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Abstrakt / Abstract

Tato práce představuje návrh a im-
plementaci komplexního systému pro
vytváření víceuživatelských zážitků ve
virtuální realitě (VR). Práce se pri-
márně zaměřila na vývoj pluginu zalo-
ženého na enginu OpenXR se zvláštním
důrazem na jeho integraci se systémem
Unity. Efektivita systému byla vyhod-
nocena prostřednictvím kvalitativního
testování uživateli a kvantitativního
testování bez uživatelů.

Jádro práce se zaměřuje na různé
úvahy a rozhodnutí vykonaná při vývoji
a na popis různých systémů, které spolu
vzájemně interagují. Nejzajímavější
částí systému je kalibrační algoritmus,
ale mimo něj bylo třeba vyvinout a
otestovat i řadu dalších podpůrných
systémů. Implementace byla provedena
pro engine Unity pomocí zásuvného mo-
dulu OpenXR v programovacím jazyku
Rust. Výsledná aplikace podporuje
samostatné VR headsety i Virtuální
realitu pro PC.

This thesis presents the design and
implementation of a comprehensive sys-
tem to create multi-user virtual reality
(VR) experiences. The primary focus
of this work was developing an engine-
agnostic OpenXR-based plugin, with a
specific emphasis on integrating it with
Unity. The effectiveness of the system
was evaluated through qualitative user
testing and quantitative testing without
users.

The core of the thesis focusses on var-
ious considerations and choices taken
while developing the thesis and on the
description of various systems that
interact with each other. The most
interesting part of the system is the
calibration algorithm, but a lot of other
supporting systems were also developed
and tested. Implementation is done for
the Unity engine using the OpenXR
plugin in the Rust programming lan-
guage. The resulting application works
across both standalone and PC-based
headsets.
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Chapter 1
Introduction

Imagine you have an idea of a perfect virtual reality (VR) experience. It could be a
multiplayer VR arena shooter à la laser tag, an exhibition in an art gallery, or an escape
room. You want it to be for multiple people in the same room - in a shared physical
space.

How would you create such an experience? What problems do you need to address
before you make your idea a reality?

Let us break it down into different parts: You have multiple users, in the same space,
each wearing their own headset. Each headset has its own computer1 and depending
on the headset, possibly has its own tracking system with separate origins. The author
of such VR experience has to make all of that talk to each other and align, on top of
creating the VR experience itself.

You have to create a local network real-time multiplayer application, which depending
on the application in question usually has an existing off-the-shelf solution. Second,
you have to make sure that the coordinate systems of each headset align and that the
application is compatible with the headsets you are targeting.

VR technology progressed considerably since the days of first head-mounted displays
(HMDs)[1], but requirements for implementing good same-room multi-user experiences2
is still not very well documented — this work aims to fill that gap.

Figure 1.1. Illustration generated using Midjourney AI.

1 The headset is either attached to a computer in case of PC Virtual Reality, or the headset is its own
computer in the case of standalone headsets.
2 Users being in same physical space as opposed to connected online.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Goals
The primary goal of this thesis is to create a plugin for one game engine, which facilitates
the creation of multiplayer VR experiences in the same room. The plugin will do
everything from calibration to applying the calibration, and finally a basic device and
object synchronisation. The goal is for it to provide everything you need to implement
multiplayer in static environments.

The final goal is to evaluate the implementation with and without users. To do that,
an application has to be implemented. It can be as simple as multiple users in the
same room which may or may not correspond with the physical room they are in. The
evaluation should consist of users doing a simple task (e.g. handing each other an object)
and then evaluating how well they could execute it. The testing without users should
evaluate the application on some key metrics – namely latency and precision. Both
metrics should be measured as a comparison with the existing single-player solution.

1.2 Thesis Structure
This thesis will be divided into multiple chapters that describe the steps needed to im-
plement such an application. First, the thesis will analyse requirements and constraints
arising from the assignment of this thesis and the resources available to the writer of
this thesis. This part of the thesis also explores existing solutions. Then in chapter 3,
a game engine plugin will be designed from an architectural standpoint. Chapter 4 will
contain notes on the actual implementation of the plugin. Then in chapter 5 a test
application used to demonstrate the plugin will be designed and implemented and used
to evaluate the key metrics. After the implementation is done, chapter 6 will test the
implementation with users. Finally, the final chapter, chapter 7, contains conclusions
and ideas for future improvement.
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Chapter 2
Analysis

First, I want to describe related solutions, the problems they solve, and how they solve
them. To that end, I first have to decide and describe the target devices, because it
greatly influences which solutions could be chosen and helps me focus only on the rele-
vant existing solutions. Afterwards, I would like to outline ways to solve the calibration
problem. Then, existing related solutions in this space can be described.

After the related solutions are described in detail, I want to dive deeper into what
exact problems need to be solved and what steps need to be taken to do so. Finally,
before I can move onto designing the technical solution, I need to make a few more
decisions on the exact problem this thesis will be solving.

2.1 Overview and problem statement
It is helpful to start by creating an overview of an end goal of the work before em-
barking on going deeper. The end goal of this thesis is to have a Virtual Reality (VR)
application. This VR application should allow interaction of multiple people in the
same (physical) room, all wearing VR headsets and being able to interact with each
other – ideally in both virtual and physical form. The application should support at
least four people at the same time.

The current generation of consumer VR headsets has settled into a similar feature
set with regard to motion tracking. All popular currently sold consumer VR headsets
support both rotation and position tracking required for room-scale experience. But
most of them only support it for one headset and two controllers at the same time.
Sometimes, they do have their own system for interaction between headsets, but there
is no standard way to combine their tracking spaces into one tracking space shared
between headsets from different manufacturers (this is what the assignment means by
heterogeneous VR systems).

Therefore, the application should not only work on various headsets, but also provide
a way to synchronise them and support using any combination of headsets in single
session. All of this should be wrapped into a reasonably easy-to-use plugin for a chosen
engine. This plugin should support at least four users, but there should not be any
unnecessary limitation on the number of users it supports at the same time.

Apart from supporting various headsets with disparate tracking systems and most of
the logic being contained in a plugin, what else should be in the resulting application?
The application should contain some way for users to interact with each other. Some
interaction is a natural result of them being in the same room — for instance, they
can speak and listen to each other without the application having to implement voice
chat. Then there is the obvious feature of being able to see each others’ controllers and
headsets. This is the core feature of the plugin and should work flawlessly, and as will
be explained later, it is not as simple as it looks. Lastly, the application should have
some virtual objects to interact with, which should be synchronised between headsets
as users expect that what they see, the others could see as well.

3



2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Target devices

The first primary consideration when designing any VR experience is the choice of the
target device. For this work, it is even more influential since the tracking system and
operating system it runs on might limit some technology choices. The headset will
affect most of the other decisions because different devices have different capabilities
and tracking systems.

According to Jung[2] can be divided into multiple categories. Ranging from Smart-
phone VR to PC-tethered, or from Stationary, through Desktop scale, and Room scale
to Mobility.

Of particular interest to this thesis will be devices with positional tracking, as station-
ary users cannot interact in real-world space. Another requirement will be controllers
with positional tracking so that users can see each other’s hands.

The application created as a part of this thesis will therefore target most devices
with 6DOF tracking, meaning that they provide an application running on it with
information about its position and rotation in the real world.

The most popular consumer VR headset[3] at the end of 2021 is Quest 2[4], making
it a primary target. It features 6DOF tracking using four cameras, which it uses to
reconstruct the surrounding world. Therefore, it is a good representation of an inside-
out tracking system using SLAM (Simultaneous Localisation And Mapping).

The second most popular headset is the Valve Index and will be used as a represen-
tative of the Lighthouse-tracked family of headsets.

The third most used PC-tethered headset is Oculus Rift S. It uses a very similar
tracking system to Quest 2 and was discontinued in June of 2021. For those reasons, it
will not be used in this thesis.

Another family of headsets is Windows Mixed Reality1. They are inside-out tracked
similar to Quest 2, but since they use a different implementation, they might have
different characteristics. Due to their falling popularity since I started working on this
thesis, I will treat them as optional – if time allows, I will try to run the app on one
of them, but they will not be included in the full testing and I will not be spending
significant effort on trying to run the app.

Lastly, there is PICO 4, which added OpenXR support[5] while developing this thesis
and has similar specs to Quest 2. As it is a very similar headset to Quest 2, assuming
that OpenXR support is good, everything that works on Quest 2 should work on PICO
4 with minimal adjustments. As such, I will try to get my application to run on the
headset after everything else is done.

To conclude this section: I will test the app on representatives of two most popular
ecosystems - Valve Index and Quest 2. Additionally, I will try the implementation on
few more headsets and report on how well it works.

2.2 OpenVR Space Calibrator
The primary inspiration for many choices taken in this thesis was the OpenVR Space
Calibrator [6] (SC) project. It is a plugin for SteamVR (OpenVR is the API that is
used in SteamVR).

SteamVR has support for using devices from multiple tracking systems at the same
time, but it is not very useful on its own, because the tracking systems of differing
headsets are all but guaranteed to be misaligned. This is where SC comes in. On a
1 Contrary to their name they have nothing to do with mixed reality and instead are virtual reality

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 OpenVR Space Calibrator

Figure 2.1. Illustration of how SC works. Taken from VIVE blog[7].

high level, what it does is it rewrites data coming from one tracking system to match
data coming from another. This allows the application accesing the system to not have
any special support for this situation and just pretend like all the devices are in one
global tracking system.

SC consists of three parts: calibration algorithm, a driver for applying the calibration,
and a GUI to give user control over this. This is basically a subset of what this thesis
aims to achieve.

The driver part of SC hooks into OpenVR API and modifies Poses (orientation +
position) passing through it so that the disparate tracking systems match up. It listens
for commands from the calibration algorithm to change the calibration. How exactly it
does so is not that important for the purposes of this thesis, as it depends on the API
used and OpenVR does not work natively on Quest 22, which means that it cannot be
used as a basis for this thesis.

The more complicated and unique part of SC is the calibration algorithm. From the
user’s perspective, the way it is used is as follows: Pick two tracked devices, one from
each tracking system. Hold them together and trigger the start of calibration. Then
start moving both controllers together in the horizontal number eight pattern to try
and sample as many positions and orientations as possible — see figure 2.1. Once the
calibration is done, it will be applied.

2 You can run OpenVR-based applications on Quest 2, but only if you connect your headset to a PC
running SteamVR. I want my plugin to support standalone mode.

5



2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The user can select one of three calibration presets: fast, slow, and very slow. The

difference is that slower presets collect more data to hopefully make the calibration
more precise. Users of standalone headsets connected via WiFi are encouraged to
use slower presets and move controllers slower to make the calibration process more
reliable. Under the hood, each preset corresponds to a different number of samples
collected (see table 2.1). The time between sample collection is fixed at 𝑡𝑠 = 50ms.

Preset Samples (𝑛𝑠) Min. time (𝑡𝑚𝑖𝑛)

Fast 100 10 s
Slow 250 25 s

Very slow 500 50 s
Table 2.1. How long does it take to do calibration in SC

You might notice that the time listed in the table is double of what 𝑡𝑚𝑖𝑛 = 𝑡𝑠 ⋅ 𝑛𝑠 might
suggest. The reason for this is that the number of samples is collected twice. Once to
calibrate rotation and once to calibrate position. This leads to 𝑡𝑚𝑖𝑛 = 2 ⋅ 𝑡𝑠 ⋅ 𝑛𝑠. Note
that the time listed is a minimum time, because SC does trigger sample collection when
the time since the last sample is greater than or equal to 50 ms and this function is
tied to framerate. The estimate also does not include the time it takes to compute the
calibration, but that should be negligible.

2.2.1 How does SC compute offsets

The SC project explains the basic concept behind the calibration in a file called
math.pdf in the repository, but as it is the foundational idea around which this thesis
is built, it deserves further explanation. The process consists of two separate steps —
sample pair collection and computation. Both steps happen twice — once to calibrate
orientation and once to calibrate position.

Sample collection occurs in regular intervals of at least 50 ms. When it decides that
it is time to collect the sample, it just takes the last known pose of each device and
stores it in a list. To decide if it has enough samples, it just uses hardcoded limit for
number of samples. It offers three presets: fast (100 samples), slow (250 samples), and
very slow (500 samples). Once enough samples are collected, it proceeds to the next
phase.

To compute the orientation it uses Kabsch algorithm[8], which can recover the rota-
tion matrix from the SVD decomposition. This algorithm takes paired positions and
produces the best rotation in the sense of least-squares. After this computation is
finished, the rotation is immediately applied and a second set of pairs of samples is
collected, now with the rotation applied.

𝐻 = 𝑃𝛵𝑄

𝐻 = 𝑈Σ𝑉𝛵

𝑑 = sign (det (𝑉𝑈𝛵))

𝑅 = 𝑉 (
1 0 0
0 1 0
0 0 𝑑

)𝑈𝛵

𝑄′ = 𝑅𝑄

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Approaches to calibration

With the second set of points it computes the offset. This can be easily achieved as
it is just a set of linear equations. When this offset is computed, it then applies it and
the whole process is finished.

2.3 Approaches to calibration
There are multiple ways of approaching the calibration of the tracking spaces. This
section will first categorise all available options.

The first option is to choose devices with a globally anchored tracking system,
which means that all devices have the same origin of their respective tracking spaces.
SteamVR’s Lighthouse system falls into this category. The main drawback of this op-
tion is limited options for headsets - no option to use existing devices if they do not use
the correct tracking system. It also disallows usage of headsets from multiple vendors
as long as there is a shared reference point. However, the advantage of this option is
simplicity.

The second option is to completely replace the tracking system with another system,
such as OptiTrack for VR[9]. This option, once set up, is as convenient as the first
option and is proven by existing commercial deployments such as Golem from DIVR
Labs[10].

Neither of those options are applicable to this thesis, as the assignment implies a
heterogeneous tracking system.

The third option is to assume that the difference between the origins of the tracking
spaces does not change. This difference could be obtained by performing a predefined
set of steps once at the beginning of each session. After this, the application relies on
each devices’ tracking system separately. Compared to previous options, this allows
multiple tracking systems to be used at once. It also allows for the use of headsets
with inside-out tracking, which are usually cheaper. A disadvantage of this option is
that the calibration could drift over time (from the origin of the system moving), which
would cause the calibration to become incorrect. Another advantage of this option is
weight, as nothing extra needs to be attached to the system.

The fourth option is to determine the calibration continuously while the user is in
VR. For example, having the HTC VIVE tracker attached to Quest 2, calibrating the
Lighthouse-based headset to the Quest. Another option to do this would be to attach
OptiTrack trackers to each headset. This option is different from replacing the tracking
system with a different one by still using the integrated tracking for high-frequency
data and the attached system only for low-frequency calibration updates.

2.3.1 Other alternatives
The categorisation introduced above assumes that you do not have deeper access to
the tracking system. But if you are a vendor of SLAM-tracked system, you have one
more option: map sharing. With access to map data, the headsets could compare the
major detected features between themselves and perform this calibration with only the
onboard tracking. This is how two existing solutions work 3

The first is Vive Focus 3map sharing [7] that came out in November 2021. Map
sharing seems to be a paid add-on to the headsets, and interested users are directed to
contact sales. As such I couldn’t get more information about it, but it is proof that it
could be done with existing hardware.
3 This is just a presumption of the author of the thesis, neither of them is open-source and they do not

exactly go into great detail insofar of how they work.
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2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The second is Meta’s Shared Spatial Anchors4. Meta explains this in more detail

than HTC and it works by uploading point tracking point cloud to Meta’s servers. This
could be seen as a disadvantage as it is a privacy concern and presumably requires the
internet connection. It is unclear from documentation whether the upload/download
from Meta’s servers happens only once or if persistent internet connection is required.

Both of those solutions only work on headsets but from the same vendor, meaning
that you can use them with Quest 2 and Quest Pro, but you cannot add Focus 3 to the
same experience. This limits their use. The advantage of them is that they should be
as reliable as the underlying tracking system and should never diverge.

Figure 2.2. Map sharing as illustrated in Vive’s announcement blog post.

As for the use of those solutions as a programmer, it is unclear how much work HTC’s
solution requires. Meta’s solution is much more open, as the API is published as a set
of OpenXR extensions and is listed directly in official OpenXR specifications.

2.3.2 Shared spatial anchors

The OpenXR specification has a set of optional extensions, some of which are vendor-
specific. The nice thing about these extensions is that they are all specified within
OpenXR, so at least the shape of the API is known. Some of these extensions allow
developers to use what is called Shared Spatial Anchors.

The primary extension needed for Meta’s solution is XR_FB_spatial_entity_sharing .
First, you have to figure out a way to enable extensions on your engine of choice and
enable this extension along with any additional extensions it builds upon. You also
need to have your multiplayer already set up so that you can send information between
headsets. Then you synchronise a list of XrSpaceUserFB handles that represent the
connected users between headsets. When this is done, you call the xrShareSpacesFB
function to share a spatial anchor and wait for the share event to complete.

4 https://developer.oculus.com/blog/build-local-multiplayer-experiences-shared-spatial-
anchors/
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When all of that is done, the application can send an identifier of the spatial entity
to the other headsets. The other headsets can then use this identifier to request the
anchor and from there request the XrSpace it represents. This space can then be used
as a reference when locating controllers or headsets.

All of this is more complicated than needed for a simple case of calibrating the spaces,
but is also not as bad as it first sounds if interacting with OpenXR directly. If your
engine does not have support for this, it could become difficult to add support. On the
other hand, if it does, it presumably abstracts some of this complexity away.

2.3.3 Hand Tracking-Based Calibration

In Colocation for SLAM-Tracked VR Headsets with Hand Tracking[11] the authors
describe another method that can be used to calibrate headsets. This method uses
hand tracking as a shared anchor. It relies on each tracking system having its own
hand tracking. Both headsets should see the same hand, and when the calibration
is triggered, both headsets report the pose of the hand in their tracking space. This
information is then used to compute the difference between both headsets tracking
systems, and one of the headsets gets relocated to a new position.

Apart from the way they compute the calibration, the application of the offset is the
same as in SC. The main drawback of this method is that it relies on hand-tracking,
which is not available for Valve Index headset by default. Although there are add-on
systems allowing hand tracking either by adding additional hardware like Ultraleap’s
Hand Tracker, or even by utilising the onboard camera like Monado’s hand tracking[12].

2.4 Plugin requirements
To implement the plug-in, we have to decide which API and layer of the software stack
to plug into. Many headsets have their own API - for example, VRAPI on Oculus/Meta
headsets, OpenVR on headsets that use SteamVR (such as HTC VIVE). More recently,
headsets started supporting a unified API called OpenXR which solves many portability
problems, but being a newer API, it has some missing parts. But since older APIs are
getting deprecated[13], I decided to use OpenXR as a baseline for my implementation,
as it is supported on all target headsets.

On the other end of the software stack is the application/engine. Ideally I would like
my work to have the potential to be usable in wide range of applications regardless of
engine. To do this, I would like the base of the plugin to be engine-agnostic and work on
the OpenXR layer of the stack. The work in the engine would be limited to creating a
simple wrapper plugin. This engine-specific plugin should only load the generic plugin
binary, implement functionality that is required but is not possible to implement only
in the OpenXR layer (if needed), and expose to the application any interfaces that are
not generally available in OpenXR (or interfaces that the engine lacks).

To limit the complexity of the implementation though, I will only focus on single
engine. The engine I chose is Unity, because it is the engine with which I have the most
experience. It is also very often used for VR content.

2.5 OpenXR description
OpenXR[14] is an open standard containing a set of APIs for access to Augmented
Reality (AR) and Virtual Reality (VR) devices. It is implemented on all main consumer
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VR headsets. It encompasses everything needed for VR including session lifecycle,
rendering (it manages the render loop and composition, but defers the actual rendering
to OpenXR or Vulkan and input methods (the action system). Of particular interest
to us is the action system.

The action system is based on semantic paths to devices and action sets. Action set
is a list of actions the application supports (e.g. teleport or select) and can be bound
to one or more devices using interaction profiles. There are multiple well-known paths
specified, but the runtime can add more, provided that it follows the rules outlined in
the specification.

This gives us an opportunity to create engine and headset agnostic plugin, which
will inject itself between the app and the runtime. OpenXR even provides facility for
this with its concept of API Layers. The layers work by overriding OpenXR functions
and when the function is called the layer can do anything and optionally call runtime’s
original function.

This layer can do anything that goes through OpenXR, within constraints. Namely
it can collect headset’s pose (position and rotation), collect list of controllers the app
interacts with and their state. Their state includes pose and states of any buttons,
joysticks, triggers, force sensors etc.

Theoretically it can also inject the list of remote controllers/headsets as additional
local controllers, but this depends on how the application/engine is implemented. If it
retrieves the list of devices from the runtime (there is nothing in base OpenXR to do
this, but there might be some extensions for this), then it is possible provide the data
using OpenXR and without modification the the app. But if the engine hard-codes a
list of well-known paths then we are out of luck and we have to do some work in-engine.
This needs to be taken into account when designing and implementing the plugin.

Figure 2.3. Illustration of where OpenXR slots in the stack of creating VR applications.
Taken from https://www.khronos.org/openxr/.

One convenient thing for the implementation of the plugin is the concept Spaces.
OpenXR goes to great lengths to not assume global coordinate system and instead
every API that has to do anything with positions either takes or returns XrSpace
handle. This allows us to introduce the concept of Server reference space.

Ideally, the app would be responsible to provide correct space handles to the runtime,
but this would require changes to the engine. Instead, the layer could intercept any
call taking a XrSpace handle and detect Stage handles and replace them with Server
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handles. Ideally, to be compliant with OpenXR specification the plugin should also
emit correct events when changing the Server space position, but this might not be
neccessary, depending on how Unity uses the reference space.

2.6 Networking
As each headset is its own self-contained system, there will be a need to network the
headsets. It is enough for the application to only work on a local area network (LAN)
as it is assumed that devices in the same physical space can connect to shared WiFi.

The chosen networking solution will have to be low latency as the actions of other
users have to be propagated real-time to enable user to user interactions. Additionally,
the solution will have to be resilient to momentary interruptions as consumer-grade
WiFi can sometimes be slightly unrealiable and the solution should therefore handle
momentary disconnect/reconnect gracefully. All chosen headsets support IP-based net-
working with TCP and UDP protocol and UDP should be used for real-time updates
to make sure that they get delivered in timely manner.

2.7 Summary
As evidenced from previous sections, there are multiple moving parts required to make a
collocated VR experience. The first is implementing the offline version of the experience
– getting data from the headset and displaying the content, which is thankfully mostly
handled by Unity.

The second part is to send the information between headsets. All targeted devices
support IP-based networking, which makes it a natural choice. Therefore either peer-
to-peer or server-based networked communication has to be implemented.

Last and perhaps the most essential part is calibrating the tracking spaces of various
headsets. All headsets I encountered have tracking defined as one unit being one meter,
which means the output of a calibration algorithm is translation and rotation5.

It is important to note that before the calibration can be meaningfully implemented
the previous two parts have be implemented first, because the position information has
to be shared between devices.

5 Some headsets have a slightly wrong scale of about 0.8% according to issue 23 on OpenVR Space
Calibrator[6], which means that this assertion is not entirely true. However, it holds for the most popular
units and no headsets in the current generation exhibit this issue, so it’ll be assumed that the issue does
not exist for the rest of this thesis.
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Chapter 3
Design

This chapter will outline the main architectural decisions taken to implement the plugin.
As described in section 2.7 several interlocking parts must be designed and subsequently
implemented. This chapter will describe each of them in detail. Further, this chapter
will describe a simple, possibly novel, calibration approach to be used as a stepping
stone before implementing the full calibration.

3.1 Engine choice
As noted in section 2.5, some of the design depends on how the application/engine
implements OpenXR integration. To limit the scope of the thesis, I had to choose
a game engine to focus on. The options I explored were Unity, Unreal Engine, and
Godot. The choice mostly depends on how well it supports OpenXR in current version
as OpenXR support is somewhat new and only recently became the recommended
option — in particular how it implements discovery of input devices.

My first choice was Unity[15] because I have some experience with creating VR
experiences with it. Testing unity versions 2021.3.3f1 and 2022.2.12f1 with first
iteration of my plugin revealed that it does use a hard-coded list of well-known paths.
This is suboptimal as it means that I have to handle remote devices differently from
local ones.

Then I tried Unreal Engine 5.2 preview 1[16] to test end to see if it does things
differently. I did not explore it exhaustively, but the default template also uses a
predefined list of paths, and a quick search through its source code revealed that it does
not use the xrEnumerateBoundSourcesForAction 1 function, which would be necessary
to allow multi-controller setups.

I wanted to also try the open source Godot engine, but when I tried it, Godot 4 was
brand new and it did not have VR template ready.

Therefore, it seems that current versions of game engines do not support more than
two controllers at a time (which is a regression compared at least to OpenVR plugin).
This means that I have to add my own APIs to discover remote devices. As for the
engine choice, since I am more experienced with Unity, I decided to focus on that game
engine. But the bulk of the work should transfer well to other engines.

Sidenote: from reading OpenXR spec, I am not sure whether the case of having
more than two controllers connected to a single system is supposed to be supported
or not. There is the above-mentioned function to enumerate bound sources, but that
potentially only results in paths the application already provided. Additionally, the
XR_HTCX_vive_tracker_interaction extension defines an extra function to enumer-
ate connected trackers.
1 Note that text with purpleish background refers to a term defined in the OpenXR spec[14] and is

clickable in the digital version. This is opposed to grey background which merely represents the verbatim
value.

12

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#xrEnumerateBoundSourcesForAction
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_HTCX_vive_tracker_interaction


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 System components

Figure 3.1. System component overview

3.2 System components
The whole system comprises multiple components that all communicate with each other
and the outside world. Figure 3.1 outlines the main components of the system. I already
have the game engine that dictates how the application is implemented.

It also informs how the main part of this thesis — the engine plugin — looks like.
The plugin consists of two parts. One is implemented in C# and is basically a part
of the application code. The other is compiled into native plugin and sits between
Unity and OpenXR runtime, which allows it to intercept some OpenXR calls (some
calls do not go through the plugin and go directly to the runtime). This simplifies the
implementation of the C# “managed” part. Since not everything the plugin can do has
existing OpenXR APIs, we need to add a few more APIs to the native plugin. The
managed code then exposes those in a reasonable manner to the application directly
(see section 4.3.1 for a more detailed discussion).

The language choice for the native plugin is limited as it needs to be able to compile
into a dynamic library and interoperate with the managed code. The obvious choice
here would be to implement it in C++, but since OpenXR is inherently multithreaded
(even though Unity’s implementation uses just a few threads), I would have to manually
keep track of locks over various resources. This, while possible, is difficult to do correctly
and even more difficult to verify and debug once it goes wrong. To that end, I decided
to use Rust for my implementation, which mostly keeps track of various invariants for
me. The implementation will not necessarily be an idiomatic Rust code as that requires
more experience than I have, but it will hopefully provide some benefit.

3.3 Reading local device data
As I decided to use OpenXR, I can just use this universal API to read the information
about controllers. There are two main approaches for doing this in context of the
plugin’s design — one is for the plugin to create its own XrActionSet and bind it
to controllers and the other is to override relevant functions and use the same action
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sets that the engine uses. I decided to go with the latter approach as I already had to
implement it to determine what functions the engine actually calls, and this allowed
me to reuse that work.

The advantage of this approach is that it does not add extraneous actions for the
runtime to deal with, and therefore some theoretical future action rebinding support
will not break it as otherwise you might rebind only one of the duplicate actions. The
disadvantage is that it relies on the action sets that the application uses, which might
differ from application to application. This is not a problem for me as I target only one
engine, but it might be if someone wanted to use my work with a different engine.

It does not, however, prevent me from changing the timing used for reading the data
as I only store the handles to actions, not and do not interfere when reading the action
data. Instead, the plugin has its own loop in which it reads the run-time data and
sends them across the network.

3.4 Providing data to the application
Local headsets and controllers should be handled normally by using functions imple-
mented by the engine, because they contain logic to compensate for the delay (as
described in Chapter 18.7 of the VR Book[17]) built into them. This means that we
only need to provide data about the remote headsets and controllers.

The ideal solution for this is to inject the data via standard OpenXR calls, but as
noted in section 3.1, the most popular engines do not use the functions necessary for
this. This means that I have to either modify the engine to use those functions, or add
new functions which I will use from the game code directly.

It could theoretically be packaged as an OpenXR extension, but that complicates the
work and is beyond the scope of this thesis. But there is nothing preventing packaging
the API into an extension in the future. Therefore, I decided to make it a dynamic
library which will be loaded by a script from the engine.

3.5 Communication between headsets
As noted previously, applications running on different devices need to communicate with
each other in real time. To achieve this, a client-server architecture will be used. The
disadvantage of this option is the potentially higher latency because there is an extra
step in the flow of information between headsets. The advantages are greater scalability
(since each device has to upload its information only once) and easier-to-understand
information flow.

Since the plugin will be implemented in Rust, which has mature server library ecosys-
tem, the server will be also implemented in Rust to lower the amount of context switch-
ing in development. It also helps in making sure that all messages are in the correct
format, as the same code can be used for encoding and decoding the messages.

Three separate conceptual information channels will be used for various types of mes-
sages. First, we have the reliable time-insensitive channel, which is used for exchange
of infrequently changing information. For this purpose, the TCP protocol or something
similar is the ideal fit.

The second channel is used for real-time updates. Latency is critical here, but use-
fulness of each message diminishes quickly over time, since it is not interesting to know
where the controller was a second ago if you know where it is now. UDP is a good
mechanism for this.
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The third channel is used during the calibration to exchange information needed for
the given calibration method. Here, reliability becomes important at the expense of
latency. There is nothing that really prevents it from merging with the first channel,
but separation makes the design more clear and prevents blocking head-of-line across
the channels. This channel would benefit from lower latency to make sure that we can
update the calibration estimates in real time, but it is not very critical.

On latency
While I will use UDP for sending time-sensitive data which with low long-term rel-

evance, it might be useful in the same cases to use the same protocol for both the
data and configuration. This would imply using TCP or similar for both, which would
increase latency. To that end, I want to debunk the misconception that this would re-
sult in unusable experience. My original proof of concept implementation, which had a
server written in Javascript programming language and used Deno runtime, used Web-
Sockets[18] and therefore TCP for all communication. I did not do the experiments
with users, but from my personal experience it was fast enough for some uses. It was
not fast enough to use remotely tracked controllers directly (where the latency was no-
ticeable and somewhat unpleasant), but when other people were using the controllers,
it was not noticeable.

Service Discovery and Multicast DNS
To find a location for the server, I originally wanted to use the mDNS and DNS-SD

protocols. These are pair standard protocols which are based on sending multicast
UDP packets to well-known port to discover services available on local network. The
protocols are described in RFC 6762[19] and RFC 6763[20] for mDNS and DNS-SD,
respectively. In the end, I decided against it as I could not find a working combination
of libraries that worked across different operating systems. Surprisingly, I had more
problems with resolving the address than with publishing it.

In the end I decided to just use IPv4 UDP multicast. When the client wants to
connect, it periodically sends a probe packet which the server listens to and responds
with its own packet. The client then connects to this server. This means that I have
to choose a predefined port number and for that I chose 13161 as it is marked as
Unassigned in IANA’s port assignment database2 and is most likely vacant.

3.6 Calibration methods
As explored in the analysis, there are many calibration methods, which could be im-
plemented in this work. I decided to choose the most universal methods and developed
a second, possibly novel method, which while less reliable is considerably easier to
implement.

3.6.1 Complex calibration method

Main method to be used in this thesis is the method from OpenVR Space Calibrator.
This method relies on a set of pairs of controller poses. User takes one controller from
one device and one controller from other device, holds them together in such a way so
that they slip as little as possible. Then they move the controllers in infinity sign. The
application then records the poses and from that calculates both the offset between the

2 https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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Figure 3.2. Example of how to hold controllers for the Space Calibrator method. In this
example I’m holding Index controller and Quest 2 controller.

controllers and the offset between the tracking spaces. For more detailed explanation
see section 2.2.

The main reason for choosing this method as opposed to other methods available is
its universality as it could be used with basically any headset which supports 6DOF
tracking. As the calibration is only one subsystem of the whole, it should not prevent
adding other calibration methods in the future.

I will have to make some slight tweaks and additions to the method to make it work
reliably over network as the recommendation of SC is currently to move ”slowly when
calibrating and using the Slow or Very Slow calibration modes”. This behaviour is
caused by timing of the collected samples diverging.

The possible improvement here is to sample the device position at precisely specified
time, instead of at ”last frame before calibration tick”. This makes sure that the collec-
tion happens in regular intervals, but more importantly makes sure that samples from
both tracking systems represent the same moment in time. I am not versed enough in
OpenVR to know if SC could’ve implemented this, but OpenXR does provide facilities
which make this possible.

Further improvements would lie in tweaking various constants in the calibration, or
determining them dynamically. Moreover, it should be possible to use the same set of
samples for calibrating both rotation and position, possibly cutting the calibration time
in half. Those improvements will not be implemented in this thesis as there are more
important things to explore, but it would definitelly be interesting.

3.6.2 ToD method

To aid with the rest of the implementation without having to implement the complex
calibration routine a simple one-time calibration method was developed. This method
is simpler to understand and easier to debug as its result could be computed by hand
and the result could be checked separately. This allows to check the application of
calibration separately from its computation.
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To calibrate the tracking spaces of two or more headsets the user puts each headset
on top of each other (see figure 3.3). This roughly aligns positions and directions of the
VIEW reference space. User then presses a button in the dashboard and the calibration
is done. I call this method the Tower of Doom (ToD) method as the tower becomes
increasingly unstable with each headset that is added to the stack.

Figure 3.3. Stack of headsets used for tower of doom method. Demonstrates how the
method works in practice and also shows that while possible to use, the method does not

scale well beyond four headsets (at least for those particular models).

The server first fetches current position and rotation of all currently connected head-
sets. It consequently calculates transformation between the headsets while assuming
that position of the ground and direction of the up vector is correct between each
headset. The transformation is (assuming that y axis is up):

𝑇𝑥 = sin(𝑟𝑦) ⋅ 𝑧 − cos(𝑟𝑦) ⋅ 𝑥

𝑇𝑦 = 0

𝑇𝑧 = cos(𝑟𝑦) ⋅ 𝑧 − sin(𝑟𝑦) ⋅ 𝑥

𝑅𝑥 = 0
𝑅𝑦 = −𝑟𝑦
𝑅𝑧 = 0
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This puts the origin of the system of coordinates under the stack of headsets. And

forward vector corresponds to the direction in which the headsets were looking.
The above assumptions stem from the fact that both tested headsets have calibration

procedure which sets floor and therefore translation in the y axis should be zero and
from the fact that the headsets have accelerometers which means that they can measure
direction of the gravity. I call this method a tower of doom as while stacking two
headsets on top of each other is not hard, stacking more headsets is feels a bit dangerous
as at least Quest 2 headsets have a rounded exterior.

There is an alternative and even simpler formulation, which changes the rotation
formulation to apply reversed values of all angles. This formulation requires the head-
sets to be level with ground and looking directly forward as to not skew the ground
plane. This formulation is useful if rotations are represented as quaternions and euler
angle decomposition is not readily available, or if said decomposition does not have the
properties needed for the calibration to work properly.

3.7 The Unity plugin
Apart from dynamic library which handles interfacing with OpenXR and server com-
munication, there also needs to be a C# wrapper which handles loading of the plugin
and some light abstractions to make the usage more natural. The entrypoint of the plu-
gin will use Unity’s OpenXRFeature 3. This provides us with exactly the hooks needed
to instantiate the app and also allows the user to enable/disable the plugin at will by
checking a checkbox in OpenXR settings (see figure 3.4).

Figure 3.4. Unity’s OpenXR feature settings window

Beyond hooking into OpenXR lifecycle, the plugin will provide a few Unity compo-
nents. One of the components will handle spawning and destroying remote devices and
will allow the developer to set a prefab used for remote devices. Another component
will be attached to each remote device and will allow querying information about it
and will also provide custom Editor UI to surface this information in the editor. Those
components together will allow the developer to handle the devices in any way they
want, eg. by spawning correct model for each controller/headset.

Another pair of components will give developers convenient way to create objects
synchronized between headsets. This will only provide basic position synchronization

3 https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.7/manual/features.html
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and anything else will have to be implemented by the developer as there are other
solutions for this problem.

The plugin will handle automatically converting to and from Unity’s coordinate sys-
tem to OpenXR coordinate system, so that all data in the native code is in OpenXR’s
system and all data (apart from calls to the native code) in C# code is in Unity’s coor-
dinate system and the probability of any mixup happening is minimized. Finally, the
plugin will forward logs from the plugin to Unity’s log system as by default stdout/stderr
is not available from Unity’s Editor.

All this functionality will be wrapped in UPM package (not to be confused with
.unitypackage files), which makes sure that the package can be imported by placing
the sources in correct folder and adding a reference to a manifest.json file. See
section A.3 for instructions on how to use this package.
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Chapter 4
Implementation

With the plugin designed and the basic architecture decided, it was time to start im-
plementing the plugin. This chapter describes all major decisions and interesting dis-
coveries that arose during this phase.

4.1 Language choice for the plugin
First, I had to decide what language to write the plug-in in. An option which would
be convenient was to write it in C#. This, however, would prevent the plugin to be
reused in other engines and would make it harder (but not impossible) to access raw
OpenXR, which is required for requesting position of controllers in exact moment in
time. Therefore, as noted in the design, I decided to write the plugin in a different
language and compile it into a dynamically linked library (.dll on windows).

This leaves me with two possibilities: either C/C++ or Rust. I decided to go with Rust
as OpenXR is inherently multithreaded API and, therefore, unless otherwise specified
in the OpenXR spec, cannot rely on function calls being externally synchronised. It
would therefore be somewhat difficult to make sure that every call is properly locked
and there are no data races without borrow checker.

Additionally, another benefit is that Rust’s async code is pretty not difficult to inte-
grate with non-async code, which made the networking implementation very straight-
forward.

For the dashboard, I decided to go with the web-based dashboard which connects
to the server via WebSockets. This was mostly due to my existing knowledge of web-
based technologies and made it possible to create a decently usable and reasonably good
looking dashboard without too much work.

4.2 Plugin subsystems
As outlined in the design, the implementation consists of a plugin which acts as

a client and connects to a server. Furthermore, there is a dashboard, which gives
the operator greater visibility into the current state of the system and control over
calibration procedures. But the implementation could be divided further.

The first subsystem is a server connection system. This handles server discovery,
connection, and reconnection upon failure.

The data model for device synchronisation is quiet simple: each device is owned
by exactly one client, the one it is connected to. This client is responsible to send
any data shape updates (e.g. if new controller is connected) to the server via reliable
”configuration” channel and any data updates (e.g. controller pose) via unrealiable but
fast channel. The server is then just responsible for batching and retransmission of
these data. It also makes sure that it does not send data back to a client that sent it.
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Figure 4.1. Diagram outlining various subsystems that make up the module.

When it comes to calibration, there are separate modules for this in both the server
and the client. Dashboard sends a message that starts the calibration with some spec-
ified key parameters, and then the server takes over. The server then instructs the
relevant clients to start sending samples.

When the calibration is finished, the server sends it to the client which changed
position and this client applies it. When new data is sent from the client, it makes sure
that it already has the calibration applied. This ensures that every part of the stack
uses the same data and that the calibration is applied at source. The same coordinates
on each headset represent the same point in space.

Finally, there is a subsystem for synchronising object poses. This is not the cleanest
solution to this problem, but it was the most convenient way to implement this. Ideally,
the app itself would synchronise its state in some way that is suitable for its usecase,
maybe using the plugin as a transport layer as it already has a connection.

4.2.1 Server connection
To handle connection to the server I decided to use QUIC protocol[21] implemented by
quinn rust crate1. I decided to go this somewhat unusual route because of the properties
that were needed. I needed a protocol that would have connections, would have both
TCP-like reliable and UDP-like unrealiable channels, and would support sending binary
1 https://github.com/quinn-rs/quinn
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data. And ideally, it should also have multiple separate channels and low overhead over
raw UDP. I did not want to implement my own and after some searching found QUIC,
which is used in HTTP3, which has all those features.

The server connection is established immediately upon starting the plugin. Since
quinn requires an encrypted connection, but this application does not, I use self-signed
certificates and accept any connection. If this implementation were done over the
internet, this would have to change, so that we are not sending sensitive data without
proper encryption. To find the server’s IP address I use multicast packet on port 13161 ,
the port used for server and client communication is chosen automatically by the host
operating system.

Once the connection is established, both the client and server start opening required
one-way channels and accepting channels from the other side. To make sure that correct
channels are opened, I use special message which is sent to the channel upon opening
and verified on the other side. Since I want to send messages and QUIC only exposes
streams (similar to TCP), I add a simple framing protocol which consists of first sending
size directly followed by the data. All of this logic for opening the streams and framing
messages is encapsulated in a struct so that other components can just send and receive
messages. To further simplify the code, this layer also uses serde and bincode to
serialise rust structs and enums.

Possible improvements: more robust server discovery mechanism — I could not get
the server to work on MacOS. Second, some applications might need more control over
the connection process. Additionally, it might be interesting to allow the application
to use this existing connection to send its own messages.

4.2.2 Applying calibration

The calibration needs to be applied in two places. One of them is when sending data to
the server, and the second is when Unity reads poses from OpenXR runtime. OpenXR
allows us to construct spaces moved and rotated in relation to the reference space. This
makes the case of applying the calibration when reading data for purposes of being sent
to the server trivial - when new calibration arrives, construct a new XrSpace with the
specified pose and use that for reading the poses going forward.

The other case is a bit more complicated as while OpenXR does allow to construct
spaces with a specified pose, it does not allow to modify them. Instead, we have to
detect when the app is constructing spaces that we want to be able to modify going
forward and note their handles. Then hook every function that takes XrHandle and
if it gets passed one of the spaces we want to modify, we replace it and pass our own
space instead. Thankfully, in basic OpenXR there are only three functions that take
XrSpace xrLocateViews , xrLocateSpace , and xrEndFrame .

The biggest trouble here is the xrEndFrame function, because the XrFrameEndInfo
struct it takes can contain one of the 7 composition layer structs, each of which contains
the space we are after. Ideally, I would copy the structure and apply my changes in the
copy, but that is complicated here as each of those structures has different number of
fields. As such, I decided to patch data that is passed from the application and then
undo the patch before my function exits.

Overall, this makes sure that every part of the stack has consistent view of the world.
There are alternative ways to implement this, but some of them require the translation
of coordinates when transferring data between headsets. In this case, the application
does not need any special logic to correctly display objects in the same position across
headsets.
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Note that this part is independent of how the actual calibration is computed and
could be, for example, used with Shared Spatial Anchors as those also provide you with
XrSpace handles.

Possible improvement: storing the calibration between application restarts. It is
stored between connections to the server, but if the application itself is restarted, it has
to be calibrated again.

4.2.3 Calibration subsystem

Before we can apply a calibration matrix, we first have to compute it. This is managed
by the calibration subsystem. It consists of three parts: sample collection on the client,
calibration orchestration on the server, and computation of the transformation matrix.

Once the operator specifies which controllers should be used for the calibration and
presses the button to trigger it the calibration subsystem takes over. First, it sends
two messages simultaneously to both clients involved in the calibration. This message
has a dual purpose. The first is to inform them that they should start collecting and
sending samples in specified intervals, and the second is a synchronisation pulse. Here,
I assume that difference between the time it takes for the message to reach one client
compared to the other is negligible. It is still better than relying on the system clock
to do the synchronisation, as that is more likely to be wrong.

To collect the samples I use the xrLocateSpace function, which takes space and
time. In case of controllers I use the action space and in case of headset I use the VIEW
reference space. The second argument is more interesting as there I could either use the
time of the collection happening or some time in the past. Here for the first sample, I
use the current time, but for the subsequent samples, I use 𝑡0+𝑖∗Δ𝑡 where 𝑡0 is the start
time, 𝑖 is the current iteration, and Δ𝑡 is the specified time between samples (50 ms by
default). This is not exactly the same as time now, because at least on Quest 2 the
loop does not reliably wake up after the same delay.

Talk about delay in the loop. My first attempt consisted of collecting the sample
and sleeping for Δ𝑡, which worked well on the desktop, but was very inconsistent on the
quest. Instead, I switched to using tokio::time::interval for this, which resulted in
a more consistent delay. It was still not consistent enough, so passing the correct time
to xrLocateSpace is crucial. See figure 4.2 for a visual representation of the collected
data.

After enough samples are collected, I feed them to a rust reimplementation of the
algorithm described in section 2.2. For linear algebra I use a library called nalgebra2,
which allows me to port the SC’s C++ implementation almost line by line. The whole
calibration computation takes only a couple of milliseconds, which indicates that ap-
plying it continuously would be feasible.

When the computation finishes, the calibration subsystem sends a message to the
target client (the one not used as a reference), and a new calibration is applied.

To support chaining multiple calibrations instead of having to use a single headset as
a reference in all calibration (which is still recommended), I take care to differentiate
between collecting samples from the reference and target systems. When collecting
samples from the target system, the native Stage space is used as a base, but when
collecting samples from the reference, the Server space is used instead. This means
that the calibration takes into account the reference’s calibration.

2 https://nalgebra.org
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Figure 4.2. Diagram showing the data being input into the calibration algorithm. This
3D graph can be interactively viewed on the dashboard. The diagram shows the same
data from different angles. It shows the recommended movement pattern for calibration.
Coloured lines represent the origins of the controllers and grey lines represent the same

moment in time. The grey lines should be of the same length.

Possible improvements: take into account the possible difference in time it takes
the message to reach one client compared to the other. This is most evident when the
server runs on the same computer as one of the clients.

Another improvement would be to support storing dependencies between calibrations
– if A is calibrated to B and then C is calibrated to A, everything works. But if C were
to be calibrated to A and then A was calibrated to B, it would break. This could
potentially be resolved automatically and would probably need to be done in some
more complicated cases of continuous re-calibration.

4.2.4 Collecting data about devices

To be able to synchronise anything between the headsets, I first have to collect the
data. There are two basic approaches to doing this. One of them is for the plugin to
act as a separate application — create its own actions and action sets and use those
to collect the data. The second is to intercept calls from Unity and try to reuse the
actions created by the application. I decided to go with the second route.

This has the advantage of being more clean insofar as to not adding extra actions
and to make sure that software that remaps the actions does not desynchronise the
remote and local set of actions. It is also more semantically correct as remote actions
are semantically the same as local action. Another advantage is that, if implemented
correctly, it automatically supports every interaction profile the application supports.
The disadvantage is that it is more complicated.

The way it works is that I override every function which creates an action, action set,
provides suggested bindings, etc. To override those correctly, I also have to override
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each parent handle to be able to know to which XrSession they relate. The good
news is that all of those functions are only called at the start of the application and,
therefore, are not performance critical.

Once I have the list of all the actions that the application uses, I send them to
the server once as a configuration. This allows me to usually only send the data that
actually change between frames and to also use integers instead of strings (index in an
array) when referring to paths. The configuration contains a list of available actions,
user paths, and interaction profiles.

Possible improvement: currently, I request data at current time. Instead, I could re-
duce apparent delay by estimating how long it takes to synchronise data and requesting
poses for future frames.

4.2.5 Object synchronisation

To simplify one of the more common use cases (a use case exemplified by application
implemented later in this thesis), I added one more auxiliary subsystem to the plugin.
This subsystem allows synchronisation of poses of a fixed set of objects between head-
sets. It makes it possible to make more types of application work with just the plug-in
and without adding custom networking code to the application.

The way it is implemented is that it mirrors the implementation of the device syn-
chronisation algorithm. Each object is ”owned” by one headset at a time, and this
headset is responsible for transmitting the object’s pose. The owner can give up own-
ership of the said object at any time, or any other client can steal ownership of the
object. This model maps well to actions available to users — users can grab object by
pressing trigger and release it by releasing trigger. They can also pass objects between
each other by the receiving party pressing the trigger.

This setup also has the nice property that it hides the latency of the system, as the
local position can be updated optimistically right away without notifying the server
and the object therefore does not lag behind the controller used to move the object.
The algorithm is not guaranteed to be eventually consistent, but will be consistent in
common uses. When stronger guarantees are necessary, the developer using the plugin
is encouraged to ignore this subsystem and use a different solution.

4.3 The Unity plugin
To make the native part of the plugin possible to use from an application, a C# code must
be written. This code deals with communication with the native code and abstracts the
API so that it feels more natural for use from Unity, while still preserving full control.

4.3.1 Rust and C# interop

The design of the plugin mandates that there are some new APIs apart from OpenXR
that need to be implemented. Unfortunately, this also means that a calling convention
must be established to pass data from Rust to C# and vice versa. Since it was not
obvious from the start what exact data will be needed, I wanted a flexible way that
would allow the passing of structured data in either direction.

One option for this would be to use JSON as that has implementation for all the
languages I would need. Problem with JSON is that previous experimentation showed
that it was not fast enough to be on the hot path, which my implementation would
certainly be as ideally I would want to read data from the plugin each frame.
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Another option would be to use the custom binary data format defined by C-like data

structures, which is what OpenXR does. This is fine for OpenXR, as it is a standard
and generally does not change except for a well-defined extension point. But I want it
to be easier to change the protocol — without having to update multiple places in the
codebase.

Enter serde-generate. Rust has a pretty nice ecosystem of serialise/deserialize li-
braries, which means that if you are in rust, you can just add some derive attributes
to your struct and everything you need is handled for you. It is called serde3 (serial-
ize/deserialize) and I take great advantage of this in network communication – more
about that in section 4.5.

Serde-generate4 is a tool to inspect objects that are configured for serde (de)serial-
ization. It then allows us to generate code in various languages to read and write the
serialised data. So instead of having to manually write (de)serializers format and hav-
ing to make sure that we keep them in sync in two languages, we just use the generated
code.

APIs therefore just pass pointers to buffers around (plus size to prevent accidental
buffer overruns), and only complexity with calling the API is making sure that we do
not leak the memory.

Passing data from C# to Rust
As decided in the plugin design (chapter 3), with the exception of non-essential

functions like logging, the plugin will always be called from the engine code. This
greatly simplifies the transfer of data to the native code. Since we already have a
serializer automatically generated, we can just serialise the data structure into byte[]
and pass that along with its size, and everything just works.

Passing data from Rust to C#
Passing data in the opposite direction is slightly more complicated as it requires us to

somehow allocate the buffer, then read it from it in C# and then deallocate it. We could
solve the problem of deallocation by creating a buffer from managed C# code, but that
has the problem of not knowing the buffer size ahead of time. Instead of adding a call to
determine the size, which would in the general case require serialising the data twice, I
decided to just allocate the buffer from Rust and pass the pointer to the managed code.
The managed code then decodes the data and finally calls netvr_cleanup function
which deallocates the buffer.

Data format
For the actual data representation, I chose bincode5. The choice was mostly made for

me as one of two formats supported by serde-generate. The other one being BCS6, which
at the time of writing is a much less popular format, and its canonical representation
features did not seem relevant to this project.

Bincode is a well-defined serialisation format with the only caveat being that it is
not self-describing. This means that both the producer and the consumer have to agree
on the exact structure specification. This is not a problem for this project, as I am not
storing the data anywhere and can presume that every part of the system contains the
same version of the specification. This is helped by the fact that there is only one place
where the format for each data structure is defined and everything else is automatically
derived from there.
3 https://serde.rs/
4 https://github.com/zefchain/serde-reflection
5 https://docs.rs/bincode/latest/bincode/
6 https://github.com/diem/bcs
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Exported functions
As the plugin is implemented as a dynamic library, we need to define the list of

functions that it exports. Some of those do not follow the bincode-based ABI outlined
above, be it because of the need to pass functions, or due to them being implemented
before the convention was established.

To give greater visibility into the Rust implementation, netvr_set_logger sets the
function to be called when the Rust code wants to log something. This is in particular
useful in Unity, as it allows us to redirect the output to the built-in console. This
function is called first to allow for subsequent calls to be logged in.

The main function of the plugin is netvr_hook_get_instance_proc_addr . It takes
a pointer to the xrGetInstanceProcAddr function and returns an alternative imple-
mentation which returns functions that wrap the underlying functions and perform the
necessary actions. There is also netvr_unhook which reverts the effects of the hook
function. This only has to be called in the event where you need to unload the dynamic
library before xrDestroyInstance is called.

Finally, netvr_get_fn and netvr_cleanup are used as part of the bincode
ABI. Get fn provides the caller with pointer to the bincode-bound function and
netvr_cleanup does the neccessary cleanup of the output value.

4.4 Loading the plugin
Unity provides interfaces for loading and working with native libraries. It is based on
P/Invoke 7 and works nicely out of the box. But it has one big disadvantage and that
is that it does not allow reloading the native portion of the plugin. That by itself is not
a problem for the built app, but it complicates development as I would have to restart
Unity editor each time I changed the Rust code.

To workaround this limitation, I implemented a library loader. Based on the value
of UNITY_EDITOR_WIN define it either uses normal p/invoke implementation using
DllImport attributes, or it loads the library dynamically and uses Windows kernel32
API LoadLibrary to load the .dll file dynamically, which allows us to also unload it.
Then uses the GetProcAddress function to get the pointer of the relevant functions.

Since Windows disallows modifying dynamic libraries that are loaded into a running
process, I also copy the file to a temporary location before loading it to memory and
then try to make sure to delete. There are some cases where the unload does not work
properly (mostly in case of some errors), but it works well enough to be more useful
than the raw p/invoke.

To have a singular place where to load and instantiate the plugin, I use unity’s
OpenXRFeature facilities, which allows me to register a feature which can then be
turned on and off in Project Settings. Unity then makes sure that the plugin follows
standard OpenXR lifecycle, which is exactly what we want. If the application wanted
greater control over server connection, new APIs would have to be added, but the
singleton could still be handled by this same system.

4.5 Network protocol
The first step to networking is establishing a server connection. To do that, we need
to first find the location of the server. We could either hard-code a static IP address
7 https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

27

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#xrGetInstanceProcAddr
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#xrDestroyInstance
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke


4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
which would be fine, but is undesirable as I potentially have to setup the testing on
WiFi networks I don’t have control over and therefore could not setup static DHCP
leases. It would mean that I have to recompile and redeploy the application before
testing. Another alternative would be to add GUI to set the IP address, but that again
complicates the testing as some users in the test group will not be technical and would
therefore have a hard time setting the IP address, which might mean that I have to
connect each headset manually, then hand it to the users. Therefore, I decided to add
network discovery.
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Chapter 5
Test application

To demonstrate all approaches and concepts in previous sections, a simple application
was implemented. This chapter contains everything about this application that was
not already described in previous chapters. It follows a structure similar to the plugin
design, just in a smaller scale as most of the functionality is contained in the plugin.
It contains synchronised blocks, performs some critical logging and measurements, and
has some useful debug functions. Additionally, this section describes the measurements
and evaluation performed without users.

5.1 Design
Before I start implementing the application, I need to determine what I want out of
it. The application has two basic goals. The first step is to act as a testbed during
the development of the plugin. The second is to be used in user testing. The first
goal manifested itself already in the previous chapter and means that I have to use the
developed plugin. To better understand the second goal, I started by designing the
experiment.

The user testing will be described in more detail in following chapter, so here I will
only explain the list of features that will be needed for said testing, not how they are
going to be used. There are three key features the application should support: showing
realistic models of local and remote controllers, basic scene for users to be in and a
few objects which can be interacted with. Additionally, it should have some additional
features that are useful for development.

As most of the functionality is contained within the plugin, the application acts as a
thin shell around it.

5.1.1 OpenXR and platform support
The application is created in Unity and uses the OpenXR plugin. As I do not need any
platform-specific features and actually want to actively avoid any such features, I do
not use platform-specific plugins. This makes some things slightly harder, but is worth
it for the ease of porting and in general making sure that if I make something work on
one platform (usually SteamVR as there I can just test in unity editor), it will most
likely work on all other platforms.

This is not to say that there are no platform-specific things for each headset. The
main difference between headsets is the model used for controllers (section 5.2), but
there are other differences. On PC, the support is quiet simple as there I can just
enable all supported controllers in the settings and everything works automatically —
the loader loads correct OpenXR runtime, etc.

In standalone Android headsets, it is slightly more complicated as the OpenXR loader
for Android does not yet exist1. This means that to support headsets from different
1 This is according to PICO’s documentation[22]. The OpenXR loader specification contains description

of Android loader since version 1.0.20 released in October 2021[23], but it is unclear if it is actually
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manufacturers, I need to build separate APKs with different settings, which is somewhat
annoying. The biggest difference is in OpenXR settings — to build for Quest, you need
to enable Meta Quest support and add Oculus Touch controller support, but you also
need to disable PICO support and remove PICO controller profile. To build for PICO,
you need to do the opposite.

If I were to be developing the app further, I would add a script to automate those
changes, but since I added the PICO support late into the development, I just do this
by hand. Also, the OpenXR Unity support on PICO is currently experimental. The
above makes it impractical to be used in a full user testing, but I will do a reduced
testing session if time allows.

5.2 Controller models
To be able to reasonably do the user testing that I want, the application has to display
real models of controllers, and it has to display them in the correct location. This is
harder than it looks as I could not find any of the shelf component which would display
the model, but also allow me to display models of remote controllers. Therefore, I
needed to implement this myself.

I downloaded the controllers from the Immersive Web project[24] (IW) because it was
the only one, which contained the full set of controller models I was after in a convenient
format and with a licence specified. This turned out to be a good choice as when I
wanted to add support for PICO’s headsets, the project was already updated and had
those controllers as well. The project contains models in GLTF format. This is great,
as there is a library that allowed me to load those models on demand – GLTFast[25].
It can be contrasted with SteamVR, which stores its models in a set of OBJ files with
a bespoke JSON format, which describes where each model should be positioned.

One slight problem with IW’s models is that they are made for WebXR, which in
some cases uses slightly differing positions for the controllers, depending on the runtime
used. To counteract this, I hard-coded offsets for the controllers of supported headsets.
This means that support for new controllers cannot be added by just dropping new
model into the build folder. It would be useful to extract this model loading logic to its
own plugin and load the values from some kind of file, but that was beyond the scope
of this thesis.

To know which model to load for the local controller, I consult two values: the
controller name and its characteristics . This tells me what kind of controller it is
and whether the left or right variant should be loaded. To know which model to load
for remote controller, I used OpenXR equivalents of those values, which are interaction
profile (eg. /interaction_profiles/valve/index_controller ) and user path (eg.
/user/hand/left ).

As remote headsets are not directly interacted with by users, I use the same model
for every headset model. This is also for practical reasons, as finding good models
for each of the headsets I support turned out to be harder than finding good models
for controllers. The plugin emits generic_hmd as a ”path” for headsets, which is an
invalid path in OpenXR, so it should never conflict with other devices. This should be
changed if the plugin’s API was ever packaged as a proper OpenXR extension.

The last consideration with models is that, ideally, various buttons on the controllers
should reflect their real-world state. To be able to do this, the IW’s models use standard

implemented in Quest, PICO, and Unity. This will hopefully be resolved in the future, which would mean
being able to run the same apk on different headsets.
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Figure 5.1. Photo of controllers used with PICO headsets. PICO 4 controllers are to the
side and Pico Neo 3 controllers are in the middle.

names for various controls. The model loader implementation then has a lookup map
between the IW’s names and Unity’s control names. It then wires up a component
which updates the displayed objects transform according to the value of the control
each frame.

One limitation of this implementation is that it relies on the fact that each physical
controller corresponds to one Interaction Profile. This is true for some, but not all
controllers. In the case of Vive vs Vive Pro it does not matter much as there the
controllers only differ by colour. But in the case of PICO platform it is a bigger
problem as there the controllers look nothing alike (see figure 5.1), but share the same
button layout and therefore the application cannot meaningfully distinguish between
them. From reading OpenXR spec it seems to be a limitation of the spec itself as
controller models are provided only by extensions, which are not widely supported. As
such, the application only shows Pico Neo 3 controllers, even when PICO 4 controllers
are used. The same limitation applies to the headset models, but there it is less of an
issue as users are not expected to directly interact with their headsets.

5.3 The scene
The scene contained within the app is very simple and utilitarian (see figure 5.2). User-
visible objects are the floor, two cubes to the sides to avoid disorientation, and a table
with coloured objects. All objects that do not support user interaction are white. The
table is represented by a big white cylinder with height and diameter to support four
adults who are standing around it and interact with objects placed on top of it.

The objects are four identical red cubes and eight spheres of varying sizes. All
coloured objects have the same interaction logic: any user can grab any object at
any time. The cubes are intended as a training exercise for the users so that we are
testing the application and the synchronisation and not how well the users can use
VR controllers. The spheres are of differing sizes and are laid in such a way that it is
intuitive for the user to first grab the bigger one that is closer. Each user has their own
colour of objects so that I can give instructions effectively.

The interaction logic is in more detail as follows: Each controller has an interaction
zone represented by a white sphere floating in front of it. When user moves this sphere
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close to any object and presses trigger on their controller, they issue grab command to
the plugin and the plugin starts sending updated position to other headsets. Similarly,
when the user releases trigger button, the application informs the plugin that the user
released the object. This proved to be an effective interaction model, maybe even too
effective, as users never had any problem grabbing or passing the objects (see next
chapter).

In addition to visible objects, the scene contains two other important objects, the
local and remote device manager. Local device manager listens to events emitted by
unity, informing the application that a controller was connected, and spawns the correct
model for that model. The remote device manager periodically asks plugin for a list of
objects and compares this list objects with devices in the scene. When it notices any
differences, it adds or removes objects representing the device in question.

Figure 5.2. Screenshot from the application as a view of one of the users. This image
was taken by laying headsets and controllers on available surfaces, so the positioning of
headsets and controllers does not reflect the real intended usage. The objects are at their

initial locations.

5.4 Latency measurement
As the implementation does not employ any techniques for network delay, latency be-
comes an important property of the system2. To measure this delay due to synchro-
nisation as prescribed in the assignment, a simple method was devised. The method
ensures that what is measured is the additionaldelay due to synchronisation. This
means that it should include everything, for example network delay, possible timing
issues in the implementation, etc, but also that it does not include things like tracking
delay of the system itself.

Data collection
The way it works is that I added a script in which each frame logs pose (position +

rotation) of each device in the scene. This script can be triggered by pressing a button
(it listens to primary and secondary buttons on all controllers, which on all controllers

2 See attached video named delay-demonstration.mp4 for example of how this looks like. In the video
I am holding two controllers together, and the white one is local and the black one is remote. The remote
controller appears to be behind the local one
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I own correspond to A, B, X and Y), and upon pressing any button again, it writes
the log to disk for further analysis. This means that it can be used on desktop and on
standalone headsets. The data collection then works as follows: start the app on two
or more headsets, setup the scenario being measured, press the button, and do motions
as prescribed by the testing scenario, press the button again. The file can then be
extracted from the correct folder by using adb in the case of Android-based headsets,
or by copying the file from the folder with the app.

After collecting the data, I can visualise the collected data on the dashboard (fig-
ure 5.3) or load the file into a script that processes the data and outputs relevant
statistics. As I am collecting the data without users, the script assumes that I am mea-
suring for the set of controllers that moved the most and, therefore, does not need to
have a selection for which pair of controllers to use as opposed to calibration procedure.

Figure 5.3. Screenshot of 3D visualisation of collected data available on the dashboard.
Two controllers are moving in approximately a straight line. On the right is the view from
the side, on the top left is the view from the top, and on the bottom left is the view from
the perspective of the Quest 2 headset. Data are collected on the Index and the remote
headset is Quest 2. The green line represents Quest 2 and the other line represents Index.

Grey connections represent the same moment in time.

Data collection limitations
This latency measurement method does not take into account that local samples are

potentially in the future, as Unity does employ delay-hiding techniques. Local values are
sampled from the position of game objects, which means that they are always sampled
from the time of next frame, whereas the implementation collects samples at current
time before sending them. This means that I am not comparing only the network
latency, but this also adds to the measured time. However, I believe that this is the
correct thing to measure, as it is the delay that the user ultimately experiences. This
factor could be trivially counteracted in my current implementation, but I chose not
to do so, since when I formulated this limitation I already conducted user testing and
I wanted the measurements in this section to correspond with the same setup as was
used in user testing.

Procedure
The original testing procedure was as follows: The tester holds both controllers in

one hand in such a way that they move in relation to each other as little as possible
and moves them in a straight line horizontally with as little rotation as possible. The
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movement spans at least 40 cm and takes about 4 seconds. Note that those numbers
are for the movement, not the measurement, as that includes some time before the
movement starts and some time after it concludes. This method procedure was chosen
because it can be analysed without the calibration being taken into account at all (but
the calibration being done is beneficial for producing 3D visualisations).

To counteract the need for calibration, I only take distance travelled into account for
analysis. This produces two curves in which the remote one is clearly separated from
the local one. See figure ?? for a chart illustrating this.
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Figure 5.4. Chart depicting distance each controller travelled during the latency measure-
ment process. The horizontal axis represents time, whereas the vertical axis represents
distance. This chart shows the same data as in the previous figure. You can see the delay

as a shift in the time domain.

The problem with this is that it does produce any significant results as any delay is
obscured by differences in the tracking algorithms — cross-correlation yields zero which
would indicate no delay, which is clearly not the case. Further experimentation and
tweaking of the input parameters showed that differences in the tracking algorithms
obscure the delay.

Instead, I decided to move the controllers forward and backward (still in a straight
line). You can see the measured data on 5.5. To establish the delay, I measure the
time between the peaks of the graphs. This yields between 3 and 5 frames, which
corresponds to 55 ms.

5.5 Accuracy measurement
The second quality of the system I want to quantify is the accuracy of the whole system
that was implemented. To do so, I would like to compare the system with a reference
stable tracking system without drift. Both Quest’s insight and Index’s Lighthouse
tracking system can be considered accurate for purposes of this thesis[26], but only
Lighthouse is stable insofar that it does not move, e.g. across device restarts, sleep or
even furniture move. As long as the base stations are in the same positions, the system
does not move. Quest does not have such guarantees.

Since both systems provide good positional accuracy, it makes sense to use the same
method as was used previously with tying two controllers together and measuring the
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Figure 5.5. Modified delay measurement process. The chart shows the distance of con-
trollers from the starting point in time as observed by one of the headsets.

difference in the distance between them. But, as with the previous two measurements,
the details are very important. The two important factors here are: we have to take
samples at the same moment in time as otherwise we would measure the effect of
network delay and that was done in the previous section. The second important factor
to consider is to measure the position in server space. The first part is identical as with
the calibration algorithm, the second part is similar to the delay measurement.

With this in mind, data collection was implemented similar, but not identical, to the
calibration process. The user can trigger this data collection from the dashboard and
finish it on the dashboard. Advantage is that the same UI can be used for visualising
the collected data, but extra care needs to be taken not to use these data for calibration,
but instead use the actual calibration process that is intended to be used.

With the data collection processes implemented, it was time to collect data. For
this, I wanted to see how data collection would work in two different scenarios. One
scenario entails somewhat chaotic movement across the available space, and the second
is as orderly and controlled as possible to give all the interacting systems the best
chance. Both scenarios tried to cover widest possible range of motion I could in the
space available, that would still work in that given scenario.

For the orderly scenario, I decided to mount both controllers on a stick and rotate
them around a fixed middle point. Rotating office chair acted as an anchor. To make
sure that the Quest controller was properly tracked, the controller was mounted in such
a way that the tracking ring was visible from the chair and I was wearing the headset
the whole time. The lighthouse-based index controller does not require this and, as
such, does not require this special treatment. The stick used was telescopic, which
allowed me to do measurements of varying diameters. The resulting measurement can
be seen on figure 5.6.

It is worth noting that in the case of perfect tracking system and imperfect calibration
a consistently changing gradient would be expected. On the other hand, even with
perfect calibration, if one or both of the tracking systems were inaccurate, the colour
would still change. If both the calibration and tracking were perfect, a solid colour
corresponding to the real distance between controllers is expected. Another point worth
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Figure 5.6. Positional accuracy measurement using the orderly scenario giving the tracking
systems the best chance.

mentioning is that Lighthouse tracking is less accurate in the corners, and Quest is less
accurate with increasing controller distance from the headset.

The second scenario is less controlled, more chaotic, and is also more realistic. Here,
I walk through the whole room, back and forth. The result can be seen in figure 5.7.
You can find additional images related to both scenarios in appendix B.
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Figure 5.7. Results of positional accuracy measurements in the case of complete coverage
of the tracked space using more chaotic movement patterns.
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As you can see in the images, the baseline is very good, especially around the centre.
For the circle scenario, a slight gradient can be observed towards the negative z axis.
With the more realistic scenario, the picture changes, and the results are less consistent.
You can see that the distance between the controllers sometimes changes dramatically.
But it is worth noting that the same positions in the physical space do not have visibility
to both lighthouse base stations, which means lowered accuracy (the space is L shaped).

Overall, the result is that the system is not perfect, but works pretty well and is
definitely usable for some use cases.

5.6 Miscellaneous
The application also contains few other things, some of which are leftover from the
prototype and some of which were useful during development of the plugin but are not
really used anymore.

There is an alternative implementation of Unity’s pose driver. This is useful as an
easier to use abstraction over Unity’s overcomplicated API for interacting with XR
devices. Further, it has an editor drawer, which allows you to inspect the controller
values in real time without having to open the dedicated inspector (which was broken
in some versions of Unity, now it seems to work correctly).

Apart from those features, the application is intentionally kept minimal to show that
the plugin indeed provides all necessary functionality to implement a multiplayer VR
experience in a shared physical space. See Appendix A for instructions on how to build
and use the application.
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Chapter 6
User testing

To make sure that everything works as expected and that no important variable was
overlooked, we need to test the application with real human people. The main priority
of the experiment is the safety of the participants in case of any glitches. Another
requirement is to take long enough for any drift.

6.1 Experiment design

The experiment is designed to test the application implementation in ways that are not
possible with only one person and to find any unforseen problems in the design. I also
want to try and see how much calibration errors affect the users.

Test space

C

A

I

B

Figure 6.1. Simplified diagram of the test space. The big square shows the space in which
the users will be present with diamonds representing their staring position. Dashed rectan-
gles show closest obstacles around the space, and the blue circle represents a virtual table

used for the second part of the experiment.

In figure 6.1 you can see the layout of the room in which I am working. I decided to
go with square space for the users, and the size is limited by furniture present in the
room (dashed rectangles to the sides represent said furniture).

There are a few things I want to examine with users mainly focused on things that
cannot be tested without users1 so as not to waste limited time. There are two main
categories of problems with the implementation that could affect users: imprecise po-
sitioning and extra delay caused by synchronisation.

To test those, a few tasks were devised. I tried to focus on interactions between users,
as that is what is special here. Interactions can range from interactions at distance, to
short-distance interactions, to direct interactions.

1 eg. delay due to synchronisation can be measured without users, but the effect of it on perception can’t
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6.2 Experiment script
For testing, I have three units of Meta Quest 2 and one Valve Index. As Index is wired,
I have to keep in mind the cable when designing the experiment. The following script
will talk about users using letter ABCI, where users A, B and C have Quest 2 and user
I has Valve Index.

Before the experiment starts I will turn on the headsets, making sure to turn them on
in different positions. After they are turned on, I will setup their respective boundaries
(room setup for SteamVR and Guardian for Oculus) to make sure that users do not
walk into a wall or furniture. Each headset will be prepared on the ground in place
where the users should start along with one controller when testing begins.

The following are the exact steps which will be taken. In cursive are written verbal
instructions to the participants. In normal text are notes which explain more details
about each step and also contain information about what to look out for.

Step 0. Welcome and thank you for agreeing to participate in the research...
If the headsets are not on at this point, I will turn them on now.
Do a quick introduction to the research, what it is about, and make participants

at ease. Once everyone arrives and is introduced, we can start with the experiment.
Before the experiment starts, say that when something goes wrong in a way where
they do not feel safe (e.g. think they are in danger of running into other people), they
should report it immediately. If they have any other observations, they are encouraged
to report it immediately, but they could also remember it for later reporting. Lastly,
I will ask them if they agree to me recording the experiment so that I don’t have to
make as many notes in the moment.

Step 1. Entering VR
Now I assign each participant their headset and tell them to stand in their starting

corner according to figure 6.1 and also tell them their letter. Then I demonstrate to
them how to hold the controllers, where is the trigger button, and also where is the
system button so that they do not press it by accident and I do not have to pause the
experiment to help them get back to the test app.

When all explanations are finished, I help them put on the headsets and make sure
that everyone has their headset dialled in so that they can see clearly.

Step 2. Calibration
After each participant enters the VR, I instruct them to open the app. They are

instructed to open the app one by one, so that I can assign names to the headsets in
the dashboard. For Valve Index I start the app myself, as there it is easy to do2.

After the users started the app, I take the controller from a pair of users and perform
the calibration procedure. I instruct the Quest 2 users to watch their controller to ensure
a good calibration. They are also instructed to report when the calibration finishes.
When all of this is done, I ask them if they see each other and if other headsets are
moving to make sure that everything is still working.

Calibration will be performed in the following order: I will be used as the reference
point for the server space as it should always have its origin in the centre of the test
space. Then I will calibrate A to I and B to I – this is how I envision the system to
be used under ideal circumstances. Every headset was calibrated to one central ground

2 I could start the app even on Quests, but there I would have to setup adb over WiFi and I found that
it is not worth it in this case
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truth. Finally, I will calibrate C to B – this makes it have three hops of calibration to
A and should therefore exhibit largest calibration error. The positioning and testing
order, along with diagrams for the following steps, can be seen on figure 6.3.

Step 3. Waving
After everyone is ready and they see each other, the experiment can start. Okay,

everything seems to be working, we can start. Participant I, please move your controller up and say
the word up at the same time, then move the controller down and say the word down at the same
time. Repeat a few times.

Then I proceed to call the participant I and ask everyone else in turn the following:
Participant A, did you see the participant I waving? Was there a noticeable delay? Did the place
where the sound comes from match the direction from which you see the participant I?

This step is designed to show that the position is approximately correct and that
the delay is not extremely high. I repeat this until everyone waved. The order of the
participants who wave is IACB.

Step 4. Passing controllers
Form pairs, I with C andAwith B, and move towards each other. Once you are close, stop.
This creates a pairing of participants with two calibration steps away from each other.
Now I will offer the controller to C andA will offer their controller to B. C and B will accept

it.
This step is designed to test whether the user can grab the controller even with

imprecise positioning. I should observe and note how easily the group performs this
task.

Q: Have you had any trouble with this task?
Return the controller
As in the previous step, notice any trouble and ask how well they are doing.
Then repeat the pass the controller test but in the opposite direction (B and C offer

and I and A accept).
Q: Are you right or left handed?

Step 5. Touching controllers
Now try touching your controllers with each other.
This step reveals even minor divergences in the positions of the controllers.
Q: Do the visual positions of the controllers match what you would expect? If not, try to estimate

and describe the difference.

Step 6. Different pairing
PairAwith C and B with I.
Then guide them through steps 4-5 again, A and B offer first. After it is done, return

to your starting positions.

Step 7. Explaining the interactions
In the middle of the room there is a table in the shape of a big cylinder with coloured objects on

top. Stand around it.
This sets up the stage for the final part of the experiment in which the users will try

handing objects to each other. First, I have to teach them how to do it and make them
comfortable with the control scheme (as I want to test the synchronisation and not VR
interactions in general).
Now everyone will grab the red cube in front of them. Use the trigger button to do so
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Figure 6.2. Photo taken during the third test session with participants standing around
the virtual table.

This step is there to make them comfortable with the control scheme. If they have
problems, help them, and maybe instruct them to try again. If something goes wrong,
reset the positions of the spheres from the control panel.

Step 8. Passing objects
Participant I, which should be closest to the blue ball, will take it and pass it to the person to their

right (participant B).
Once done, instruct them to pass it around the table until it gets back to the original

person. Observe and note any problems. If you have problems with passing the object,
let them try again.

Step 9. Instruct the participants to do the same with the smaller green ball, then
the red ball, the purple ball, and with the smaller versions of each.

Step 10. Try touching the controllers again and report the error now. Is it different
from when you last tried it?

Step 11. Thank you, that is all in virtual reality. Please take the headsets off and remember
that the virtual tables are not real; therefore, you cannot put controller or headsets on top of them.

Experience shows that after some time spent in VR, people forget that some objects
do not have real correspondence and will try to use virtual objects for support. This
sometimes results in dropped controllers.

Step 12. Ask the participants some final questions and reward them for their time
(figure 6.5).

If I feel like the following questions were not answered adequately during the test, I
will now ask the following questions.

Q Did you notice at any point after the calibration was finished that the virtual
representation of physical objects diverged from reality?

Q If yes, describe when and by how much.
Q How did the absence of tracked hands affect you?
Q Did you notice anything else?
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Figure 6.3. Diagram of four main parts of the testing sequence. First, the square shows
the order of calibrations taking place, the second two squares show the pairing for pair

activities, and the last square shows how the users are standing around the table.

6.3 First group

This test session was conducted using a test script very similar, but not exactly the
same script, as you can see above. It was mostly the same, but with less detail, which
turned out to not be optimal. I will call out the differences where relevant to the
description.

Setting up and starting After explanations were finished, we proceeded to boot the
Quest 2’s (the Index was already up and running); this turned out to be a mistake as
one of the units did not boot up correctly. Trying to debug the issue, I proceeded to
forcefully turn off and back on. After that did not help, I decided to proceed with just
three users instead of four. The headset did eventually turn on (before Step 7) and we
redid the steps that the user missed. For clarity, I will reorder the events so that they
match the steps outlined in script above.

Then, we started calibration. At first I made the mistake of not properly showing
the controller to the user, which, of course, made the calibration imprecise. After that
I rectified it. There was one more calibration that resulted in an error, and upon
reviewing the video recording it seems like it was caused by sudden movement of one
other participant during the calibration process. I want to examine this further in
future testing sessions, probably as a bonus step after the main testing ends.

Step 3, waving. After completing the instructions, the wave went without major
issues. Users did not report any perceptible delay.
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Step 4, passing controllers. At this point my phone on which I was recording ran out
of memory and I do not have this recorded so I cannot report more detailed info, but
it went without major problem. The biggest issue here was with users not seeing their
hands, only controllers, and so it always took them a bit of trial and error to grip the
controller where the other user was not gripping it.

Another issue occurred for the Index controller where the users tried to use the
tracking arch as a grip, which resulted in loss of tracking. Interestingly, this did not
happen for the Quest touch controllers even though those are smaller and I would
expect it to happen more there. See figure ?? for illustration. They held their own
controllers in their right hand, and so they were gripping the received controller with
their left hand. I did not ask if they were right or left handed.

Figure 6.4. Controllers being held. On the white background, you can see how users tried
to grip the Index controller when receiving it. On the brown background you can see how

Quest and Index controller are supposed to be held.

Step 5. Touch controllers
With this step, they did not have major problems. They saw some misalignment,

but since I do not have the recording I do not know what exact misalignment there
was. However, it was not so severe that they collided unexpectedly though.

Step 6. Repeat. Repeating the previous steps did not reveal any major differences,
and therefore serialising the calibration does not seem to cause major problems and it
seems that even if the calibration was less precise, or only used SLAM tracked headsets
were used, the system still works.

Step 7. Explaining the interactions Here we stumbled upon another roadblock insofar
as the objects were not synchronised between headsets. This meant that we had to
pause the testing while I investigated the source of the issue. It turned out to be
caused by one of the headsets having an older build of the app, which caused it to not
upload the list of the objects.

Once this was solved, we resumed the testing, but as the app currently does not
store the calibration across restarts, we had to redo the calibration process. This time
it went without problems.
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After the second round of calibration was finished, the users blazed through the task

of passing the objects without issue. They went through it with such ease that I decided
to make it harder for future testing sessions by reducing the distance from which they
could interact with the objects — the first version contained a grace distance, so even
if the users were not exactly precise, they could still interact with the objects.

Step 10 and the questionnaire were not included in the script for this testing session.

Further observations. One last observation is that when everything was working, the
users seemed to be enjoying it and outside of doing tasks they were interacting by doing
various gestures. But while I was debugging the issues which resulted in them being
alone in the space they reported being bored. At one point when one calibration went
particularly wrong, one user reported discomfort.

One other issue that appeared while testing the app was that the internet was cut out
for a bit. This shouldn’t be a problem as everything is running locally, but it resulted in
the server computer deciding to try to connect to a different WiFi access point, which
is on the same LAN, but the broadcast packets used for server discovery do not reach
it. This continued working until we had to restart the apps due to the synchronisation
problem, after which the clients couldn’t find the server until I manually changed the
WiFi connection back. But it also shows that either the reconnection logic or QUIC
connection migration works correctly.

There was also a moment when users reported glitches (other headsets stopping
moving and then disappearing), which I attribute to above-mentioned WiFi issues.
But they quickly resolved themselves. Additionally, those issues prompted users to
stop what they were doing, which is a good sign for their safety.

In conclusion. When everything is done correctly, the application works. The calibra-
tion works correctly when fed reasonable data. The calibrations were either obviously
wrong, or the error was imperceptible. There was no noticeable major drift in the
procedure and the calibration is simple and fast enough to be used in groups of four.

Interesting observation is that the calibration algorithm could be improved by adding
a post-step which would reject obviously-wrong calibration result based on whether the
up resulting up vector is similar enough. This would prevent the mentioned discomfort
the user experienced due to wrong calibration.

6.4 Second group
The second group’s testing went much smoother. The group was less technically in-
clined, which made setup steps like opening the app less smooth, but once everyone was
inside the experience the differences mostly disappeared. I unfortunately had problems
with recording again — this time I was recording on my laptop which has enough space,
but I did not check the microphone that was set in my recording software, and as a
result lost all audio. But other than that, we had no major problems while testing.

Entering VR and calibration. For this test run, I had new and improved script and
room diagrams, which made it much easier to know which headsets to calibrate to
each other. Calibration went without major issues. I probably occluded vision from
one of the headsets when calibrating C to B (as will become apparent easier), but the
calibration process did not bring anything of note. Everything worked as expected on
the first try.

I made a minor adjustment to the procedure by only asking them to enter VR when
I wanted to calibrate their headset. This was to reduce the amount of time spent

44



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Second group

waiting, standing around, and doing nothing, which paradoxically did the opposite.
Most of the time was spent on users entering the VR experience and could have been
much smoother if I started the experience directly and then passed them the headset
back.

The whole setup + calibration process took almost 12 minutes for three participants.
I count the participant I separately, because there I started the application for them
from the PC. From putting the headset on to starting the application took 2:51, 5:10
and 2:00, respectively. The outlier of more than five minutes was caused in part by the
group chatting, which I did not want to interrupt, and in part by a mismatch in the
controllers, which meant that we were trying to use controllers from other headsets.
The calibrations took 30, 45 and 40 seconds, including setup on the dashboard, taking
the controllers from participants, and returning them back. All of the measurements
are approximate, as exact time for each task is hard to determine without audio.

Participant Time to enter the app Calibration time
A 2 min 51 s 30 s
B 5 min 10 s 40 s
C 2 min 00 s 45 s

Waving. In the waving step, participants did not report any perceptible delay.

Passing controllers 1. In the first pairing, participant C had noticeable trouble grab-
bing I’s controller. Interestingly, participant I had less trouble receiving the controller
of C. The other pair did not have any trouble with this task. When asked, no partici-
pant reported problems with taking the other controller, but when asked a more direct
question of was the controller where you expected it to be in space, the participant C replied
that it was not, but that they had no problem adapting to this discrepancy.

Touching controllers. Pairing A to B reported an error of approximately half a cen-
timetre, while pairing C to I reported an error of a few centimetres, depending on the
orientation of the controllers.

Passing controllers 2. This time everything went without bigger problem, but when
grabbing the controller, it was visible that pairing A and C expected the controller to
be in a different place. When asked, they did not report any problem, and since I did
not notice the attempt to reach to empty air when watching them in person, only from
recording, I did not push further.

Touching controllers 2. The results of this were similar to the first pairing – a very
good match in pairing B to I and an error of a few centimetres in pairing A to C.

In conclusion to the first section, I would say that it is visible that the calibration
works well when the input data are good (A, B and I), but even when the offset is
noticeable under scrutiny, the participants did not have much trouble adjusting to it
(this will become even more apparent later in the testing).

Lastly, I asked them if they would find it helpful to see their hands during the tasks,
and they reported that while it was strange to not see their own hands, it did not make
much difference. But for the task of passing the controller, it would have been helpful
to see the other participants’ hands to avoid unwanted touching other people’s hands.

Passing objects. During this series of tasks, the participants did not have any major
issues. In the end, the task was still too easy to show anything really meaningful. The
only interesting observation is that this task was not affected even by a higher error in
the calibration of the participant C.
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After completion. After we finished, I informed the participants that the testing is

over, but if they wanted, they could stay in VR and interact with the objects, since
they seemed to be having fun. They tried various ways to try and break the application
like sticking their head into the virtual table (it was the first time in VR for some of
the participants). After some time, they started to make sculptures from the objects
available.

After a bit of time I decided to give each participant the second controller but pur-
posefully gave them the wrong one. Interestingly, they did not even notice at first, and
only way they noticed was when they noticed a mark that is only visible on remote
controllers. They did not have difficulty using the controllers, even with a wrong cali-
bration (appendix B). The only point in time where they had trouble using the other
controller was when all participants except B were looking at the ground because they
were sticking their head into the virtual table. Meanwhile, the participant B, who was
the tallest in the group, was busy collecting all objects as high as possible to keep them
out of the reach of other participants. This was quiet surprising and shows that it is not
a big problem to use different participant’s SLAM-tracked controller in a setup where
all participants are standing around a table.

When adding the other controllers, this was the only moment when the participants
reported any kind of freeze in tracking. I suspect that this was caused by connecting the
second Index controller (the quest controllers were already on, just not in participants’
hands), as that requires transmitting more calibration data. If the plugin were to be
deployed in any production capacity, this freeze should be examined.

Conclusion. In conclusion, the second testing session showed that for working with
purely virtual objects, the setup works well enough, but for working with real tracked
objects, hand tracking would be useful. Additionally, it showed that the calibration
holds for at least 30 minutes, which is the time it took from the calibration being
finished, until the first participant decided to exit VR.

Figure 6.5. A shiver of plush shark toys (blåhaj) given to the participants as a thank you
for participation in the testing.

6.5 Third group
For the third group, the hope was that everything was well prepared and tested from
the previous session. This would mean that the third group should show how the
application would behave with an experienced operator.
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Entering VR
This time, I decided to first let them enter the virtual reality world and then only

perform the calibration. It took about 9 minutes for all participants to enter VR and
start the application. It could have potentially been faster by about 3 minutes if I
didn’t need to rename the headsets in dashboard, which made it necessary for them to
start the application one after another. Therefore, about 6 minutes for 4 participants
represents the best-case scenario for the time to enter the VR application with one
operator helping them.

This figure is important context for the time spent calibrating the headsets to each
other, as this time is unavoidable, whereas the calibration time could potentially be
improved with different methods.

Calibration
The calibration went very well with this group. Everything worked on first try

and the calibration took about 140 seconds to fully complete. It could have been
slightly faster if I were calibrating all Quest headsets to a central Index headset for
example, which could have reduced the amount of time it took to find controllers in
the dashboard, taking them from users and returning them back. But it means that in
this case the calibration makes the time to enter the experience longer by about 33 %,
which is considerable increase. It would be interesting to experiment with storing the
calibration so that the headsets would only need to be re-calibrated if the offset gets
too big.

Waving. Users did not report a perceptible delay for this kind of interaction.

Passing controllers Participants did not report trouble passing controllers, nor was
there any problem or retry visible from observing them. ”The controller was exactly
where I tried to grab it”. The second pairing went much the same.

Touching controllers Pairing of participants A and B reported an error of about 1 cm
in one axis and none in the other two axes. The pairing of participants C and I reported
slight overlap, and there due to the different shape of the controllers it was more difficult
to determine more exact measurements.

With pairing C with A, the participants again reported an error of about 1 cm in one
axis and none on the others. This makes sense, as any error between A and B should
be passed to A and C due to the order in which they were calibrated. As the error was
described as ”basically the same”, this would imply a very good calibration between B
and C.

Passing objects. This time passing objects between participants went flawlessly. One
participant reported a glitch at one point, but upon reviewing the video recording, it
turns out that the supposed glitch was caused by one of the participants abruptly
moving their controller.

Only new observation in this section was from one participant who noticed that
when other participants were handling objects, the objects were not perfectly glued to
the controller. This could be easily explained by the fact that the remote objects and
controllers are synchronised separately and could therefore have slightly different delay
and if one datagram happens to arrive on one frame and another datagram on another,
there is visible delay. The participant who reported this was using Index headset, which
was running on the same computer as the server (it is unclear if this makes a difference,
but I wanted to note it in case it would).
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Free interactions. Again, I left the participants to do what they wanted after the

testing session ended. I gave them the wrong controllers again to see how they would
use them and if they would notice the delay. They immediately noticed the marker
that tells them that the controller is supposed to be used with different headset, so
they knew that they were using nonlocal controllers.

This group reported latency when using remote controllers and trouble using the left
controller to interact with objects. The trouble with interacting with objects turned
out to be mostly caused by missing sphere, which indicates where is the interaction
zone of the controller (as I did not expect to be testing this use case when designing
the application). Interestingly, once they stopped examining the latency directly, two
of the participants ended up only using the local controllers, and the other two used
both controllers interchangeably when the group decided to build a snowman.

This means that if the latency could be avoided by using local controllers, it should
be avoided. If the design of the application requires changing which controllers the
user interacts with, or, for example, using remote VIVE trackers, it would be useful to
implement more latency-hiding techniques. One such technique would be to estimate
the latency and request position in the future from the runtime instead of current
position when collecting samples to be sent over the network.

6.6 Testing conclusion
The testing showed that the current application works and that the current implemen-
tation is suitable for many use cases. However, if the use-case for the plugin requires
users directly using objects tracked by remote system, the implementation would have
to be improved. The implementation is good enough for taking and passing along
the remotely tracked objects, but is not good enough for using those objects for doing
fine-grained interactions.

The testing also showed that it is inherently more fun to do things as a group and
even though the environment itself was not very engaging, the participants ended up
having for at least part of the testing. Some participants even expressed excitement
about the possible uses of VR technology. The biggest stated obstacle here is that the
headsets are not comfortable enough for prolonged use.

Figure 6.6. One of the participants mentioned that it would be very cool to use this for
a DnD campaign.
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Chapter 7
Conclusion and future work

During this project, a complete system for creating multi-user VR experiences was
designed and implemented. Most of this work was concentrated on creating an engine-
agnostic OpenXR-based plugin, with special interest in Unity. Both qualitative user
testing and quantitative testing without users was conducted and demonstrated that
the system works well enough for user-to-user interactions.

User testing did not demonstrate any major issues with the implementation and
showed the willingness of users to ignore larger discrepancies should they arise. Quan-
titative testing showed latency of 50 ms under stress and a positional error of between
3 and 7 cm, depending on the quality of the base tracking..

Apart from the core synchronisation and calibration systems, other supporting sub-
systems were developed, including dashboard, visualisation, logging, and analysis utili-
ties. All the systems were integrated into one coherent application which demonstrates
the capabilities mentioned above and was used for the testing. This work was also
presented at the 25th Bilateral Student Workshop CTU Prague and HTW Dresden.

As this work had to implement most of those systems from scratch, there is a lot
left unimplemented or unexplored. An area of interest would be general improvements
in implementation, which could potentially improve latency. When there are improve-
ments in the latency, it should also be possible to modify the system in such a way that
the latency is hidden by using position prediction.

The calibration itself has multiple possible areas for exploration. An interesting
approach would be to explore how to determine how much calibration is enough. Alter-
natively, if a lighthouse-based tracker device was attached to SLAM-tracked headsets,
the calibration could be done continuously. Another possible area of exploration would
be to better measure the parameters of the system, in more contexts, with different
combinations of headsets, etc.

Lastly, a significant part of the implementation deals with integrating with OpenXR.
This part could be reused for creating a platform-agnostic logging layer, which would
be very useful but is not currently openly available (there is one for Meta’s headsets,
but not a platform-agnostic one). Rudimentary support for this was even implemented
along with the rest of the software.
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Appendix A
Manual

This chapter will contain various instructions on how to build the app, the plugin, the
dashboard etc. Further it will also contain instructions on how to use the app and the
dashboard.

A.1 Compiling the source code
The whole system consists of multiple components, which are interdependent on each
other. To help with this, when a someone wants to modify just one section without
modifying the others I included the necessary build artifacts of each part with the source
code. However, it still is possible to build everything from source and this section will
explain building each part in the order you’d have to do if you were building everything
from source. It should be possible to skip any subsection here to change one part of the
app, but it might be necessary to rebuild dependent section to include files in resulting
build.

A.1.1 Dashboard
Dashboard is web-based and implemented in react. As such it needs node.js to be built
and everything else is fetched from npm . I used node version v18.16.0 but it should
also work with node 20, which is the current latest version. Lastly, you should enable
corepack by running corepack enable , which depending on your operating system
and the manner in which you installed node might require administrator privileges.
corepack is distributed along with node in official packages.

Once node is installed and corepack enabled, you can build the dashboard. Open
terminal and navigate to netvr-dashboard directory. There run yarn to install de-
pendencies and run yarn build to build the dashboard. This is everything you need
to do build the dashboard.

Calibration visualisation relies on wasm build of either netvr-cpp or a part netvr-
rust being present in correct directory to be able to apply the calibration to the data.
See README.md in netvr-cpp or netvr-dashboard/src/wasm2 respectively for in-
structions on how to build that. Instructions for building the rust version are also
included below.

If you want to develop the dashboard run yarn dev to run the dev server, which
listens on localhost:3000 and automatically reloads the browser on any changes.

A.1.2 Rust part
The rust code contains most of the implementation of the plugin and the server. As
such it is probably the most important part of this project. To install all dependencies
on non-windows system you can use direnv1 in combination with nix2. This means that
1 https://github.com/nix-community/nix-direnv
2 https://nixos.org
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you can just run direnv allow and all dependencies will be available. If you do not
have nix or are on windows, you will need to install the dependencies yourself.

The main dependency is rust and to install it, I recommend using rustup 3. With
rustup installed you should be able to just run cargo commands described later
in the netvr-rust directory and it will automatically download the required ver-
sions of rust toolchain based on contents of rust-toolchain.toml . However, if that
does not work you might have to install the required versions yourself by running
rustup toolchain install 1.69.0 . This is the latest rust version at the time of
writing.

Make sure that your rust installation is located in path without spaces as otherwise
it breaks the android NDK as that is required for the android build. The best way to
achieve that on windows is to set the following env variables system-wide: CARGO_HOME
to C:\Stuff\Rust\cargo and RUSTUP_HOME to C:\Stuff\Rust\rustup .

Apart from rust toolchain you will also need a working C/C++ compiler, assem-
bler and linker as some dependencies of the code have parts of them written in those
languages. For windows, if you don’t have a working compiler already, I recommend
using Build Tools for Visual Studio 2022, which is a minimal install without the need
to install whole visual studio. If you already have visual studio installed, but without
the needed components, you can run ”Visual Studio Installer” program and add the
required components there (just the C/C++ compiler and assembler is required). If
you are not sure if you have what you need, you can just try building the rust portion
and if it fails on linker errors, or an error indicating that it failed to build .s, .c or .cpp
file then you do not have working compiler or cargo could not find it. I also recommend
installing the compiler in default location as otherwise it might make it more difficult
for the build script to find.

If you are building on linux, then you probably have a compiler installed already.
If you are on MacOS, then it should be enough to run xcode-select --install to
install required portion of XCode.

To build for android, you need the android NDK. As you will probably want to have
unity installed anyway, the best way to achieve this is to install NDK along with it.
But if you have android NDK installed anyway, you can also use that. See cargo-ndk’s
documentation for instructions on how it finds NDK4.

Build instructions
All the following commands are expected to be executed from terminal in the

netvr-rust directory.
To install dependencies and build the whole project for current platform you can

just run cargo b to create a development build, or cargo b --production to create
a production build. The development build is enough for running the app from unity
editor on windows, as there is a code which automatically find the .dll and loads it
dynamically. This also builds the server and various extra utilities.

If you want to produce windows build of the native plugin and copy it to the correct
directory you’ll need cargo-post. Run cargo install cargo-post to install it. Then
you can run cargo post b --package netvr_plugin --release .

For android version you need to have cargo-ndk which can be installed by running
cargo install cargo-ndk . Once that is installed, you can run #1 (see below) to
build the .so file followed by #2 to copy it to correct directory. You might also have to

3 https://rustup.rs/
4 https://github.com/bbqsrc/cargo-ndk
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run rustup target add aarch64-linux-android to install the android target rust
component if it does get setup automatically from rust-toolchain.toml .

#1:
cargo ndk -t arm64-v8a -p 32 b --package netvr_plugin --release \

--target aarch64-linux-android
#2:
cp target/aarch64-linux-android/release/libnetvr_plugin.so \

../netvr-unity/Packages/cz.isbl.netvr/Runtime/Plugins/Android/arm64-\
v8a/libnetvr_plugin.so
# ^ note that there is space between .so and .., but no space
# between arm64- and v8a. The command unfortunately does not fit
# nicely on a page.

To run the server or a utility directly from source code folder, run cargo run --bin
executable_name , eg. cargo run --bin netvr_server for server. You can also
append --release to run the release version of the program.

To compile the wasm version of calibration algorithm you need wasm-pack and the
relevant rust component. See wasm-pack’s documentation5 on how to install that and
the component can be installed using rustup target add wasm32-unknown-unknown
command. Then you can run wasm-pack build netvr_calibrate --release to pro-
duce the build. You will need to copy files from netvr-rust/netvr_calibrate/pkg
to netvr-dashboard/src/wasm2 to use them. You might also be able to just replace
wasm file in build artifacts of the dashboard, but that is not guaranteed to work.

A.1.3 Unity
Building unity portion of the codebase should be no different from building any other
unity application. As usual, you can determine unity version used by looking at
netvr-unity/ProjectSettings/ProjectVersion.txt and it is Unity 2022.2.12f1 .
You can install this version by using Unity hub by clicking on a Unity hub link from
the webpage for this release6.

After opening the netvr-unity directory in Unity editor, you should be able to run
the application directly in play mode. To build the application for windows, open File
> Build Settings..., click on Windows, Mac, Linux and click on Build in bottom right
corner. If there is a Switch platform button instead, click on that first and after unity
completes the switch, you can click on the Build button.

To build for android, you do much of the same. In Build Settings window click on
Android, if android is not currently active click on Switch and finally click on Build.

There is one more specific change you might have to do in Android. The project
should be setup for the Meta’s Quest platform. If you want to build for PICO, you
have to change a few settings. In build settings, click on Player Settings... in bottom
right. Then at the lower left, under XR Plug-in Management click on OpenXR and
switch to the android tab. There remove Oculus Touch Controller Profile from the list
and add PICO Touch Controller Profile instead. Finally, uncheck Meta Quest Support
and check PICO Support instead. To switch back to Quest, you have to make the
same changes but in reverse. Unfortunately in the current version of plugins, support
for Meta’s platform and ByteDance’s platform is mutually exclusive even though they
both use OpenXR.
5 https://rustwasm.github.io/wasm-pack/installer/
6 https://unity.com/releases/editor/whats-new/2022.2.12
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A.2 Short manual
To run the whole system you need to have two things running - server and client. To
start the client, there is nothing unusual — either double click netvr.exe on windows,
or run the app from Unknown sources on after installing it on Android. On windows,
the system might ask you to give the application permission to access the network. If
it does, grant it.

To install the app on Android-based headsets, you’ll need to put the headset into
developer mode. Putting Meta’s headsets into developer mode requires having a de-
veloper account, while PICO headsets can be switched to the developer mode directly
from settings menu by clicking the Software Version in About section seven times. Once
your headsets allows side-loading APKs you can use your favorite tool to install the
app. You can use adb directly from terminal, or use Meta Quest Developer Hub for
Quest headsets, or upload the build directly from Unity by using the Build And Run
button. On the PICO headset you can also copy the APK to the device and install it
from file explorer.

To run the server double click netvr_server.exe and it should open a terminal window.
It might ask you to give the app access to the local network, grant it as otherwise the
clients will not be able to connect.

The client and server must be on the same local area network with working UDP
broadcast. If this is the case and firewall is not blocking the network access, the clients
should automatically find the server. The implementation currently only uses IPv4 (it
does not have IPv6 support in server discovery) and UDP and uses well-known port
13161 for server discovery. It uses automatically assigned ports ( :0 ) for client-server
communication and those are printed on the console. The server has to be able to
listen on 0.0.0.0:13161 . The server is very lightweight and should run on almost any
hardware, but also stands in basically every critical path of the application.

To connect to the dashboard, open http://server-ip:13161 in your browser of
choice. Any modern browser should work fine (sorry, no IE11 support here). Alterna-
tively, you can also use http://localhost:13161 if you want to access the dashboard
from the same computer the server is running on. The server has to have TCP port
13161 open as web browsers connect via TCP instead of UDP. It uses HTTP and
WebSocket protocols for connection.

A.2.1 Dashboard
Dashboard contains most information needed to control the plugin and is also very
useful for debugging what is wrong if something does not work. On figure A.1 you can
see the view you will see when you open the dashboard for the first time.

The dashboard consists of five panels, which can be indivitually collapsed or ex-
panded. On the left side are four control/status panels and on the right is a message
log panel. Some panels contain structured data and there you can expend parts of
the messages by clicking on the header or triangle, which denotes the status of the
subobject. The dashboard tries to strike a good balance in choice of what to show by
default.

The message log by default contains most messages the dashboard received from
the server via WebSocket. It contains all configuration updates and some latest state
update as otherwise it would have to show thousands of messages very quickly. The
log can be paused by pressing Pause/Resume button to be able to focus on a message
without it disappearing. You can also hide most frequent state messages and only show
configuration messages by pressing Show/Hide datagrams.

56



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Short manual

Figure A.1. Basic view of the dashboard without any client connected and with all panels
open.

On the top left is visual settings panel, which you can use to choose a theme used for
the dashboard from a range of options. It shows the colors that will be used and you
can choose from Light and Dark variants, or choose for it to follow you system settings.
By default it follows system settings. This panel also contains a button which can be
used to enter and exit full screen mode in the top right corner.

Second panel on the left is Quick Actions panel. This panel contains all actions
which can be executed without inputting any data. The first button ”Sync Devices by
headset position” triggers the simple calibration method described in section 3.6.2. The
”Move some clients” button chooses one client and applies translation to it to debug
the application of calibration matrix without involving any calibration algorithm. Then
there is ”Reset all calibrations” which instructs all clients to set Server space to be
equal to Stage space. Lastly, the ”Disconnect all clients” button can be used to test
the reconnect logic and it forcibly closes all client connections to the server.

The calibration panel is the most important panel of the dashboard as it is the main
entrypoint for the calibration. Here you’ll choose target client (the headset which will
be moved in virtual space) and the reference client (the one that will not be moved).
You also need to choose a controller from each. Controllers can be switch by using the
shortcuts denoted in square brackets. Once client and controller are chosen, this panel
also shows the data about the controller which can be used to identify if you are holding
a correct controller (eg. move the controller above your head a observe if the z position
changes accordingly). There is also a identify button, which is supposed to vibrate the
controller, but it was not re-implemented upon moving from prototype version to the
final version.

Once you have your chosen devices, then you can click on Trigger calibration, or (and
I recommend this, as it is easier to do with non-dominant hand) by clicking the T button
on your keyboard. The panel also contains Enable keyboard shortcuts checkbox, which
allows you to disable above-mentioned shortcuts in case you need to write something.

Then there is the state panel, which contains the current system state. Click on the
triangles to expand or close individual sections of the state tree.

Lastly there is one panel for each connected client. Those panels show basic informa-
tion about the clients and allow you to rename them. You’ll want to disable keyboard
shortcuts on the Calibration panel before doing this.
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A.2.2 The VR application

The application is very simple — there is no teleport, or menu. You can move through
space by moving yourself. You should be able to see your controllers and also see state
of their various buttons (how much is the button pressed, etc.). Once other clients are
connected to the server you should also be able to see them immediately, but before the
calibration is complete you’ll likely see them in the wrong place. Once the calibration is
complete, the virtual position should correspond with the real position of each device.

There are two actions which the user of the application can perform: interact with
synchronized objects and record controller positions. To interact with synchronized
objects, move the sphere that floats above your controller close to them and press and
hold your trigger button. While you are holding your trigger button, the object should
move with your controller. When you release the trigger button, the object should stay
in its place. If someone else is holding a object, you should be able to take it from them
in the same manner.

The other action that you can do is to record device movement. This can be done
by pressing any face button (A,B,X,Y), doing the thing that should be recorded and
pressing any of those buttons again. The log is then saved to the internal memory of the
headset and can be extracted either by going to the directory with the app on windows,
or by using similar methods you used to upload APK on android. Alternatively, the
clients also upload this file to the server and it could be found in the uploads directory.

A.2.3 Visualisations

When you do calibration, the server automatically creates .json file with a timestamp in
its name in the same directory the server is running from. This json file can be visualized
in the browser. Open your browser at http://server-ip:13161/sample-viz and you
should be greeted with a 3D view and a control panel (it shows spinning cube briefly
while it’s loading but this should disappear, if not, check if the server is running and
accessible). Drag and drop the calibration file to visualize it. See figure A.2 for an
example of how it looks.

Figure A.2. Example view of interactive calibration visualiser on the dashboard.
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It should then show the collected data in configuration. Use your mouse to change
the viewport. You can also try changing some options in the top right, but keep in mind
that those were mostly experiments useful during the development process and some of
them might not work anymore. The defaults correspond to the actual calibration used.
You can change the colors to going to the dashboard and changing the theme there.

Section calibration is for the data recorded by pressing controller buttons. Similarly
to calibration visualisation, open web browser at http://server-ip:13161/delay-viz
and drag and drop the file. This time it should end in .txt. Again the color settings
are shared with dashboard.

Next visualisation is a trace of how unity calls the OpenXR methods, which the
plugin overrides. This is currently disabled as it can produce multi-gigabyte files. The
resulting trace files can be opened in Perfetto UI7.

I attached some sample input files for all of these visualisations if you do not want
to try creating some.

A.2.4 Analyse program

You can also reproduce analyses reported above by running the analysis program.
It is written in rust and you can run it from netvr-rust directory by executing
cargo run --package analyse --release path-to-data.txt . It will output some
statistics right into the terminal and create some charts and other files next to the input
file. Those resulting files will have the same name but different extension.

If you do not have a working rust build environment, I also attached a built version
of this program and you can run that as analyse.exe path-to-data.txt .

A.3 Using the Unity plugin
It would hardly be a plugin, if you could not use it in new application. To do so you
have to import it and then add some key objects to your scene. I’ll assume that you
already have a VR project and that it uses OpenXR as it’s VR plugin. If not, change
this first and then come back to this manual as OpenXR is a hard requirement for the
plugin.

To import the plugin, copy cz.isbl.netvr directory from netvr-unity/Packages
to the Packages directory in your Unity project. Afterwards, open manifest.json
in the same directory and add "cz.isbl.netvr": "file:./cz.isbl.netvr" to the
"dependencies" object. This object is customarily sorted alphabetically, but it is not
neccessary. At this point, unity should automatically load the plugin.

To setup the plugin, you need to enable it in OpenXR Settings. Click Edit > Project
Settings... (fifth from the bottom on my version of Unity). Then click OpenXR under
XR Plug-in Management. Select a tab corresponding to your platform of choice and
check the Isbl NetVR XR Feature. Repeat this for all platforms you wish to support.
Once you enable the feature, the plugin will be automatically loaded when the game
starts.

If you want the plugin to do anything, you also have to add it to your scene. Create
Empty game object and add the Isbl Remote Device Manager script to it. Then set
your prefab which you wish to use for remote devices. At this point, the plugin should
work. If you want to have some information about the remote devices add the Isbl
Remote Device script to the root of the prefab.
7 https://ui.perfetto.dev/
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If you also wish to use the plugin for simple object synchronization, then also add

another game object, this time with Net Objects Manager script. Then, add your
synchronized objects as children of this manager object. Each child should have Net
Object script attached to it. Keep in mind that the plugin does not support any changes
in the list of objects during the whole run of the server as it uses positions the first
client connected uploads as a starting point. You can move those objects in the scene
hierarchy after the initial setup is done as the manager only queries its children once
in Start() .

To be able to move the objects you have to set GrabbedBy property to an instance
of a controller when user grabs the object. Similarly, you should set this property to
null when the user releases the object. Finally you should call RequestMove method
periodically to set new positions and rotations of the object. See Grabbable.cs for
example of how to achieve this.
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Appendix B
Additional images

Figure B.3. 3D visualisation of the circular data collection session.

Figure B.4. The visualisations support dark mode, too. Also depicted: you can visualise
situation if calibration produced a different result.
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Figure B.5. When controller’s tracking ring is occluded, the tracking becomes less precise.
If this happens during calibration, the resulting calibration quality is affected. This image
shows what it might look like. This image is from the second testing session B:C, where

participants did report bad calibration of participant C.
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Figure B.6. Apparatus used for positional testing. Both controllers are placed in a clamp at
the end of a telescopic selfie stick. This puts pressure on them and helps prevent movement.
The clamp is padded, so slipping is unlikely. To make sure that the controllers do not pop
out of the hold, the Index controller is tied in place and Index Controller’s strap is used to
hold the Quest controller in place. The Quest headset was on my head while performing
the measurements, in the picture it is roughly at the position relative to the controller,

where it was at the closest point during the testing.
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Appendix C
Glossary

The following are definitions of terms that appear in this thesis. Some of the definitions
are not exact or complete, as that would require more than one sentence, but the defini-
tions contained here should be enough as a quick reference to help with understanding
the previous text.

DNS-SD . DNS Service Discovery. See section 3.5 and [20].
LAN . Local Area Network. In this case, it refers to a part of wider network

in which devices can discover each other and communicate directly.
mDNS . Multicast DNS. System for resolving DNS name without central DNS

server. See section 3.5 and [19].
OpenVR . OpenXR’s predecessor implemented by SteamVR.
OpenXR . a set of APIs for access to virtual reality devices.
Pose . Combined position and orientation.
Rust . a programming language
SC . OpenVR Space Calibrator. See section 2.2 and [6].
Server Space . Additional reference space defined in this work. Refers to the shared

space between headsets.
Stage Space . The default OpenXR space used for room-scale VR
SteamVR . Software package used for VR on the desktop developed by Valve. It

implements both OpenVR and OpenXR APIs.
VR . Virtual Reality
VRAPI . Legacy API used by older Oculus headsets. Replaced by OpenXR.
Vulkan . Modern 3D graphics API
6DOF . 6 degrees of freedom. In the context of this thesis, it refers to the

ability of a tracking system to track both the orientation and the
position of a device.
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