
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's thesis

Martina Kopecká

Methods of interaction with advanced planning and

scheduling systems for production

Study program: Open Informatics
Field of study: Human-Computer Interaction

Thesis supervisor: Ing. Antonín Novák, Ph.D.

2023

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

487030 Osobní číslo:Martina Jméno:Kopecká Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:

Interakce člověka s počítačem Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Metody interakce s pokročilými plánovacími a rozvrhovacími systémy pro výrobu

Název diplomové práce anglicky:

Methods of interaction with advanced planning and scheduling systems for production

Pokyny pro vypracování:
Moderní plánovací a rozvrhovací systémy (tzv. APS) jsou nástroje, které plánovačům pomáhají navrhnout rozvrh a
organizaci výroby zakázek. Reálné použití těchto nástrojů ukazuje, že jednoduché Ganttovy diagramy neposkytují plánovači
dostatečný přehled o parametrech a konsekvencích navrhovaného rozvrhu výroby tak, aby mohl s rozvrhovacím algoritmem
interagovat a dodatečně specifikovat další omezení úlohy. Cílem této práce je navrhnout, vytvořit a vyhodnotit nové metody
interakce s pokročilými plánovacími a rozvrhovacími systémy. Těžiště spočívá v identifikaci potřeb profesionálních uživatelů
APS a v navržení kreativních metod vizualizace a interakce pro práci s navrženými rozvrhy.
1) Seznamte se se stávajícím stavem uživatelských rozhraní a metod interakce s plánovacími a rozvrhovacími systémy
pro výrobu.
2) Vytvořte základní prototyp APS spolu s optimalizačním algoritmem pro zjednodušený model výroby chápaný jako
rozšířený problém rozvrhování projektů s kalendáři zdrojů.
3) Vyhodnoťte uživatelským testováním vhodnost/limitace základních interakčních a vizualizačních komponent nalezeného
rozvrhu s ohledem na potřeby profesionálních uživatelů APS.
4) Navrhněte a implementujte nové metody vizualizace a interakce pro zvolené komponenty APS.
5) Otestujte navržené řešení interakce a vizualizace s profesionálními uživateli APS systémů.

Seznam doporučené literatury:
[1] Goodman, E., Kuniavsky, M. & Moed, A. (2012). Observing the user experience: A practitioner's guide to user research.
Elsevier.
[2] Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014). About face: the essentials of interaction design. John Wiley
& Sons.
[3] Pinedo, Michael L. Scheduling: Theory, Algorithms, and Systems. Vol. 29. New York: Springer, 2012.
[4] Framinan, J. M., Leisten, R., & García, R. R. (2014). Manufacturing scheduling systems. An integrated view on Models,
Methods and Tools, 51-63.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Antonín Novák, Ph.D. katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 09.02.2023

Platnost zadání diplomové práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Antonín Novák, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomantka bere na vědomí, že je povinna vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Declaration

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²keré
pouºité informa£ní zdroje v souladu s Metodickým pokynem o dodrºování etických

princip· p°i p°íprav¥ vysoko²kolských záv¥re£ných prací.

Prague, May 2023 .
Martina Kopecká

v

Acknowledgements

I would like to express my gratitude to my supervisor Antonín Novák for his guidance
and support. I would also like to thank prof. Zden¥k Hanzálek for sharing his invaluable
insights into scheduling.

Special thanks go to the experts participating in the user testing.

Last but not least, I would like to thank Dan Justiz for his help with the revision.

vi

Abstract

This thesis examines the problem of interaction in Advanced Planning and Scheduling
(APS) systems. Even though the role of human planners has proven essential, the support
they receive for their tasks, such as improving a production schedule, remains limited
in state-of-the-art applications. The typical representations of schedules, such as Gantt
charts, are inappropriate for complex problems, mainly due to their limited scalability.
Still, adequate graphical representations can improve understanding. Employing human-
centered design principles, we build a prototype user interface featuring several novel
visualization components, such as advanced capacity analysis, which help planners with
decision-making. To tackle the problem of comparing multiple schedules, we present
a versioning system similar to Git, which professional users of APS systems perceived
positively. We discovered users could e�ectively manipulate the schedules by adjusting the
problem models.

Keywords

Advanced Planning and Scheduling systems, human-centered design, user interface,
production scheduling, exploratory user testing

Abstrakt

Tato diplomová práce pojednává o problematice interakce v pokro£ilých plánovacích a roz-
vrhovacích systémech (tzv. APS). A£koli se ukazuje, ºe role uºivatel·-plánova£· je nezastu-
pitelná, podpora pro úlohy, které °e²í, nap°íklad upravování rozvrhu výroby, je ve stáva-
jících aplikacích omezená. B¥ºné zp·soby reprezentace rozvrh·, jakými jsou nap°íklad
Ganttovy diagramy, jsou pro sloºité úlohy nevhodné, a to zejména kv·li omezené ²kálova-
telnosti. Vhodné gra�cké reprezentace p°esto mohou podporovat porozum¥ní. Za pomoci
princip· designu zam¥°eného na £lov¥ka navrhujeme prototyp uºivatelského rozhraní, které
obsahuje n¥kolik nových vizualiza£ních prvk·, jako nap°íklad pokro£ilou kapacitní analýzu,
které plánova£·m pomáhají s rozhodováním. Abychom vy°e²ili problém porovnávání více
rozvrh·, navrhujeme verzovací systém podobný nástroji Git, který profesionální uºivatelé
systém· APS dob°e p°ijali. Zjistili jsme, ºe uºivatelé mohou s rozvrhem efektivn¥ mani-
pulovat pomocí úprav modelu úlohy.

Klí£ová slova

pokro£ilé plánovací a rozvrhovací systémy, design zam¥°ený na £lov¥ka, uºivatelské
rozhraní, rozvrhování výroby, exploratorní uºivatelské testování

vii

List of Abbreviations

Abbreviation Meaning

API application programming interface
APS advanced planning and scheduling
ERP enterprise resource planning
HTA hierarchical task analysis
IS information system
KPI key performance indicator
MRP material resource planning
PSPLib Project Scheduling Problem Library
RCPSP resource-constrained project scheduling problem
UI user interface
UX user experience
VCS version control system

viii

Contents

1 Introduction 1

1.1 Research Question . 1
1.2 Research Objectives . 2
1.3 Thesis Outline . 2

I Analysis 3

2 Related Work 5

2.1 Decision-Making Behavior . 5
2.2 Interactive Scheduling Systems . 6

2.2.1 Design Model for Scheduling Systems 6
2.2.2 Expert System Approach . 6
2.2.3 Interactive Optimization Approach 6

2.3 Designing for Complex Domains . 7

3 Methodology 9

3.1 Involvement of Domain Experts and Users 9
3.2 Prototyping . 9
3.3 User Testing . 10

4 Planning and Scheduling Systems 13

4.1 Advanced Planning and Scheduling . 13
4.2 Functionalities . 14
4.3 Architecture of a Scheduling System . 14
4.4 User Interfaces of Scheduling Systems . 15

4.4.1 Gantt Chart Interface . 15
4.4.2 Capacity Buckets Interface . 16
4.4.3 Data Table Interfaces . 16

4.5 User Interfaces in Commercial Systems . 17

5 Design Problem 21

5.1 Problem Statement . 21
5.2 Persona Hypothesis . 21

5.2.1 Primary persona . 22
5.2.2 Non-user persona . 22

5.3 Scenarios . 23
5.4 Hierarchical Task Analysis . 23
5.5 Design Requirements . 24

II Prototype 27

6 Model of Scheduling Problem 29

6.1 Resource Constrained Project Scheduling Problem 29

ix

Contents

6.2 Problem Modi�cations . 30
6.3 Constraint Programming Model . 31

7 Solution Prototype I 33

7.1 Key Concepts . 33
7.2 Prototype Technologies . 34
7.3 UI Components . 34

7.3.1 Orders Table and Activities Table 35
7.3.2 Solution Comparison . 35
7.3.3 Capacity Analysis . 36
7.3.4 Pairwise Comparison . 36
7.3.5 Changes . 37
7.3.6 Resource Calendar . 37
7.3.7 Gantt Chart Visualization . 37
7.3.8 Version Tree . 38

8 Prototype I Evaluation 39

8.1 Methodology . 39
8.2 Results . 40
8.3 Discussion . 41

9 Solution Prototype II 43

9.1 Ideation . 43
9.2 Clickable Mockup . 44
9.3 Clickable Mockup Testing . 45
9.4 Coded Prototype . 46

9.4.1 Orders Table and Activities Table 46
9.4.2 Resource Calendar . 47
9.4.3 Capacity Analysis . 48
9.4.4 Solution Comparison and Version Tree 48
9.4.5 Resource Activities . 49
9.4.6 Order Analytics . 49

10 Prototype II Evaluation 51

10.1 Methodology . 51
10.2 Results . 51
10.3 Discussion . 53

11 Conclusion and future work 55

11.1 Ful�llment of the Objectives . 56
11.2 Future Work . 56

Appendix 61

A Design Process Documentation . 61
B User Testing Documentation . 61
C Source Code . 61

x

List of Figures

2.1 Human decision-making model . 5
2.2 Problem-solving loop . 7

3.1 Wizard of the Oz prototype . 10

4.1 Con�guration of a scheduling system . 15
4.2 Gantt chart interface . 16
4.3 Capacity buckets interface . 16
4.4 Data table interface . 17
4.5 Dispatch list interface . 17
4.6 Overview of orders . 18
4.7 Capacity balance . 18
4.8 Gantt chart . 19
4.9 List of products and Gantt chart . 19
4.10 List of operations on a resource . 20

5.1 Avatar of primary persona . 22
5.2 Avatar of non-user persona . 22
5.3 Hierarchical Task Analysis diagram . 24

6.1 Visualization of RCPSP de�nition . 29
6.2 Visualization of RCPSP solution . 30

7.1 Information architecture . 34
7.2 The main page screenshot . 35
7.3 Pairwise comparison window . 36
7.4 Main page with changes panel open . 37
7.5 Resource calendar . 37
7.6 Gantt chart visualization . 38
7.7 Version tree . 38

9.1 Sketches of modi�ed capacity analysis . 43
9.2 Redesigned main interface . 44
9.3 The main interface of the clickable mockup 44
9.4 Modi�ed capacity analysis interface . 45
9.5 Information architecture . 47
9.6 The main page screenshot . 47
9.7 Resource calendar . 47
9.8 Resource in capacity analysis interface . 48
9.9 Resource activities screenshot . 49
9.10 Order analytics screenshot . 50
9.11 Duration x Potential scatterplot . 50

xi

List of Tables

8.1 Pro�les of �rst coded prototype testers . 39

9.1 Pro�les of clickable mockup testers . 45

10.1 Pro�les of second coded prototype testers 51

xii

1 Introduction

In scheduling theory, the problems are usually well-de�ned, and the objectives and pa-
rameters, or at least their probability distributions, are known in advance. In contrast,
real-world planning and scheduling situations often have the traits of so-called wicked
problems named by Rittel and Webber [1], i.e.,

� the problem is ill-de�ned,

� the problem has no stopping rule�the planner stops for considerations that are
external to the problem, e.g., when he runs out of time, money, or patience,

� the solutions are not true-or-false but good-or-bad,

� the set of potential solutions is not enumerable,

� the planner has no right to be wrong.

Therefore, bridging the gap between theory and practice and deploying advanced planning
and scheduling methods in real-world manufacturing environments can be challenging.
Even in recent years, spreadsheet applications have played a major role in production
planning and scheduling and still dominate over Advanced Planning and Scheduling (APS)
systems [2].
The APS systems are software tools that utilize complex mathematical algorithms

to support decision-making about future production [3]. No matter how advanced the
tool may be, sometimes user intervention is necessary. The schedule presented by the
system�which is often not even optimal due to the limited execution time of optimization
procedures�may not satisfy the user's requirements. For instance, he can reject a solution
for some implicit reasons or accept a solution that violates certain constraints [4].
Practice shows that people are superior to computers in some aspects of scheduling.

Speci�cally, McKay and Wiers [5] state that, unlike computers, humans can:

� cope with goals and constraints that may be implicit, incomplete, or erroneous,

� communicate and negotiate with operators on the shop �oor, customers, or suppliers,

� �ll in the missing information required for scheduling.

Yet state-of-the-art interfaces for interaction between the human planner and the sche-
duling system typically incorporate Gantt charts�i.e., horizontal bar charts in which
the x-axis represents time, the y-axis represents the di�erent machines or stages in the
manufacturing process and jobs or activities are depicted as rectangles with basis corres-
ponding to their processing time [6, p. 323]. While the concept of Gantt charts is relatively
easy-to-understand, such visualizations do not provide su�cient support for the scheduling
process in real manufacturing environments due to the limited scalability, explorability, or
reschedulability [7].

1.1 Research Question

As we mentioned earlier, state-of-the-art scheduling systems do not adequately support the
planners. Due to that, the e�ective forms of human-computer interaction in scheduling

1

1 Introduction

systems are an opportunity for further research. Our aim for this work was to investigate
how can the user (i.e., a domain expert in scheduling) manipulate a schedule and keep track
of situation. We re�ned this aim into two main research questions:

(i) What methods of interaction are suitable for manipulation of schedules?
This question aims to identify the methods of interaction that enable manipulating
the schedule.

(ii) How to present the information about schedules to the users?
This question seeks to determine what schedule-related information is valuable and
how it should be presented to the users.

1.2 Research Objectives

Our objectives for this work are following:

� Analyze the forms user interfaces (UI) of APS systems take.

� Create a �rst prototype with typical components of APS system.

� Test the �rst prototype with experts in scheduling and identify their needs.

� Design novel visualization components and interaction methods and implement them
into the prototype.

� Evaluate the prototype with professional users of APS systems.

1.3 Thesis Outline

This thesis consists of two parts (Analysis and Prototype) and contains total of 11 chapters.
The �rst part is dedicated to problem analysis. In Chapter 2, we survey the previous

research on human factors in scheduling. In Chapter 3, we introduce the methodology we
used for designing the interface. In Chapter 4, we describe the APS systems, including their
functionalities, their conceptual architecture and the forms their UIs take. In Chapter 5,
we formulate the design problem using several user experience (UX) design methods.
The second part is dedicated to the development of a solution prototype. In Chapter 6,

we de�ne the model of a scheduling problem we used for simulating the problem-solving
capabilities of the APS system. In Chapter 7, we introduce the �rst version of the
prototype. In Chapter 8, we describe the process of its evaluation. In Chapter 9, we
describe the second coded prototype and the design process toward it. In Chapter 10, we
explain the process of its evaluation.
In Chapter 11, we present the conclusions from the �ndings and outline the directions

for future work.

2

Part I

Analysis

3

2 Related Work

The research on human factors in scheduling is not novel. Decision-making behaviors
of human planners and the concept of interactive production scheduling systems have
been studied. Although previous research provides a broad overview of the tasks complex
decision-making software should assist with, the interaction design of APS systems has
been neglected.

2.1 Decision-Making Behavior

Naturalistic decision-making attempts to understand how people, typically domain experts,
make decisions under challenging conditions such as limited time, uncertainty, high stakes,
or vague goals [8]. Wiers [9] adapted naturalistic models of human decision-making to
describe scheduling situations (Figure 2.1). The distinction between skill-, rule- and
knowledge-based behaviors was introduced by Rasmussen [10]. According to his model,
some problems are solved without conscious control (skill-based level) or with explicit
know-how (rule-based level), while others require the development of a new plan and its
testing against the goal, possibly by trial-and-error (knowledge-based level). This model
gives a broad overview of the cognitive tasks the UI of APS systems should assist with.

initial state

consider more
abstract relations

infer diagnosis and
formulate actions

apply rule

goal state

problem
recognized

routine
actions

yes

no
add new

rules

implement
action

attempts

pattern
familiar?

sk
ill

ba

se
d

ru
le

ba
se

d
kn

ow
le
dg

e
ba

se
d

Figure 2.1: Human decision-making behavior model. Adapted from Wiers [9].

Cegarra [11] attempted to bring laboratory and �eld studies of human behavior in
scheduling situations closer together using a cognitive typology. This cognitive typology
associates seven dimensions�(i) complexity, (ii) uncertainty of information and the future
state of production, (iii) time pressure, (iv) cycle synchronicity, (v) process steadiness,

5

2 Related Work

(vi) process continuity, and (vii) multiple and contradictory objectives�with their related
human strategies and with the implications for scheduling tool design.
For instance, planners manage the complexity by categorizing orders, detecting known

situations, or relaxing constraints. Hence, the interfaces of scheduling tools should support
the identi�cation of situation patterns and allow the user to decide on the �exibility of the
constraints [11].

2.2 Interactive Scheduling Systems

The literature describes two approaches to incorporating human knowledge into the sche-
duling process. In the �rst approach (expert system approach), the system simulates the
behaviors of human planners. In the latter (interactive optimization), the user iteratively
evaluates the solutions and adjusts the problem parameters.

2.2.1 Design Model for Scheduling Systems

Wiers [9] studied why the scheduling systems are (not) used in practice and how human
planners can be supported by scheduling systems. He conducted four case studies and
introduced four concepts important for analyzing and designing scheduling systems.

Autonomy indicates whether shop �oor operators are allowed to perform certain corrective
actions when disturbances occur, or the reaction of a planner is required.

Transparency of the scheduling system in�uences the extent to which the planner feels he
is in direct control of the scheduling procedure.

Level of support for schedule generation is related to sharing responsibilities between
human planners and scheduling systems.

Information aggregation is necessary due to the complexity of scheduling problems. Dif-
ferent levels of information aggregation should be supported.

However, he did not �nish the implementation of the decision support system, and the
model was not evaluated in practice.

2.2.2 Expert System Approach

The idea behind the expert system approach is simple�the scheduling system should
simulate the behaviors of human planners. Kerr and Ebsary [12] found out that the
employee responsible for manual scheduling in a small company had a large amount of
knowledge and a set of apparently successful informal rules in mind. They tried to simulate
his behavior but discovered that it was di�cult to capture a changing knowledge base in
a highly dynamic environment. Fox [13] shows another problem with this approach:

Problems like factory scheduling tend to be so complex that they are beyond the
cognitive capabilities of the human scheduler. Therefore, the schedules produced
by the scheduler are poor; nobody wants to emulate their performance.

2.2.3 Interactive Optimization Approach

In interactive optimization, the user is involved in the optimization process and can change
the result or performance of the optimization (human-in-the-loop approach) [14]. These
methods have already been applied in commercial APS software.

6

2.3 Designing for Complex Domains

Liu et al. [15] provide a theoretical framework (problem-solving loop, see Figure 2.2) for
understanding the high-level user goals and processes in interactive optimization. There are
two main loops�the model-de�nition loop captures the development of the mathematical
optimization model, whereas the optimization loop captures the use of the model by the
end-user and the support for decision-making.

Problem
domain

General
optimization

model
Problem
instance

Candidate
solution

List of
ranked

solutions
Recom-

mendation
Final

decision

Exact and
simplify

Setup
parameters (Re)solve

Evaluate or
compare Decide Review

Critical
feedback

ReevaluateImprove

Guide

RefineUnderstand
problem

Optimization loop

Model-definition
 loop

Problem-solving loop

Figure 2.2: Problem-solving loop. Tasks that should be supported by the interactive tool
are underlined. Adapted from Liu et al. [15].

Liu et al. [16] list several recommendations on designing interactive optimization systems.
According to their suggestions, the system should:

� provide appropriate visual representations of solutions and constraints,

� support user modi�cations of the optimization model,

� allow direct modi�cation of solutions,

� support comparison of solutions,

� record solution provenance.

2.3 Designing for Complex Domains

APS systems are an example of so-called complex applications for specialized domains.
Unlike generalist applications for everyday domains, which �enable non-specialized users
to complete largely discrete, linear tasks organized around well-structured goals�, complex
applications require expertise and support broad, unstructured goals or non-linear work-
�ows [17].
Typically, there are many sources of complexity, including the volume of data and the

need to analyze it (information complexity), unstructured goals and broad tasks (intention

7

2 Related Work

complexity), or competing environmental elements, interruptions, and distractions for users
(environmental complexity) [17].
Visual analytics, i.e., combining automated analysis techniques with interactive visuali-

zations, seem promising for tackling the information complexity [18, p. 7]. This concept
appears applicable even for the design of APS systems. Unfortunately, it is not a mature
technology, and no guidelines for designing such applications exist [18, p. 147].
Kaplan [19] provides general recommendations, such as incorporating domain experts

throughout the design process or adapting traditional UX methods if the designers struggle
to apply them. Nathan [20] states that the experts can tolerate bad UI but de�nitely will
not tolerate bad content. In his experience, the experts are particularly change-averse and
distrust the tools that claim they have anywhere near the expertise that the experts do.

8

3 Methodology

Our methodology is built upon the basic principles of human-centered design�an approach
to the design of interactive systems that puts focus on the users and their needs or
requirements while applying human factors and usability knowledge and techniques [21].
We aim to understand the needs of APS system users and generate novel design ideas
based on that. The design process is iterative, with three main pillars:

(i) involvement of users and domain experts,

(ii) prototyping, and

(iii) exploratory user testing.

3.1 Involvement of Domain Experts and Users

We cooperated with the experts throughout the whole design process. User research was
not just a single event taking place in the beginning. Instead, we adopted the continuous
discovery principle from Lean UX framework�the research activities are built into every
sprint [22, pp. 74�76]. We recruited the users using criteria described in Section 3.3. In
the early phase, we informally presented our ideas to the experts. Later on, we asked the
users to test the prototypes and provide feedback.
This approach helped us understand the complex domain and uncover the needs and

expectations the users have.

3.2 Prototyping

A prototype is an approximation of an experience with the product in question. Software
prototypes are typically distinguished in terms of their �delity, high-�delity prototypes are
more similar to the �nal product. In contrast, low-�delity prototypes di�er from the �nal
product in visual appearance, interaction style, or level of detail and are more sketchy.
Other di�erences between prototypes arise from the choice of medium, which, in the case
of software applications, may be either paper or computer [23]. The choice of the correct
medium and level of �delity depends on the audience, the objectives of the prototype, and
the time available to create it [22, p. 58].
Our primary objective was to design an interactive tool that supports planners in

analyzing a schedule and improving the problem model. We focused on this part of the
work�ow�on which the most user e�ort is expended�rather than on the overall experience
with the APS system. Rubin and Chisnell [24, p. 31] state that the prototype should
show enough functionality to address the particular test objective. There exist methods
for simulating system responses without coding, such as Wizard of the Oz prototyping
(Figure 3.1) [25]. However, scheduling system responds with schedules and analytical
data�which are harder to mock than to code. Therefore, the �rst prototype we created
and tested with users was an interactive coded prototype.
The second type of prototype we created was a clickable mockup, which we used to

validate new visualizations and the information architecture.

9

3 Methodology

provides input

provides feedback
simulates system reactions

operator (“wizard”) test participant

Figure 3.1: Wizard of the Oz prototype1.

3.3 User Testing

The purpose of the prototype is to test the design ideas. Goodman and Kuniavsky
[26, p. 274] distinguish four types of usability tests: (i) exploratory to test preliminary
concepts and evaluate their promise, (ii) assessment to test features during implementation,
(iii) comparison to assess one design against another, and (iv) validation to certify that
features meet certain standards and benchmarks late in the development process.
Given that the main objective of prototyping was to design a tool that supports users

in modeling a scheduling problem, testing aimed to evaluate the promise of the design
ideas to such support. The testing was based on solving a scheduling problem described
in Chapter 6 in the interface.
We used qualitative methods of evaluation. The �rst method was an asynchronous

testing allowing the users to test on their own. We got their feedback from self-reports and
a group interview we held afterward. The second method we used was traditional in-person
moderated testing. The users were asked to verbalize their thoughts (so-called think-aloud
protocol [24, p. 54]) while interacting with the scheduling system, analyzing the situation,
and proposing strategies for model improvement. In case they were stuck, the moderator
provided them with clues.
The tests have to be conducted with relevant users to provide valid information. In

general, two factors of user recruitment shall be considered�the representativeness of the
sample and the size of the sample. The representativeness of users can be determined by
age, gender, education, job responsibility or domain expertise, technical experience, and
experience with speci�c software or hardware [27, p. 274]. Regarding the sample size, Virzi
[28] states �80% of the usability problems are detected with four or �ve subjects�. However,
the optimal number of participants should be given by the available resources such as
money, time, or number of participants willing to help [27, p. 276].
In this particular case, the evaluators should have a background in the �eld of production

scheduling. Hence we considered the domain expertise in production scheduling and pro-
fessional experience with APS system signi�cant�we wanted to recruit the users who were
already familiar with some APS system rather than novices. However, this signi�cantly
limits the number of users that can be recruited. Moreover, the experts often have limited
time available. Due to that, it is often necessary to violate the best practices in user
testing. A typical workaround is to replace the experts with undergraduate students and

1Icons from https://flaticon.com.

10

https://flaticon.com

3.3 User Testing

have them evaluate the tool; yet it is unclear to what extent the results found carry to real
users [18, p. 133].
We ought to get domain-speci�c feedback, and we were able to recruit several experts on

scheduling experienced with APS systems. However, their number was insu�cient to test
the interface with a new set of participants for every study, so we reused them in multiple
iterations. We also conducted one study asynchronously because of their busy schedules.
Nevertheless, it is rather challenging to evaluate the support the tool gives for decision-

making�for example, it is not always possible to trace if the user made the discovery
through the use of a visualization [29]. While the methodologies for evaluating such tools
remain an open research problem, qualitative studies appear to be particularly suitable
[18, p. 136]. The scenarios the users solve during the testing should simulate the situations
in which they would be using the system [26, pp. 283�285]. In this case, we acted like the
managers and named them several priority orders and the desired state, but otherwise,
we let anything up to them�like in the real-world setting. However, the set of possible
solutions is not enumerable, and it is hard to determine an optimal �ow to compare their
performance with.
If we discover any usability issues, we rate their severity using the terminology and scale

of Nielsen [30]:

� cosmetic problem only�need not be �xed unless extra time is available on the project,

� minor usability problem��xing this should be given low priority,

� major usability problem�important to �x, so should be given high priority,

� usability catastrophe�imperative to �x this before the product can be released.

11

4 Planning and Scheduling Systems

A planning and scheduling system is a software application built upon planning and
scheduling models and methods. It can be viewed as a particular case of information
system (IS) supporting business functions [6, pp. 291�297].
In this chapter, we discuss APS systems. We list some of their general functionalities,

and describe the conceptual architecture. Besides that, we introduce the typical forms the
user interfaces of scheduling systems take.

4.1 Advanced Planning and Scheduling

The boundary between planning and scheduling is di�use. Kreipl and Pinedo [31] explain
terms �medium term planning models� and �detailed scheduling models� as follows:

A medium term production planning model typically optimizes several consecuti-
ve stages in a supply chain (i.e., a multi-echelon model), with each stage having
one or more facilities. Such a model is designed to allocate the production of
the di�erent products to the various facilities in each time period, while taking
into account inventory holding costs and transportation costs.

A short term detailed scheduling model is typically only concerned with a single
facility, or, at most, with a single stage. Such a model usually takes more
detailed information into account than a planning model.

The APS systems are software tools supporting planning and scheduling with optimiza-
tion algorithms. While Hvolby and Steger-Jensen [3] state that no common de�nition of
APS system exists, they name its main features:

APS systems utilize complex mathematical algorithms to forecast demand, to
plan and schedule production within speci�ed constraints, and to derive optimal
sourcing and product-mix solutions. [. . .] Still, the decision-making is done by
planners with insight in the particular supply chain and know how on the system
constraints but likewise important: a feeling for feasibility of created plans.

The APS systems do not substitute other business IS that support planning and schedu-
ling, such as Enterprise Resource Planning (ERP), but rather they supplement them. APS
systems take over the planning and scheduling tasks, while ERP systems are still required
as transaction and execution systems for orders [32]. Unlike the ERP system, the APS
system typically has only a few users in the organization [33].

13

4 Planning and Scheduling Systems

4.2 Functionalities

Framinan et al. [6, pp. 300�302] state that the main business functions targeted by the
system (scope of the system) are based on the three-level classi�cation of planning and
scheduling introduced by Aytug et al. [34]: (i) production planning, (ii) release scheduling,
and (iii) reactive scheduling. The �rst two levels predict the production plan and schedule,
and the third is more involved with reacting to the current local situation (e.g., machines
break down or managers submit high-priority items). The scheduling system should
adequately cover all these levels, and functionalities regarding the monitoring and execution
of the planned schedules should be integrated [6, pp. 300�302].
The general functionalities (or functional requirements) of scheduling systems were

classi�ed by Framinan et al. [6, pp. 300�315]. Selected functionalities are listed below.

Modeling requirements relate to the modelization of the shop �oor. That is, the system
should have the ability to work with a simpli�ed subset of shop �oor constraints; the
system should transform schedules provided by the solution procedure into starting
and �nishing times of jobs.

Problem-solving functionalities are associated with the solution procedures. The system
should support a group of algorithms for scheduling and rescheduling.

Solution-evaluation functionalities include the evaluation of solutions to di�erent objec-
tives and the analysis of scenarios (what-if analysis).

Capacity analysis functionalities refer to the ability to detect critical points and slacks
in the schedule or instance. This includes the detection of potential bottlenecks and
under-loaded sources.

Rescheduling functionalities include monitoring of the schedule execution and (automatic)
triggering of rescheduling functions.

User interface requirements contain manipulation of schedules.

Integration with existing IS means that the system should be able to import the required
data and export the results from (to) the other organizational systems, and it should
perform the data checking.

The speci�c functionalities of the scheduling system depend on the industrial setting.
The customer's needs may be satis�ed with a customized generic system, or, in many
instances, application-speci�c systems (or modules) have to be developed [35, pp. 476�
479].

4.3 Architecture of a Scheduling System

According to Pinedo [35, pp. 460�467], a scheduling system typically consists of multiple
di�erent modules (see Figure 4.1). Various types of modules can be categorized as follows:

� database, object base, and knowledge-base modules,

� modules that generate the schedules, and

� user interface modules.

The scheduling tool is usually integrated with other organizational IS, such as shop �oor
control system, Material Resource Planning (MRP) system, or ERP system.

14

4.4 User Interfaces of Scheduling Systems

Database management system

Automatic schedule generator

Graphical user interface

Order
master file

Shop floor
data

collection
system

Schedule editor Performance evaluation

Figure 4.1: Con�guration of a scheduling system. Adapted from Pinedo [35, p. 461].

Database management subsystem needs various basic functionalities, including multiple
editing, sorting, and searching routines. Both data independent upon schedule (static) and
dependent upon schedule (dynamic) are stored [35, pp. 462�467].
Modules that generate the schedules may utilize a variety of scheduling techniques,

including hybrid approaches. One approach to scheduling is algorithmic or optimization,
and the others are knowledge-based or constraint programming [35, p. 467].
User interface modules are further described in the following section.

4.4 User Interfaces of Scheduling Systems

According to Pinedo [35, p. 470], UI that present information regarding the schedules
can take many di�erent forms. Interactive scheduling tools typically use a Gantt chart
as their primary interface for schedule manipulation [36]. Nevertheless, multiple interfaces
are typically implemented in the APS system. For instance, Gantt chart, capacity buckets,
and data table interfaces are implemented in Opcenter APS1, a commercial APS system.

4.4.1 Gantt Chart Interface

Gantt charts (Figure 4.2) are typically presented as horizontal bar charts, with the horizon-
tal axis representing the time and the vertical axis displaying the various resources. Users
typically interact with the Gantt chart using a mouse. They can scroll over the timeline

1https://www.plm.automation.siemens.com/global/en/products/opcenter/aps.html

15

https://www.plm.automation.siemens.com/global/en/products/opcenter/aps.html

4 Planning and Scheduling Systems

or �drag and drop� activities within the schedule. However, manipulating solutions can
have side e�ects, such as a cascading e�ect where moving one activity may require moving
other activities as well to maintain feasibility [35, pp. 470�476].

Figure 4.2: Gantt chart interface. Screenshot from Opcenter APS.

While Gantt charts are well-known and relatively easy-to-understand [6, pp. 323�324],
they have limitations, especially in terms of scalability. In typical manufacturing schedules
with dozens of resources and hundreds of activities on each resource, the screen can become
cluttered and it may be di�cult to recognize which bar corresponds to which job [7].
Furthermore, the capacity to display all parameters is rather limited, which may hinder
the ability to make well-informed decisions [36].

4.4.2 Capacity Buckets Interface

In capacity buckets interface (Figure 4.3), the time axis is partitioned into a number of
time slots or buckets. For each machine, the processing capacity of a bucket is known. The
interface displays the percentage of the capacity utilized in each time segment [35, pp. 474�
475]. It is primarily an output interface, and interactivity is not required [6, p. 325].

Figure 4.3: Capacity buckets interface. Screenshot from Opcenter APS.

4.4.3 Data Table Interfaces

The schedule can be displayed in a data table (Figure 4.4), i.e., a table where rows are
orders or activities and columns are their parameters. Tables usually do not �t the screen,
vertically nor horizontally. Thus, �ltering, reordering, and hiding rows and columns and
sorting rows should be easy to accomplish [37].
A dispatch list interface (Figure 4.5) is another form of displaying schedule information,

similar to the data table. It is a list of the jobs to be processed on each machine in the
order in which they are to be processed [35, pp. 472�474].
The data table interfaces do not have the disadvantages of Gantt charts since the user

can �nd an activity in the list by its number. On the other hand, these interfaces do not

16

4.5 User Interfaces in Commercial Systems

Figure 4.4: Part of data table interface. Screenshot from Opcenter APS.

have the advantages of Gantt charts, i.e., the planner does not have a clear view of the
schedule relative to the time [35, pp. 472�474].

Figure 4.5: Dispatch list interface. From Pinedo [38].

4.5 User Interfaces in Commercial Systems

For reference, we also gathered several screenshots (Figures 4.6�4.10) from APS Fabrio2,
a commercial APS system. It uses most of the basic components and views we enumerated
in the previous section.
Views are organized using the module tabs pattern, only one module is visible at a time,

and the user clicks on tabs to bring di�erent modules on top [39, pp. 155�158]. The
UI relies heavily on the use of data tables with conditional formatting, which is used to
present the state of an operation (Figure 4.6, Figure 4.10) or to highlight a value (Figure 4.7,
Figure 4.10). Cumulative data about the utilization of resources are presented in a capacity
buckets interface (Figure 4.7).
The schedule is also presented as a Gantt chart (Figure 4.8, Figure 4.9). These screen-

shots support the belief that the capabilities of the Gantt chart to display the schedules

2http://merica.cz/cs/products/fabrio/

17

http://merica.cz/cs/products/fabrio/

4 Planning and Scheduling Systems

in real-world environments are limited. For example, the visual representation appears
cluttered, visual searching for a speci�c activity is di�cult, or shorter activities are hard
to be targeted with a pointer.

Figure 4.6: Overview of orders with a list of operations. Screenshot from APS Fabrio.
Names of the clients were intentionally blurred.

Figure 4.7: Capacity balance interface is using coloring for highlighting critical values.
Screenshot from APS Fabrio.

18

4.5 User Interfaces in Commercial Systems

Figure 4.8: Gantt chart interface. Screenshot from APS Fabrio.

Figure 4.9: List of products and Gantt chart. Screenshot from APS Fabrio.

19

4 Planning and Scheduling Systems

Figure 4.10: List of operations on a resource. Screenshot from APS Fabrio.

20

5 Design Problem

In this chapter, we describe the �ndings we made throughout the design process with
several UX design methods�personas (Section 5.2), scenarios (Section 5.3), task analysis
(Section 5.4) and design requirements (Section 5.5).

5.1 Problem Statement

Marigold Engineering, Inc. is a well-established company in the machinery
industry that processes large business-to-business projects and delivers highly-
customized solutions to its customers. Given that their manufacturing processes
are very complex, proper scheduling is necessary. Hence, they employ a pro-
fessional planner who develops a production schedule on daily basis. While he
uses an APS system in his job, the support for his tasks, such as improving a
schedule, is inadequate, and his employer would like him to be more e�ective.

5.2 Persona Hypothesis

The characteristics and goals of expected end-users and relevant non-users are often repre-
sented as personas, �ctive human beings. This user model is successful because it �engages
empathy of the design and development team around the users' goals� [40, p. 66]. While
several personas may be identi�ed, the interface design is mainly targeted at one primary
persona whose needs and goals �can be completely and happily satis�ed by a single interface
without disenfranchising any of the other personas� [40, p. 87].
Traditionally, personas are constructed from qualitative research. Goals and other attri-

butes are derived from the behaviors of users and potential users. According to Cooper
et al. [40, p. 83], the most important distinction between behavior patterns of personas
emerges by focusing on the following types of variables:

� activities�what the user does; frequency and volume,

� attitudes�how the user thinks about the product domain and technology,

� aptitudes�what education and training the user has; ability to learn,

� motivations�why the user is engaged in the product domain,

� skills�user abilities related to the product domain and technology.

The �ndings we made throughout the design process suggest that the design of the
scheduling system should be targeted at the following personas:

� Rudolf, the production planner (primary persona),

� Milada, the manager (non-user persona).

We constructed the personas mainly from the domain experts' knowledge of the users.
Thus, these personas should be considered provisional�the demographics are not based
on real data, and the goals and behaviors were obtained from domain expert interviews
rather than users. Still, provisional personas yield better results than no user models [40,
p. 97].

21

5 Design Problem

5.2.1 Primary persona: Rudolf, the production planner

Figure 5.1: Avatar of Rudolf1.

Rudolf (Figure 5.1) is an employee of Marigold Engineering, Inc. in his mid-
�fties. He has been working there as a production planner for nearly two
decades.

Rudolf's primary job responsibility is to develop a production schedule regularly.
Therefore, the scheduling software helps him in his day-to-day job. Before
his company adopted an APS system, he used to work with a spreadsheet
application, and he still prefers to see the data in tabular form.

Moreover, he does not like rapid changes in the tool. Yet, after a bit of training,
he is always able to learn to understand new patterns (e.g., what the orange
frame means or that he should look at the second line of the table before doing
anything else) and he eventually becomes more e�cient.

In order to create a better schedule, he directly communicates with shop-�oor
operators very often (e.g., he can request increasing the production capacity).

Milada�just like anyone who is not familiar with the system�says �he does
some magic he apparently understands and is somewhat successful in it�.

5.2.2 Non-user persona: Milada, the manager

Figure 5.2: Avatar of Milada1.

Milada (Figure 5.2) is a manager in Marigold Engineering, Inc. in her early
thirties. She has been working there since she was a business school student.

Milada's main mission is to keep the clients satis�ed, i.e., ensure they get their
products in time. In general, she is responsible for ful�lling the business goals
such as pro�t or retaining important customers. Nevertheless, she does not
work directly with the APS system and is interested only in the results.

1Image from https://flaticon.com.

22

https://flaticon.com

5.3 Scenarios

5.3 Scenarios

Persona-based scenarios are narrative descriptions of one or more personas using the future
product to achieve speci�c goals [40, pp. 105�106]. It is a speci�c story with developed
characters�which have goals and motivations�context and a well-formed plot [41].

Scenario 1

Rudolf is about to develop a production schedule for December. Milada named
him six orders that have to be �nished before the factory is shut down for the
Christmas holidays. The system's initial solution did not meet this requirement,
three of these orders would be �nished after New Year's Day.

He adds deadlines to the three tardy orders, clicks the button �Apply changes�
and waits for nearly 20 minutes until he gets a new solution where all prioritized
orders are �nished in time but one. To free some capacity, he postpones the
orders from a client who is, according to Milada, always late with payments.
Now he gets a new schedule that is satisfactory.

Scenario 2

While Rudolf was bragging about a great schedule to his colleague, his phone
started ringing. Milada was on the line. She told him that he has to rework
it�a highly reputed client insists on an earlier delivery date. Rudolf goes to
his computer, �lters out this order, and tightens its deadline. He generates a
new schedule, worse in some metrics. Nevertheless, both the client and Milada
are happy.

Scenario 3

The order from client �Cars&Trucks� has to be �nished as soon as possible.
First, Rudolf �lters out this order in the table and marks it as selected. He
tries to increase its weight, but it does not help him. In the detailed table with
individual jobs and their requirements, the production line PL-42 is displayed
in red, meaning it is over-utilized. Hence, he looks at the capacity table and
�nds out that this production line operates only for 8 hours a day.

He calls the leader of PL-42 and asks him if it would be possible to increase
the capacity somehow. The leader says his subordinates are willing to work on
the �rst Saturday. Rudolf opens the calendar of resource PL-42, adds the �rst
Saturday as a working day, and generates a new schedule. As he can see in the
overview, the tardiness of this order is reduced.

5.4 Hierarchical Task Analysis (HTA)

According to Rosala [42], task analysis is �a systematic study of how users complete tasks
to achieve their goals�. The information about goals and tasks is gathered by observing
and interviewing users or domain experts. The analysis often results in a graphical repre-
sentation called a task-analysis diagram. The way users accomplish their goals is captured
through plans, which de�ne what the order of steps is and which steps might be undertaken
by whom. HTA is a particular type of task analysis where the tasks can be broken down
into subtasks.

23

5 Design Problem

In the case of the manufacturing scheduling system, the user's goal is to create a
production schedule (Figure 5.3). The tasks the user completes are typical in interactive
scheduling systems (see Subsection 2.2). The full version of HTA diagram is in Appendix A.

Create a production
schedule

0.

View existing
solutions

1.
Compare
solutions

2.
Edit working

solution

3.
Reschedule

4.
Reschedule

4.
Select a final

solution

5.

Figure 5.3: A short version of HTA diagram. Leaf nodes are underlined.

5.5 Design Requirements

Design requirements determine what information and capabilities personas require to ac-
complish their goals [40, pp. 106�107]. We extract the design requirements from context
scenarios, which �describe the broad context in which that persona's usage patterns are
exhibited� [40, p. 113], including environmental and organizational considerations.

Design Requirements 1�4

Context scenario:

When Rudolf develops a new schedule, he uses some working solution as a
basis. Unfortunately, the solution does not satisfy him completely, so he adds
new constraints. While he knows some schedule improvement strategies, they
are not always successful.

Implied needs:

(i) Rudolf needs to have some working solution as a basis for the new problem model.

(ii) Rudolf needs to change the constraints.

(iii) Rudolf needs to run the rescheduling procedures at some time.

(iv) Rudolf needs to return to previous solutions.

Design requirements:

R1. User should develop a problem model based on the existing one.

R2. User should be able to set some constraints manually.

R3. User should be able to initiate the rescheduling at any time.

R4. User should be able to return to previous solutions.

24

5.5 Design Requirements

Design Requirements 5�6

Context scenario:

There are dozens of actions Rudolf can take to improve the proposed schedule.
However, he is limited by time, and scheduling can be lengthy, so he has only
a few attempts. He knows e�ective strategies for some cases, but he has to
identify the situation. Sometimes, the problem is in capacity, and sometimes
there is a lack of material, etc.

Implied needs:

(i) Rudolf needs to be e�ectively supported in the decision-making process.

(ii) Rudolf needs to identify the situation.

(iii) Rudolf needs to see several representations of the schedule.

Design requirements:

R5. User should be supported in the decision-making process.

R6. User should be given multiple views on the schedule.

Design Requirement 7

Context scenario:

Scheduling can be a lengthy process, and the optimization procedure can take
up to twenty minutes. During that twenty minutes, Rudolf might focus on
something else. Hence, he sometimes forgets what parameters he has changed.

Implied need :

(i) Rudolf needs to see what parameters of the problem he has changed.

Design requirement :

R7. User should see what changes he has done.

Design Requirements 8�10

Context scenario:

When Rudolf develops a schedule, he considers a few alternatives. He has to
pick one �nal solution, yet his time is limited. In addition, some clients are
more pro�table than others, and Rudolf has to make sure they are satis�ed.

Implied needs:

(i) Rudolf needs a method to evaluate a solution quickly.

(ii) Rudolf needs to compare multiple alternative solutions.

(iii) Rudolf needs to see if the orders from particular clients are processed optimally.

Design requirements:

R8. User should be able to assess the quality of a solution.

R9. User should be able to compare metrics of multiple solutions.

R10. User should be able to assess the quality of a solution for particular orders.

25

Part II

Prototype

27

6 Model of Scheduling Problem

Proper validation of design ideas would not be possible without an appropriate scheduling
problem to be solved. Therefore, we modi�ed Resource-Constrained Project Scheduling
Problem (RCPSP) to serve as a model for a real-life industrial scheduling problem.

6.1 Resource Constrained Project Scheduling Problem

RCPSP is formally de�ned by a 6-tuple (V , p, E, R, B, b) [43]. A visualization of the
RCPSP de�nition is presented in the following �gure (some of the edges are omitted as
precedence relations are transitive):

A1 A3

A4

A5

A2

A6A0

B1

B2

Figure 6.1: Visualization of RCPSP de�nition. Width of a node (activity) corresponds to
its processing time; resource consumption is above each node; edges represent

precedences. Adapted from Laborie [44].

Activities of the project are de�ned by a set V = {A0, A1, . . . , An, An+1} where activities
A0 and An+1 are dummy activities representing the start and the end of the schedule,
respectively.
The set of non-dummy activities is identi�ed as A = {A1, . . . , An}.

Durations are represented by a vector p ∈ Nn+2, where pi is the duration of the activity
Ai and p0 = pn+1 = 0 by de�nition.

Precedence relations are given by a set E such that a tuple (Ai, Aj) ∈ E if and only
if Ai precedes Aj . The precedence relations can also be represented by a directed
graph G = (V ′, E′) where vertex v ∈ V ′ corresponds to an activity Av ∈ V and arc
e = (i, j) ∈ E′ corresponds to a precedence relation (Ai, Aj) ∈ E.
The activities A0 and An+1 are predecedors and successors to all, respectively.

Renewable resources are represented by a set R = {R1, . . . , Rq}.

Availabilities of resources are represented by a vector B ∈ Nq such that Bk denotes
availability of Rk.

Demands of activities for resources are formalized by b, a (n+ 2)× q integer matrix, bik
represents the amount of resource Rk used per time unit during the execution of Ai.

29

6 Model of Scheduling Problem

Schedule is a vector S ∈ Rn+2 such that Si represents the start time of activity Ai.
Ci = Si + pi denotes the completion time of activity Ai.
A feasible solution of RCPSP has to be compatible with both the precedence constraints

(Equation (6.2)) and the resource constraints (Equation (6.3)) [43]. Equation (6.1) repre-
sents the set of non-dummy activities in process at time t.

At = {Ai ∈ A | Si ≤ t < Si + pi} (6.1)

Sj − Si ≥ pi, ∀(Ai, Aj) ∈ E, (6.2)∑
Ai∈At

bik ≤ Bk, ∀Rk ∈ R, ∀t ≥ 0. (6.3)

The objective of RCPSP is to �nd a non-preemptive (activities cannot be paused during
their execution) schedule S of minimal makespan Sn+1 = Cn+1 = Cmax subject to pre-
cedence constraints and resource constraints [43]. In the 3-�eld problem classi�cation
introduced by Graham et al. [45], RCPSP can be viewed as PS | prec |Cmax.
In the case of the instance de�ned by Figure 6.1, a visualization of the optimal solution

is provided in Figure 6.2.

2 4

4 521

1

3

5R1

R2

Figure 6.2: Visualization of RCPSP solution for the instance de�ned in Figure 6.1.

The Project Scheduling Problem Library (PSPLib)1 provided initial problem instances
for RCPSP.

6.2 Problem Modi�cations

While the standard RCPSP is one of the most intractable classical scheduling problems
[43], it does not simulate the real-life industrial scheduling problem users solve in APS
su�ciently. We aim to model a production plant where orders from multiple clients are
processed, having some shipping dates and priorities. The factory has multiple production
lines where employees work in varied shifts. Production is continuous, so the Cmax criterion
is insigni�cant.
Thus, we altered the RCPSP both in the objective, which is dependent on weight wj and

due date dj , and hard constraints (resource calendars, deadlines d̃j , release times rj). In
addition, the precedence graph is split into multiple components representing orders from
di�erent clients. The parameters dj , wj , d̃j , and rj are assigned to components instead of
individual activities.
In summary, the process of instance modi�cation consists of multiple tasks:

� relaxing some precedence relations,

� adding due dates to components,

� adding weights to components,

� adding operating hours to resources, and

� adding deadlines and release dates to components.

1https://www.om-db.wi.tum.de/psplib/main.html

30

https://www.om-db.wi.tum.de/psplib/main.html

6.3 Constraint Programming Model

Precedence graphs of RCPSP instances are connected, i.e., they have a single component.
However, to better model the existence of several orders consisting of multiple operations,
some of the precedence relations are removed, and the graph is split into a set of components
M = {M1, . . . ,Mr}, where Mj ⊆ {0, 1, . . . , n + 1} and Mj ∩ Ml = ∅ if j ̸= l. Multiple
PSPLib instances can be merged into one to create a more complex instance.
Each of the graph components has a due date assigned. The generation procedure uses

a scheme proposed by Hall and Posner [46]. In this scheme, the due date dj of the com-
ponent Mj depends on a constant K ≥ 0, a functional hj and a random variable Xj

(Equation (6.4)).

dj =

{
K if j = 1,

hj(p1, . . . , pn, dj−1) +Xj if j > 1.
(6.4)

In our implementation, the components are sorted randomly, hj depends on the length
of the critical path of the component Mj (i.e., the longest path between the �rst and the
last node in the precedence graph), and Xj is normally distributed (Xj ∼ N (−4, 10) by
default, but parameters can be changed).
Resources can process activities only at given times. Due to that, tasks have to be pre-

emptive�execution of activity Ai is paused when any of the resources demanded by Ai

becomes unavailable and continues once all necessary resources are in operation. According
to Kreter et al. [47], the calendar for resource Rk ∈ R is a step function Calk(·) : [0,∞) →
{0, 1} continuous from the right at the jump points, where the condition

Calk(t) =

{
1, if period [⌊t⌋, ⌊t+ 1⌋) is a working period for Rk,

0, if period [⌊t⌋, ⌊t+ 1⌋) is a break period for Rk,
(6.5)

is satis�ed. An activity calendar CalVi (·) : [0,∞) → {0, 1} is derived from the resource
calendars as follows:

Ri = {Rk ∈ R | bik > 0}, (6.6)

CalVi (t) =

{
minRk∈Ri Calk(t), if Ri ̸= ∅,
1, otherwise.

(6.7)

6.3 Constraint Programming Model

Constraint satisfaction problem P is a triple P = (X ,D, C) where

� X = (x′1, . . . , x
′
n) is a n-tuple of variables,

� D = (D′
1, . . . , D

′
n) is a n-tuple of domains such that xi ∈ D′

i, and

� C = (C ′
1, . . . , C

′
t) is a t-tuple of constraints.

A constraint C ′
i = (R′

i, S
′
i) is a relation R′

i de�ned on a scope S′
i, S

′
i ⊆ X [48, p. 25].

In the modi�ed version of RCPSP, the variables are starting times of activities, and the
domains are D′

i = {ri, ri + 1, . . . , min(d̃i,UB)}. In this model, tardiness (Equation (6.8))
depends on the completion time of the component; the function Ci(Si) (Equation (6.9)) is
the completion time of activity Ai if the execution starts at time Si.

Tj = max
i∈Mj

(Ti) = max
i∈Mj

(Ci − dj , 0), (6.8)

Ci(Si) = min
{
t |

t−1∑
τ=Si

CalVi (τ) = pi

}
. (6.9)

31

6 Model of Scheduling Problem

The objective is to minimize the weighted tardiness of components (Equation (6.10))

min

|M|∑
j=1

wj · Tj , (6.10)

subject to the precedence constraints (Equation (6.11)), the calendar constraints (Equa-
tion (6.12)), the resource constraints (Equation (6.13)) and the constraints given by dead-
lines (Equation (6.14)) and release times (Equation (6.15)).

Sj ≥ Ci(Si), ∀(Ai, Aj) ∈ E, (6.11)
Ci(Si)∑
t=Si

CalVi (t) = pi, ∀Ai ∈ V, (6.12)

∑
Ai∈At

bik ≤ Bk, ∀Rk ∈ R, ∀t ≥ 0, (6.13)

max
i∈Mj

(Ci) ≤ d̃j , ∀Mj ∈ M, (6.14)

min
i∈Mj

(Si) ≥ rj , ∀Mj ∈ M. (6.15)

32

7 Solution Prototype I

This chapter describes the �rst version of the interactive scheduling system prototype. The
purpose of this prototype was to model a simple UI of a scheduling system that allows the
users to interactively improve the problem model. Prototype evaluation is described in
Chapter 8.

7.1 Key Concepts

We expect the user to select some working solution, edit model parameters, and trigger
scheduling procedures�and repeat this until he �nds a solution that satis�es him.
The user can select any existing solution and build a new model on its basis. After

he �nishes building a model, he can trigger the solver and generate a new version of the
solution. Hence, there is a relation between di�erent problem models; a model has all para-
meters of its predecessor and some additional changes. Tracking changes and the ability to
recall any previous model is the basic idea of version control systems (VCS) such as Git1,
which inspired us.
Interactions with a schedule are indirect. We do not allow for manipulating the output

for several reasons:

� moving one activity in time may cause cascading e�ect,

� execution of orders as a whole is more important than the execution of activities,

� moving one activity may not help with the execution of the whole order,

� moving the whole order means moving multiple activities, which is inconvenient.

Instead, the user can steer the optimization procedure by setting several constraints of the
problem (release times, deadlines, order weights, and resource calendars).
Deadlines and release times help the user with moving the orders in time. Deadlines

are useful when he wants to ensure that the order gets �nished in time or no schedule
is generated. With release times, the user can intentionally delay the execution of some
orders, for example, when problems with capacity occur. When the user sets both the
release time and deadline to the order, he locks the order into a speci�c time interval.
Order weights can directly adjust the tardiness penalization in the objective function

(see Equation (6.10)). It is expressed by number for testing purposes, although typically,
it is not necessary to have more than three categories [35, p. 462].
Resource calendars allow for changing the operation hours of resources. Initially, there

are two types of resources modeled�the ones with one shift only (8 am to 4 pm) and the
ones with �rst (6 am to 2 pm) and second (2 pm to 10 pm) shifts, and the production plant
is not in operation on weekends. However, the user can manipulate this to create a better
schedule, and he can add overtime hours, temporarily add a second shift to resources with
one shift, etc.

1https://git-scm.com/

33

https://git-scm.com/

7 Solution Prototype I

7.2 Prototype Technologies

The coded prototype is a web-based Python application built upon the architecture of
a scheduling system (see Section 4.3). The pain point of APS systems we attempt to
solve is not in their general functionality but in presenting information about schedules.
Thus, the main objective of prototyping was to test the UI design ideas in an interactive
system that simulates the scheduling capabilities of an APS system rather than creating
functional software. We chose technologies that make simulating scheduling capabilities
and building user interfaces easy. We consider Python suitable for rapid prototyping as
well as manipulating large amounts of data.
Our representation of the database module is very simple, because storing data is not

the subject of this work. We store modi�ed PSPLib instances (see Section 6.2), lists of
changes, and solutions as text �les with prescribed serialization format.
We utilize the application programming interface (API) of IBM Decision Optimization

CPLEX Modeling for Python (or DOcplex for short)2, which implements modeling features
specialized to scheduling, and for standard problems, it �nds solutions that are comparable
to solutions found by state-of-the-art specialized algorithms [49]. We use its no-cost aca-
demic edition for simulating the scheduling capabilities of the APS system and generating
solutions for the constraint programming model described in Section 6.3. Source codes are
part of Appendix C.
For building the user interface, we use Dash framework3, a low-code framework for

rapidly building data apps in Python [50], with open-source libraries. We use only the free
plan, and thus, the application cannot be deployed to production [51]. However, the debug
environment was su�cient for our use case.

7.3 UI Components

This section introduces the UI components of our scheduling system. An overview of the in-
formation architecture is given in Figure 7.1. We attempted to support the decision-making
process by providing the most important information on a single page (Figure 7.2), so the
context was visible; the interfaces we considered less important are on separate pages.

Orders table

Solution
comparison

Capacity
analysis

Activities table

Main page

Resource
calendar Gantt chart Version tree Pairwise

comparison Changes

Figure 7.1: Scheme of information architecture. Gray rectangles are separate pages;
rounded-corners-rectangles represent modal windows.

2https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-python-modeling-api
3https://dash.plotly.com/

34

https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-python-modeling-api
https://dash.plotly.com/

7.3 UI Components

capacity analysis

activities tableorders table

solution comparison

Figure 7.2: The main page screenshot with labels.

7.3.1 Orders Table and Activities Table

The orders table and activities table are data table interfaces, displaying information about
the execution of orders and activities, respectively.
The tables are interconnected with two-panel selector pattern�when the user selects

any order, the activities from this order are immediately shown on the second panel. This
allows the users to quickly shift their attention between the overview of orders and the
details about the execution of one particular order. The selected order stands out, having
a di�erent color than the rest of the table. Switching between orders can be accomplished
with a single mouse click or by keyboard using the arrow key [39, pp. 198�201].
Both tables utilize conditional formatting. Delayed orders are highlighted in red in the

orders table, making them visually salient. In the activities table, the resources that may
potentially cause bottlenecks are colored in red.
The orders table allows for inline editing of several parameters (weight, release date, and

deadline); the editable �elds are highlighted in yellow. The text �elds use the forgiving
format pattern [39, p. 355], permitting a variety of date and time formats and shortcuts
(e.g., if today is April 28, 2023, the date May 19, 2023, 12:00 am can be inputted either
as 2023-05-19, 23/05/19, 05/19 00:00, etc., or with shortcuts such as 19 and 19 0).
Orders can be marked as prioritized in the table; this links them to the solution compa-

rison interface�if the user picks a subset of orders, he can compare their cumulative
tardiness between solutions.
There may be multiple rows for one activity in the activities table�it depicts that the

execution was paused because some resource became unavailable and continued later.

7.3.2 Solution Comparison

The solution comparison interface provides a big-picture view of multiple solutions, allowing
the user to compare them in multiple key performance indicators (KPI) (solution tardiness,
percentage of tardy orders, number of overtime hours, percentage of over-utilized and
under-utilized resources, priority order tardiness, tardy priority orders).

35

7 Solution Prototype I

The data are displayed in a polar chart�each variable is provided with an axis that
starts from the center, and the axes are arranged radially, with equal distances between
each other [52]. Each solution is represented by a polygon; solutions in the center are the
most desirable, having optimal utilization of resources, low number of overtime hours, and
low tardiness. Theoretically, the number of solutions that can be compared in a single
chart is not limited. However, the user can hide some solutions from the visualization by
unselecting them in the legend or the version tree interface.

7.3.3 Capacity Analysis

Capacity analysis interface is an example of capacity buckets interface (see Subsection 4.4.2),
where the vertical axis, representing time, is divided into days, and the various resources
are displayed on the horizontal axis. For each day and resource, the production capacity
usage for the entire shift is presented as a percentage with two decimal places. Data are
presented in a table with conditional formatting, over-utilized and under-utilized resources
are highlighted in red and blue, respectively.
If the user clicks on any cell, the cell gets highlighted, and the utilization on the given

day and resource is shown in more detail in a bar chart divided to 24 hours on the x-axis,
allowing to examine the utilization on every hour of the day.

7.3.4 Pairwise Comparison

Pairwise comparison (Figure 7.3) is a modal window allowing to compare di�erences bet-
ween two problem models. This functionality was inspired by VCS. In VCS, it is possible
to compare changes between source code versions anywhere in the version tree. In this
prototype, this feature is less sophisticated; di�erences between any two versions of the
problem model are shown in two columns; the �rst column shows changes that are present
in the �rst version and not in the second one and vice versa. The solutions for the
problem model are compared in a polar chart (similar to the polar chart described in
Subsection 7.3.2).

Figure 7.3: Pairwise comparison window.

36

7.3 UI Components

7.3.5 Changes

Changes interface (Figure 7.4) is a collapsible panel, which contains a list of changes the user
performed on the selected solution version and two buttons. The �Discard� button removes
all the changes, while the �Apply changes� button triggers the scheduling procedure and
creates a new solution version.

Figure 7.4: Main page with changes panel open.

7.3.6 Resource Calendar

The resource calendar is a table with dates and start and end times, allowing one to view
and edit the operation days and hours of resources. The user can switch between resources
using the select component on the top.

Figure 7.5: Resource calendar.

7.3.7 Gantt Chart Visualization

The solution is visualized as a Gantt chart (Figure 7.6). The activities are represented as
lines, and their attributes are encoded visually as follows:

� the position on the x-axis gives the start time,

� the length of the line represents the processing time,

� the thickness of the line shows the amount of resource used for the execution of the
activity,

� the color represents the tardiness of the order.

The visualization utilizes the following interaction patterns:

Overview plus detail�an overview of the Gantt chart is always shown at the bottom.
The user can display a part he is interested in in the detail view [39, p. 296].

37

7 Solution Prototype I

Data spotlight�activities from one order are highlighted when the user hovers his mouse
over any part of the order, while activities from other orders are dimmed [39, p. 303].

Datatips�when the user hovers his mouse over any activity, data values for that activity
are displayed in a tooltip [39, p. 299].

Figure 7.6: Gantt chart visualization.

While the activities can usually be modeled as non-overlapping rectangles, it is not
guaranteed that such visualization exists. The RCPSP does not treat the activities as
geometric rectangles because activities are not necessarily assigned to the same resource
units over their processing times [53]. Csébfalvi [54] presented a theoretically correct
method for resource utilization visualization; the method suggests dividing activities into
strips and solving the strip packing of strips problem. However, that would add more
undesirable complexity to the visualization. Thus, the rectangles representing the activities
can overlap on the Gantt chart in such edge cases.
Unlike the standard Gantt chart interface described in Subsection 4.4.1, this interface is

read-only, i.e., it does not allow any modi�cations to the solution.

7.3.8 Version Tree

Version tree is another idea adopted from VCS. The user selects any working solution
(equivalent to �checkout� in VCS) and adapts it. Then, the new version has all parameters
of the original problem model and new parameters given by the changes. This relation is
represented as a multilevel list (Figure 7.7).

Figure 7.7: Version tree.

The versions are selectable; the user can select versions he wants to compare in the main
interface. He can also delete the leaves of the tree if he considers the solution insu�cient.

38

8 Prototype I Evaluation

In this chapter, we discuss the testing of the �rst version of the solution prototype, which
we described in Chapter 7. Additional documentation, containing the document with in-
structions we sent to the users for the asynchronous study (in Czech) and a summary of
the testing, is a part of Appendix B.

8.1 Methodology

Prior to testing with users, we formulated the goals of the evaluation. Namely, we wanted
to �nd out

(i) whether they can create a schedule matching the given criteria in this interface,

(ii) what questions about the data do they have,

(iii) what opportunities for the improvement of visualization components are there, and

(iv) what interface �aws cause problems.

Furthermore, we wanted to collect as much insight into the problematics of interaction in
scheduling systems as possible. Thus, our goals were mainly exploratory, and we wanted
to �nd directions for future iterations of design rather than validate the current interface.

Before the testing, we prepared three testing problem instances (see Chapter 6). We
formulated the goals for scenarios�e.g., we determined a subset of orders that should be
�nished in time. We introduced the interface to the participants and gave them instructions
for testing�we asked them to ful�ll the scenarios in a simple user interface prototype.

We recruited only the users (N = 2) who are domain experts in scheduling and have
already been familiar with an interface of APS system, i.e., novices did not participate in
the testing. Both users were involved in the previous phases of design. Their pro�les are
in Table 8.1; we asked them about their age, current occupation, and years of professional
experience with scheduling for industry.

Sex Age Current occupation Experience

P1 M 56 manager 10 years
P2 M 51 sales manager, analyst 21 years

Table 8.1: Pro�les of �rst coded prototype testers.

The prototype was tested asynchronously; the users were requested to write self-reports,
i.e., what they did and what problems they encountered. We chose the asynchronous
testing over other methods because it has the bene�t of �exibility�the users can test on
their own. Moreover, we conducted a group interview with the users afterward.

39

8 Prototype I Evaluation

8.2 Results

We let the users try the system independently and collected feedback from their self-reports
and the group interview.

Are the users able to create a schedule matching the given criteria in this interface?

The users reported that they created schedules matching the criteria we requested. Thus,
they presumably �nished the scenarios successfully.

What questions about the data do they have?

The users had several questions about the schedule, such as:

� How tardy will a given order be?

� What will the slack of a given activity be?

� How will an activity contribute to the overall tardiness of an order?

� When will the overtime hours be added?

� How many orders will be ready on a given resource by the start of the day?

� What proportion of tardy orders will be processed on a given day and resource?

� How will the resource be utilized every hour?

What opportunities for the improvement of visualization components are there?

The users reported that the interface performs as they expected�we included the ideas
we previously discussed with them. However, there appear to be several opportunities for
future iterations of the design, with improving the capacity analysis interface being the
most notable.
The orders and activities tables (Subsection 7.3.1) appear to be an appropriate repre-

sentation of the orders and the activities. The users did not report any particular problem
with using them. Nevertheless, we uncovered additional information that could be shown
in the tables, such as the numeric value of tardiness for both orders and activities, and the
slack of an activity.
The solution comparison (Subsection 7.3.2) is represented as a polar chart, which, in

the current implementation, has several limitations. The users reported that they do not
understand the values and they would require some additional explanation on what the
maximum value means. They also suggested having a table with the numeric values of
KPIs in an additional table, as these are not presented in the graph.
Testing showed a limitation in our implementation of the capacity analysis interface

(Subsection 7.3.3). The users reported that they used it to search for over-utilized resour-
ces. This interface provides them with information about the utilization of a resource in one
day. This information is expressed as a percentage with two decimal places and supported
by highlighting the value if the resource is over-utilized or under-utilized. However, the
users did not require such precision. Instead, they had other questions regarding the execu-
tion of orders on a given resource, such as the number of orders ready by the start of the
day or the proportion of tardy orders processed on a given day. They also stated that the
24-hour utilization graph is too big for the information it gives. In conclusion, there is an
opportunity to use the space available more e�ectively and display more information.
We also uncovered a possibility to extend the functionality of pairwise comparison

(Subsection 7.3.4) by implementing the option to merge two versions of the problem model
into one.

40

8.3 Discussion

The resource calendar (Subsection 7.3.6) could be a part of the main interface instead of
being a separate interface. It could also be used for highlighting when the overtime hours
have been added.
There are also several opportunities for improving the Gantt chart (Subsection 7.3.7).

One user reported that he used it to �nd the critical path; thus, we could express the
precedences and the critical path in this interface. We could also implement advanced
�ltering features.
A simple multilevel list with bullets seems to be an inappropriate representation of a

version tree (Subsection 7.3.8). One participant used this interface, and yet he asked us
where the tree was, and he apparently did not perceive it as a tree but rather as a list. Thus,
we should highlight the structure of the tree in a better way. Additionally, it should not be
a separate interface. Instead, it could be a part of the main interface, more interconnected
with the solution comparison component.

What interface �aws cause problems?

We did not uncover any usability catastrophes or any major issues, but we detected several
usability problems that require further attention:

(i) insu�cient representation of overtime hours (minor), and

(ii) variable number of axes in the polar graph (minor).

Participants reported that the representation of overtime hours is insu�cient. The in-
formation architecture intensi�es this �aw, as he resource calendar is a separate window,
and thus, nothing in the main interface reminds the users that they should try to reduce
the number of overtime hours. Therefore, we should highlight the extra working hours in
the main interface.
The users were surprised that the number of axes in the polar graph is variable. This

problem occurs when they select the �rst priority order (two additional axes are added) or
unselect the last one (the two are removed). The shift in positions of the other axes could
limit the users' ability to learn how to read the graph e�ectively. Therefore, we suggest
keeping the number of axes constant, regardless of the number of selected priority orders.

8.3 Discussion

We collected feedback from users with a background in production scheduling. While
they could �nish the tasks in this interface, they discovered multiple opportunities for
improvement, the most remarkable one being the change of information architecture.
The �ndings seem to be relevant, but there are two possible sources of bias�one is given

by the nature of the methods, the other comes from the concrete test execution.
According to Bruun et al. [55], fewer usability issues are discovered with asynchronous

usability testing than with conventional laboratory testing. Furthermore, self-reporting is
susceptible to self-reporting bias. Some people�even if they are willing to help�do not
feel comfortable admitting failure or revealing that they do not know something. However,
the e�ects of self-reporting bias can be mitigated�one way is to follow up with additional
interviews [26, pp. 256�257]. Thus, we compensated for the disadvantage of the method
with a group interview, which allowed us to discover more problems.
The recruitment gives one potential source of bias originating in the concrete test

execution. Since we recruited only two evaluators, who were moreover involved in the
previous phases of design, the results possibly represent only the needs of a small group of
potential users. In other words, the external validity of this study, i.e., �the extent to which
the results can be generalized to other populations and settings� [56, p. 89], is limited.

41

8 Prototype I Evaluation

Another potential source of bias is that the tasks were relatively straightforward compa-
red to the reality the users typically face. For example, we assumed that the Gantt chart
is a not very helpful component, but one of the evaluators reported that he used it to �nd
the critical path. This �nding can either mean that the problem instance was so simple
that the Gantt chart was clear enough, so he could �nd the information he needed there,
or that our assumption was incorrect and the Gantt chart is actually useful.

42

9 Solution Prototype II

Based on the results of the �rst evaluation of the prototype, we attempted to redesign
the interface. We focused on the statistics provided to users and the overall information
architecture. We have not considered some user ideas, such as improvements to the Gantt
chart or merging two versions into one, yet.

9.1 Ideation

The information the users were missing in the original interface (see Section 8.2) can be
divided into two basic categories: (i) details about orders or activities, and (ii) time-de-
pendent statistics of resource state.
The information in the �rst category are quantities describing the execution of orders

or activities, such as activity slack or order tardiness. In this case, the design process was
trivial. We suggested adding new columns with appropriate �ltering and sorting capabi-
lities to the orders and activities tables.
On the other hand, for the statistics in the latter category, the change over time might

be more interesting than the actual value. We suggested that the proportion of tardy
orders processed on each day, the orders schedulable at the beginning of a day and the
resource utilization over time could be shown in an interface divided into time segments�
one segment representing a day.
Having this in mind, we started sketching out our ideas, the sketches of the most

promising solutions are in Figure 9.1 (all sketches are part of the Appendix A). While the
�rst visualization (Figure 9.1a) gives the user a broad overview of the resource utilization,
the second one (Figure 9.1b) shows similar information in more detail.

(a) Background: proportion of tardy orders (blue: non-tardy, red: tardy, white: unused capacity,
purple: not in operation). Lines: number of schedulable orders (blue: non-tardy, red: tardy).

(b) Utilization over time: vertical bar chart in each time segment, 24 hours on the x-axis,
percentage of utilization on the y-axis.

Figure 9.1: Sketches of modi�ed capacity analysis.

As the testing uncovered, the users prefer to see more information in a single interface.
Thus, we also proposed a few changes to the overall information architecture (Figure 9.2).
All the elements of the original interface (as introduced in Section 7.3) remained, but some
were redesigned, and we moved the version tree and resource calendar to the main interface.

43

9 Solution Prototype II

Polar graph

Numeric KPI
 values

Version
tree

Resource calendar

List
of

changes

List of orders List of activities

Solution switch

Capacity analysis

Version comparison

Figure 9.2: Redesigned main interface.

9.2 Clickable Mockup

We selected the most promising ideas and created a clickable mockup in Figma1 (Figure 9.3).
The prototype does not support rich interactions, but several actions are possible, such as
clicking on tardy orders or switching between capacity analysis modes (Figure 9.4).

Figure 9.3: The main interface of the clickable mockup.

1https://www.figma.com/

44

https://www.figma.com/

9.3 Clickable Mockup Testing

(a) Collapsed version.

(b) Expanded version.

Figure 9.4: Modi�ed capacity analysis interface.

9.3 Clickable Mockup Testing

Having created the clickable mockup, we wanted to evaluate it and �nd out:

(i) how intuitive are the new visualization components on the �rst use,

(ii) what information are the users missing, and

(iii) what changes in the information architecture are necessary.

We conductedmoderated in-person user testing (the process is described in Section 3.3) of
the clickable mockup with users who have a background in production scheduling (N = 3),
their pro�les are in Table 9.1. We prepared testing scenarios in which the users were
asked to analyze the schedule and propose strategies to reduce the tardiness of orders (the
exact formulations are in Appendix B). We asked them to verbalize their thoughts while
analyzing the problem.

Sex Age Current occupation Experience

P1 M 56 manager 10 years
P2 M 51 sales manager, analyst 21 years
P3 M 34 developer 9 years

Table 9.1: Pro�les of clickable mockup testers.

After the users proposed some strategies, the facilitator switched to a better solution.
The users analyzed the schedule and verbally described actions that could help reduce
tardiness. The sessions were recorded; a summary is part of the Appendix B.

How intuitive are the new visualization components on the �rst use?

The users had no problems with the interpretation of the detailed capacity analysis.
However, two participants stated that the graphical representation of schedulable tasks
is hard to interpret on the �rst use; they needed help understanding what the red part
means. Only one participant could interpret it without any help. There was no problem
with interpreting the polar graph with solution KPIs; the users could verbally summarize
the changes and compare two solutions.

45

9 Solution Prototype II

What information are the users missing?

During the testing, the users had several questions regarding the schedule that could not
be easily answered in the current interface:

� What precedence relations are there?

� How will individual activities contribute to overall tardiness?

� In which order will the operations be processed on one resource?

� How will the execution of tardy orders be distributed on each day?

� What is the capacity (Bk) of the given resource?

� What are the operation hours of the given resource?

� What has been modi�ed in this version?

What changes in the information architecture are necessary?

Overall, the evaluators rated their experience positively. All of them stated that the infor-
mation was well-organized.

In summary, no changes to the overall information architecture are necessary. We could
display more information in the capacity analysis interface (distribution of tardy orders
on each day, capacity, operation hours, modi�ed resources), in the tables (contribution
to overall tardiness, modi�ed orders), and in separate interfaces (precedence relations,
operations processed on each resource). However, this testing did not provide much infor-
mation about the usefulness of the new visualization components. We discuss sources of
bias in moderated studies later in Section 10.3.

9.4 Coded Prototype

We transferred most of the ideas from the clickable mockup to the coded prototype, and
added some more in reaction to user testing results. Compared to the �rst prototype,
described in Chapter 7, more information is displayed in the main interface. Several inter-
faces remained untouched (Gantt chart, changes, pairwise comparison), and there are only
minor changes in some interfaces (orders and activities tables, resource calendar). Other
interfaces were redesigned (capacity analysis, solution comparison and version tree) or are
entirely novel (resource analytics, order analytics). An overview of the new information
architecture is given in Figure 9.5 and a screenshot of the main interface is presented in
Figure 9.6.

9.4.1 Orders Table and Activities Table

Orders and activities tables (initially introduced in Subsection 7.3.1) have several new
columns�we added tardiness (di�erence between actual �nish date and due date) to the
orders table, and slack (di�erence between the start time of activity and the �nish time of
its last predecessor) and �nish rate (percentage of this activity �nished before the execution
is paused) to the activities table. Otherwise, these components remained the same.
Using the terminology of Munzner [57, pp. 225�234], slack values are highlighted using

a colormap that is ordered (uses luminance channel that implies ordering), sequential (has
only a single hue) and segmented (values are divided into �ve bins).
The �nish rate is depicted as a data bar�the percentage of activity completion is mapped

to the length of the bar. If the activity is interrupted before �nishing�i.e., the �nish rate
is less than 100%�the bar is blue; otherwise, the bar is green.

46

9.4 Coded Prototype

Orders table

Solutions
comparison,
version tree

Capacity
analysis

Resource
calendar
Resource
calendar

Capacity
analysis

Resource
calendar
Resource
calendar Changes

Activities table

Main page

Order
analytics

Resource
activities Gantt chart Pairwise

comparison

Figure 9.5: Scheme of information architecture. Gray rectangles are separate pages;
rounded-corners-rectangles represent modal windows.

Figure 9.6: The main page screenshot.

9.4.2 Resource Calendar

Resource calendar (Figure 9.7, initially introduced in Subsection 7.3.6) was moved to the
main interface, and a new row called balance, which contains information about the change
in working hours, was added. This information is supported visually, and the cell is high-
lighted in orange if overtime hours were added and in green if working hours were reduced.

Figure 9.7: Resource calendar.

47

9 Solution Prototype II

9.4.3 Capacity Analysis

Capacity analysis (initially introduced in Subsection 7.3.3) was redesigned using the ideas
described in Section 9.1 and Section 9.2. It remains a capacity buckets interface, but the
axes were switched�columns represent time and rows resources. For each resource, up to
three rows can be shown (Figure 9.8). The �rst column contains a resource identi�cation
and a link to a page with details about the resource (further described in Subsection 9.4.5).
Its purpose is to visually group and enclose information about one particular resource, and
thus, it spans all related rows.

Figure 9.8: Resource in capacity analysis interface.

In the �rst row, the production capacity usage for the entire shift is presented as an
integer (or �X� if the resource is not in operation on that day). Additionally, there is a
data bar representation of this number with additional information about the proportion
of non-tardy (blue) and tardy2 (red) activities in the background.
The second row contains a graphical representation of the number of schedulable tasks.

For each day, it displays the number of ready activities�i.e., the release time of the order
has passed, and their precedences have been completed�at the beginning and the end of a
day (typically 6:00 am and 10:00 pm, respectively). The number of ready tasks is divided
between non-tardy (blue) and tardy (red) activities.
The third row displays information about the resource utilization over a day as minia-

turized vertical bar charts. The x-axis is divided into 24 hours, and the y-axis shows the
resource utilization. If the resource is in operation on a certain hour, but no activities are
planned to be processed, there is an orange placeholder bar (slightly higher than a bar
representing zero utilization) for that hour.
Users can select the level of detail, speci�cally the number of rows displayed for the

resources. If they choose to display only one row for each resource, a miniaturized version
of the graphical representation of schedulable tasks is shown together with the information
about utilization, merging the �rst and second rows into one. Otherwise, the rows match
the previous description. The component is scrollable, displaying only two weeks at a time.

9.4.4 Solution Comparison and Version Tree

Solution comparison (initially described in Subsection 7.3.2) was slightly changed. It now
consists of two components�a polar chart and a table with numerical KPI values. The
polar chart remains mostly the same, but based on the feedback from initial user testing,
a �xed number of axes is displayed, even if no priority orders are selected. The numerical
values of KPIs are presented in a table below the polar chart.
Version tree (originally introduced in Subsection 7.3.8) was moved to the main interface.

The tree structure is still represented as a multilevel list, but lines connecting the nodes with
their parents were added to make the relationships clearer to understand. Additionally,
the checkboxes were replaced with checkable circles�if a version is selected, the circle is
colored; otherwise, it is white.
These components are interconnected. When the user clicks on any circle in the tree, he

selects or unselects the corresponding version. Only the values for the selected versions are
2By tardy activities we mean the activities that are processed after the due date of the order.

48

9.4 Coded Prototype

displayed in the polar chart and the KPIs table. Color mapping is shared between these
three components�each version is assigned a color from a categorical colormap, and the
color of the circle in the version tree, line in the polar chart, and line in the table all match.

9.4.5 Resource Activities

Resource activities interface (Figure 9.9) is a novel window that shows a table with activities
processed on one particular resource in the planned order of execution. Its formatting is
similar to other tables; tardy activities are highlighted in red.

Figure 9.9: Resource activities screenshot.

9.4.6 Order Analytics

Order analytics (Figure 9.10) is a novel window that contains information about the
execution of one particular order. Some of the design ideas are based on the strategies
the users developed for improving the schedule, such as setting release times for all orders
but one to �nd out if it can be �nished in time or �nding an activity that is short, yet
signi�cantly contributes to tardiness, and moving it in time.
The �rst strategy implies that the users may be interested in the execution of the order

if other orders did not block it. Thus, we could show the earliest possible �nish date (with
the current setting of resources) and the latest release date to �nish this order in time. The
second strategy works with the contribution of one order to the tardiness. Obtaining this
information is not straightforward; we use the precedence graph, and for every activity, we
compute the tardiness of its last successor and compare it with the activity slack. Activities
that have signi�cant slack and signi�cant successor tardiness are considered suspicious.
At the top of the page, there is textual information about (i) the earliest �nish time,

which is highlighted in red if the order cannot be �nished in time with the current setting
of resources, (ii) the scheduled �nish time, and (iii) the latest release time to �nish the
order in time if other orders did not block the execution.
In the middle part of the page, there are two tables�the table on the left is identical to

the activities table described in Subsection 9.4.1, the table on the right contains activities
ranked by their improvement potential (minimum of slack and successor tardiness). This
information is further supported by a simple scatterplot (Figure 9.11). Each point mark
represents an activity, the position on the x-axis represents the improvement potential,
and the position on the y-axis represents the duration of the activity.

49

9 Solution Prototype II

Figure 9.10: Order analytics screenshot.

Figure 9.11: Modal window with Duration x Potential scatterplot.

At the bottom, information about the execution of this order on resources is shown. For
each relevant resource, there is a graph with resource capacity utilization over time and a
graphical representation of the number of schedulable tasks in this order.
Graph with resource capacity utilization contains four pieces of information: (i) when

is the due date of this activity (red dashed vertical line), (ii) how would the resource be
utilized if the execution of this order was not blocked by other orders (green), (iii) how
utilized is the resource in the schedule (yellow), and (iv) how does this order contribute to
the utilization of the resource (blue line).

50

10 Prototype II Evaluation

In this chapter, we present the testing of the second coded prototype (Chapter 9)�we
introduce the goals, the methodology, and the results we obtained. In the discussion, we
outline some directions for further evaluation. Scenarios we used for testing (in Czech) and
a summary of the testing is part of Appendix B.

10.1 Methodology

We evaluated the new version of the fully-interactive UI with users to �nd out the following:

(i) if the users can create a schedule matching the given criteria in this interface,

(ii) how do they perceive the new interface,

(iii) what information are they missing,

(iv) how promising are the visualization components and interactions, and

(v) what interface �aws do cause problems.

Before the testing, we prepared three problem instances, and for each problem instance,
we prepared a scenario in which we de�ned the goals. The scenarios were focused on
tardiness reduction. At the beginning of each testing session, we brie�y described the
components of the UI to the participant.
We conducted moderated user testing with experts in scheduling (N = 3); their pro�les

are in Table 10.1. All of them previously participated in clickable mockup testing and
two of them in the �rst testing. We used the methodology we have already described in
Section 3.3. The sessions were recorded; a summary is part of the Appendix B.

Sex Age Current occupation Experience

P1 M 51 sales manager, analyst 21 years
P2 M 34 developer 9 years
P3 M 56 manager 10 years

Table 10.1: Pro�les of second coded prototype testers.

10.2 Results

We observed the users while they tried to improve a schedule to match certain criteria.
The testing turned out to be more time-consuming than we had planned, and thus, we
reduced the number of tasks the users were asked to accomplish to one.

Are the users able to create a schedule matching the given criteria?

All participants successfully �nished the �rst scenario. They were also able to reduce the
overtime hours in the schedule when they were asked to do so.

How do the users perceive the new interface?

The users' perception of the interface is positive; all participants appreciated that they
have multiple views on data and each view provides them with some new information.

51

10 Prototype II Evaluation

The users did not report any particular problem with understanding the design ideas we
presented, nor any serious mismatch between their mental model of scheduling and the UI.
One user stated that he expected activity to be one row in the activities table regardless
of the interruptions, but he admitted that he is biased by the APS system he is used to.
Otherwise, they could interpret the new visualizations correctly, although sometimes they
asked for an additional explanation as they could not recall what some elements (colors,
values, etc.) meant.

What information are the users missing?

They were missing better support for identifying the orders or activities that caused slack of
other activities. One participant expressed a wish to have this information in the interface,
and another searched for the intervening orders in the tables. One participant suggested
that we could display the information about slack for all precedences, not just the last one,
as this could help him backtrack the problem. They also analyzed the change in slack, but
they had to remember the previous value.

How promising are the visualization components and interactions?

The usefulness of the visualization components remains hard to evaluate. However, we
observed the evaluators using them, and thus, we evaluated their promise on that basis.
There are several interfaces that the participants disregarded:

� Gantt chart (Subsection 7.3.7),

� graphical representation of schedulable tasks (Subsection 9.4.3),

� table with improvement potential and scatterplot with duration and improvement
potential (Subsection 9.4.6).

Apparently, these components are not necessary to complete the tasks we assigned them.
On the other hand, we are con�dent that some visualization components were used and

provided the users with information that helped them with decision-making. Namely, this
is the case of:

� tables with orders and activities (Subsection 9.4.1),

� view with resource utilization over a day (Subsection 9.4.3),

� graphs with resource capacity utilization (Subsection 9.4.6).

Orders and activities tables were the �rst interfaces the users looked at when solving a
task. They could identify the tardy orders because of their red color and estimate their
tardiness, apparently by subtracting the due date from the �nish date. For each order,
they scanned the activities table and determined on which resources the order is processed
and what activities are waiting for resources. The slack column seems to be particularly
interesting to the users, or it is at least presumably visually salient, as the values are,
unlike others, colored.
Resource utilization over a day demonstrably helped the users to identify the times when

the resource is not processing any orders, and the capacity can be cut�they searched for
the orange placeholder bars and reduced the working hours in case they found some. Two
of the participants named it as a feature they liked.
Graphs with resource capacity utilization appear to lead the users to identify problematic

resources correctly. One user also stated he likes that the graph contains information about
the optimal execution.
Apart from the visualization components, the versioning and solution comparison sys-

tems appear to be very promising. All users agreed that the systems are well-designed.
One participant suggested that we could improve the versioning by adding an option to
�squash� multiple versions into one, as the progress toward a problem model is not so
important to him.

52

10.3 Discussion

What interface �aws cause problems?

Using the terminology of Nielsen [30], no usability catastrophes were detected, but several
issues require attention:
(i) editing the wrong problem model version (major),

(ii) hard recovery from typos (major),

(iii) incorrect reading of the resource utilization over a day graph (minor),

(iv) ignoring the tardiness column (cosmetic).
All users encountered a problem with switching between versions; they sometimes edited

the wrong problem model. Thus, we should make switching between solutions more user-
friendly and, for example, show a �Switch to new solution� button after generating a new
version. We could also implement �stash� and �unstash� features�if the user realized that
he edited a wrong problem model, he could easily transfer the changes he made to the
correct one.
The users also had a problem with recovering from typos, as the input �elds do not allow

deleting characters. Thus, they had to enter the input, read an error message, and type
the input once again. This appears to be a bug in the library we use [58]. Regardless of
that, it is important that the system should not be deployed with such usability issue.
We observed a problem with reading the resource utilization over a day graph. A tooltip

with the corresponding time is shown when the user hovers over a placeholder. However,
the users hovered over the incorrect placeholder and assumed that resource stopped being
utilized later than it actually was. This is an implication of Fitts's law (Equation (10.1)),
which gives the relationship between the time (T) it takes a pointer to move to a particular
target, the distance (D) to the target (D) and the width (w) of the target, a and b being
constants that vary depending on the type of pointer [59].

T = a+ b · log2
2D

w
(10.1)

The placeholder is too small to be targeted, and during the �nal movement toward it, the
users often overshot and hovered beyond the target. We could solve this by showing the
tooltip when the user hovers over a larger area with unused capacities instead of requiring
to target the placeholder.
Participants apparently estimated the tardiness by subtracting the due date from the

�nish date. That is the less e�ective way to do so, given that there is also a column with
the value just to the right of these two. However, they did not notice it and asked the
moderator if it was present in the interface from the beginning. The value is expressed
as a number, which does not attract users' attention. Visual search is sequential unless
the targets stand out [60, pp. 62�63]. Thus, if they scanned sequentially reading the
table left-to-right, and their goal was to estimate the tardiness, they presumably continued
to the next line when they subtracted the two values, taking no notice of the tardiness
column. Validation of this hypothesis requires a study with an eye tracker, however. If we
wanted to ensure that the tardiness column draws attention, we could add visual features
that operate preattentively, i.e., they convey information before the viewer pays conscious
attention [39, pp. 283�286], such as the colormap we already use for slack (described in
Subsection 9.4.1).

10.3 Discussion

In summary, we created UI that is perceived positively by the experts in scheduling. Some
of the visualizations seem to be promising, but some were disregarded by the users. Even

53

10 Prototype II Evaluation

though we observed the users interacting with the scheduling system, it remains hard to
evaluate the usefulness of the visualization components.
Additional studies would be required to uncover if the visualizations are useful. Eye

tracking could be particularly interesting because it is applicable for examining how the
users visually search the interface, allowing the researchers to see what exactly the users
look for [61, p. 27]. However, it requires specialized equipment and software that are costly
[61, p. 72]. Other types of quantitative studies seem to be applicable as well. For example,
we could design a study to test if the users can create a schedule matching given criteria
more quickly in the interface that contains certain visualizations than in a one that does
not. However, the number of participants required to obtain statistically signi�cant results
may be large [62, p. 171].
We discussed the sources of bias for the �rst testing in Section 8.2. However, the sources

of bias in in-person moderated studies are di�erent. Observed studies are susceptible to
Hawthorne e�ect. The participants may behave di�erently than in their natural environ-
ment because of the stress of being observed [27, pp. 39�40]. The sources of bias originating
in the concrete test execution remain the same as for the �rst study�the external validity
is limited, and the task may have been too straightforward compared to the reality the
planners face. There is one additional source of bias for the moderated study�the sessions
were moderated by the designer. It is almost impossible for moderators to remain objective
when conducting a test for their own product. They have a too strong tendency to lead
the participants in a direction they want the results to go [24, p. 46].

54

11 Conclusion and future work

Advanced Planning and Scheduling (APS) systems are complex applications that enable
experts to create a production schedule, supporting the process with advanced mathema-
tical algorithms. In this thesis, we focused on the problem of interaction design in such
applications, which, as we discovered, remains unsolved in state-of-the-art systems.
Our aim for this work was to �nd out how can the user manipulate a schedule and keep

track of the situation. We re�ned this aim into two main research questions:

(i) What methods of interaction are suitable for manipulation of schedules?

(ii) How to present the information about schedules to the users?

To tackle the problem, we applied the principles of human-centered design. To learn
about the needs and expectations the users might have, we incorporated the experts on
scheduling throughout the design process.
We surveyed the functionalities the scheduling systems have, their conceptual archi-

tecture, and mainly the forms user interfaces of scheduling systems take. Based on our
research, we described the design problem using several UX design methods, including
personas, scenarios, task analysis, and design requirements.
The essential part of this work was creating and testing UI prototypes. We created

two types of prototypes: coded, implementing scheduling algorithms and allowing users
to generate a schedule interactively, and a clickable mockup, enabling us to assess the
information architecture and the clarity of the newly designed visualizations. With the
exception of the �rst prototype, we generated design ideas based on the questions the
users had about the schedule and the strategies they took to improve it.
We created novel visualization components depicting several characteristics of the sche-

dule. The users have several views on the data available, and the views should provide
them with some insights that help them make a decision.
Given that the APS system is a complex application with a non-linear work�ow that is

targeted at a speci�c population, its evaluation possesses certain challenges. Not only is
there a relatively small number of users who have the domain expertise required to use
the system, and only a few of them are accessible for testing, but also the work�ows make
the testing complicated. The problem the user solves is ill-de�ned, and it is up to him
to rede�ne the model to achieve his end goal. We are also aware that it remains hard
to evaluate if the visualizations are actually useful. Nevertheless, the testing should have
been able to uncover mismatches between the users' mental model and the UI, and no such
issues were found.
We discovered that e�ective manipulation of schedules could be achieved through adjus-

ting the problem models. If we do not consider the decision-making process behind it, the
interactions can be pretty straightforward. Inline editing of schedule parameters in tables
and using the forgiving format text �elds seem to be natural to the users.
The second research question remains open. We designed several novel visualization com-

ponents that seem to be promising and discovered that the users prefer having multiple
views on data, but we have not gathered su�cient evidence to generally prove if some types
of presentation are superior to others. Additional quantitative studies would be required
to uncover whether the visualizations (and which ones) are useful. Especially polar charts

55

11 Conclusion and future work

seemed a promising solution for quickly comparing multiple schedules in overall metrics
and metrics for a selected subset of orders.

11.1 Ful�llment of the Objectives

Here we describe how the objectives we had for this work were ful�lled.

Analyze the forms UI of APS systems take.

We surveyed the basic forms UI of APS systems take in Section 4.4, and in Section 4.5 we
presented the use of the components in a commercial APS system.

Create a �rst prototype with typical components of APS system.

We created the �rst prototype of a scheduling system that uses basic components and
allows interactions with a scheduling algorithm. The model of the scheduling problem we
used to simulate the capabilities of a scheduling system was described in Chapter 6. Imple-
mentation of the prototype, and mainly the UI components, was introduced in Chapter 7.

Test the �rst prototype with experts in scheduling and identify their needs.

We described the exploratory testing of the �rst prototype in Chapter 8.

Design novel visualization components and implement them into the prototype.

On the basis of previous evaluation, we identi�ed several opportunities, which we transfer-
red into design ideas described in Section 9.1. We created a clickable mockup containing
the newly designed visualization components (Section 9.2), which we tested with the users
(Section 9.3). We improved the design ideas and implemented the new visualizations into
a second version of the interactive prototype (Section 9.4).

Evaluate the prototype with professional users of APS systems.

We evaluated the fully-interactive UI with scheduling experts. The evaluation process and
its results were described in Chapter 10.

11.2 Future Work

It seems to us that supporting the scheduling process with interactive visualizations is
very promising. However, additional quantitative studies would be required to evaluate if
the visualizations we designed are useful. For example, eye tracking could help us reveal
which visualizations do the users look at during the decision-making. We could also design
a study to test if the users can create a schedule matching given criteria more quickly or
on less unsuccessful attempts, comparing an interface that contains certain visualizations
to one that does not, on a set of benchmark instances.
Finally, the ideas we presented in this work, ideally after proving their e�ectiveness,

could be implemented into a real APS system.

56

Bibliography

1. RITTEL, Horst W. J. and WEBBER, Melvin M. Dilemmas in a general theory of
planning. Policy sciences. 1973, vol. 4, no. 2, pp. 155�169. Available from doi: 10.1
007/BF01405730.

2. MAN, Johannes Cornelis de and STRANDHAGEN, Jan Ola. Spreadsheet application
still dominates enterprise resource planning and advanced planning systems. Ifac-
Papersonline. 2018, vol. 51, no. 11, pp. 1224�1229. Available from doi: 10.1016
/j.ifacol.2018.08.423.

3. HVOLBY, Hans-Henrik and STEGER-JENSEN, Kenn. Technical and industrial is-
sues of Advanced Planning and Scheduling (APS) systems. Computers in Industry.
2010, vol. 61, no. 9, pp. 845�851. Available from doi: 10.1016/j.compind.2010.07
.009.

4. JÜNGEN, FJ and KOWALCZYK, W. An intelligent interactive project management
support system. European Journal of Operational Research. 1995, vol. 84, no. 1,
pp. 60�81. Available from doi: 10.1016/0377-2217(94)00318-7.

5. MCKAY, Kenneth N. and WIERS, Vincent C.S. The human factor in planning
and scheduling. In: Handbook of Production Scheduling. Springer, 2006, pp. 23�57.
Available from doi: 10.1007/0-387-33117-4_2.

6. FRAMINAN, Jose M. et al. Manufacturing scheduling systems. Springer, 2014. isbn
978-1-4471-6272-8.

7. JO, Jaemin et al. LiveGantt: Interactively visualizing a large manufacturing schedule.
IEEE transactions on visualization and computer graphics. 2014, vol. 20, no. 12,
pp. 2329�2338. Available from doi: 10.1109/TVCG.2014.2346454.

8. KLEIN, Gary. Naturalistic decision making. Human factors. 2008, vol. 50, no. 3,
pp. 456�460. Available from doi: 10.1518/001872008X288385.

9. WIERS, Vincent C.S. Human computer interaction in production scheduling. Citeseer,
1997. Available from doi: 10.6100/IR495263.

10. RASMUSSEN, Jens. Skills, rules, and knowledge; signals, signs, and symbols, and
other distinctions in human performance models. IEEE transactions on systems, man,
and cybernetics. 1983, no. 3, pp. 257�266. Available from doi: 10.1109/TSMC.1983
.6313160.

11. CEGARRA, Julien. A cognitive typology of scheduling situations: A contribution to
laboratory and �eld studies. Theoretical Issues in Ergonomics Science. 2008, vol. 9,
no. 3, pp. 201�222. Available from doi: 10.1080/14639220601095379.

12. KERR, R. M. and EBSARY, R. V. Implementation of an expert system for production
scheduling. European journal of operational research. 1988, vol. 33, no. 1, pp. 17�29.
Available from doi: 10.1016/0377-2217(88)90250-0.

13. FOX, Mark S. Constraint-guided scheduling�A short history of research at CMU.
Computers in Industry. 1990, vol. 14, no. 1-3, pp. 79�88. Available from doi: 10.101
6/0166-3615(90)90107-Z.

57

https://doi.org/10.1007/BF01405730
https://doi.org/10.1007/BF01405730
https://doi.org/10.1016/j.ifacol.2018.08.423
https://doi.org/10.1016/j.ifacol.2018.08.423
https://doi.org/10.1016/j.compind.2010.07.009
https://doi.org/10.1016/j.compind.2010.07.009
https://doi.org/10.1016/0377-2217(94)00318-7
https://doi.org/10.1007/0-387-33117-4_2
https://doi.org/10.1109/TVCG.2014.2346454
https://doi.org/10.1518/001872008X288385
https://doi.org/10.6100/IR495263
https://doi.org/10.1109/TSMC.1983.6313160
https://doi.org/10.1109/TSMC.1983.6313160
https://doi.org/10.1080/14639220601095379
https://doi.org/10.1016/0377-2217(88)90250-0
https://doi.org/10.1016/0166-3615(90)90107-Z
https://doi.org/10.1016/0166-3615(90)90107-Z

Bibliography

14. MEIGNAN, David et al. A review and taxonomy of interactive optimization methods
in operations research. ACM Transactions on Interactive Intelligent Systems (TiiS).
2015, vol. 5, no. 3, pp. 1�43. Available from doi: 10.1145/2808234.

15. LIU, Jie et al. Understanding the relationship between interactive optimisation and
visual analytics in the context of prostate brachytherapy. IEEE transactions on
visualization and computer graphics. 2017, vol. 24, no. 1, pp. 319�329. Available from
doi: 10.1109/TVCG.2017.2744418.

16. LIU, Jie et al. Supporting the problem-solving loop: Designing highly interactive
optimisation systems. IEEE Transactions on Visualization and Computer Graphics.
2020, vol. 27, no. 2, pp. 1764�1774. Available from doi: 10.48550/arXiv.2009.03163.

17. KAPLAN, Kate. Complex Application Design: A 5-Layer Framework [online]. Nielsen
Norman Group, 2020-08-09. [visited on 2023-03-30]. Available from: https://www.
nngroup.com/articles/complex-application-design-framework/.

18. KEIM, Daniel et al. Mastering the information age solving problems with visual
analytics. Eurographics Association, 2010. isbn 978-3-9056-7377-7.

19. KAPLAN, Kate. Complex Application 101 [online]. Nielsen Norman Group, 2020-09-
04. [visited on 2023-03-30]. Available from: https://www.youtube.com/watch?v=
NHevdlqoOaQ.

20. NATHAN, Aaron. Designing for Experts Without Being An Expert [online]. Bentley
User Experience Center, 2018-10. [visited on 2023-04-27]. Available from: https:
//www.bentley.edu/centers/user-experience-center/designing-experts-

without-being-expert.

21. ISO 9241-210:2019. Ergonomics of human-system interaction � Part 210: Human-
centred design for interactive systems. 2019.

22. GOTHELF, Je�. Lean UX. O'Reilly Media, Inc., 2013. isbn 978-1-4493-1165-0.

23. WALKER, Miriam et al. High-�delity or low-�delity, paper or computer? Choosing
attributes when testing web prototypes. In: Proceedings of the human factors and
ergonomics society annual meeting. Sage Publications Sage CA: Los Angeles, CA,
2002, vol. 46, pp. 661�665. No. 5. Available from doi: 10.1177/15419312020460051
3.

24. RUBIN, Je�rey and CHISNELL, Dana. Handbook of usability testing: how to plan,
design and conduct e�ective tests. John Wiley & Sons, 2008. isbn 978-0-4701-8548-3.

25. RAMASWAMY, Sara. The Wizard of Oz Method in UX [online]. Nielsen Norman
Group, 2022-11-20. [visited on 2023-05-04]. Available from: https://www.nngroup.
com/articles/wizard-of-oz/.

26. GOODMAN, Elizabeth and KUNIAVSKY, Mike. Observing the user experience: A
practitioner's guide to user research. Elsevier, 2012. isbn 978-0-1238-4869-7.

27. LAZAR, Jonathan et al. Research methods in human-computer interaction. Morgan
Kaufmann, 2017. isbn 978-0-1280-9343-6.

28. VIRZI, Robert A. Re�ning the test phase of usability evaluation: How many subjects
is enough? Human factors. 1992, vol. 34, no. 4, pp. 457�468. Available from doi:
10.1177/001872089203400407.

29. CARPENDALE, Sheelagh. Evaluating information visualizations. Information visu-
alization: Human-centered issues and perspectives. 2008, pp. 19�45.

58

https://doi.org/10.1145/2808234
https://doi.org/10.1109/TVCG.2017.2744418
https://doi.org/10.48550/arXiv.2009.03163
https://www.nngroup.com/articles/complex-application-design-framework/
https://www.nngroup.com/articles/complex-application-design-framework/
https://www.youtube.com/watch?v=NHevdlqoOaQ
https://www.youtube.com/watch?v=NHevdlqoOaQ
https://www.bentley.edu/centers/user-experience-center/designing-experts-without-being-expert
https://www.bentley.edu/centers/user-experience-center/designing-experts-without-being-expert
https://www.bentley.edu/centers/user-experience-center/designing-experts-without-being-expert
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1177/154193120204600513
https://www.nngroup.com/articles/wizard-of-oz/
https://www.nngroup.com/articles/wizard-of-oz/
https://doi.org/10.1177/001872089203400407

Bibliography

30. NIELSEN, Jakob. Severity Ratings for Usability Problems [online]. Nielsen Norman
Group, 1994-11-01. [visited on 2023-05-16]. Available from: https://www.nngroup.
com/articles/how-to-rate-the-severity-of-usability-problems/.

31. KREIPL, Stephan and PINEDO, Michael. Planning and scheduling in supply chains:
an overview of issues in practice. Production and Operations management. 2004,
vol. 13, no. 1, pp. 77�92. Available from doi: 10.1111/j.1937-5956.2004.tb00
146.x.

32. STADTLER, Hartmut. Supply chain management: an overview. In: Supply chain
management and advanced planning. Springer, 2015, pp. 3�28. Available from doi:
10.1007/978-3-540-74512-9_2.

33. KJELLSDOTTER IVERT, Linea and JONSSON, Patrik. Problems in the onward
and upward phase of APS system implementation: Why do they occur? International
Journal of Physical Distribution & Logistics Management. 2011, vol. 41, no. 4, pp. 343�
363. Available from doi: 10.1108/09600031111131922.

34. AYTUG, Haldun et al. A review of machine learning in scheduling. IEEE Transactions
on Engineering Management. 1994, vol. 41, no. 2, pp. 165�171. Available from doi:
10.1109/17.293383.

35. PINEDO, Michael. Scheduling. Vol. 29. Springer, 2012. isbn 978-1-4614-2361-4.

36. HIGGINS, Peter G. Interaction in hybrid intelligent scheduling. International Journal
of Human Factors in Manufacturing. 1996, vol. 6, no. 3, pp. 185�203. Available from
doi: 10.1002/(SICI)1522-7111(199622)6:3<185::AID-HFM1>3.0.CO;2-6.

37. LAUBHEIMER, Page. Data tables: four major user tasks [online]. Nielsen Norman
Group, 2022-04-03. [visited on 2023-01-05]. Available from: https://www.nngroup.
com/articles/data-tables/.

38. PINEDO, Michael. Design and implementation of scheduling systems: Basic concepts.
In: Scheduling. Springer International Publishing, 2022, pp. 467�491. Available from
doi: 10.1007/978-3-031-05921-6_17.

39. TIDWELL, Jenifer. Designing interfaces: Patterns for e�ective interaction design.
O'Reilly Media, Inc., 2010. isbn 978-1-4493-7970-4.

40. COOPER, Alan et al. About face: the essentials of interaction design. John Wiley &
Sons, 2014. isbn 978-1-1187-6657-6.

41. GIBBONS, Sarah. UX stories communicate designs [online]. Nielsen Norman Group,
2017-01-15. [visited on 2022-12-21]. Available from: https://www.nngroup.com/
articles/ux-stories/.

42. ROSALA, Maria. Task analysis: support users in achieving their goals [online]. Nielsen
Norman Group, 2020-09-20. [visited on 2022-12-20]. Available from: https://www.
nngroup.com/articles/task-analysis/.

43. ARTIGUES, Christian et al. The resource-constrained project scheduling problem.
In: Resource-constrained project scheduling: models, algorithms, extensions and app-
lications. John Wiley & Sons, 2013, pp. 21�35. Available from doi: 10.1002/978047
0611227.ch1.

44. LABORIE, Philippe. Industrial project and machine scheduling with constraint pro-
gramming. 2021. Available from doi: 10.13140/RG.2.2.30470.70726. [Conference
presentation].

59

https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/
https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/
https://doi.org/10.1111/j.1937-5956.2004.tb00146.x
https://doi.org/10.1111/j.1937-5956.2004.tb00146.x
https://doi.org/10.1007/978-3-540-74512-9_2
https://doi.org/10.1108/09600031111131922
https://doi.org/10.1109/17.293383
https://doi.org/10.1002/(SICI)1522-7111(199622)6:3<185::AID-HFM1>3.0.CO;2-6
https://www.nngroup.com/articles/data-tables/
https://www.nngroup.com/articles/data-tables/
https://doi.org/10.1007/978-3-031-05921-6_17
https://www.nngroup.com/articles/ux-stories/
https://www.nngroup.com/articles/ux-stories/
https://www.nngroup.com/articles/task-analysis/
https://www.nngroup.com/articles/task-analysis/
https://doi.org/10.1002/9780470611227.ch1
https://doi.org/10.1002/9780470611227.ch1
https://doi.org/10.13140/RG.2.2.30470.70726

Bibliography

45. GRAHAM, Ronald Lewis et al. Optimization and approximation in deterministic
sequencing and scheduling: a survey. In: Annals of discrete mathematics. Elsevier,
1979, vol. 5, pp. 287�326. Available from doi: 10.1016/S0167-5060(08)70356-X.

46. HALL, Nicholas G. and POSNER, Marc E. Generating experimental data for com-
putational testing with machine scheduling applications. Operations Research. 2001,
vol. 49, no. 6, pp. 854�865. Available from doi: 10.1287/opre.49.6.854.10014.

47. KRETER, Stefan et al. Using constraint programming for solving RCPSP/max-cal.
Constraints. 2017, vol. 22, no. 3, pp. 432�462. Available from doi: 10.1007/s10601-
016-9266-6.

48. DECHTER, Rina; COHEN, David, et al. Constraint processing. Morgan Kaufmann,
2003. isbn 978-1-5586-0890-0.

49. IBM. IBM ILOG CP Optimizer [online]. IBM. [visited on 2023-05-21]. Available from:
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-

optimizer.

50. PLOTLY. Dash Python User Guide [online]. Plotly. [visited on 2023-05-17]. Available
from: https://dash.plotly.com/.

51. PLOTLY. Deploying Dash Apps [online]. Plotly. [visited on 2023-05-17]. Available
from: https://dash.plotly.com/deployment.

52. CATALOGUE, The Data Visualisation. Radar Chart [online]. [visited on 2023-04-29].
Available from: https://datavizcatalogue.com/methods/radar_chart.html.

53. HARTMANN, Sönke. Packing problems and project scheduling models: an integra-
ting perspective. Journal of the Operational Research Society. 2000, vol. 51, no. 9,
pp. 1083�1092. Available from doi: 10.2307/254229.

54. CSÉBFALVI, A. A theoretically correct resource usage visualization for the resource-
constrained project scheduling problem. Iran University of Science & Technology.
2012, vol. 2, no. 2, pp. 173�181.

55. BRUUN, Anders et al. Let your users do the testing: a comparison of three remote
asynchronous usability testing methods. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 2009, pp. 1619�1628. Available from doi:
10.1145/1518701.1518948.

56. COZBY, Paul C. et al. Methods in behavioral research. 2012. isbn 978-0-0778-6189-6.

57. MUNZNER, Tamara. Visualization analysis and design. CRC Press, 2014. isbn 978-
1-4665-0891-0.

58. CMPCTRL. [BUG] Dash editable DataTable issues. Issue #2018 [online]. Github,
2022-04-18. [visited on 2023-05-16]. Available from: https://github.com/plotly/
dash/issues/2018.

59. BUDIU, Raluca. Fitts's Law and Its Applications in UX [online]. Nielsen Norman
Group, 2022-07-31. [visited on 2023-05-16]. Available from: https://www.nngroup.
com/articles/fitts-law/.

60. JOHNSON, Je�. Designing with the Mind in Mind. Morgan Kaufmann, 2014. isbn
978-0-1240-7914-4.

61. BERGSTROM, Jennifer Romano and SCHALL, Andrew. Eye tracking in user expe-
rience design. Elsevier, 2014. isbn 978-0-1240-8138-3.

62. MACKENZIE, I. Scott. Human-computer interaction: An empirical research perspec-
tive. 2013. isbn 978-0-1240-5865-1.

60

https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1287/opre.49.6.854.10014
https://doi.org/10.1007/s10601-016-9266-6
https://doi.org/10.1007/s10601-016-9266-6
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://dash.plotly.com/
https://dash.plotly.com/deployment
https://datavizcatalogue.com/methods/radar_chart.html
https://doi.org/10.2307/254229
https://doi.org/10.1145/1518701.1518948
https://github.com/plotly/dash/issues/2018
https://github.com/plotly/dash/issues/2018
https://www.nngroup.com/articles/fitts-law/
https://www.nngroup.com/articles/fitts-law/

Appendix

Here, we provide an overview of the electronic appendices.

A Design Process Documentation

This part of the appendix contains additional documentation for the design process, inclu-
ding:

� HTA diagram and plans,

� interface sketches with handwritten notes (in Czech).

B User Testing Documentation

This part of the appendix contains additional documentation for user testing, including

� the document with instructions we sent to the users for the �rst study (in Czech),

� summary of the �rst testing,

� scenarios for the clickable mockup testing (in Czech),

� summary of the clickable mockup testing,

� scenarios for the second coded prototype testing (in Czech),

� summary of the second coded prototype testing.

C Source Code

This part of the appendix contains source codes for the prototype. Instructions are part
of the README.md �le in the project root directory.

61

	Introduction
	Research Question
	Research Objectives
	Thesis Outline

	Analysis
	Related Work
	Decision-Making Behavior
	Interactive Scheduling Systems
	Design Model for Scheduling Systems
	Expert System Approach
	Interactive Optimization Approach

	Designing for Complex Domains

	Methodology
	Involvement of Domain Experts and Users
	Prototyping
	User Testing

	Planning and Scheduling Systems
	Advanced Planning and Scheduling
	Functionalities
	Architecture of a Scheduling System
	User Interfaces of Scheduling Systems
	Gantt Chart Interface
	Capacity Buckets Interface
	Data Table Interfaces

	User Interfaces in Commercial Systems

	Design Problem
	Problem Statement
	Persona Hypothesis
	Primary persona
	Non-user persona

	Scenarios
	Hierarchical Task Analysis
	Design Requirements

	Prototype
	Model of Scheduling Problem
	Resource Constrained Project Scheduling Problem
	Problem Modifications
	Constraint Programming Model

	Solution Prototype I
	Key Concepts
	Prototype Technologies
	UI Components
	Orders Table and Activities Table
	Solution Comparison
	Capacity Analysis
	Pairwise Comparison
	Changes
	Resource Calendar
	Gantt Chart Visualization
	Version Tree

	Prototype I Evaluation
	Methodology
	Results
	Discussion

	Solution Prototype II
	Ideation
	Clickable Mockup
	Clickable Mockup Testing
	Coded Prototype
	Orders Table and Activities Table
	Resource Calendar
	Capacity Analysis
	Solution Comparison and Version Tree
	Resource Activities
	Order Analytics

	Prototype II Evaluation
	Methodology
	Results
	Discussion

	Conclusion and future work
	Fulfillment of the Objectives
	Future Work

	Appendix
	Design Process Documentation
	User Testing Documentation
	Source Code

