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Abstract

This thesis is devoted to the maximization
of entropy under entropic constraints.
First, the objectives and motivation be-
hind will be discussed. Then we will focus
on parts of information theory essential
for the project purposes.
After, we will delve into the analysis of the
problem posed and the proposed method
of its approximation along with the theory
behind it. Besides, we will also inspect the
possibility and expediency of the stated
problem relaxation, as it might be a very
powerful technique for the elimination of
non-convex constraints.
We will demonstrate the implementation
part afterward, as well as the testing ap-
proach, and examine the resulting approx-
imation quality using real data measure-
ments.

Keywords: Connected information,
Entropy maximization, Stochastic
systems, Numerical optimization

Supervisor: doc. Ing. Tomáš Kroupa,
Ph.D.
Artificial Intelligence Center, FEE

Abstrakt

Tato práce se věnuje maximalizaci entro-
pie za entropických omezení.
Nejprve budou diskutovány cíle a moti-
vace. Poté se zaměříme na části teorie
informace podstatné pro účely projektu.
Dále se ponoříme do analýzy zadaného
problému a navržené metody jeho apro-
ximace spolu s teorií, která za ní stojí.
Kromě toho také prověříme možnost a
účelnost uvedené relaxace problému, ne-
boť by se mohlo jednat o velmi účinnou
techniku pro eliminaci nekonvexních ome-
zení.
Následně předvedeme implementační část
i testovací přístup a prověříme výslednou
kvalitu aproximace pomocí měření reál-
ných dat.

Klíčová slova: Spojená informace,
Maximalizace entropií, Stochastické
systémy, Numerická optimalizace

Překlad názvu: Maximalizace entropie
za entropických omezení
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Chapter 1

Introduction

Nowadays we have access to massive amounts of data. As an example, it is
possible to get measurements from the human body through sensors, from
very advanced and precise to very simple, accessible to the general public.
A lot of network transactions might also be captured and used as throughput
or latency measurements. Data can be in diverse forms and come from
different sources.
In all fields, it is very important to have a considerable amount of data. Data
leads to research, and with the right research, helpful development follows.
However, the provided data needs to be correct and relevant in order to not
be detrimental to the final result. That’s why it is extremely important to
analyze data and its structure, to measure and understand the dependencies
between its pieces in order to unlock its full potential.

One of the important data methods is the maximum entropy approximation,
which is highly instrumental in the analysis of stochastic systems.
The principle of maximum entropy [7] states that the most probable state of
the system is the one that retains the most uncertainty, thus, as we discuss
further in this thesis, it is the state with the maximum possible entropy.
It is widely used in a vast amount of disciplines [3] such as statistics, data
compression, communication, machine learning [8], image processing [5] and
many more.

In the next chapter, we will study basic measures from information theory.
Information theory is a branch of mathematics and computer science that
deals with the transmission, processing, and storage of information and data.
It is a fundamental field in many areas of applied mathematics and electrical
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.......................................... 1.1. Motivation

engineering.
In information theory, entropy is an essential notion that measures random-
ness within a dataset: higher entropy means the data is more uncertain or
unpredictable. Entropy can also be subject to certain constraints, in order to
limit and direct these predictions towards ways that are useful and relevant,
depending on the scope.

In this thesis, the reason for calculating entropy approximation is to obtain
connected information – another information-theoretic quantity that nowadays
could be used to analyze the structure and dynamics of large-scale systems
and was designed to measure higher-order interactions in stochastic systems.

Computing connected information in large and complex systems can be
a challenging task: it often involves dealing with massive and complex datasets,
which can be computationally intensive and require powerful hardware and
sophisticated algorithms. In this thesis, we will delve into the problem and
implementation of connected information computation.

1.1 Motivation

We will look for computationally efficient algorithms for solving the problem
of connected information calculation and will further study approximation
methods based on advanced techniques of information theory.

1.2 Objectives

The first objective of this thesis is to study computational approaches.
The second is implementing the module in Julia language with the chosen
approximation algorithm. Furthermore, we will compare the approximations
obtained using the developed module to the results from the “Network
inference and maximum entropy estimation on information diagrams” [9]
paper.
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Chapter 2

Entropy and Connected Information

Information theory is a branch of applied mathematics and electrical engi-
neering that deals with the representation, transmission, and manipulation
of information. It was developed in 1948 by Claude Shannon in his seminal
paper “A Mathematical Theory of Communication” [10] published in
the Bell System Technical Journal. Shannon’s work laid the foundation for
the field of information theory by defining the concepts of entropy and mutual
information and providing a mathematical framework for understanding
the limits of data compression and transmission over noisy channels.

Information theory has many important applications in a wide range of
fields, including communication systems, data compression, cryptography,
artificial intelligence, and statistics.
In this chapter, we will briefly cover the very basics of this field. The definition
of Shannon’s measures, information diagrams and entropic vectors in
this chapter is based on the “Information Theory and Network Coding” book
[12].

2.1 Shannon’s Information Measures

Information measures form the foundation of information theory. We begin
this chapter by introducing some of the essential Shannon’s information
measures important for this thesis’s purposes.

3



................................ 2.1. Shannon’s Information Measures

In this thesis, we will employ the following notation. A discrete random
vector X “ pX1, . . . , Xnq has a joint probability distribution p and the sample
space X “ X1 ˆ ¨ ¨ ¨ ˆ Xn. Let N “ t1, . . . , nu. For any joint probability
distribution p of X and nonempty A Ď N , we define the random vector
XA “ pXiqiPA with the sample space

XA “
ą

iPA

Xi.

Then, the marginal probability distribution of XA is pA such that

pApxq “
ÿ

yPXĀ

ppx, yq, x P XA,

where Ā “ NzA. In case of a few random variables composing the random
vector, such as pX, Y, Zq, we may occasionally use the alternative and more
natural notation pXY Z to denote the corresponding probability distribution.
Definition 2.1. The entropy of a discrete random variable X with a probability
distribution p is the number

HpXq “ ´
ÿ

x

ppxq log ppxq, (2.1)

where the logarithm has base 2 and, as a convention, 0 log 0 “ 0.

(a) : Graph for a binary variable. (b) : Graph for a ternary variable.

Figure 2.1: Entropy graph

Definition 2.2. The joint entropy of two random variables X and Y with
a joint probability distribution p is the number

HpX, Y q “ ´
ÿ

x,y

ppx, yq log ppx, yq. (2.2)

Generalizing, the joint entropy of an n-dimensional random vector with
a joint probability distribution p is

HpX1, . . . , Xnq “ ´
ÿ

x1,...,xn

ppx1, . . . , xnq log ppx1, . . . , xnq. (2.3)

4



................................ 2.1. Shannon’s Information Measures

Entropy has always a non-negative value, which is easy to see from
the definition. This property is also supported by the idea of entropy.
The entropy of a random variable is the amount of information in the variable.
Similarly, the joint entropy of n variables is the average amount of information
gained from knowing the outcome of those variables.

We will also need another information measure for a better understanding
of the problem.
Definition 2.3. The mutual information of two random variables X and Y is
the number

IpX; Y q “
ÿ

x,y

pXY px, yq log pXY px, yq

pXpxq ¨ pY pyq
, (2.4)

where the sum above goes over x, y with pXY px, yq ą 0.

To define mutual information for more than two variables we should also
familiarize ourselves with conditional mutual information.
Definition 2.4. For three random variables X, Y , and Z, the conditional
mutual information between X and Y conditioned on Z is the number

IpX; Y |Zq “
ÿ

x,y,z

pXY Zpx, y, zq log pZpzqpXY Zpx, y, zq

pXZpx, zq ¨ pY Zpy, zq
, (2.5)

where the sum above goes over x, y, z with pXY Zpx, y, zq ą 0.

Then we can inductively define the mutual information for more than two
variables as follows:
Definition 2.5. The mutual information of n ` 1 random variables is

IpX1; . . . ; Xn`1q “ IpX1; . . . ; Xnq ´ IpX1; . . . ; Xn|Xn`1q. (2.6)

Moreover, the mutual information can be expressed in terms of entropy
as well:

IpX; Y q “ HpXq ` HpY q ´ HpX, Y q. (2.7)

Introduced information measures could be pictured as it is shown on
a diagram 2.2 below.

Further details and reasoning behind diagram construction can be found
in Raymond W. Yeung’s book [12].

5



................................ 2.1. Shannon’s Information Measures

HpX1q

HpX2q

IpX1; X2q

IpX1; X2; X3q

IpX2; X3q

IpX1; X3q

HpX3q

X1 X3

X2

Figure 2.2: Entropy and mutual information for three variables.

While entropy can describe the amount of information within one random
variable, mutual information measures the amount of information that one
random variable contains about another, in other words, how dependent on
each other variables are.
Mutual information, unlike entropy, can have a negative value. This can be
easily shown on an example with 3 random variables, where one variable is
dependent on two others.
Example 2.6. Let X1, X2, X3 be random binary variables.
Define X3 “ X1 ‘ X2, where ‘ is the XOR function, and every possible
outcome has the same chance of happening, in other words, all possible
events have the same probability. The joint distribution of those variables is
presented in Table 2.1.

X1 X2 X3 ppx1, x2, x3q

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

Table 2.1: The joint distribution of X1, X2, X3, where X3 “ X1 ‘ X2.

From the entropy definition and simple calculations, we can verify

6



............................ 2.2. Entropic vectors and submodular functions

the equations:

HpXiq “ 1 @i P t1, 2, 3u (2.8)
HpXi, Xjq “ 2 @i, j P t1, 2, 3u, i ‰ j (2.9)

HpX1, X2, X3q “ 2 (2.10)
IpXi; Xjq “ 0 @i, j P t1, 2, 3u, i ‰ j (2.11)

IpX1; X2; X3q “ IpX1; X2q ´ IpX1; X2|X3q ´ 1 (2.12)
IpX1; X2|X3q “ 1 (2.13)

As we can conclude from the information diagram and example, the more
independent the random variables, the bigger is the joint entropy value and
the smaller is the mutual information value. Mutual information equals zero
when no information is gained within interactions, namely when there is no
dependency between all variables under consideration. Similarly, negative
mutual information indicates redundant interactions, where knowing a subset
of variables reduces the information gained from knowing the others.

It also could be seen from equations (2.11) and (2.13) that conditioning
on a variable can introduce a dependency. And, as described above, with
appearing dependency the mutual information has also a bigger value.

2.2 Entropic vectors and submodular functions

In order to characterize the properties of the problem stated in the next
chapters, we will present another possible representation of entropy.
Definition 2.7. Let p be a joint probability distribution of a random vector
X “ pX1, . . . , Xnq. The entropic vector is a vector hp with coordinates

hppAq “ HpXAq, (2.14)

for all nonempty A Ď N , and hppHq “ 0. Entropy region Γ˚
n is the set of

all entropic vectors, that is,

Γ˚
n “ thp | p is a probability distribution of pX1, . . . , Xnq on some sample spaceu.

(2.15)

To describe some of the characteristics of the entropic vectors, we will
introduce the following properties. We will denote the set of all subsets
as PpNq.

7



............................ 2.2. Entropic vectors and submodular functions

A function h : PpNq Ñ R is called. grounded if hpHq “ 0,.monotone if hpAq ď hpBq for all A, B Ď N with A Ď B,. submodular if hpA Y Bq ` hpA X Bq ď hpAq ` hpBq, for all A, B Ď N .
Definition 2.8. A polymatroid h : PpNq Ñ R is a grounded, monotone and
submodular function.

Let Γn be the set of all polymatroids on PpNq. Note that every h P Γn is
nonnegative, that is, hpAq ě 0 for all A Ď N .
Moreover, for every α1, α2 ě 0 and all h1, h2 P Γn, we obtain α1h1`α2h2 P Γn.
In other words, the set Γn Ď RPpNq is a convex cone. Furthermore, Γn is
polyhedral since it is defined by finitely-many linear inequalities.

Since every h P Γn is a nonnegative function, Γn does not contain
a nontrivial linear subspace. Therefore Γn is said to be a pointed convex cone.
We call Γn a polymatroid cone (of order n).

It can be shown that n`2n´2`

n
2
˘

monotonicity and submodular inequalities
are enough to characterize Γn. Specifically, those are minimal submodular
inequalities, for all i, j P N , i ‰ j, and all A Ď Nzij,

hpA Y iq ` hpA Y jq ě hpA Y ijq ` hpAq, (2.16)

and the following monotonicity inequalities for all i P N :

hpNq ě hpNziq. (2.17)

A Shannon-type inequality is any inequality which is a nonnegative linear
combination of inequalities (2.16)–(2.17). Any Shannon inequality of
the form (2.16)–(2.17) is called elemental (or minimal).

The basic examples of vectors belonging to Γn are entropic vectors.
Proposition 2.9. Γ˚

n Ď Γn for every n ě 1.

This proposition was proved by Zhang and Yeung in the “On characteriza-
tion of entropy function via information inequalities” paper [13].

8



.....................................2.3. Connected Information

2.3 Connected Information

We will be dealing with the connected information measure based on entropic
constraints, which was investigated in “Network Inference and Maximum
Entropy Estimation on Information Diagrams” paper [9]. We will occasionally
write Hppq in place of HpXq, where p is a probability distribution of X.
Definition 2.10. Let p be a joint probability distribution of a random vector
X “ pX1, . . . , Xnq. The connected information of order k “ 2, . . . , n is
the number

Ikppq “ Hpqk´1q ´ Hpqkq, (2.18)
where qk is the maximum entropy probability distribution of X “ pX1, . . . , Xnq

among those consistent with all the one through k-variate marginal entropies.

It follows from the properties of maximization that

Hpqk´1q ě Hpqkq. (2.19)

Hence, the connected information of any order can have only a non-negative
value.

As we can see from the definition, the connected information is derived
from the entropies of marginal probability distributions of order k with
possibly different k-variate entropies. Applying the idea of entropy, we can
conclude that connected information of order k represents the amount of
information contained in k-dimensional dependencies. In other words, how
much information about k random variables is already obtained knowing
the results for k ´ 1 variables.
Example 2.11. Let’s consider the same probability distribution
as in 2.6 example corresponding to X3 “ X1 ‘ X2 and calculate connected
information for it.

First, we will find Hpq1q. Namely, the maximum possible entropy distri-
bution for random vector X “ pX1, X2, X3q that satisfies HpXiq “ 1. As it
follows from entropy properties, the maximum entropy for random variables
can be achieved in case they are independent of each other. This state can
be illustrated with the information diagram 2.3.

Assuming that, the entropy of random vector X simply equals to the sum
of entropies of individual variables, HpXq “ HpX1q ` HpX2q ` HpX3q “ 3.

To find Hpq2q, the probability distribution of random vector X should

9



.....................................2.3. Connected Information

HpX2qHpX1q

HpX3q

Figure 2.3: Information diagram for three independent random variables.

satisfy not only the equalities with entropies of order 1, but also constraints
HpXi, Xjq “ 2, where i ‰ j. We can notice that when random variables are
independent those equalities hold. Therefore, Hpq2q “ 3.

Finally, the only possible value for Hpq3q is 2.

Having all maximum entropies we can now calculate connected information
from the definition:

I2ppq “ Hpq1q ´ Hpq2q “ 0, (2.20)
I3ppq “ Hpq2q ´ Hpq3q “ 1. (2.21)

10



Chapter 3

Connected Information approximation

The connected information could be defined differently, respecting other
types of constraints for entropy maximization. The problem of calculating it,
therefore, can differ based on the definition of connected information. In this
chapter, we will formulate an optimization problem for the definition from
the previous section and one similar to it to compare and understand
the key distinctions. Then we will take a look at possible constraints’ relax-
ations and the reasons those weren’t used. Finally, we will discuss chosen
linear programming solution to approximate maximum entropy.

3.1 Problem with marginal constraints

First, we will take a look at an alternative definition of connected information.
Definition 3.1. Let p be a joint probability distribution of a random vector
X “ pX1, . . . , Xnq. The connected information of order k “ 2, . . . , n is
the number

Îkppq “ Hpq̂k´1q ´ Hpq̂kq, (3.1)

where q̂k is the maximum entropy probability distribution of X “ pX1, . . . , Xnq

among those consistent with all the one through k-dimensional marginals of
the probability distribution p.

Let PkpNq be the set of all subsets of N with cardinality smaller than k.

11



................................ 3.2. Problem with entropy constraints

The problem of finding Hpq̂kq could be then stated as follows:

Maximize Hpqq subject to q P Π̂k
p, (3.2)

where Π̂k
p “ tq | qA “ pA for all A Ď PkpNqu.

Specifically, the nonlinear programming formulation of this problem is
given by:

Maximize Hpqq (3.3)
subject to qA “ pA, @A Ď PkpNq. (3.4)

The difference between 3.1 and 2.10 definitions is in the feasible set formed
by the constraints on probability distributions.

In particular, the problem with marginal constraints is considered to be
easier to solve because it is essentially a convex optimization problem in
which the constraints are linear equations.

This is a ubiquitous convex optimization problem for which many solution
techniques exist [4]. The problem can be solved by standard numerical
techniques for convex optimization problems as well, for instance, by Newton’s
methods. For more details about this method and others see the book
“Numerical algorithms: methods for computer vision, machine learning, and
graphics” [11].

3.2 Problem with entropy constraints

Returning to the first definition of connected information 2.10, we will de-
fine accordingly the problem of finding corresponding maximum entropy
approximations.

We will consider the set Πk
p of all probability distributions q which have

the entropies of at most k-dimensional marginals of p,

Πk
p “ tq | HpqAq “ HppAq for all A Ď PkpNqu. (3.5)

Then the problem of entropy maximization under the entropy constraints
could be defined as

Maximize HpXqq subject to q P Πk
p. (3.6)

12



................................ 3.2. Problem with entropy constraints

We will refer to this problem as the primal problem in this thesis.

Figure 3.1: Feasible set of the primal problem for a binary variable.

The objective function is the same entropy function as the one from
the previous section 3.1. However, the constraints contain entropy functions
and couldn’t be described as linear. Furthermore, those constraints form
a non-convex feasible set and, thereby, increase the computation difficulty.

Moreover, we can notice that Π̂k
p Ď Πk

p, as the equality of distribution
marginals imply the equality of corresponding entropies.

3.2.1 Relaxation of primal problem constraints

The primal problem is considered difficult mainly because equality constraints
form a non-convex set. In some cases, the relaxation of equality constraints
to inequality could make the feasible set convex and therefore tremendously
alleviate the problem.

To begin with, we will try to transform equality constraints from primal
problem 3.5 HpqAq “ HppAq to inequality constraints HpqAq ě HppAq.

13



........................................ 3.3. Approximation

As a result, this relaxation leads to an optimization problem with a convex
feasible set, but the optimal value of the resulting problem will be different
for most of the cases. Maximum possible entropy, the one that could be
acquired from independent random variables, always satisfies the constraints
and always is in a feasible set. Therefore this relaxation can not be used for
reducing computational complexity.

Another possibility for relaxation would be to transform constraints (3.5)
to HpqAq ď HppAq instead. However, those constraints won’t simplify com-
putation, because they form a non-convex feasible set as well.

Both constraint relaxations are presented for a random binary variable on
the graphs below (3.2).

(a) : Relaxation to HpqAq ě HppAq. (b) : Relaxation to HpqAq ď HppAq.

Figure 3.2: Feasible set after constraints relaxation.

3.3 Approximation

After exploring the approaches discussed in the previous section, we have
concluded that they are not suitable for the solver implementation. Therefore,
we propose another approach that shows itself more applicable to this problem.

It follows from the problem statement (3.5) that

Π1
p Ě ¨ ¨ ¨ Ě Πn

p . (3.7)

For each k P N the set Πk
p is nonempty (p P Πk

p), however, Πk
p is typically

14



........................................ 3.3. Approximation

not a convex set. Since most non-convex problems are extremely difficult
to solve, we need to find computationally tractable approximations to (3.6).
This is based on the observation that both the objective and the constraints
of (3.6) depend only on the values of entropy. Therefore, we will use
the well-known properties of entropic vectors to transform the original prob-
lem (3.6) into the optimization problem involving only variables representing
entropies.
The potential drawback is that there may be no probability distribution
associated with optimal solutions to such a general problem. However,
the resulting optimization problem will be linear and it will provide the upper
bound on the value of the optimal solution to (3.6).

Specifically, for each k P N , we consider the linear programming problem
with variables hpAq for A Ď N , where the objective to maximize is the linear
function representing a single variable hpNq, and where the constraints are

. h P Γn, (entropic vector). hpAq “ hppAq for all A P PkpNq, (constraints from (3.5)). hpAq ď log2 |XA| for all A P PpNqzPkpNq, (the upper bound on the
entropies of marginals). Zhang-Yeung inequalities (in case n ě 4).

Let n ě 4. In this case, Zhang and Yeung showed that Γ˚
n ‰ Γn by

exhibiting a non-Shannon type inequality. Introduced in “On characterization
of entropy function via information inequalities” paper [13], Zhang-Yeung
inequality could be formulated as

3rhpikq ` hpilq ` hpklqs ` hpjkq ` hpjlq

´ hpiq ´ 2rhpkq ` hplqs ´ hpijq ´ 4hpiklq ´ hpjklq ě 0
(3.8)

where i, j, k, l P N are different elements. Note that there are six instances
of this inequality for n “ 4, because i index can be swapped with j, and k
index can be swapped with l reciprocally.

The resulting linear program is always feasible and its optimal value provides
an upper bound on the optimal value of (3.6).
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Chapter 4

Implementation

In the previous chapters, we could see that the connected information can be
easily calculated given the maximum entropies of the corresponding orders.

In this chapter, we will go through part of the implementation of this
project, as well as tests, analyze the time complexity of the resulting program
and evaluate performance on real data originating from “Network inference
and maximum entropy estimation on information diagrams” [9] paper.

For the sake of brevity, some parts of the code will be omitted. Full
implementation including tests, examples and documentation can be found
in the GitHub repository [6].

4.1 Code and implementation details

This project is implemented in Julia 1.7. For solving the linear programming
problems, JuMP package for Julia and MOSEK solver [2] were used. Those
tools provide algorithms for solving LP problems, thus we only need to
correctly set objective function, variables and constraints.

We will take a closer look at the function computing maximum of entropy.
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................................ 4.1. Code and implementation details

function estimate_max_entropy(
k::Int64,
distr_cards::Vector{Int64},
entropy_constraints::Dict{Vector{Int64}, Float64};
lower_bound = false)::Float64

In this function definition, the arguments are:. k – maximal possible cardinality of marginals of entropy from constraints,. distr_cards – probability distributions cardinalities of corresponding
random variables,. entropy_constraints – entropy values,. lower_bound – optional argument, if true, computes the lower bound of
approximation, otherwise calculates the upper bound.

Returned float value is the estimated entropy for given inputs.

Following the approach from the previous chapter (3.3) we use entropy
vectors as variables. Those will be refed as generators later.

First, we initialize the JuMP model that uses the MOSEK solver.

model = Model(
optimizer_with_attributes(Mosek.Optimizer, "QUIET" => true))

Then, we define 2n ` 1 variables for optimization, the same as the number of
generators for n random variables. Based on the entropy definition, a lower
bound of their values is set to 0.

# non-negativity constraints
# hpAq ě 0, @A P PpNq

@variable(model, h[1:(2^distributions_n + 1)] >= 0)

After, we gradually introduce constraints described in the approximation
section (3.3).
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................................ 4.1. Code and implementation details

# monotonicity (part of h P Γn)
# hpNq ě hpNziq, @i P N
@constraint(model, h[subset_A] >= h[subset_B])
...
# submodularity (part of h P Γn)
# hpAq ď hpBq ` hpAzBq, @B Ď A
@constraint(

model,
h[subset_intersect] + h[subset_union] <= h[subset_C] + h[subset_D])

...
# given entropy constraints
# hpAq “ hppAq, @A P PkpNq

@constraint(model, h[subset_A] == entropy_constraints[subset_A])
...
# cardinality constraints
# hpAq ď log2 |Xa|, @A P PpNqzPkpNq

@constraint(model, h[subset_A] <= log(2, cardinality))
...
if lower_bound

# Ingleton inequality
@constraint(

model,
h[it] + h[jt] + h[il] + h[tl] - h[ij] - h[t] - h[l]
- h[itl] - h[jtl] >= 0)

else
# Zhang-Yeung inequalities
@constraint(

model,
3(h[it] + h[il] + h[tl]) + h[jt] + h[jl] - h[i]
- 2(h[t] + h[l]) - h[ij] - 4h[itl] - h[jtl] >= 0)

end

Finally, we define the objective function for the model and solve the problem

# Maximize HpX1, X2, . . . , Xnq

@objective(model, Max, h[subset_to_index[collect(1:distributions_n)]])
optimize!(model);
return objective_value(model)

The returned value is the lower or upper bound of entropy, depending on
the passed lower_bound parameter.

The mentioned module additionally implements several other functions,
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....................................... 4.2. Time complexity

however, most of them are based on the above-described function.

4.2 Time complexity

From the implementation point of view, the discussed function can be divided
into two parts. The first one is setting the constraints for the model for
the solver, the second is finding the solution for the model itself.

During the function execution constraints are separately set for each vari-
able. There are the same amount of variables as the number of subsets we
can obtain from generators. It equals 2n, where n is the number of generators,
or, similarly, the number of random variables. Setting constraints takes
Op2pn ´ 1qq, thus, overal, setting constraints takes Op2npn´1qq.

As for the MOSEK solver, even though it is not possible to say the exact
time complexity, it is, in practice, guaranteed [1] to be less than 200 ˚ Opn3q.

Although time measurements on a random machine are not representative
and time results shouldn’t be used as an algorithm efficiency reference,
nevertheless, we examine time on one particular machine to have a rough
idea of calculation duration. Those experiments can be found and reproduced
in the GitHub repository [6] examples/time_performance.ipynb Jupiter
Notebook.

While the function time complexity itself depends only on the number of
random variables, precomputation of data also rely on |X | and dimensions of
a probability distribution, because we need to calculate entropic constraints
for each subset of random variables. Precomputation time complexity in our
implementation is Op2n ˚

śn
i“1 |Xi|q.

4.3 Testing

The implementation approach’s correctness was tested on smaller examples
located in the same repository [6] as the main module in the test directory.
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.............................4.4. Quality of approximation on the real data

The first test is based on XOR example 2.6 described through the theory
part of the thesis. The second example represents the randomly generated
probability distribution for 3 random variables with cardinalities 2, 3 and 4
respectively.

These examples as well can be found in exapmles/example.ipynb Jupiter
Notebook.

4.4 Quality of approximation on the real data

In order to evaluate the quality of the approximation, we used the same data
as in “Network inference and maximum entropy estimation on information
diagrams” [9] paper to compare the resulting approximations of connected
information. The measured neuroimaging data represents resting-state human
brain networks.

Since the provided data measurements are continuous, we first discretized
them to 2, 3 and 4 levels (bins) the same way as it was done in the mentioned
paper [9], that is, using equiquantal (equiprobable) binning. After that, it was
needed to calculate all the possible entropies for discretized data to utilize as
constraints for the model in the module. Finally, we run the approximation
function with acquired data.

In the paper [9] the total correlation IN “
ř

i HpXiq ´ HpXq was de-
fined together with the ratios Ik{IN , measuring this way the percentage of
information contained in k-dimensional measurements.

Following their approximation approach it could be seen, that as opti-
mization variables were used so-called atoms and subsequent optimization
was conducted under non-negativity constraints for them. However, some
information measures, specifically mutual information, represented by atoms
can be negative. Therefore, the feasible set of this problem does not cover all
possible entropies. The resulting entropy approximation is, thus,
the lower bound of the actual optimal value of maximum entropy and sub-
sequent connected information has to be the upper bound of the optimal
connected information value.

As opposed to the approach from paper [9], we used generators as variables
for the optimization problem. Because generators represent entropy, which is
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.............................4.4. Quality of approximation on the real data

always non-negative, the feasible set covers all possible entropies consistent
with constraints. However, because we are modeling only properties of
entropic vectors, there is no guarantee that probability distribution with such
entropy would exist. That means that we are approximating the upper bound
of entropy and, consequently, the lower bound of connected information.
Therefore, our resulting numbers should have a lower value comparing to
the approximations from the paper [9].

Discretization level Our results Observations from the paper
I2 IN I2{IN I2{IN

2-level 1.3721 2.1006 0.6532 0.93
3-level 2.1332 3.7126 0.5745 1.00

Table 4.1: Comparison of approximations.

The results of our approximation turned out to have a smaller value than
approximations from the paper [9], meaning that results are consistent.

The calculations of experiments for 2, 3 and 4-level discretized data, both
regular and its surrogate, up to 10th order of connected information approxima-
tion, could be found in module repository [6] in examples/DMN_data_results.ipynb
Jupiter Notebook.
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Chapter 5

Conclusion

We approximated the stated problem of maximizing entropy under the entropic
constraints using the information theory technics described in
the theory chapter. The obtained formulation has entropic variables and
linear constraints based on the entropy vector’s properties.

As an implementation output of this thesis, we got an LP-based solver in
Julia language. After implementing it for smaller instances of the problem,
we managed to scale it, making the solver generic in terms of the input size
of parameters. Although, as it was assessed later, the time complexity of
the solver heavily depends on the number of distributions and precomputation
time complexity, on top of it, also depends on the size of the sample space
of given distributions. Therefore it is still recommended to choose a number
of random variables and their cardinality wisely, not to drastically increase
the solver runtime. Besides, in the same module were also implemented
helper functions, such as the computation of all entropies for constraints or
discretizing given data to the required level.

Further, evaluating the same data, we compared the results of our approxi-
mation and once presented in the mentioned paper [9]. Results turned out
to be consistent because our resulting lower bound of connected information
was indeed less than approximated upper bound from the paper [9].
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Appendix A

Attachments

ConnectedInformation.zip......Archive of the module repository1

text.....................................Source code of the thesis
Thesis_Text.pdf ........................ Thesis in PDF format
Thesis_Assignment.pdf ...... Thesis assignment in PDF format

1https://github.com/ann-ib/ConnectedInformation.jl
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