
F3 Faculty of Electrical Engineering
Department of computer graphics and interaction

Master’s Thesis

Augmented reality in city

Petr Varga

May 2023
Supervisor: Ing. David Sedláček, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483768 Osobní číslo:Petr Jméno:Varga Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:

Počítačová grafika Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Rozšířená realita ve městě

Název diplomové práce anglicky:

Augmented reality in city

Pokyny pro vypracování:
1) Seznamte se s lokalizačními službami použitelnými ve městském prostředí pro rozšířenou realitu (AR). Dále se seznamte
s otevřenými mapovými daty města Prahy [4].
2) Navrhněte a implementujte AR aplikaci, která bude vizualizovat vybrané datové vrstvy viz (1) v ulicích města. Vhodné
datové vrstvy konzultujte s vedoucím práce.
3) Seznamte se s technikami vykreslování vhodnými pro vizualizaci vybraných vrstev (anglicky situated visualization [2]
- např. zastínění, odhad okolního osvětlení, siluety, ...) a implementujte je v rámci aplikace pro dosažení co nejvěrohodnějšího
zakomponování 3D modelů do reálné scény.
4) Výslednou aplikaci otestujte alespoň s pěti uživateli. Zhodnoťte také kvalitu zarovnání dat vůči realitě, kvalitu pokrytí
lokalizační službou, datovou náročnost a rychlost zobrazování na různých typech zařízení.

Seznam doporučené literatury:
1] Steve Aukstakalnis. Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for
AR and VR (Usability). Addison Wesley 2017.
2] Dieter Schmalstieg, and Tobias Hollerer. Augmented Reality: Principles and Practice (Usability), Addison Wesley 2016
3] Micheal Lanham. Augmented Reality Game Development. Packt Publishing, 2017.
4] opendata Prahy: https://www.geoportalpraha.cz/cs/data/otevrena-data/seznam

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. David Sedláček, Ph.D. katedra počítačové grafiky a interakce FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 17.02.2023

Platnost zadání diplomové práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Sedláček, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank Ing. David
Sedláček, Ph.D. for giving me the op-
portunity to work on a topic that I
find very interesting. I would also like
to thank him for his advice and sup-
port, even though I have not been very
communicative.

I would also like to thank my family
for supporting me throughout my stud-
ies.

I declare that this thesis represents
my work and that I have cited all
the sources of information used in
accordance with the Methodological
Guideline on Compliance with Ethical
Principles in the Preparation of Final
Theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

v

Abstrakt / Abstract

V posledních letech zažila oblast
rozšířené reality (AR) mimořádný růst,
podpořený inovacemi v geoprostoro-
vých technologiích. Tato diplomová
práce představuje aplikaci, která vy-
užívá Geospatial API - technologii
uvedenou na trh v květnu 2022 - pro
vizualizaci podzemních inženýrských
sítí v ulicích města Prahy. Aplikace
je založena na datech poskytnutých
Institutem plánování a rozvoje Prahy.
Úvodní výzkum se soustředí na hlubší
pochopení těchto dat a na zkoumání
AR technologií vhodných pro jejich
efektivní vizualizaci. V následující fázi
návrhu jsou podrobně popsány požado-
vané funkce a vzhled aplikace. Tato fáze
je následována detailním popisem pro-
cesu implementace. Závěrečná část této
práce hodnotí přesnost aplikace, její
omezení a uživatelsé testování. Tímto
poskytuje zhodnocení tohoto API.

Klíčová slova: Rozšířená realita, Geo-
spatial API, Unity, Geografická data

Překlad titulu: Rozšířená realita ve
městě

In recent years, augmented reality
(AR) has seen remarkable growth,
bolstered by advances in geospatial
technology. This thesis presents a
novel application that leverages the
Geospatial API, launched in May 2022,
to visualize underground utility lines
in the streets of Prague. The data,
provided by the Prague Institute of
Planning and Development, serve as
the basis for the AR application. Initial
research focuses on understanding the
data set and exploring AR technologies
for effective visualization. The subse-
quent design phase details the intended
features and appearance of the applica-
tion. This is followed by a discussion
of the step-by-step implementation pro-
cess. Finally, the thesis evaluates the
application performance, limitations
and user testing, providing insight into
the capabilities of the API.

Keywords: Augmented Reality,
Geospatial API, Unity, Geospatial
data

vi

Contents /

1 Introduction 1

2 Research 3
2.1 Geospatial data 3

2.1.1 Prague Institute of
Planning and Development . 3

2.1.2 Formats 3
2.2 Coordinate Reference Systems . . 6

2.2.1 World Geodetic Sys-
tem 1984 7

2.2.2 Universal Transverse
Mercator 8

2.2.3 Křovák’s coordinate system . 9
2.3 Global Navigation Satellite

System 10
2.4 ARCore 13

2.4.1 Motion tracking 13
2.4.2 Environmental under-

standing 14
2.4.3 Light Estimation 14
2.4.4 Other capabilities 14

2.5 Geospatial API 15
2.6 Unity 17
2.7 Augmented Reality 18

2.7.1 Making virtual objects
seem more realistic 18

2.8 Related work 19
2.8.1 Applications using the

Geospatial API 19
2.8.2 Applications using Ge-

ographic Information
System data 22

2.8.3 Summary 25
3 Design 27

3.1 Why underground utilities? . . 27
3.2 Application Design 28
3.3 UI design 28

4 Implementation 31
4.1 Parsing the input data 31
4.2 Acceleration Structure 32
4.3 Server side 34
4.4 Setting up the project in Unity 35
4.5 Communication with the

server 35
4.6 Utility line visualizaiton 36
4.7 Geospatial API and accuracy . 38

4.8 Customization 40
4.9 Utility line information 40
4.10 Occlusion and lighting 41
4.11 Other encountered problems . . 42

5 Testing 43
5.1 Application functions testing . 43

5.1.1 Visualization accuracy . . . 43
5.1.2 Device accuracy 43
5.1.3 Coverage by Geospa-

tial API VPS 45
5.1.4 Internet data usage 46
5.1.5 The speed of visualization . 47

5.2 User testing 48
5.2.1 The first test 49
5.2.2 The second test 50
5.2.3 The third test 50
5.2.4 The fourth test 52

5.3 Summary 52
6 Conclusion 55

References 57

A Glossary 63

B Custom binary file for
quick data retrieval from a grid 65

C Manual 67

vii

Tables / Figures

4.1 Precisions . 39
5.1 Visualization accuracy table . . . 44
5.2 Device accuracy measure-

ments . 46
5.3 Application data usage 48

2.1 A graticular network7
2.2 Different types of projections8
2.3 UTM zones .9
2.4 Křovák’s projection 10
2.5 The GPS control segment 11
2.6 Position calculation 12
2.7 Geospatial VPS 16
2.8 Geospatial Anchors 16
2.9 Comparision of GPS, Cloud

Anchors and VPS 17
2.10 Pocket Garden 20
2.11 Gorillaz Application 21
2.12 Google Live View 21
2.13 Google Geospatial Creator. 22
2.14 AugView . 23
2.15 SiteVision Positioning System . 24
2.16 vGIS . 25

3.1 UI sketch . 29
4.2 Description of the polylineZ

record . 31
4.1 Description of the main file

header . 32
4.3 Shapefile rendered data 33
4.4 Sort lines into grid 34
4.5 Request data algorithm 36
4.6 Misalignment in visualization . 38
4.7 Comparision with and with-

out correction 39
4.8 Threshold effectiveness. 40
4.9 Menu and color picker 41
5.1 A utility line accuracy test

visualization . 44
5.2 Comparison of the visualiza-

tion with QGis visualization . . . 45
5.3 A position accuracy visual-

ization . 45
5.4 Visualization of the utility

lines with reference. 47
5.5 VPS coverage 48
5.6 Change of menu after the

first testing . 50
5.7 Pop-up sign . 51
5.8 Change of the signs after the

fourth test . 53

viii

Chapter 1
Introduction

Augmented Reality (AR) has grown substantially over the past few years, becoming
more widely recognized and used by the general public, especially with the release of a
mobile game called PokemonGo, which allowed users to interact with digitally created
objects embedded into the real-world environment. However, many challenges remain
to be overcome to achieve perfect AR experiences.

The accurate placement and tracking of virtual objects in real-world environments
remains a significant challenge in the widespread adoption of augmented reality (AR).
While various technologies, including global navigation satellite systems (GNSS) like
GPS, GLONASS, and Galileo, contribute to making the location data in AR applica-
tions more accurate, achieving perfect accuracy is still impossible. GNSS can provide
valuable positioning information, particularly in outdoor settings where satellite sig-
nals are accessible. However, it is important to note that GNSS has limitations in
urban or indoor environments where signal obstruction can occur, impacting its ac-
curacy for precise object placement and tracking. Therefore, AR systems rely on a
combination of technologies, including computer vision, simultaneous localization and
mapping(SLAM), Inertial Measurement Units (IMUs), and marker-based tracking, to
overcome these limitations and enhance the accuracy of object placement.

In May 2022, Google introduced a new application programming interface (API)
called Geospatial API that can significantly improve the accuracy of getting the device’s
position in the real world. It allows developers to utilize the vast amount of data they
have collected for their Street View project over the years, and by doing so, it opens
the door to new different AR applications that surpass the previous limitations. This
opens up opportunities for developers to create AR experiences that are not only much
more accurate but also scaleable across diverse environments.

The focus of this thesis is to test the limits of the new Geospatial API while creating
an application that uses data provided by the Prague Institute of Planning and Devel-
opment. The idea is to examine whether the improved accuracy offered by this API is
sufficient to develop a practical AR application.

1

Chapter 2
Research

In this chapter, we will go over the individual core components that the resulting
application uses to create the AR experience. In the first section, we briefly discuss
the types of datasets available from the Web page of the Prague Institute of Planning
and Development. Then we will dive a bit deeper into the geospatial data and it’s
representation and the coordinate systems that these data use. In the next part, we will
discuss global navigation satellite systems, which are the foundation of any geospatial
application. The third part will introduce ARCore and its functionalities, before getting
to the newly released Geospatial API. Ultimately, we will look into the Unity game
engine, before finally describing some already developed applications that visualize
geospatial data or use the Geospatial API.

2.1 Geospatial data
As this work is about the utilization of data offered by the Prague Institute of Planning
and Development, I will start this section with a very brief overview of this institute,
its goals and importance for Prague. After that, I will discuss the different geospatial
data formats based on their occurrences on the Geoportal[1].

2.1.1 Prague Institute of Planning and Development

The Prague Institute of Planning and Development (IPR Prague)[2] is a key entity
responsible for overseeing the architectural and urban development strategy of Prague.
Sponsored by the city, it represents Prague on matters related to spatial planning.

Its primary responsibilities include the drafting and coordination of strategic and
spatial planning documents. These cover a variety of areas including public spaces,
transport, technical infrastructure, landscape, and economic infrastructure. Key docu-
ments produced by IPR Prague include the Prague Building Regulations, the Prague
Waterfront Concept, and the Prague Public Space Design Manual.

Two significant ongoing projects for IPR Prague are the development of a new land
use plan, known as the ’Metropolitan Plan’, and the revision of the Prague Strategic
Plan.

In addition to these responsibilities, IPR Prague also plays a crucial role in the
handling of geographical data and information. This data processing work supports
applied research and the creation of documentation that aids the city’s development.

IPR Prague is also the administrator of the Geoportal Prague website[3], which offers
a wide range of Prague maps to the public[4].

2.1.2 Formats

There are several different types of data sets that can be accessed by the general public,
ranging from information about city vegetation to positions of public toilates in the city.
Most of these datasets are provided in one or more geospatial data formats. As the

3

2. Research .
majority of the available information utilizes vector representation, the most common
geospatial data formats are Shapefile, GeoJSON, DXF and CityGML. However, the
only format that is provided for all vector-represented datasets is the Shapefile, and
thus it will be described in more detail than the others.

. Shapefile
Shapefile is one of the most prevalent nontopological geospatial data formats uti-

lized in various fields like urban planning, transportation, and environmental studies.
Non-topological means that the individual geometries in the dataset are independent
of each other. Any alterations made to one geometry will not affect the others, which
provides flexibility in modifying the data without unintentional ripple effects. This
independence also means that the Shapefile format usually requires less storage space
compared to topological formats, which maintain relationships between entities.

This format is capable of storing a variety of information, ranging from discrete
locations such as points of interest (points), to linear features such as roads, networks,
or rivers (lines), and large spatial extents or boundaries such as districts, lakes, or
parcels (polygons)[5].

In total, according to the specification[6], fourteen different geometry types are
supported. (Null shape) which represents no geometry, (MultiPoint, Point, Polygon,
and Polyline) for two-dimensional geometries, (MultiPointM, PointM, PolygonM,
and PolylineM) for two-dimensional geometries with a measurement attribute (Mul-
tiPointZ, PointZ, PolygonZ, and PolylineZ) for three-dimensional geometries, and
finally a (MultiPatch) to store a collection of triangles in 3D space. It is important
to note that a .shp file cannot contain multiple different geometry types.

Additional data attributes can be attached to these geometries within the dBase
tables (.dbf files)[7].
Required components of a Shapefile:. .shp: The .shp is the main file of a Shapefile. It stores the primary geometrical data

for the features. Each shape record in this file is comprised of a shape type (point,
line, polygon, etc.), and the coordinates of the shape’s vertices. For instance, a line
is represented as a sequence of points, while a polygon is represented as a series of
rings.. .shx: The .shx file acts as an index to the.shp file, improving the data retrieval
speed. It stores the index position of each feature in the .shp file. When a spatial
operation needs to access a specific feature in the .shp file, it first retrieves the
index in the .shx file, which in turn directly points to the exact location of that
feature’s geometry in the .shp file, thereby significantly improving the efficiency of
spatial operations.. .dbf - This dBase table file accompanies the .shp file to store attribute data for
features. Each row in the .dbf file corresponds to a shape in the .shp file. The
.dbf file uses a tabular structure where columns represent different attributes (e.g.,
name, area, population), and rows represent individual records or features.

Additional files in a Shapefile:. .prj: The .prj file stores the coordinate system and projection information for
the dataset. This ensures that the geospatial data can be correctly aligned with
other spatial data in a GIS (Geographic Information System). This is critical for
operations that involve multiple datasets, ensuring they all align correctly within
the same geographic space.

4

. 2.1 Geospatial data

. .sbn and .sbx: These files are used to further optimize spatial queries. They
contain a spatial index of the features, which allows for faster spatial searches and
operations, such as selecting features within a defined area.. .cpg: The .cpg file describes the character encoding applied to the Shapefile. This
file is used to interpret special characters correctly in the attribute data, ensuring
that text data are displayed correctly across different systems.. .xml: This optional file contains metadata associated with the Shapefile. Meta-
data may include a description of the data, its source, its creation date, the at-
tribute definitions, contact information, and more. The XML format allows for
easy sharing and interpretation of metadata across different platforms.. GeoJSON
GeoJSON is a JSON-based format that encodes geospatial data. It is feature-

based, meaning that each individual object, complete with its geometry and at-
tributes, is encapsulated within a single JSON object. This approach directly binds
the attributes to the geometry, ensuring self-contained features.

GeoJSON supports a variety of geometric objects, including simple structures
(points, lines, polygons) and complex ones (MultiPoint, MultiLineString, MultiPoly-
gon, GeometryCollection). GeometryCollection is a special type capable of contain-
ing multiple geometric objects.

Like Shapefile format, GeoJSON is nontopological, treating each feature indepen-
dently. Changes to one feature will not impact others[8].. DXF

DXF, or Drawing Exchange Format, is an open source vector file format that is
widely used by designers, engineers, and architects for 2D and 3D drawings. It was
created by Autodesk to enable sharing of designs between various CAD applications.

DXF files are appreciated for their precision. They ensure accurate results in ap-
plications such as CNC machining or printing, with no loss of quality when changing
the size of a vector file. However, they cannot be used for 3D printing directly and
need to be converted to STL format first.

The benefits of DXF files include their open source nature, enabling wide usability
and collaborative work on the same design across different CAD programs. They
also offer impressive detail scalability with up to 16-bit floating-point numbers.

On the downside, DXF files store information as plain text, which may extend the
transfer time of the design. They do not support application-specific CAD elements,
and, while they can work with 3D elements, they fully support only 2D objects[9].. CityGML

CityGML is an open data model and XML-based format for the storage and ex-
change of virtual 3D city and landscape models. It is a common standard developed
by the Open Geospatial Consortium (OGC) that defines classes and relations for the
most relevant topographic objects in cities and regional models.

One key aspect of CityGML is its focus on physical objects, their properties, re-
lations, and extensibility to include user-defined attributes. It supports multiscale
representations, and objects in CityGML can be classified according to their seman-
tics, geometry, topology, and appearance.

CityGMLmodels are used for many applications, such as urban planning, noise and
environmental simulations, energy demand estimations, and disaster management.
Despite their complexity and large file sizes, the advantage of CityGML files lies in
their detailed 3D representation and the ability to carry extensive metadata[10].

5

2. Research .

2.2 Coordinate Reference Systems
Coordinate systems are fundamental frameworks used in geospatial applications to accu-
rately represent and locate features on the Earth’s surface. They provide a standardized
reference system for spatial data, allowing for seamless integration and analysis across
different datasets and disciplines. They serve as the basis for representing geographic
locations and are essential for various tasks such as mapping, navigation, spatial anal-
ysis, and visualization. These systems define a consistent spatial reference that enables
the precise positioning of features and facilitates the measurement of distances, areas,
and directions on the Earth’s surface[11].

Coordinate systems consist of several components:

. Coordinate system
Coordinate systems are essential for integrating geographic datasets and ensuring

consistent spatial reference. A coordinate system provides a reference framework
that allows geographic features, imagery, and observations (such as GPS locations)
to be accurately represented within a shared geographic context.[11].. Reference Datum

A reference datum provides the origin, orientation, and scale of the coordinate
system. It establishes a consistent starting point for measuring positions on the
Earth’s surface.[12].. Units of measurement

Coordinate systems use specific units to measure distances, angles, and other ge-
ometric properties. Common units include meters, feet, degrees, and radians.

Coordinate Transformations: Coordinate transformations are mathematical algorithms
used to convert coordinates between different coordinate systems. These transfor-
mations enable data integration and ensure consistency when working with multiple
datasets that may use different coordinate systems or reference datums.

There are different types of coordinate systems used in geospatial applications, each
with its own characteristics and applications:

. Geographic Coordinate Systems
A Geographic Coordinate System (GCS) is a spatial framework that uses latitude

and longitude to precisely locate points on the Earth’s surface. Latitude measures the
distance north or south of the equator, whereas longitude measures the distance east
or west of the prime meridian. Together, they provide a two-dimensional reference
system for spatial positioning[13].

In addition to latitude and longitude, a GCS incorporates other components, in-
cluding an angular unit of measure, a prime meridian reference (typically Greenwich)
and a datum based on a spheroid. The GCS establishes a graticule2.1, forming a
grid system with parallels (lines of equal latitude) and meridians (lines of equal lon-
gitude). This graticule enables accurate spatial referencing and division of the Earth
into quadrants. GCS plays a vital role in applications such as mapping, navigation,
and spatial analysis, providing a global system for precise location determination and
integration of spatial data between various disciplines[14].. Projected Coordinate Systems

A projected coordinate system is a two-dimensional planar system that is used to
represent the three-dimensional surface of the Earth, which is spherical or spheroidal.
This system is based on a geographic coordinate system and is used to provide a
framework for representing spatial data in a two-dimensional space, while aiming to

6

. 2.2 Coordinate Reference Systems

Figure 2.1. The parallels and meridians forming a graticular network [15].

maintain consistent measurements and relationships between points on the Earth’s
surface[16].

Locations in a projected coordinate system are identified by x- and y-coordinates
on a grid. The x coordinate represents the horizontal position, while the y coordinate
represents the vertical position. The grid’s origin (0,0) can be located anywhere,
depending on the specific design of the projection, and is not necessarily at the
center of the grid. Positive values are generally to the right and above the origin,
while negative values are to the left and below.

Different types of projections aim to preserve specific qualities, such as distance,
angle, or area. However, it is important to note that no map projection can perfectly
preserve all these properties. Instead, different map projections prioritize one or more
of these properties, which inevitably leads to distortions in other aspects. The type
and degree of distortion depend on the specific map projection used[17].

A crucial aspect of any projected coordinate system is the concept of scale, which
refers to the relationship between the distance on the map and the distance in the
real world. This can be constant throughout the map in conformal projections (like
the Mercator projection) or can vary in equal-area projections.[16].

The choice of coordinate system depends on the specific requirements of the applica-
tion. Factors to consider include the area of interest, the level of accuracy needed, the
distortion characteristics of the projection, and compatibility with existing datasets.

The datasets provided by IPR use either the World Geodetic System 1984 or Křovák’s
coordinate system. The following subsections also include an overview of the Universal
Transverse Mercator system, because it ended up being used in the final application.

2.2.1 World Geodetic System 1984
World Geodetic System 1984 (WGS84) is a global geographic coordinate system that
serves as the standard reference framework for GPS positioning and satellite imagery.
It is based on an ellipsoidal model of the Earth known as the WGS84 reference ellipsoid,
which closely approximates the shape of the Earth. The ellipsoid is defined by a set of
parameters such as the semi-major axis and the flattening factor[19].

This geodetic system defines positions on the Earth’s surface using a geographic co-
ordinate system (GCS) composed of latitude and longitude. The former measures the
angular distance north or south of the equator, and the latter measures the angular
distance east or west of the prime meridian, typically associated with Greenwich, Eng-
land. The coordinates are expressed in degrees, with a latitude ranging from -90 °
(south pole) to +90 ° (north pole) and longitude from -180° to +180°[20].

As a global coordinate system, WGS84 enables accurate positioning and navigation
on a worldwide scale. It serves as the foundation for GPS devices, allowing users to de-

7

2. Research .

Figure 2.2. Different types of projections [18].

termine their precise location and navigate routes with accuracy. Additionally, WGS84
is widely adopted in satellite imagery, cartography, and geospatial data integration, fa-
cilitating interoperability and data sharing across different platforms and applications.

2.2.2 Universal Transverse Mercator

The Universal Transverse Mercator (UTM) is a system of geographic coordinates that
provides detailed spatial reference information throughout the world. It is a specialized
application of the transverse Mercator projection, which is a type of cylindrical map
projection[21].

The UTM divides the world into 60 zones, each spanning six degrees of longitude,
from 80 degrees south latitude to 84 degrees north. Each zone has its own central
meridian. Zones are numbered 1 through 60, beginning at the International Date
Line (longitude 180°) and moving east. For areas above 84 degrees north (North Pole
area) and below 80 degrees south (South Pole area), the Universal Polar Stereographic
Coordinate System is used instead[22].

Within each zone, coordinates are measured in meters. Easting is measured from the
central meridian of each zone and northing is measured from the equator (with different
baselines for the northern and southern hemispheres). This arrangement provides a two-
dimensional Cartesian coordinate system that covers the globe, excluding the extreme
polar regions.

The UTM system is particularly useful for regional-to-mid-scale topographic mapping
and allows easy distance calculation between points within the same zone. One of its
key advantages is that it reduces distortion within each zone because the transverse
Mercator projection is applied on a narrow strip of the Earth’s surface.

8

. 2.2 Coordinate Reference Systems

Figure 2.3. UTM zones [23].

2.2.3 Křovák’s coordinate system

Krovák’s coordinate system is predominantly used in the Czech Republic and is well-
suited for the region because of its unique geographic characteristics. As a conformal,
oblique, and equidistant system, it is designed to accurately represent data on a two-
dimensional plane while maintaining the shapes, angles, and distances of the features
being mapped[24].

These are its three key attributes:

. Conformality
Křovák’s coordinate system is conformal, meaning it preserves angles and shapes

within a local areas. As a result, small areas on the map maintain their true shapes,
making it suitable for applications that require accurate local geometries.. Obliqueness

Unlike many coordinate systems, Křovák’s is oblique, which means that it is not
aligned parallel or perpendicular to the Earth’s equator. Instead, it is oriented to
match the predominantly diagonal extent of the Czech Republic, which helps mini-
mize distortions across the country.

It is important to note that this obliqueness also manifests itself in the alignment
of the coordinate system with respect to the north. Specifically, the system is rotated
slightly in a positive direction, with a deviation ranging from 4.5 to 9.5 degrees from
east to west[25].. Equidistance

The projection2.4 also maintains accurate distances along the meridians, or lines
that run from north to south. This equidistant property is particularly useful for
maintaining scale accuracy in directions important for the representation of the coun-
try.

Křovák’s coordinate system is a valuable tool for tasks requiring precise measure-
ments because of its real-world unit of measurement: the meter. This direct relation to
real-world distances and areas greatly simplifies calculations and enables more accurate
representations.

9

2. Research .

Figure 2.4. Křovák’s projection [26].

2.3 Global Navigation Satellite System

Global Navigation Satellite System(GNSS) is used in people’s everyday lives. This
system includes multiple independent satellite constellations: the American GPS[27],
the Russian GLONASS[28], the European Galileo[29], and the Chinese BeiDou[30] sys-
tem. All of these satellite constellations operate on similar principles, but with varying
numbers of satellites and specific operational nuances.

Each GNSS is a system consisting of three parts: the space segment, the control
segment, and the user segment.

The space segment is a constellation of satellites orbiting Earth. For example, in
GPS, there are at least 24 satellites, distributed in six orbital planes at about 20,200
kilometers above the ground. The extra satellites in the system, over the baseline of 24,
help maintain coverage when the main satellites are serviced or decommissioned, and

10

. 2.3 Global Navigation Satellite System

can increase system performance[31]. Each satellite has several atomic clocks, which
can keep the time very accurately, and even then, they are regularly corrected by even
more accurate atomic clocks that are kept on the ground [32].

The control segment of each GNSS consists of ground-based stations that monitor,
control, and maintain the satellite constellation. For GPS2.5, this includes a master
control station, an alternate master control station, 11 command and control antennas,
and 16 monitoring stations[33]. These stations track satellites as they pass overhead and
collect data from their transmissions. These data are sent to the master control station,
where the precise locations of the satellites are computed and navigation messages for
the satellites are generated.

Vandenberg AFB
California

Alternate Master Control Station

Air Force Monitor Station

Hawaii

Master Control Station

Schriever AFB
Colorado

NGA Monitor Station

South Korea

Australia

Bahrain

South Africa

United Kingdom

Ecuador

USNO Washington

Alaska

New
Zealand

AFSCN Remote Tracking Station

Ascension Diego Garcia

Cape Canaveral
Florida

Kwajalein

Ground Antenna

New Hampshire

Greenland

Guam

Updated May 2017

GPS Control Segment

Uruguay

Figure 2.5. The GPS control segment [34].

The user segment consists of all the devices that receive GNSS signals and use them
to calculate their position. These devices can range from smartphones and cars to
boats and aircrafts. More modern GNSS receivers are capable of receiving signals from
multiple GNSS systems simultaneously, a feature known as multiconstellation reception.
This is beneficial for a number of reasons: it increases the number of signals that can be
used to calculate a position, improves accuracy, provides better coverage in challenging
environments (such as urban canyons), and offers redundancy in the event that one
system should have an outage[35].

To calculate the position, a receiver needs to process the signals from at least four
different satellites. It calculates the distance from each satellite according to the time
delay of the received signal. With signals from four satellites from one or more GNSS
systems, the typical accuracy under open skies can be within a few meters[36]. However,

11

2. Research .
accuracy can be degraded in challenging environments such as cities due to signal
multipath, blockages, and reflections.

To calculate a 3D position (latitude, longitude, and altitude) and time, a receiver
needs signals from at least four satellites. Each satellite transmits a signal that includes
its exact position and the time the signal was transmitted. The receiver records the
time it received the signal and uses the difference between transmission and reception
times to calculate the distance to each satellite. This is possible because the signal
travels at a known speed, the speed of light.

The equations to calculate the position based on these distances are derived from
the principle of trilateration2.6. In a 3-dimensional space, the signal from one satellite
defines a sphere, with the satellite at the center and the calculated distance as the
radius. This means that the receiver could be anywhere on the surface of this sphere.

Figure 2.6. The equations to obtain the receiver position [37].

With signals from two satellites, the receiver must be located on the circle created
by the intersection of the two spheres.

With a third satellite, the receiver will be at one of the two points where this third
sphere intersects with the circle from the first two spheres.

In a perfect scenario, the fourth satellite would simply confirm one of these two
points. However, under real conditions, there are various sources of errors, such as the
inaccuracy of the satellite’s clock and the imprecision of the receiver’s clock. There-
fore, the fourth satellite is used to deal with these errors, particularly the offset of the
receiver’s clock relative to GNSS time[38].

12

. 2.4 ARCore

The integration of multiple GNSS increases overall system robustness, providing a
reliable service that can be used globally for various applications, including personal
navigation, logistics, surveying, timing, and much more.

2.4 ARCore

ARCore[39], developed by Google, is a platform designed to make it easier to create
augmented reality(AR) applications. It offers several different APIs that allow a phone
to sense its environment, understand the world, and interact with it. Three key capa-
bilities, namely motion tracking, environmental understanding, and light estimation,
allow the user to see virtual content seamlessly integrated with the real world through
the phone’s camera[40].

2.4.1 Motion tracking

Motion tracking in ARCore is based on a process known as visual simultaneous local-
ization and mapping (vSLAM)[40]. This process uses multiple sensors, including the
device’s camera and the Inertial Measurement Unit (IMU), to estimate the device’s
relative position and orientation in the surrounding environment. The SLAM process
consists of three primary modules, Initialization, Tracking, and Mapping. There are
two additional modules, Relocalization and Global Map Optimization, which enhance
stability and accuracy[41].

. Initialization
Initialization sets the stage for the vSLAM. It establishes the coordinate system

and creates a preliminary map of the surroundings. It also involves identifying and
tracking specific visual features in the environment, providing reference points for
mapping and tracking later[42].. Tracking

Once initialization is complete, vSLAM begins tracking the device’s motion. The
camera’s pose (position and orientation) relative to the map is estimated by matching
features in the current image with those in the map. This is a complex task that often
involves resolution of the Perspective-n-Point problem, which seeks to determine the
camera pose given n 3D-to-2D point correspondences[41].. Mapping

The system continuously updates and expands the map by triangulating the 3D
positions of features in the environment. This dynamic process allows for an increas-
ingly detailed representation of the environment as the device moves around.. Relocalization

Sometimes, the device might lose track of its position due to rapid movement
or a temporary occlusion of the camera. In such cases, relocalization techniques are
employed to calculate the camera’s position relative to the established map, restoring
accurate tracking.. Global map optimization

Over time, small errors can accumulate in the estimated camera pose, leading to
significant distortions on the map. Global map optimization reduces these errors,
using loop closure techniques to identify when the device returns to a previously
visited location. This error correction significantly improves the consistency and
accuracy of the map[43].

13

2. Research .
2.4.2 Environmental understanding

ARCore tries to interpret the real world environment by detecting feature points and
planes. It identifies clusters of feature points that lie on a common surface and presents
them to the AR application as geometric planes. Users can then position virtual objects
on these surfaces, and thus effectively integrate virtual and real elements.

However, there are currently still some limitations to the ARCore’s abilities. For
example, ARCore may struggle to identify flat, textureless surfaces (like a plain white
wall), extremely bright or dimly lit environments, and reflective or transparent sur-
faces[44].

2.4.3 Light Estimation

ARCore’s Light Estimation capability leverages the Lighting Estimation API to ana-
lyze and replicate a range of environmental lighting conditions. This comprehensive
understanding of the lighting scene aids AR applications in adjusting the lighting of
virtual objects, resulting in a more cohesive AR experience.

The API is capable of mimicking lighting cues such as shadows, ambient light, shad-
ing, specular highlights, and reflections, adding depth and realism to AR visuals. It
also offers an environmental HDR mode, which employs machine learning to synthesize
environmental lighting in real time, facilitating realistic rendering of virtual objects.
This mode includes main directional light, ambient spherical harmonics, and an HDR
cubemap for reflections[45].

Additionally, ARCore also utilizes Ambient Intensity mode to measure average pixel
intensity and color correction for images, and Environment Probes to create environ-
ment textures for realistic lighting of virtual objects. All these capabilities work together
to seamlessly integrate virtual objects into the real-world environment, enhancing the
AR experience.

2.4.4 Other capabilities

There are many other capabilities that ARCore uses to improve the user experience.

. Depth understanding
ARCore’s Depth API facilitates more realistic AR experiences by understanding

the size, shape, and distance of real-world objects. Key features include object oc-
clusion for accurate rendering of virtual objects behind real-world ones, scene trans-
formations that allow virtual elements to interact with real objects, and improved
hit-test results for better object placement. Depth information also enables unique
user interactions with AR objects, like allowing virtual content to collide with real-
world elements. This feature is device dependent, as it is only supported by devices
with enough processing power[46].. User interaction

Users can interact with the AR environment through simple actions like tapping
on the screen. When the user taps the screen, a ray is projected from the camera. If
it intersects any geometric planes or feature points, it will return information about
the intersection. This allows the user to place an object in the AR environment.[47].. Oriented points

ARCore’s ability to estimate the orientation of the surface from feature points al-
lows the placement of virtual objects on angled surfaces, leading to a more convincing
AR experience[40].. Anchors and trackables

14

. 2.5 Geospatial API

Anchors play a pivotal role in maintaining the relative positioning of virtual objects
to real-world planes or objects. Anchors establish a connection between the virtual
object and a plane or feature point, usually identified through a raycast hit. This
prevents the virtual object from appearing suspended in space when ARCore updates
the position of the geometric planes and feature points.

If the virtual object is not anchored to any trackable, it would maintain its original
position even as the plane moves. On the other hand, if the virtual object is securely
anchored, it would move with the plane or feature point, ensuring that it appears to
stay in the same place.[40]. Cloud anchors

Cloud Anchors are a unique type of ARCore feature that facilitate shared and
enduring Augmented Reality experiences. These anchors, unlike local anchors, are
stored in the ARCore Cloud. This allows multiple users to participate in shared
AR experiences through a single application, allowing for synchronous interactions
in a digital environment. For example, if one user places a virtual sticky note on a
refrigerator within the application, another user would be able to see the same note
at the exact location[48].

Users can adopt two primary roles within this framework: the host and the receiver.
The host, who initiates the anchor, first constructs a 3D map of the vicinity around
the desired anchor location. This is achieved by employing the phone’s camera to
scan the immediate environment. The captured spatial information is subsequently
uploaded to the server for future use by receivers.

On the receiver’s side, the AR experience unfolds when they direct their camera
towards the area originally mapped by the host. As this action triggers a resolution
request to the server, the ARCore Cloud initiates periodic comparisons between the
incoming images and the pre-existing 3D map. This process facilitates the precise
determination of the receiver’s position and orientation in the AR space[49].. Augmented images

This feature enables the AR application to recognize specific 2D images, such as
QR codes or product packaging. When the camera detects a known image, it can
trigger an AR experience, adding a layer of interactivity and personalization to the
application[50].

2.5 Geospatial API

The ARCore Geospatial API[51] introduced in May 2022 allows developers to remotely
attach AR content to any area covered by Google Street View, allowing the creation
of AR experiences on a global scale. By harnessing device sensor and GPS data, it
approximates the device’s location and further enhances precision using Google’s Visual
Positioning System (VPS).

VPS uses Street View images from Google Maps captured around the world for more
than 15 years. A deep neural network identifies and describes parts of these images that
are likely to be recognizable over long periods of time. An example of such image parts
can be seen in Figure 2.7. Pedestrians, cars, and other transient elements are filtered
out to create a 3D point cloud of the global environment, forming the localization model
that spans nearly all countries[51].

When a request is made to the Geospatial API, the neural network processes the
pixels to identify recognizable parts of the user environment, matches them to the

15

2. Research .

Figure 2.7. Feature points recognizable by VPS. [51].

VPS localization model, and computes the position and orientation of the device. This
provides a location that is much more accurate than what GPS alone could offer.

The Geospatial API also harmonizes the user’s local coordinates with the geographic
coordinates from VPS, allowing developers to work within a unified coordinate system.

Developers can use the Geospatial API to place geospatial anchors almost anywhere
in the world at a given latitude, longitude, and altitude without needing to manually
map the space, following the WGS84 specification. It supports various types of Geospa-
tial Anchors: WGS84 anchors, terrain anchors, and rooftop anchors, each suited to
specific applications and scenarios. Their basic overview can be seen in Figure 2.8

Figure 2.8. Anchors provided by Geospatial API [52].

The Geospatial API opens up a range of applications for developers. For example, it
allows users to navigate to specific locations with a level of precision that surpasses that
of GPS, making it useful for locating objects in densely populated areas or navigating
busy spaces[51]. Additionally, it enables the creation of compelling, immersive location-
based AR experiences, without the need to construct and maintain maps of multiple
locations. A comparison of GPS, cloud anchors and Geospatial API can be seen in
figure 2.9.

16

. 2.6 Unity

Figure 2.9. Comparision of GPS, Cloud Anchors and VPS [53].

2.6 Unity

Unity[54] is a versatile and widely-used development platform that provides powerful
tools and features for creating augmented reality (AR) applications, games, simulations,
virtual reality (VR) experiences, and more. With its intuitive interface, extensive asset
library, and robust scripting capabilities, Unity offers a solid foundation for developing
immersive and interactive projects across various domains.

Unity’s cross-platform compatibility allows developers to target a wide range of de-
vices and platforms. Whether it’s smartphones, tablets, desktops, consoles, or even
emerging technologies like VR headsets, Unity enables seamless deployment of appli-
cations on different operating systems, including iOS, Android, Windows, macOS, and
more. This flexibility ensures compatibility and accessibility for the target audience of
the project[55].

Unity’s scene editor serves as a visual interface for designing and building virtual
environments, whether they are AR scenes or other interactive experiences. The scene
editor provides a rich set of tools for object placement, level design, lighting adjustments,
asset management, and more. Its real-time preview capabilities allow developers to
rapidly iterate, visualize, and refine their projects to achieve the desired outcomes[56].

Scripting in Unity, powered by the C# programming language, empowers developers
to create custom behaviors, implement game logic, handle user interactions, and inte-
grate external APIs or services. This powerful scripting system provides flexibility and
extensibility, allowing the project to be tailored to specific requirements and allowing
developers to bring their creative visions to life.

Furthermore, Unity’s Asset Store serves as a valuable resource, providing an extensive
library of pre-built assets, including 3D models, animations, audio files, scripts, and
plugins. Leveraging these assets can significantly accelerate development time, allowing
the project to focus on core functionalities and unique aspects. The Asset Store also

17

2. Research .
offers plugins and extensions that expand the capabilities of Unity, further enhancing
the project’s potential[55].

2.7 Augmented Reality
Now, that all of the core elements that are used to create the augmented reality appli-
cation are described. It would be great to look at what Augmented Reality(AR) really
is. The Oxford Learner’s Dictionary[57] defines Augmented Reality (AR) as technology
that merges computer-generated images with the real-world scene viewed through a
device. In this context, AR can be seen as a tool that enhances the real-world environ-
ment by layering it with relevant digital information. This not only provides a more
interactive experience but also improves the user’s understanding of their surroundings.
It is essential to clarify that AR is not simply an overlay of computer graphics. It is
an advanced technology that provides a more interactive and contextually rich user
experience[58].

Ronald Azuma’s seminal research paper identifies three crucial elements that define
Augmented Reality (AR)[59]. To start with, AR is a fusion of reality and digital illusion,
seamlessly integrating the real world with the virtual reality.

Secondly, AR is interactive in real time. Users don’t just observe a static digital world,
they actively engage with dynamic AR components that respond instantly, creating an
immersive and participatory environment.

Finally, AR is about depth and precision in positioning digital content. It is not a
simple two-dimensional overlay but a complex, three-dimensional integration into the
user’s field of view. This ensures spatial coherence, positioning the digital augmentation
perfectly in relation to the user’s real-world context, giving the illusion that the virtual
and the real exist in one cohesive space

On handheld devices like smartphones or tablets, AR achieves this by combining
digital graphics with the device’s camera view. Through AR glasses, this immersive
experience is taken a step further by superimposing these graphics directly onto the
user’s field of vision.

The potential applications of AR are vast and varied. It is used in medical visu-
alizations, where AR can improve surgical procedures and patient care by providing
3D visualizations of internal body structures[60]. In industries such as manufacturing
and aviation, AR can help with maintenance and repair by overlaying instructions or
information directly onto machinery or equipment.

AR also finds use in annotation, where digital information can be superimposed on
real-world objects to provide additional context or explanation[61]. It is applied in
robot path planning, where robots can use AR to navigate complex environments. In
the entertainment industry, AR is revolutionizing gaming and media consumption by
creating more immersive experiences.

In military operations, AR plays a crucial role in navigation and targeting, offering
enhanced situational awareness to soldiers on the battlefield. These examples merely
scratch the surface of the vast potential of AR, which continues to be explored and
expanded across various sectors.

2.7.1 Making virtual objects seem more realistic
Creating realistic virtual objects is a fundamental goal in the development of augmented
reality (AR) experiences. To achieve this, several key aspects must be considered and
implemented effectively. This section explores various techniques and concepts that can
enhance the realism of virtual objects in AR environments[62].

18

. 2.8 Related work

. Occlusion
Occlusion is the effect of objects hiding other objects from view, depending on the

perspective. Achieving realistic occlusion in AR requires a mechanism for detecting
when occlusions occur and rendering images so that hidden parts of the AR objects
are not displayed. The solutions include depth maps, 3D models of environments or
contour models, each with its advantages and limitations[63].. Collision detection

For AR objects to interact realistically with real-world objects, the system must
be able to detect collisions between them. The solutions are similar to those for
occlusion: depth maps and virtual models.. Gravity

To make virtual and real objects appear to coexist in the same space, AR objects
should behave as if influenced by gravity. Some solutions involve the use of inertial
sensors in hand-held devices, such as smartphones, to compute the gravity vector[64].. Lighting and shadowing Shadows and lighting are critical to enhance the realism of
AR. The challenge is to make AR objects reflect light and cast shadows similar to
those of real-world objects. This requires an estimation of the illumination conditions
in an image. There are different lighting aspects to the scene that have to be mimicked
based on real-world conditions[64].

Ambient lighting refers to the overall light present in a scene, without a specific
direction or source. Ambient light affects all objects in the scene equally, regardless
of their location. This kind of light provides a base level of illumination but does
not contribute to the creation of shadows.

Directional lighting is a type of lighting that simulates the light that is being
emitted from a specific source, such as the sun or a lamp. It is crucial to creating
a sense of depth and texture in the scene.

Shadow mapping is a technique used to create shadows from AR objects. Shad-
ows are essential for grounding virtual objects in the real world and for giving a
sense of spatial relationships among objects. To generate realistic shadows, the
AR system needs to understand the position and intensity of light sources, the
shape and orientation of the AR object, and the surfaces onto which the shadow
will be cast[65].

Light probes are used in the AR to sample and store information about the light
available at a specific point in the environment.

2.8 Related work
In this section, we will take a look at the currently available projects that use the
Geospatail API, and projects that do not use the API but are visualizing GIS data.

2.8.1 Applications using the Geospatial API

The Geospatial API has been utilized in various projects, showcasing its capabilities
in visualizing geospatial data. These projects include both open-source initiatives and
contest entries that aimed to demonstrate the API’s features and possibilities.

. Pocket Garden
One notable project is Pocket Garden[66], an interactive game where players can

plant virtual seeds in real-world locations, creating and tending to their own person-
alized gardens. This innovative use of geospatial data merges the physical and digital

19

2. Research .

Figure 2.10. Pocket garden [66].

realms, providing a unique and engaging experience for players. The application can
be seen in figure 2.10. It was created to showcase the abilities of Geospatial API and
was released as an open-source project.. Contest projects

Additionally, the Geospatial API contest spurred the development of several excit-
ing applications. These projects explored different aspects of geospatial visualization
and leveraged the API’s functionalities to create innovative solutions. Preview ver-
sions of these applications can be found on the official contest page, showcasing the
diverse applications and creativity of the developers involved. The preview of these
applications can be found on the official contest page [67].. Gorillaz Presents

Another notable demonstration of the Geospatial API’s potential was the Goril-
laz[68] concert experience. Through augmented reality technology, users could enjoy
an immersive concert by the band Gorillaz at specific locations in New York and
London. This fusion of music, geospatial data and AR technology provided a unique
and memorable experience for concert-goers, blurring the lines between virtual and
physical worlds, as can be seen in figure 2.11.. Google Live View

Google Live View[70] is an augmented reality (AR) feature available in the Google
Maps app. It allows users to overlay digital information, such as directions and points
of interest, onto the real-world view seen through their smartphone’s camera. Using
a combination of GPS, camera, and motion sensors, Google Live View provides real-
time visual guidance to help users navigate and explore their surroundings. When
enabled, it superimposes arrows, markers, and other graphical elements on the live
camera feed, helping users to orient themselves and follow directions more easily. It
can be seen in figure 2.12.. Geospatial Creator

20

. 2.8 Related work

Figure 2.11. AR created for the Gorillaz concert [69].

Figure 2.12. Google’s live view AR [71].

In May 2023 Google announced yet another tool for developers and artists to create
more AR applications. Geospatial Creator[72] is a tool that combines the capabilities
of ARCore and the Google Maps platform to enable developers and creators to design
and launch 3D digital content in real-world locations. It leverages Photorealistic 3D
Tiles to bring robust and engaging experiences to life.

The Geospatial Creator platform supports both Android and iOS devices, allowing
developers to build world-anchored and cross-platform experiences. It enables users

21

2. Research .
to visualize their creations in the physical world through real-time localization and
enhancement.

With Geospatial Creator, users can import real-world locations into their editing
environment. By selecting a specific location, the platform retrieves the 3D geometry
data for that area, providing a view similar to that of Google Earth. This 3D view
allows users to preview and develop their augmented reality experiences, giving them
a sense of flying through the space and exploring the environment.

The platform can be used by both developers and creators, enabling them to
quickly build and publish immersive experiences. Photorealistic 3D tiles are available
in 49 countries, enabling users to create content with high-quality visuals and realistic
representations of the physical world.

It is currently supported by Unity and Adobe Aero[72].

Figure 2.13. Google’s Geospatial Creator in Unity [73].

2.8.2 Applications using Geographic Information System data
There are just a few applications that visualize GIS data in AR, though none of them
use the Geospatial API. This section discusses some of them.

. AuGeo
One of such applications is AuGeo, developed by Esri Online LLC[74]. AuGeo

enables users to seamlessly integrate their GIS data into the real world through aug-
mented reality. By leveraging the power of geospatial information, AuGeo provides
a dynamic and interactive experience for users.

With AuGeo, users can bring their GIS data, specifically point data, to the real
world using augmented reality technology. This means that users can visualize their
geospatial points in their physical surroundings, allowing for a more intuitive and
immersive understanding of the data.

Although AuGeo focuses specifically on points, its functionality extends beyond
mere visualization. Users can interact with the augmented reality representations
of the points, access additional information, and perform analyses right in the AR
environment. This empowers users to make informed decisions and gain insights
directly in the context of their physical surroundings.

22

. 2.8 Related work

It should be noted that AuGeo received its latest update in May 2021.. Augview Augview[75] is an augmented reality (AR) application specialized in geospa-
tial data visualization and asset management.

At its core, Augview allows users to overlay geospatial data onto the real-world
view captured by a device’s camera. This enables users to view and interact with
GIS data, such as infrastructure assets, utility networks, and spatial layers, directly
in their physical surroundings.

One of the key features of Augview is its ability to integrate with existing GIS
systems. By connecting to GIS databases, Augview ensures that the displayed data
are up-to-date and synchronized with the central GIS repository. This real-time
connectivity ensures that field workers have access to the latest information and can
make informed decisions on site.

Users can view asset information, perform inspections, and access relevant docu-
mentation through the AR interface. The application supports functionalities such
as spatial querying, measurements, and asset tracking, empowering field workers to
efficiently manage and maintain assets in the field. The application can be seen in
figure 2.14

However, there was no new update since May 2018.

Figure 2.14. Augview application [75].

. SiteVision
SiteVision by Trimble[76] is an augmented reality (AR) application specifically

designed for the construction industry. It combines AR technology with Trimble’s
SiteVision Integrated Positioning System to provide construction professionals with
accurate and real-time visualization of project data on their devices.

Using Trimble’s high-precision positioning technology, SiteVision achieves
centimeter-level accuracy in location tracking. The system consists of a hand-
held device, such as a smartphone or tablet, connected to Trimble’s SiteVision
hardware unit via Bluetooth. Such a setting can be seen in figure 2.15. The
hardware unit includes high-accuracy GNSS (Global Navigation Satellite System)

23

2. Research .
receivers and an inertial measurement unit (IMU) to capture precise positioning and
orientation data.

To begin, construction project data, such as 3D models, design plans, and geospa-
tial data, are prepared and converted into compatible format. These data include
building designs, utility infrastructure, terrain models, and other construction-related
information.

On site, the handheld device running the SiteVision app connects to the SiteVision
hardware unit via Bluetooth. This enables the hardware unit to receive real-time
positioning data from the GNSS receivers and the IMU, providing accurate location
and orientation information[76].

With the SiteVision app, users can visualize and analyze project data directly in
the field. The app overlays 3D models, design plans, and other project information
onto the live video feed captured by the device’s camera. This precise alignment
of virtual data with the physical environment allows users to view an augmented
representation in real time of the construction project on their device.

Figure 2.15. SiteVision Positioning system [76].

. vGIS
vGIS[77] (Virtual Geographic Information System) is an AR platform designed to

improve geospatial visualization and analysis in various industries, including utilities,
telecommunications, construction and urban planning. By combining AR technol-
ogy with geospatial data integration, vGIS provides users with accurate, real-time
visualization of spatial information on their devices.

Before using vGIS, users begin by preparing their geospatial data, including maps,
infrastructure assets, and spatial layers, in a compatible format. These data can

24

. 2.8 Related work

encompass underground utilities, pipelines, buildings, or any other relevant geospatial
information.

To achieve centimeter-level accuracy, vGIS leverages high-precision positioning
systems. By connecting the vGIS app to compatible positioning hardware, such as
GNSS (Global Navigation Satellite System) receivers, the platform captures precise
location and orientation data. This integration ensures the accurate alignment of
virtual GIS data with the physical world.

Through the vGIS app, geospatial data is seamlessly overlaid onto the live video
feed captured by the device’s camera. This can be seen in figure 2.16. As users view
their surroundings through their device, they witness the real-time integration of
virtual GIS data into the physical environment. This augmented reality visualization
allows for a seamless blending of spatial information with real-world surroundings.

vGIS empowers users to effectively visualize and analyze geospatial data in the
field. By superimposing 3D models, infrastructure assets, or other spatial information
onto the real-world view, users gain a better understanding of the site. They can
detect clashes, assess asset conditions, and perform measurements or spatial analyses
directly in the augmented reality environment[77].

Figure 2.16. vGis visualization [77].

2.8.3 Summary
In summary, existing GIS data visualization applications, including vGIS, SiteVision,
and others, currently require additional hardware to maintain the accuracy of the posi-
tion of the device. However, the Geospatial API has the potential to eliminate the need
for such additional hardware. Although there are no applications utilizing the API in
this manner, it presents an excellent opportunity to explore and test the limits of the
API’s capabilities.

25

Chapter 3
Design

In this chapter, we will talk about the design of the application. First, we will discuss
the reasoning behind choosing one of the data sets and then go further into designing
the application and its core elements.

3.1 Why underground utilities?

There are many different data sets at the Prague geoportal. I considered these points
when choosing the data set that would be used for this work:

. Is it suitable for AR?
The first thing to consider is whether the data set is really suitable for AR visual-

ization. Is there anything to visualize?. Is it useful?
The other deciding parameter is whether visualization of such data would provide

the user with useful information if I omit extreme use cases.. Is it not already available?
The last deciding factor is whether the data set is not already easily accessible

by different means, for example, Google Maps. If the visualization brings something
new.

At this point, I could divide the remaining datasets into two groups. Those that
would require some kind of navigation for them to be useful and those that would not
need that and would instead visualize data around the user.

With the consideration of this work goal, which is to visualize some data, I have
decided that navigation to some place might not be the best option. Therefore, I was
left with only a few options. The remaining data sets were:

. Parking zones
The application would visualize what type of parking the user’s car is currently

standing on.. Underground utilities
The application would visualize what utilities are going underneath the user and

around him.. Land use plans
The application would visualize how the ground around the user is divided into

lands.

In the end, I decided to choose underground utility lines because it felt the most
interesting and if it turned out to be precise enough, it could even be the most useful
one.

27

3. Design .

3.2 Application Design
As mentioned before an AR application must satisfy the three key characteristics. It
should combine the real and virtual world, be interactive in real time, and finally
position the virtual object in the 3D world instead of being just an UI. With these
three characteristics in mind, these are the features that the application should have.

. Markerless AR
The application should utilize markerless AR technology to seamlessly blend vir-

tual objects representing underground utilities with the real world environment. This
allows users to view and interact with the utilities without the need for physical mark-
ers or QR codes.. Accuracy

The application should aim to maximize the accuracy of the visualized objects.
Especially in this case as it is working with real-world data.. Data Integration

The application has to use the data provided from the Prague geoportal and use
them to generate the objects at the right place.. User-Friendly Interface

The application should have an intuitive and user-friendly interface to facilitate
ease of use. The UI should provide clear instructions on how to interact with the AR
elements and access additional features. The user should be able to see how accurate
the visualization currently is.. Interactive Information Display

Users should be able to interact with the visualized utility lines in real time. They
should be able to tap on a utility line to obtain detailed information such as the type
of utility, the depth, and other associated data. This information can be displayed
as a pop-up or in a sidebar panel.. Customization options

The application should provide customization options to enhance the user experi-
ence. Users should be able to filter the types of utility lines they want to see, adjust
the color or representation of utility lines, and customize other visual settings. Ad-
ditionally, options for adjusting the size of the pipes or enabling/disabling occlusion
culling could further enhance customization.

3.3 UI design
This application UI should include these components:

. Calibration screen
When the application starts, it is necessary to calibrate the position of the user.

There should be a screen dedicated to calibration, which will stay there until the
device’s position is accurate enough. There can also be a menu access button, as the
user may want to set some settings before completing the calibration. A sketch can
be seen on the left in Figure3.1.. Main screen

Once the calibration is completed, the user should get to the main screen of the
application. There should not be many UI elements on this screen, as it is essential
to give the user as much free space as possible so that they can see and interact with

28

. 3.3 UI design

the AR. The main screen should have a button that allows the user to enter the
menu. A sketch can be seen in the middle in Figure3.1.. Menu After clicking on the menu button, a menu should open. This menu can
cover the whole screen, as there is way too much information in it to make the AR
interactable while being in the menu. The menu contains buttons that either open
a different page in the menu or set the settings for a utility line. The user should be
able to set the visibility of the line and its color. In addition to this, there should also
be a close button to return to the main screen and a button to access the settings.
A sketch can be seen on the right in Figure3.1.. Settings Here should be the main settings of the application. Details of the settings
available to the user should be specified during the implementation.. Color Change Screen When the user wants to change the color of a line, there should
be a screen where they can decide what color they want to use. If it is done by
sliders, it would be better to make the sliders correspond to the HSV model instead
of the RGB model, as it is more intuitive.

Figure 3.1. A design of the calibration, main, and menu screen.

29

Chapter 4
Implementation

In this chapter, we will talk about the details of the implementation and the problems
and their solutions that I have encountered during the development of the application. I
started with just the data files in WGS84 and from that I have built a whole application
to visualize their contents. This chapter will follow the process of getting these files to
appear on a user’s phone, starting with the parsing of the data, continuing with the
creation of a custom search file, and finishing with the visualization in the AR.

4.1 Parsing the input data
The first step in visualizing the data was the ability to read them. Therefore, this
section will describe the parsing process and how to access individual records quickly.. Parsing the .shp file

I had no options when it came to choosing the file format because, at that time,
the only format available for the utility lines for the entire Prague was the shapefile.

To parse the file correctly and access the data stored inside, the application follows
the predefined format, which can be found in the shapefile documentation[6]. First,
the application parses the main header, which can be seen in Figure 4.1, to retrieve
basic information about the contents of the file. The header is followed by records
that, in this case, are of type PolylineZ. To parse them, the application follows the
format shown in Figure 4.2.

Figure 4.2. Description of the polylineZ record. [6]

31

4. Implementation .

Figure 4.1. Description of the main file header [6].

. Accessing a single record with a known record number
The .shx file makes it possible to avoid searching record-by-record when a ceratin

record needs to be retrieved from the .shp file. It has the same file header as the
.shp file, but instead of long records, the header is followed by 8-byte-long elements,
which contain the offset and length of the record in the .shp file. So, when the id of
the record is known, it is possible to quickly count where to look for its offset and
position in the .shx file, and then use these values to retrieve the record from the
.shp file.. Parsing .dbf file

Once again, the application follows the preset format that can be found in the
documentation [78]. Unlike the .shp file, the size of the individual records is known
in advance and is included in the header. So when there is a need to find just one
record, it can be done by calculating its offset and quickly accessing it.

4.2 Acceleration Structure
The dataset includes information about more than 2 million utility lines. However, the
application needs to access only information about the utility lines that are close to the
user. It would be impossible to go through all of the lines during run-time and check
if they are in the users’ vicinity. Instead, it is better to use some kind of acceleration
structure that can help to find the right utility lines quickly.

The problem can be formulated as follows. Given the current position of the user,
identify all utility lines within a specified distance from them.

Although the WGS84 coordinate system, which is not planar, is being used, it is
possible to consider it to be planar, as the area is considerably small. On top of that,

32

. 4.2 Acceleration Structure

the application visualizes all the utility lines that are beneath the user no matter how
far they are, and thus this problem can be narrowed into 2D.

And once it is in 2D it is very easy to come up with a great acceleration structure
that will allow finding the utility lines close to the user very quickly. A gird.

A bounding box can be constructed from the minimum and maximum longitudes
and latitudes of the whole data set. The bounding box for the dataset used can be seen
in Figure 4.3. It can be divided into areas, and thus create the grid. However, if it
is divided into many small areas, many of them may not have any utility lines inside.
Instead, it is better to first divide the plane into bigger zones, which if they contain any
utility lines in them, can then be divided into smaller areas, thus creating a hierarchical
grid. With the heirarchical grid ready, it is possible to take the boundaries and quickly
calculate the index of the grid cell from it and, thanks to it, find where the user is.
On the basis of the distance in which the utility lines should be visualized, the cell’s
neighbors can be taken into consideration, too. By doing this, the list of utility lines
that are potentially close to the user can be retrieved quickly.

Figure 4.3. These are all the utility lines in the dataset, surrounded by a bounding
box(black).

To create the first partition into zones, the algorithm described in Figure 4.4 can be
followed. After sorting the utility lines into zones, the same process can be repeated for
each of the zones that have at least one of the lines inside them. It could be repeated
many times like this to partition the space more and more, but for the purposes of this
application,partitioning it just twice is enough. The first partition divides the space
into zones of approximately one square kilometer. The second partition further divides
the zone into areas of approximately 20 meters squared.

It would be great to save the grid in some format that would allow a quick access to
the ids of the lines based on the users location. It would be much faster and also more
memory efficient than having to load the whole structure every time. That is why I
proposed a new format that safes the grid in such a way that it is possible to quickly
retrieve the required data. It has a header of 72 bytes, which contains all the necessary

33

4. Implementation .

Figure 4.4. PseudoCode of how to sort the utility lines in the grid

data to calculate the index of the outer and inner grids based on users’ location. With
the indexes, it is possible to extract the ids of the utility lines only for the corresponding
area. The proposed format is described in detail in Appendix B. It is used to get access
to the data quickly and efficiently, just by reading from a file.

4.3 Server side
There are many different ways in which I could have set up the server side, but I
have chosen to use ASP.NET, mainly because it also uses C#. When the client makes
a request, the server retrieves the necessary data from the shapefile or the grid file.
Before sending the data back to the client, it serializes them into a Json file. The server
is designed to accept several different API calls to prevent sending redundant data. A
brief description of the API request follows:. BinHeader

This is a GET request that on call returns the header of the grid file described in
the previous section.. GetIds

GetIds is also a GET request. The request takes the indexes of zones and areas.
The server uses the grid file to find the corresponding list of ids and sends the list
back.. DBFfieldNames

This is a GET request, which on call returns the information about the fields in
the .dbf file.. SHPPostData

This is a POST request, which takes a list of ids from the body of the request and
returns a list which has all the points information for each of the requested ids.. DBFPostData

This is also a POST request, which takes a list of ids from the body of the request.
It returns a list with the row of the .dbs file belonging to the requested ids.

34

. 4.4 Setting up the project in Unity

Initially, all requests were designed as GET requests; however, the list of ids was
sometimes too big to fit into the URL, so the two requests taking in the ids had to
be changed to POST requests. The usage of the requests will be discussed later in the
client description.

4.4 Setting up the project in Unity
When starting a new AR project in Unity, I had two options. Either I could have set
up the whole project manually, or I could have used a template offered by Unity in the
new project creation menu. The template adds all the necessary packages and sets up
a basic scene. In contrast, if I started with an empty project, I would have to add these
components manually. The packages that would have to be added are AR Foundation
and the ARCore XR Plugin.

If I started with an empty project, I would also have to add these game objects to
the scene, because they take care of the augmented reality.

. AR Session
The AR Session controls the lifecycle of an AR experience, such as motion tracking,

environmental understanding, and life estimation. It also checks if the user’s device
has support for AR and if an ARCore/ARKit needs to be installed or updated.. AR Session origin

It’s purpose is to transform trackable features into their final position, orientation,
and scale in the Unity scene. It should have the AR Camera as a child object, so
when there is a necessity to start the AR experience in a specific place in the Unity
scene, adjusting its position makes it possible.

To use the Geospatial API in my project, I had to add another package. This
must have been done, regardless of whether I had started with a template or not.
The package is called the ARCore Extension. At the time of writing, this package
was not available from the Unity registry and had to be added from a GitHub URL
[79]. With the package added to the project, I had to add the ARCore Extensions
object to the scene. Furthermore, I had to enable the ARCore API in a new Google
Cloud Platform project. After enabeling the ARCore API, I had been able to generate
credentials which the application uses to authorize the application calls to the API.
The process of generating the credentials and setting up the authorization is described
on the Geospatial API official page[51].

4.5 Communication with the server
The goal was to make the amount of communication between the server as small as
possible and to prevent sending redundant data. That is why the application keeps
most of the received data in memory, within some set limit. The application uses two
separate dictionaries. One for cells and the ids of the utility lines going through them,
and the second for the utility lines themselves. The reason for separating the two is
that the utility lines are going through multiple cells. If I were to keep the data on the
lines for each cell, I would have a lot of unnecessary duplicit data. By keeping only the
ids of the lines connected to the cells, the application can check if the line data are not
already available before requesting them from the server again.

The first thing the application retrieves from the server is the grid file header and the
list of fields from the dbf file. The received data is kept in the device memory for the

35

4. Implementation .
rest of the run-time. The next request is made when the user calibrates their position
(this will be described later), and when it is known what data should be visualized. The
indexes of the grid cell that is to be visualized can be counted by using the information
in the grid file header. The header includes the information on the minimum and
maximum longitude and latitude of the bounding box of the entire data and the size
of the outer and inner grid cells. From this the indexes of the outer grid cell can be
calculated. The indexes can then be used to calculate the minimum and maximum
latitude and longitude of the cell. From there, the process can be repeated, but with
the size of the inner cells instead. Thanks to this, it is possible to obtain all the indexes
that are necessary to identify the cell in which the user is and for which data about the
utility lines should be retrieved.

Instead of immediately requesting the ids of the utility lines from the server, the
indexes are used to check if the ids are not already available in memory. If not, the
application sends a request to the server to get them. If the ids are already present,
they are loaded from the memory instead. Once the ids are available, either from the
memory or from the server, they are cross-referenced with the utility line data in the
memory. If any data for the ids are not within the memory, they are added to a list of
needed information. Finally, the list is used to make another request to the server. This
approach minimizes data redundancy and optimizes communication with the server.

The pseudocode for this process can be seen in Figure 4.5
Currently, the application uses a simple rule to manage the data received in memory.

When the amount of data reaches a given threshold, the lists are cleared. To increase
efficiency, I suggest clearing only the data that have not been used recently.

Figure 4.5. Pseudocode of how to obtain data of the utility lines in a given cell

4.6 Utility line visualizaiton
When all the data for the utility lines that pass through the users’ surroundings are
ready, it is time to visualize them.

36

. 4.6 Utility line visualizaiton

When I implemented this part, I had to take into account the fact that I would be
using the Geospatial API and the anchoring system it provides. It is essential to have
the anchor close to the user, because the accuracy decreases with larger distances. If
there is a one-kilometer long utility line and the user is not at its starting point, it
cannot be anchored there because it would lead to high accuracy errors.

With this in mind, I came up with two possible solutions. One was to work with
the entire utility line at once and continually re-anchor it when necessary. This would
lead to making the utility line seamless, but the re-anchoring would cause the line to
move and change position. The second option was to divide the line into smaller lines
based on the gird cells. Each part would have its own anchor, and so there would be
no need for re-anchoring. In perfect conditions, the lines would still seamlessly connect
and would not suffer from the re-anchoring movement. In not perfect conditions, the
lines might not connect and be slightly misaligned. The size of the misalignment would
depend on the accuracy.

The first option would require me to implement a system in which I keep track of
what utility lines are currently active and decide where to anchor them as the user
moves. A viable solution would be to re-anchor them every time the user moves into a
new grid.

The other option would require me to implement a way to divide the lines into smaller
pieces belonging to the given cell. I could then visualize the pieces inside the cell and
its neighboring cells. Each time the user moves to a different grid, I would remove the
cells that are no longer needed and generate the new neighboring cells.

I decided to use the second option because I wanted to limit the movement of the
lines as much as possible. Although I knew that I might have to deal with the lines not
being seamlessly connected.

That is why the application loads not only the cell in which the user is currently in,
but also the cells around him, so that the visualization seems natural. This is done by
simply adding and subtracting one from the inner cell indexes, and controlling if it is
necessary to adjust the outer cell indexes.

Once all the utility line data are loaded, the application takes cell after cell and finds
out the points of the lines that are inside and where the line intersects the cell. It then
generates a mesh for the lines based on the points and assigns them to the appropriate
cell.

For the generation of utility lines, I have used a script called Unity Plumber created
by Federico Casares[80]. I had to make some changes to fit the application needs, but
the main functions remained the same.

It is important to note that to generate the mesh, the WGS 84 coordinates have to
be projected into a planar coordinate system that works with meters.

I wanted to be as accurate as possible, so I first tried to use the Křovák’s coordinate
system as it should have given the most accurate results for the Czech Republic. At
first, when I generated the utility lines inside Unity without using the Geospatial API,
there were no visible problems, and everything seemed to work. However, when I
started testing the visualization, the lines had huge gaps between the borders of the
grid. The comparison between the current version and the version in which the Křovák’s
coordinate system was used can be seen in Figure 4.6.

At the time, I did not know if the Geospatial API was not accurate enough or if
there was a mistake somewhere else.

After conducting some investigation, I discovered that the reason for this was that the
Křovák’s coordinate system was not aligned with respect to the north. This resulted

37

4. Implementation .

Figure 4.6. Visualization using Křovák(left) and UTM (right).

in all the generated meshes being slightly rotated in the positive direction. Further
research led to a method for calculating the rotation and aligning it with respect to the
north [81].

𝐶 = 0.008257 𝑌 + 2.373 𝑌 /𝑋

Although this approach yielded improved results, they were not perfect. Therefore, I
decided to explore an alternative coordinate system, the UTM coordinate system. While
using UTM, I observed slightly different results, with the distances between points being
slightly different compared to the Křovák’s coordinate system. The difference was
approximately 0.3 millimeters, which I deemed negligible. A comparison between the
UTM and Křovák’s coordinate systems, both with and without correction, is presented
in Figure 4.7.

I also experimented with where the utility lines are anchored. At first, they were
anchored at one of the points where they entered the grid cell. However, later that was
changed to the middle point between the first and last points of the utility line inside
the cell instead. This small change led to a much better alignment of the lines at the
cells’ boundaries.

4.7 Geospatial API and accuracy
To make the visualization accurate, the Geospatial API is used. First, the application
checks if the device supports the API and if the user gave the application permission to

38

. 4.7 Geospatial API and accuracy

Figure 4.7. Comparison of UTM(pink) and Křovák(green) with(left) and without(right)
angle correction.

use the camera and location. With permission received, the application starts tracking
the device’s position. The Geospatial API offers an option to check the horizontal,
vertical, and yaw accuracy of the device. The accuracy is a number that describes
the radius of the 68th percentile confidence level around the estimated value[82]. For
example, if the estimated altitude is 150 meters and the vertical accuracy is 10, then
there is a 68% chance that the true altitude is actually within 10 meters of the real
altitude. It is essential to keep track of these values, and in case they become too high,
the application informs the user that the visualization may be inaccurate. I decided to
have two sets of values: one for the initialization, which requires higher accuracy, and
slightly lower values for the rest of the application runtime. These values (see Table4.1)
are set in a way that is possible to reach them, but also to keep the visualization quite
accurate.

Vertical Horizontal Yaw
Initialization 1 1 1.5
Run-time 1.5 1.5 3

Table 4.1. The required precisions.

Once the user finishes the calibration, that is, achieving the required accuracy values,
the application starts visualizing the utility lines.

Initially, I wanted to use the terrain anchors that would position the objects at the
appropriate height. However, they turned out to be unusable because they used the
altitude above sea level. Unfortunately, the Geospatail API provides the altitude as a
value above the WGS 84 ellipsoid. It is stated on the Geospatial API page [82] that
the altitudes are “ruffly” the same. However, the difference in Prague is around forty-
six meters, which is not even close to “ruffly” the same. So, I have decided to take a
different approach.

Instead, the application takes the device’s current altitude and subtracts a given
value from it and visualizes the utility lines at that height using the WGS84 anchors.
The user has the ability to set the value of how far under them the lines will be. In

39

4. Implementation .
addition to that, there is also a threshold value that checks the current altitude against
the altitude from the time when the lines were anchored. If the difference between these
two altitudes goes over the threshold, the lines are re-anchored to keep their distance
from the user. This prevents the lines from sinking too far or from getting too close to
the user. The threshold is also adjustable by the user. The effectiveness of the threshold
can be seen in Figure 4.8.

Figure 4.8. Comparison of the result with(right) and without(left) the threshold.

4.8 Customization
There are many different types of utility lines in the data set, so I created a system to
group some of the types together to limit customization in favor of the clarity of the
application. The entire document with all types can be found on the Prague geopor-
tal[83]. I take the code that represents the type of utility line and use it to create the
categories. The first number of the code is used to obtain the general type of utility
line. The next four numbers decide the subtype. The final number is ignored to avoid
having too many categories. The user can costumize the categories. They can change
their color or visibility. Right now, the user can also change the size of the utility lines
for all of the lines at once, but it would be a great addition to the customization if
this option is available for each of the categories. An example of current customization
screens can be seen in Figure 4.9.

4.9 Utility line information
The user should be able to access the information of any of the utility lines. So, when
they click on the lines, a pop-up box appears. This is done by a simple ray caster,
which shoots a ray from the camera into the scene when the user taps it and retrieves

40

. 4.10 Occlusion and lighting

Figure 4.9. Menu and Color change screen.

the first hit object. Based on the user tests, which will be described later, I found that
users would appreciate to know how deep underground a line is. The problem was that
the application could not use the altitude of the device to calculate it because of the
reasons described above. Therefore, instead, the Elevation API[84] is used. This API
can be used to obtain the elevation of the location at which the user is currently at.
To get the right height, the exact point on which the user tapped must be found. This
is done by taking the raycast hit position, projecting it into the lines’ local coordinate
system, and then calculating the closest point on the line to the hitpoint. The point is
then used to calculate the height by interpolation between the endpoints. The height
is then subtracted from the elevation, and thus the value of how far below the ground
the line should be is calculated.

Currently, the information about the pipe can be displayed in two modes. One
shows the user all of the information (or just the depth) about the line in a box above
it. This box has a set size and only rotates to face the camera. This can make the box
unreadable if the user is too close or too far from it. So, it is possible to tap on the
box. By tapping the box, the information will appear as a new UI element. When the
user wants to close the interface, they can tap on it and it will disappear.

4.10 Occlusion and lighting
When it comes to occlusion, I used the features provided by the ARCore. The ARCore
offers occlusion culling with three different modes, which vary in terms of performance
and quality. I included all options in the application, and the user can switch between
them in the settings. However, the user can also choose not to use occlusion culling

41

4. Implementation .
at all. Although it might make the visualization look less realistic, it allows the user
to see the lines going through places that would otherwise be invisible. At the time of
project development, the occlusion view distance had been limited to only 8.191 meters.
That means that anything further than 8 meters is invisible. This is quite a contrast to
the twenty-meter view distance that the mode without occlusion culling offers. On 10
May 2023 Google announced that the maximum range has increased to 65.535 meters;
however, this has not been added to the project yet. It is also important to note that
the occlusion culling is not perfect even when set to the best mode, especially when
the line is running through long grass.

When it comes to lighting, I also used the features provided by ARCore. There are
many different options when it comes to lighting estimation. I could choose to track
ambient intensity, ambient color, ambient spherical harmonics, main light direction, or
main light intensity.

I tried all the options, but the results were suboptimal. The main testing device was
not able to track the direction and intensity of the main light very often, and when it
did, the light intensity was so low that everything turned very dark. Due to that and
the lack of time, I decided to make the application support only an ambient-intensity
adjustment, where the ambient-light intensity is set to correspond to the estimated
value.

Similarly to occlusion culling, users have the option to decide whether they want to
use the ambient light intensity or if they want to use the default value.

4.11 Other encountered problems
Another problem that I encountered during the development was the fact that Unity
works with floating-point numbers, which is quite limiting. Especially when I was
working with a geographic coordinate system, which required high precision. For that
reason, I limited the usage of floating-point numbers to a minimum. The only time the
application uses floating-numbers is after the coordinates are projected into a planar
system and are prepared to for the mesh creation.

42

Chapter 5
Testing

In this chapter, we will talk about the testing of the application. First, we will talk
about the application testing. I will talk about its accuracy, performance, and usage
of internet data. The second part will be about iterative user testing. We will discuss
what I tested and how I incorporated the testing results into the development of the
application.

5.1 Application functions testing
Accuracy is the most important factor of this application. If the accuracy is high
enough, it could make the application usable for professional purposes, while if the
accuracy is too low, it would be completely useless. I tested the accuracy in two different
ways. The first test was to determine whether the visualization is in the correct place
according to the position of the device. If the mobile thinks that it is somewhere where
the utility line should be, then I can test if the line is actually there. The second test
tries to evaluate whether the position of the device is accurate. That is, whether the
mobile is where it thinks it is.

5.1.1 Visualization accuracy
To check whether the visualization is where it is supposed to be, I created a logging
tool, where on a button click the current position of the device was saved. I then went
into the Prague streets and followed some of the utility lines, logging my position on
the way. After the logging was done, I took the data and used Qgis[85], a free open
source desktop geographic information system application, to visualize it. Then, I used
its functions to calculate the distance of the measured positions from the real utility
line. During the test, I had the device in my hands and it is likely that I was not
perfectly aligned with the utility line, so some of the inaccuracy can be caused by that.
This test was carried out three times for three different utility lines.

The results were great, especially when I take into account that the data gathering
method was not precise. I never got further than 0.4 meters from the utility line. The
highest measured distance was 0.37 meters and it was only twice that I got over 0.3
meters. One of the tests is visualized in Figure 5.1 and its values can be seen in Table
5.1.

5.1.2 Device accuracy
It is a bit more complicated to check how accurate the device position is without any
way of telling what the real position should be. So, I decided to place the device in
a fixed position using a tripod. I chose a place where the application was able to get
through the initialization (calibration) phase without the necessity to move and look
around. Each time the application loaded and passed the initialization, I logged the
position and started the process again. In this way, I could compare the values between
the individual measurements and see how far they are from each other. I estimated the

43

5. Testing .

Figure 5.1. Points gather while compared to the line from the dataset.

Latitude Longitude Distance(m)
50.10511229 14.39057870 0.13509
50.10515986 14.39064109 0.05557
50.10523802 14.39074383 0.01015
50.10527621 14.39079419 0.08613
50.10531504 14.39090841 0.01564
50.10536511 14.39106702 0.03458
50.10538532 14.39113026 0.06857
50.10544284 14.39130773 0.04833
50.10544316 14.39130814 0.02993
50.10549559 14.39146876 0.10597
50.10559869 14.39179031 0.14475
50.10567308 14.39203060 0.06239
50.10570929 14.39214384 0.14363
50.10571979 14.39226171 0.04748
50.10573689 14.39247113 0.03902
50.10575136 14.39274016 0.05844
50.10576036 14.39292475 0.06794
50.10576829 14.39303307 0.07408

Table 5.1. Measured data, the distance is from the closest point on the utility line.

position as the average of all the logged values and then calculated the distance from the
estimated position. I repeated this test three times in different places and evaluated the
results. Surprisingly, the longest distance from the estimated position was 0.41 meters,
which is much better than what I expected. The altitude differences were also not that
large. The difference between the lowest and highest altitude measured at the same
place was 0.56. Finally, the yaw angle was always within one degree. The visualization
of one of the tests can be seen in Figure 5.3 and the corresponding values can be seen
in Table 5.2.

The second way to test the accuracy of the application is to find a digging site, or
places with utility line markings, and see if the utility lines visualize where they are
supposed to be. I managed to find several such places and tested the application there.
Screenshots of the application from these locations can be seen in Figure 5.4.

44

. 5.1 Application functions testing

Figure 5.2. A comparison of the visualization with the visualization in QGis.

Figure 5.3. All of the positions measurements with their distance from their average value.
With the blue lines and numbers that describe the yaw.

5.1.3 Coverage by Geospatial API VPS
It is great when the Geospatial API can be used to accurately pinpoint devices’ position;
however, it also binds the application to the places where the VPS is available. The VPS

45

5. Testing .

Latitude Longitude Altitude Yaw
50.16096486 14.74464028 231.796960 19.7880
50.16096537 14.74464300 231.747235 19.6590
50.16096440 14.74464226 231.772646 19.7939
50.16096448 14.74464230 231.763973 19.8355
50.16096443 14.74464220 231.754619 19.8829
50.16096487 14.74464119 231.838557 19.8125
50.16096520 14.74464012 231.863644 19.9434
50.16096489 14.74464029 231.905647 19.3416
50.16096489 14.74464021 231.905227 19.3925
50.16096429 14.74464125 231.866807 19.4305
50.16096349 14.74463983 231.839623 19.3556

Table 5.2. The data measured for the device accuracy test, depicted on Figure5.3.

uses the data from Google Street View, and one might expect it to work everywhere,
where the streets are mapped. However, that is not the case. There are places, whole
streets, which are possible to view in Google Street View, but they are not covered by
VPS. I have not found many places where the VPS would not work in Prague(other
than those described in the next paragraph), but that might be just because most of
the tests were done in the city center. However, I managed to find many such places, in
Čelákovice, a smaller city close to Prague. A map of these places can be seen in Figure
5.5.

I was unable to perform the calibration in places without any buildings nearby. It
seems like the VPS is not using vegetation to pinpoint the users’ location. So that
limits the usage of the application even more. This also holds true for places where
trees cover the buildings. If there is no building visible through the tree, the VPS will
not work.

Lastly, it is important to note that the lighting matters. It is much easier to reach
and maintain the necessary accuracy on sunny days and then on cloudy days.

5.1.4 Internet data usage

When it comes to using Internet data, the only part that the application can control is
the communication with the server. The data used for communication with the server
and data retrieval depend on the user’s position and their movement. The more utility
lines that need to be visualized, the higher the data usage. However, it is important to
note that the amount of bytes sent and received is not that high. Each utility line costs
325 bytes for the data from the.dbf file and 244 bytes (8 bytes for each coordinate)
for each point on the line. It is harder to estimate the data usage by Geospatial API,
because I do not know what the communication with the API looks like. To monitor
data usage, I used the built-in data monitoring on the device and checked how much
data the application used over a period of time. I started with a one-minute interval
and tested it in multiple different places. Then I set a longer time interval and tested
it again. During the testing, I also tracked communication with the server so that I
could subtract it from the tracked amount to find the geospatial API data usage. The
measured data can be seen in Table 5.3. It seems like the initialization of the Geospatial
API requires more internet data than during run-time.

46

. 5.1 Application functions testing

Figure 5.4. Comparison of visualized utility lines with references from the real world.

5.1.5 The speed of visualization

I tested the visualization on multiple devices and in general did not encounter any prob-
lems with the speed of visualization. Frame rates per second (FPS) were consistently
around 30 even when the occlusion mode was set to the best. However, on some devices,
the application was unable to complete calibration, although they are mentioned in the
official list of supported devices [86]. The application started and got to the calibration
screen but was unable to calibrate. I then tried to run Pocket Garden, a project created
to showcase how the Geospatial API works, on the device. However, I was not able to
get through the calibration screen there either. This signals that the issue does not lie
within the application but with the Geospatial API.

47

5. Testing .

Figure 5.5. Blue indicates that Google Street View is available. Red indicates that VPS
is not.

Time(min) Geospatial API Data retrieval Overall
1 2.60 0.07 2.67
1 2.37 0.05 2.42
1 2.26 0.06 2.32
2 4.29 0.1 4.39
2 4.4 0.12 4.52
5 8.74 0.28 9.02
5 8.75 0.23 8.98
8 13.7 0.4 14.1
10 16.08 0.52 16.6

Table 5.3. Internet usage in megabytes based on the run time of the application.

5.2 User testing
An important part of application development is user testing. Users should feel com-
fortable using the application, and it should be as intuitive to use as possible. I decided
to use the iterative testing approach, where I continue to test the application during

48

. 5.2 User testing

the whole development and adjust it based on the test results. In this section, I will go
over the individual tests and how their results changed the final product.

5.2.1 The first test

I tested the application for the first time when I got the core functions and the basic UI
done according to the design. It is important to note that at this time the application
was not re-anchoring the utility lines when the height changed too much, so the utility
lines sometimes just randomly flew into the distance or got too close to the user. I
asked two different participants to perform these tasks:

. Calibrate your position
The first task had to be the device calibration, as without it the application would

not start. Both users were in a location with VPS coverage, so they had no problems
with it.. Find a water line and identify what kind of line it is

I chose the water line because its color is set to blue and thus is easy to identify.
The first participant managed to accomplish it very quickly because the closest line
to them was a water line. The second participant had to walk a distance, but they
also managed to find a water line without any problems.. Hide the water line

Both participants immediately entered the menu. However, when they got to the
water line submenu, they did not know which of the subtypes the line before them
belonged to. One participant decided to go back from the menu and find out by
reading the information about the line again. The other decided to hide all of the
water lines instead.. Make the water line green

This task was quite similar to the previous one. The second participant once again
went through all of the subtypes and changed all of their colors. The first participant
changed the color of only the one.

At this stage, these were all the functionalities of the application, so there was nothing
more to test. Both participants managed to complete all tasks, although the second
approach was a bit unorthodox. I asked both participants what they would like to
improve and if there was anything they did not like. Both of them pointed out that the
indicator of whether all, none, or some of the subtypes are hidden is confusing, and it
would be much better to put there some kind of indicator that leads somewhere else.
The second participant then pointed out that it would be better to see the color in
the menu rather than after entering the color changing screen. In his words, “It was
annoying to check whether I had already changed the color or not.”

The other thing both of them brought up was the “annoying” Lost tracking message
that covered the whole screen. Especially when they had no idea that their accuracy
was getting worse.

I agreed with all of their observations and thus redesigned parts of the application.
I removed the type indicator and instead replaced it with three dots, which indicate
that another menu is coming. IWe changed the color button to show the current color
instead of the rainbow. I also implemented an indicator that shows the user whether
their accuracy is getting closer to the minimal limit, and finally, I also changed the
“annoying” lost tracking pop-up to be less intrusive. The changes of the menu can be
seen in Figure 5.6.

49

5. Testing .

Figure 5.6. Showcase of how the menu changed after the first user testing. The old menu
is on the left.

5.2.2 The second test
I changed the application based on the results of the first test. On top of that, I also
added the altitude correction, so now the utility lines were more stable. I tested the
application with two different participants. I kept the scenario the same as in the first
test but just asked the users to find a gas line instead of a water line.

Both participants got through the tasks without any issues. Although, they did not
encounter any problems during the testing. One of them mentioned that it was great
to know at what height the utility line is, but it would be much more useful to see how
deep it is beneath the ground. Also, if such an option was available, it would be great
to be able to see information about multiple utility lines at once.

This led me to make use of the elevation API and calculate the depth of the utility
lines. Furthermore, I added the pop-up signs that appear on the utility line when the
user clicks on them. I was aware that there might be situations where the pop-up sign
would be unreadable, and thus I kept the UI that was used to showcase the information
about the utility line, and when the user clicks on the pop-up, it opens the UI. The
pop-up signs can be seen in Figure 5.7.

5.2.3 The third test
The third test was performed when I added occlusion culling and ambient lightning
estimation to the application. I also added the option to adjust the height that is being
used for the utility lines’ offset and the threshold for their re-anchoring. These settings

50

. 5.2 User testing

Figure 5.7. A showcase of the pop-up sign

are important for occlusion culling to work. Before the user would not be able to
recognize, if the utility lines are visualized slightly below the ground, but the occlusion
culling makes it very visible. With the wrong setting, the utility lines could become
completely hidden by the ground. These two settings are quite hard to understand, so
I told the participants about them before the test. The user can find these details in
the manual.

The third test consisted of four new tasks in addition to the previous tests, and three
participants tried to complete them.

. Turn on occlusion culling
The users had to go to the settings menu and turn on occlusion culling. I left it

up to them to decide which of the modes they want to try out. All the participants
were able to do it without any problem.. Adjust the settings to suit your needs

One of the users did not have to adjust the settings at all. They were able to
see the utility lines above the ground, even with the occlusion culling on. The other
two had to change the height at which the lines were anchored, but thanks to my
explanation before the test started, they did it without any problems.. Turn on the ambient lighting estimation

This task did not cause any problems either, because it is as simple as going to
the setting menu and switching from one mode to another.. Change the size of the utility lines to 0.05

In this version, I also included the possibility to change the size of the utility lines.
The task itself is again very easy, because it can be done by using a slider in the
settings menu.

51

5. Testing .
I wanted to find out whether the occlusion culling and the ambient light estimation

enhance the realism of the application.
Occlusion culling received mixed reviews. On the one hand, the participant thought

it was great to see the utility line hidden beneath a car; on the other hand, it was hard
to keep track of a line that led under many of them. Also, when a line passed through
tall grass, the occlusion culling made it look unnatural. On top of that, all of them
complained about the shorter vision range. One of the participants suggested making
it easier to turn on and off the occlusion because going to the settings menu each time
is a chore.

The ambient light estimation was not received well at all. It made the colors less
distinct, especially during one of the tests when it was cloudy. All of the participants
quickly reverted to the default mode, where the colors are bright and easily distin-
guished. I would like to quote one of the participants “I have set up so many different
colors, and with this mode on, they all look the same.”

One user also suggested making a button that would close all of the pop-ups at once.
In general, the participants did not mind that the utility lines are not realistic. They

preferred to see them through the obstacles so they could keep a better track of them,
and they also preferred to keep the colors bright.

I kept the option to turn these features on in the application. I added the button to
turn the occlusion culling on and off to the main screen and I also added a button that
appears when there are some pop-ups in the world that get rid of them all.

5.2.4 The fourth test
The last test was performed with only one participant. This participant was testing
the application during the first test, so it was interesting to see what they would think
about the changes. I did not change much between this and the third test; I only added
two buttons, one to turn the occlusion on and off and the second to remove all the
pop-up signs.

The participant was surprised at how different the application now felt. Especially
when the utility lines did not fly randomly to the distance. They got through all the
tasks without an issue. They suggested making it possible for the pop-up signs to show
only the depth of the lines. This would make it easier to see all the different depths
when there are a lot of utility lines in the same place. They also suggested creating
some mode where the lines would not be planar and thus it would be even easier to see.

I added the option to make the signs show only depth, which can be seen in Figure5.8,
but I did not create a 3D mode. I agree that it would be great, but I did not have
enough time to make it happen.

5.3 Summary
Application function testing is fundamental to the overall functionality and efficiency of
the app. The focus of the tests was mainly on accuracy, performance, and internet data
usage. In terms of accuracy, I evaluated both the visualization accuracy, how correctly
the app displayed the position of utility lines based on the device’s location, and the
device accuracy, which evaluated if the device position corresponds to the real world.
Performance testing looked into the speed of visualization across different devices, while
internet data usage monitoring evaluated the app’s communication efficiency with the
server and the Geospatial API. I also looked at the coverage of the Visual Positioning
System (VPS) to understand its impact on the application’s accuracy and utility.

52

. 5.3 Summary

Figure 5.8. Comparision of the usage of big and small signs.

The iterative testing and development approach helped me adapt the application to
user feedback, allowing me to get a more in-depth understanding of what users want
from the application.

In terms of the application’s core functionalities, users were generally pleased with
the ability to identify, hide, and color-code different types of utility lines.

One notable advancement I made in response to user feedback was the implementa-
tion of the elevation API to calculate the depth of utility lines. This addition, along
with the clickable pop-up signs, significantly improved the application’s functionality
and usability.

Despite some challenges and complications, such as the limitations of occlusion culling
and the inadequacy of ambient light estimation, user testing was ultimately beneficial
for the development of the application. It allowed me to continually refine and improve
the application throughout its development cycle, resulting in a product that was better
suited to the needs and preferences of its users.

53

Chapter 6
Conclusion

My task was to use some of the geospatial data available on Prague’s Geoportal and
visualize it with an AR application using the Geospatial API. I analyzed the data
and their meaning, looked at the capabilities of ARCore and the Geospatial API, and
searched for AR applications that either work with the geospatial data or use the API.
Then I chose which geospatial I wanted to visualize and designed an application for
it. With the design ready, I implemented the core functions before performing several
rounds of user testing. I integrated the results of the tests and implemented new
functions in between the rounds to obtain user opinions on the changes. I also tested
the application’s accuracy and performance and limitations.

The application I created is able to visualize the utility lines in Prague. It allows
users to find out what utility lines are in their vicinity and how deep underground they
are. It gives users the ability to color code the lines and choose which of them should be
visualized. It includes the options to use occlusion culling and ambient light estimation
to make the visualization more realistic.

Based on the test results, I do not think that this application is ready to be used by
professionals. It can be used to give them a general idea of what utility lines are going
through the area, but it is not able to precisely locate them. I think the 0.3-meter
inaccuracy is too much and I cannot guarantee that it is not possible that even bigger
errors would occur. I could try to set the accuracy limits a bit higher, and thus get a
bit more accurate, but then the application might be hard to use.

When it comes to the application, there are still many ways it could be improved.
It would be better to visualize the depth of the utility lines in some way, rather than
using the information boxes to convey the information. Also, it would be interesting
to look into the lighting a bit more. The UI could use designer to redesign it because
right now it is very simple and not very appealing.

Even though I was not able to get the accuracy high enough to accurately visualize
utility lines, I still think that the Geospatial API is a powerful tool and it provides the
means to reach position accuracies in the city which were not possible before without
an external device. It might not work everywhere and it might not work perfectly, but
it opens the door to many different interesting applications that would not work before.

55

References

[1] Geoportál hlavního města Prahy, Data.
https://www.geoportalpraha.cz/cs/data/otevrena-data/seznam. Accessed
on 2023-01-08.

[2] IPR.
http://en.iprpraha.cz/. Accessed on 2023-04-08.

[3] Geoportál hlavního města Prahy.
[4] IPR Prague.

http://en.iprpraha.cz/clanek/1358/ipr-prague. Accessed on 2023-04-08.
[5] Shapefile.

https://www.precisely.com/glossary/shapefile. Accessed on 2023-03-14.
[6] ESRI. ESRI Shapefile Technical Description. 1998.

https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/
Pdfs/library/whitepapers/pdfs/shapefile.pdf. Accessed on 2023-03-19.

[7] ESRI Shapefile.
https://www.loc.gov/preservation/digital/formats/fdd/fdd000280.
shtml. Accessed on 2023-03-19.

[8] GeoJson.
https://datatracker.ietf.org/doc/html/rfc7946. Accessed on 2023-04-08.

[9] DXF files.
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-
file.html. Accessed on 2023-04-08.

[10] CityGML.
https://www.ogc.org/standard/citygml. Accessed on 2023-04-08.

[11] Introducing Coordinate Systems and Map Projections.
https://www.youtube.com/watch?v=PICwxT0fTHQ&ab_channel=EsriEvents.
Accessed on 2023-04-10.

[12] Geographic coordinate systems, datums.
https://desktop.arcgis.com/en/arcmap/latest/map/projections/datums.
htm. Accessed on 2023-04-10.

[13] Geographic coordinate system.
https://www.ibm.com/docs/en/informix-servers/12.10?topic=data-
geographic-coordinate-system. Accessed on 2023-03-12.

[14] What are geographic coordinate systems?
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-
geographic-coordinate-systems.htm. Accessed on 2023-04-10.

[15] Graticular Network.
https://desktop.arcgis.com/en/arcmap/latest/map/projections/GUID-
0921FD4E-B619-491B-92C2-38B70E231948-web.gif. Accessed on 2023-04-10.

57

https://www.geoportalpraha.cz/cs/data/otevrena-data/seznam
http://en.iprpraha.cz/
http://en.iprpraha.cz/clanek/1358/ipr-prague
https://www.precisely.com/glossary/shapefile
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000280.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000280.shtml
https://datatracker.ietf.org/doc/html/rfc7946
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-file.html
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-file.html
https://www.ogc.org/standard/citygml
https://www.youtube.com/watch?v=PICwxT0fTHQ&ab_channel=EsriEvents
https://desktop.arcgis.com/en/arcmap/latest/map/projections/datums.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/datums.htm
https://www.ibm.com/docs/en/informix-servers/12.10?topic=data-geographic-coordinate-system
https://www.ibm.com/docs/en/informix-servers/12.10?topic=data-geographic-coordinate-system
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-geographic-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-geographic-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/GUID-0921FD4E-B619-491B-92C2-38B70E231948-web.gif
https://desktop.arcgis.com/en/arcmap/latest/map/projections/GUID-0921FD4E-B619-491B-92C2-38B70E231948-web.gif

References .
[16] What are projected coordinate systems?

https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-
projected-coordinate-systems.htm. Accessed on 2023-04-10.

[17] Projected coordinate systems.
https://www.ibm.com/docs/en/db2-warehouse?topic=SSCJDQ/com.ibm.db2.
luw.spatial.topics.doc/doc/csb3022b.htm. Accessed on 2023-03-12.

[18] GIS Concepts - projections image.
http://gisedu.colostate.edu/webcontent/nr505/2012_Projects/Team6/
images/GIS_concepts/Figure2_proj.PNG.

[19] WORLD GEODETIC SYSTEM 1984.
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84. Accessed
on 2023-03-12.

[20] Paul Bolstad. GIS fundamentals: a first text on geographic information systems.
3rd ed.. 2008.

[21] John P. Snyder. Map Projections: A Working Manual. 2012.
[22] James R. Smith. Introduction to geodesy : the history and concepts of modern

geodesy. 1997.
[23] UTM Image.

https://www.researchgate.net/profile/Divya-Rk-2/publication/34233
0834/figure/fig3/AS:904454035496961@1592650054738/Universal-Transv
erse-Mercator-UTM-coordinate-system-is-a-standard-set-of-map.jpg.
Accessed on 2023-04-10.

[24] B. Veverka. Krovák’s projection and its use for the Czech Republic and the
Slovak Republic.. https://citeseerx.ist.psu.edu/document?repid=rep1type=pdf-
doi=c97d46ee3f78af13b81935ccfa8f6a2ce1575e03: 2004. Accessed on
2023-04-10.

[25] Křovákovo zobrazení .
https://czwiki.cz/Lexikon/K%C5%99ov%C3%A1kovo_zobrazen%C3%AD. Ac-
cessed on 2023-04-10.

[26] Křovák’s projection image.
https://player.slideplayer.cz/11/2954947/data/images/img12.png.
Accessed on 2023-04-10.

[27] GPS .
https://www.gps.gov/systems/gps/. Accessed on 2023-03-14.

[28] About GLONASS .
https://glonass-iac.ru/en/about_glonass/. Accessed on 2023-04-06.

[29] What is Galileo?
https://www.gsc-europa.eu/galileo/what-is-galileo. Accessed on 2023-04-
06.

[30] Beidou.
http://en.beidou.gov.cn/SYSTEMS/System/. Accessed on 2023-04-06.

[31] Space Segment.
https://www.gps.gov/systems/gps/space/. Accessed on 2023-03-14.

[32] How Do You Measure Your Location Using GPS?.
https://www.nist.gov/how-do-you-measure-it/how-do-you-measure-your-
location-using-gps. Accessed on 2023-03-14.

58

https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://desktop.arcgis.com/en/arcmap/latest/map/projections/about-projected-coordinate-systems.htm
https://www.ibm.com/docs/en/db2-warehouse?topic=SSCJDQ/com.ibm.db2.luw.spatial.topics.doc/doc/csb3022b.htm
https://www.ibm.com/docs/en/db2-warehouse?topic=SSCJDQ/com.ibm.db2.luw.spatial.topics.doc/doc/csb3022b.htm
http://gisedu.colostate.edu/webcontent/nr505/2012_Projects/Team6/images/GIS_concepts/Figure2_proj.PNG
http://gisedu.colostate.edu/webcontent/nr505/2012_Projects/Team6/images/GIS_concepts/Figure2_proj.PNG
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://www.researchgate.net/profile/Divya-Rk-2/publication/342330834/figure/fig3/AS:904454035496961@1592650054738/Universal-Transverse-Mercator-UTM-coordinate-system-is-a-standard-set-of-map.jpg
https://www.researchgate.net/profile/Divya-Rk-2/publication/342330834/figure/fig3/AS:904454035496961@1592650054738/Universal-Transverse-Mercator-UTM-coordinate-system-is-a-standard-set-of-map.jpg
https://www.researchgate.net/profile/Divya-Rk-2/publication/342330834/figure/fig3/AS:904454035496961@1592650054738/Universal-Transverse-Mercator-UTM-coordinate-system-is-a-standard-set-of-map.jpg
https://czwiki.cz/Lexikon/K%C5%99ov%C3%A1kovo_zobrazen%C3%AD
https://player.slideplayer.cz/11/2954947/data/images/img12.png
https://www.gps.gov/systems/gps/
https://glonass-iac.ru/en/about_glonass/
https://www.gsc-europa.eu/galileo/what-is-galileo
http://en.beidou.gov.cn/SYSTEMS/System/
https://www.gps.gov/systems/gps/space/
https://www.nist.gov/how-do-you-measure-it/how-do-you-measure-your-location-using-gps
https://www.nist.gov/how-do-you-measure-it/how-do-you-measure-your-location-using-gps

. .
[33] Control Segment.

https://www.gps.gov/systems/gps/control/. Accessed on 2023-03-14.
[34] GPS places picture.

https://www.gps.gov/systems/gps/control/map.png. Accessed on 2023-03-
14.

[35] Lu Zhiping, Qu Yunying, and Qiao Shubo. Geodesy : Introduction to geodetic
datum and geodetic systems. 2014.

[36] Accuracy.
https://www.gps.gov/systems/gps/performance/accuracy/. Accessed on
2023-03-14.

[37] GPS equations pictures.
https://qph.cf2.quoracdn.net/main-qimg-3a562785e28606779d96b4b044a0
3744, https://qph.cf2.quoracdn.net/main-qimg-8761f3247584eede4024dc
4b373b3158. Accessed on 2023-03-14.

[38] Christopher Hegarty, and Elliott Kaplan. Understanding GPS Principles and Ap-
plications, Second Edition. 2005.

[39] ARCore.
https://developers.google.com/ar. Accessed on 2023-04-01.

[40] ARCore, Fundamental Concepts.
https://developers.google.com/ar/develop/fundamentals. Accessed on
2023-04-01.

[41] Ikeda S. Taketomi T., Uchiyama H.. Visual SLAM algorithms: a survey from 2010
to 2016. 2017.
https://doi.org/10.1186/s41074-017-0027-2. Accessed on 2023-03-17.

[42] Kaichang Di, Wenhui Wan, H. Zhao, Zhaoqin Liu, R. Wang, and F. Zhang.
Progress and Applications of Visual SLAM. Cehui Xuebao/Acta Geodaetica et
Cartographica Sinica. 2018, 47 770-779. DOI 10.11947/j.AGCS.2018.20170652.

[43] Weifeng Chen, Guangtao Shang, Aihong Ji, Chengjun Zhou, Xiyang Wang,
Chonghui Xu, Zhenxiong Li, and Kai Hu. An Overview on Visual SLAM: From
Tradition to Semantic. Remote Sensing. 2022, 14 (13),

[44] ARCore, Environment.
https://developers.google.com/ar/design/environment/definition.
Accessed on 2023-04-01.

[45] ARCore, Get the lighting right.
https://developers.google.com/ar/develop/lighting-estimation. Ac-
cessed on 2023-04-01.

[46] ARCore, Depth adds realism.
https://developers.google.com/ar/develop/depth. Accessed on 2023-04-01.

[47] ARCore, Hit-tests place virtual objects in the real world.
https://developers.google.com/ar/develop/hit-test. Accessed on 2023-04-
01.

[48] Introducing Persistent Cloud Anchors from ARCore.
https://www.youtube.com/watch?v=b4mgaIuCozk&ab_channel=GoogleAR%26V
R. Accessed on 2023-04-12.

[49] ARCore, Cloud Anchors allow different users to share AR experiences.
https://developers.google.com/ar/develop/cloud-anchors. Accessed on
2023-03-17.

59

https://www.gps.gov/systems/gps/control/
https://www.gps.gov/systems/gps/control/map.png
https://www.gps.gov/systems/gps/performance/accuracy/
https://qph.cf2.quoracdn.net/main-qimg-3a562785e28606779d96b4b044a03744, https://qph.cf2.quoracdn.net/main-qimg-8761f3247584eede4024dc4b373b3158
https://qph.cf2.quoracdn.net/main-qimg-3a562785e28606779d96b4b044a03744, https://qph.cf2.quoracdn.net/main-qimg-8761f3247584eede4024dc4b373b3158
https://qph.cf2.quoracdn.net/main-qimg-3a562785e28606779d96b4b044a03744, https://qph.cf2.quoracdn.net/main-qimg-8761f3247584eede4024dc4b373b3158
https://developers.google.com/ar
https://developers.google.com/ar/develop/fundamentals
https://doi.org/10.1186/s41074-017-0027-2
http://dx.doi.org/10.11947/j.AGCS.2018.20170652
https://developers.google.com/ar/design/environment/definition
https://developers.google.com/ar/develop/lighting-estimation
https://developers.google.com/ar/develop/depth
https://developers.google.com/ar/develop/hit-test
https://www.youtube.com/watch?v=b4mgaIuCozk&ab_channel=GoogleAR%26VR
https://www.youtube.com/watch?v=b4mgaIuCozk&ab_channel=GoogleAR%26VR
https://developers.google.com/ar/develop/cloud-anchors

References .
[50] ARCore, Add dimension to images.

https://developers.google.com/ar/develop/augmented-images. Accessed
on 2023-04-01.

[51] ARCore Documentation for Geospatial API .
https://developers.google.com/ar/develop/geospatial. Accessed on 2023-
03-17.

[52] Geospatial Anchors.
https://developers.google.com/ar/develop/unity-arf/geospatial/
anchors. Accessed on 2023-04-16.

[53] VPS and the ARCore Geospatial API .
https://www.youtube.com/watch?v=pFn11hYZM2E&ab_channel=GoogleDevelo
pers. Accessed on 2023-03-17.

[54] Unity.
https://unity.com/. Accessed on 2023-04-17.

[55] Borromeo Nicolas Alejandro. Hands-On Unity 2021 Game Development. 2021.
[56] Hocking Joseph. Unity in Action, Third Edition. 2022.
[57] Oxford Learner’s Dictionaries - Augmented Reality.

https://www.oxfordlearnersdictionaries.com/definition/english/augme
nted-reality. Accessed on 2023-04-17.

[58] Practical augmented reality : a guide to the technologies, applications and human
factors for AR and VR.

[59] Ronald T. Azuma. A Survey of Augmented Reality.
http://www.cs.unc.edu/~azuma/ARpresence.pdf. Accessed on 2023-04-17.

[60] Augmented Reality In Healthcare.
https://medicalfuturist.com/augmented-reality-in-healthcare-will-
be-revolutionary/. Accessed on 2023-04-12.

[61] Dieter Schmalstieg, and Tobias Hollerer. Augmented Reality: Principles and Prac-
tice (Usability). 2016. ISBN 978-0321883575.

[62] A. Montero, T. Zarraonandia, P. Diaz, and et al. Designing and implementing
interactive and realistic augmented reality experiences. 2019.
https://doi.org/10.1007/s10209-017-0584-2. Accessed on 2023-04-17.

[63] ARCore, Realism.
https://developers.google.com/ar/design/content/realism. Accessed on
2023-04-13.

[64] Realism in Augmented Reality.
https://www.interdigital.com/download/592efefd01a81b7b0b0007ed. Ac-
cessed on 2023-04-13.

[65] Francesco Osti, Gian Maria Santi, and Gianni Caligiana. Real Time Shadow Map-
ping for Augmented Reality Photorealistic Rendering. Applied Sciences. 2019, 9
(11),

[66] Pocket Garden.
https://buck.co/work/google-gracie-pocket-garden. Accessed on 2023-04-
17.

[67] Geospatial Contest.
https://arcoregeospatialapi.devpost.com/project-gallery?page=1.
Accessed on 2023-04-17.

60

https://developers.google.com/ar/develop/augmented-images
https://developers.google.com/ar/develop/geospatial
https://developers.google.com/ar/develop/unity-arf/geospatial/anchors
https://developers.google.com/ar/develop/unity-arf/geospatial/anchors
https://www.youtube.com/watch?v=pFn11hYZM2E&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=pFn11hYZM2E&ab_channel=GoogleDevelopers
https://unity.com/
https://www.oxfordlearnersdictionaries.com/definition/english/augmented-reality
https://www.oxfordlearnersdictionaries.com/definition/english/augmented-reality
http://www.cs.unc.edu/~azuma/ARpresence.pdf
https://medicalfuturist.com/augmented-reality-in-healthcare-will-be-revolutionary/
https://medicalfuturist.com/augmented-reality-in-healthcare-will-be-revolutionary/
https://doi.org/10.1007/s10209-017-0584-2
https://developers.google.com/ar/design/content/realism
https://www.interdigital.com/download/592efefd01a81b7b0b0007ed
https://buck.co/work/google-gracie-pocket-garden
https://arcoregeospatialapi.devpost.com/project-gallery?page=1

. .
[68] Skinny Ape.

https://skinnyape.gorillaz.com/. Accessed on 2023-04-17.
[69] Skinny Ape video.

https://www.youtube.com/watch?v=iFaKhtlBU7A&ab_channel=Gorillaz.
Accessed on 2023-04-17.

[70] Google Live View.
https://support.google.com/maps/answer/9332056?hl=cs&co=GENIE.
Platform%3DAndroid. Accessed on 2023-04-17.

[71] Google Live View, Image.
https://www.google.com/url?sa=i&url=https%3A%2F%2Fvrmag.cz%2Flive-
view-google-maps-v-rozsirene-realite%2F&psig=AOvVaw1kCcxE6aYgWG7drn
JfdozY&ust=1684747873550000&source=images&cd=vfe&ved=0CBEQjRxqFwoTC
IDOoIWNhv8CFQAAAAAdAAAAABAE. Accessed on 2023-04-17.

[72] Geospatial Creator Introduction.
https://io.google/2023/program/b95fac83-6dfd-4138-928a-f2d60dde408
d/. Accessed on 2023-05-20.

[73] Geospatial Creator in Unity.
https://developers.google.com/codelabs/arcore-unity-geospatial-
creator?hl=zh-cn##2. Accessed on 2023-05-20.

[74] AuGeo Application.
https://play.google.com/store/apps/details?id=com.esri.augeo&hl=cs&
gl=US.

[75] AugView.
https://www.augview.net/. Accessed on 2023-04-17.

[76] Trimble. SiteVision.
https://sitevision.trimble.com/. Accessed on 2023-04-17.

[77] vGIS .
https://www.vgis.io/. Accessed on 2023-04-17.

[78] dBase. Data File Header Structure for the dBASE Version 7 Table File.
https://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm. Accessed on
2023-03-19.

[79] ARCore unity extensions.
https://github.com/google-ar/arcore-unity-extensions.git. Accessed on
2023-03-17.

[80] Federico Casares. Unity Plumber .
https://github.com/federicocasares/unity-plumber.

[81] Zobrazení užitá pro ČSR a ČR.
http://old.gis.zcu.cz/studium/mk2/multimedialni_texty/index_soubor
y/hlavni_soubory/cechy.html##obr.%2014.8.

[82] Geospatial Documentation for Geospatial Pose.
https://developers.google.com/ar/reference/unity-arf/struct/Google/
XR/ARCoreExtensions/GeospatialPose. Accessed on 2023-04-17.

[83] Číselník typů prvků technické mapy.
https://www.geoportalpraha.cz/assets/dokumenty/datove-sady/ciselnik
_technicka_mapa.pdf.

61

https://skinnyape.gorillaz.com/
https://www.youtube.com/watch?v=iFaKhtlBU7A&ab_channel=Gorillaz
https://support.google.com/maps/answer/9332056?hl=cs&co=GENIE.Platform%3DAndroid
https://support.google.com/maps/answer/9332056?hl=cs&co=GENIE.Platform%3DAndroid
https://www.google.com/url?sa=i&url=https%3A%2F%2Fvrmag.cz%2Flive-view-google-maps-v-rozsirene-realite%2F&psig=AOvVaw1kCcxE6aYgWG7drnJfdozY&ust=1684747873550000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCIDOoIWNhv8CFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fvrmag.cz%2Flive-view-google-maps-v-rozsirene-realite%2F&psig=AOvVaw1kCcxE6aYgWG7drnJfdozY&ust=1684747873550000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCIDOoIWNhv8CFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fvrmag.cz%2Flive-view-google-maps-v-rozsirene-realite%2F&psig=AOvVaw1kCcxE6aYgWG7drnJfdozY&ust=1684747873550000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCIDOoIWNhv8CFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fvrmag.cz%2Flive-view-google-maps-v-rozsirene-realite%2F&psig=AOvVaw1kCcxE6aYgWG7drnJfdozY&ust=1684747873550000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCIDOoIWNhv8CFQAAAAAdAAAAABAE
https://io.google/2023/program/b95fac83-6dfd-4138-928a-f2d60dde408d/
https://io.google/2023/program/b95fac83-6dfd-4138-928a-f2d60dde408d/
https://developers.google.com/codelabs/arcore-unity-geospatial-creator?hl=zh-cn##2
https://developers.google.com/codelabs/arcore-unity-geospatial-creator?hl=zh-cn##2
https://play.google.com/store/apps/details?id=com.esri.augeo&hl=cs&gl=US
https://play.google.com/store/apps/details?id=com.esri.augeo&hl=cs&gl=US
https://www.augview.net/
https://sitevision.trimble.com/
https://www.vgis.io/
https://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm
https://github.com/google-ar/arcore-unity-extensions.git
https://github.com/federicocasares/unity-plumber
http://old.gis.zcu.cz/studium/mk2/multimedialni_texty/index_soubory/hlavni_soubory/cechy.html##obr.%2014.8
http://old.gis.zcu.cz/studium/mk2/multimedialni_texty/index_soubory/hlavni_soubory/cechy.html##obr.%2014.8
https://developers.google.com/ar/reference/unity-arf/struct/Google/XR/ARCoreExtensions/GeospatialPose
https://developers.google.com/ar/reference/unity-arf/struct/Google/XR/ARCoreExtensions/GeospatialPose
https://www.geoportalpraha.cz/assets/dokumenty/datove-sady/ciselnik_technicka_mapa.pdf
https://www.geoportalpraha.cz/assets/dokumenty/datove-sady/ciselnik_technicka_mapa.pdf

References .
[84] Google Elevation API .

https://developers.google.com/maps/documentation/elevation/start.
[85] QGis.

https://qgis.org/en/site/.
[86] ARCore, supported devices.

https://developers.google.com/ar/devices##google_play.

62

https://developers.google.com/maps/documentation/elevation/start
https://qgis.org/en/site/
https://developers.google.com/ar/devices##google_play

Appendix A
Glossary

API . Application Programming Interface
AR . Augmented Reality
FPS . Frames Per Second
GCS . Geographic Coordinate System
GIS . Geographic Information System
GNSS . Global Navigation Satellite System
GPS . Global Positioning System
IMU . Inertial Measurement Unit
IPR . The Prague Institute of Planning and Development
QR . Quick Response
UI . User Interface
UTM . Universal Transverse Mercator
VPS . Visual Positioning System
vSLAM . Visual Simultaneous Localization and Mapping
WGS84 . World Geodetic System established in 1984
XR . Extended Reality

63

Appendix B
Custom binary file for quick data retrieval from
a grid

The file starts with a header that is 72 bytes long and consists of these values:

. double meterLatitude - this is an approximated value of how much latitude degrees
correspond to one meter.. double meterLongitude - this is an approximated value of how many longitude de-
grees correspond to one meter.. int zoneSizeInMeters - the first division of the whole area; this says how many meters
should one zone be.. int areaSizeInMeters - the second division of the whole area; this says how many
meters should one area be.. double fromLongitude - the minimum longitude of the whole area.. double toLongitude - the maximum longitude of the entire area.. double fromLatitude - the minimum latitude of the entire area.. double toLatitude - the maximum latitude of the entire area.. int zoneAmountLon - number of longitude-wise zones.. int zoneAmountLat - number of latitude-wise zones.. int areaAmountLon - number of longitude-wise areas.. int areaAmountLat - number of latitude-wise areas.

There are zoneAmountLon * zoneAmountLat elements following the header. Each
element has 5 bytes representing these values:

. bool somethingIsInZone - tells if there is any utility line going through this zone. int offsetZ - the offset for the information about area

To find the right element we can count the offset like this:

offset = (yourLonZoneIndex * zoneAmountLat + yourLatZoneIndex) * 5 + 72

where 5 is the size of one element and 72 is size of the header.
After all of the zone elements, there are blocks of areaAmountLon * areaAmountLat

for each zone that had somethingIsInZone set to true.
Once again there are 5 bytes long elements this time corresponding to the areas:

. bool somethingIsInArea - tells if there is any utility line going through this zone.. int offsetA - the offset for the information about the area.

To find the right area element we can count the offset like this:

offset=(yourLonAreaIndex * areaAmountLat + yourLatAreaIndex)*5 + offsetZ

where the 5 is the size of one element.
If somethingIsInArea was true, we can find the data about the cell at offsetA The

data have this form:

65

B Custom binary file for quick data retrieval from a grid .
. int length - number of ids that follows.. int id - an id of the utility line that passes through this area. (There is a length

amount of them).

In case we do not know what our zone and area indexes are, we can get them like
this:

yourLonZoneIndex = Math.Floor((YOURLONGITUDE - fromLongitude) /
meterLongitude * zoneSizeInMeters)

yourLatZoneIndex = Math.Floor((YOURLATITUDE - fromLatitude) /
meterLatitude * zoneSizeInMeters)

zoneFromLong = fromLongitude + (LongitudeIndex) *
(meterLongitude * zoneSizeInMeters)

zoneFromLat = fromLatitude + (LatitudeIndex) *
(meterLatitude * zoneSizeInMeters)

yourLonAreaIndex = Math.Floor((YOURLONGITUDE - zoneFromLong) /
meterLongitude * areaSizeInMeters)

yourLatAreaIndex = Math.Floor((YOURLATITUDE - zoneFromLat) /
meterLatitude * areSizeInMeters)

66

Appendix C
Manual

67

C Manual .

Let’s take a look at the menu first. When the menu button is clicked, the
following screen opens. You can access the settings and change the color of
the pipes or hide them.

Opens the settings
menu.

Opens a submenu
with types of the
pipes, where you can
hide them or change
their colors

Shows current color
and when clicked
allows to change the
color

Closes the menu

Shows whether
the pipe is
hidden or not

68

. .

Now to the settings menu, where you can adjust your app’s settings.

Sets the occlusion mode. There are three
modes:
Fastest – worse but quick results

Medium – alright results in alright time

Best – good result, but can take some time

Sets the radius of the
pipes

This sets the
distance from your
phone (altitude
wise) in which the
pipes are
generated. Try to
set it so that its
approximately the
distance of your
phone form the
ground.

The altitude is the most
inaccurate value and it often
changes. This can lead to
making the pipes fly away or
get way too close. So to
prevent that, there is this
setting. It keeps track of
your altitude and if it
changes by more then the
threshold, all of the pipes
are repositioned to keep
being spawn altitude offset
far away from you.
Generally, its better to keep
the number low, around 0.3.
However, that prevents you
from getting too close as
moving your phone closer to
the pipes would change your
altitude and thus refresh
them. So in case you want to
get to the pipes closer set
this value higher, but keep
in mind it might result in
strange pipe movements.

This resets all of
the colors to the
base setting.

This resets all the
switches and thus
make all pipes
show up again.

Sets the Light estimation mode:

Disabled – There is no estimation, the
lightning is not updated and stays on default
set values.

AmbientIntensity – This mode tracks the
brightness of the outer world and tries to
immate it in the virtual world so that it is
lighted in the same way.

Closes the settings
and save the values

69

C Manual .

Now let’s see what happens when you are done with your calibration.

When you finish the calibration, the app starts processing your current
position. It prepares the data about the pipes going around you. The amount of
time this takes depends on the number of pipes and your internet connection
speed. When the data are ready, the pipes will appear.

Keeps track of your position accuracy. As long as it stays
blue/green you are alright. Blue is better than green.

You’ll see this
button if your
device supports
occlusion culling.
And by pressing it
you change it on
and off.

Beware that when
the occlusion
culling is on, your
viewing distance
lowers from 20
meters to 8
meters as that its
current limit.

These are the pipes.
That’s why you are
using this app. If you
want to get more
details about the pipe
click on it.

70

. .

Let’s see what happens when you click on the pipe.
When you click on the pipe, the information box appears. It gives all the details
that were available in the database. On top of that, it tells you what the pipe’s
altitude is and how deep beneath the ground it is compared to you. You can
create as many information boxes as you like.

Button that closes all of
the information boxes
at once

Closeses the
information box Big information

box.

Click on it to get
its text right onto
your screen

Button that switches
between big and small
signs, where the small
one shows just depth
underground

71

C Manual .

You can always take a step back to read the sign when you are too close, but
what if the pipe is too far from you and the information box becomes
unreadable. In that case, CLICK on the sign. When you click on the sign, the
information appears on your screen and stays there until you click the
information box.

Information panel.

Click on it to close it.

Small information
box.

Click on it to get
its text right onto
your screen

72

. .

Finally, let’s discuss what happens when your position accuracy gets too low. A
warning message will appear when one of the three values gets from the green
zone to the yellow zone. The application will keep showing you the pipes it has
already loaded. However, it will not download more data or generate new
pipes until you improve your accuracy.

And that’s it. This should cover everything there is to this app. Good luck with
your pipe hunting!

The horizontal
accuracy is too
low

Warning message

No more pipes are
being generated

73

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Research
	Geospatial data
	Prague Institute of Planning and Development
	Formats

	Coordinate Reference Systems
	World Geodetic System 1984
	Universal Transverse Mercator
	Křovák's coordinate system

	Global Navigation Satellite System
	ARCore
	Motion tracking
	Environmental understanding
	Light Estimation
	Other capabilities

	Geospatial API
	Unity
	Augmented Reality
	Making virtual objects seem more realistic

	Related work
	Applications using the Geospatial API
	Applications using Geographic Information System data
	Summary

	Design
	Why underground utilities?
	Application Design
	UI design

	Implementation
	Parsing the input data
	Acceleration Structure
	Server side
	Setting up the project in Unity
	Communication with the server
	Utility line visualizaiton
	Geospatial API and accuracy
	Customization
	Utility line information
	Occlusion and lighting
	Other encountered problems

	Testing
	Application functions testing
	Visualization accuracy
	Device accuracy
	Coverage by Geospatial API VPS
	Internet data usage
	The speed of visualization

	User testing
	The first test
	The second test
	The third test
	The fourth test

	Summary

	Conclusion
	References
	Glossary
	Custom binary file for quick data retrieval from a grid
	Manual

