Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Analysis of tools for static security testing of
applications

Analysis of SAST tools

Leonid Golovyrin

Supervisor: Ing. Josef Kokes, Ph.D.
Field of study: Open Informatics
Subfield: Software

May 2023

Acknowledgements

I would like to express my sincere grat-
itude to my supervisor, Ing. Josef Kokes,
Ph.D., for his guidance, valuable advice,
and I am particularly grateful for the op-
portunity he gave me to explore this chal-
lenging and rewarding topic.

Additionally, I would like to extend my
appreciation to my friends and colleagues
for sharing their knowledge and providing
constructive feedback.

Finally, I am grateful for the unwaver-
ing support of my family, who have always
been there for me.

ii

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 20, 2023

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 20. kvétna 2023

Abstract

This thesis presents a comprehensive eval-
uation of general-purpose Static Applica-
tion Security Testing (SAST) tools avail-
able to the general public and offering free
versions.

The study focused on the integration
of these tools into the Software Develop-
ment Life Cycle (SDLC) by identifying
and comparing top-performing tools such
as CodeQL, Semgrep, and SonarQube.

An easily extensible rule analysis frame-
work was employed to support the exam-
ination of their distinct features such as
the metrics of their rules.

A practical SAST project was imple-
mented using GitLab, demonstrating the
integration of multiple SAST tools. This
project was then leveraged to compare the
default configurations of the SAST tools.
The analysis clarified the precision of the
tools and their tendency to generate false
positives. Additionally, the usability of
custom rules was assessed.

The study offers valuable insights and
recommendations, helping to facilitate the
selection and adoption of SAST tools.

Keywords: Static analysis, SAST,
DevSecOps, CodeQL, Semgrep,
SonarQube, Joern

Supervisor: Ing. Josef Kokes, Ph.D.
Department of Information Security
FIT

iii

Abstrakt

Tato bakalarska prace predstavuje ana-
Iyzu nastroji pro statické testovani zabez-
peceni aplikaci (SAST) obecného tucelu,
které jsou dostupné Siroké verejnosti a
nabizeji bezplatné verze.

Studie se zaméfuje na integraci téchto
nastroju do zivotniho cyklu vyvoje soft-
waru (SDLC) identifikaci a porovnanim
nejlepsich nastrojt, jako jsou CodeQL,
Semgrep a SonarQube.

Pro zkoumaéani jejich odlisnych funkci
byl navrzen a pouzit snadno rozsititelny
framework analyzy metrik pravidel.

Za pouziti platformy GitLab byl imple-
mentovan prakticky SAST projekt, ktery
demonstruje integraci vybranych SAST
nastroju. Tento projekt byl nasledné vy-
uzit pro srovnani vychozich konfiguraci
SAST néstroji. Analyza ukazala rozdily
v presnosti detekce zranitelnosti a gene-
rovani falesné pozitivnich vysledki. Bylo
také provedeno hodnoceni pouzitelnosti
funkcionality vlastnich pravidel.

Studie nabizi cenné poznatky a dopo-
ruceni, ktera usnadnuji vybér a prijeti
vhodnych SAST néstrojt.

Klicova slova: Statickd analyza, SAST,
DevSecOps, CodeQL, Semgrep,
SonarQube, Joern

Pteklad nazvu: Analyza néstroju pro
statické testovani bezpecnosti aplikaci —
Analyza SAST néstroju

Contents
1 Introduction 1
1.1 Background
1.2 Reasonsccooi....
1.3 Objectivesoo....
1.4 Delimitations. 3
2 Application security theory 4

2.1 The phenomenon of vulnerabilities

2.2 Vulnerability scoring systems
2.3 Different vulnerability types.
2.3.1 Security Misconfiguration
2.3.2 Injection
2.3.3 Broken Access Control. 8

2.3.4 Server Side Request Forgery . .

2.4 Manual security testing......... 9

2.5 Automated security testing

iv

3 SAST tools 11]
3.1 Overview of SAST workflow. ... [11l
3.1.1 Analysis configuration
3.1.2 Source code analysis........
3.1.3 Findings management
3.2 Integration methods...........

3.3 Common differences between tools

3.3.1 Analysis engine

3.3.2 Analysis engines design

3.3.3 Rule language syntax

3.3.4 Extensibility

3.3.5 Rule maintenance 17
3.4 Existing state-of-the-art SAST

t0OlS .ot 17

3.4.1 Semgrep Open Source (OSS)

342Joern. ...

3.4.3 SonarQube Community
Edition....................... 19

344 CodeQL ...

3.5 Rule languages 5.3.2 Semgrep integration

4 Identifying most promising 5.3.3 SonarQube integration.
commonly used SAST tools 21
6 Analysis of most promising SAST
4.1 Technologies coverage tools 41!
4.2 Engine capabilities 6.1 Evaluating default rules in a
real-world scenario [41]
4.3 Integration possibilities
6.1.1 Choosing the target project .
4.3.1 Scanning environment
6.1.2 Acquiring the results
4.3.2 Cooperation with the VMS . .
6.1.3 Analysis of the findings
4.4 Metrics of rules quality
6.2 Custom rules usability experiment
4.4.1 Rules quantity
6.2.1 Experiment goals
4.4.2 Rule updates frequency
6.2.2 Experiment setup
4.5 Identifying the tools for
integration 134 6.2.3 Results 47
5 Example SAST project 6.3 User recommendations 48|
implementation 35|
7 Conclusion 50
5.1 Project design
7.1 Goals fulfillment 50l
5.2 GitLab pipeline...............
7.2 Future work.................. 52|
5.3 SAST usagescoovun...
5.3.1 CodeQL integration

A Other Considered SAST Tools

B Guide for setting up SAST CI
Template

C Bibliography

D Attachments

E Project Specification

vi

Figures
3.1 SAST workflow cycle.

4.1 SAST Metrics Aggregator

architecture. 27
4.2 Number of rules for each SAST
tool and supported technology. ...

4.3 Number of rules for each SAST
tool and OWASP Top 10 category.

4.4 Total number of rules history per

SAST tool..............ooiun... 31
4.5 Number of SAST tool rules for

selected languages over time.
5.1 SAST CI Template pipeline

activity diagram.
5.2 Example of JUnit XML results

reported in the GitLab pipeline

VIEW. ¢t 38

6.1 DefectDojo findings for the deluge
project......... il

vii

Tables

2.1 Qualitative Severity Rating Scale [6]

2.2 OWASP Top 10 2021 categories . [6]

4.1 SAST tool’s support for the top 10

programming languages
4.2 SAST tool’s support for the top
11-20 programming languages

4.3 SAST tool’s support for the other

technologies
4.4 Integration of SAST tools with
vulnerability management systems

4.5 Selected time periods for analysis
with rule repository commit hashes

4.6 Changes in the rules count for the

OWASP Top 10 - 2021 categories .
6.1 Categorization of the findings in

the deluge project...............
6.2 Overview of the participants’

background and experience.
6.3 Overview of the participants’

performance in the experiment ...

B.1 Required GitLab CI/CD variables
for SAST CI Template.

Chapter 1

Introduction

Around the world, digitalization is a driving force for economic growth [IJ.
Entire businesses, governments, and even critical infrastructures are becoming
digitalized. The IT industry is growing rapidly and many aspects of modern
society increasingly rely on digital technologies. To protect these vital systems
from compromise and prevent the loss of sensitive data, it is crucial to
implement security measures that minimize the attack surface and prevent
the potential exploitation of vulnerabilities.

Cyberattacks are becoming more frequent and sophisticated [2], meaning
security must keep pace. As software vulnerabilities are more likely to be
discovered and exploited by attackers than hardware vulnerabilities [3], they
should be the primary target for security hardening.

Securing software involves implementing the Secure Software Development
Life Cycle (SSDLC) [4]. As part of the SSDLC “development” stage, static
code analysis must be integrated [5]. Furthermore, static code scanning is
recommended or required by many security standards and regulations [6].
Therefore, the need to analyze tools capable of performing static analysis
arises.

1.1. Background

B 11 Background

Securing software is a complex problem with many possible approaches,
making it time-consuming to analyze and select the best options for each
stage of the SSDLC. One potential strategy is to utilize existing knowledge
and tools to address every aspect of software security, but this may not be
simple. Some solutions are also dependent on the technologies already in
use and require advanced integration into existing, and often highly specific,
workflows. This is particularly true for automated static code analysis or
more generic static application security testing (SAST), as effective use of
SAST requires deep integration into the development process and tools [7].

. 1.2 Reasons

Identifying the most appropriate SAST tool is a complex task that requires
in-depth knowledge of the tool’s capabilities and the potential for integration
into existing workflows. Certain tools are designed for specific development
environments, making integration into different ones challenging and necessi-
tating a longer adoption period to overcome obstacles. Even large companies
like Google have faced challenges integrating SAST tools into their devel-
opment workflows [8]. Some tools have limited abilities to detect security
vulnerabilities in certain programming languages, so choosing them may result
in overlooking common and damaging attack vectors [9].

Additionally, if SAST integration is not properly managed, the entire
process may become a burden for the development teams, leading to less
convenient security practices. Since lightweight security best practices play
a crucial role in ensuring that compliance with security measures does not
overburden the team [I0], the intention to improve software security by using
misconfigured or ill-suited tools could ultimately waste time and resources.

B 13 Objectives

The main objective of this thesis is to provide an overview of commonly used
general-purpose SAST tools, compare their functionality and limitations. The

1.4. Delimitations

second objective is to analyze the suitability of these tools for integration
into a typical development life cycle, with a focus on the integration effort
and future maintainability of the solution.

. 1.4 Delimitations

The scope of this thesis is limited to the analysis of the SAST tools that are
available for free or under a permissive license. This also means that the tools
that have some paid features will be analyzed only in the context of their free
features.

The integration of the SAST tools into the development workflow is analyzed
from the perspective of the GitLab CI/CD. Due to the variety of different
programming languages available, Python is used for the examples in this
thesis, while the analysis of the tools is done in a more general way.

Chapter 2

Application security theory

Before proceeding to the analysis and performing a comparison of the tools,
we will provide a brief overview of some important concepts that will be used
in the rest of the thesis.

B 21 The phenomenon of vulnerabilities

The vulnerabilities by themselves are only an unexpected behavior of the
software; what makes them dangerous is the fact that they can be exploited by
attackers to gain unauthorized access to the system or to steal sensitive data.
Developers approach the problem of vulnerabilities in different ways, but
generally, they are focused on correctly implementing the desired functionality,
not on writing secure code [10]. The ability to write secure code is a skill that
is not taught in most of the software engineering curricula [I1], so it is not
surprising that developers are often not aware of the security implications of
their code.

B 22 Vulnerability scoring systems

Common Weakness Enumeration (CWE) helps to categorize the vulnerabilities
and to provide a common vocabulary for describing them, making it easier to

4

2.2. Vlulnerability scoring systems

compare the results of different tools or to target some vulnerabilities as a
whole class. However, it’s crucial to remember that each vulnerability, despite
being under the same CWE ID, may present unique characteristics and thus
necessitate a distinct approach. It is not rational to distribute available
resources uniformly across all vulnerabilities grouped under the same CWE
ID, as their risk levels can considerably vary. For instance, there could be
vulnerabilities within the same CWE class that are currently unexploitable
and thus present a lower risk.

Vulnerabilities can be classified for two different reasons:

® prioritization of discovered vulnerabilities by their impact, or

® development of an overview of all common vulnerabilities and which ones
are the most serious ones at the moment.

The Common Vulnerability Scoring System (CVSS) is as an industry-
standard prioritization language that made it possible to effectively assess
the severity and prioritize already discovered vulnerabilities [12].

Nowadays, the latest major revision CVSSv3 of the CVSS scoring mech-
anism is used, since it was designed as a successor of CVSSv2 to overcome
previous shortcomings like implicit guidelines and excessively overwhelmed
impact metrics [13].

CVSSv3 assigns a score to a specific vulnerability using multiple group
groups of metrics:

B Base metric group represents the characteristics of a vulnerability that
are constant over time and across environments, thus making it useful
for many vulnerabilities rankings to be based exclusively on the base
score, ignoring the other non-constant metrics.

Base metrics are composed of two sets of metrics:
Exploitability metrics (Attack Vector, Attack Complexity, Privileges
Required, User Interaction).

Impact metrics (Confidentiality, Integrity, Availability).

8 Temporal metric group reflects changing factors outside of the user envi-
ronment, such as the presence of a working proof of concept exploit or
the existence of a patch.

B FEnvironmental metric group represents the characteristics of vulnerability
which are specific to the user environment, such as the presence of
mitigation mechanisms that reduce the impact of the vulnerability or
the relative importance of the affected component to the overall system.

2.2. Vlulnerability scoring systems

In order to make the CVSS score more understandable for the less technical
audience, the CVSS score can be also translated into a qualitative severity
rating according to the following table:

Rating CVSS Score

Critical 9.0 - 10.0
High 7.0 - 8.9

Medium 4.0-6.9
Low 0.1 -3.9
None 0.0

Table 2.1: CVSS Qualitative Severity Rating Scale [13]

The Open Web Application Security Project (OWASP) is a non-profit
organization that is focused on improving the security of software. It maintains
a list of the most common vulnerability categories, which is called the OWASP
Top 10 and is updated every two to four years [I4]. To achieve the maximum
real-world relevance of the list, many factors are taken into account while
creating the OWASP Top 10 [14]:

8 The number of CWEs mapped to a category.

® The Impact and Exploit sub-scores from CVSS scores assigned to CVEs
related to a category.

® Occurrence statistics of the category in real applications, such as the
total number of applications vulnerable to that CWE, the percentage of
vulnerable applications among the tested ones, and the total number of

CVEs.

® The percentage of applications tested by all organizations for a given

CWE.

The latest version of the OWASP Top 10 list is from 2021, and it contains
the categories shown in Table 2.2/

Category

Name

A01:2021

Broken Access Control

A02:2021

Cryptographic Failures

A03:2021

Injection

A04:2021

Insecure Design

A05:2021

Security Misconfiguration

A06:2021

Vulnerable and Outdated Components

A07:2021

Identification and Authentication Failures

A08:2021

Software and Data Integrity Failures

A09:2021

Security Logging and Monitoring Failures

A10:2021

Server-Side Request Forgery

Table 2.2: OWASP Top 10 2021 categories [14]

2.3. Different vulnerability types

B 2.3 Different vulnerability types

The ability to identify whether a code is vulnerable to a specific type of
attack cannot be accomplished exclusively by automatic tools since there are
some vulnerabilities that may be hard to reliably detect automatically and
manual verification is still required. Moreover, to achieve the full potential of
SAST tools and use their advanced features, it is necessary to understand
the different types of vulnerabilities and how they can occur in the code.

The vulnerability types described in the following sections will be used
during the evaluation of the SAST tools; all of them can also be found in the
OWASP Top 10 list.

B 2.3.1 Security Misconfiguration

Notable CWEs included: Configuration (CWE-16) and Improper Restriction
of XML Ezxternal Entity Reference (CWE-611).

As software becomes highly configurable, it is important to ensure that the
application is properly configured and does not contain any default credentials,
unnecessary features or insecure configurations. There are several ways how
this type of vulnerability can occur [15]:

8 Unhardened environment — missing security hardening of application
stack components or misconfigured permissions on cloud services.

® Default credentials — the application still accepts default credentials that
are not changed or removed after installation.

B Unnecessary functionality — some features that should not be used in
production are enabled, such as the debug mode, unnecessary ports or
API endpoints.

8 Mismanaged updates — the upgraded system does not properly reflect
the latest security changes of the performed update.

2.3. Different vulnerability types

B 2.3.2 Injection

Notable CWEs included: Cross-site Scripting (CWE-79), SQL Injection
(CWE-89) and External Control of File Name or Path (CWE-73).

Injection vulnerabilities occur when the application passes untrusted data
to an interpreter as a part of a command or query without sufficient prior
validation, filtration, sanitization, or context-aware escaping [16]. Most
common injections are SQL, NoSQL, ORM, OS command, LDAP, and Code
injections [14].

B 2.3.3 Broken Access Control

Notable CWEs included: Ezposure of Sensitive Information to an Unautho-
rized Actor (CWE-200), Insertion of Sensitive Information into Sent Data
(CWE-319) and Cross-Site Request Forgery (CWE-352).

Broken access control vulnerabilities occur when the application fails to
properly limit user actions according to their intended privileges. The appli-
cation might be vulnerable to this type of attack if it has one of the following
issues [17]:

8 Violating the principle of least privilege or deny by default — the appli-
cation grants more privileges to users than they need to perform their
job.

8 Improperly configured access control — the application does not properly
verify the user’s access rights, therefore allowing bypassing of the access
control mechanism.

B Insecure direct object references — users are allowed to access objects
directly by ID without any authorization checks.

8 CORS misconfiguration — the application allows API requests from
unintended origins.

B 2.3.4 Server Side Request Forgery

Notable CWEs included: Server-Side Request Forgery (CWE-918).

8

2.4. Manual security testing

Server Side Request Forgery (SSRF) vulnerabilities occur when the appli-
cation allows to send attacker-controlled requests to internal services or other
resources that are not intended to be externally accessible. The application
might be vulnerable to this type of attack in the following cases [15]:

8 Violating the principle of deny by default — set of accessible resources by
the application is not restricted at the network level, or the application
is not using an allowlist for the resources that are allowed to be accessed.

8 Mishandeling redirects — the application allows resource validation bypass
using request redirection.

8 URL consistency unawareness — the application assumes that the URL
always points to the same resource, ignoring the possibility of race
conditions such as DNS rebinding.

B 2.4 Manual security testing

Manual security testing is a process that aims to identify potential security
risks in software and implement measures to mitigate those risks. The “white-
box” approach in software testing denotes methods where internal software
components such as its source code or architecture are known and accessible.
In contrast, “black-box” methods focus on software’s functionality from an
external view, with no insights into its internal logic or components. Several
methods of manual security testing are used [I§]:

8 Code Review: During this process, the software’s source code is exam-
ined to identify any potential security flaws. Code review is the most
commonly used method in the modern software development industry.
However, its main drawback is that it can be time-consuming and re-
quires substantial expertise, making the code review process both costly
and susceptible to errors [19].

B8 Penetration Testing: This method assesses the system for possible vul-
nerabilities that could be exploited by external threats. Ethical hackers
or security experts usually perform penetration testing.

® Security Audit: This independent evaluation of a system’s security
posture is often conducted by a third party. A security audit can
also assess a system’s compliance with security standards and provide
recommendations for achieving compliance.

8 Threat Modeling: This process involves identifying, analyzing, and
addressing potential threats to a system.

2.5. Automated security testing

B 25 Automated security testing

Automated security testing (AST) is the process of automating the identifica-
tion and exploitation of potential security vulnerabilities in software. AST
can be classified into the following categories [20]:

Static Application Security Testing (SAST)
Dynamic Application Security Testing (DAST)
Interactive Application Security Testing (IAST)
Software Composition Analysis (SCA)

SAST, a white-box testing method, analyzes the application’s source code,
binaries, or compiled code to identify security vulnerabilities. Unlike linters —
tools that flag syntax errors, bugs, and suspicious constructs in the source
code, SAST uses knowledge of the application’s internals to detect security
issues. SAST tools are often integrated into Continuous Integration (CI)
systems or as plugins in Integrated Development Environments (IDEs) for
immediate feedback. By integrating SAST into the development workflow,
vulnerabilities are prevented from reaching the production environment. This
is a significant advantage over other types of security testing, as security
vulnerabilities discovered later in the development cycle are more expensive
to fix than those discovered early [21].

DAST is a black-box testing method in which the application is analyzed
by running it in a live environment and interacting with it to identify security
vulnerabilities. These security tests are performed by simulating attacks from
the perspective of an external attacker, which limits DAST’s ability to detect
vulnerabilities that are not yet exploitable.

IAST is a hybrid testing method that combines the main features of SAST
and DAST. A special agent records the application’s state during testing
in a live environment. The collected metrics and access to the source code
allow the agent to provide more detailed information about the application’s
behavior and verify its findings.

SCA is a software testing technique that analyzes software libraries, com-
ponents, and dependencies for known security vulnerabilities. This type of
testing, also known as dependency scanning, is usually performed for the
open-source parts of the application stack.

10

Chapter 3

SAST tools

Many open-source and proprietary SAST solutions have been developed to
perform static code analysis for security vulnerabilities. Although the main
feature of SAST is to detect security vulnerabilities in the source code, it
is important to note that having the most advanced analysis engine is not
the only important feature. In this chapter, we will highlight the important
aspects of SAST tools that should be considered when choosing the most
suitable tool for a particular project.

. 3.1 Overview of SAST workflow

From the user’s perspective, the SAST functionality can be divided into three
main parts:

® Analysis configuration — the ability to configure the analysis to the
needs of the project.

® Source code analysis — the main part of the SAST functionality that
scans the source code and detects potential security vulnerabilities.

® Findings management — the part of the SAST functionality that is
responsible for presenting the results of the source code analysis to the
user and tooling to mitigate the detected findings.

11

3.1. Overview of SAST workflow

Develloper
Initiate code/anal sis : Fix bugs in code or
; Y Show report suppress unrelated findings

1 1
1) 1
1) 1

Eg‘zg I::> I::> Mitigate

Export
findings

————mmmmm-a .

SAST configuration

Figure 3.1: SAST workflow cycle.

B 3.1.1 Analysis configuration

Every project may differ in terms of the programming language, the libraries
and the guidelines that are used during the development. Therefore, even the
same line of code can be considered a security vulnerability in one project
and not in another. With this in mind, it is important to configure the SAST
tool to match the project’s needs as much as possible.

That can be done by carefully selecting the rules that will be used during
the scan. Most SAST tools provide a set of rules that are as generic as
possible while still covering the most common vulnerabilities, so users can
start using the tool right away and then gradually refine the rules to achieve
the desired level of accuracy.

But even with the large selection of rules, there are still a lot of possible
project-specific cases where the ability to create custom rules may be necessary.
For example, if the project uses an internal library that is not publicly available,
forcing the tool to generate false positives for the library’s code that is not
under the user’s control.

B 3.1.2 Source code analysis

Although the idea behind the code analysis remains the same for all SAST
tools, this part of the SAST functionality is generally implemented using

12

3.2. Integration methods

various approaches. Therefore, depending on the chosen SAST tool, different
behavior in terms of the tool’s speed and accuracy may be observed. More
on this topic can be found in the Section |3.3.2.

B 3.1.3 Findings management

After an analysis had been performed, the results are converted into a report
that can be used during the mitigation phase.

All the findings generated can be divided into two main categories:
False positives (FP) — findings that are not actually security vulnerabilities,
thus they should be mitigated on the tool’s side, and True positives (TP) —
findings that may represent a security vulnerability and should be mitigated
by the project’s developers.
While dealing with the FP findings, the functionality to easily suppress a
rule generating these findings for specific blocks of code or files may be found
useful so that the tool will not generate the same finding again and does not
contribute to the most disturbing statistic in the SAST world — the number
of false positives [22].
Another option, especially for large projects, is to integrate the SAST tool
with the Vulnerability Management System (VMS) such as open-source
DefectDojo || or commercial ThreadFiz [| and Nucleus °. This allows the
tool to directly report the findings to the VMS and provides a centralized
workflow for managing findings, including FP suppression.

B 32 Integration methods

The detection and mitigation phases of the SAST workflow are highly de-
pendent on how the tool is integrated into the development process. Various
integration points must be considered, including the scanning environment,
tool configuration distribution and collaboration with the VMS.

SAST tools are commonly integrated into CI/CD pipelines as cloud-based
scanning offers several benefits, most notably the great performance improve-
ments, centralization of findings and rules management [23].

"https://owasp.org/www-project-defectdojo/
Zhttps:/ /www.coalfire.com/solutions/application-security /threadfix
3https:/ /nucleussec.com/

13

3.3. Common differences between tools

This allows the scanning CI/CD job to be triggered under different conditions,
such as a push to the repository or a merge request creation, but it can also
be invoked manually by the developer or scheduled to run periodically [24].
Alternatively, or in conjunction with CI/CD, the SAST tool can be integrated
into the Integrated development environment (IDE), enabling analysis as
soon as the code is written — a preferred method for developers interacting
with the program analysis results [22].

Configuration can be centralized and fetched by the tool for each scan
or configured separately for each project. The former approach is usually
more convenient but requires more effort to set up and maintain, as the
configuration must work for all projects using the tool.

While SAST tools typically exhibit a high degree of independence from the
analysis environment, integration with the VMS is not always straightforward.
As discussed in the next chapter, SAST tools usually include some form of
VMS integration, but compatibility with other VMSs may not always be
possible.

. 3.3 Common differences between tools

A wide selection of SAST tools is advantageous but it also implies potential
differences between them. This section highlights key aspects to consider as
they are likely to significantly impact the user experience in the long term.

B 3.3.1 Analysis engine

Since code analysis is the primary function of SAST, it is expected that
different tools may have unique trade-offs to strike a balance between detection
rate and performance.

One such trade-off is the scope of the analysis. Some tools may analyze
the entire source code of the project to generate highly accurate results while
others may only examine the code that has changed since the last scan. The
latter approach is usually faster but may miss some vulnerabilities due to the
insufficient context.

14

3.3. Common differences between tools

Another trade-off involves the supported programming languages. Design-
ing a tool that supports multiple languages without sacrificing accuracy or
performance compared to a single-language tool can be challenging.

Both of these trade-offs share a common characteristic — they are related
to the tool’s internal code representation, which will be discussed in the next
Section [3.3.2.

B 3.3.2 Analysis engines design

The first step of the static code analysis is to parse the source code into
an intermediate representation, so that it can be processed by the analysis
engine.

Most of the SAST tools work with the code at the abstraction level of
the Abstract Syntax Tree (AST) and Control Flow Graph (CFG), where the
syntactic and semantic analysis is performed. As these representations can
be easily customized to the needs of the tool, it is not uncommon to see some
tools extending the AST with additional metadata or storing their data in
a different format, such as a relational database [25]. Another approach is
to use the Code Property Graph (CPG), which is a graph representation of
the code that combines the information from the AST, CFG and Program
Dependence Graph (PDG) [26], 27]. As a next step, the analysis engine is
applied to the intermediate representation of the source code.

B Analysis types

In static code analysis, several different types of analysis can be performed.
The most relevant ones for the SAST tools are the following [28]:

8 Pattern matching — the most basic analysis that is performed by
matching the internal structure with the predefined patterns.

® Symbolic execution — the analysis used to detect the execution paths
of the code and which inputs can lead to the execution of a particular
code block.

8 Program slicing — the optimization of the symbolic execution where
the analysis is performed only on the code that is relevant to the analyzed
block.

15

3.3. Common differences between tools

® Data flow analysis — the analysis that is used to detect the possible
values of the variables and how they are propagated through the code.

8 Abstract interpretation — the generalization of the above-mentioned
analysis types which allows designing a custom analysis that is tailored
to the needs of the tool.

SAST tools use a combination of these analysis types to achieve the desired
balance, but the most common approach is to use data-flow analysis and
pattern matching. Some of these use cases may even require a ready-to-build
source code to be provided [25].

Data-flow analysis may differ between the tools in terms of the following
aspects:

® Scope — the scope of the analysis may be intra-procedural (within a
single function) or inter-procedural (across the whole program).

® Approximation level — the level of approximation of the analysis may
be a Must analysis (the most precise, where the information is true for
all possible executions of the code) or May analysis (the least precise,
where the information is true for at least one execution of the code).

Bl 3.3.3 Rule language syntax

The rules used by the SAST tools are written in a custom language specific
to the tool. Such a language is called a rule language, and is expected to be
as feature-rich as the tool itself, thus different rule languages can have quite
varied syntaxes and semantics. More specific details about the rule languages
will be provided later during the analysis of the tools.

B 3.3.4 Extensibility

Extensibility is a crucial aspect of a SAST tool since it determines the end-
users’ experience and the extent to which they rely on the tool’s developers.
One notable aspect of extensibility concerns the common issue of SAST tools
lacking support for certain programming languages.

Initially, extending the analysis engine for a new language is required. This
can be addressed by the community through creating a plugin if the tool

16

3.4. Existing state-of-the-art SAST tools

offers the necessary API and documentation for plugin development. In the
case of open-source tools, the process can be even more straightforward and
transparent, as the community can contribute directly to the tool’s codebase.
However, even with an extended engine for a new language, the issue of
lacking rules for that language persists. If the rule language specification is
available, the community can develop rules for the new language with the rule
language complexity as the only barrier. Less common are cases where the
rule language is not documented but the tool provides an API for creating
rules. Each of these approaches has its advantages and disadvantages, but it
is important to note that without the ability to utilize user-provided rules,
this problem cannot be easily solved at the community level.

B 3.3.5 Rule maintenance

Proper rule maintenance is essential for a SAST tool to detect recently
discovered attack vectors and to ensure that existing rules remain accurate
despite new programming language features.

Well-maintained SAST tools are expected to have a large and continuously
improving set of rules, reducing false positives and increasing coverage for
end-users.

Depending on the tool’s extensibility, it may benefit from community
contributions, as the community can add support for new languages or keep
the rules up-to-date. GitLab, for example, maintains its own version of rules
for its GitLab SAST product®, indicating that SAST tools used within GitLab
SAST benefit from enhancements made by such a large organization. This
also showcases the increased freedom provided by the tool’s extensibility
which would be impossible without this level of adaptability.

B 34 Existing state-of-the-art SAST tools

An initial search for existing SAST tools was conducted to identify potential
candidates for evaluation. This search resulted in the identification of 24
tools, drawing from academic sources such as studies [9), 25 29] as well as
non-academic sources [30, [3I]. Following the initial search, the tools were
narrowed down based on the following pre-selection criteria:

“https://gitlab.com/gitlab-org/security-products/sast-rules

17

3.4. Existing state-of-the-art SAST tools

® Free — The tool should be available under a permissive license or be
open-source.

® Coverage — The tool should provide support for at least 5 programming
languages.

8 Maintained — The tool should be actively maintained, with updates
released on a regular basis.

Although limiting the selection to free tools may seem restrictive and
may potentially exclude promising candidates, this constraint is part of the
Delimitations section| and serves as a trade-off to maintain a manageable
scope for tool evaluation. The other criteria were considered reasonable as
they helped to focus the search on tools that were not abandoned and offered
support for multiple programming language families.

Ultimately, 4 tools were chosen for further evaluation based on these criteria.
Information about the other considered tools can be found in Appendix [Al

® Semgrep — 1.17.0
® Joern —1.1.1564
® SonarQube CE —9.9.0

B CodeQL —2.12.5

It is important to note that all the information presented about the tools
is based on the latest versions available at the time of writing this thesis, as
listed above.

B 3.41 Semgrep Open Source (OSS)

Semgrep is an open-source SAST tool that is designed to be as easy to use
as possible. Even though the main tool’s components and its community-
driven rules are distributed under a free license, there are some paid features
such as the Semgrep App platform for rules and findings management or
DeepSemgrep which extends the [Scope| by using the Inter-procedural analysis.

18

3.5. Rule languages

B 3.4.2 Joern

Joern is an open-source code analysis platform that can be used to perform
the vulnerability discovery by querying the graph database or to create a
custom SAST tool by using the Scala API. Joern uses the custom graph
database called OverflowDB to store the code representation.

B 3.4.3 SonarQube Community Edition

SonarQube provides a platform for code quality management which includes
the SAST tool. The tool is available under a free license but the community
edition is limited in terms of the number of supported programming languages.
While the free version provides an out-of-the-box support only for 19 languages,
the paid version supports up to 31 languages. Moreover, the data flow
feature that powers taint analysis rules is closed source and not a part of the
community edition, therefore many of the advanced security rules are only
available in the commercial version of the tool .

B 3.4.4 CodeQL

CodeQL is a proprietary SAST tool designed for security analysis of the
code. Besides some license exceptions as usage for open source projects or
for research purposes, the tool is only available for the commercial GitHub
Advanced Security customers. CodeQL is based on the object-oriented query
language called QL. While QL is a closed-source language, its specification
is available and the community can contribute new rules to the open-source
query library.

B 35 Rule languages

Although the ability to define custom rules was not a requirement for the
tools to be included in the evaluation, all of the selected tools provide a

SCommunity Edition doesn’t have “Detection of advanced vulnerabilities including
Injection| Flaws in Java, C#, PHP, Python, JavaScript, TypeScript” [32]

19

3.5. Rule languages

certain level of support for custom rules. More information about the level of
support for custom rules can be found in Chapter |4.

Each SAST tool comes with its rule language and corresponding rule syntax
that is used to define the rules, which are then used to analyze the source code.
The rule languages provided by the tools can be using either a commonly
used language or a domain-specific language (DSL). The following sections
divide the previously mentioned tools into two groups based on their rule
languages:

8 Commonly used languages

Semgrep rules are represented in YAML format following the Semgrep
rule syntax of pattern-matching expressions.

SonarQube rules, depending on the analyzed language, can be represented
in two different ways. The first way is by creating a custom plugin in Java
that extends the SonarQube API. The second way is by using XPath 1.0
expressions to define the rules.

Domain-specific language

CodeQL queries are represented using the QL language that is optimized
for code analysis.

Joern queries are represented using the patterns in the CPGQL language,
which is based on the Scala language and is used to query the generated
code property graph.

20

Chapter 4

Identifying most promising commonly used
SAST tools

In this chapter, previously selected tools are compared against each other to
determine their suitability for continuous security testing.

The first part of the chapter is dedicated to the comparison of the more
general properties of the tools, such as the supported technologies and their
integration with the modern CI/CD pipelines. In the second part, we will
perform a quantitative analysis of the rulesets of the selected tools and how
the rules count has changed over time. Additionally, rules will be classified by
their metadata to determine potential gaps in the coverage across different
technologies or vulnerability classes. Based on the results of the analysis, the
gathered information is then used to identify the tools that will be integrated
into the analysis environment automated by the GitLab CI/CD pipeline.

B a1 Technologies coverage

This section provides an overview of the supported technologies by the selected
SAST tools. It is mainly based on the official documentation of the tools, but
in some cases, we had to use information from the community sources such
as the GitHub repositories of the tools or the community-driven projects.

The legend that is used to indicate the degree of support for the technolo-

21

4.1. Technologies coverage

gies is as follows:

e — Full support for the technology.

o — Partial support for the technology.

I~ Custom rules functionality is not supported.
2 — Functionality requires a third-party plugin.

In the following tables, the technologies are sorted by their popularity
according to the StackOverflow 2022 survey [33] based on 53,421 responses
from professional developers. Some of the technologies are not included in
the tables as they have some serious limitations that make them unsuitable
for the majority of the applications!|

Yo \Q
o
S S R O C A= A A C A SR ¢
Semgrep ° ° ° ° ° o ° o o °
Joern o o o o - - - ° o _
SonarQube| el ol o ol - o 2 2 4l
CodeQL ° ° ° o o - = ° ° °

Table 4.1: SAST tool’s support for the top 10 programming languages sorted
by their popularity according to the StackOverflow 2022 survey. Data is based
on the official documentation of the tools [32] [34] [35] [36] [37]

Table |4.1| demonstrates that support for the top 10 most popular program-
ming languages is generally quite good, except for the Joern tool. This tool
currently does not support 5 out of the 10 languages, resulting in a significant
coverage gap. Furthermore, Joern does not claim support for TypeScript,
necessitating the compilation of TypeScript code into JavaScript, which com-
plicates the analysis of such code. In contrast to other tools, SonarQube does
not fully support C4++ and C languages®. Semgrep offers basic support for the
Bash language, which is not supported by any of the other tools. Analyzing
Bash code is particularly crucial for security testing as the language’s unique
syntax makes it easy to introduce vulnerabilities and is often error-prone [38].
This absence of support for the important language could be because there is
already a static analysis tool, called ShellCheck [39], that is dedicated to the
analysis of the shell scripts.

!Such technologies mostly have very limited support or few to no available rulesets. List
of such technologies per tool is as follows:
Semgrep: Closure, Dart, Lisp, Solidity. SonarQube: Kubernetes, Secrets, Text.
2SonarQube claims first-class support for C and C++ languages, but this is unavailable
in the Community Edition

22

4.1. Technologies coverage

& N
WSS S d s 58 F ¢
& & dF N &25Fa R
Semgrep o o e o - o o e o o -
Joern ® = = — — — - — _ _
SonarQube | ! — ol - ol N B
CodeQL o - e = = - S — -

Table 4.2: SAST tool’s support for the top 11-20 programming languages sorted
by their popularity according to the StackOverflow 2022 survey. Data is based
on the official documentation of the tools [32, [34] B3] [36], [37]

In contrast, we can immediately observe that the support for the less popular
languages in Table [4.2] is much more limited. The only tool that provides
at least basic support for more than 3 languages out of the 10 presented
is Semgrep. Another interesting observation is the lack of comprehensive
support for the Rust language, which has 8.8 % of the respondents in the
survey, while Kotlin and Ruby have 9.9 % and 6.7 % respectively, but both
are still well supported by the tools.

[
~4 ~N q§/$ § ng
SAST 5 § o § S & & 5 § s
g & & e T &I 2545
Semgrep | o) - ° o ° o _ _ _
Joern - = = = - - _ . . °
SonarQube| o! o ol 12 2 Gl _ _ _
CodeQL | o o — o o — _ _

Table 4.3: SAST tool’s support for the other technologies. Data is based on the
official documentation of the tools [32] [34] [35] [36], [37]

Table 4.3| represents the support for the different technologies that are not
programming languages but are still important from a security perspective.
For instance, HTML files can affect the security of web applications, while
the YAML and JSON file formats are often used to store the configuration
of the applications, including the security-related settings. Joern, being
primarily a vulnerability discovery and research tool, supports the analysis of
the compiled code such as the x86/x64 binaries and JVM bytecode, which
makes it unique among many other SAST tools.

23

4.2. Engine capabilities

B a2 Engine capabilities

Depending on the design and current implementation of the SAST tool’s
engine, it can be shipped with some extra features that are useful for specific
use cases. For instance, most of the tools are able to scan only the whole
project, arguing that it is the only way to provide a high-quality analysis. This
decision often makes the analysis time much longer, but it does not seem to be
a problem for the majority of the users as 57 % of the respondents in the survey
stated that they would prefer a slower but more accurate analysis. However,
the same survey also showed that 74 % of the respondents are not willing to
wait more than a few minutes for the analysis to finish [22]. Consequently, a
diff-aware analysis feature, which allows scanning of changed files only, can
be a valuable configurable option, particularly in CI/CD pipelines.

Another desirable feature is the ability to scan the codebase without
building it, which can be helpful during the development process.

The support for these features among the SAST tools is as follows:

® Semgrep supports scanning changed files only and does not require the
code to be buildable.

® Joern does not support scanning only changed files, but it does not
require the code to be buildable.

® SonarQube does not support scanning changed files only and varies in
its requirement for the code to be buildable, depending on whether the
tool is integrated with the build system.

® CodeQL has varying support for scanning changed files only (disabled
by default and requires project-specific configuration) and requires the
code to be buildable.

B a3 Integration possibilities

As mentioned in Section [3.2| describing different integration methods, there
are multiple integration points that should be considered when integrating
the SAST tools into the CI/CD pipeline and we will now discuss the support
for these integration points in the tools.

24

4.3. Integration possibilities

B 4.3.1 Scanning environment

Even though all of the tools provide the CLI interface, the actual analysis is
not always performed on the same machine as where the scanning is initiated.
Comparing the tools, we can see that the SonarQube is a cloud-based tool
that requires the code to be uploaded to the previously deployed SonarQube
instance which can be either an on-premise or a cloud-based one. As for the
other tools, Semgrep, Joern and CodeQL perform the analysis in the same
environment — e.g. the developer’s machine — meaning that the code never
leaves the local environment.

B 4.3.2 Cooperation with the VMS

Since 3 out of 4 tools provide an out-of-the-box solution for vulnerability man-
agement, we will discuss them separately. Later, the tools will be compared
based on the available options for integration with the non-native VMS.

The following list presents the VMS that are shipped with the SAST tools:

® Semgrep — can be integrated with the Semgrep App — a cloud-based
service that provides vulnerability management functionality, which is a
part of the community tier with up to 20 users.

® SonarQube — has a built-in vulnerability management that is a part of
the deployed SonarQube instance.

8 CodeQL - the vulnerability management is a part of the GitHub
Advanced Security that is free for the public GitHub repositories.

In the case of non-native VMS, the relation between the SAST tool and
the VMS is rather bidirectional, as the SAST tool is able to export the results
to a limited set of formats, which may or may not be supported as an input
format by the VMS. In order to solve this compatibility issue, the Static
Analysis Results Interchange Format (SARIF), an open standard for the
SAST tools to export their results [40], was introduced.

25

4.4. Metrics of rules quality

SAST Export DefectDojo
Formats Import
Semgrep SARIF Supported

Semgrep JSON (SARIF,
JUnit XML JSON)

Joern Graph formats Not supported
SonarQube | HTML Supported
API (HTML, APT)
CodeQL SARIF Supported
CSV (SARIF)

Graph formats

Table 4.4: SAST tools’ integration capabilities with advanced vulnerability man-
agement systems, using DefectDojo as an instance. Referenced from respective
tool and DefectDojo documentations [41], [42] 43, 44]

Table |4.4] shows the supported export formats and whether DefectDojo is
able to import the results from the corresponding SAST tool. Joern is the
only tool that does not support the export of its findings at all, although
its intermediate graph representations of code were shown to be useful and
are commonly used in the academic research [45] 146, [47]. As for SonarQube,
it does not export the results in the SARIF format, which is the standard
for the SAST tools. Instead, it only provides an API interface to interact
with the SonarQube instance that can be used to retrieve the results. Due
to this limitation, the VMS has to be able to interact with the SonarQube
API directly or support the import of the HTML reports generated by the
sonar-report tool °.

B 4.4 WMetrics of rules quality

Before proceeding to the comparison of the rules quality, we will first discuss
the available metrics that can be used during the evaluation. One may assume
that all open-source SAST tools have their rules open-sourced as well, but
this is not always the case. Both Joern and CodeQL expose every bit of
their rules, including the source code, which means that their rules do not
introduce any limitations on the analysis. The same can be said about the
Semgrep rules, although there are over 350 rules available for the paid users
only that were not included in the analysis. On the other hand, SonarQube
does not provide the source code of its rules. Instead, only the rule metadata
is available*l Because the source code for SonarQube’s rules is not available,

Shttps://github.com /soprasteria/sonar-report
4Except for the infrastructure as code rules: https://github.com/SonarSource/sonar-iac

26

4.4. Metrics of rules quality

L Metabase
. Filter
GitHub security rules
Y
Fetch Parse raw Convert to the
1\§[eAt§ir£S repositories ™ metadata common format

ggregator

Figure 4.1: SAST Metrics Aggregator architecture.

metrics related to the rules’ source code cannot be used for evaluation.

Based on the available data from the official repositories of the tools [48,
49, [50, 1], the following common rule metrics were identified:

Rule name

Rule description

Severity of the rule

CWE mapping (if applicable)
Target technology

It is important to note that SAST tools, in addition to the security-related
rules, also provide rules for code quality. Although some of the code smells
have a significant correlation with security issues [52], the other code smells
may not be security-related at all, potentially leading to biased results. For
this reason, only the rules that are explicitly marked as security-related were
considered in the analysis.

This information can be used to compare the quantity of rules and how
they are distributed among languages or CWE categories. However, direct
comparison of the rules is not straightforward due to the differences in how
the tools structure their rules and rule metadata. To tackle this, the SAST
Metrics AggregatorP’| was developed. It extracts rule metadata from each
tool’s official repositories using tailored parsers. This data is then unified into
a standard format and stored in a database for further processing. For visual
analytics, the open-source Metabase Business Intelligence tool is employed [53].
Metabase enables customized dashboards and chart creation for analyzing
database data. Its configuration can be easily reproduced and deployed on any
machine, making it a versatile and convenient tool for subsequent analyses.
The SAST Metrics Aggregator architecture is depicted in Figure 4.1\

Shttps://github.com/nightshiba/sast-metrics-aggregator

27

4.4. Metrics of rules quality

In principle, it should be enough to analyze the commit history of a
repository to gain insights into various aspects such as rules quantity and
their distribution among identified rule metadata, as well as the evolution
of the rules over time. However, in the case of SonarQube, the repository
alone does not provide sufficient information for any kind of analysis due
to its lack of information regarding the availability of a particular rule in
the SonarQube Community Edition or other products. Therefore, to filter
out the metadata of unavailable rules, it is necessary to extract information
directly from the SonarQube instance through its Web API. This extraction
process is semi-automated and should be repeated for each new version of
SonarQube. As for the other tools, the data provided by the repositories is
sufficient to analyze only the built-in security rules.

Tool |2021-07-02 | 2021-11-13 | 2022-04-05 | 2022-10-18 | 2023-04-04 |

Semgrep 89b246a4 bae3csf4 1deb5ed2 2¢724bed 5fe86926
Joern a15933ab ad203d8d 8d9c3723 bd7e444d 601b5c62
SonarQube | 4/9aa2dcd 620da3ed b9179c27 ce950105 99d3509f
CodeQL a9c1d3ba b5d37ael 8f3578c9 5f39888a foeT7jed

Table 4.5: Selected time periods for SAST rule metrics analysis and correspond-
ing commit hashes of the official rule repositories [48] [49] [0, [51]

Using the SAST Metrics Aggregator, rule metadata was extracted for 5
different versions of each tool (see Table 4.5). The extracted data was then
analyzed to answer the following research questions:

® RQ1: How many rules are currently available for each tool and how are
they distributed among technologies and OWASP Top 10 categories?

® RQ2: Are new rules consistently added over time for already supported
technologies?

® RQ3: Which of the OWASP Top 10 categories are prioritized by each
tool?

B 4.4.1 Rules quantity

To get an overview of the current state of the rules, the data about rules
quantity for the most recent time period (2023-04-04) was used. Answering
the first research question RQ1 is the main goal of this section. Due to the
differences in how the tools structure their rules and define their metadata,
some technologies have to be grouped together to enable a meaningful com-
parison. Usually, the grouping is applied to the technologies that are similar
in nature, such as the Java and Kotlin languages. However, it should be
noted that in some cases, the grouping may be rather misleading, and should
be interpreted with caution. For example, the C and C++ languages are

28

4.4. Metrics of rules quality

grouped together in all tools, even though many rules are much more relevant
for only one of them.

The rules distribution among technologies is shown in Figure 4.2, As one
might expect, there is a clear correlation between the language popularity
and coverage by the tools that support it. Moreover, that correlation may
be even stronger than it seems at first glance since the top 5 most popular
languages are responsible for more than 60 % of the total number of rules. As
for the other languages, the coverage is rather inconsistent and varies greatly
between the tools.

0 semgrep B codeql [sonarqube E joern

7
bash
44 85

cH# F7—
c/c++ - o5 150
dockerfile 6
go 2
html 2

a7 66

Jjson
js/ts 67
kotlin/java)

1257 200
118
enid 178
lua

ocaml

other

php
python

143

Technology

253

ruby

11
rust 1

scala, Jmm—

swift 20

255

terraform 71

vb.net 21

XM ——

4

yaml 1

1 10 100
Rules count

Figure 4.2: Number of security-related rules for each SAST tool and supported
technology, some technologies are grouped together.

29

4.4. Metrics of rules quality

In Figure the rules are grouped by the corresponding OWASP Top 10
category. Unlike the previous chart, the Joern tool was excluded from this
one. This is because Joern rules do not have CWE mappings, which are used
to determine the OWASP Top 10 category. Interestingly, the CodeQL tool
has over 400 rules that are not mapped to the OWASP Top 10 categories.
Part of the reason for this is that CodeQL has considerably more rules related
to Denial of Service (DoS) attacks than the other tools, such as CWE-400:
Uncontrolled Resource Consumption and CWE-730: Denial of Service.

From the chart, it becomes clear that the tools end up with very similar
clusters of rules when it comes to the OWASP Top 10 categories. The
A06: Security Misconfiguration category is almost empty in all tools, as it
is a functionality provided by the specialized SCA tools mentioned earlier
in [Automated Security Testingl Other categories generally have a similar
number of rules in all tools, though there are some exceptions. Most notable
one is the fact that the A03: Injection and A10: Server-Side Request Forgery
categories are heavily underrepresented in SonarQube, since the “Injection
Flaws” rules are exclusive to the commercial edition of the tool.

B codeql 0 semgrep [sonarqube

A01:2021 ooy

A02:2021

A03:2021 106
A04:2021

&

50 A05:2021

=

]

~ A06:2021

n

= A0T:2021

)
A08:2021
A09:2021
A10:2021

404

other [

1 10 100
Rules count

Figure 4.3: Number of security-related rules for each SAST tool and OWASP
Top 10 category.

30

4.4. Metrics of rules quality

B 4.4.2 Rule updates frequency

Before answering the second research question RQ2, it is important to point
out the difference between a rule being added and a rule being updated. In
this section, only the rules that were added or removed are considered, while
the rules that were updated are ignored due to the lack of data for certain
tools.

1400

1286
semgrep 1203
12001 —— codeql
sonarqub
1000 1 OnATHRe 957
— joern
. 8001 736 720
= 646 63 —®
S 6001 495 o—
2 e 399 430
400 364
258 269
2001
32 32 39 48
0 o ® ® {

2021-07-02 2021-11-13 2022-04-05 2022-10-18 2023-04-04
Date

Figure 4.4: Total number of security-related rules history per SAST tool.

Figure shows how the security rules quantity has been increasing over
time. This chart does not directly answer the research question RQ2, but
it provides some useful context. Most importantly, it supports the initial
assumption that, apart from the iterative updates, the tools can also add a
large number of rules at once by porting rules from more specialized security
tools. This is especially noticeable for the Semgrep tool which already has
over 500 rules ported from 9 different toolﬂ.

SRules were ported from the following tools: bandit (Python), brakeman (Ruby), eslint
(JavaScript/TypeScript), findsecbugs (Java), flawfinder (C/C++), gitleaks (Generic), gosec
(Go), phpcs-security-audit (PHP), security-code-scan (C#).

31

semgrep
codeql
sonarqube
253
247
250 1
206
2001,-5 186
2150 1
)
@)
100 ~
69
60 o
50 —_
50436 42 — 8
— 51 51
32 32 32
QA N > Q >
AN NI
SRR
Date

(a) : Python rules history per SAST tool

4.4. Metrics of rules quality

semgrep
—— codeql
sonarqube
—— joern
178
15g/i§§/’.
150 1 136~
127 @
o 118
N 107 111
21004, 89
O 90 93 99
L)
50 1
19
5 5 1.2/.
0 o—eo—
& N > Q >
%\\Q N f@'\g o fw?”\Q
S
Date

(b) : Java rules history per SAST tool

Figure 4.5: Number of security-related SAST tool rules for selected languages

over time.

Together with the statistics for the specific languages shown in Figure |4.5]
it is clear that the tools are not adding new rules for all languages at the same
rate. Even though the CodeQL tool was able to maintain a steady growth
for all its languages except C#, the other tools were not as consistent. In
particular, each of the tools except CodeQL, follows a similar pattern that
consists of multiple periods of little to no growth with occasional spikes for
the majority of supported languages. Therefore, based on the analyzed data,
the answer to the research question RQ2 is that the tools do not add new

rules at a consistent rate.

4.4. Metrics of rules quality

OWASP SAST |2021/07|2021/11 |2022/04 |2022/10 | 2023/04
codeql 50 59 74 920 101
A01:2021| semgrep 39 58 75 213 224
sonarqube 31 31 63 80 91
codeql 38 49 59 80 85
A02:2021 | semgrep 83 97 108 155 170
sonarqube | 130 108 127 128 123
codeql 162 179 207 242 282
A03:2021 | semgrep 202 223 294 388 406
sonarqube 51 34 39 33 33
codeql 43 53 63 68 80
A04:2021 | semgrep 23 30 49 47 69
sonarqube 20 24 55 66 76
codeql 30 38 40 46 53
A05:2021 | semgrep 21 22 36 59 59
sonarqube 28 27 30 30 30
codeql 1 1 1 1 1
A06:2021 | semgrep = = = 2 2
sonarqube - - — - -
codeql 30 40 45 53 57
A07:2021 | semgrep 19 23 28 97 99
sonarqube 63 59 62 65 79
codeql 18 19 24 27 29
A08:2021 | semgrep 35 41 51 61 67
sonarqube 13 14 16 17 17
codeql 4 7 10 12 14
A09:2021 | semgrep = = 5 9 13
sonarqube 16 11 13 13 13
codeql 2 4 8 10 10
A10:2021| semgrep 24 35 40 41 43
sonarqube = 1 1 1 1

Table 4.6: Changes in the rules count for the OWASP Top 10 - 2021 categories

Regarding the research question RQ3, Table 4.6/ depicts the evolution
of rule quantity for the OWASP Top 10 categories over time. This table
indicates that major increases, shown by growth of 10 % or more, are primarily
concentrated in the first several table rows. As anticipated, the tools prioritize
OWASP categories that are generally more relevant, implying that higher
priority is assigned to the categories at the top of the OWASP Top 10 list.

For the A02, A05, A07, and A09 OWASP categories, it is clear that despite
an early lead, SonarQube struggles to maintain pace with other tools and
lags behind in terms of rule quantity. The sole notable exception is the A04
category where the tool managed to double the number of rules in a short
time, increasing from 24 rules in 2021/11 to 55 rules in 2022/04. By 2023/04,
the rule count has further risen to 76, demonstrating a sustained growth in
this category.

33

4.5. Identifying the tools for integration

B a5 Identifying the tools for integration

All of the presented state-of-the-art SAST tools definitely have much to
offer and in many cases can be used as a valuable addition to the security
testing process. However, based on the analysis from the previous sections,
there are some limitations that affect the integration of the tools into the
Software Development Life Cycle (SDLC). The most significant combination
of these limitations is present in the Joern, as it the only tool that does
not have actively maintained rules and is not able to export the results in
a machine-readable format. For this reason, Joern, in its current state, is
not suitable to be integrated into the SDLC as a part of the CI/CD pipeline.
The other tools have their own limitations, but these are not so restrictive as
to prevent or significantly complicate their integration process.

Therefore, only the Semgrep, SonarQube, and CodeQL were selected for
further analysis.

34

Chapter 5

Example SAST project implementation

In this chapter, we will design and implement a template GitLab project
called SAST CI Template that is capable of running multiple SAST tools
using given rules. The aim of this project is to provide a simple interface for
evaluating custom rules on the prepared vulnerable codebase, while being
a good starting point on how to integrate SAST workflows into the GitLab
CI/CD pipelineﬂ Without such an interface, the evaluation of custom rules
on the multiple codebases would be a tedious and more error-prone process,
as tools differ in their export formats, configuration options and caching
mechanisms.

For every ruleset, the project will generate a report containing the findings
generated by the corresponding SAST tool and upload it to the DefectDojo
instance for further review. This project will be also used to evaluate the
custom rules collected during the investigation of rules syntax complexity.

B 51 Project design

To ensure ease of use, the project is expected to abstract away the complexity
of tool configuration by providing the configuration files needed to run SAST
tools in a stateless environment, so that users can simply clone the project and
make use of the available infrastructure to quickly scan the target codebase
using the desired rules. Moreover, since the main idea behind the project
is not only to use some combination of already existing rules but also to

"https://docs.gitlab.com/ee/ci/

35

5.1. Project design

evaluate custom rules on the prepared vulnerable codebase, the project has
to provide a demo rule written in the syntax of each supported SAST tool.
This can serve as a starting point for users to write their own rules and have
a consistent workflow for their automatic evaluation, making the development
process generally more efficient [54].

As a result, the following requirements for the project have been identified:

R1

R2

R3

R4

R5

Capability to evaluate custom rules on a prepared vulnerable codebase
using existing infrastructure?.

Tool configuration is abstracted by using GitLab CI/CD variables as
an interface to workflow configuration.

Observability of the SAST workflow by showing the results of each
SAST tool in the GitLab CI/CD pipeline.

Centralized results storage by uploading the generated reports to a
DefectDojo instance.

Providing an example of a custom rule for each supported SAST tool.

Overall, the SAST CI Template project should minimize the initial effort
required yet still be ready for further customization. The project structure is
divided into several directories that serve different purposes:

src/ci: contains the source code for the CI/CD pipeline, consisting of
GitLab CI job definitions per SAST tool.

rules: contains the custom rules to be used by the SAST tools, including
the demo rules and their documentation (as required by R5).

corpus: contains the target codebases on which the rules are evaluated.
.gitlab-ci.yml: the GitLab CI/CD pipeline definition that includes the
job definitions from src/ci.

2The project expects the user to have a GitLab instance with a shared runner, a
SonarQube instance and a DefectDojo instance. All these instances can be self-hosted or
provided as a service.

36

5.2. GitLab pipeline

B 5.2 GitLab pipeline

Triggered “test” stage Running tool failure
security _ start SAST tools [invalid rule] —
pipeline [jobs have jobs /wrapper error

valid configs] [incorrect settings]
commit push “l“epOIEt”tstage
SAST is included star
irg the .gitlab-ci.yml] [artifacts zife created]
‘ Running findings
results export IF%%rt — ‘
Initial jobs o the >
R ! defectdojo Final

Figure 5.1: SAST CI Template pipeline activity diagram.

The SAST CI Template project uses the same approach as the one de-
scribed in a case study on integrating dynamic security testing tool in CI/CD
pipelines [55], where the pipeline is divided into two stages: the testing stage
and the evaluation stage. However, in contrast to the case study, the proposed
pipeline implements only the first degree of automation named Continuous
Integration (CI) | as it does not include the deployment stage and everything
is run in a CI environment.

In this case, the test stage is responsible for running the SAST tools whose
results are then collected in the report stage and uploaded to a DefectDojo
instance. Each stage consists of SAST jobs that are executed in parallel, since
any job from the report stage only depends on the results of the corresponding
job from the test stage, everything else can be run completely independently.
By default, the project is configured to run the SAST pipeline on push events
to the default branch and for every merge request. Figure |5.1] shows how
SAST tools are integrated into the GitLab CI/CD.

In order to successfully run the SAST pipeline with the provided configu-
ration, the user has only to configure 4 GitLab CI/CD variables, which are
used to authenticate the DefectDojo and SonarQube instances. This means
that R2 can be considered fulfilled. More information on how to configure
the project can be found in the Appendix Bl

3https://docs.gitlab.com/ee/ci/introduction/index.html#continuous-integration

37

5.3. SAST usages

Pipeline Needs Jobs & Tests 2

< semgrep
1tests 0 failures 0 errors 100% success rate 0.00ms
Tests
Suite Name Filename Status Duration Details
rules.semgrep.enforce_ Endpoint without authorization decorator found corpus/login_ @ 0.00ms View details

login_decorator decorator.py

Figure 5.2: Example of JUnit XML results reported in the GitLab pipeline view.

Upon successful execution of the test stage, a JUnit XML file is generated
for each SAST tool. This is done by using the sarif—jum’ﬂ tool that converts
the SARIF reports to the JUnit XML format. The generated JUnit XML files
are then processed by GitLab to show the findings directly in the pipeline view,
which satisfies R3. Figure demonstrates how the results are displayed in
the GitLab user interface.

B 53 sAsT usages

This section describes the implementation details of the designed SAST
pipeline. The key difference between running SAST tools in a CI environment
and running them locally is that the CI environment usually incorporates
some form of virtualization which allows it to execute tasks in a stateless
environment and more reliably reproduce the results. In the case of the SAST
CI Template project, the SAST jobs are executed in a Docker containelﬂ that
is configured to execute the corresponding SAST tool (R1) or export its
results (R4).

B 5.3.1 CodeQL integration

For the test stage of the CodeQL integration, we utilized the codeql-agent-
docker image from the CodeQL agent projectﬂ which allows for executing
multiple CodeQL commands within a single container. In the report stage,

*https://github.com/GridexX /sarif-junit
Shttps://docs.docker.com/get-started / #what-is-a-container
Shttps://github.com/codeql-agent-project

38

5.3. SAST usages

the CodeQL SARIF report is uploaded to the DefectDojo instance with the
help of the dd-import tool”. This tool leverages the DefectDojo API to create
a new product named CodeQL-<branch-name> and imports the findings
from the SARIF report which is available as a CI artifact.

While integrating CodeQL, we faced the following challenges:

Official Docker image unsuitability.

The official CodeQL Container® provided by Microsoft was initially
considered but it proved inefficient for a CI environment due to the need
for multiple container invocations and the resulting startup overhead.
Query Suite path requirement.

Even when using the more suitable codegl-agent-docker image, the path
to the CodeQL Query Suite was still required. To address this, the job
script was configured to automatically detect the appropriate CodeQL
Query Suite for the analysis.

5.3.2 Semgrep integration

The Semgrep test stage is based on the official Semgrep Docker image”| which
has the Semgrep CLI installed. The report stage of the Semgrep integration
is almost identical to the already described |CodeQL integration, except that
the product name has a different prefix.

Only one minor issue was encountered while integrating Semgrep into the
pipeline:

Semgrep only supports .yml rules directory.

The Semgrep CLI does not support a rules directory consisting of
.gson and .yml files simultaneously. To overcome this limitation, the
workaround was implemented to pass the rules one by one using the
-config option.

"https://github.com/MaibornWolff/dd-import
8https://github.com/microsoft /codeql-container
“https://hub.docker.com/r /returntocorp/semgrep

39

5.3. SAST usages

B 5.3.3 SonarQube integration

For the test stage of the SonarQube integration, the official SonarScanner
CLI'|is used. In the report stage, results of the SonarQube analysis are
exported to a HTML report using the sonar-report tool'! and uploaded to
the DefectDojo instance using the dd-import tool.

While integrating SonarQube into the pipeline, the following challenges
were encountered:

® Rule changes require a restart of the SonarQube instance.
SonarQube does not support dynamic rule changes since plugins con-
taining the rules are loaded during startup. Although we automated the
process of updating the plugins and restarting the SonarQube instance
using a helper script, it is still not possible to update the rules without
potentially interrupting an ongoing analysis.

® SonarQube does not support branch analysis."
Each SonarQube project is bound to a single branch which means that
it is not possible to analyze multiple branches within a single project.
To work around this limitation, a SonarQube project is created for each
branch beforehand, where the branch name is used as a suffix to the
project key. Additionally, the created project is configured to use the
equivalently-named quality profile; if it does not exist, the default profile
is used instead.

8 HTML report cannot be used to show the findings in the
pipeline view.
The SonarQube HTML report is not supported by the GitLab pipeline
view. In order to show the results in the pipeline view, a conversion
script named sonar-report-sarif was implemented to convert the HTML
report to the SARIF format, which is then used to generate the JUnit
XML report.

2

Ohttps://github.com/SonarSource/sonar-scanner-cli

"https://github.com/soprasteria/sonar-report

12This limitation is present only in the Community Edition of SonarQube. However, there
is a plugin available at https://github.com/mclarke/sonarqube-community-branch-plugin
that provides branch analysis support. We did not use this plugin in our evaluation as it
would complicate the initial setup.

40

Chapter 6

Analysis of most promising SAST tools

This chapter investigates the usage of SAST tools, focusing on the practical
application and customization of their rule sets. Initially, it assesses the
efficiency of default rules in a real-world Python project, analyzing their
practicality, strengths and weaknesses. The focus then shifts to the user
experience in creating custom rules for these tools, examining the learning
curve, potential issues, and the impact of users’ security knowledge. The
chapter provides insights into the real-world application of SAST tools, the
potential for customization and the associated user experience.

B 61 Evaluating default rules in a real-world scenario

In this section, the effectiveness of the default ruleﬂ provided by SAST tools
is assessed by applying them to a real-world project and manually examining
the results.

!These include the default Semgrep ruleset, “Security Hotspots” and “Vulnerabilities”
from SonarQube rules, and the python-security-extended.qls CodeQL query pack. It
should be noted that these were intentionally limited to the Python language.

41

6.1. Evaluating default rules in a real-world scenario

Bl 6.1.1 Choosing the target project

The deluge project E] was chosen as the target for evaluating the default
rules. Deluge is a BitTorrent client written in Python featuring multiple
user interfaces (UI) such as GTK-UI, Web-UI, and Console-UI. The project
is actively maintained, with a codebase of 65 000 lines of code in .py files.
Furthermore, the project has a history of security issues [56], and there is
no evidence of a previous SAST tool usage. These factors make it an ideal
candidate for evaluating SAST tools.

Bl 6.1.2 Acquiring the results

To analyze the project using the selected SAST tools, the SAST CI Template
project from Chapter [5| was utilized. Due to its modular design, it was
straightforward to add the source code of the deluge project and configure the
SAST tools to use the default rules with minimal effort. Once the analysis
was completed, the results were available in the GitLab Ul in the form of
reports and uploaded to the DefectDojo instance for further evaluation, as
illustrated in Figure The SAST analysis artifacts can be found in the
corresponding merge request [l

Product List

Showing entries 1 to 3 of 3

Column visibility Copy Excel csv PDF Print

Product = Active (Verified) Findings

CodeQL - test-python 13 (13)
Semgrep - test-python 22 (22)
SonarQube - test-python 50 (50)

Figure 6.1: DefectDojo findings for the deluge project.

Zhttps://github.com/deluge-torrent /deluge
3https://gitlab.com/nightshibal/sast-ci-template/- /merge_ requests,/2

42

6.1. Evaluating default rules in a real-world scenario

B 6.1.3 Analysis of the findings

All the findings from the SAST tools were manually analyzed and categorized
into the following groups:

® Duplicate (DUP) — The finding is reported multiple times by the same
tool.

® False positive (FP) — The finding is not a vulnerability or a security
issue.

® Informative finding (IF) — The finding is a security issue but it cannot
be exploited in the current context.

= Potential vulnerability (PV) — The finding appears to have a security
impact on the application.

The results of the analysis are presented in Table 6.1,

From the analysis, it can be observed that CodeQL had a considerably
better false positive rate (only 3 FP) compared to the other tools, as
well as unique and relevant informative findings (4 IF) and potential
vulnerabilities (4 PV).

In contrast, Semgrep had a higher false positive rate with 16 FP, making
it more challenging to distinguish between false positives and actual
issues; most findings were related to the same problems and would
require rule adjustments for improved precision. It also had 3 IF and
only 1 PV.

SonarQube had the worst false positive rate, with numerous duplicate
findings (14 DUP) and a high number of false positives (30 FP). Moreover,
it reported mostly low severity findings with 6 IF and 0 PV.

Across all SAST tools, there were findings in the testing code or release
scripts which could be reduced by configuring the tools to ignore specific
files or directories. However, this had minimal impact on the overall
number of such findings as there were only a couple of findings per tool
at most.

SAST Tool DUP FP IF PV

CodeQL 2 3 4 4
Semgrep 2 16 3 1
SonarQube 14 30 6 0

Table 6.1: Categorization of the findings in the deluge project

43

6.2. Custom rules usability experiment

B 6.2 Custom rules usability experiment

In this section, we present the design and execution of a custom rules us-
ability experiment for 3 SAST tools: CodeQL, Semgrep, and SonarQube.
These tools have been previously analyzed in depth and the ability to
write custom rules for them is of particular importance due to their
general-purpose nature. The advantage of these SAST tools lies in the
transferable knowledge that allows users to learn how to write custom
rules once and then apply this knowledge to other supported languages
or technologies. Although an empirical study showed that only 8 % of
users write custom rules for program analysis tools and 26 % consider it
an important factor [22], the transferability aspect of general-purpose
tools makes this experiment highly relevant.

Bl 6.2.1 Experiment goals

The experiment has 3 main goals:
Learning curve comparison. Compare the learning curve of
the selected SAST tools by assessing the participants’ ability to
understand and create a basic rule for each tool within a given time
frame.

Pain points identification. Identify the pain points experienced
by the participants during the experiment when working with each
tool.

Impact of information security experience. Investigate if
the participants’ varying levels of information security experience
influence the experiment results.

B 6.2.2 Experiment setup

To facilitate the experiment, we used the SAST CI Template project
introduced in Chapter |5 that contains example rule implementations and
documentation for each tool. This template project enables participants
to set up a development environment for writing custom rules and use
the examples as a reference. We also provided a basic code snippet as
a target codebase for the rules, instructions for the participants and a
questionnaire to be completed after the experiment. Participants were
given 4 hours per tool to write a basic rule and the order of the tools
was randomized for each participant.

B Participants

The selection criteria for the participants included: no prior experience
with writing custom rules for SAST tools, familiarity with multiple

44

6.2. Custom rules usability experiment

programming languages (at least Python and Java), and an industry
experience as the target audience of this study is developers. Our
experiment involved 7 participants with different occupations and levels of
information security experience. All of them were familiar with multiple
programming languages but had no prior experience with writing custom
rules for SAST tools.

Occupation Programming Security
experience background

1 DevOps engineer 6+ years Moderate

2 Software engineer 4+ years None

3 Student 5+ years Strong

4 Software engineer 6+ years Moderate

5 Machine learning engineer 4+ years None

6 Software engineer 4+ years None

7 Student 5+ years Moderate

Table 6.2: Overview of the participants’ background and experience

B Tasks

The participants were given 3 tasks, one for each SAST tool, using the
same code snippet across all tools to ensure consistency and comparability
of the results. Each task required writing a basic rule that could detect a
specific vulnerability within the provided code snippet while not flagging
the safe portion of the code. Participants were instructed to create simple
rules and test them only on this single code snippet, which contained both
a minimal working example of a vulnerability and a corresponding safe
code portion written in Python programming language. The participants
were given 4 hours per tool to write a basic rule, with the restriction that
they could not skip a task and move to the next one before completing
the current task or the time running out. To verify that the rules written
by the participants were indeed successfully implemented and worked
correctly, we automatically tested the obtained results using the SAST
CI Template project.

The following code snippet was used as a target codebase for the rules
(some parts were omitted for brevity):

Example of insecure usage of the python-rq library,
as the arbitrary user input s passed to the enqueue function
without any type-checking or sanitization of the parameter.

tasks_redis = Redis.from_url(os.environ.get ('REDIS_URL'), db=0)
tasks_queue Queue('tasks', connection=tasks_redis)

def format_worker(text):
return f'Formatted text: {textl}'

def safe_testformat(request):

45

6.2. Custom rules usability experiment

text = request.GET.get('text', '')
tasks_queue.enqueue (format_worker, 'test')
...

return HttpResponse(f'Result: {resultl}')

def unsafe_format(request):

text = request.GET.get('text', '')
tasks_queue.enqueue (format_worker, text)
...

return HttpResponse(f'Result: {resultl}')

B Procedure

The experiment procedure involved the following steps:

1. Understand the vulnerability and the safe code snippets.

2. Set up a development environment for writing custom rules using
the provided template project for the assigned tool.

3. Test the template project by verifying that the example rule imple-
mentation works correctly.

4. Write a basic rule that can detect the vulnerability in the given
code snippet.

Test the rule to ensure it works correctly.
Complete the questionnaire.

7. Repeat the steps for the next tool until all tools are completed or
the time runs out.

The questionnaire collected information on time spent on each task, suc-
cess or failure in completing the task, reasons for failure, and pain points
experienced during the experiment. Additionally, two open questions
were included to capture participants’ insights:

Participants were asked about their overall experience working
with the 3 SAST tools and how they felt about the custom rules
writing process: How satisfied are you with the custom rule writing
experience for each of the SAST tools?

Participants were asked whether they believed it was a good idea
for developers to write custom rules for their projects rather than
relying on predefined rules: Do you imagine a scenario where
Software Engineers write custom rules for their projects to prevent
vulnerabilities or enforce best practices?

The experiment procedure and questionnaire were distributed to the
participants as part of an archive which can be found at the provided
link ‘.

“https://gitlab.com/nightshibal /sast-ci-template/- /releases/sast-complexity-
experiment

46

6.2. Custom rules usability experiment

B 6.2.3 Results

Task 1 Task 2 Task 3
v CodeQL (1.5h) v'SonarQube (1.5h) v'Semgrep (0.1h)
v CodeQL (3.5h) v'Semgrep (1h) — SonarQube (4h)

v'SonarQube (3.5h) v'CodeQL (2.2h) v'Semgrep (0.25h)
v'SonarQube (0.6h) v'Semgrep (0.15h) v CodeQL (0.5h)
v'Semgrep (1.25h) v CodeQL (2.5h) — SonarQube (4h)
v'Semgrep (2h) — SonarQube (4h) - CodeQL (4h)
v'Semgrep (0.25h) v/ CodeQL (2.7h) v'SonarQube (2.5h)

\]@OTFPC@[\D»—!:ﬁ:

Table 6.3: Overview of the participants’ performance in the experiment

The results of the experiment were obtained from the completed ques-
tionnaires and metadata, including the source code of the rules written
by the participants. To analyze the data, we focused on addressing the
goals of the experiment.

| Learning curve comparison

Semgrep seems to have the simplest syntax of the three tools as all
participants were able to complete the task successfully and spent the
least amount of time on it, taking an hour or less on average. Moreover,
the participants reported that Semgrep had the most intuitive syntax
and was the easiest to start with. A total of 5 participants also mentioned
that they appreciated Semgrep’s documentation and the speed of the
tool.

Conversely, the participants spent the most time on SonarQube and only
4 out of 7 participants were able to complete the task successfully. Since
all participants are familiar with the Java programming language, none
of them reported having issues with the language itself. However, every
participant reported experiencing a complicated development environ-
ment setup and a significant lack of documentation which added to the
difficulties encountered at the very beginning of their engagement with
the tool.

CodeQL, although better in terms of documentation and development
environment setup compared to SonarQube, has the most complex syntax
among the SAST tools due to its advanced dataflow capabilities. Most
participants were able to complete the task successfully but the time spent
was significantly higher than for Semgrep. Additionally, all participants
reported that the tool has a steep learning curve due to the various
concepts of the QL language.

47

6.3. User recommendations

B Pain points identification

For Semgrep, there were no pain points that were reported by multiple
people, indicating that participants had a relatively smooth experience
with the tool.

In CodeQL, 3 participants reported that they had occasional problems
with the IDE, requiring them to restart VSCode during the experiment
due to some CodeQL extension errors. Among the participants, 5
mentioned that, despite CodeQL having detailed documentation, they
found it challenging to understand the concepts and apply them effectively
without frequently resorting to the Query Results and AST viewer for
guidance. Furthermore, 2 participants expressed dissatisfaction with the
available debugging tools being slow due to the recompilation of the
query after each change.

In SonarQube, all 7 participants reported that there is a significant lack
of proper documentation for writing custom rules and this issue notably
slowed them down. Every participant who successfully finished the task
eventually had to debug the SonarQube API runtime to overcome some
of the issues they encountered.

B Impact of overall experience

The participants with more extensive security and programming experi-
ence tended to achieve better results, completing tasks faster and more
successfully. Still, it remains uncertain whether these outcomes directly
correlate with their security background, programming skills, or both.
Factors like proficiency in debugging new tools or a strong motivation to
learn about security could also affect their performance.

In terms of experience with the three SAST tools and custom rule writing,
many participants favored the idea of writing project-specific rules to
prevent vulnerabilities or enforce best practices, instead of relying on
preset rules. However, they also expressed a preference for having a
specialist handle advanced custom rule writing, as it might be too complex
for developers lacking the required expertise. This implies that while
developers see the importance of custom rules, they might prefer security
experts to be involved to ensure effective and efficient implementation.

. 6.3 User recommendations

Taking into account the data gathered throughout this research, it can
be concluded that general-purpose Static Application Security Testing
(SAST) tools can efficiently detect common vulnerabilities and provide a
reasonable degree of security, especially in large-scale projects.

48

6.3. User recommendations

For instance, when dealing with open-source projects on GitHub or
organizations using GitHub Advanced Security, CodeQL appears to be
a good choice. It offers high precision and integrates well within the
GitHub environment.

In contrast, Semgrep might be a better pick in other situations due to
its simple use, speed, and the fact that it is open-source, giving users
more control over the tool.

On the other hand, SonarQube Community Edition, due to its limited
features compared to its commercial versions, seems more suitable as

a code quality tool with some added security features, rather than a
full-blown SAST tool.

Nonetheless, it’s important to remember that even the best general-
purpose SAST tools have their limitations. Depending on the security
goals of a project or organization, language-specific SAST tools may be
more suitable if no constraints conflict with this choice.

Custom rules can also be beneficial, particularly for organizations that
wish to leverage the scalability of general-purpose SAST tools, or for
individual projects targeting specific vulnerabilities. However, the trade-
offs of using custom rules, such as the time and effort needed to write
and possibly maintain them, should be carefully considered.

49

Chapter 7

Conclusion

In this thesis, a comprehensive examination of Static Application Se-
curity Testing (SAST) tools and their integration into the Software
Development Life Cycle (SDLC) is conducted, aiming to provide the
essential knowledge needed to make well-informed decisions regarding
SAST tool adoption and integration. A thorough comparison and assess-
ment led to the identification of CodeQL, Semgrep, and SonarQube as
top-performing SAST tools, each with distinct functionalities. The rule
analysis framework, developed and utilized during this process, facilitated
an automatic analysis of the rules each tool offers.

A practical SAST project implementation using GitLab is presented,
providing a useful template for those looking to evaluate custom rules
and integrate multiple SAST tools into their development process. Fur-
thermore, an evaluation of SAST tools in a real-world scenario, using
default rules, provided insights into how these rules influence the find-
ings produced. This evaluation highlighted the precision of the tools,
the uniqueness of their findings, and their tendency to generate false
positives.

Additionally, the custom rules usability experiment offered valuable
information on the learning curves, challenges, and influence of experience
associated with each SAST tool, further assisting in the selection of the
most suitable tool based on specific needs.

In conclusion, this thesis delivers practical insights that contribute to the
improvement of application security by facilitating the effective adoption
and integration of SAST tools, as well as highlighting the importance
of vulnerability detection and prevention throughout the development
process.

. 7.1 Goals fulfillment

The main objective of this thesis was to evaluate general-purpose SAST
tools and provide insights to help developers and organizations choose

50

7.1. Goals fulfillment

the most suitable tool based on their requirements and resources. In
order to achieve this objective, we addressed the specific goals outlined
in the thesis assignment.

Goal 1: Ezplain the main considerations of security of software — threats,
vulnerabilities, modeling, evaluation.

We explored the primary aspects of software security in Chapter 2, dis-
cussing threats, vulnerabilities, modeling and evaluation. This included
an overview of the phenomenon of vulnerabilities, vulnerability scoring
systems and various vulnerability types.

Goal 2: Discuss theoretical approaches to automated solutions to the
problems of software security. Focus particularly on the concept of static
application security testing (SAST), including the integration of SAST
tools in a project’s Continuous Integration/Continuous Delivery (C1/CD)
pipeline.

Theoretical approaches to automated solutions for software security were
covered in Chapters 2 and 3, with a special emphasis on SAST and its
integration into a project’s CI/CD pipeline. We explained the differences
between manual and automated security testing and provided an overview
of the key components of the SAST workflow and its integration into the
SDLC.

Goal 3: Research the current functionality and limitations of commonly
used general purpose SAST tools.

We investigated the features and constraints of widely used general-
purpose SAST tools in Chapter 3 and 4. This included exploring the
variations between tools, such as analysis engine design, extensibility, rule
language syntax and rule maintenance. We compared 4 state-of-the-art
SAST tools (CodeQL, Semgrep, SonarQube and Joern) and selected
the most promising ones for integration into the SDLC, based on their
technologies coverage, engine capabilities, integration possibilities and
metrics of the available security rules. In order to perform the rule
analysis, we introduced the “SAST Rules Aggregator” in Section [4.4]
which is a modular rule analysis framework that provides a unified
interface for comparing and analyzing rules from multiple SAST tools.

Goal 4: Design and implement a testing environment (preferably using
GitLab CI or other open repository) that could be used to conduct a
comparison of the selected tools. Use the implemented environment to
analyze the suitability of the researched tools for the purpose of continuous
security testing of applications throughout their development lifecycle.

In Chapter |5, we designed and implemented a GitLab CI testing en-
vironment called “SAST CI Template” to compare the selected tools.
This environment facilitated the evaluation of custom rules on a target
codebase and showcased the use of GitLab CI/CD pipelines for SAST
workflows. The results yielded valuable insights into the integration
process of each tool and highlighted the main challenges associated with

o1

7.2. Future work

SAST workflow integration. We leveraged this environment in Chapter |6
to assess the researched tools’ suitability for continuous security test-
ing of applications throughout their development lifecycle, by applying
the tools to find vulnerabilities in real-world projects and conducting a
custom rules usability experiment.

Goal 5: Discuss your results, provide recommendations to users.

In Chapter 6, we discussed the outcomes of the evaluation of default
rules presented in Section |6.1.3, which provided insights into the poten-
tial SAST results. This assessment was complemented by an in-depth
experiment discussed in Section |6.2.3 Based on these investigations,
we proposed recommendations aimed at guiding developers and security
teams in the selection of the most suitable SAST tool to align with their
specific needs and resources.

Overall, this thesis successfully achieved its objectives by providing a
detailed analysis of SAST tools, their integration methods, and their
potential impact on software security. The results and insights derived
from this research can serve as a valuable resource for developers, organi-
zations, and security experts aiming to enhance their software’s security
through the adoption of SAST tools.

. 7.2 Future work

In future research, a similar approach could be applied to analyze and
compare commercial versions of SAST tools, which were not included
in this thesis. A more in-depth analysis could also be conducted by
comparing the support of specific programming language libraries or pro-
gramming language-specific SAST engine features across different tools.
Moreover, there is potential for enhancing the rule analysis framework by
introducing a module that automates the process of identifying missing
rules in a given SAST tool that are present in other tools, enabling more
efficient rule portability.

52

Appendix A
Other Considered SAST Tools

This appendix provides a brief overview of the tools that were considered
but not selected for further evaluation, and the reasons for their exclusion.

Specialized on a particular language family:
= Progpilot

RIPS

PHPsafe

= WAP

Bandit

Flawfinder

PVS-Studio

= Brakeman

Not actively maintained or updated:
= Agnitio

FindBugs

OWASP Code Crawler

Find Security Bugs

clj-holmes

Commercial (limited quotas or trial periods):
= Checkmarx
= Codacy
= Coverity

Fortify

SpotBugs

Veracode
Snyk Code

53

Appendix B

Guide for setting up SAST Cl Template

In order to use the SAST CI Template, the user must be logged into
the GitLab instance that has at least one shared runner available. Ad-
ditionally, the user must have a SonarQube instance and a DefectDojo
instance available, along with the API keys for both of them.

Variable Description
DD URL URL of the DefectDojo instance.
DD _API KEY API key for the DefectDojo user.

SONARQUBE_ URL URL of the SonarQube instance.
SONARQUBE_TOKEN | API token for the SonarQube user.

Table B.1: Required GitLab CI/CD variables for SAST CI Template.

1. Create a new project in GitLab by cloning the sast-ci-template
repository.

Go to the project’s Settings — CI/CD — Variables.

Add the required variables (see Table B.1).

Go to the project’s CI/CD — Pipelines.
Click on the Run pipeline button.

Sl & I B B2

Wait for the pipeline to finish and check the results in DefectDojo.

o4

Appendix C

Bibliography

Raul L Katz and Pantelis Koutroumpis. Measuring digitization: A
growth and welfare multiplier. Technovation, 33(10-11):314-319,
2013.

Krzysztof Cabaj, Dulce Domingos, Zbigniew Kotulski, and Ana
Respicio. Cybersecurity education: Evolution of the discipline and
analysis of master programs. Computers & Security, 75:24-35, 2018.

Max Smeets. A matter of time: On the transitory nature of cyber-
weapons. Journal of Strategic Studies, 41(1-2):6-32, 2018.

Hossein Keramati and Seyed-Hassan Mirian-Hosseinabadi. Integrat-
ing software development security activities with agile methodologies.
In 2008 IEEE/ACS International Conference on Computer Systems
and Applications, pages 749-754. IEEE, 2008.

Radek Fujdiak, Petr Mlynek, Pavel Mrnustik, Maros Barabas, Petr
Blazek, Filip Borcik, and Jiri Misurec. Managing the secure software
development. In 2019 10th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1-4. IEEE, 2019.

Paul E Black, Barbara Guttman, and Vadim Okun. Guidelines on
minimum standards for developer verification of software. arXiv
preprint arXiv:2107.12850, 2021.

Achim Brucker and Uwe Sodan. Deploying static application security
testing on a large scale. Sicherheit 2014—Sicherheit, Schutz und
Zuverldssigkeit, 2014.

Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Mor-
genthaler, and John Penix. Using static analysis to find bugs. IEEE
software, 25(5):22-29, 2008.
Sadeq Gholami and Zeineb Amri. Automated secure code review
for web-applications, 2021.

Hala Assal and Sonia Chiasson. Security in the software development
lifecycle. In Fourteenth symposium on usable privacy and security
(SOUPS 2018), pages 281-296, 2018.

55

[11]

[12]

[21]

[22]

23]

C. Bibliography

Michael Whitney, Heather Lipford-Richter, Bill Chu, and Jun Zhu.
Embedding secure coding instruction into the ide: A field study in
an advanced cs course. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages 60-65, 2015.

Jonathan M Spring, Allen Householder, Eric Hatleback, Art Manion,
Madison Oliver, Vijay Sarvapalli, Laurie Tyzenhaus, and Charles
Yarbrough. Prioritizing vulnerability response: A stakeholder-
specific vulnerability categorization (version 2.0). Technical report,
Carnegie Mellon University, 2021.

Common vulnerability scoring system (cvss). https://www.first!
org/cvss/v3.1/specification-document. Accessed: 2022-09-30.

The open web application security project® (owasp). https://
owasp.org/Topl0/. Accessed: 2022-09-30.

Matthew Bach-Nutman. Understanding the top 10 owasp vulnera-
bilities. arXiv preprint arXiv:2012.09960, 2020.

Gaoqi Liang, Junhua Zhao, Fengji Luo, Steven R Weller, and
Zhao Yang Dong. A review of false data injection attacks against
modern power systems. I[IEEE Transactions on Smart Grid,
8(4):1630-1638, 2016.

M Hassan, M Ali, T Bhuiyan, M Sharif, and S Biswas. Quantitative
assessment on broken access control vulnerability in web applica-
tions. In International Conference on Cyber Security and Computer
Science 2018, 2018.

John Steven. Threat modeling-perhaps it’s time. IEEFE Security &
Privacy, 8(3):83-86, 2010.

Michael A Howard. A process for performing security code reviews.
IEEE Security & privacy, 4(4):74-79, 2006.

Francesc Mateo Tudela, Juan-Ramén Bermejo Higuera, Javier
Bermejo Higuera, Juan-Antonio Sicilia Montalvo, and Michael 1
Argyros. On combining static, dynamic and interactive analysis
security testing tools to improve owasp top ten security vulnerability
detection in web applications. Applied Sciences, 10(24):9119, 2020.

Andrew Austin and Laurie Williams. One technique is not enough:
A comparison of vulnerability discovery techniques. In 2011 Inter-
national Symposium on Empirical Software Engineering and Mea-
surement, pages 97-106. IEEE, 2011.

Maria Christakis and Christian Bird. What developers want and
need from program analysis: an empirical study. In Proceedings of
the 31st IEEE/ACM international conference on automated software
engineering, pages 332-343, 2016.

Linghui Luo, Martin Schéaf, Daniel Sanchez, and Eric Bodden. Ide
support for cloud-based static analyses. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference

56

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://owasp.org/Top10/
https://owasp.org/Top10/

[24]

[27]

C. Bibliography

and Symposium on the Foundations of Software Engineering, pages
1178-1189, 2021.

Charanjot Singh, Nikita Seth Gaba, Manjot Kaur, and Bhavleen
Kaur. Comparison of different ci/cd tools integrated with cloud
platform. In 2019 9th International Conference on Cloud Computing,
Data Science € Engineering (Confluence), pages 7-12. IEEE, 2019.

Ashot A Grigorian, Slinger Jansen, and Gerard Wagenaar. A
competition analysis of software assurance tools. Secureseco, 2022.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319-349,
1987.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
Modeling and discovering vulnerabilities with code property graphs.
In 2014 IEEE Symposium on Security and Privacy, pages 590-604.
IEEE, 2014.

Jifi Slaby. Automatic bug-finding techniques for large software
projects. PhD’s thesis, Masaryk University, Marec, 2013.

Feras Al Kassar, Giulia Clerici, Luca Compagna, Fabian Yamaguchi,
and Davide Balzarotti. Testability tarpits: the impact of code
patterns on the security testing of web applications. 2023.

Compatibility program: Assessment and remediation tools.
https://cwe.mitre.org/compatible/category.html#
Assessment%20and}20Remediation’,20Tooll. Accessed: 2022-
11-05.

Source code analysis tools. https://owasp.org/www-community/
Source_Code_Analysis_Tools| Accessed: 2022-11-01.

Sonarqube downloads page. |https://www.sonarsource.com/
products/sonarqube/downloads/. Accessed: 2023-03-10.

Stack overflow developer survey 2022.
https://survey.stackoverflow.co/2022/
#most-popular-technologies—-language-prof, Accessed:
2023-01-10.

Codeql supported languages. https://codeql.github.com/docs/
codeql-overview/supported-languages-and-frameworks/. Ac-
cessed: 2023-03-10.

Joern supported languages. https://docs.joern.io/home#
supported-languages| Accessed: 2023-03-10.

Semgrep supported languages. https://semgrep.dev/docs/
supported-languages/| Accessed: 2023-03-10.

Sonarqube supported languages for custom rules.
https://docs.sonarqube.org/latest/extension-guide/
adding-coding-rules/. Accessed: 2023-03-10.

o7

https://cwe.mitre.org/compatible/category.html#Assessment%20and%20Remediation%20Tool
https://cwe.mitre.org/compatible/category.html#Assessment%20and%20Remediation%20Tool
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://www.sonarsource.com/products/sonarqube/downloads/
https://www.sonarsource.com/products/sonarqube/downloads/
https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://docs.joern.io/home#supported-languages
https://docs.joern.io/home#supported-languages
https://semgrep.dev/docs/supported-languages/
https://semgrep.dev/docs/supported-languages/
https://docs.sonarqube.org/latest/extension-guide/adding-coding-rules/
https://docs.sonarqube.org/latest/extension-guide/adding-coding-rules/

[38]
[39]

[40]

[41]

[46]

[47]

C. Bibliography

Zheyang Li. An empirical study on bash language usage in github.
Master’s thesis, University of Waterloo, 2021.

Shellcheck - a shell script static analysis tool. https://github,
com/koalaman/shellcheck. Accessed: 2023-01-12.

Oasis static analysis results interchange format (sarif). https://www|
oasis-open.org/committees/tc_home.php?wg_abbrev=sarif|
Accessed: 2023-01-13.

Codeql export formats. https://docs.github.com/
en/code-security/codeql-cli/codeql-cli-manual/
bgrs-interpret#primary-options. Accessed: 2023-04-01.

Joern export formats. https://docs. joern.io/exporting. Ac-
cessed: 2023-04-01.

Semgrep export formats. https://semgrep.dev/docs/
cli-reference/#semgrep-scan-command-options, Accessed:
2023-04-01.

Defectdojo supported import formats. |https://defectdojo!

github.io/django-DefectDojo/integrations/parsers/. Ac-
cessed: 2023-04-01.

Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and
Fabian Yamaguchi. Efficient and flexible discovery of php application
vulnerabilities. In 2017 IEEE european symposium on security and
privacy (EuroS€P), pages 334-349. IEEE, 2017.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and
Jie Hu. Vulpecker: an automated vulnerability detection system
based on code similarity analysis. In Proceedings of the 32nd annual
conference on computer security applications, pages 201-213, 2016.

Yaqin Zhou, Shangqging Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning com-
prehensive program semantics via graph neural networks. Advances
in Neural Information Processing Systems, 32, 2019.

Codeql libraries and queries. |https://github.com/github/
codeqll Accessed: 2023-02-01.

Joern query database. |https://github.com/joernio/joern/
tree/master/querydb. Accessed: 2023-02-01.

Semgrep rules registry. |https://github.com/returntocorp/
semgrep-rules| Accessed: 2023-02-01.

Sonarsource rules specification repository. https://github.com/
SonarSource/rspecl Accessed: 2023-02-01.

Kazi Zakia Sultana, Zadia Codabux, and Byron Williams. Examin-
ing the relationship of code and architectural smells with software
vulnerabilities. In 2020 27th Asia-Pacific Software Engineering
Conference (APSEC), pages 31-40. IEEE, 2020.

o8

https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif
https://docs.github.com/en/code-security/codeql-cli/codeql-cli-manual/bqrs-interpret#primary-options
https://docs.github.com/en/code-security/codeql-cli/codeql-cli-manual/bqrs-interpret#primary-options
https://docs.github.com/en/code-security/codeql-cli/codeql-cli-manual/bqrs-interpret#primary-options
https://docs.joern.io/exporting
https://semgrep.dev/docs/cli-reference/#semgrep-scan-command-options
https://semgrep.dev/docs/cli-reference/#semgrep-scan-command-options
https://defectdojo.github.io/django-DefectDojo/integrations/parsers/
https://defectdojo.github.io/django-DefectDojo/integrations/parsers/
https://github.com/github/codeql
https://github.com/github/codeql
https://github.com/joernio/joern/tree/master/querydb
https://github.com/joernio/joern/tree/master/querydb
https://github.com/returntocorp/semgrep-rules
https://github.com/returntocorp/semgrep-rules
https://github.com/SonarSource/rspec
https://github.com/SonarSource/rspec

[53]

[54]

C. Bibliography

Bruno Santos, Francisco Sério, Steven Abrantes, Filipe Sa, Jorge
Loureiro, Cristina Wanzeller, and Pedro Martins. Open source
business intelligence tools: Metabase and redash. In KDIR, pages
467-474, 2019.

Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Mas-
similiano Di Penta. Ci/cd pipelines evolution and restructuring:
A qualitative and quantitative study. In 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
471-482. IEEE, 2021.

Thorsten Rangnau, Remco v Buijtenen, Frank Fransen, and Fatih
Turkmen. Continuous security testing: A case study on integrating
dynamic security testing tools in ci/cd pipelines. In 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference
(EDOC), pages 145-154. IEEE, 2020.

Deluge-torrent disclosed vulnerabilities. https://www.cvedetails|
com/vulnerability-1list/vendor_id-16504/Deluge-torrent.
htmll Accessed: 2023-04-22.

99

https://www.cvedetails.com/vulnerability-list/vendor_id-16504/Deluge-torrent.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16504/Deluge-torrent.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16504/Deluge-torrent.html

Appendix D

Attachments
readme.tXt........coiiiinnnnn. Brief description of the attachments
metrics.zip... Archive of the SAST Metrics Aggregator repositor
template.zip........ Archive of the SAST CI Template repository?
artifacts.zip................. Findings from the rules evaluatio F
experiment............ Information collected during the experiment
assignment.zip.......... Assignment given to the participant
TUlES ..ttt Rules written by the participants
SUTVEY ettt eiiiiiiiieeeenns Questionnaire responses
TEXE it e Source code of the thesis
thesis.pdf.........cooiiiiiiiiiiiL Thesis in PDF format
thesis_assignment.pdf Thesis assignment in PDF format

Thttps://github.com/nightshiba/sast-metrics-aggregator

https://gitlab.com/nightshibal/sast-ci-template

3https://gitlab.com /nightshibal/sast-ci-template/- /merge_requests,/2

“https://gitlab.com/nightshibal /sast-ci-template/- /releases/sast-complexity-
experiment

60

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

-

Student's name: Golovyrin Leonid Personal ID number: 498960
Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Software

Bachelor’s thesis details

I.
-

Bachelor’s thesis title in English:

Analysis of tools for static security testing of applications

Bachelor’s thesis title in Czech:

Analyza nastrojd pro statické testovani bezpecnosti aplikaci

Guidelines:

1) Explain the main considerations of security of software - threats, vulnerabilities, modeling, evaluation.

2) Discuss theoretical approaches to automated solutions to the problems of software security. Focus particularly on the
concept of static application security testing (SAST), including the integration of SAST tools in a project's Continuous
Integration/Continuous Delivery (CI/CD) pipeline.

3) Research the current functionality and limitations of commonly used general purpose SAST tools.

4) Design and implement using GitLab CI a testing environment (preferably using GitLab CI or other open repository) that
could be used to conduct a comparison of the selected tools.

5) Implement the designed environment and use it to analyze the suitability of the researched tools for the purpose of
continuous security testing of applications throughout their development lifecycle.

6) Discuss your results, provide recommendations to users.

Bibliography / sources:

Salter, C., Saydjari, O. S., Schneier, B., Wallner, J.: Toward A Secure System Engineering Methodology. Proceedings of
the 1998 workshop on New security paradigms. 1998.

Shostack, A.: Threat Modeling: Designing for Security. Wiley, 2014, 9781118809990.

Howard, M., LeBlanc, D.: Writing Secure Code, 2nd Edition. Microsoft Press, 2003, 9780735617223.

Chess, B., West, J.: Secure Programming with Static Analysis. Addison-Wesley. 2007. ISBN 978-0-321-42477-8.

Name and workplace of bachelor’s thesis supervisor:

Ing. Josef KokeS Department of Information Security FIT

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 30.08.2022 Deadline for bachelor thesis submission:

Assignment valid until: 19.02.2024

Ing. Josef Koke$ Head of department’s signature prof. Mgr. Petr Péata, Ph.D.
Supervisor’s signature Dean'’s signature

CVUT-CZ-ZBP-2015.1

© CVUT v Praze, Design: CVUT v Praze, VIC

[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Background
	Reasons
	Objectives
	Delimitations

	Application security theory
	The phenomenon of vulnerabilities
	Vulnerability scoring systems
	Different vulnerability types
	Security Misconfiguration
	Injection
	Broken Access Control
	Server Side Request Forgery

	Manual security testing
	Automated security testing

	SAST tools
	Overview of SAST workflow
	Analysis configuration
	Source code analysis
	Findings management

	Integration methods
	Common differences between tools
	Analysis engine
	Analysis engines design
	Rule language syntax
	Extensibility
	Rule maintenance

	Existing state-of-the-art SAST tools
	Semgrep Open Source (OSS)
	Joern
	SonarQube Community Edition
	CodeQL

	Rule languages

	Identifying most promising commonly used SAST tools
	Technologies coverage
	Engine capabilities
	Integration possibilities
	Scanning environment
	Cooperation with the VMS

	Metrics of rules quality
	Rules quantity
	Rule updates frequency

	Identifying the tools for integration

	Example SAST project implementation
	Project design
	GitLab pipeline
	SAST usages
	CodeQL integration
	Semgrep integration
	SonarQube integration

	Analysis of most promising SAST tools
	Evaluating default rules in a real-world scenario
	Choosing the target project
	Acquiring the results
	Analysis of the findings

	Custom rules usability experiment
	Experiment goals
	Experiment setup
	Results

	User recommendations

	Conclusion
	Goals fulfillment
	Future work

	Other Considered SAST Tools
	Guide for setting up SAST CI Template
	Bibliography
	Attachments
	Project Specification

