subtree or of a cluster
overlapped by other clusters, a visualization of the hierarchy as a tree was
added to the visualization (Figure 4.3). The selection is done by clicking on
a node in the tree. Multi-selection is also possible.

The point cloud visualization is implemented in two modes: a discernability-
based mode and a density-based mode. A comparison of these two modes
is shown in Figure 4.1. The density-based visualization allows for a precise
perception of the shapes of the two large blue clusters at the top left of the
visualizations but at a cost of lower discernability of the clusters’ category.

a) b)

Figure 4.1: a) Discernability mode. b) Density mode.

The area visualization is also implemented in two modes, and these are
contouring of the density function and relief shading of the density function.
Both modes a give good overview of cluster overlap while maintaining color
and density discernability. Changing contour height allows to blend between
clear view with few cluster overlaps and a more precise, but also more cluttered
view, as shown in Figure 4.4. The relief shading can show both relative and
absolute changes in clusters’ densities. Relative shading gives more detail
about changes in density, but distorts the perception of clusters’ absolute
density. The approaches are compared on Figure 4.5. Semi-transparent relief
allows to overview both overlaps and density to a limited extent (Figure 4.6).
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Figure 4.2: Hierarchical coloring

Figure 4.3: Cluster selection

Figure 4.4: Contours at different heights
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a) b)
Figure 4.5: a) Absolute relief shading. b) Normalized (relative) relief shading.

a) b)
Figure 4.6: a) Low overlap. b) High overlap creates visual clutter.
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Chapter 5
User evaluation

To evaluate the performance of our design, the visualization was tested with
six participants. The participants were given a textual introduction to the
application controls and a set of nine tasks. The text is provided both in
Czech and in English in the attachments. The participants were then asked
to rate the difficulty of the tasks and leave a comment on the visualization or
the tasks. The tasks are chosen to cover the abstract task types (table 5.1)
performed on scatterplots as categorized by Sarikaya and Gleicher [15]. The
task types cover the identification of clusters, identification of cluster density,
and overlaps, which are the goals of our visualization.

Types 3, 8, and 12 are not covered by our set of tasks. Types 3 and 12
could not be covered because the spatialization of the data point is abstract
and does not encode any attributes, because the spatialization is the result
of reduction of high dimensional position into 2D. Type 8 is partially covered
by tasks 3 and 4 where the user is asked to find clusters with described
distribution. Such a task requires to be able to characterize the distributions
too, in order to match the clusters with the textual description of distribution.
Tasks 1. to 5. were performed on the first dataset and the remaining tasks
on the second dataset. The tasks are:..1. Are these clusters of same population? Do not use cluster selection.

Figure 5.1: Image for the tasks 1. and 2.
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Task Description
ob

je
ct

-c
en

tr
ic 1 Identify object Identify the referent from the representa-

tion

2 Locate object Find a particular object in its new spatial-
ization

3 Verify object Reconcile attribute of an object with its
spatialization (or other encoding)

4 Object comparison Do objects have similar attributes? Are
these objects similar in some way?

br
ow

sin
g 5 Explore neighborhood Explore the properties of objects in a neigh-

borhood

6 Search for known motif Find a particular known pattern (cluster,
correlation)

7 Explore data Look for things that look unusual, global
trends

ag
gr

eg
at

e-
le

ve
l 8 Characterize distribution Do objects cluster? Part of a manifold?

Range of values?

9 Identify anomalies Find objects that do not match the ‘modal’
distribution

10 Identify correlation Determine level of correlation

11 Numerosity comparison Compare the numerosity/density in differ-
ent regions of the graph

12 Understand distances Understanding a given spatialization (e.g.
relative distances)

Table 5.1: Classification of scatterplot analysis tasks. Adapted from "Scatter-
plots: Tasks, Data, and Designs" [15]..2. Find population of these clusters. Do not use cluster selection...3. Points of some clusters are unevenly distributed, with most of the points

located in small part of the cluster’s area, while the remaining area
is very sparse. These clusters can be characterised as a center and
outliers. What clusters exhibit this property the most? Find top five.
Sort descending...4. Judging by average density, what are the densiest and sparsest clusters?
If densities of some clusters appear to be equal, write all of them...5. What clusters are overlapping with cluster ‘o’? Sort by area of overlap
descending. Write how many subclusters of ‘o’ they overlap...6. What clusters is the most prevalent at pointed position? What other
clusters can be found there? Sort by density descending.
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Figure 5.2: Image for the task 6...7. Find clusters with unusual shape or density distribution, or multiple
centers...8. What cluster spatially correlates the most with the ‘f’ cluster?..9. Find groups of clusters with correlating shape, position, density distribu-
tion. There may be multiple such groups.

Among the participants, there were 3 graduate students (participants 1,
2, 6), one high school student (participant 3), one professor at a medical
university (participant 5), and one software developer (participant 4). The

T\P 1 2 3 4 5 6 correct
1 ynnnyn ynynnn ynynnn ynynnn ynynnn ynynnn ynynnn
2 hrjnvli htjqbl htjnbli htjsdl htjqblk asjqbli htjqvli

3 djkgs dgpkh
(hkpgd) djsep djloa

(aoljd) darmn jdias

4 nai,op n,h a,h i,tu n,c n,i
5 nhpglj hnp nhlp nhplgjdm np nhlmjp
6 ocp phce phcde ocpf mpojch ope ph({c|e}do)
7 baefko kfe ahf efo m a
8 o o o o g o

9 jkl,cop jkl,co gh,co,hp gh,ijkl,
op,ef kl,ik,op gh,mn,op

Table 5.2: Participant answers

participants were mostly using point visualization in discernability mode
with the help of zooming for the first two tasks. Zooming in provided better
color discernability due to the dynamic color palette increasing the color
distance of the cluster in the center of the view from the other clusters. Most
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participants were able to correctly compare the category of clusters (95%
correct), but connecting clusters with labels proved to be more difficult (70%
correct). Some of the users forgot to label the seventh cluster in the second
task. This is not considered as an error. The success rate is calculated as the
ratio of wrong answers to the number of given answers.

The participants approached the third task with various methods, the most
favorite being the use of point visualization in density mode. Two participants
used the relief visualization, from that one with deactivated normalization,
and one participant point visualization in discernability mode with increased
point size. Some users misunderstood the assignment and sorted the cluster
in reverse order, that is, the most evenly distributed cluster first. The original
answer of the users is given in parentheses.

Two equally popular methods were employed in the fourth task. About
half of the participants used point visualization in density mode and the
other half used the relief visualization with cropping by the min/max density
settings. Some participants used cluster selection as well.

The main tool in the fifth task was cluster selection. It was used by all six
participants. The participants were mostly inspecting the result of selection
in the point visualization with one participant additionally zooming in and
increasing the point size. Two participants used contour visualization.

In the sixth task, participants used mainly point density visualization
and relief visualization. One participant used increasing point size in the
point density visualization, and two participants used cropping in the relief
visualization. One participant used the contour visualization and animating
the contours by sliding the contour height setting. The participants who used
cropping the relief function had the most correct answers for this task and
Participant 6 rated the difficulty of the second task as 1 despite being only
50% correct. The success rates and difficulty ratings are shown in Table 5.3.

The error metric for the sixth task is calculated as the ratio of the number
of errors to the number of clusters listed by the participant that are also
present in the correct answer. The number of errors is the sum of the
number of clusters that need to be moved in the sequence given by the
participant to achieve the same ordering as in the correct answer, the number
of clusters present in the participant-given list but not in the correct answer,
and the number of strongly represented clusters that are not present in the
participant-given list. The strongly represented clusters are the ’p’ and ’h’.
The representation of the clusters ’c’ and ’e’ is nearly equal, so misordering
of these two clusters is tolerated.

In the seventh task, most participants again used point and relief visualiza-
tions, two participants used contours.

Animating contours by sliding the contour height was used by two par-
ticipants in the eighth task. One participant used cluster selection while
inspecting the contour visualization. One participant used subsampling,
zooming and selection.

There was no single dominant method used in the last task. participants
used point visualization and contours and relief visualizations too. Selection
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of clusters and sliding contour height was used too. One participant used the
relief max density setting to crop the tops of the clusters and see beneath the
surfaces.

As can be seen in Table 5.3, columns min and max, the participant rating
of the tasks difficulty varies strongly. The participant rating of difficulty often
does not correspond to correctness of their answer. For example, in the first
two tasks, participant 2 rated the difficulty as 4 despite being more correct
then participants who rated the difficulty of this task as 1 or 2.

T\P 1 2 3 4 5 6 min max avg

1 2
(67%)

4
(100%)

1
(100%)

1
(100%)

2
(100%)

2
(100%) 1 4 2

2 1
(71%)

4
(83%)

1
(71%)

3
(67%)

2
(71%)

1
(57%) 1 4 2

3 3 1 2 2 3 4 1 4 2.5
4 5 1 5 3 4 3 1 5 3.5
5 3 3 2 2 4 3 2 5 2.83

6 3
(50%)

2
(100%)

3
(80%)

5
(25%)

4
(33%)

4
(33%) 2 5 3.5

7 2 4 1 2 5 5 1 5 3.17
8 4 1 3 3 3 4 1 4 3
9 4 3 5 2 5 5 2 5 4

Table 5.3: Task difficulty rating.

The participants independently found ways to use the features of the visual-
ization to solve given tasks. The most popular was point cloud visualization,
but there is a bias towards point cloud visualization induced by the applica-
tion, where point visualization is in the top view, and by the task assignment,
where pictures are made with the point cloud visualization. For example,
all participants used the point cloud visualization to solve the first task,
although there was no reason to not use the relief visualization. The other
popular features of the visualization were relief and contour visualization
including associated density limit parameters, cluster selection, and dynamic
coloring. The participants only used the dynamic coloring to improve the
discernability of the cluster at the top level of the hierarchy (tasks 1 and
2), not for determining the overlaps of subclusters (task 5), where cluster
selection was the prevailing technique. Less popular were the settings of point
size, subsampling, and absolute relief shading. Each of these were only used
by a single participant.

The only reoccurring comment of the participants was to increase the
suppression of unselected clusters. This was commented on by two participants.
A control for setting the dimming rate of unselected clusters was added since
the obstruction caused by unselected clusters varies per observing conditions
(screen properties, light conditions), visualization mode, and use case. This
setting is shared by all visualization modes.
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Chapter 6
Conclusion

A visualisation of hierarchically clustered multicategorical data of medical
measurements was created. Such visualisation is important for medical
diagnoses and development. The visualised properties are the density of the
clusters, their mutual overlaps and the hierarchical structure.

The nodes of the hierarchy are separated by color with color resolution of
twenty-six clusters. Due to the large number of categories, it was necessary
to use two color channels, hue and luminance, to achieve resolution. After
zooming in, up to seventy clusters can be distinguished with the use of the
dynamic color palette. It takes advantage of the fact that the vast majority
of these seventy clusters are not visible on the screen when zoomed in. The
size of the rendered points is in order to maintain color resolution increased
proportionally to the degree of zoom when zooming in. It is possible to
specify in the application at which zoom levels coloring with different colors
should be activated at individual depths of the hierarchy.

An unsolved issue is color inconsistency at high zoom. In most cases, the
color difference between adjacent subclusters is reasonable, but typically in
very scattered clusters there are cases where the color shades of the subclusters
are very far from each other and significant color changes occur when panning
or zooming the view.

Visualization of cluster density based on the transparency of cluster points
turned out to be at the expense of distinctness of individual clusters. Color
mixing is a minor obstacle that only becomes apparent when the view is
zoomed in, where the blending of the boundaries of the two clusters begins to
take up a large portion of the screen. The main problem is the impossibility of
using the luminance channel, which visually interferes with the transparency
of the points and thus with the density of the clusters. For that reason, two
visualization modes were created. Density-focused mode renders points with
transparency, while discriminability-focused mode renders fully opaque points.
When visualizing the density of clusters, the application enables rendering
in two passes, which achieves good visibility of very sparse areas and at the
same time distinguishable levels of densities within very dense clusters.

Both modes respect the mutual overlap of the clusters, i.e., that where
several clusters overlap, the color distribution corresponds to the density of
the individual clusters. In the case of opaque rendering of points, the overlap
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visualization was achieved by activating the depth test and randomizing of
the point depth.

The user evaluation has shown that all of the visualization techniques
implemented proved to be useful in performing scatterplot tasks. Only
exception may be the subsampling, which was only used by a single participant
in a single task, and adding to that, participants who used other techniques,
reported lower difficulty for the task. The dynamic color palette had only a
limited success, as it was only used to improve discernability of clusters at
the top level of the hierarchy. For operations at lower levels, cluster selection
was preferred.

6.1 Further developments

The dynamic color palette may be extended to two dimensions or even three
dimensions. This would improve the utilization of the available color space
and the discernability of the clusters as well. There is multiple ways of
designing multi-dimensional color palette to explore, especially in case of
hierarchical coloring. The basic approach is that both hue and luminance
would be assigned dynamically based on the situation. The hue channel
would be allocated hierarchically and the luminance channel would be used
to maintain noticeable differences between neighboring hue wedges. The
hierarchical subdivision could be also extended to more dimensions, where
allocated and subdivided units would be circles or spheres in 2D or 3D color
space instead of hue wedges in a 1D space.

The connected views technique can be extended so that more than only
two views would be displayed. The user would be able to add and remove
views, select visualization technique in each of the views and select clusters
displayed in the view – a single cluster or a group of clusters.

The visualization technique of parallel coordinates could be also imple-
mented. The limitation are the color discernability of roughly twenty polylines
crossing each other and overview of cluster distribution on polyline consisting
of twenty or more segments. These limitations lead to displaying only subset
of clusters or subset of dimension. Dimension reduction from original high-
space to a lower dimensional space with five to ten dimensions could also be
employed.

A mentioned but unexplored method is to place labels in the visualization,
which would make it easier to distinguish and identify individual clusters.
The labeling of the clusters needs to consider the density and overlapping of
the clusters, as naive label placement would produce ambiguous or confusing
labeling. Čmolík and Bittner [21] propose a method that evaluates places of
possible label anchoring based on opacity salience, overlap salience, occlusion
salience, and the distance from the edge of the labeled object.
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The application visualizes hierarchically clustered set of points. The points are separated into 

clusters first by category and then by mutual proximity. 

 

The application window is divided into view and configuration. View contains visualization of 

hierarchy, point cloud visualization and density visualization. Visualizations of density and 

visualization of point are connected. View can be zoomed using the mouse wheel. Clusters can be 

selected in the point visualization and the hierarchy visualization. Multiple clusters can be selected 

using the shift key. The configuration is separated into three parts, first one contains settings shared 

by all three visualizations, second one settings of the point visualiztion and the last one settings of 

the density visualization. 

 

The point visualization has two modes – mode of cluster discernability and for density 

discernability. In the cluster discernability mode, the luminance color channel is used and point are 

drawn in random order. This way, when two clusters overlap, points of both clusters are represented 

at the place of overlap. In the density mode, point are drawn with transparency. To be able to 

discern the density distribution, the point transparency needs to be set very low, around 0.1. Cluster 

can be selected by clicking into the point visualization or to the hierarchy visualization. Multiple 

clusters can be selected or unselected with clicking and holding the shift key. 

 

The setting s of the point visualization allow to control the size of points and their transparency. If 

the transparency is set lower than 1, density mode is used, otherwise, the discernability mode is 

used. Next, there are settings of levels of zoom, where coloring at next level of hierarchy should be 

activated. Next is the setting of point subsampling. This will reduce the number of points drawn. 

The number of points will increase when zooming in. Other settings are only for development 

purposes. 

 

Density visualization has two modes too – the relief shading mode and contouring mode. Relief 

mode shades the density function of individual clusters. Contouring mode will create contour line at 

given level of density. The modes can be switched using the Contours mode checkbox. The contour 

height and the density range drawn in the relief mode can be adjusted by sliders. The Normalize 

relief checkbox will set the shading to be proportionate to relative change of density reather to the 

absolute one. Normalization of relief will distort the perception of density, but will reveal more 

detail in the changes of the density. 

 

There are two datasets available, Hammer_export.zip and Liechti_export.zip. The datasets to be 

used with individual tasks are stated in brackets at each task. Loading of the dataset liechti will take 

about a minute. 

 

Get yourself familiar with the visualization and its configurations before you start working on the 

tasks. 

 



 
 



Tasks 

 

1. Are these pairs of clusters of same category? Do not use cluster selection. (Hammer_export) 

1a, b. 

2a, b. 

3a, b. 

4a, b. 

5a, b. 

6a, b. 

 

 

 

2. Find category of these clusters. Do not use cluster selection. (Hammer_export) 

1a. 

2a. 

3a. 

4a. 

5a. 

6a. 

7. 

 

3. Points of some clusters are unevenly distributed, with most of the points located in small part of 

the cluster's area, while the remaining area is very sparse. These cluster can be characterised as a 

center and outliers. What clusters exhibit this property the most? Find top five. Sort descending. 

(hammer) 

 

1. 

2. 

3. 

4. 

5. 

 

 

 

1a. 

1b. 

6a. 

6b. 

2a. 

2b. 

4a. 

4b. 

5a. 

5b. 

3a. 

3b. 

7. 



4. Judging by average density, what are the densest and sparsest clusters? If densities of some 

clusters appear to be equal, write all of them. (Hammer_export) 

 

1. 

2. 

5.What clusters are overlapping with cluster of category ‘o’? Sort by area of overlap descending. 

Write how many subclusters of  ‘o’ they overlap. (Hammer_export) 

 

 

 

 

6. What cluster is the most prevalent at the pointed position? What other clusters can be found 

there? Sort by density descending. (Liechti_export) 

 

 

 

 

 

7. Find clusters with unusual shape or density distribution, or multiple centers. (Liechti_export) 

 

 

 

8. What cluster spatially correlates the most with the ‘f’ cluster? (Liechti_export) 

 

 

 

9. Find groups of clusters with correlating shape, position, density distribution. There may be 

multiple such groups. (Liechti_export) 

 

 

 

 

 

 

 

 



Rate the tasks 1-9 by difficulty (1-easiest, 5-hardest) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

 

Your (optional) comment to the visualization or the tasks. 



Aplikace vizualizuje hierarchicky seskupenou množinu bodů. Body jsou rozdělené do shluků 

nejdřív podle kategorie a potom podle vzájemné blízkosti. 

 

Okno aplikace je rozděleno na náhled a konfiguraci. Náhled obsahuje vizualizaci hierarchie shluků, 

bodovou vizualizaci shluků vizualizaci hustoty. Vizualizace hustoty a vizualizace bodů jsou 

propojené. Pohled lze přibližovat a oddalovat kolečkem myši. Shluky lze označovat v bodové 

vizualizaci a ve vizualizaci hierarchie. S klávesou shift lze označit více shluků zároveň. Ve 

vizualizaci hierarchie jsou písmenem označeny kategorie shluků. Konfigurace je rozdělena do tří 

částí, první obsahuje nastavení společná pro všechny tři vizualizace, druhá nastavení pro bodovou 

vizualizaci, třetí pro vizualizaci hustoty. 

 

Bodová vizualizace má dva módy – mód pro rozlišení shluků a mód pro rozlišení hustoty. V módu 

rozlišení shluků je využit barevný kanál jas a body jsou vykreslovány v náhodném pořadí. Tímto, 

prolínají-li se dva shluky, body obou shluků jsou v místě průniku reprezentované. V módu hustoty 

jsou body vykreslované s průhledností. Aby byla hustota rozlišitelná, je potřeba nastavit 

průhlednost velmi nízko, okolo 0.1. Shluky lze označovat kliknutím do bodové vizualizace nebo 

kliknutím do vizualizace hierarchie. S klávesou shift lze označit nebo odoznačit více shluků 

najednou. 

 

V nastaveních bodové vizualizace lze kontrolovat velikost bodu a průhlednost. Je-li nastavena 

průhlednost nižší než 1, je použit mód hustoty, jinak je použit mód rozlišení shluků. Je zde také 

nastavení úrovní přiblížení, kdy se má aktivovat vybarvení na další úrovní hierarchie. Další je 

nastavení podvzorkování dat. Při aktivování podvzorkování se vykreslí méně bodů větších bodů, s 

tím že bodů přibývá s přibližováním pohledu. Ostatní nastavení jsou pouze pro testovací účely 

 

Vizualizace hustoty má také dva módy – mód reliéfního stínování a mód konturování. Reliéfní mód 

stínuje plochu tvořenou funkcí hustoty jednotlivých shluků. Mód konturování vytvoří vrstevnici 

funkce hustoty na zadané úrovni hustoty. Módy lze přepínat tlačítkem Contours mode. Výšku 

kontur i rozmezí výšek pro vykreslování reliéfního stínování jsou nastavitelné posuvníky. Tlačítko 

Normalize relief nastaví stínování aby bylo podle relativní změny hustoty namísto absolutní změny 

hustotu. Normalizování reliéfu zkreslí vnímání hustoty, ale umožní vidět i malé změny hustoty. 

 

K dispozici jsou dvě datové sady, Hammer_export.zip a Liechti_export.zip. U každé úlohy je v 

závorce napsáno, jaká datová sada má být použit. Načtení datové sady liechti trvá okolo minutu. 

 

Než začnete řešit úlohy, seznamte se s aplikaci. Vyzkoušejte si konfigurace a módy vizualizace. 



 
 



Úlohy 
 

1. Jsou následující dvojice shluků stejné kategorie? Shluky jsou označeny na obrázku. Nepoužívejte 

označování shluků. (Hammer_export) 

1a, b. 

2a, b. 

3a, b. 

4a, b. 

5a, b. 

6a, b. 

 

 

 

 

 

2. Jaká je kategorie těchto shluků? Nepoužívejte označování shluků. (Hammer_export) 

1a. 

2a. 

3a. 

4a. 

5a. 

6a. 

7. 

 

3. Body některých shluků jsou distribuovány nerovnoměrně, s většinou jejich bodů soustředěných v 

malé části shluku, zatímco ostatní plocha je velmi řídká. Takové shluky lze charakterizovat jako 

střed a rozptýlené body. Které shluky tuto vlastnost projevují nejvíce? Najděte 5 nejvýznamnějších 

a seřaďte je sestupně. (Hammer_export) 

 

1. 

2. 

3. 

4. 

5. 

 

1a. 

1b. 

6a. 

6b. 

2a. 

2b. 

4a. 

4b. 

5a. 

5b. 

3a. 

3b. 

7. 



 

 

4. Soudě podle průměrné hustoty, který shluk je nejřidší a který nejhustší? Jestliže se hustota 

některých shluků zdá být stejná, vypište je všechny. (Hammer_export) 

 

1. 

2. 

 

5.Které shluky se překrývají se shlukem kategorie ‘o’?  Seřaďte sestupně podle odhadované plochy 

průniku. S kolika podshluky shluku ‘o’ překrývají? (Hammer_export) 

 

 

 

6. Který shluk má největší hustotu na vyznačeném místě? Jaké další shluky se zde vyskytují? 

Seřadte sestupně podle hustoty. (Liechti_export) 

 

 

 

 

7. Nalezněte shluky s neobvyklým tvarem nebo distribucí hustoty nebo více středy. (Liechti_export) 

 

 

 

8. Který shluk prostorově nejvíce koreluje se shlukem ‘f’ ? (Liechti_export) 

 

 

 

9. Najděte skupiny blízkých nebo překrývajících se shluků s korelujícím tvarem a rozdělením 

hustoty. Takovýchto skupin může být více. (Liechti_export) 

 

 

 

 

 

 



Ohodnoťte úlohy 1-9 podle obtížnosti (1-nejlehčí, 5-nejtěžší). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

 

Případný komentář k vizualizaci, úlohám 
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