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Abstract
The aim of this thesis was to create an

automated tool, that serves as a platform
for data analysis from subjective image
quality testing in virtual reality. A com-
parison with various objective metrics is
implemented with the utilization of eye-
tracking data from subjective testing for
possible improvement of the effectiveness
of some objective metrics. The goal was
also the automation of the tool, so the
user does not have to do any complex
preparation. The tool as a whole is a
ready-to-use application to analyse and
project data.

An overview is also given of the current
state of subjective testing of image quality
and quality of experience in virtual reality
together with objective metrics compari-
son for omnidirectional images.

Keywords:
Virtual reality, Eye-Tracking,
360° image compression
Omnidirectional projection,
Subjective quality of experience

Supervisor: Ing. Karel Fliegel, Ph.D.
CTU FEE,
Technická 6,
16000 Prague 5

Abstrakt
Cílem této práce bylo vytvoření auto-

matizovaného nástroje, který slouží jako
platforma pro analýzu dat ze subjektiv-
ního testování kvality obrazu ve virtuální
realitě. Porovnání s objektivními metri-
kami je implementováno s využitím dat
očních pohybů ze subjektivního testování
pro možné vylepšení efektivity objektv-
ních metrik. Cílem také byla automati-
zace nástroje, aby uživatel nemusel dělat
žádné složité připravy. Nástroj jako ce-
lek je aplikace připravena k použití pro
analýzu a projekci dat.

Je podán také přehled o současném
stavu subjektivního testování kvality ob-
razu a kvality prožitku ve virtuální realitě
spolu s porovnáním současných metrik
pro objektivní testování pro všesměrovové
obrázky.

Klíčová slova:
Virtuální realita, Sledování očních pohybů,
Komprese 360° obrázků,
Všesměrová projekce,
Subjektivní kvalita prožitku

Překlad názvu: Hodnocení kvality
obrazu v systémech pro imerzivní
reprodukci obrazu
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Chapter 1
Introduction

Image quality assessment is a necessity for optimising the quality of digital
visual content in virtual reality (VR). Since making subjective tests for
determining image quality is not feasible on a large scale, various objective
metrics have been proposed such as PSNR, MSE or SSIM. All of these metrics
have their deficiencies and some can be improved. Such an improvement can
be the utilization of eye-tracking data to localize key areas of images on which
people tend to focus.

To this date, only a few testbeds have been created to interactively measure
and analyse the quality of experience (QoE) on a large scale in VR and none
of them utilize eye-tracking data for objective metrics analysis. Such systems
can then measure objective metrics’ efficiency and compare them to each
other. It is also beneficial when improving given metrics to quickly analyse
their improvements.

In this work, in chapter 2, a brief insight is given into omnidirectional
projections with their benefits and disadvantages. An overview of current
objective metrics is given in chapter 3 with their effectiveness comparison.
Then, in chapter 4.1 factors affecting users’ QoE are talked about. Chapter 4
gives an overview of QoE structure and possible approaches and recommen-
dations are given for subjective QoE testing along with existing testbeds and
applications for measuring subjective QoE and image quality.

Finally, in chapter 5 a pilot testbed for analysing image quality data is
introduced. It serves as a platform for analysing subjective image quality data
and comparing them to publicly available objective metrics. Those metrics
can be then altered using eye-tracking data captured during subjective testing
and possible improvements demonstrated.

1



Chapter 2
Omnidirectional video projections

Immersion achieved by virtual reality is created by the sense of a human
actually being in the world rather than looking at one as an observer. This is
primarily achieved due to the projection of the world, that is being presented
to us. Just like a regular monitor, virtual reality has a display by which the
user can look at the world. The main difference is, however, that the image
in the display is not static related to the user’s orientation. By rotating the
head, it is possible to see the whole world around and not be limited to just
a small section of it. This type of projection is called omnidirectional. An
illustration is shown in figure 2.1.

Figure 2.1: Showcase of omnidirectional projection (image taken from [27]).

Converting content or outright capturing one in this projection is a much
more difficult task compared to traditional flat images or videos. Since storing
an image as a sphere surface is not very practical, various methods have
been developed to overcome this issue. All these methods have one thing in
common – storing the omnidirectional space as a flat image. Some kind of
warping or uneven folding is then required to achieve such a thing.

The main goal is to create the best quality content with the lowest possible
amount of data. Other factors, for example, are the complexity of creating
the content, though this is largely a problem only for live-streamed content,
such as games etc.

There are two main categories for omnidirectional video projections –

2



..............................2.1. Viewport independent projection (VIP)

viewport-independent projection (VIP) and viewport-dependent projection
(VDP). Practical examples of such methods are in the next two sections.

2.1 Viewport independent projection (VIP)

The difference between VIP and VDP is the way they are being streamed
to the user. Using VIP, the whole world is being available at all times. This
reduces possible latency as no feedback is required of the user’s head rotation.
The downside is, however, a higher required bitrate, since the whole 360°
world is being transmitted rather than a limited section of it. Such a method
of only a limited section streaming is utilized by VDP.

2.1.1 Map-based projection

Generally, one of the simplest, map-based projections consists of 1 image that
is warped around the user, creating a 360° image. Equirectangular Projection
(ERP) is the most common one, used for example in 2D world maps. An
example is shown in figure 2.2. This method suffers greatly from oversampling
since the poles must be stretched to create a 2D image. Cylindrical Equal-
Area Projection (EAP) partially solves this problem by multiplying every
vertical layer by cos(θ), where θ is the latitude. This solves the oversampling
problem but also increases distortion [1].

Figure 2.2: Equirectangular projection (image adapted from [26]).

2.1.2 Patch-based projection

Patch-based projection is a more complex method. It solves the oversampling
and distortion problem from ERP and EAP by splitting the space into
several areas and stitching them together. This, however, creates unnatural
boundaries between every two areas that may be visible, thus lowering the
overall QoE. Generally, the more faces there are, the smoother edges there

3



.............................. 2.2. Viewport dependent projection (VDP)

will be and the oversampling rate will be lower. Choosing the right method
is, therefore, crucial to ensure a smooth picture and a feasible bitrate.

One of the most popular patch-based projections is a Cube Map Projection
(CMP) shown in figure 2.3 (right) [10], where the world around the user
is interpreted as a cube. When unfolded, 6 individual square images are
created. Many other possible methods use the same principle as CMP but
with an increased number of surfaces. An example of these methods may be
octahedron projection, icosahedron projection or dodecahedron projection
shown in figure 2.3 (left) [10].

Figure 2.3: (left) Rhombic dodecahedron map and (right) Cube-map (image
taken from [10]).

2.1.3 Tile-based projection

Another possibility is splitting the sphere into several horizontal tiles, where
those near the poles have a lower sampling rate. Stitching the images together
is not as big of a problem, since all the stitches are only in the horizontal
direction [1].

2.2 Viewport dependent projection (VDP)

Using VDP, only a small section of the world is being streamed to the user,
based on his current orientation. This greatly reduces the bitrate. However,
it also requires a two-way connection to get users’ head orientation. This
is not only more complicated to create but may also significantly increase
latency [1]. A possible VDP solution is, for example, a pyramid projection
shown in figure 2.4 proposed by Facebook [11].

4



.............................. 2.2. Viewport dependent projection (VDP)

Figure 2.4: The process of the pyramid projection (image taken from [11]).

5



Chapter 3
Metrics for omnidirectional QoE

QoE measurements are crucial to get an essential feedback. There are two
possible approaches of getting such feedback. The first option is subjective
testing on a large enough pool of people. This can result, if conducted
correctly, in a very accurate measurement – methodologies of conducting such
tests correctly are briefly explored in section 4.2. The main downside of such
testing is, however, the time required, which can increase dramatically, if
accurate results are needed.

For this reason, objective metrics can be used. An objective metric can be
any calculation based on input data – for example an image. These input
data, however, must be empirically measured and most importantly, do not
include human bias. This does not mean such a metric will be more accurate.
If a given calculation is not optimal, it will usually result in a completely
different result from subjective testing.

In this thesis, such objective metrics are complex computer-calculated
algorithms for image quality assessment. Their main benefit, compared to
subjective testing, is their speed.

3.1 Mean Opinion Score (MOS) and correlation
coefficients

Let’s first start with a subjective metric to be later able to compare objective
metrics to subjective scores, thus, analysing their performance.

The most common subjective metric is Mean Opinion Score (MOS). It can
be used for testing of any kind that includes humans. Its principle is very
simple, as scores of a given object – an image for example – are collected from
each person. Those scores are on a scale from 1 to 5, 1 being the worst, 5
being the best. All scores are then averaged creating a unified mean opinion
score [14].

To be able to compare such a metric with its objective counterpart, cor-
relation needs to be calculated. This can be done by using Pearson’s linear
correlation coefficient (PLCC) or Spearman’s rank order coefficient (SROC).
They both measure how given two functions deviate from each other in a
parametric graph. Both these metrics fit the resulting points by a curve and

6



................................... 3.2. Mean Square Error (MSE)

measure the average distance of the point from the curve. PLCC utilizes a
straight line as a curve, thus, being linear, whereas SROC limits itself only
by using a monotonic function as a fit. An illustration of PLCC is shown in
figure 3.1. SROC is shown in figure 3.2.

Figure 3.1: Examples of PLCC fitting and possible resulting values.

Figure 3.2: Examples of SROC fitting and possible resulting values.

3.2 Mean Square Error (MSE)

As a first objective metric, Mean square error (MSE), was chosen. since it
is a conventional metric, that has been used for many centuries for various
applications.

It measures the difference between, for example, two signals or images. Its
principle is fairly simple. It first calculates the value difference between two
pixels. This difference is then squared and values across the whole image are
averaged [25]. The calculation is shown in equation 3.1.

MSE =
∑

(yi − ŷi)2

n
(3.1)

3.3 Peak signal-to-noise ratio (PSNR)

One of the most common metrics after MSE is Signal-to-Noise ratio (SNR).
It is derived from MSE as it is only a decibel version of it.

However, for conventional 2D pictures or videos, Peak Signal-to-Noise
Ratio (PSNR) is usually the more common version. Its computation is, again,
very simple as it is only SNR referenced to a peak value in an image. The
computation of PSNR is shown in equation 3.2.

PSNR = 10 × log10

(
MAX2

I

MSE

)
(3.2)
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................................. 3.4. Gradient similarity index (GSI)

In practice, it indicates how much noise there is in a picture compared
to its maximum possible quality. However, it was concluded, that it has a
fairly low relation to what a human actually perceives as a video quality [12]
and has its limitation even in a 2D picture. One of its main drawbacks is
the lack of assessment of the actual footage content, which has a significant
impact on human perception of QoE. Some improvements specifically for
omnidirectional projection have been created, like Spherical PSNR (S-PSNR)
but these do not perform much better. Calculations were made [7] of the
PLCC and SRCC scores of PSNR and S-PSNR shown in table 3.1. All tests
were performed in head-mounted displays using the SUN 360 Database1 [28]
and images created by [7].

Corr PSNR S-PSNR
PLCC 0.52 0.62
SRCC 0.58 0.67

Table 3.1: Performance of S-PSNR and PSNR in terms of PLCC and SRCC [7].

3.4 Gradient similarity index (GSI)

Gradient similarity index (GSI) was proposed [17] as a metric based on the
principle that humans are more sensitive to edge regions. It focuses on
capturing the high-frequency information and edge structures present in the
images. It is particularly useful for evaluating image quality in scenarios
where the distortion mainly affects the edges or gradient characteristics of the
image, such as compression artefacts or image denoising. It was measured that
GSI reaches a PLCC score of 0.90 and an SRCC score of 0.89 [4]. All tests
were performed in an omnidirectional environment on the IQA database2.

3.5 Visual saliency-based index VSI

Visual saliency-based index (VSI) was proposed [15] as a metric based on an
assumption that an image’s visual saliency map has a close relationship with
its perceptual quality. It explores the visual saliency map in two stages. At
the stage of local quality map computation, the VS map is taken as an image
feature, while at the quality score pooling stage it is used as a weighting
function to characterize the importance of a local image region [15]. It reaches
a PLCC score of 0.91 and an SRCC score of 0.90 [4]. All tests were performed
in an omnidirectional environment on the IQA database.

1https://vision.cs.princeton.edu/projects/2012/SUN360/data/
2http://database.mmsp-kn.de/iqa-experts-300.html
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................................ 3.6. Structural similarity index (SSIM)

3.6 Structural similarity index (SSIM)

Structural similarity index (SSIM) [13] is a metric that takes into account
human visual perception. It measures both local and global similarities of an
image to its reference image.

SSIM calculations can be split into three components. The first is lumi-
nescence which is the brightness of a given pixel. The second is the contrast
which is the brightness difference between two pixels. The third component
is structural information. This component looks for various patterns along
the image with regard to its reference.

All three components generate a map with values for each pixel between
0-1. The final value is then calculated as a mean along all those pixels and
elements. It reaches a PLCC score of 0.51 and an SRCC score of 0.35 [4].
Though being fairly low, usually, it performs better. All tests were performed
in an omnidirectional environment on the IQA database3.

3.7 Multiscale SSIM (MS-SSIM)

Multiscale structural similarity index (MS-SSIM) is an advanced version of
SSIM performed on various scales of the given image with its downsampled
versions [29]. It can usually perform slightly better than regular SSIM with a
PLCC score of 0.68 and an SRCC score of 0.67 [4]. All tests were performed
in an omnidirectional environment on the IQA database.

3.8 Feature similarity index FSIM

Feature similarity index (FSIM) was proposed [16] as a feature-based metric.
It is based on the assumption that humans perceive images mainly based on
their two salient low-level features – phase congruency and gradient magnitude,
which represent their complementary aspects of the image visual quality. It
reaches a PLCC score of 0.92 and an SRCC score of 0.91 [4]. All tests were
performed in an omnidirectional environment on the IQA database.

3http://database.mmsp-kn.de/iqa-experts-300.html
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.......................................... 3.9. Conclusion

3.9 Conclusion

Table 3.2 [7, 4] summarizes all metrics performance. The best-performing
metric is FSIM closely followed by VSI and GSI. On the other hand, traditional
PSNR performs by far the worst.

Corr FSIM VSI GSI MS-SSIM V-PSNR SSIM PSNR
PLCC 0.9171 0.9060 0.8992 0.68 0.6617 0.51 0.5088
SRCC 0.9110 0.9020 0.8901 0.67 0.6051 0.35 0.4984

Table 3.2: Performance of FSIM, VSI, GSI, MS-SSIM, SSIM, V-PSNR and
PSNR in terms of PLCC and SRCC [7, 4].

10



Chapter 4
QoE measurements

In this broad chapter, section 4.1 discusses the structure of QoE and quantifies
features and factors contributing to overall QoE. Then, section 4.2 gives
recommendations of testing methodology for subjective testing in VR and
finally section 4.3 gives a brief overview of current testbeds and applications
used for such testing.

4.1 QoE features and factors

The overall QoE can be structuralized into several specific features [5], such
as image quality, fragmentation, immersion, cybersickness and attractiveness.
Most of these features cannot be objectively measured. However, they can
be further subdivided into factors which are measurable qualities of the
videos, such as compression rate, resolution, lag, etc. Figure 4.1 shows the
composition of features and factors on the overall QoE.

Figure 4.1: The compositions of QoE and their definitions.

11



.................................... 4.1. QoE features and factors

4.1.1 QoE factors

In this section, all QoE factors are described as basic stones upon which QoE
can be later created.

Compression rate

When working with media, minimizing its size is desired, since it is easier to
work with it and share it. The most obvious solution is compression, which
can dramatically reduce size while maintaining good or even the same quality.
Figure 4.2 [3] shows different quantization parameters of H.264/AVC codec
with various resolutions for three different content types with low, medium
and fast motion complexity, in that order. Videos used in the study were
created by [3].

Increasing the compression parameters up to a certain level does not have
a large impact on the video quality. For UHD and QHD those parameters
are up to 32 and for FHD up to 28 [3].

Complex and slow-paced videos are generally more sensitive to increasing
compression [6], as subjects have more time to "zoom in" on the video and
analyze all the imperfections.

Figure 4.2: Perceptual video quality vs. encoding parameters (taken from [3]).

Resolution and bitrate

Resolution and bitrate are definitely two of the most important factors
contributing to QoE and overall video complexity. Figure 4.3 [3] shows the
acceptability rates vs. bitrates for three different content types with low,
medium and fast motion complexity, in that order. Videos used in the study
were created by [3].

It can be seen that decreasing the bitrate to about 1/4 of its maximum
potential can do little to no harm to its perceived quality. However, based
on fixed bitrate, quality can vary widely depending on content type. If the
projected video has dynamic content, its acceptability quickly decreases. In
terms of resolution, the most significant difference in quality is between HD
and FHD, while FHD is still not providing acceptable results. QHD and UHD
have fairly similar results so QHD could be used as an optimal solution since
it has a lower bitrate and a high quality across a wide range of bitrates [3].
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Figure 4.3: Acceptability rates vs. bitrates (taken from [3]).

Stalling events

A very important and often overlooked factor is stalling events. They can
have a large impact on the overall quality and cause severe cybersickness. It
was investigated [9], that the effects of frame freezing on the overall quality
can be acceptable for a 100-300 ms lag. Observations were made [2] of how
longer stalling events have an impact on the overall quality. The results are
shown in figure 4.4 [2]. Videos used in the study were taken from Sintel1 and
ZDF documentary “Vulkane”2

Figure 4.4: Scores of the four IPQ questions as influenced by stalling for the
’VR move’ condition (5=strong sense of presence/immersion, 1=weak sense of
presence/immersion) (graph adapted from [2]).

4.1.2 QoE features

All of the above-mentioned measurable factors contribute to several features,
such as Image Quality (IQ), FraGmentation (FG), IMmersion (IM), Cyber-
Sickness (CS) and ATtractiveness (AT) [5]. All these features can not be
objectively measured. Therefore, when creating a new product, it is a good
practice to focus on these features, since they are the "source" of QoE, not
the factors themselves.

1https://durian.blender.org/
2https://www.zdf.de/dokumentation/terra-x/ 3d-360-grad-immersiver-film-vulkane-

100.html
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It was shown that cybersickness is influenced more by content type than
bitrate [5] since content with a high optical flow can cause much more severe
cybersickness than low-quality content. That makes sense since CS is created
when there is a difference between the user’s head movement and movement
in the scene [3].

4.2 QoE modeling methods and testing conditions

When conducting a test, setting up the right conditions and designing content
is just as important as the metrics used for analyzing results. In this section,
recommendations about various modeling methods and testing conditions will
be given. However, since subjective QoE measurements are a wide topic to
discuss, all recommendations in this section, only apply to QoE measurements
in virtual reality.

4.2.1 QoE modeling methods

The first thing to do when creating a test is to focus on what exactly we
want to measure. If we are trying to measure the impact of quantization
on the overall quality, changing other parameters during the test such as
resolution or lag is counter-productive, as it will only bring bias to the MOS
score according to ITU-T P.919 [8]. If testing quantization while changing
the resolution is required, various resolutions should be separated.

The presented content should have a variety of spatial and temporal
complexity and cover a wide range of stimuli so that the results could be used
for a variety of applications [8]. The original video content should be obtained
in the highest possible quality and only aggravated. Never should it be
upscaled, for example. The content should be presented in a pseudo-random
order [8].

Before the actual testing, all subjects should be presented with the best
and worst quality image or video available so that they can experience the
rating protocol and do not have different expectations according to [7]. A
short period of training should also be included so that everyone becomes
familiar with the methodology [8].

It should be noted [2] that creating a complex questionnaire with detailed
sections can lead to subjects misunderstanding them or becoming confused.
It can compromise the whole test as everyone will score differently. The
questionnaire should be as simple and short as possible while providing all
the necessary data. A detailed explanation of the testing must be provided
to the subjects.
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4.2.2 QoE testing conditions

Every user has a different notion of the outside world, therefore basic infor-
mation about them is needed, such as age, gender and prior VR experience.
VR experience is probably the most important one [2], as people might have
different expectations. First-time users, for example, might be immersed in
the VR world and not pay attention to such details or have a higher chance of
having cybersickness. Basic screening for visual acuity should be made [8]. At
least 28 subjects should participate in the test to obtain truly representative
data [8].

All tests should be carried out in a quiet and calm environment. If the test
is made for a static scene – the subject can not move in the world, only look
around – all subjects should be seated on a swivel chair, so they are able to
turn around, but not move in the space to prevent cybersickness [8].

The optimal duration for a single stimulus, e.g. video or picture, should be
about 20 seconds [7]. 10 seconds is too short for the subject to orient himself
in the world and 40 seconds is too long and fatigue can be encountered. Table
4.1 [7] shows the MOS standard deviation σ for 10, 20 and 40 seconds viewing
sequences. During a single session, each subject’s participation should be
limited to 1.5-hour rating stimuli and no more than 25 minutes continuously
[8]. More than 25 minutes can cause dizziness and cybersickness [7].

Duration VS#1 VS#2 VS#3 VS#4 VS#4 Avg.
10s 9.4 6.5 14.7 15.5 12.5 11.7
20s 6.5 6.1 5.7 7.4 6.4 6.4
40s 6.3 6.6 5.6 9.3 5.5 6.7

Table 4.1: Standard deviation σ of MOS of repeated image samples over five
random viewing sequences (VS) (table adapted from[7]).

4.3 Existing testbeds for measuring subjective QoE
in VR

Several successful testbeds for subjective QoE in a VR environment have
already been created.

One of them is VRate3 [18]. VRate is an open-source asset for Unity3D that
allows the integration of various questionnaires, quality ratings and experience
measurements in VR. It provides a VR environment for subjective self-assessed
experience measures. It consists of two modules. The first module is for the
user, which provides an environment for playing omnidirectional video and an
interface to enable the ratings. The second module is for the operator, which
enables him to control the whole process. The modules have been successfully
tested in a QoE study [21] with 27 users and a UX study with 48 users. In

3http://vrate.tech-experience.at/
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the future, the authors want to implement various objective metrics and head
and eye-tracking for better data analysis.

Another interesting tool is Testbed for subjective evaluation of omnidirec-
tional visual content4 [19]. The application allows viewing omnidirectional
images and video with various projections and provides researchers with a
tool to perform subjective QoE testing in VR. The application is open-source
and enables the implementation of testers’ own projections and parameters.
The platform also tracks head direction and time spent on various stimuli.

The last testbed mentioned in this work is the Framework to evaluate
omnidirectional video coding schemes5 [20]. It is a platform for the evaluation
of the coding efficiency of various omnidirectional content. It also enables
head motion tracking.

4https://github.com/mmspg/testbed360-android
5https://github.com/mattcyu1/omnieval
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Chapter 5
Tools for image quality data analysis

This chapter focuses on the practical part of my thesis. I am creating a
pilot application for data analysis of subjective image quality assessment in
virtual reality. Section 5.1 of this chapter briefly describes the process of
gathering data for my application and their structure. Section 5.2 describes
the application’s structure and explains all its components. Section 5.3
explores the process of analyzing subjective scores. Section 5.4 goes through
the eye-tracking data analysis, with a subsequent section 5.5 explaining in
greater detail the implementation of those data for objective assessment of
image quality. Section 5.6 gives an overview and serves as a manual for
potential users explaining all the graphical user interface (GUI) components
and input parameters with their impact on the final scores. Finally, section
5.7 shows sample outputs of the application and discusses them.

5.1 Data gathering for evaluation

Before creating an automated application for data evaluation, the data
themselves need to be gathered. This was done using an application currently
under development by a master student at the Department of Radioelectronics,
FEE CTU in Prague1. The application can also perform eye-tracking which
can be later examined. The currently used headset is HTC Vive Pro Eye
with hand controllers and base stations for tracking user movement.

The usage of the application by the user is very simple. There are currently
116 different images that are subsequently projected in VR around the user.
For every scene, there is a 10-second period where they can examine the scene.
However, if they quickly decide that the scene is very low quality, they can
close both eyes for 1 second and skip the current scene. Between projecting
every scene, the user must give an evaluation of the scene quality. They can
do this by using the MOS scale. There are 5 cubes projected in front of them.
On the left, there is a red cube representing the worst score – 1, and on the
right, there is a green cube representing the best score – 5. Users can choose
any of those ratings by simply touching the cube using a controller they have
been given.

1Bc. Jakub Špaňár
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Before evaluating all of the scenes, users need to fill in a simple questionnaire
asking for their name, age, past VR usage experience, dioptries rating of
their spectacles, if they are using any, and whether they have participated
in any kind of subjective image quality testing in the past. Before and after
all the testing they also need to fill in a simulator sickness questionnaire
[24]. It contains several health conditions like their current level of nausea,
vertigo, headache and so on. Before the testing, a brief explanation of the
application’s features was given to all users. The process is shown in figure
5.1.

Figure 5.1: Flow of subjective testing.

There are 5 different scenes used for the testing – 02_Hokkaido, Biscayne,
Flowers, Telescope and Trains. They have been provided by the OMNIQAD
database2 created at Brno University of Technology, and FEE CTU in Prague
[26]. The quality of those 5 scenes is then gradually lowered by 4 compressions
– AVIF, HEIC, JPG and JXL. The number of each quantisation parameter
(QP) varies for each compression. In total, there are 116 unique images that
are projected in front of the subjects.

Output data provided by the testing platform are mostly in the form of .txt
files. The first and probably most important file is the one with the actual
subjective scores everyone has given. It contains the name of the scene, (QP)
and compression in one word – for example Biscayne60AVIF. This is followed
by the actual subjective score of the scene. An example of an output file
with subjective scores is in figure 5.2. Note that the file is not complete as it
contains 116 rows.

A second .txt output file contains eye-tracking data. These contain cartesian
coordinates – x, y and z values – together with time, which is measured every
100 ms. Relation between coordinates and the projected scene is shown in
figure 5.3.

All 4 values are separated by a semicolon and space. Those data are
grouped by every scene, the name of which is written above those data. A
randomly chosen txt eye-tracking file is shown in figure 5.4. Note that the
file is not complete.

2https://doi.org/10.5281/zenodo.7607071
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Figure 5.2: An example of an output file containing subjective scores.

Figure 5.4: An example of an output file containing eye-tracking data.
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Figure 5.3: Illustration of the scene and coordinates realtion.

5.2 Basic application structure

The application’s basic functionality needs to be divided into three main
parts. There needs to be a separate block for processing received data and for
data projection, since a real-time demonstration is not feasible due to time-
consuming computations. There will also be an intermediate step between
those two blocks, as all processed data will be first stored before projecting.
The general scheme is shown in figure 5.5.

Figure 5.5: General structure of application design.

A simple GUI described in 5.6 needs to be created not only for data
projection but also for processing data control. It needs to be specified what
files will be loaded and input parameters need to be added. Since the whole
application is coded in Matlab, it is worthwhile creating the GUI in Matlab’s
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App Designer3, which is an easy-to-use environment for GUI creation.
The GUI itself has three pages. The first page is for loading and analysing

the data. The second page shows the processed data and the third page
shows sample images from testing overlaid with eye-tracking data.

5.3 MOS data analysis

The main back-end function is called main() and is called whenever data need
to be analysed by the load page of the GUI. When called, there are several
input arguments defining the load content and parameters for objective image
quality metrics. After receiving the load content that consists of several scenes
and compressions, multiple tables are created with MOS scores sorted using
scenes by the sceneSort() function. When tables are created, a graphSave()
function is called multiple times with a single scene for every call as an input
parameter. GraphSave() then calls all the required functions that calculate
objective metrics, and stores all those data in a new struct variable that is then
saved as a .mat file into a separate folder. Those data can be subsequently
loaded and projected in the GUI. The general scheme is shown in figure 5.6.

Figure 5.6: General structure of application communication.

3https://ch.mathworks.com/products/matlab/app-designer.html
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Several functions handle .txt file loading, as multiple formats were used
to store data. A function called txtLoad() loads subjective scores and the
second function called eyeLoad() loads eye-tracking data. Both these functions
output the loaded data into a txtSort() function which formats the given data.
It uses textFormat() to split scene names, since they are formatted as one
string, shown in the previous figure 5.2.

Each subject’s score is then checked using the outliers() function to deter-
mine whether they are not too different from other subjects’ score. In this
function, every score for a given scene is checked across all subjects and if the
given score, according to, by default, the three-sigma rule, is outside more
than three standard deviations from the other scores, the subject is logged.
Such computation is shown in equation 5.1 and 5.2. If those equations are
true than the subject is logged. The coefficient three is set by default but the
user can input his own number.

score < mean_score(MOS) − 3 × standard_deviation(MOS) (5.1)

score > mean_score(MOS) + 3 × standard_deviation(MOS) (5.2)

In the end, if any of the subjects have more than, by default, 10% of all
their scores outside the three standard deviations interval, the given subject
is removed from any other analysis. Such computation is shown in equation
5.3. If the equation is true, given subject is removed from any other analysis.
The coefficient 10 is set by default but can be altered by the user.

number_of_loggs >
numb_of_subjects

10 (5.3)

After checking for consistency, all subjects’ MOS data are averaged for
each scene using the avgData() function. Output from this function is then
finally sent to sceneSort() and then to main().

When loading sorted MOS to the main() function using the sceneSort(),
tables with all the used scenes and compression are required for addressing
and inputting correct data along the whole saving process. These tables are
created using a sceneTable() function, which gets data from outliers(), since
those do not need averaging. A diagram of the whole system is shown in
figure 5.7.
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Figure 5.7: General process of analysing data.

5.4 Analyzing eye-tracking data

When loading eye-tracking data, coordinates conversion needs to be done.
This is all done using the eyeLoad() function which loads all eye-tracking .txt
files, sorts them and then converts them.

Loaded data are in 3D cartesian coordinates, since the environment they
were captured in utilized them. However, this is not feasible for further use,
as mapping on 2D images is required. Conversion to spherical coordinates is
desirable where the horizontal angle is represented by θ, the vertical angle is
represented by ϕ and the distance from the origin is represented by r. Since
ERP projection has been used to warp 2D images around the user, all points
are on a surface of a sphere and they have the same r. After conversion,
only θ and ϕ are used, representing x and y coordinates respectively. The
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conversion is shown in figure 5.8.

Figure 5.8: Illustration of conversion from cartesian to spherical coordinates.

In Matlab, a specialized function exists for conversion between cartesian and
spherical coordinates. The function is cart2sph() and has output parameters
θ, ranging from -π to +π, ϕ, ranging from -π/2 to +π/2, and r. Conversion
equation for θ is 5.5, for π is 5.6 and for r is 5.4.

r =
√

x2 + y2 + z2 (5.4)

θ = tan
(

y

x

)
(5.5)

φ = tan
(√

x2 + y2

z

)
(5.6)

After conversion, both θ and ϕ have been additionally normalised to the
range of 0-1 for easier future implementation. Demonstration of the resulting
coordinates is shown in figure 5.9.

Figure 5.9: Resulting coordinates with reference to a sample image.
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5.5 Objective metrics calculation

With images provided from subjective testing, various objective metrics like
MSE 3.2, PSNR 3.3, SSIM 3.6, MS-SSIM 3.7 or FSIM 3.8 can be calculated
and then compared with MOS. In the application, all those metrics are
implemented at this stage, with possible more metrics to be added in the
future.

5.5.1 Metrics used and their Matlab implementation

Matlab’s own library provides a range of image quality metrics4, which makes
them fairly easy to use in my application.

Output parameters of these functions can be generally split into two types
in Matlab. The first type is an output of just the estimated quality as a single
value. The second type is the quality value and a map of quality values for
every pixel of the image – similarity map. The second option will become
useful when utilizing eye-tracking data in the next chapter. Out of all the
above-mentioned metrics, in Matlab PSNR, MSE and FSIM output only a
single estimated quality value and SSIM and MS-SSIM output quality value
and a similarity map.

FSIM is the only metric used that has no Matlab implementation. However,
Matlab implementation can be found on GitHub [22]. The code was imported
into my project as the FSIM() function.

Calculation of objective metrics is done in graphSave() function by calling
metricsSort(). Input parameters of this function are a load table of all the
scenes to be evaluated, a metrics table, which defines what metrics are to be
calculated, and a few other parameters used to calculate the similarity map.

Inside the metricsSort() function, metrics without an estimated similarity
map are calculated directly by calling the appropriate function. For PSNR
the function being psnr() and for MSE immse(). A diagram of the functions
is shown in figure 5.10.

5.5.2 Eye-tracking utilization for SSIM

Apart from the overall similarity value, SSIM and MS-SSIM metrics create a
similarity map defining the estimated similarity value between every pixel of
the given image and its reference. Before calculating the overall similarity
value by averaging all the pixels, the map can be weighted to make some
areas more prominent than others. This can be particularly useful in scenes
where a large part of the image is a blue sky for example. When compressing,
these areas’ quality will mostly look the same or at least will not deteriorate
nearly as fast as those with complex content. In the end, after averaging all
the values, the score will likely be higher than the subjective MOS score. The
reason for this, apart from the core metric’s efficiency, is human perception.
Humans will mostly look at those places where they can determine image

4Image Processing Toolbox is required
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Figure 5.10: A diagram of a structure of functions processing image quality
metrics.

quality the best. Those places are areas with complex content that will suffer
substantially more from compression, compared to those depicting blue sky.
An illustration is in figure 5.11. Note the difference between the house and
the sky.

In order to alleviate this deficiency, eye-tracking data can be used to create
a weight map of a given image. Function weightMap() creates this map, based
on several input factors. The first input parameter is the eye-tracking data,
which are being collected by the averagedScores() function. Since we want
eye-tracking data from all subjects, all the points are added together into
one big table that usually consists of around 500 points for a given testing
methodology. The second parameter is given image resolution. By default,
a weight map will be created, with a resolution matching that of the image
it is to be placed over. However, since most images are at 8K resolution,
calculations might take too long, so it is possible to scale the weight map
using input parameter scale_factor. It ranges from 1 being no change, to
16, being 1/16 of the original image width and height. This parameter also
scales the similarity map to match the weight map.

When creating a weight map, all of the eye-tracking data points are mapped
to the corresponding pixels on the map. In order to do this, they need to
be multiplied by the image width and height resolution. This can be done
since all the values of the eye-tracking data are normalised to the range of
0-1. This, however would create only around 500 points on a huge map of
approximately 32 000 000 pixels. Some blur is necessary to spread the points
over a larger area and smooth the sharp edges these single points would make.
A demonstration of such a blur is in figure 5.12.

Gaussian blur is the most fitting choice for this purpose, since its simple
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Figure 5.11: The difference between uncompressed and compressed images
(image taken from [26]).

use in Matlab and the possibility to adjust the amount of blur. Matlab has a
specific function for this called imgaussfilt(), with input parameters being the
image itself and sigma being the standard deviation with which it can adjust
the amount of blur.

Setting the right sigma is crucial, since it reflects the human visual system’s
characteristics. When focusing on a single point, the human eye can not see
sharply over its whole field of view (FOV) but only over a small area. A
human can see sharply only about 2°-8° of the FOV depending on what is he
looking at [23]. A different value would be given for reading a book and for
looking at a landscape in the distance. An illustration of the human FOV is
in figure 5.13.

It would be desirable for the user to input a FOV value when loading data,
in order to be able to experiment. Such values need to be then recalculated
to sigma values. In fact, in the case of spherical projection two sigma values
need to be calculated – one for horizontal blur and the second for vertical
blur. This is due to the nature of spherical projection where horizontal
coordinate values are 0°-360° but vertical are only 0°-180°. In terms of
equirectangular projection, which is used, different numbers of pixels will
represent 5° horizontally and vertically. Calculation of horizontal sigma is
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Figure 5.12: Sample eye-tracking data and desired heatmap (image taken from
[26]).

shown in equation 5.7 and for vertical sigma in equation 5.8. The reason they
are divided by four comes from the nature of gaussian distribution and its
standard deviation. If a single value should be blured only inside the desired
FOV, the interval needs to be shorten otherwise about 32% of the blur would
be outside of it. An illustration is shown in figure 5.14. The tighter scope is
without division, the wider scope is with division by 4.

σhor = FOV × (reshor/360)
4 (5.7)

σver = FOV × (resver/180)
4 (5.8)
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Figure 5.13: Human eye FOV demonstration.

Figure 5.14: Illustration of FOV in relation to standard deviaton.

These sigma values are then input in the Gaussian filter imgaussfilt() as
a vector, resulting in a smoother weight map that corresponds with sharp
human FOV.

The created weight map is then sent to the ssim_compare() function. There,
the calculations of the SSIM and MS-SSIM values and maps are done using
the ssim() and multissim() functions, where multissim stands for MS-SSIM
metric.

The resulting maps of the metrics consist of three parts – the luminance
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term, the contract term and the structural term [13]. Each part is then
multiplied by the appropriate weight map value, using matrix multiplication.
After all three multiplications are done, all values are averaged to a single
value representing the final SSIM or MS-SSIM.

5.6 Application usability

This chapter describes components of all three pages of the GUI with descrip-
tions and recommendations of possible input settings.

All data displayed in the following figures are measured on the OMNIQAD
database5.

5.6.1 Load page

This page serves for creating data analysis. Users can choose from all the
scenes that are available in the application’s directory and calculate objective
metrics on them. The load page of GUI is shown in figure 5.15.

Figure 5.15: Default load page of GUI.

At the centre of the page, there is a list of possible load options. They are
sorted first by their compression and then by the scene. All items on the list
are dynamically loaded when starting the application. Multiple scenes can be
loaded simultaneously, which also decreases the time needed for calculations
since MOS is calculated first and used in all load scenes.

In the bottom left, there are two fields for sorting subjects in the outliers()
function. ’Sigma’ alters the standard deviation distance and ’outlier coef’
alters the percentage from which subjects will be removed.

5https://doi.org/10.5281/zenodo.7607071
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To the right, there are several buttons that load objective metrics. Eye-
SSIM and Eye-MS-SSIM mean the metric will utilize a weight map for metric
calculations. With this option, an editable field with FOV is added for the
possibility to adjust the weight map. Values between 1-8 degrees create a
reasonable weight map given human eye sharp FOV. Increasing this value
can, however, increases the time it takes to generate such a map. For this
reason, a scale factor slide is added to reduce the weight map resolution which
otherwise matches the resolution of the image it is supposed to weigh. This
scale factor will divide both dimensions of the image so the resolution then
decreases quadratically.

Finally, on the bottom right, there is a load button to load all the selected
scenes with an indicator that shows if there are any calculations currently
undergoing. Green means no calculations are being done so the user can load
scenes and red means calculations are undergoing.

5.6.2 Graphs page

This second page, shown in figure 5.16, serves for presenting analysed data.
Users can choose from the list of scenes on the left. It is possible to show
multiple scenes simultaneously so various scenes can be compared.

Figure 5.16: Default graphs page of GUI.

In the centre, two graphs are located. The top one shows the dependence
of MOS and other metrics on bits per pixel (BPP). The bottom one shows
the correlation values between MOS and currently chosen objective metrics.

In the data statistics panel, the number of subjects that generated those
graphs is shown with an average confidence interval of all MOS points currently
shown.

Beneath, there is the plot options panel where users can choose metrics to
show. This will affect both the top and bottom graph. A few other options
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are added such as ’Confidence interval’ options, which shows the confidence
interval along every MOS point shown in the graph. Curve fitting the data is
also possible with the ’Curve fit’ button and toggling between scatter and
plot is possible. If needed, the user can turn off the legends so they do not
take up too much space. Finally, a ’Save’ button is added for the user to be
able to save the last entered data to a .CSV file.

On the right, two panels are located. The top one shows all data currently
projected in a graph and the bottom one shows correlation values between
MOS and all available metrics. Spearman’s rank correlation coefficient and
Pearson correlation coefficient are calculated.

5.6.3 Eye-tracking maps page

The last page of the GUI, shown in figure 5.17, is just a simple showcase
of all eye-tracking data being done during the testing. Users can choose
among all available scenes dynamically since everything is calculated when
the application launches.

The items in the list contain three parts, the first being the name of the
scene, the second being compression used and the third one being quality
level measure in BPP.

Figure 5.17: Default eye-tracking maps page of GUI.

5.7 Data demonstration

In this section, a very brief demonstration of outputs is shown. Since only
12 subjects participated in the testing, no valid conclusions can be made.
However, looking at the graphs, it is possible to see trends in the data.

In figure 5.18 a sample data output is shown on the AVIF-Biscayne scene
for 2° FOV and scale factor 1. In the upper graph MOS, SSIM and Eye-SSIM
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metrics are displayed based on BPP. A similar trendline is clearly visible. At
the bottom, there is a parametric graph showing the dependency of SSIM
and Eye-SSIM on MOS. The scatter is quite consistent, indicating a fairly
good correlation. This is confirmed by the correlation values of PLCC and
SRCC 0.9125 and 0.8333 for SSIM and 0.9208 and 0.7857 for Eye-SSIM.

It can be seen that, by utilizing eye-tracking data, PLCC for SSIM grew
from 0.9125 to 0.9208. However, SRCC dropped from 0.8333 to 0.7857. This
kind of behaviour appears for all metrics showing somewhat minimal effect
of the weighting.

Also, with the given amount of subjects, results are statistically unreliable.
Further testing needs to be done to prove the platform useful for real-world
applications. Tuning the input parameters and algorithm for metrics weighting
is also required to yield better correlation results.

Figure 5.18: A sample showcase of displayed data – AVIF-Flowers, MOS, SSIM
and MS-SSIM metrics showed, scatter option.

In figure 5.19 MOS and SSIM is shown with curve fit performed. In the
upper graph the fit curve replaces unfitted data. In the bottom graph the fit
curve is added to the normal scatter.

In figure 5.20 MOS and SSIM are displayed with the ’plot’ option rather
than ’scatter’ and with confidence intervals on. It can be seen that the
intervals are fairly large but the general trend still remains. In the lower
graph a zig-zag line can be seen. This is created due to the drop of MOS in
BPP between 0.6 and 0.8.
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...................................... 5.7. Data demonstration

Figure 5.19: A sample showcase of displayed data – AVIF-Flowers, MOS and
SSIM metrics showed, curve fit on, scatter option.

Figure 5.20: A sample showcase of displayed data – AVIF-Flowers, MOS and
SSIM metrics showed, confidence interval on, plot option.
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5.8 Discussion

In this chapter, an automated tool for image quality data analysis was made.
Its easy-to-use environment enables users to fully focus on research rather
than processing measured data.

Objective metrics can be created as well and compared to subjective testing
results. As a major contribution, the utilization of eye-tracking data has been
made to possibly improve objective metrics performance. The outcomes of
eye-tracking utilization can not be concluded since not enough testing has
been made. However, with tuning and further improvements, results can be
promising.
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Chapter 6
Conclusion

In this work, I tried to create an automated platform for image quality analysis.
The tool was supposed to analyze both subjective scores and obejctive metrics
like SSIM or PSNR which could be then compared to each other. A promising
new approach for objective metrics improvement by utilizing eye-tracking
data was supposed to be tested.

In the theoretical part of my thesis I reviewed several omnidirectional
video projection methods and compared objective metrics for image quality
assessment such as PSNR, MSE, VSI, SSIM and FSIM, with FSIM turning
out to be the most effective one.

Then, I reviewed various factors impacting the QoE in virtual reality such
as bitrate, compression rate or stalling events. All those factors could be then
included in QoE features such as image quality, fragmentation, immersion
and cybersickness, which all contribute to the overall QoE.

Before doing a practical experiment, I also made a brief recommendation
for subjective image quality testing methodology in virtual reality and showed
a couple of existing testbeds for such testing.

In the practical part of my thesis, I introduced an automated tool for image
quality analysis. The easy-to-use environment of the tool enables users to
fully concentrate on the results and eliminates prolonged data sorting and
calculation. It also enables the comparison with objective metrics, such as
MSE, PSNR, SSIM, MS-SSIM and FSIM, with possible further addition.
A large part of the thesis was given on the potential for eye-tracking data
utilization. Suitable metrics, which created a map, were weighted using those
data. This enables testing for any potential improvement of those metrics if
the right input data is given.

So far not a very significant improvement with eye-tracking base weightmaps
was exhibited among the scenes. Therefore, further improvement of the
application will be required together with tuning the input parameters.
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Appendix A
List of electronic attachments

The electronic attachments are following. avgData.m - averages subjective scores – creates MOS scores. bitrates.m - assigns bit per pixel value to quantization parameter. eyeLoad.m - loads eye-tracking data. FSIM.m - FSIM metric, downloaded. graphSave.m - saves created data for ’Graphs’ tab of GUI to load.GUI.mlapp - graphical user interface. imageLoad.m - loads image in appropriate folders. loadTable.m - creates a list of possible load options for ’Load data’ tab
of GUI.main.m - main function from which all others are called.metrics_sort.m - calculates some metrics and calls other function to do
so. outliers.m - removes subjects if their scores are too different from others. sceneSort.m - creates tables with data with scene and compression data. sceneTable.m - creates tables with information of all possible scenes and
compression. SortAvgData.m - loads reference images and eye-tracking data for ’Eye
map’ tab of GUI. ssim_compare.m - calculates SSIM an MS-SSIM. textFormat.m - formats scene names into usable form. txtLoad.m - loads .txt file with subjective scores
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.................................. A. List of electronic attachments

. txtSort.m - handles .txt loading by combining txtLoad, eyeLoad and
textFormat.weightMap.m - creates a weightmap for SSIM and MS-SSIM. Exported_data/ - a folder for containing data saved in ’Graph’ tab of
GUI. Eye_movements/ - a folder for containing measured eye-tracking data.MOS/ - a folder for containing measured subjective scores. Saved_data/- a folder for containing temporarily saved data for ’Graphs’
tab of GUI to show. Scenes/ - a folder for containing all images used in testing. Scenesref/ - a folder for containing refernce image (best quality) from
testing. Scenes_simp/ - a folder for containing small size images from testing to
be used for displaying graphs in ’Eye maps’ tab
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