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Abstract

Visual recognition of the environment is essential for autonomous vehicle navigation
through off-road terrain. This work relies on combining visual geometry estimation and
scene understanding to detect off-the-plane obstacles. The network is trained to distin-
guish hard obstacles that should be avoided to prevent a collision from phenomena that
appear off-the-plane but are soft and traversable, e.g., tall grass. The thesis focuses on the
camera-only setup. The geometry is estimated either with the binocular stereo camera or
with a single camera and convolutional neural network (CNN), which is trained to esti-
mate the 3D geometry. Another CNN is trained to perform the semantic segmentation of
the scene. We implemented four deep learning methods and one baseline method based
on the 3D geometry only. The best-performing method was using the combination of the
3D geometry obtained from the binocular camera with supervised deep learning, and it
reached an F1 score of 98.2 for pixel-wise binary classification, tested on our dataset of
forest scenes.

Keywords: Autonomous driving, Off-road terrain, Depth map, CNN, Semantic segmen-
tation, UNet

Abstrakt

Vizuálńı rozpoznáváńı prostřed́ı je nezbytné pro autonomńı navigaci vozidla v terénu.
Tato práce kombinuje vizuálńı odhad geometre a porozuměńı scéně za účelem detekce
překážek mimo rovinu. Neuronová śı̌t je natrénována k rozlǐsováńı pevných překážek,
kterým je nutné se vyhnout, aby nedošlo ke kolizi, od překážek, které lež́ı mimo rovinu,
ale jsou pr̊ujezdné, např. vysoká tráva. Práce se zaměřuje na vozidlo vybavené pouze
kamerou. Geometrie se odhaduje buď pomoćı binokulárńı stereo kamery, nebo pomoćı
jediné kamery a konvolučńı neuronové śıtě (CNN), která je natrénována k odhadu 3D
geometrie. Daľśı CNN je natrénována k provedeńı sémantické segmentace scény. Byly
implementovány čtyři metody hlubokého učeńı a jedna metoda založená pouze na 3D
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geometrii. Nejlepš́ıch výsledk̊u dosahovala metoda využ́ıvaj́ıćı kombinaci 3D geometrie
źıskané z binokulárńı kamery se supervizovaným hlubokým učeńım, která dosáhla F1
skóre 98,2 pro binárńı klasifikaci, testovanou na našem datasetu lesńıch scén.

Keywords:

Autonomńı ř́ızeńı, Off-roadový terén, Hloubková mapa, CNN, Sémantická segmentace,
UNet
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Chapter 1

Introduction

Vehicle navigation through a terrain relies heavily on the ability to visually recognize

the environment, which is achieved by combining visual geometry estimation and scene

understanding.

One aspect of this recognition is the estimation of obstacles and the terrain’s shape,

which typically depends on binocular vision. Humans can estimate depth using binocular

vision, and computers can leverage binocular stereo cameras. However, humans can also

use their prior knowledge of image-to-depth mapping to compensate for the lack of binoc-

ular vision. Similarly, convolutional neural networks (CNNs) can be trained to estimate

depth from a single image, as described in [1].

While visual geometry estimation is crucial for traversing terrain, it may not always

be sufficient. Certain obstacles, such as high grass or fallen leaves, can be easily traversed

despite their size, while others, like puddles, cannot be recognized from the scene’s ge-

ometry alone. Therefore, scene understanding is needed to enable a vehicle to navigate

through such terrain safely.

This thesis aims to perform semantic segmentation of camera images using various

segmentation methods. The segmentation approach will categorize the scene into ‘safe’

and ‘dangerous’ classes. The ‘safe’ class consists of flat, traversable surfaces and soft

obstacles, such as tall grass or pile of leaves. On the other hand, the ‘dangerous’ class

consists of solid barriers, such as trees, that should be avoided. This segmentation sub-

sequently enables the navigation of the test vehicle through the terrain. The methods

utilized differ in whether they use the binocular camera and the specific deep learning

techniques applied.
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Chapter 2

Related Work

The navigation of autonomous vehicles with a camera-only setup is a well-known problem.

The methods can be divided into on- or off-road navigation, depending on whether the

vehicle operates on paved or off-road terrain.

A method for on-road route recommendation based on road recognition from the

monocular camera is proposed by J.-M. Dai et al. [2]. Articles [3] and [4] use self-supervised

learning to predict the properties of the on- or semi-off-road terrain. The self-supervision

in these methods is based on the sensors mounted on the vehicle.

The off-road terrain typically requires information about the geometry. The traditional

method of estimating the geometry with the camera-only setup uses the binocular stereo

camera. Eppenberger et al. [5] describe a method for classifying static obstacles and

tracking the dynamic object using the point cloud from the binocular camera.

Monodepth [1] is a method of estimating the depth from a single image based on deep

learning. Tektonidis et al. propose using the self-supervised deep learning method of

depth estimation for the navigation of autonomous vehicles [6].

Besides the camera-only setup, Light Detection And Ranging (LIDAR) is another

popular environmental monitoring method. The work [7] combines the LIDAR with deep

learning for off-road driveable area extraction.

The method introduced in [8] describes a NN architecture TerrainNet, which jointly

predicts terrain semantics and geometry from the input images and depth maps. The

geometry consists of three layers: Ground Min Elevation represents the height of the

ground, Ground Max Elevation represents the height of potential obstacles lying on the

3



ground, and Ceiling Elevation represents the height of the potential ceiling, such as the

tree branches. The vehicle is equipped with four cameras, each pointed in a different

direction. This configuration allows the vehicle to capture visual information from the

front, sides, and rear. The LIDAR obtains the ground truth data for training but is not

used during deployment.

Schmid et al. [9] propose a self-supervised approach for traversability prediction. The

self-supervision is based on the previous rides. The trajectory is projected to the camera

image. The NN architecture is based on an autoencoder trained to reconstruct only the

previously safely traversed terrain. This reconstruction is subsequently used to identify

the traversable terrain.

Article [10] describes a multiple-camera setup for vision-based simultaneous localiza-

tion and mapping (vSLAM) based on panoramic cameras.

In addition to considering the environmental factors, successful navigation also requires

accounting for the physical characteristics of the vehicle. While traditional wheel-based

vehicles are commonly used, more specialized vehicles like belt vehicles are frequently

employed in challenging terrains. Zimmermann et al. [11] explicitly address the control

of robot morphology to enhance obstacle traversal capabilities.



Chapter 3

Methods

This chapter presents several methods which eventually lead to the semantic segmentation

of the images.

In Section 3.1, we present two approaches for generating a depth map: one using a

binocular stereo camera and another using a monocular camera and deep learning.

Section 3.2 covers the conversion of the depth map into a point cloud and its subsequent

processing. This process provides the geometric segmentation of the image, which is based

only on the scene geometry. We use this segmentation as an input for a more sophisticated

semantic segmentation. It is also used for the dataset annotation.

In Section 3.3, we introduce several approaches to semantic segmentation based on

deep learning.

3.1 Depth map

A depth map is a digital representation of the scene’s three-dimensional depth or distance

information. Each pixel or point in the image is associated with a depth value representing

the distance from the camera or observer to the object in the scene.

We introduce two methods of obtaining the depth map. The first is based on a

binocular camera, while the second uses a single camera and deep learning.
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3.1.1 Depth map estimation using the binocular camera

The first method for depth map estimation utilizes the binocular (stereo) camera setup,

which involves capturing images from two cameras placed at a certain distance apart (a

baseline), mimicking the human eyes’ stereo vision. The two cameras capture images of

the same scene from slightly different viewpoints, allowing for the calculation of depth

information based on the disparity between corresponding points in the two images.

One of the main advantages of the binocular camera for estimating depth is that it

can do so without prior knowledge. This is in contrast with the deep learning method. It

can also provide more accurate depth information, as it estimates the distance from the

disparity.

One significant disadvantage is the need for a calibrated binocular camera setup. Fur-

thermore, the binocular camera has a limited range of precise depth estimation. Specif-

ically, the depth estimation accuracy decreases as the distance between the camera and

the object of interest grows. Beyond a certain distance, the stereo disparity between

the left and right images becomes too small to provide reliable depth estimation. This

distance depends on the baseline of the binocular camera (the distance between the two

cameras). A more extended baseline increases the range, but it also intensifies the occlu-

sions. However, in a forest environment, where the objects of interest are located within

a few meters, the limited range of depth estimation is typically not an issue.

Another limitation is that it may not perform well on surfaces with low texture, such

as flat or featureless surfaces. However, this limitation may also be a minor issue in the

forest environment, as there are likely enough visual cues for accurate depth estimation.

3.1.2 Depth map estimation using the monocular depth and

deep learning approach

The other approach for generating the depth map is based on a single camera and deep

learning. We train the convolutional neural network (CNN) to predict the depth for each

pixel in a single image.

The labels for our dataset are obtained using the binocular camera setup, which pro-

vides pixel-wise depth information for each training image. We are using 4000 images for

the training and another 500 for the validation.
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The CNN is trained on this labeled dataset using the mean absolute logarithm error

(MALE) loss function [12]. We use this loss function because the same absolute error’s

impact grows with the proximity to the camera. For example, the difference between 9

and 10 meters is less significant than between 1 and 2 meters for our purpose. Using the

MALE makes the error more proportional to the distance.

MALE(x, y) =
1

T

T∑
t=1

|log(xt)− log(yt)| =
1

T

T∑
t=1

|log

(
xt

yt

)
|

Figure 3.1 compares the signed error and the signed logarithm error on the outputs of

the trained CNN.

Figure 3.1: Comparison of the signed error and the signed logarithm error on the outputs
of the trained CNN.

During training, we use data augmentation techniques such as random horizontal

flips and random cropping to increase the size of the training set and improve the model’s

robustness to variations in the input data. Moreover, we set an upper limit of 10 meters for

the distance in the labels, which is adequate for our objectives and removes the erroneous

areas of the depth map, like the sky.

We use a U-Net architecture [13] for depth map generation. The U-Net architecture

is a type of (CNN) that is commonly used for image segmentation tasks. It consists of an

encoder that down-samples the input image to a low-resolution feature map and a decoder

that up-samples the feature map to the output resolution. The encoder and decoder are

connected by skip connections, enabling the decoder to incorporate fine-grained details



from the input image.

Once the U-Net model is trained, we can estimate depth maps for new forest scenes.

The model takes as input a single RGB image and outputs a corresponding depth map.

Evaluation of the monocular depth CNN

We focus on the signed error between the ground truth and the predicted depth map.

The following two figures show the input image, the ground truth, the prediction from

the CNN, and the difference between the two depth maps.

Figure 3.2: Comparison of the ground truth depth map and the depth map predicted
with the CNN

Figure 3.2 captures a relatively simple scene with flat ground and distant obstacles.

The ground also contains many visual cues, enabling a precise depth estimation by the

binocular camera.

The comparison of the results indicates that the deviation is relatively insignificant in

the ground region and the distant areas, as the ground truth is capped at 10 meters for

training.

However, errors are noticeable in distant obstacles such as trees, which are challenging

to estimate as the estimation of their distance is solely based on the width in the monocular

image, which could be due to their distance from the camera or actual size.
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Figure 3.3: Comparison of the ground truth depth map and the depth map predicted
with the CNN

Figure 3.3 captures a more complex scene with many occlusions. Notably, the CNN

occasionally outperforms the stereo approach, as evident, for example, from the tree on

the left. The occlusion at the side of the tree results in an imprecise estimation of the

depth. However, this occlusion does not pose a problem for the CNN approach since it

relies solely on the monocular image.

(a) The original image (b) The detail

Figure 3.4: Detail of the ground truth depth map and the depth map predicted with the
CNN. The ground truth and the predicted depth map are logarithmically scaled for better
visibility.



Figure 3.4 captures a detail of the ground. The logarithmic scaling of the two depth

maps is applied to make the details more visible. The comparison is presented in meters

to show the real difference. The CNN encounters difficulty capturing fine details, although

these are usually not crucial for navigation purposes.

The plots in figure 3.5 demonstrate the model’s performance quantitatively. Note

that the range of the distance is 0.5 - 10 m. Obstacles at closer distances are usually

occluded, resulting in inaccurate stereo camera estimations. Additionally, such objects

are not generally an issue for navigation purposes.

Also, the last bin on the graph, which corresponds to 10 meters or more, was excluded.

This is because the maximum distance is capped at 10 meters, which results in an arti-

ficially lower mean absolute error value on this bin. At the same time, the pixel count

would be significantly larger than in other bins.

Figure 3.5: The upper plot displays the average deviation from the ground truth relative
to distance, while the lower plot shows the average number of pixels at specific distances.
The distance between the bins is 10 cm.
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3.2 Point cloud

A point cloud is a set of N points (xi, yi, zi)
N
i=1 in 3D space that represent the surface of

an object or a scene. It is typically used for storing and processing 3D information.

3.2.1 Conversion of the depth map to the point cloud

In this work, we generate the point cloud from the depth map obtained using the binocular

camera or the CNN-based approach. We use the knowledge of the camera’s intrinsic

parameters to transform each pixel from the depth map to a 3D point with respect to the

camera frame.

The intrinsic parameters are the focal length and the projection center. The focal

length represents the distance of the projection (image) plane from the camera center. A

projection plane is a hypothetical plane in the camera that captures the 3D scene and

projects it onto a 2D image. We denote the focal length as f . In our case, it is the same

in the x and y directions. The focal length of our camera is 529 pixels or 2.096 mm. The

projection center refers to the point where the optical axis intersects the projection plane.

We denote it as cx in the x direction and cy in the y direction. The values are 635.8 and

365.1 pixels (2.54 and 1.46 mm), respectively.

We will assume a point in the scene Xs = (x, y, z), which is projected to a point

xi = (u, v) in the image. Each point in the image is associated with a depth, or a distance

from the camera, denoted with ds. We can use the triangle similarity to compute the

coordinates x, y, z from u, v and d, which is known.

Figure 3.6: This projection displays the triangles, with the distance of the scene point to
the optical axis denoted as o, and the distance of the image point from the optical axis
as p.



Figure 3.6 shows these triangles. In our scenario, the camera is located at the origin

of the world coordinate system, while the projection center is positioned at the center of

the image coordinate system. The two coordinate systems are aligned so that the axes x

and y align with u and v, while the axis z is parallel to the optical axis and perpendicular

to the image plane. In our example, we have only considered the 2D projection of the

setting (omitting the y axis, or supposing that y = 0, so the point Xs is represented by

its (x, z) coordinates), but the same principles hold for the 3D scene.

We can represent the distances of the points Xs and xi from the optical axis as |Xs|
and |xi|, respectively. Since the intrinsic parameters are known, we can compute the

distance |xi|. We denote the distance of the projection Xi from the camera center C as

di. It can be computed as di =
√
f 2 + x2

i . It holds that z
f

= ds
di

, so z can be computed as

z = fds
di

. It holds that |Xs|
z

= |xi|
f

. From that, we obtain |Xs| = z|xi|
f

.

Both coordinates of the 2D point Xs are now known. The procedure for the 3D point

would be equivalent. This approach maps each pixel in the depth map to one point in

the point cloud.

3.2.2 Obstacle detection from the point cloud

To detect the obstacles from the point cloud, we first estimate the ground plane and then

measure the distance of the off-the-plane points from this plane.

The point cloud is always computed from a single depth map. Therefore, each three-

dimensional point in the point cloud corresponds to one pixel in the depth map. The

point cloud is stored in a three-dimensional array of size W × H × 3, where W is the

width and H is the height of the depth map.

Ground plane estimation with RANSAC

The algorithm for estimating the ground plane is based on the Random sample consensus

(RANSAC) [14]. We only utilize a subset of points from a rectangular region of interest

in the lower part of the image. The reason is that the surface in this region tends to be

relatively flat, while obstacles are often located further away. Furthermore, we can achieve

faster processing times by limiting the processing to a smaller region of interest. In our

case, the size of this region is 500 × 250 pixels. It is selected to be located horizontally

in the middle of the image, with a vertical offset of 20 pixels from the lower border, thus
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covering the area in front of the vehicle (see figure 3.7). Note that the rectangular area

in the image results in the trapezoidal area in the scene.

Figure 3.7: An input image with the region of interest

The RANSAC runs in 100 iterations maximum. In each iteration, a random triplet

of the points is selected. Once the plane is computed from the triplet, the RANSAC

algorithm evaluates the fit quality by calculating the sum of the absolute distances of all

points from the estimated plane. To account for potential noise or outliers in the point

cloud data, we clip the distances to the range of 0 - 10 cm. A lower sum of clipped

absolute distances indicates a better fit of the estimated plane to the points, suggesting

a more accurate ground plane estimation. We will refer to this sum as the score. The

estimation with the lowest score is selected as the candidate ground plane.

We also apply a validation process to avoid erroneous estimates. These errors com-

monly arise from significant obstacles within the region of interest. The candidate plane

is compared with the previous planes for evaluation. Suppose the current score deviates

from the mean of the previous scores by more than 1.5 times the standard deviation, and

the angle between the candidate plane and the preceding plane exceeds 18°. In that case,

the current plane is identified as an outlier, and the preceding plane is used as the current

scene’s ground plane.



Elevation Map

Once we have estimated the ground plane from the subset of points, we return to the

whole point cloud. To identify obstacles, we compare the vertical distance of each point

in the point cloud to the estimated ground plane. Points located above the ground plane

by a significant threshold are classified as obstacles. The threshold is set to 15 cm for the

point cloud obtained with the stereo camera and 30 cm for the deep learning approach.

These points represent potential objects, obstacles, or structures in the scene that deviate

from the expected ground surface.

Our approach does not consider holes below the estimated ground plane. The camera’s

field of view and the settings of our system do not capture data from obscured or occluded

areas, resulting in gaps or missing points in the point cloud data below the ground plane.

Furthermore, our dataset doesn’t contain any holes that are difficult to traverse with the

vehicle.

To facilitate further processing, we convert the point cloud back to a 2D array, which

aligns with the resolution of the original depth map. In this array, each element corre-

sponds to a point from the point cloud and contains the distance of the point from the

ground plane. Points that lie on the ground plane will have a distance of 0 in the con-

verted array. Points above the ground plane will have positive distances, indicating their

height or elevation from the ground plane. Similarly, points that are below the ground

plane will have negative distances.

This data structure is used for subsequent obstacle detection algorithms that rely on

depth information to identify scene obstacles. We will use the term ‘elevation map’ as a

shorthand reference.
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Figure 3.8: The elevation map (points further than 5 m are hidden, distances from the
ground plane are clipped at ±0.3 m).

3.2.3 Geometric segmentation

The geometric segmentation relies solely on geometric information from the acquired point

cloud data without semantic segmentation. This approach contrasts with more advanced

methods that utilize semantic segmentation techniques for identifying obstacles.

We use the depth map and elevation map to construct the geometric segmentation.

The depth map provides information about the distances of points in the point cloud from

the camera, while the elevation map encodes the distances of points from the ground plane.

We set a threshold on both maps.

In our settings, we set the threshold for the depth map to 5 meters since more dis-

tant points are irrelevant. Additionally, the accuracy of depth estimation decreases with

increasing distance. Consequently, we label the points beyond this threshold as ‘too dis-

tant.’

The threshold for the elevation map is set to 15 cm. In our specific settings, which

involve a forest environment, the fluctuations in the elevation map are often caused by

the wavy and uneven nature of the terrain rather than the presence of obstacles. This

can cause fluctuations in the elevation map, even in the absence of actual obstacles. By

setting a threshold of 15 centimeters for the elevation map, we account for this inherent



terrain variability and minimize false positives in obstacle detection. Points above this

threshold are labeled as ‘too high.’

The geometric segmentation can be constructed directly from the depth map. The

depth map is estimated from the binocular camera or the CNN, which estimates the depth

from a single image. The segmentation is used to simplify the manual annotation, as an

input for more sophisticated semantic segmentation methods, and as the baseline method

of the segmentation.

Figure 3.9: Comparison of geometric segmentation based on the stereo camera and the
deep learning approach. Note that even though the upper right corner in the first image
and the tree in the second image are classified incorrectly with the deep learning approach,
both of these misclassified regions eventually fall into the ‘dangerous’ class

.

3.3 Semantic segmentation

In this section, we introduce several methods for the semantic segmentation. The first

is based on geometric segmentation, and the rest is based on deep learning. The output

is always a two-class segmentation, where points are categorized into either ‘safe’ (non-
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obstacle) or ‘dangerous’ (obstacle) classes.

A dataset of 2000 images was used for training and validation purposes. The dataset

was split in a 4-to-1 ratio, with 80% of the images used for training and 20% for validation.

The images in the dataset were of size 448 pixels, and a learning rate of 0.0001 was used

during training. The training process was carried out for 25 epochs. We used the Adam

optimizer [15] to update the model’s weights. We also implemented the random horizontal

flip and random offset of the square cut-out from the side of the original rectangular image.

The methods differ in the way the ground truth annotation is obtained and the type

of information provided as input to the segmentation task.

3.3.1 Baseline

The geometric segmentation described in section 3.2.3 is used as the baseline method.

It is the only method that is not based on deep learning. The geometric segmentation

produces three classes: ‘safe’ for points that satisfy the height and distance thresholds,

‘too high’ for points that exceed the height threshold, and ‘too distant’ for points beyond

the distance threshold. In the baseline method, the ‘safe’ class from the geometric seg-

mentation corresponds to the ‘safe’ class, while combining the ‘too high’ and ‘too distant’

classes forms the ‘dangerous’ class.

We will refer to this segmentation as ‘The Baseline method.’

Figure 3.10: The geometric segmentation. Green: safe; yellow: too high; purple: too
distant.



3.3.2 Supervised deep learning

In our experiments, we found that our cart can successfully overcome any obstacle below

15 cm in height, which means that we can assume that there are no false negatives in our

geometric segmentation results. However, due to the wavy terrain common in our forest

environment and some soft obstacles, such as high grass or a pile of fallen leaves, there

may be false positives in the ‘too high’ class. We can omit the potential false positives

in the ‘too distant’ class because the distant points do not pose an issue to the cart’s

navigation and may contain inaccuracies.

We aim to train the CNN to classify the points into two classes: ‘safe’ and ‘dangerous.’

The annotation is based on the geometric segmentation from the baseline method. In

our geometric segmentation, we will assign all points classified as ‘too distant’ to the

‘dangerous’ class, as these points are irrelevant to the cart’s navigation. Similarly, all

points classified as ‘safe’ in our geometric segmentation will be assigned to the ‘safe’ class.

The high points in the elevation map can indicate different scenarios, ranging from

real obstacles, such as trees, to variations in the terrain or soft obstacles, like grass. As a

result, manual annotation is necessary to identify and label these points in the training

dataset accurately.

The classes of ‘safe’ and ‘too distant’ are already distinguished by geometric segmen-

tation. To simplify the manual annotation process, we apply a mask to the image to

conceal these two classes, leaving only the ‘too high’ class for manual annotation.

This approach has the downside of ignoring the potential obstacles below the 15 cm

threshold, for example, the holes or the puddles. However, such obstacles are not present

in our dataset.

The supervised deep learning approach can be further categorized into two scenarios.

Supervised learning with geometric segmentation

In the first scenario, the geometric segmentation, which classifies points as ‘safe,’ ‘too

high,’ or ‘too distant,’ is attached to the image as an additional input. This allows

the model to learn from the raw image data and incorporate the geometric information

obtained from the elevation map. It could improve the accuracy and robustness of the

obstacle detection system. The geometric segmentation is attached to the image as a

fourth channel, which results in the input size 448× 448× 4.
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Figure 3.11: The process of manual image annotation. Note that only the masked image
is being annotated, which simplifies the process.

The downside of this approach is the need for a calibrated binocular camera on the

vehicle. Furthermore, the training data needs to be annotated manually.

We will refer to this scenario as the ‘Geometric Segmentation Supervised’ approach.

Image-Only Supervised approach

In the second scenario, only the image is used as the input for the CNN. This approach

requires geometric segmentation and manual annotation for the training, but the trained

CNN works with monocular data only. Therefore, there is no need for a calibrated binoc-

ular camera on the vehicle.

The downsides of this method are the need for manual annotation and the lack of

information about the scene’s geometry.

We will refer to this scenario as the ‘Image-Only Supervised’ approach.



Figure 3.12: The learning curves of the model. There is an average loss on one image on
the y-axis.

3.3.3 Self-supervised deep learning

We manually annotated ground truth labels in the previous chapter, resulting in a more

precise but time-consuming process. In contrast, in this chapter, we utilize automatic

annotation methods to generate labels for training data, which is more manageable.

Again, we use geometric segmentation as the ground truth label. In this experiment,

the ‘too high’ and ‘too distant’ classes are assigned to the ‘dangerous’ class without further

manual intervention.

The assumption is that the scene elements, such as trees and the ground, will likely

be accurately classified into their respective categories in the geometric segmentation.

While occasional misclassifications, such as parts of the ground being labeled as ‘too

high,’ may occur, most of the ground is expected to be classified as ‘safe’ in the geometric

segmentation, which enables the CNN to learn to classify it correctly.

This approach can be categorized into two scenarios, each with a distinct method of

obtaining the depth map.

Self-supervision with the stereo camera

The geometric segmentation is derived from the depth map, typically acquired using a

binocular camera. The depth map obtained through this method is known for its high
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Figure 3.13: The learning curves of the model. There is an average loss on one image on
the y-axis.

accuracy and can be generated in any scene, as it relies on a geometric approach. However,

a drawback of this approach is the requirement for a calibrated binocular camera.

We will refer to this approach as the ‘Self-Supervised Binocular Depth’ method.

Figure 3.14: The learning curves of the model. There is an average loss on one image on
the y-axis.



Self-supervision with monocular camera

The alternative approach for obtaining the depth map is through deep learning techniques.

We use our model, which predicts the depth from a single image. The main advantage of

the deep learning-based approach is that it eliminates the need for a stereo camera setup.

On the other hand, this approach is environment-specific, meaning the model is trained

on a specific data set and may not generalize well to different environments.

We will refer to this approach as the ‘Self-Supervised Monocular Depth’ method.

Figure 3.15: The learning curves of the model. There is an average loss on one image on
the y-axis.



Chapter 4

Experiments and Results

This chapter presents the experimental setup and the results of the experiments of meth-

ods described in Chapter 3. The first section provides an overview of the hardware

components employed. The second section focuses on the evaluation of the experiments,

both qualitatively and quantitatively.

4.1 Hardware

This section describes the Tomi2 platform, the substitute manually controlled cart, and

the stereo camera ZED 2i.

4.1.1 Tomi2

This thesis continues to work on research started by the Tomi2 project. The implemented

methods are meant to be subsequently deployed on this platform.

The Tomi2 platform is based on the commercial Losi1:5 DBXLE platform. Its current

weight is around 20 kg, and the dimensions are 844 × 501 × 308 mm. It is propelled

with an electric motor and modified so that each wheel has its own servo motor, enabling

independent 4-wheel steering.

Multiple computing units have been added to the platform. The neural network runs

on an NVIDIA Jetson Xavier computer, which contains a GPU compatible with the

NVIDIA CUDA system, which is necessary for running neural networks implemented in

23



Pytorch.

Figure 4.1: The Tomi2 platform

Apart from the computing units, the platform also contains multiple sensors, like GPS

or accelerometers, and a camera. Only the data from the camera was used for this project.

Manually controlled cart

The Tomi2 is a complex platform that is difficult to operate. For example, operating the

platform in one person is impossible due to safety risks. Transporting it to the terrain

suitable for our experiments is also problematic.

Therefore, an alternative, manually controlled cart was used for collecting the data. It

was designed to resemble the Tomi2 platform. It weighs 12 kg, the wheels’ circumference

is 25 cm, and the camera is 35 cm above the ground. The camera is positioned to look

straight ahead. It is connected to a laptop located off the cart.

The cart is being pulled rather than pushed for better maneuverability and to overcome
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(a) The cart (b) The detail of the ZED 2i stereo camera

Figure 4.2: The Tomi 0.5 platform

larger obstacles. This results in the reversion of the camera recording. The reversion is not

a significant issue because it does not affect the analysis or interpretation of the individual

frames of the recording, which are the focus of interest.

4.1.2 ZED 2i

ZED 2i is a compact binocular camera produced by Stereolabs. It contains two separate

lenses so that it can capture stereo recordings. Each of the lenses has a ratio of 16:9 and

is capable of capturing video in the resolution up to 2208 × 1242 for each camera. The

pixels are square, and their size is 0.004 mm. The baseline (the distance between the two

cameras) is 12 cm.

Stereolabs provide a software development kit (SDK), which contains multiple tools

for the camera. For this project, we used the depth sensing tool, which implements the

algorithm for obtaining the depth map based on the disparity of correspondences.

Figure 4.3: The binocular camera ZED 2i



The recording is carried out using a Python script. Several parameters can be specified

for the camera. The resolution is set to 1280×720, and the video is recorded in 60 frames

per second.

The depth computation mode is set to ‘ultra,’ which is supposed to provide a more

accurate depth estimation. On the other hand, it is computationally more expensive,

which is not an issue in our offline settings.

Additionally, we are using the ‘fill mode’ to address blank spaces in the depth map.

The blank spaces are usually caused by occlusions or a lack of texture in the image.

The exact algorithm is not disclosed, but it presumably infers the distance from the

neighborhood where it is known. This enables more convenient work with the depth map

since we do not have to consider the empty depth map regions. On the other hand, we

can not rely on the values because they might be incorrect.

Figure 4.4: Comparison of the depth sensing modes. The depth maps are visualized with
a logarithmic color scale.
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4.2 Evaluation

Our test set consists of 150 hand-picked images. These images were mostly captured

in different seasons than the training dataset, resulting in potential variations in the

appearance of vegetation. We applied a threshold to the output probabilities of the

neural network and compared them with the ground truth.

Figure 4.5: Samples from our test set.

Unlike those in the training data set, the images in the test data set were annotated

fully manually. For instance, the entire tree trunks were labeled as ‘dangerous.’

There is an ambiguity in classifying the distant but safe parts of the scene, as they are

often labeled as ‘dangerous’ in the training data set due to being classified as ‘too far’ by

the geometric segmentation. However, some distant yet clearly visible parts are labeled

‘safe’ in the fully manually annotated test data set. This can create a discrepancy where

the neural networks learn to classify these parts as ‘dangerous’ even though they are safe.

While misclassifying these parts as ‘dangerous’ does not impact the navigation since

they are located far from the vehicle, it can lead to incorrect quantitative evaluation of



the results. Therefore, we introduce a new class called ‘ambiguous’ to address this issue.

This class is designed for distant yet safe parts and is only present in the test data set.

By doing this, the ambiguous parts of the scene are excluded from the evaluation, thus

not affecting the accuracy assessment.

Figure 4.6: Example of the label with the ‘ambiguous’ class. Black is ‘safe,’ white is
‘dangerous,’ and gray is ‘ambiguous.’

In the upcoming sections, we will showcase hand-picked examples from the test dataset

to illustrate our methods’ typical advantages and drawbacks. Following that, we will

present a quantitative evaluation of these methods.

Method Description

Geometric

Segmentation

Supervised

Training data annotated manually;

geometric segmentation included in the

input

Image-Only

Supervised

Training data annotated manually; only one

image in the input

Self-Supervised

Binocular

Self-supervised using the geometric

segmentation from the stereo camera

Self-Supervised

Monocular

Self-supervised using the geometric

segmentation from monodepth

Baseline Only the geometric segmentation; ‘too high’

and ‘too distant’ class form the ‘dangerous’

class

Table 4.1: Summarization of the methods
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4.2.1 Qualitative evaluation

We have selected some examples from the test dataset to demonstrate the strengths and

weaknesses of our methods. For each example, we present the input image, the geometric

segmentation, the ground truth label, and the four deep learning-based semantic segmen-

tation outputs. Note that the baseline method is derived from geometric segmentation,

so its outputs are not included among the four deep learning methods. Additionally,

note that the segmentations presented in this section are displayed without applying any

threshold on the softmax of the output, which allows us to demonstrate the capabilities

of the CNNs better.

All the models learned to correctly classify the vegetation as ‘safe,’ even though it often

falls into the ‘too high’ class in the geometric segmentation. Figure 4.7 shows a typical

example of such a situation. This situation is relatively simple because the vegetation

is well visible, and there is also enough flat ground to estimate the ground plane for the

geometric segmentation.



Figure 4.7: Vegetation in the ‘too high’ class

The situation gets more complicated when vegetation is in close proximity to the

vehicle. Estimating the depth becomes more complex due to occlusions, and determining

the ground plane with RANSAC is also more difficult as the ground is less visible. We

implemented a validation process described in the previous chapter (3.2.2), which replaces

the outlying ground plane estimates with the earlier estimations. Furthermore, CNNs can

typically recognize vegetation with ease in such scenarios. Figure 4.8 show an example of

such a situation.
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Figure 4.8: Vegetation in close proximity

Note that the region in the lower left part of the geometric segmentation is incorrectly

classified as ‘too far’ due to an occlusion. This causes an error in the ‘geometric segmenta-

tion supervised’ method because it relies on geometric segmentation. In these situations,

it can be outperformed by the other methods, which are usually weaker.

The trees are the most common obstacles in our dataset. All the CNNs have learned to

classify the trees as ‘dangerous’ with no difficulties. The only difference between the meth-

ods is in the precision of the segmentation. In figure 4.9, the most precise segmentation

comes from the method ‘image-only supervised.’



Figure 4.9: A correctly classified obstacle

The wooden block depicted in Figure 4.10 is a more challenging obstacle because it is

situated within the grass, which has a comparable height. Due to its relatively low height,

only the top part of the block is classified as ‘too high’ using geometric segmentation. This

inaccuracy also applies to similar obstacles present in the training set. It is even possible

that obstacles of a similar nature in the training set, which fall below the 15 cm threshold,

might be classified as ‘safe’ by the geometric segmentation. This discrepancy leads to an

imperfect annotation in the training set, which makes such obstacles more difficult to

classify correctly.
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Figure 4.10: A low obstacle surrounded with grass

The ‘geometric segmentation supervised’ method accurately classifies the top of the ob-

stacle but is misled by the geometric segmentation when it comes to the bottom part. On

the other hand, the ‘image-only supervised’ method demonstrates superior performance

in this scenario. However, the self-supervised methods encounter difficulties accurately

classifying such obstacles, potentially due to imperfect annotation in the training set.

The fallen tree in figure 4.11 is another challenging obstacle. Due to the absence of such

obstacles in the training set, it is more difficult to classify the fallen tree as ‘dangerous’

while identifying the flat ground beneath and beyond it as safe.



Figure 4.11: An uncommon obstacle

The availability of geometric segmentation makes the ‘geometric segmentation super-

vised’ method more robust for uncommon scenes. Also, the other methods mostly classify

the trunk correctly as ‘dangerous’ and the area beneath and beyond as ‘safe.’ Most errors

come from the false negative areas above the trunk.

4.2.2 Quantitative evaluation

To evaluate the performance of our methods, we conducted an accuracy assessment. It

involved comparing the outputs generated by the neural network (or solely by the geo-

metric segmentation in the case of the baseline method) with the manually annotated

ground truth labels. We counted the number of true positive (TP), false positive (FP),



CHAPTER 4. EXPERIMENTS AND RESULTS 35

true negative (TN), and false negative (FN) pixels to calculate the performance metrics,

such as precision, recall, and F1 score. A true positive was defined as a pixel correctly

classified as belonging to the ‘dangerous’ class. In contrast, a false positive was a pixel

classified as belonging to this class but was, in fact, part of the ‘safe’ class. A true negative

was a pixel correctly classified as belonging to the ‘safe’ class, and a false negative was

a pixel classified as belonging to the ‘safe’ class but was actually part of the ‘dangerous’

class. By comparing the number of true and false positives and negatives, we were able

to determine the accuracy of the model in identifying dangerous and too high areas in

the scene.

Actual

Danger. Safe

P
re
d
.

Danger. TP FP

Safe FN TN

Precision is defined as the ratio of true positives to the total number of predicted

positives. The recall is defined as the ratio of true positives to the total number of actual

positives in the ground truth. The F1-score is the harmonic mean of precision and recall

and balances the two measures.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F1 = 2 · Precision ·Recall

Precision + Recall
(4.3)

Precision measures the proportion of the predicted positives that are actually positive,

while recall measures the proportion of actual positives that the model correctly identifies.

The F1 score provides a way to evaluate the system’s overall performance by balancing

precision and recall. A high F1 score indicates that the system has both high precision

and recall and performs well overall.



Experiment TP

rate

TN

rate

FP

rate

FN

rate

Prec. Rec. F1

Geometric

Segmentation

Supervised

51.9 46.2 0.2 1.7 99.6 97.0 98.2

Image-Only

Supervised

48.0 45.8 0.6 5.6 98.7 90.3 93.4

Self-

Supervised

Binocular

49.2 44.6 1.8 4.3 96.5 92.3 93.8

Self-

Supervised

Monocular

49.5 44.6 1.8 4.0 96.6 92.7 94.0

Baseline 52.7 43.8 2.6 0.9 95.3 98.4 96.7

Figure 4.12: The table with quantitative results. The values are in percentages.

Figure 4.12 shows the quantitative evaluation. The ‘Geometric Segmentation Super-

vised’ method has the highest F1 score, which balances the precision and recall scores.

The ‘Baseline’ method has the best precision but, at the same time, the worst recall. It

means that it relatively rarely overlooks an obstacle, but it also often misclassifies ‘safe’

obstacles, such as the high grass, as ‘dangerous.’ This is in accordance with the expecta-

tion. The self-supervised methods perform almost equally, which signifies that the stereo

camera is not beneficial for self-supervision once we have trained the mono-depth CNN.

4.2.3 Limitations

The main limitation of the presented methods is in the annotation of the training data.

The self-supervised approach is effortless, but the resulting annotation contains inaccura-

cies, as discussed in Section 3.3.3.

We also presented a method for manual annotation, described in Section 3.3.2. This

method represents a compromise between effortless self-supervision and slow, fully manual

annotation. It is based on geometric segmentation so that only the ‘too high’ class is

annotated manually, while the whole ‘safe’ class remains unchanged.

We assume that obstacles below 15 cm threshold are traversable. However, some
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obstacles, such as tree stumps, are slightly higher than the threshold. Only the topmost

parts of these obstacles are classified as ‘too high’ in the geometric segmentation and

can be subsequently manually annotated as ‘dangerous.’ The CNN is then trained to

also classify only the up-most part as ‘dangerous.’ Figure 4.13 shows an example of this

situation.

Figure 4.13: Only the tip of the tree stump is classified as dangerous.





Chapter 5

Conclussion

We implemented several methods to predict the properties of the off-road terrain. We

combined the terrain’s geometry with semantic segmentation to provide a reliable predic-

tion.

In the first part of this work, we described several algorithms based on the depth map.

The depth map was estimated either from the binocular camera or with the deep learning

approach. Both methods provide adequate results for further processing.

The depth maps are subsequently converted into elevation maps by estimating the

ground plane using the RANSAC algorithm. The elevation maps are used for obstacle

detection. The algorithm works reliably as long as the terrain in front of the vehicle is

mostly flat to estimate the ground plane. The depth map is combined with the elevation

map to estimate the ‘geometric segmentation.’ This segmentation is based solely on

geometry and is used as a component of semantic segmentation.

The semantic segmentation process relies on deep learning. Multiple methods have

been implemented, varying in their utilization of the binocular camera and use of su-

pervised or self-supervised learning. The resulting segments are classified into ‘safe’ and

‘dangerous’ classes based on whether the vehicle can safely traverse the terrain.

The performance of the supervised methods generally surpassed that of the self-

supervised methods, although the self-supervised approaches still provided satisfactory

results. Notably, the self-supervised method utilizing the binocular camera exhibited

comparable performance to the monocular-based self-supervise approach. The best re-

sults were achieved by combining the manually annotated training data with the geometric

segmentation.
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One potential future enhancement could involve extending the dataset. The appear-

ance of the off-road terrain changes across seasons but also in response to different weather

conditions. Furthermore, the forest environment contains a wide array of diverse obsta-

cles and other elements. To comprehensively capture this variety, a larger dataset is

necessary.
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