
BachelorThesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Web application for management of
personal finances

Filip Krul

Supervisor: Ing. Jiří Šebek
Field of study: Open Informatics
Subfield: Software
May 2023

ii

Acknowledgements

I would like to thank my supervisor, Ing.
Jiří Šebek, for his guidance, patience and
advice.

I would also like to thank my family
and friends for their support and encour-
agement and support during my studies
and with this thesis.

Lastly, I would like to thank the com-
munities of all the open-source projects
I have used for their work and help with
any issues I have encountered.

Declaration

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 21. May 2023

iii

Abstract

This project aims to create a self-hosted
web application for managing personal
finances. This will include analyzing func-
tional and non-functional requirements,
finding an appropriate tech stack, plan-
ning the architecture, and implementing
the application. The application will
use SvelteKit, TypeScript, Prisma, and
SQLite. It will then be deployable using
Docker.

Keywords: Web application, Svelte,
TypeScript, Finance, Software, Prisma

Supervisor: Ing. Jiří Šebek

Abstrakt

Tento projekt má za cíl vytvořit self-
hostovatnelnou webovou aplikaci pro
správu osobních financí. Toto zahrnuje
analýzu funkčních a nefunkčních poža-
davků, nalezení vhodných technologií a
nástrojů, plánování architektury a imple-
mentaci aplikace. Aplikace bude využí-
vat SvelteKit, TypeScript, Prisma a SQ-
Lite. Poté bude možné ji nasadit pomocí
Dockeru.

Klíčová slova: Webová aplikace, Svelte,
TypeScript, Finance, Software, Prisma

Překlad názvu: Webová aplikace na
správu osobních financí

iv

Contents

1 Motivation 1

2 Analysis 3

2.1 Functional Requirements 3

2.1.1 User Accounts 3

2.1.2 Manual logging of payments . . 4

2.1.3 Sorting and filtering payments 4

2.1.4 Dashboard 4

2.1.5 Multiple wallets per user 4

2.1.6 IOUs . 5

2.2 Non-functional Requirements 5

2.2.1 Selfhostability and data
ownership . 5

2.2.2 Easy deployment 5

2.2.3 Performance 6

2.2.4 Security 6

2.2.5 Usability 6

2.2.6 Interoperability 6

2.3 Use case diagrams 7

2.3.1 Authentication and user
management 7

2.3.2 Dashboard 7

2.3.3 Managing IOUs 7

2.3.4 Wallet and transaction. 8

2.4 Technology stack 8

2.4.1 Type of application 11

2.4.2 Front end 13

2.4.3 Back end 15

2.4.4 Data storage 18

2.4.5 Other tools I plan to use 19

3 Design 21

3.1 Architecture 21

3.2 Front-end . 22

3.3 Back-end . 22

3.3.1 Database 23

3.4 Component diagram 24

v

3.5 Sequence diagrams 25

4 Implementation 33

4.1 The attempt at implementation
without the need for client-side JS 33

4.2 Front-end . 34

4.2.1 Tailwind 34

4.2.2 DaisyUI 36

4.2.3 Input validation 36

4.2.4 Svelte components 36

4.2.5 Page loading using SvelteKit 38

4.3 Back-end . 41

4.3.1 Prisma 42

4.3.2 Lucia . 43

4.3.3 Rest of the back-end 44

4.4 Deployment 44

4.4.1 Dockerization 44

4.4.2 How to run an instance 45

4.5 Security . 46

4.5.1 Authorization 46

4.5.2 Protection against common
attacks . 46

4.6 Logging . 47

4.6.1 Pino . 48

5 Testing 49

5.1 Unit testing 49

5.1.1 Vitest . 49

5.1.2 Vitest-Mock-Extended 50

5.1.3 Unit testing in this application 50

5.2 End to End testing 52

5.2.1 Playwright 52

5.2.2 Test scenarios 55

5.2.3 Basic Authentication Test
Scenario . 56

5.2.4 Input Validation Test Scenario 56

5.2.5 Wallet Management Test
Scenario . 56

5.2.6 Multi-Account Wallet Test
Scenario . 56

vi

6 Conclusion 57

6.1 Potential future improvements . . 58

A Bibliography 59

B Project Specification 63

vii

Figures

2.1 Use cases relating to user
management . 8

2.2 Use cases relating to the dashboard 9

2.3 Use cases relating to IOUs 9

2.4 Use cases relating to wallets and
transactions . 10

3.1 Diagram depicting the architecture
of the program 26

3.2 Screen flow diagram 27

3.3 Figma mockup of the dashboard 28

3.4 Database structure diagram 29

3.5 Component diagram 30

3.6 Sequence diagram of the login
process . 31

3.7 Sequence diagram of the page load
process . 32

5.1 Flaky test results 55

Tables

viii

Chapter 1

Motivation

These days, many people have multiple accounts with multiple banks, and
keeping track of all of your finances can be challenging. Especially these days
as the global economy slows down and more and more people are trying to
find ways to save money. [Wan23]

From my experience, the most efficient way of keeping track of multiple
accounts in multiple currencies is by using personal finance management
apps. These apps usually help track and categorize payments and generate
summaries for the user.

Currently, most existing Personal Finance Management apps are available
as offline-only desktop or mobile applications which do not allow data syn-
chronization between devices or as online-only applications which store your
data on third-party servers where you have no control over them.

There are a few self-hosted personal finance managers, but none have all
the features I would want from one I would consider using long-term or do
not work that well from my experience.

1

2

Chapter 2

Analysis

Before deciding how the application will be developed and used, it is impera-
tive to decide what it should be capable of doing. This will simplify selecting
the most suitable tools job and provide guidance during the development
process. Extensive research has been undertaken on multiple existing appli-
cations, and input has been sought from friends and family on which features
they consider important. The ones chosen are those that have often been
mentioned and are within the scope of this project.

2.1 Functional Requirements

2.1.1 User Accounts

Since this will be a self-hosted application, the way user accounts are managed
will be quite different from most standard applications and will instead be
based on how accounts are implemented in other self-hosted applications I
am personally experienced with.

Most large-scale applications require complex user management with email
confirmations, account recovery, and two-factor authentication since a single
administrator cannot manage thousands upon thousands of users.

3

2. Analysis
Meanwhile, self-hosted applications usually serve a single or sometimes up

to a double-digit number of users per instance, which are usually managed
by a single administrator. Therefore, most self-hosted applications usually
have an administrator account which is created upon the first launch of the
application and can create, edit, or delete other accounts. This allows the
developer to spend less time on user account management so they can focus
on other features.

2.1.2 Manual logging of payments

This will be the main feature of the application. Users can manually log
incoming and outgoing payments in specific wallets. Each payment will also
carry details such as the transferred amount, user-created categories such as
Food or Electronics, date, recipient, and a user-created note.

2.1.3 Sorting and filtering payments

Another feature I plan to implement is the option to filter and sort previous
payments. While some apps allow only one way of filtering at a time, it is
much more convenient to be able to combine different filters. The filters I
plan to implement are: By date, amount of transferred money, and payment
category.

2.1.4 Dashboard

The dashboard will be the first thing the user sees, so it will provide a simple
summary of important information, such as a run-down on spending during
the past month, what are some upcoming payments, and debts the user needs
to repay soon.

2.1.5 Multiple wallets per user

Many people have multiple accounts with different currencies, so being able
to track them independently is vital.

4

............................. 2.2. Non-functional Requirements

Sharing one wallet between multiple users will also be possible, so it is
easier for them to track shared spending, such as food and housing, if they
live together.

Each wallet will also have its own settings for currencies and tags.

2.1.6 IOUs

IOUs (‘I Owe You’s) will be a way to log outstanding unofficial debts by and
to the user. This is a feature I have not seen in any existing application and
would appreciate having.

2.2 Non-functional Requirements

2.2.1 Selfhostability and data ownership

The practice of self-hosting involves running an instance of a desired service
on one’s server [BJV+22]. The main draw of this lies in owning one’s data,
hereby preventing its sale to third sides for advertising purposes. This is
especially important in fields relating to finance. [REC+11]

2.2.2 Easy deployment

A crucial aspect of publishing a self-hosted application is the ease with which
the application can be deployed. Preferably, it should be possible to deploy
with only a few pre-made terminal commands that are simple to modify to
suit the user’s needs.

This is commonly done by publishing a docker container, eliminating the
need to install prerequisite software on the user’s machine and isolating the
software from outside problems.

5

2. Analysis
2.2.3 Performance

Experiencing an unresponsive or slow website can be one of the most frus-
trating experiences when using a computer or a mobile phone. Theciteore,
prioritizing performance is crucial, and ensuring the app remains responsive
even on slow devices or with slow internet will be one of the key objectives
[ZFL+19]. This focus on performance also includes ensuring the app works
well even when the database contains large amounts of data.

2.2.4 Security

For a finance-tracking application, security is a crucial aspect [GW05]. Self-
hosted applications have an advantage in this field because they are only
responsible for securing themselves, and the user is capable of adding extra
security features, such as allowing only HTTPS communication or even hiding
the whole service behind a VPN. Running in a docker container can also
bring significant security benefits [CMDP16].

2.2.5 Usability

Maintaining a simple and consistent user interface is also important, and it
ensures that even a user not used to online services can easily understand and
navigate the web app. This simplicity should also improve the app’s usability
for more tech-savvy users. It is also necessary to pay attention to usability
standards researched by experts [Joh20], which can often be found integrated
into existing UI frameworks or component libraries.

2.2.6 Interoperability

A modern application should be accessible from anywhere and work on
most devices. This ensures that users can access and manage their financial
information on any device they have at hand. [DP08]

6

.................................. 2.3. Use case diagrams

2.3 Use case diagrams

This section shows the necessary use cases that outline the various interactions
and functionalities within the web app. The use case diagrams serve as a
visual representation to aid in understanding the different functional use cases
and show how they relate to each other. Four diagrams depicting different
parts of the project were created to make the information more digestible
and organized. These diagrams highlight the core features of the web app, as
well as the interactions between the users and the system.

The only actor in most of these diagrams is ‘User’, who symbolizes the
generally expected user of this app. In the diagram related to authentication,
there is also an Administrator user who can act like a regular user in all other
scenarios.

2.3.1 Authentication and user management

The diagram in 2.1 depicts how an administrator can manage users and what
authentication-related actions a user can perform.

2.3.2 Dashboard

The diagram in 2.2 depicts how a user can interact with the dashboard, which
also serves as the home screen.

2.3.3 Managing IOUs

2.3 depicts the ways a user can interact with his IOUs. Each user has their
own set of IOUs which are not shared between users. A user can create or
browse IOUs. While browsing them, the user can mark them as already paid,
edit them, or even outright delete them.

7

2. Analysis

Figure 2.1: Use cases relating to user management

2.3.4 Wallet and transaction

The diagram in 2.4 depicts how a user can interact with a wallet and the
payments and categories within the wallet.

2.4 Technology stack

After deciding on the application’s functional requirements and use cases,
the appropriate tools for implementing those goals must be selected. No
specific tools are required to create an application like this one, but selecting
the wrong ones can be limiting if they do not do everything needed or add
unnecessary work if the way to implement every necessary part is too complex.
Therefore, the focus of this section is the aim is to find the best tools that fit
the requirements.

8

...................................2.4. Technology stack

Figure 2.2: Use cases relating to the dashboard

Figure 2.3: Use cases relating to IOUs

9

2. Analysis

Figure 2.4: Use cases relating to wallets and transactions

10

...................................2.4. Technology stack

2.4.1 Type of application

The main choice to make is how the user will interact with the back end. The
main options are mobile, desktop, or web apps, each with its own advantages
and disadvantages.

Desktop application

I have the most experience with desktop applications, so I would have the
easiest time programming it and could use everything I have learned in school.

Another advantage of desktop applications is that they are quite easy for
users to control since the screen is larger, which can be achieved by opening
a web app on a computer.

Sadly, they also come with several disadvantages, such as not being portable
and desktop UI frameworks not being as developed and modern as mobile
and web UI frameworks.

Creating a program that works on macOS without owning an Apple device
is also almost impossible. While it is possible to create OS-agnostic desktop
applications using a framework like Electron, that seems unnecessary as it is
just a more complex web application with few benefits and many negatives
for this application. [SA20]

Mobile application

Mobile applications are significantly more portable than desktop applications.
However, I do not have as much experience with them as with desktop
applications, so programming them would be extra work.

They also have the disadvantage of being limited to a small screen, so doing
more complex tasks is harder than on a desktop. Another disadvantage they
share with desktop applications is the requirement to own an Apple device to
be able to develop for iOS. [Bal21]

11

2. Analysis
Web application

Web applications are as portable as mobile applications and can be accessed
on computers with larger screens. The downside of using a web application is
that they require a constant internet connection to be accessed, but this can
be remedied by making the web app into a PWA (Progressive Web Apps),
which are becoming increasingly popular.

Combination of the above options

Another option is to have both desktop and mobile applications to cover
more platforms, but this would require significantly more development and
testing time since that would require planning, implementing, and testing
two applications instead of just one.

Some frameworks, such as Flutter, do allow compilation for multiple plat-
forms, but even that requires platform-specific code, so it would still be more
complex than focusing on one platform. [And22]

The choice

In the end, a web application seems like the best choice. The reason for this is
the possibility of making a single program while allowing it to run on almost
all platforms. The fact that they require a constant internet connection is not
much of a problem in 2023 because most developed countries have incredibly
high mobile internet coverage. It also allows the app to work on any Apple
device with minimal extra work, even though I do not own any Apple device
myself.

Another reason for this choice is that I would like to gain experience
with web development, as the consensus around the internet is that web
applications are the future of UI, so I would like to gain experience developing
them while still in school.

12

...................................2.4. Technology stack

2.4.2 Front end

Given the decision to make a web-based application, one must decide which
front-end framework to write it in. This choice will also affect the choice
of back-end language since some back-end frameworks are built to work
with specific front-end frameworks, such as Vue.js with Nuxt or Svelte with
SvelteKit.

Flutter

Flutter is a multi-platform framework developed by Google [tea19]. Its code
is written in Dart – a strongly-typed object-oriented language also developed
by Google to support Flutter [Tea23]. This allows it to feature features
made specifically for writing component-based applications. However, Dart’s
focus on Flutter limits its general usefulness, resulting in significantly fewer
community-created libraries compared to JavaScript.

One of the main benefits of coding in Flutter is that it can be compiled for
Desktop, Mobile, and Web. While this sounds great, the usability is limited
since different platforms often require different components, which results in
a messy codebase [And22].

Another important thing about Flutter is its integration with Google’s
Firebase [Fir23]. While this helps create easy-to-scale applications, it also
goes against the principles of self-hosting since Firebase cannot be hosted
locally.

Vanilla JavaScript

Plain JavaScript is the simplest way to make websites. It is comparatively
easy to learn since all other JavaScript frameworks also require the knowledge
of plain JavaScript.

Another advantage of plain JavaScript is its speed. Since there is no virtual
DOM or any abstraction layers, it can be significantly faster than a framework
like React. This makes the application faster to load and allows it to be more
responsive.

13

2. Analysis
The disadvantage of this simplicity is that it lacks a structure of a more

advanced framework, making it harder to maintain a larger project. Another
disadvantage is the lack of features which are the main draw of frameworks
such as React or Svelte.

Vue.js

Vue is a JavaScript framework that uses HTML-like syntax for structuring
websites [You19b]. It has a large community of developers and is generally
considered easy to learn.

One of its disadvantages is that it is compiled at runtime, which may cause
performance issues on slower devices. It can also increase the bundle size sent
to the user’s browser, increasing loading times and data consumption [Xu21].

Svelte

Svelte is a modern component-based JavaScript framework focused on lightweight
and performant websites. It achieves its lightweight bundles and great speed
by not using a virtual DOM and building the site at compile time.

It has a pleasant syntax that greatly resembles standard JavaScript, HTML,
and CSS and is written in separate .svelte files for each component which
makes the project easier to navigate. It is also very concise compared to other
frameworks [Har19]. This ease of use is also one of the main reasons it is the
front-end framework developers are the happiest using as of 2023 [SG].

Its main disadvantage is how new it is. This means that the community
around it is smaller than other more popular frameworks, and there are not
as many third-party libraries.

React

React is currently the biggest JavaScript framework with a massive community
of developers behind it [SG]. Its key feature is its virtual DOM (Document

14

...................................2.4. Technology stack

Object Model). The virtual DOM is an in-memory representation of the
website’s actual DOM. This allows it to minimize the number of operations
performed on the actual DOM but brings with it additional overhead and
limits flexibility since directly editing the actual DOM can cause errors.

It is also component-based, which can significantly simplify development if
the website features components that often repeat across different pages.

Another significant factor to consider when working with React is the need
to use .jsx (JavaScript XML) files instead of standard JavaScript and HTML.
This allows one to write HTML-like code in JavaScript-like files, but the
syntax seems unwieldy and hard to work with.

The choice

In the end, the decision fell on Svelte. Its community might be smaller, but
it is still quite helpful and friendly. Its component-based approach is also
appealing since it simplifies individual components and makes them easier to
reuse.

Another reason for choosing Svelte is how lightweight and fast it is. This will
help make the app more responsive while allowing it to run on older devices.
Related to this, its ability to run in a browser with disabled JavaScript will
please the privacy-focused group, which has a significant overlap with the
self-host community.

The fact that it is quite modern and does not have that many libraries also
does not present an issue considering this project’s scope compared to major
for-profit websites. Its modernity is a plus since it has many features not yet
implemented in older frameworks.

2.4.3 Back end

Choosing the correct back-end language and framework is one of the most
important choices to make when building a web application. The decision
affects development time, maintenance difficulty, and scalability.

15

2. Analysis
SvelteKit (NodeJS framework)

SvelteKit is a Node.js framework for building applications on top of Svelte
that also provides server-side functions, can work as a simple Rest API,
directory-based routing, and allows for more advanced things such as full
or partial SSR (Server Side Rendering). This allows SvelteKit to build a
full-stack application with a single back-end and related front-end frameworks.
[Sve23a]

It uses Vite to build the site server-side for the first load and then intercepts
all updates and hydrates the client side as required. Vite also enables the use
of Vitest – one of the fastest JavaScript unit-testing libraries. [You19a]

It is also extremely new, with the 1.0 version being released on December
14th, 2022, after spending years in beta. This means there is not extensive
documentation compared to similar frameworks, but it already provides
features on long-term roadmaps for competing frameworks.

One main disadvantage is that it is not the best option when building
extensive Rest APIs since that is not its primary purpose.

C# (asp.net)

C# is one of my favorite languages, and Asp.net is a well-tested back-end
framework created and maintained by Microsoft. This means that it is one of
the most stable and tested web back-end platforms on the market and can
be used to build application back-end.

It has a large community of users and allows for the use of any .net and
C# libraries. Therefore, it is suitable for building large projects that require
robust, full-featured back-end and enterprise-level projects that require high
scalability and easy maintenance and that need to be highly testable.

16

...................................2.4. Technology stack

Java (SpringBoot)

SpringBoot is similarly enterprise-focused like ASP.NET, but it is written in
Java, which does not align with my personal preferences.

The main difference between SpringBoot and Asp.net is that SpringBoot
is open-source and written in Java, so the whole framework is slightly more
advanced than Asp.net. The fact that it is written in Java allows it to run on
any system, while asp.net has historically been intended to run on Windows
servers.

PHP

There are several PHP frameworks that could be used for this project, but
PHP as a whole seems to be quite old compared to modern features of
frameworks such as SpringBoot or Express. Some people may consider its
age a benefit because it has stood the test of time, but the lack of modern
features and aged syntax hurt it too much to be a good choice in a modern
project.

Node.js (Express)

Express is a popular JavaScript framework that includes features such as
routing, template rendering, good integration with other Node.js libraries,
and can act as a middleware for client requests.

It is also lightweight and easy to use, making it an excellent option for
beginners. Sadly, it does not provide any extra integration with Svelte and
does not provide almost any extra features compared to SvelteKit.

The choice

In the end, SvelteKit is the obvious option. It provides all the features I need
with Svelte-specific quality-of-life features such as Form Actions, allowing the
whole web app to be built in a single codebase.

17

2. Analysis
There are some drawbacks, such as not being an amazing API framework

compared to a dedicated endpoint framework such as Express in Node.js or
FastApi in Python. However, that does not matter for this project since the
plan is to create only a Svelte-based website and use form actions for most
client-server communication.

2.4.4 Data storage

The last piece of the proverbial puzzle is figuring out how to store user data.
Since this will be a smaller-scale project with users in only dozens per instance
and the number of logged payments in thousands instead of millions, our
approach to storing data may differ from an enterprise-level project.

Database or something else?

The most obvious option is storing the data in a full-fledged database, but
with the small scale of our project, storing all the data in a massive JSON
file or an Excel database might be feasible. Their main disadvantage is that
they slow down proportionally to how many entries are stored in them, and
there is no telling how much data some users will need to store. It is also
considered a bad practice, so a traditional database seems the correct option.

What kind of database

The main decision is between relational non-SQL databases. Considering the
general data structure the app will need, a relational database is the obvious
choice.

Server-based databases. Server-based databases are usually robust, feature-
rich database systems that run in a separate process. It is considered reliable,
supports many data types, and allows for the use of server-side scripts that
run directly on the database engine. It scales extremely well with large
amounts of data and concurrent queries. [Che22]

18

...................................2.4. Technology stack

SQLite. SQLite is a small, lightweight, self-contained database system stored
in a single file. There is no separate process that runs the database, which
brings its own benefits and negatives. The main effect is that the client (in
our case, the SvelteKit server) handles the queries. This means the database
file must be stored locally and cannot be accessed over a network. It also
does not scale as well as the full-fledged databases mentioned above. [BPP15]

The choice of long-term data storage

While using a JSON file seems viable, it is not a good idea long term, and
it is considered a bad practice to store important data in what is essentially
a glorified text file. This narrowed the selection to deciding between a
Server-based and SQLite database.

While PostgreSQL or MariaDB are better options for most projects, they
may not be necessary for a project like this one. The large scalability is
unnecessary since there will only be up to a few dozen users per instance,
and the advanced features are unnecessary for a project like this one.

On the other hand, SQLite offers an easy setup, is more lightweight, and
can be backed up by just copying one file, which is quite helpful for a small,
self-hosted application, so it is the best choice in this situation.

2.4.5 Other tools I plan to use

Before starting the project, it is also essential to find additional tools that
will make programming and testing easier. A brief and non-exhaustive list
of tools and libraries that will simplify the development process has been
compiled in this chapter. Of course, many other libraries will be used in this
project, but these are the most significant.

TypeScript

TypeScript is a superset of JavaScript that adds static typing to the language.
This improves code readability and allows developers to catch errors that
typically happen at runtime before compiling the project [Mic23a].

19

2. Analysis
Playwright

Playwright is a modern open-source end-to-end testing library. It works on all
platforms, supports all significant rendering engines like Chromium, WebKit,
and Firefox, and can emulate mobile browsers [Mic23b].

The main difference between Playwright and Selenium is that Playwright
has a more modern and user-friendly API, while Selenium is more mature
and has more user-created libraries.

Vite and Vitest

Vite is a fast JavaScript build tool and development server for building web
projects. It is considerably lighter and faster than most competitors and
provides modern features such as “hot-reload,” which allows the developer to
make changes to the codebase without recompilation. [You19a]

This choice was obvious because Vite is bundled with SvelteKit by default.
Another reason for this choice is Vitest – a JavaScript unit-testing library
built specifically for use with Vite. It provides a simple yet fast way to write
and run unit tests for web development projects compiled with Vite. The fact
that it uses vitest makes it extremely fast compared to other testing libraries.

Prisma ORM

Prisma is an open-source ORM (Object-Relational Mapping) tool written in
Node.js [PD23a]. It provides an efficient, type-save way of interacting with a
SQL database from a TypeScript project.

Its defining feature is its ability to generate type-safe classes representing
structured data in a relational SQL database that can be directly used in
a TypeScript project. Prisma also provides a query language called Prisma
Client, which allows the developer to query the database without needing to
write SQL queries manually.

20

Chapter 3

Design

3.1 Architecture

There are two common ways of structuring SvelteKit projects. The first is
having the front-end written in Svelte, with simple data processing done on
the back-end, which then communicates with a more complicated back-end
written in another language such as C# or Java, or even a separate Node.js
project. These two back-end systems are then connected using an API. While
this can be beneficial if there is another use for the exposed API, such as
a mobile app or better scaling, there is no need for those features in this
project.

The second has a more complicated back-end written in JavaScript or
TypeScript, and this back-end is directly called using JavaScript function
calls. both of these reside within a single monolithic codebase, it significantly
simplifies project management and testing and improves development speed.

For the sake of project analysis, the front-end and back-end should be
considered separate entities even though they are stored in the same codebase.

Figure 3.1 also depicts the general structure of the project and elaborating
on component and its purpose.

21

3. Design..
3.2 Front-end

The front end comprises three main parts: the request hook modifies incoming
and outgoing requests, the server-side logic that handles data loading and
processing, and the client-side front-end that designs individual pages and
components. Each of these components receives a more detailed description
in the Implementation chapter.

Which screens are necessary

The first step in planning the front end was deciding which pages were
necessary to achieve all the goals set in the use case analysis. For this
purpose, a screen flow diagram was created. This diagram can be seen in 3.2.

UI planning in Figma

The second step in planning the front end’s general look was designing a
mockup in Figma. These mockups are not styled since styling and color
themes will be provided by a component library during implementation.
Instead, the focus was on the general layout of components and pages.

In the final product, the design has also changed because the original design
either did not feel great to use, had some accessibility annoyances, or did
not look that great with the theme used for the project. Consulting a more
experienced UI designer could have avoided these mid-development redesigns.

An example of these mockups can be seen in 3.3, and the whole mockup
can be found in the folder provided with this thesis.

3.3 Back-end

The server could also be split into multiple categories, most of which are
linked. This separation into categories is not directly implemented in the

22

...................................... 3.3. Back-end

code but is more of a categorical analysis of each part’s general purpose and
behavior.

The first category is the back-end files containing the code interacting with
the database. These methods will be called from the different page controllers
and will be stored in the /src/lib/server directory. SvelteKit ensures that
any files written in this directory can not be imported from client-side code.
This feature facilitates the writing of code the end user should not have access
to without having to deal with securing it manually.

The second category includes different utility files, which include methods
relating to loading and managing currencies and data validation. Another
type of these files are files containing the definition of custom TypeScript
types and errors used throughout the project. While some of these are also
imported from the front-end, their inclusion in this section is justified since
they will mainly be used in back-end code.

The last category files for implementation instances of different libraries
I will be using, like Prisma, Lucia, and Pino. Since both Prisma and Lucia
interact with the database directly and have privileges that should not be
given to any user, they will also be put in the /src/lib/server directory.

The Implementation chapter of this thesis also delved into more detail
about the used libraries.

3.3.1 Database

As stated in the technical details planning chapter, this project uses Prisma
to connect to a locally stored SQLite database. While some parts of the
database structure are dictated by some libraries I am using, the rest have
been created with the intent of keeping the database simple while having all
the necessary data. The database structure can be seen in 3.4.

The database contains these tables:

.AuthUser: Entries in this table represent the users of this application..AuthSession: Each entry in this table represents a browser session.
The sessions are managed by the Lucia library, which also dictates the
exact structure of this table.

23

3. Design..
.AuthKey: Entries in this table handle different login methods. While

this application supports only login using a username and password, it
would make it easier to add other kinds of authentication, such as OAuth
or email-based login. It is also required by Lucia.

.Wallet: Entries in this table represent individual wallets users can own.
A wallet can belong to multiple users and can contain many payments.

.Payment: Entries in this table represent individual payments. A
payment may have a category but does not have to.

.Category: Entries in this table represent a category inside a wallet.
They are not shared between wallets, so they can be set up differently in
each. The color is for UI only and holds no informational value.

.RepeatingData: Each entry in this table must be linked to an existing
payment and serves as a way to keep track of repeating payments. They
contain just the type of repetition period, such as days, weeks, or months,
and how many units of time they repeat.

. InviteCode: This is solely utilized for storing the invite code to this
application. The entries are automatically deleted a week after they
expire. This table is also not referenced from any other table because it
is used purely to store which invite codes are valid, which are expired,
and which have been used.

3.4 Component diagram

While some may consider creating a component diagram for a monolithic
SvelteKit project unnecessary, the decision was made to include it to show
how different parts of the project interact. Creating the diagram in figure 3.5
was more challenging than it usually is since this project is not structured
the same way most projects in object-oriented languages. Nevertheless, the
diagram remains reasonably understandable.

It is also worth mentioning that none of the APIs in this diagram are actual
APIs and are shown as such only for illustrative purposes.

24

.................................. 3.5. Sequence diagrams

3.5 Sequence diagrams

The following diagrams are sequence diagrams. They depict the sequence
of operations between different actors and components necessary to achieve
a particular goal. These diagrams provide a simple way to understand how
different parts of the system interact.

Four diagrams created, each depicting a different processes common in this
program. While this is by far not an exhaustive list of processes that this
program performs, it is sufficient to illustrate the general interactions and
flow of the system. For the sake of brevity, only two are included in this
document since the processes are mostly similar and differ mostly in the data
passed between the different components, with the other two being available
in the folder containing the analysis that came together with this thesis.

The first diagram shown in figure 3.6 depicts the process of a user logging
into the system. This is a simple procedure, but it shows the system’s common
components and how they work with each other.

The second diagram shown in figure 3.7 depicts another process relating
to how the system authenticates the user based on a stored session cookie.
The “Page Load” in this diagram combines the request hook and the load
function of a specific page.

25

3. Design..

Figure 3.1: Diagram depicting the architecture of the program

26

.................................. 3.5. Sequence diagrams

Figure 3.2: Screen flow diagram

27

3. Design..

Figure 3.3: Figma mockup of the dashboard

28

.................................. 3.5. Sequence diagrams

Figure 3.4: Database structure diagram

29

3. Design..

Figure 3.5: Component diagram

30

.................................. 3.5. Sequence diagrams

Figure 3.6: Sequence diagram of the login process

31

3. Design..

Figure 3.7: Sequence diagram of the page load process

32

Chapter 4

Implementation

4.1 The attempt at implementation without the
need for client-side JS

One of SvelteKit’s most interesting features is its ability to work without client-
side JavaScript [Sve23b]. While this can be useful in some circumstances,
such as for a privacy-focused user or Search Engine Optimization, it is not
strictly necessary here because the users who host the application can access
the source code and check it manually if they feel it is necessary. Search
Engine Optimization also is not a priority because this web app should not
be accessible from the broader web if appropriately deployed, so sites like
Google will not need to index it.

Although efforts have been made trying to minimize reliance on client-side
JavaScript, specific features, like reactive select inputs, require it for optimal
functionality. As a result, not all features can be accessed when client-side
JavaScript is blocked.

33

4. Implementation....................................
4.2 Front-end

The front end is a crucial aspect of any application, as it directly impacts the
user experience. While I acknowledge that I am not a proficient designer, I was
able to handle the simpler design tasks. For more complex design requirements,
I leveraged the availability of template or component frameworks that have
emerged in recent years [YJJ+19]. These frameworks helped facilitate the
creation of visually appealing interfaces while ensuring consistency in style
throughout the application.

One significant advantage that contributed to maintaining design consis-
tency was the fact that Svelte is a component-based framework. With Svelte,
reusable components can be created in separate files and utilized with their
associated design, reactivity, and other related code in different components
and pages [Sve23a]. The topic of Svelte components and their benefits will
be discussed in more detail in the dedicated chapter.

Overall, the focus on the front-end design aimed to enhance the user
experience, and while I may not possess advanced design skills, the used
frameworks and libraries helped create a visually appealing and consistent
user experience.

4.2.1 Tailwind

Using tailwind proved to be a crucial choice that greatly improved the front-
end development experience. It is an extremely popular CSS that allows
developers to write CSS styles directly rather than relying solely on HTML
classes. This approach offers greater control and customization options,
enabling the creation of unique and visually appealing designs without having
to bother writing custom CSS classes from scratch.

One notable feature of Tailwind is its ability to maintain design and
sizing consistency through pre-defined sizes. For instance, using classes like
rounded and rounded-xl translates to specific border-radius values, ensuring
a consistent style throughout the application. While seemingly simple, this
feature significantly contributes to a cohesive design approach [Lab23].

Last but certainly not least important feature is Tailwind’s Responsive

34

...................................... 4.2. Front-end

design feature. This allows the developer to easily declare Tailwind classes
that only apply after screen width reaches a specific threshold. For example,
a class prepended with md: would only apply on screens with a width higher
than 768 pixels.

The difference between a piece of code that uses Tailwind (see listing 4.1)
and code that does not use Tailwind (see listing 4.2) can be seen by comparing
the following two code snippets:

1 <h1 class="flex gap -2 items - center w-full text -xl lg:←↩
text -3xl">

2 <Icon width="1.5 em" height ="1.5 em" icon="home" />
3 Welcome !
4 </h1>

Listing 4.1: HTML with Tailwind

1 <h1 class="my - heading ">
2 <Icon width="1.5 em" height ="1.5 em" icon="home" />
3 Welcome !
4 </h1>
5 <style >
6 .my - heading {
7 display : flex;
8 align -items: center ;
9 width: 100%;

10 gap: 0.5 rem;
11 border - radius : 0.25 rem;
12 font -size: 1.25 rem;
13 /* 20px */
14 line - height : 1.75 rem;
15 /* 28px */
16 }
17
18
19 @media (min -width: 1024 px) {
20 .my - heading {
21 font -size: 1.875 rem;
22 /* 30px */
23 line - height : 2.25 rem;
24 /* 36px */
25 }
26 }
27
28 </style >

Listing 4.2: HTML witout Tailwind

35

4. Implementation....................................
4.2.2 DaisyUI

The component library of choice is DaisyUI [Saa23]. The main reason for
this choice is that it also uses Tailwind, which integrates well with tailwinds
elsewhere.

DaisyUI provides many styles for different components, ranging from simple
ones like a button to a whole drawer that dynamically opens and closes based
on a hidden checkbox and screen size state.

A few components also have sub-variants, such as a btn class that can
be further specified as btn-primary, btn-secondary, btn-ghost, or others
looking slightly different and having a different purpose while allowing the
developer to stay consistent.

The look of these components is decided based on a plethora of provided
themes that can be easily switched between by changing only one line of
HTML. By default, this only switches between basic dark and light themes,
but it was quite easy to implement a settings page that allows the user to
switch between different available themes, which are then stored in the user’s
browser and used every time a new page is rendered.

4.2.3 Input validation

The challenge of complex input validation was addressed with the help of a
library called Zod [McD23]. This library allows for the definition of validation
schemas that can be run in both the front-end and back-end and allow for
parsing user inputs from a form and values from URL parameters. One major
advantage of using Zod is that the developer can declare error messages that
will be shown when some requirements are not satisfied once centrally and
show them to the user in different places when needed. An example of one of
these schemas can be seen in listing 4.3.

4.2.4 Svelte components

In Svelte, components are the fundamental building blocks of applications.
They are essentially JavaScript files containing HTML, usually CSS, and

36

...................................... 4.2. Front-end

1 export const PasswordSchema = z. object ({
2 password : z
3 . string ()
4 .trim ()
5 .min (1, { message : " Password is required " })
6 .min (8, { message : " Password must be at least 8←↩

characters " })
7 .regex (/^(?=.*[a-z]) (?=.*[A-Z]) (?=.*\ d).+$/, {
8 message :
9 " Password must contain at least one ←↩

lowercase letter , one uppercase ←↩
letter , one number , and one special ←↩
character .",

10 }),
11 });

Listing 4.3: Zod schema for password validation

JavaScript code stored in a .svelte file to define a reusable UI piece. The
structure of a Svelte component is usually as follows (The reason for the of
usually is that we don’t use the <script> tag since this project uses Tailwind).
How .svelte files are structured can be seen in listing 4.4.

1 <script >
2 // JavaScript code goes here
3 </script >
4
5 <!-- HTML code goes here -->
6
7 <style >
8 /* CSS code goes here */
9 </style >

Listing 4.4: Structure of a Svelte component

This allows each component to have its own scope, meaning that code and
styles defined in one component will not affect any other part of the code
unless specifically defined.

After creating a component, one can easily use it in another svelte file can
be seen in listing 4.5.

Components also allow the use of external variables, changing which would
propagate the new value to the parent I received it from and to any children
components I passed it through.

37

4. Implementation....................................
1 <script >
2 import Component from "./ Component . svelte ";
3 </script >
4
5 <!-- Some HTML code -->
6 <Component />
7 <!-- Rest of HTML code -->

Listing 4.5: Structure of a Svelte component

This brings us to the topic of reactivity, which will not be discussed here
in great detail since the Svelte documentation explains it well, but the simple
version is that any variable defined with let in the script block can be
changed by any JavaScript action I used to from normal JavaScript+HTML
combination. [Sve23a]

An example of a reactive component with a button that shows the number
of times it has been clicked can be seen in the code snipped in listing 4.6.

1 <script >
2 let count = 0;
3 </script >
4
5 <button
6 on:click ={() => {
7 count += 1;
8 }}
9 >

10 Clicked {count}
11 {count === 1 ? "time" : "times"}
12 </button >

Listing 4.6: Structure of a Svelte component

4.2.5 Page loading using SvelteKit

In SvelteKit, there are a few steps to rendering a page. While some of these,
such as cookie handling and SSR, happen on the server, they should still
consider a part of the front-end development since they mostly relate to
the user experience. The major elements of developing the front end with
SvelteKit that will be highlighted are request handling, routing, layouts, and
rendering individual pages. Additionally, an overview of how Svelte handles

38

...................................... 4.2. Front-end

server-side rendering will be discussed.

Request handling

SvelteKit handles most of the requests without the need for developer inter-
ference but still allows the developer to intercept and work with parts of it.
This is done in the src/hooks.server.ts file. This file contains the handle
method, which runs whenever the server receives a request. This function
allows us to read cookies sent in the request, modify the locals variable or
even modify the response sent to the client or chain multiple functions that
modify the response in their own ways.

The main two uses for this file in this project involve handling the site’s
theming by reading the theme cookie stored in the user’s browser and modi-
fying the response HTML and injecting Lucia authentication functionality to
the locals variable, which is a variable accessible from any subsequent part
of the page loading process.

Routing

SvelteKit uses a system called a file-based router, which means that the routes
users access are mapped directly to the locations where the files for specific
pages are stored on the file system. For the sake of explanation, let us say
the domain we are using is page.com.

The base route is src/routes, which maps directly to page.com. Creating a
directory called src/routes/home would create a route to page.com/routes.
This is an intuitive way to handle routes, which greatly simplifies the devel-
opment process.

Of course, SvelteKit also supports more advanced routing, such as hidden
routes and slugs, but it is recommended to read the SvelteKit documentation
to learn more about those.

39

4. Implementation....................................
Layouts

Layouts are another SvelteKit feature I greatly appreciate. They are a way
to create a layout that is applied to every page in a route and its children.
For example, a layout file in src/routes/auth/ would apply to not only
page.com/auth but also page.com/auth/login and
page.com/auth/register.

These layouts are defined in a +layout.svelte file, which can load data
from an accompanying +layout.ts or +layout.server.ts files which load
data on the client and server sides, respectively. The great thing about these
layout files is that any data that is loaded in them is also accessible from
subsequent layout and page files, which allows the developer to load data
only once and use it in different parts of the rendering pipeline.

Individual pages

Svelte stores each page in its own route, with each page being defined
in a +page.svelte file for the design and simpler logic of the page, and
+page.ts and +page.server.ts for data loading and more complex logic.
The important part of the +page.server.ts file is the fact that none of the
code stored in it is ever executed on the client machine, which allows us to
write more sensitive code without the need to separate the server-side from
client-side code manually.

Server-Side Rendering (SSR)

By default, SvelteKit renders the first load of a page on the server, which
speeds up the initial build of the HTML code. After that, any changes to
the page are made using a process called hydration which modifies only the
changed parts of the page. Combining these two features results in fast initial
load times and smaller packet sizes required for page changes and navigation.

40

...................................... 4.3. Back-end

State management

SvelteKit offers a streamlined approach to state management, ensuring data
accessibility and reactivity across components. The state is often propagated
between components via properties, similar to passing variables to functions.
This mechanism is suitable for parent-child component relationships where a
parent component sends data to a child component through its properties. A
useful feature that Svelte offers is two-way bindings on properties using the
bind: keyword.

However, for complex state management scenarios, SvelteKit leverages
stores. These stores are essentially singletons that hold the application state.
A store is an object with a subscribe method that updates components
whenever the store’s value changes. This approach ensures that state data is
available globally and synchronizes changes across all listening components.

In addition to global stores, SvelteKit provides context stores for more
granular state management. Context stores allow components to create a
context and set values. Any nested child components can retrieve and use
those retrieve or set values using its key. This is particularly useful when
components deeply nested in the hierarchy need to access data without passing
it down through multiple layers of components.

4.3 Back-end

The back-end is the second major part of any software project, as it is the
engine that powers all the front-end interactions and ensures the seamless
functioning of the software. Despite not having a strong background in
front-end design, my experience with back-end is much greater, which greatly
reduced the work required to complete this part of the project compared to
the front-end.

SvelteKit, a framework rapidly rising in popularity, was deployed to manage
routing and communication between the front-end and back-end. The usage of
SvelteKit has greatly sped up the process of creating dynamic, server-rendered
pages and managing routes and endpoints. The usage of such a framework not
only simplified the back-end building process but also maintained a consistent
approach to the application’s development.

41

4. Implementation....................................
4.3.1 Prisma

Probably the most important back-end library is Prisma, a multi-language
ORM (Object-Relational Mapping) library that allows the developer to define
a schema based on which a whole database structure is generated. When
this structure is created, Prisma also invokes one of its generators which can
generate type-safe objects for the desired language, which was TypeScript in
the case of this project [PD23a].

This generated client allows the developer to directly use types generated
based on the database model in the project’s code without having to define
it manually. The generated structure also allows for creating queries in a
format much more like standard JavaScript compared to SQL.

An example of a part of the project’s database schema to illustrate how
Prisma schema files are structured can be seen in listing 4.7.

1 model Wallet {
2 id String @id @default (cuid ())
3 name String
4 users AuthUser []
5 currency String
6 categories Category []
7 payments Payment []
8
9 @@map(" wallet ")

10 }
11
12 model Category {
13 id String @id @default (cuid ())
14 name String
15 color String
16 wallet Wallet @relation (fields : [walletId], ←↩

references : [id], onDelete : Cascade)
17 walletId String
18 payments Payment []
19
20 @@unique ([walletId , name])
21 @@map(" category ")
22 }

Listing 4.7: Prisma schema example

An example of a TypeScript code containing a Prisma query that disasso-
ciates a user from a wallet can be seen in listing 4.8.

42

...................................... 4.3. Back-end

1 const wallet = await prisma . wallet . update ({
2 where: {
3 id: walletId ,
4 },
5 data: {
6 users: {
7 disconnect : [{ id: userId }],
8 },
9 },

10 });

Listing 4.8: Prisma query example

A SQL query that would achieve the same result as listing 4.8 can be found
in listing 4.9.

1 UPDATE wallet
2 SET users_id = NULL
3 WHERE id = < walletId >
4 AND users_id = < userId >;

Listing 4.9: SQL query example

Another feature of Prisma I appreciated is Prisma Studio [PD23b], which
provides a web-based GUI for managing and exploring the data in the database.
Prisma Studio enables the monitoring of data in the database in real-time,
which is extremely useful while debugging query problems and checking if
queries were executed properly.

4.3.2 Lucia

Lucia is a modern, simple, and flexible library designed for managing users
and sessions. It helps abstract the relationship between the application that
the user and the session management side of the database. It also provides
an easy-to-use function for handling cookies, creating, verifying, refreshing
sessions, and other quality-of-life features. [Pil23]

While it is quite bare-bones compared to some alternatives, it does every-
thing a smaller project needs without unnecessary bloat or complications.
This simplicity both improves the speed and simplifies the required setup.

43

4. Implementation....................................
It also has middleware made specifically for SvelteKit that hooks up to the

locals variable mentioned in the Front-end section, and it can directly hook
up to a Prisma client if the database schema follows certain rules defined in
the Lucia documentation.

One issue encountered with this library was that version 1.0 came out
while this project was already in development, and the migration required a
few major breaking changes, such as renaming parts of the database schema
and re-implementing the SvelteKit adapter. This problem is acceptable, as
the documentation stated that the library was still in beta when it was first
added to the project. [Pil23]

4.3.3 Rest of the back-end

The back-end also contains many utility functions, custom error types, and a
pre-made list of currencies and functions relating to them.

4.4 Deployment

A well-made self-hosted application also requires a user-friendly deployment
method. While SvelteKit offers different adapters for building applications
for production, such as static adapters, which build the project into a static
site, and platform-specific adapters, like an adapter for Vercel or Cloudflare
pages that work natively on those specific platforms, opting for the Node
adapter enables running and hosting the application using NodeJS which is
ideal for a self-hosted application.

4.4.1 Dockerization

These days, most self-hosted applications offer a docker image or a pre-made
way to build the docker container that would run the application without
the need to install any prerequisite software or libraries directly on the host
machine. [Inc23]

A Dockerfile has been created to build the required environment to run the

44

..................................... 4.4. Deployment

server. It copies the code and configuration files from the host filesystem and
installs pnpm, which it then uses to install all required JavaScript libraries.
It also creates a data folder the user can mount to the host filesystem when
running the container. This folder is then used to store the SQLite database
file, which can easily be backed up or moved to another machine. After that,
it sets up all necessary Environment variables to run the file and prepares
the script that compiles and runs the program.

This separate script is necessary because the generated Prisma client relies
on an existing database. The script contains four main steps. The first creates
a database if the user does not already have one, the second generates the
Prisma client, the third builds the application, and the last runs it.

4.4.2 How to run an instance..1. Install docker. The instructions on how to install it on a specific OS can
be found here: https://docs.docker.com/get-docker/..2. Open the folder containing the code in a terminal...3. Run docker build -t pfm_image ., or replace pfm_image with desired
image name...4. Run docker run -d -v path/to/data:/data -p 3000:4173 –name
personal-finance-manager pfm_image while replacing path/to/data
with the path to the directory you want to store your data in and
replacing pfm_image with the name of the docker image you created in
step 3.

. If one wants to change the port, replace the first 3000 with the
desired port.. If one wants to change the name of the container, replace personal-
finance-manager with the desired name...5. The server should now be running on localhost:3000 (or the port

selected in step 4). The default login is admin, and the default password
is Admin123. It is recommended to change this immediately, or to create
a new account, set it as an administrator, and delete the default account.

45

https://docs.docker.com/get-docker/

4. Implementation....................................
4.5 Security

Security is a crucial part of any application, especially one that handles
sensitive data like personal finance management. This section will cover the
security measures taken to protect the application from unauthorized access
and common attacks.

4.5.1 Authorization

The standard authentication-based security is managed by intercepting all
requests to the server using a hook, checking if the requested URL is for a
page other than /register or /login, and then utilizing Lucia to verify the
session cookie from the request, allowing only requests from users with valid
sessions. Using a hook stops the request before reaching any load function
that could cause problems. This both prevents an unauthorized user from
accessing any page other than the login and register pages, and also prevents
data submission from unauthorized users.

4.5.2 Protection against common attacks

There is a series of common attacks every website should protect against; a few
of the most common ones are SQL injections, cross-site scripting, password
guessing, denial of service attacks, and many others [BNK+23].

Password guessing. Brute force attacks like password hashing are handled
by Lucia since it handles everything relating to authentication, which includes
hashing passwords. Lucia uses the scrypt hash from the noble-hashes library
to hash passwords [Pil23]. Scrypt is a memory-hard hashing algorithm which
means that it requires a large amount of memory to compute [CMBH19].
Noble-hashes has also been audited by a professional security firm which
raises confidence in this encryption not being broken [pau23].

SQL Injection. SQL injection is a technique where an attacker passes a
SQL query into an input field that later gets passed into an actual database

46

.......................................4.6. Logging

query and executed [BNK+23]. Luckily, Prisma automatically sanitizes all
input, so we do not have to worry about this kind of attack.

Input validation. Even though non-SQL-injection attacks relating to input
validation do not pose as much threat as SQL injections, validating the
user input on the server side is still important since a malicious user can
always modify the page’s HTML to submit invalid data, potentially disrupting
the website. This vulnerability is solved by using Zod schemas to validate
submitted data both on the client side when the client clicks the Submit
button and then on the server side when the request is received. Since we
also use Zod to parse the received data from the request, it ensures that all
user data we use on the back end is always validated.

Encryption and DDOS. As this is a self-hosted application, the responsibility
of properly encrypting the communication with the server falls to the user
who deployed the application. This is usually handled by hiding the service
behind a VPN or using a reverse proxy.

While it would be possible to force the end user to use only HTTPS, it
would limit the user’s choice of how the application is deployed.

The same applies to protection against targeted attacks such as a Denial-
of-Service attack. Since the end-user handles the deployment and hosting
of the application, the application’s development phase can’t offer much in
terms of preventive measures. A common protection against these kinds of
attacks is hiding the app behind a Cloudflare DNS with DDOS protection
enabled.

One major advantage of a self-hosted app is its lower likelihood of being
targeted, given that it usually only serves a limited number of users, typically
in the single or double digits.

4.6 Logging

Logging is the last part of the implementation process I have yet to mention.
Logging refers to the practice of recording events, warning of possible problems
and full-on errors with relevant details such as the error level, the timestamp of

47

4. Implementation....................................
the error occurring, and an error message. This enables the use of monitoring
and troubleshooting in the system. By capturing and storing log data,
developers and administrators can gain insights into system behavior, identify
potential issues, and analyze patterns.

Logging serves multiple purposes in software development and system
maintenance. It helps track the flow of execution, provides a historical record
of events, and aids in debugging and diagnosing problems. By including
relevant details such as error levels, timestamps, and error messages, logging
enables efficient error detection and resolution.

It can also help detect security issues by analyzing logs and checking
for suspicious behavior. While this may not be necessary for a self-hosted
application like this one since it is a small target, it is always good to consider.

4.6.1 Pino

The logging library I have elected to use is Pino. It is one of the many logging
frameworks available for Node.js, and the reason I have chosen it is its speed
and easy setup. It includes all the features one may need from a logging
library, such as customizable log levels and multiple transport layers allowing
different types of output, such as outputting to console, to a file, or even to
something like AWS Elasticsearch.

The one I have elected to use is provided by a library called pino-pretty,
which greatly simplifies the formatting of error messages. A simple setup
shown in listing 4.10 allows for a sufficient logging setup with minimal effort.

1 import pino from "pino";
2
3 export const logger = pino ({
4 transport : {
5 target : "pino - pretty ",
6 options : {
7 colorize : true ,
8 translateTime : true ,
9 ignore : "pid , hostname ",

10 levelFirst : true ,
11 },
12 },
13 }) as pino. Logger ;

Listing 4.10: Pino logger setup

48

Chapter 5

Testing

Creating a web app entails various stages, such as designing, programming,
and launching the app. However, one crucial and frequently overlooked
element of the development journey is testing. Verifying the web app’s
functionality and dependability is essential, as it directly influences user
experience. In this section, we will delve into two testing methods for web
app development: Unit Testing and End-to-End testing. Since they serve
distinct purposes, both will be discussed in individual sections.

5.1 Unit testing

Unit Testing focuses on testing the application at the method level. Unit
tests are usually quite short and should be performed quickly and often. This
form of testing enables developers to identify and resolve issues at the code
level before they turn into more significant problems. It also facilitates the
maintenance and refactoring of code, since it instantly reveals any issues
created created by the change as soon as the file is saved.

5.1.1 Vitest

Vitest is a modern and fast JavaScript testing framework designed specifically
for Vite, providing an efficient and streamlined testing pipeline for web appli-

49

5. Testing
cations developed using TypeScript [Cap23]. The main reason I chose Vitest
is the fact that SvelteKit projects come with a complete Vite configuration
file, which Vitest can use to simplify setup, such as configuring test files, and
helping prevent problems with things specific to SvelteKit such as aliasing
$lib/... to /src/lib/... to prevent messy relative paths.

Another great feature of Vitest is its integration with Visual Studio Code,
which offers a watch mode that significantly simplifies catching errors during
development. This capability leads to quicker error resolution and increased
productivity, allowing developers to focus on refining their code and testing
strategies.

5.1.2 Vitest-Mock-Extended

Another library that helped with unit testing is vitest-mock-extended, a fork
of a popular library called jest-mock-extended that was modified to work
better with Vitest.

While unmodified Vitest allows for mocking objects, vitest-mock-extended
makes the process significantly easier and more intuitive. Vitest-mock-
extended simplifies the process of creating type-safe mocks for interfaces,
argument types, and return types, allowing developers to test their web
applications with greater confidence. Moreover, vitest-mock-extended offers
features such as adding a .calledWith() extension to mocked objects and
functions for argument-specific expectations and deep mocking capabilities.

5.1.3 Unit testing in this application

In this application, the focus of unit testing is mainly on acceptance testing
of utility functions and functions that do not have side effects. Acceptance
testing focuses on testing if the tested functions return the expected values.
Examples of tested functions include Zod schemas which are used to parse
user inputs, functions related to currency processing, and utility functions
for modifying URLs and dates. This can be seen in listing 5.1.

The reason behind this approach is that unit tests are meant to test isolated
pieces of code, and isolating SvelteKit’s pages for testing poses a challenge.
This is because they rely on the framework and the browser, and are not

50

..................................... 5.1. Unit testing

designed to operate outside of a browser environment. This means that unit
tests for pages would have to be written in a way that would mock the browser
and the framework, which would be a lot of work for little gain, since this
application also has end-to-end tests that test the pages in a browser-like
environment.

Prisma models face the same challenges, as almost all problems they could
cause happen with the database connection or a badly written query, which
would not be detected by most unit tests as these mocked tests usually mock
the return value of the query rather than the query itself. While there are
some unit tests that do test the models, they are mostly there to test the
general structure of the functions that utilize the models.

Fortunately, both the SvelteKit code and database-related code are covered
by end-to-end tests, explored further in the following section.

1 describe (" formatCurrency ", () => {
2 test(" formats the amount with the currency symbol ←↩

and decimal digits ", () => {
3 const currency : Currency = {
4 symbol : "$",
5 decimal_digits : 2,
6 } as Currency ;
7 const amount = 1234.56789;
8 const formatted = formatCurrency (amount , ←↩

currency);
9 expect (formatted).toBe("$1234 .57");

10 });
11
12 test(" Format with weird currency symbol and name", ←↩

() => {
13 const currency = {
14 symbol : "~",
15 decimal_digits : 3,
16 } as Currency ;
17 const amount = 1234.56789;
18 const formatted = formatCurrency (amount , ←↩

currency);
19 expect (formatted).toBe(" ~1234.568 ");
20 });
21 });

Listing 5.1: Unit tests for the formatCurrency function

51

5. Testing
5.2 End to End testing

End to End testing, or E2E testing for short, is the polar opposite of unit
testing as it covers the System level of testing. Whereas unit testing aims
to test the smallest possible portions of code, such as individual functions,
E2E testing focuses on testing large chunks of the project in a production-like
environment. This effectively tests everything from the front-end styling, page
rendering, and server back-end to the fact that everything works properly
when used with an actual database.

5.2.1 Playwright

For this project, the end-to-end testing framework is Playwright. Playwright
is a modern alternative to more traditional frameworks like Selenium, offering
a more straightforward and more efficient approach to E2E testing [Mic23b].
Developed by Microsoft, Playwright is a Node.js library that enables develop-
ers to automate browser actions, facilitating the testing of web applications
across multiple browsers, including Chromium, Firefox, WebKit, and their
mobile versions with both headed and headless modes.

Some of the features that separate Playwright from similar frameworks
such as Selenium:

.More user-friendly syntax: Playwright’s API is designed to be more
intuitive and easier to use than Selenium. The syntax is clear and
concise, making it simple to understand and implement test scenarios.
This simpler syntax reduces the learning curve for developers and allows
them to write tests more efficiently [Kha22]..The lack of implicit waits: Playwright automatically waits for elements
to be available, visible, or stable before performing actions, eliminating
the need for manual waits. This results in more reliable, faster tests,
reduces flakiness, ensures that elements are ready before actions are
performed, and decreases the chances of timing-related issues.. Input recording and Locator finding: Playwright has a built-in feature to
record user interactions, automatically generating test scripts. Although
this feature sometimes records less optimal locators, such as ’First label
on the page’ rather than ’Label with text "ABC",’ it still provides a
valuable starting point for writing tests. Developers can refine the

52

.................................. 5.2. End to End testing

generated scripts and locators to improve their accuracy and reliability,
resulting in faster test creation.

How playwright tests work

Playwright tests simulate user interactions with the web application in a
controlled environment. These tests are designed to mimic real-world user
experiences and validate the application’s functionality across various browsers
and platforms. They start by initializing a browser instance, then navigating
to the desired URL and performing user actions such as clicking buttons,
filling out forms, and navigating between pages. Throughout the testing
process, assertions are made to verify the expected behavior, ensuring that
the application responds accordingly to the simulated user inputs.

Playwright’s robust API enables developers to handle complex interactions,
such as dealing with asynchronous operations, handling network requests,
and managing browser contexts. By automating these browser actions and
validating their outcomes, Playwright tests provide comprehensive coverage
of the application’s functionality, ultimately contributing to a reliable and
high-quality user experience.

Changes to code

A few changes needed to be made to the codebase to ensure that end-to-end
tests can be performed in this project. One of the major changes required
involved the addition of specific checks that allows tests to ignore the invitation
key used for user registration while the environment variable NODE_ENV is set
to ’test’. This check assures the project is running in test mode, so the skip
is not available in production without having to remove the relevant code
manually.

Problems with these E2E tests

While there were several problems while working with Playwright, primarily
stemming from the fact that Playwright is still quite new compared to other

53

5. Testing
testing frameworks, these problems resulted in longer time spent solving those
problems than is generally necessary.

One of the encountered problems is that these tests are too fast for a
combination of SvelteKit with an SQLite database. While the database
speeds are sufficient for a self-hosted project like this one, it is still intended
for a single or double-digit number of users per instance, with even lower
number of concurrent users. The expectation for peak usage by humans are
approximitely five writes and ten reads per second, and even that is severely
overestimating the peak time usage.

Meanwhile, Playwright tests can easily fill out multiple forms per second,
which results in a database write followed by a redirect which can require
multiple database queries for each. Playwright also supports running tests in
parallel, which can result in dozens of database writes per second, and the
measured operations reached over 300 reads per second with eight Playwright
tests running simultaneously.

Although this this will not cause problems with the day-to-day usage of this
application, it can still cause slower queries which, combined with SvelteKit’s
partial SSR, can lead to Playwright trying to perform the following steps
before the page has been fully submitted and hydrated, thus leading to
flakiness. While this problem has been mostly alleviated by adding retries
to some operations where the tests often failed, some flakiness remains, as
shown in figure 5.1, so adding retries to the test configuration was required.

The other major issue was that Playwright could not find test files that
imported functions from other files using Implicit File Extension Resolution
(Implicit file extension resolution in TypeScript allows omitting the file exten-
sion when importing modules, and TypeScript automatically looks for the
appropriate file extension such as .js or .ts in import statements).

While this issue seems minor at first glance, the fact that it simply acts
as if the tests that use it do not exist, this problem is not being mentioned
anywhere online, and the fix required changing the Vite configuration file
resulted in a whole evening spent on this minor issue [You19a].

54

.................................. 5.2. End to End testing

Figure 5.1: Flaky test results

Conclusion

In conclusion, Playwright is a powerful and efficient E2E testing frame-
work, offering significant advantages over traditional tools like Selenium. Its
user-friendly syntax, automatic waiting mechanism, and input recording capa-
bilities contribute to a more streamlined testing process, ultimately enhancing
the quality and reliability of web applications. While there were some chal-
lenges as mentioned above, the process of writing Playwright tests is a much
more pleasant experience when compared to other testing frameworks like
Selenium.

5.2.2 Test scenarios

To test this project, we have created four individual end-to-end test scenarios
for different parts of the program. This document contains the summaries of
each scenario, with steps and expected results available in the scenarios.md
markdown file, which can be found in the analysis folder bundled with this
thesis.

55

5. Testing
While these scenarios are not comprehensive, they cover the most important

parts of the project, such as user authentication, user-to-user interactions,
wallet management, and input validation.

5.2.3 Basic Authentication Test Scenario

This scenario covers the essential user authentication process, including user
registration, login, and logout. By testing these functionalities, we ensure
that users can successfully register, log in with their credentials, and securely
log out of the platform.

5.2.4 Input Validation Test Scenario

This scenario targets the registration and login forms’ input validation and
back-end handling of credentials. By testing various input scenarios and back-
end handling, we ensure that the forms are properly validated for different
inputs and that the back-end responds correctly to both valid and invalid
credentials.

5.2.5 Wallet Management Test Scenario

This targets wallet functionality - creating a new wallet, adding categories
and transactions and sorting and applying filters to transactions. By testing
these features, we ensure that the wallet is created with the correct name and
currency, categories and transactions are added accurately, pagination works
as intended, and filtering and sorting operations provide the desired results.

5.2.6 Multi-Account Wallet Test Scenario

This scenario focuses on the shared wallet functionality, simulating a multi-user
scenario where a wallet is created and shared between two users. By testing
the registration, wallet creation, user addition, and transaction management,
we ensure that both users are capable of working with the shared wallet
seamlessly as would be expected.

56

Chapter 6

Conclusion

The original aim was to create a simple self-hosted web app that allows users
to track their finances, and I believe I have achieved this goal.

To begin, I compiled a list of functional and non-functional requirements
and created a list of possible use cases. This process has given me a general
idea of the type of application I will be developing and what steps I will need
to take to achieve this.

After that, I performed a more in-depth analysis of what tools should be
used when developing this kind of application. I have considered if it should
be a mobile, desktop, or web application, and I ended up going with web
applications for their ability to be accessed on any device. After that, I chose
between different JavaScript frameworks and selected Svelte. Thi decision
directly lea to me chosing SvelteKit as a back-end framework. I have also
created a list of other tools that can simplify the development process.

The next step was planning the general architecture of the program, which
included planning the program structure, back-end, and front-end, planning
how they would communicate, and creating diagrams to plan the structure
and different processes.

The following step was the most important one – creating the software itself.
When working on it, I created both the front and back end simultaneously
since SvelteKit ties the front and back end of a single page close together
than two different pages. Although there were some problems along the way,

57

6. Conclusion......................................
I believe the final result works well and looks good.

I have also tested the code during the development using unit tests and
after the completion using E2E testing. Both testing methods have been
instrumental in catching and ironing out the bugs I have not caught during
development in different ways. Overall, both unit and E2E testing have
proven invaluable in improving the quality of the final product.

I would also like to mention that even though some problems have been
caused by using some very new frameworks and libraries, I do not regret
using them as they have significantly improved some processes that would
have been more complicated when using older methods.

6.1 Potential future improvements

While this project works as intended, there are always areas that could be
improved. The first area of possible improvement is the front end. While
it is usable and not-bad looking right now, I cannot say I am a talented UI
designer, so external help from an experienced UI designer may be necessary.
Moreover, while DaisyUI works well as a starting template, some hard-coded
details could be changed to fit the app better. Based on the DaisyUI 3.0
GitHub repository, it seems like most of the problems have been addressed,
but the version remains in alpha as of the writing of this thesis.

The second area that could be improved is deployment. The obvious
next step for easier deployment is publishing a docker image to Docker
Hub and providing a docker-compose file for easier setup. This could also
neatly combine with the next possible improvement: creating a Continuous
Integration pipeline that automatically builds and publishes docker images
when a new version is pushed to the Main/Release branch on GitHub and
passes all the unit and E2E tests.

If better scalability is needed in the future, the obvious improvement would
be allowing the use of other databases like Postgres since their performance
is significantly better than the SQLite database we use currently. This could
also help addressed the issue of flaky tests caused by them being too fast.

58

Appendix A

Bibliography

[And22] Henry Andersson, A comparison of the performance of an android
application developed in native and cross-platform: Using the
native android sdk and flutter, 2022.

[Bal21] Jatinder Singh Bal, Development of native mobile application,
Journal of Critical Reviews (2021).

[BJV+22] B Balatamoghna, Aditya Jaganath, S Vaideeshwaran, Anish Sub-
ramanian, and K Suganthi, Integrated balancing approach for
hosting services with optimal efficiency-self hosting with docker,
Materials Today: Proceedings 62 (2022), 4612–4619.

[BNK+23] Bhuvana Reddy Bhimireddy, Alekhya Nimmagadda, Harshith
Kurapati, Leelendra Reddy Gogula, Radhika Rani Chintala, and
Vijaya Chandra Jadala, Web security and web application security:
Attacks and prevention, 2023 9th International Conference on
Advanced Computing and Communication Systems (ICACCS),
vol. 1, IEEE, 2023, pp. 2095–2096.

[BPP15] ST Bhosale, Tejaswini Patil, and Pooja Patil, Sqlite: Light
database system, Int. J. Comput. Sci. Mob. Comput 44 (2015),
no. 4, 882–885.

[Cap23] Matías Capeletto, Vitest, 2023, Accessed: 2023-05-18.

[Che22] Cheng Chen, Multi-perspective evaluation of relational and graph
databases, Master’s thesis, University of Helsinki, 2022.

[CMBH19] Jiwon Choe, Tali Moreshet, R Iris Bahar, and Maurice Herlihy,
Attacking memory-hard scrypt with near-data-processing, Proceed-

59

A. Bibliography.....................................
ings of the International Symposium on Memory Systems, 2019,
pp. 33–37.

[CMDP16] Theo Combe, Antony Martin, and Roberto Di Pietro, To docker
or not to docker: A security perspective, IEEE Cloud Computing
3 (2016), no. 5, 54–62.

[DP08] David Dearman and Jeffery S Pierce, It’s on my other computer!
computing with multiple devices, Proceedings of the SIGCHI Con-
ference on Human factors in Computing Systems, 2008, pp. 767–
776.

[Fir23] Firebase, Firebase, 2023, (accessed on May 20, 2023).

[GW05] William Bradley Glisson and Ray Welland, Web development
evolution: The assimilation of web engineering security, Third
Latin American Web Congress (LA-WEB’2005), IEEE, 2005,
pp. 5–pp.

[Har19] Rich Harris, Write less code, 4 2019.

[Inc23] Docker Inc., Docker, 2023, Accessed: 2023-05-18.

[Joh20] Jeff Johnson, Designing with the mind in mind: simple guide
to understanding user interface design guidelines, Morgan Kauf-
mann, 2020.

[Kha22] Arsalan Khalid, Challenges with automated software testing, Mas-
ter’s thesis, University of Oslo, 2022.

[Lab23] Tailwind Labs, Tailwind CSS, 2023, Accessed: 2023-05-18.

[McD23] Colin McDonnell, Zod, 2023, Accessed: 2023-05-18.

[Mic23a] Microsoft, JavaScript With Syntax For Types., 2023, Accessed:
2023-05-18.

[Mic23b] , Playwright, 2023, Accessed: 2023-05-18.

[pau23] paulmillr, noble-hashes: Audited & minimal js implementation of
hash functions, macs & kdfs, 2023, Commit dated May 20, 2023.

[PD23a] Inc. Prisma Data, Prisma Documentation | Concepts, Guides,
and Reference, 2023, Accessed: 2023-05-18.

[PD23b] , Prisma studio, 2023, Accessed: 2023-05-18.

[Pil23] Pilcrow, Lucia, 2023, Accessed: 2023-05-18.

[REC+11] Christopher Riederer, Vijay Erramilli, Augustin Chaintreau, Bal-
achander Krishnamurthy, and Pablo Rodriguez, For sale: your
data: by: you, Proceedings of the 10th ACM WORKSHOP on
Hot Topics in Networks, 2011, pp. 1–6.

60

..................................... A. Bibliography

[SA20] Gian Luca Scoccia and Marco Autili, Web frameworks for desktop
apps: an exploratory study, Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2020, pp. 1–6.

[Saa23] Pouya Saadeghi, daisyUI, 2023, Accessed: 2023-05-18.

[SG] Raphaël Benitte Sacha Greif, State of JavaScript 2022: Front-end
Frameworks, Accessed: 2023-05-18.

[Sve23a] SvelteKit Foundation, Sveltekit documentation, 2023, Accessed:
2023-05-18.

[Sve23b] , Sveltekit documentation - page options, 2023, Accessed:
2023-05-18.

[tea19] Flutter team, Flutter - beautiful native apps in record time, 2019.

[Tea23] Dart Team, Dart programming language overview, 2023, Accessed:
2023-05-20.

[Wan23] Yichen Wang, Inflation surge: Impact of covid-19 pandemic and
ukraine conflict, Highlights in Business, Economics and Manage-
ment 10 (2023), 393–397.

[Xu21] Wenqing Xu, Benchmark comparison of javascript frameworks
react, vue, angular and svelte, Hämtad den 5 (2021).

[YJJ+19] Enes Yigitbas, Klementina Josifovska, Ivan Jovanovikj, Ferhat
Kalinci, Anthony Anjorin, and Gregor Engels, Component-based
development of adaptive user interfaces, Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, 2019, pp. 1–7.

[You19a] Evan You, Vite, 2019.

[You19b] , Vue.js, 2019.

[ZFL+19] Agustin Zuniga, Huber Flores, Eemil Lagerspetz, Petteri Nurmi,
Sasu Tarkoma, Pan Hui, and Jukka Manner, Tortoise or hare?
quantifying the effects of performance on mobile app retention,
The World Wide Web Conference, 2019, pp. 2517–2528.

61

62

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499329 Personal ID number: Krul Filip Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Web application for management of personal finances

Bachelor’s thesis title in Czech:

Webová aplikace na správu osobních financí

Guidelines:

Bibliography / sources:

1] Pressman, R. S. (1987). Making software engineering happen: A guide for instituting the technology. Prentice-Hall, Inc..
[2] Xu, Wenqing. "Benchmark Comparison of JavaScript Frameworks React, Vue, Angular and Svelte." Hämtad den 5
(2021).
[3] Haque, Mubin Ul, Leonardo Horn Iwaya, and M. Ali Babar. "Challenges in docker development: A large-scale study
using stack overflow." Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 2020.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jiří Šebek Center for Software Training FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 21.02.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jiří Šebek
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

	Motivation
	Analysis
	Functional Requirements
	User Accounts
	Manual logging of payments
	Sorting and filtering payments
	Dashboard
	Multiple wallets per user
	IOUs

	Non-functional Requirements
	Selfhostability and data ownership
	Easy deployment
	Performance
	Security
	Usability
	Interoperability

	Use case diagrams
	Authentication and user management
	Dashboard
	Managing IOUs
	Wallet and transaction

	Technology stack
	Type of application
	Front end
	Back end
	Data storage
	Other tools I plan to use

	Design
	Architecture
	Front-end
	Back-end
	Database

	Component diagram
	Sequence diagrams

	Implementation
	The attempt at implementation without the need for client-side JS
	Front-end
	Tailwind
	DaisyUI
	Input validation
	Svelte components
	Page loading using SvelteKit

	Back-end
	Prisma
	Lucia
	Rest of the back-end

	Deployment
	Dockerization
	How to run an instance

	Security
	Authorization
	Protection against common attacks

	Logging
	Pino

	Testing
	Unit testing
	Vitest
	Vitest-Mock-Extended
	Unit testing in this application

	End to End testing
	Playwright
	Test scenarios
	Basic Authentication Test Scenario
	Input Validation Test Scenario
	Wallet Management Test Scenario
	Multi-Account Wallet Test Scenario

	Conclusion
	Potential future improvements

	Bibliography
	Project Specification

