
Faculty of Electrical Engineering
Department of Cybernetics

Master’s thesis

Learning Based Solution
to Routing Problems
Bc. Petra Fridrichová

May, 2023
Supervisor: prof. Ing. Jan Faigl, Ph.D.

“For the protection of wisdom is like the protection of
money, and the advantage of knowledge is that wisdom
preserves the life of him who has it.”

– Ecclesiastes 7:12

„Být zaštítěn moudrostí je jako být zaštítěn penězi,
poznání moudrosti však má výhodu: ty, kdo ji mají,
drží naživu.“

– Kazatel 7:12

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474384 Personal ID number: Fridrichová Petra Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Computer Vision and Image Processing Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Learning Based Solution to Routing Problems

Master’s thesis title in Czech:

Řešení směrovacích problémů založené na učení

Guidelines:

1. Familiarize with neural network (NN) and deep learning (DL) approaches to routing problems [1–4], and survey existing
approaches.
2. Prospect existing methods for generalization to non Euclidean (graph based) routing problems, time windows, and
multi vehicle instances.
3. Propose a solution to the selected routing problem based on reusing existing solutions using a suitable representation
of the instances, such as a graph neural network encoder of the instance.
4. Implement and evaluate the proposed approach combined with existing population based or combinatorial metaheuristic
methods.

Bibliography / sources:

[1] Joshi, C.K., Cappart, Q., Rousseau, LM. et al.: Learning the travelling salesperson problem requires rethinking
generalization. Constraints 27, 70–98 (2022). https://doi.org/10.1007/s10601 022 09327-y
[2] Kool, W., van Hoof, H., Welling, M.: Attention, Learn to Solve Routing Problems! ICLR 2019.
[3] Y. Wu, W. Song, Z. Cao, J. Zhang and A. Lim: Learning Improvement Heuristics for Solving Routing Problems, IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 5057-5069, Sept. 2022.
https://doi.org/10.1109/TNNLS.2021.3068828
[4] B. Li, G. Wu, Y. He, M. Fan and W. Pedrycz: An Overview and Experimental Study of Learning Based Optimization
Algorithms for the Vehicle Routing Problem, IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 7, pp.
1115-1138, 2022. https://doi.org/10.1109/JAS.2022.105677

Name and workplace of master’s thesis supervisor:

prof. Ing. Jan Faigl, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 14.09.2022

Assignment valid until: 19.02.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Ing. Jan Faigl, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of the information used within it in accordance with the methodical in-
structions for observing the ethical principles in the preparation of university theses.

Prague, May 26, 2023

Petra Fridrichová

v

Acknowledgement

I am deeply grateful to Professor Jan Faigl who has always provided insightful sugges-
tions and guidance to improve the quality and complexity of this work. His unwavering
support and willingness to address any issues have been invaluable. I would also like
to thank Jindřiška Deckerová and Petr Čížek for their patience and responsiveness in
answering my countless questions. Their help was crucial in overcoming the challenges
I encountered. Finally, I would like to express my sincere gratitude to my husband and
family for their unwavering belief in my abilities and their constant encouragement,
pushing me to continue writing even when I felt overwhelmed.

vi

Abstract

The Traveling Salesman Problem (TSP) is a de facto standard benchmark in com-
binatorial optimization with many existing optimal and heuristic solvers. Nowadays,
machine learning approaches have been proposed to address the TSP; however, their
performance cannot compete with state-of-the-art methods. In the thesis, a novel
hybrid method combining machine learning based on the attention model and the
existing unsupervised learning-based GSOA method is proposed leveraging the ad-
vantages of both approaches. The hybrid approach initializes a construction heuristic
based on retrieving the most similar instance from already pre-solved solutions. The
retrieved similar solution shows that GSOA can find better solutions than solely using
the attention model and GSOA method.

Keywords: traveling salesman problem, neural networks, attention model, GSOA.

Abstrakt

Na problém obchodního cestujícího spadající do kombinatorické optimalizace exis-
tuje mnoho optimálních a heuristických přístupů. V současné době byly pro jeho
řešení navrženy různé metody strojového učení, které však svými výsledky nemo-
hou konkurovat nejmodernějším algoritmům. V této práci je navržena nová hybridní
metoda kombinující strojové učení založené na modelu pozornosti a metodě GSOA,
která využívá výhody obou přístupů. Na základě nejpodobnější instance z již pře-
dem vyřešených řešení hybridní přístup inicializuje konstruktivní heuristiku. Využití
podobných řešení ukazuje, že metoda GSOA dokáže najít lepší řešení než pouhé použití
modelu pozornosti nebo metody GSOA.

Klíčová slova: problém obchodního cestujícího, neuronové sítě, model pozornosti,
GSOA.

viii

i
Used Abbreviations

AM Attention Model

CNN Convolutional Neural Nework

DL Deep Learning

FCNN Fully Convolutional Neural Network

FSC Feasible Solution Creator

GA Genetic Algorithm

GNN Graph Neural Network

GRASP Greedy Randomized Adaptive Search Procedures

GSOA Growing Self-Organizing Array

HNN Hopfield Neural Network

LK Lin–Kernighan heuristic

LKH Lin-Kernighan-Helsgaun heuristic

LNS Large Neighborhood Search

ML Machine Learning

NN Neural Network

NLNS Neural Large Neighborhood Search

RVNS Randomized Variable Neighborhood Search

SA Simulated Annealing

SGN Sparse Graph Network

ix

SOM Self-Organizing Map

SoS Set of Solutions

TSP Traveling Salesmen Problem

UHGS Unified Hybrid Genetic Search

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

x

i
Used Symbols

n Number of locations
vi i-th location
‖va,vb‖ Euclidean distance between locations va and vb
Σ Permutation of location indexes
σ1, . . . , σn Location indexes of the path, σi ∈ {1, · · · , n}
L(Σ) Length of TSP path determined by Σ

L∗ Optimal length of the TSP instance

xi

i
Contents

1 Introduction 1

2 Related Work 5
2.1 Convolutional Neural Network . 6
2.2 Attention Model . 7
2.3 Graph Neural Network . 7
2.4 NeuroLKH . 9
2.5 Neural Large Neighbourhood Search 10
2.6 Conclusion on Solving the TSP by Neural Networks 10

3 Problem Statement 11
3.1 Euclidean Traveling Salesman Problem 11
3.2 Hybrid Approach . 12

3.2.1 Research Question . 12

4 Background 13
4.1 Encoder-Decoder Architecture . 13
4.2 Growing Self-Organizing Array . 15
4.3 Variable Neighborhood Search . 16

5 Proposed Hybrid Approach 19
5.1 Set of Solutions Concept . 19
5.2 Feature Extractor . 20
5.3 Feasible Solution Creator . 21

5.3.1 Greedy Construction of Feasible Solution 21
5.3.2 GSOA-based Construction of Feasible Solution 22

5.4 Improvement Heuristic . 22

6 Results 25
6.1 Performance of the Existing NN-based Solvers 26
6.2 Influence of using SoS Instances . 28

x

6.3 Influence of Feasible Solution Creators 28
6.4 Influance of the Initialization to the VNS-based Improvement Heuristic 29
6.5 Discussion . 30

7 Conclusion 33

Bibliography 35

A Detailed Results 39

xi

i
List of Figures

2.1 Convolutional neural network for the TSP 6
2.2 Attention model decoder . 7
2.3 Graph neural network for the TSP . 8
2.4 Schema of the NeuroLKH . 9

3.1 Proposed idea of the hybrid pipeline 12

4.1 Encoder-decoder architecture . 14
4.2 GSOA ring adaptation . 16
4.3 VNS operators . 17

5.1 Concept of input instance and set of solutions 20
5.2 Graph embedding as feature vector . 20
5.3 Greedy Feasible Solution Creator . 21

6.1 Example instances . 26
6.2 Aggregated results for existing NN-based approaches 27
6.3 Retrieved similar instances . 29
6.4 Aggregated results for the examined feasible solution creators 30
6.5 Influance of initializations to the VNS-based solution improvement . . 31

xi

i
List of Tables

6.1 Aggregated results for SoSRandom and SoSTSPLIB 28

A.1 Performance of the existing NN-based approaches on the Random in-
stances – Part 1 . 40

A.2 Performance of the existing NN-based approaches on the Random in-
stances – Part 2 . 41

A.3 Performance of the existing NN-based approaches on the TSPLIB in-
stances – Part 1 . 42

A.4 Performance of the existing NN-based approaches on the TSPLIB in-
stances – Part 2 . 43

A.5 Performance of the proposed hybrid approaches on the Random in-
stances – Part 1 . 44

A.6 Performance of the proposed hybrid approaches on the Random in-
stances – Part 2 . 45

A.7 Performance of the proposed hybrid approaches on the TSPLIB in-
stances – Part 1 . 46

A.8 Performance of the proposed hybrid approaches on the TSPLIB in-
stances – Part 2 . 47

xii

i
List of Algorithms

1 Variable Neighborhood Search (VNS) 16

2 localSearch(V,Σ) . 23

xiii

CHAPTER 1
Introduction

Routing problems are combinatorial optimization tasks to determine a cost-efficient (shortest)
path to visit a given set of locations. Probably the most famous routing problem is the well-
known Traveling Salesmen Problem (TSP). In the TSP, a traveling salesman has to visit
exactly once each location of a given set of locations and return to the starting one such that
the total length of the tour visiting the locations is the shortest possible. The TSP is known
to be NP-hard [1], and many methods and approaches have been proposed [2]. The existing
solutions to the TSP can be classified into three basic classes of methods: optimal solvers,
approximation algorithms, and heuristic solutions.

Optimal solvers are based on general solution techniques such as branch-and-bound, branch-
and-cut, or integer linear programming. Here, it is worth noting that a highly tuned imple-
mentation of the optimal solver to the TSP called Concorde is available for academic research
use [3]. It is based on the work of Applegate, Bixby, Chvátal, and Cook [1] that is capa-
ble of solving instances up to 85 900 locations. Concorde is based on several mathematical
techniques, such as cutting planes and branch-and-cut. However, due to the NP-hardness of
the TSP, finding an optimal solution is computationally demanding, and it becomes quickly
intractable with the increasing size of the instance.

Approximation algorithms provide solutions with a provable guarantee of the solution
quality and run in polynomial computational time. The fundamental approximation algorithm
to the TSP is Christofides’ algorithm [4] based on finding a minimum spanning tree and
perfect matching. It is also called a 3/2-approximation algorithm because all found solutions
are shorter than 3/2 of the optimal length for a given TSP instance. Note that using the
minimum spanning tree yields solutions no worse than two times longer than the optimal
solution.

Since optimal solvers are demanding and approximation algorithms provide solutions with
relatively high approximation factors for many practical cases, heuristic approaches are studied
as they show the best trade-off between the solution quality and computational requirements.
Even though the solvers do not have any guarantees on the solution, it usually provides rel-
atively high-quality solutions quickly. Nowadays, from a practical point of view, there is no
better way to handle similar routing problems on a market level, specifically with anytime
solvers that provide the first solution very quickly and improve it with more computational

1

Chapter 1. Introduction

time available. With the growing number of locations, it is not possible to rely on optimal
solvers that are too demanding to provide even an initial solution. Therefore, combinato-
rial metaheuristics such as the Genetic Algorithm (GA) [5], Simulated Annealing (SA) [6],
Variable Neighborhood Search (VNS) [7], and Greedy Randomized Adaptive Search Proce-
dures (GRASP) [8] have been employed in solving the TSP and became the choice for many
businesses. In cases where an optimal solution is not required, metaheuristics represent a
general framework to find solutions with a suitable trade-off between the solution quality and
computational costs.

In addition to general combinatorial metaheuristics, we can further distinguish two classes
of standard heuristics. The first methods are construction heuristics to determine a feasible
solution. A feasible solution is a tour that visits all the given locations in not necessarily the
shortest possible way. The class of construction heuristics includes a random permutation,
greedy (cheapest) insertion, and nearest neighborhood, to name a few [2]. The second class of
heuristics represents improving procedures based on local or global search techniques. One of
the earliest local search-based, yet powerful, improving heuristics is Lin–Kernighan heuristic
(LK) introduced in 1973 [9]. It obtains an initial feasible solution first, then employs an
improving method to improve the path and possibly escapes local optima. However, its efficient
implementation has been introduced several decades later by K. Helsgaun in 2000 as the Lin-
Kernighan-Helsgaun heuristic (LKH) [10], which further introduced additional extensions.
The LKH includes several improvements, optimizations, and various heuristics to guide the
search process over the LK. Similarly to Concorde, the LKH is available for academic and
non-commercial use [11].

Despite the well-established solvers and approaches to the TSP, the current approaches
aim to exploit the capabilities of Machine Learning (ML), Deep Learning (DL), and Neural
Network (NN) in a solution of the combinatorial optimization problems. Due to the ability
of the learning-based methods to scale, generalize, adapt to a learned domain, and provide
abstractions, these techniques are also investigated within the context of the routing prob-
lems, and specifically, the TSP, which can be considered as the benchmark for such type of
combinatorial optimization tasks. NNs have been already explored for solving the TSP for
several decades. One of the earliest NN models for the TSP was presented by Hopfield and
Tank in 1985 [12], the Hopfield Neural Network (HNN), later improved in [13]. The HNN is a
fully connected recurrent NN where the nodes are binary units updated synchronously based
on a specific activation function. Then, a group of self-organizing structures such as Self-
Organizing Map (SOM) [14], FLEXMAP [15], or relatively recent Growing Self-Organizing
Array (GSOA) [16] have been proposed. These models used unsupervised learning to discover
a structure in the input data and can find solutions of the TSP that are competitive to existing
traditional heuristics.

More recently, NNs have been applied to the TSP using a Convolutional Neural Nework
(CNN) [17], Attention Model (AM) [18, 19], and Graph Neural Network (GNN) [20]. These
learning-based models have achieved breakthrough results in computer vision, text processing,
and speech recognition. However, their effectiveness for the TSP has been limited compared
to traditional heuristic-based methods. Despite that, combining NNs with heuristics [21, 22]
has been shown promising to improve TSP solutions.

Moreover, a generalization of the TSP into multi-vehicle formulation of the Vehicle Routing
Problem (VRP) [23] has applications in logistics, transportation, telecommunications, or urban
planning. For example, in logistics, the VRP is used to find optimal routes for vehicles and
drivers to make deliveries or goods pick up from multiple locations. By solving instances of the

2

Chapter 1. Introduction

VRP, logistics companies can reduce transportation costs, improve delivery times, and increase
customer satisfaction. The VRPs can be used to optimize the routing of public transport
vehicles, such as buses and trains, technicians and repair crews in telecommunications, or even
a waste collection vehicle fleet. Every day, enormous amounts of data are solved using VRP
algorithms, resulting in a vast amount of solved instances. However, these instances are rarely
reused due to differences in problem parameters or constraints between instances. Therefore,
NNs are a promising approach for reusing already solved instances since they already exhibited
excellent results in abstracting data and identifying patterns. By training neural networks on
solved instances, they can learn to generalize to new instances with different parameters or
constraints. Additionally, NNs can be used to predict similar solutions for unsolved instances,
helping to guide heuristic-based algorithms to improve the solution quality more quickly. Such
ideas are the primary motivations for the research topic addressed in the presented thesis. In
particular, the aim of the thesis is as follows.

The thesis aims to explore the potential of reusing already solved TSP instances by utilizing
existing NN techniques combined with powerful combinatorial metaheuristic(s). The goal is
to find how well the NN can perform in solving the TSP and how it can be utilized in a new
hybrid approach. The proposed method combines the NN and similarity search algorithm
with a heuristic algorithm. The NN is trained on a large dataset of TSP instances and then
used to provide input for the similarity search algorithm that finds similar instances to the
current instance. Then, it reuses the solution of the most similar instance to create the initial
solution for a heuristic method. Such an initial solution is then improved by the combinatorial
metaheuristic within a given computational time. The central hypothesis of the thesis is the
expectation that a solution determined from an available solution of a similar instance would
yield a better solution than without the similarity matching. Moreover, an initial solution
would yield an improved solution in less computational time, or a better solution is determined
within the same computational time for an improving heuristic.

In the following chapter, the NN-based approaches are presented. Then, the TSP and the
idea of the problem approach are introduced in Chapter 3. The utilized existing approaches for
the hybrid approach are presented in Chapter 4 followed by Chapter 5 describing the proposed
hybrid method which is evaluated in Chapter 6.

3

Chapter 1. Introduction

4

CHAPTER 2
Related Work

One of the first Neural Network (NN)-based approaches (if not the first) to the Traveling
Salesmen Problem (TSP) has been proposed in the 80s by Hopfield and Tank [12], and the
learning network model is called Hopfield Neural Network (HNN). In the HNN model, neurons
represent the locations of the TSP, and the neurons’ connections are the distances. The
HNN minimizes the total distance by adjusting the weights between neurons to minimize
the so-called energy function. Although the first implementation by Hopfield and Tank was
criticized, modifications of the energy function were deemed necessary by other researchers.
The feasibility was guaranteed by a formulation presented by Aiyer, Niranjan, and Fallside [13].

Neurons representing locations are used in Self-Organizing Map (SOM)-based solvers [24].
The SOM has been originally proposed as a technique to project high-dimensional data into a
2D lattice suitable for visualization; therefore, neurons are placed in a plane. The first appli-
cation of SOM to the Euclidean instances of the TSP has been proposed by two independently
introduced approaches by Angéniol et al. [14] and Fort [25] in 1988. The neurons connected
into a ring represent a tour that acts like an elastic structure with similar behavior to the
elastic net [26], which uses a different learning mechanism. Based on the ring concept, the
FLEXMAP was proposed by Fritzke and Wilke [15] in 1991. Besides, several improvements
of SOM-based solvers have been proposed, such as [27], and generalization to Non-Euclidean
instances motivated by robotics inspection tasks [28]. Further, the unsupervised learning
of SOM evolved into Growing Self-Organizing Array (GSOA) [16], where the ring grows and
shrinks dynamically based on the size of the TSP instance, which represents a flexible heuristic
approach to various routing problems [29].

In addition to the unsupervised learning-based methods, supervised learning-based Ma-
chine Learning (ML) approaches to the TSP are particularly interesting within the context
of the thesis. Therefore, the contemporary approaches Convolutional Neural Nework (CNN),
Attention Model (AM), and Graph Neural Network (GNN) are presented in Sections 2.1
to 2.3, respectively. Then, hybrid approaches combining learning and non-learning methods
are introduced in Sections 2.4 and 2.5.

5

Chapter 2. Related Work

2.1 Convolutional Neural Network

Several attempts have been made to incorporate NNs in combinatorial optimization. Probably
the most straightforward approach is presented by Ling et al. in [17] that reuses a Fully
Convolutional Neural Network (FCNN) for image processing, see the architecture in Fig. 2.1.
An instance of the TSP is interpreted as a graph in a two-dimensional image where vertices
and edges are drawn in different colors. The returned result is the probability of each pixel
being in the solution path. Therefore, after the propagation of the FCNN, the result must be
post-processed using a search algorithm to provide the final sequence of visits to the vertices
of the TSP instance.LING et al.: SOLVING OPTIMIZATION PROBLEMS THROUGH FCNs: APPLICATION TO TSP 7477

Fig. 1. System architecture. The FCN is consists of several convolution, max pooling, deconvolution, and Softmax layers. The input image of the FCN is
a fully connected image converted from the coordinate set of cities. The output image contains the related optimal path loop. Based on the output image, the
post-processing algorithm produces the optimal city order and related total distance.

Fig. 2. Capability of conserving information at different image resolution.
The information loss is quantified by the average number of paths passing
a pixel. When the number decreases, more information can be conserved. The
value in the horizontal axis denote the image resolution. (e.g., 50 denotes an
image with 50× 50 pixels).

It should be noted that the image, as a kind of bitmap,
should be in high resolution. If the resolution is not big
enough, information from the graph will be lost in the con-
version process, which will affect the judgment of the neural
network. The loss of information is mainly due to the over-
lapping of paths. When an image contains a small number of
pixels and a large number of paths, pixels will be passed simul-
taneously by multiple paths. An image with high resolution not
only reduces the information loss caused by overlapping but
also accommodates a TSP with more cities. To determine an
appropriate picture resolution, 500 TSP samples with ten cities
is adopted to count the information loss in Fig. 2.

As can be seen from Fig. 2, when the resolution of the
image increases, the average number of passes drop rapidly at
the beginning and then converge. When the image resolution is
higher than 100 × 100 pixels, most of the image information
can be conserved. In this article, a 224 × 224 D, 3-channel

RGB image is employed as input image. As shown in Fig. 2,
this resolution is suitable for conserving information.

After projection, each city only occupies one pixel on the
image, which makes it difficult to figure out the position of
cities. Moreover, after joining the paths, the information of
cities is easily covered by the paths, which may cause FCN
identify the positions of cities incorrectly. In view of this
situation, the following adjustment of the image is conducted.

1) Pixels that are within six pixels horizontally and verti-
cally of each city location are changed to the same color
as the city.

2) Paths adopt a different color from cities.
For building the neural network, an FCN is adopted rather

than a general DCNN. The goal of the neural network is to
find the optimal path among all possible paths in images, but
general DCNN’s are good at giving image-wise judgment,
such as if an image contains a cat. This kind of judgment
provides too little information to find the solution of a TSP.
The FCN approach can avoid this defect due to its pixel-wise
classification capability: each path in image consists of pix-
els, and each pixel will be given a judgment on whether it
belongs to the optimal path or the background (colored in
black) or not (colored in white). Paths with a higher propor-
tion of black pixels will be more likely to be the optimal
path.

The dimensions of an FCN’s output are consistent with its
input. Considering this characteristic of FCN’s, the label image
should have the following characteristics.

1) The length and width of the label should be consistent
with the input image.

2) The optimal path should be contained in the label image.
3) The label has a one-to-one mapping with each pixel of

the input image so that the FCN can classify every pixel
according to the label.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on November 01,2022 at 11:34:37 UTC from IEEE Xplore. Restrictions apply.

Figure 2.1: Overview of the Convolutional NN for solving the TSP. Image adopted from [17]. The
CNN consists of several convolutional and pooling layers followed by deconvolution layers. The solution
is determined by a post-processing algorithm of the resulting image (matrix) with two probabilistic
classes denoting a pixel (cell) that is or is not a part of the final path, and the input coordinates.

Even though NN-based approaches have superb results in image processing tasks, the
FCNN proposal to address the TSP has many drawbacks. The first question is about the
resolution of the input graph image. The edges cannot overlay; otherwise, it creates a large
blob in the image, and the NN would not “recognize” the edges. Moreover, the input is
transformed into a different domain, and unintended data loss or constraint might be added.
Further, representing an instance of the TSP as a 2D image is suitable for planar instances.
The main intention of using NN is to create an abstraction without much data preprocessing.
However, the image-based approach cannot decode additional information for other routing
problems, such as the capacitated VRP.

The CNN model has been trained on generated instances with only 10 nodes. Nevertheless,
on the randomized dataset, the authors report that 80 % of the solutions is less than about 5 %
longer than the optimal solution. The performance of the learned model is compared with the
exact algorithm (based on the branch-and-bound) and two heuristic approaches based on GA
and ant colony optimization. The CNN model provides competitive solutions quicker than the
heuristic approaches; however, with the increasing size of the instances, the solution quality
quickly decreases, and solutions are provided only for instances of the size 15.

6

Chapter 2. Related Work

2.2 Attention Model

Another learning-based model applied to the TSP is based on a fundamental element of the
transformer architecture [30], the attention layer. A representative of attention layer-based
approaches to the TSP is the Attention Model (AM) presented in [18] that address some of
the drawbacks of the CNNs. It works as follows.

Published as a conference paper at ICLR 2019

Figure 2: Attention based decoder for the TSP problem. The decoder takes as input the graph
embedding and node embeddings. At each time step t, the context consist of the graph embedding
and the embeddings of the first and last (previously output) node of the partial tour, where learned
placeholders are used if t = 1. Nodes that cannot be visited (since they are already visited) are
masked. The example shows how a tour π = (3, 1, 2, 4) is constructed. Best viewed in color.

Context embedding The context of the decoder at time t comes from the encoder and the output
up to time t. As mentioned, for the TSP it consists of the embedding of the graph, the previous (last)
node πt−1 and the first node π1. For t = 1 we use learned dh-dimensional parameters vl and vf as
input placeholders:

h
(N)
(c) =

{[
h̄(N),h

(N)
πt−1 ,h

(N)
π1

]
t > 1[

h̄(N),vl,vf
]

t = 1.
(4)

Here [·, ·, ·] is the horizontal concatenation operator and we write the (3 · dh)-dimensional result
vector as h(N)

(c) to indicate we interpret it as the embedding of the special context node (c) and use

the superscript (N) to align with the node embeddings h(N)
i . We could project the embedding back

to dh dimensions, but we absorb this transformation in the parameter WQ in equation 5.

Now we compute a new context node embedding h
(N+1)
(c) using the (M -head) attention mechanism

described in Appendix A. The keys and values come from the node embeddings h(N)
i , but we only

compute a single query q(c) (per head) from the context node (we omit the (N) for readability):

q(c) = WQh(c) ki = WKhi, vi = WV hi. (5)

We compute the compatibility of the query with all nodes, and mask (set u(c)j = −∞) nodes which
cannot be visited at time t. For TSP, this simply means we mask the nodes already visited:

u(c)j =

{
qT
(c)kj√
dk

if j 6= πt′ ∀t′ < t

−∞ otherwise.
(6)

Here dk = dh
M is the query/key dimensionality (see Appendix A). Again, we compute u(c)j and

vi for M = 8 heads and compute the final multi-head attention value for the context node using
equations 12–14 from Appendix A, but with (c) instead of i. This mechanism is similar to our
encoder, but does not use skip-connections, batch normalization or the feed-forward sublayer for
maximal efficiency. The result h(N+1)

(c) is similar to the glimpse described by Bello et al. (2016).

Calculation of log-probabilities To compute output probabilities pθ(πt|s,π1:t−1) in equation 1,
we add one final decoder layer with a single attention head (M = 1 so dk = dh). For this layer, we
only compute the compatibilities u(c)j using equation 6, but following Bello et al. (2016) we clip
the result (before masking!) within [−C,C] (C = 10) using tanh:

u(c)j =

C · tanh

(
qT
(c)kj√
dk

)
if j 6= πt′ ∀t′ < t

−∞ otherwise.
(7)

We interpret these compatibilities as unnormalized log-probabilities (logits) and compute the final
output probability vector p using a softmax (similar to equation 12 in Appendix A):

pi = pθ(πt = i|s,π1:t−1) =
eu(c)i∑
j e
u(c)j

. (8)

4

Figure 2.2: The attention-based decoder is based on the probability of being the next path node
successor. The process is repeated without already selected nodes until all nodes have been subscribed
to a path order. The image is adopted from [18].

An attention layer is a part of the Neural Network (NN) processing pipeline that computes a
weighted average of a set of vectors, where the weights are determined based on the similarity
between each vector and a context vector, which can be computed by the layer itself or
provided as an input. The returned node embeddings are invariant to the input order; unlike
the transformer model, it does not use a positional encoding. The AM decoder, depicted in
Fig. 2.2, computes a probability distribution over the neighbor nodes of the current node,
indicating which node is most likely to be selected as the path node successor. The node with
the highest probability is then selected as the next node in the solution sequence and masked
out. The process is repeated until all nodes have been selected.

The reported results of the AM are computed with the optimal solution provided by the
Gurobi optimizer and Concorde. Besides, heuristic solutions are examined using LKH [31]
and simple heuristics that include nearest insertion, random insertion, farthest insertion, and
nearest neighbor. The AM provides solutions faster than the optimal solvers and LKH. The
solutions found are significantly better than simple heuristics with competitive computational
time. However, the model is trained only on randomized data generated by a normal dis-
tribution in a unit square. Moreover, the AM was trained with a fixed number of nodes in
the instances. Provided models for 20, 50, and 100 nodes were only studied on the same size
instances.

Performed empirical validation of the model – Based on our evaluation, the method does
not generalize on the TSPLIB [32], see aggregated results reported in Fig. 6.2 and the full
results in Tables A.1 to A.4. Nevertheless, we consider AM in the proposed solution to the
TSP.

2.3 Graph Neural Network

A relatively recent model with reported promising results is presented in [20] that is based
on the Graph Neural Network (GNN) [20]. It accepts an instance of the TSP as a graph
representation. Using an encoder of the GNN, nodes collect information from their neighbors

7

Chapter 2. Related Work

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:5

Input Cities Fully-connected Graph Sparse Graph

Sparsific-
ation

Heuristic

(a) Problem Definition: TSP is formulated via a fully-connected graph of cities/nodes. The graph can
be sparsified via heuristics such as k-nearest neighbors.

Initial Node Embeddings Message-passing GNN Embedder Updated Node Embeddings

(b) Graph Embedding: Embeddings for each graph node are obtained using a Graph Neural Network
encoder. At each layer, nodes gather features from their neighbors to represent local graph structure via
recursive message passing.

Final Node Embeddings

Link Prediction
MLP Decoder

(Non-AR)

Probabilistic Prediction Discrete Solution

Graph
Search

(c) Solution Decoding & Search: Probabilities are assigned to each node for belonging to the solution
set, either independent of one-another (i.e. Non-autoregressive decoding) or conditionally through graph
traversal (i.e. Autoregressive decoding). The predicted probabilities are converted into discrete decisions
through classical graph search techniques such as greedy search or beam search.

Figure 2 End-to-end neural combinatorial optimization pipeline: The entire model in
trained end-to-end via imitating an optimal solver (i.e. supervised learning) or through minimizing
a cost function (i.e. reinforcement learning).

CP 2021

(a) Obtaining graph embeddings via Graph Neural Network using a message-passing.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:5

Input Cities Fully-connected Graph Sparse Graph

Sparsific-
ation

Heuristic

(a) Problem Definition: TSP is formulated via a fully-connected graph of cities/nodes. The graph can
be sparsified via heuristics such as k-nearest neighbors.

Initial Node Embeddings Message-passing GNN Embedder Updated Node Embeddings

(b) Graph Embedding: Embeddings for each graph node are obtained using a Graph Neural Network
encoder. At each layer, nodes gather features from their neighbors to represent local graph structure via
recursive message passing.

Final Node Embeddings

Link Prediction
MLP Decoder

(Non-AR)

Probabilistic Prediction Discrete Solution

Graph
Search

(c) Solution Decoding & Search: Probabilities are assigned to each node for belonging to the solution
set, either independent of one-another (i.e. Non-autoregressive decoding) or conditionally through graph
traversal (i.e. Autoregressive decoding). The predicted probabilities are converted into discrete decisions
through classical graph search techniques such as greedy search or beam search.

Figure 2 End-to-end neural combinatorial optimization pipeline: The entire model in
trained end-to-end via imitating an optimal solver (i.e. supervised learning) or through minimizing
a cost function (i.e. reinforcement learning).

CP 2021

(b) Assigning probabilities of a node belonging to a path and converting it into a solution using
greedy or beam search techniques.

Figure 2.3: An overview of the encoder-decoder of the Graph Neural Network (GNN) for the TSP;
(a) the encoder providing node embeddings and; (b) the decoder based on searching methods. The
figures are adopted from [20].

via recursive message passing. Thus, a local graph representation, as node embeddings, is
created, see Fig. 2.3a. However, for large TSP instances, the pairwise computation required
for message passing can be demanding. Therefore, a sparsification process based on k-nearest
neighbors can be employed to reduce the computational load.

The GNN decoder depicted in Fig. 2.3b assigns probabilities to each node that is a part
of the solution. It can be achieved through two methods: non-autoregressive decoding and
autoregressive decoding. In non-autoregressive decoding, the probabilities are assigned in-

8

Chapter 2. Related Work

dependently to each edge in the graph without considering their sequential ordering. The
probabilities are converted into discrete decisions using a regular graph search technique, such
as greedy or beam search. In contrast, autoregressive decoding explicitly models the sequen-
tial inductive bias of a TSP tour through step-by-step graph traversal. It is done using an
attention-based decoder, as in Section 2.2, that outputs a probability distribution over the
neighbors of a node at each step.

The GNN has been empirically assessed only on relatively small instances with 20, 50, 100,
and 200 locations, which optimal solvers can solve quickly. Furthermore, the instances were
randomly generated the same way as for the AM described in Section 2.2. Additionally, the
authors examined the generalization of the model trained on instances with variable sizes from
20 to 50 locations. However, the solution quality is reported only with a comparison to the
optimal solver Concorde and simple furthest insertion heuristic. The authors further study
several factors in the randomized data, such as generalization to large instances. The reported
optimality gap increases rapidly for larger instances than it was trained on. Surprisingly, the
model trained on instances with 100 locations generalized on larger instances better than the
model learned on instances with 200 locations.

Performed empirical validation of the model – Based on the promising results reported
in [20], we assessed the provided models ourselves. From our results listed in Fig. 6.2 and in
Tables A.1 to A.4, two GNN models trained on instances with 20–50 locations and instances
with 200 locations (further denoted as the GNN 20-50 and GNN 200) provide worse results
than the AMmodel. The GNN 200 cannot compete even with the greedy algorithm. Therefore,
we do not consider GNN in the proposed solution to the TSP.

2.4 NeuroLKH

The NeuroLKH [22] is a hybrid algorithm that combines NNs and the heuristic LKH for solving
the TSP. It uses a Sparse Graph Network (SGN) trained with supervised and unsupervised
learning to assign scores to edges and penalties to nodes. These scores and penalties improve
the performance of solely used LKH. NeuroLKH uses the output of the SGN to generate an
edge candidate set and to guide the search process of the LKH by transforming edge distances.
See a visualization of the NeuroLKH depicted in Fig. 2.4.

TSP Instance

Sparse
Directed
Graph G* Subgradient

Optimization

TSP Instance

While not Convergence

Sensitivity Analysis
of Minimum

Spanning Tree

Create Edge
Candidate Set

Transform
Edge Distance

Random Tour
Initialization

LKH Searching
Process for

λ-opt Exchangeopt Exchange

Repeat for K Trials

While not
Convergence

NeuroLKH Algorithm Original LKH Algorithm

SGN Encoder
Node Embeddings

Transform
Edge Distance

Node Decoder Edge Decoder

Edge Embeddings

Node Penalties Edge Scores

Create Edge
Candidate Set

Figure 1: NeuroLKH algorithm and the original LKH algorithm.

a class of instances. Moreover, VSR-LKH aims to guide the decision on edge selections within the
edge candidate set, which is generated using the original procedure of LKH. NeuroLKH significantly
outperforms VSR-LKH by large margins in all the settings of our experiments on testing instances
following the training distributions, especially when the time limits are short. Even more impressively,
NeuroLKH achieves performance similar to VSR-LKH on traditional benchmark TSPLIB [27] with
various node distributions, which are very different from the training distributions for NeuroLKH.

3 Preliminaries: LKH algorithm

The Lin-Kernighan-Helsgaun (LKH) algorithm [12, 13] is a local optimization algorithm developed
based on the λ-opt move [24], where λ edges in the current tour are exchanged by another set of λ
edges to achieve a shorter tour. While solving one instance, the LKH algorithm can conduct multiple
trials to find better solutions. In each trial, starting from a randomly initialized tour, it iteratively
searches for λ-opt exchanges that improve the tour, until no such exchanges can be found. In each
iteration, the λ-opt exchanges are searched in the ascending order of variable λ and the tour will be
replaced once an exchange is found to reduce the tour distance.

One central rule is that the λ-opt searching process is restricted and directed by an edge candidate set,
which is created before search based on the α-measure using sensitivity analysis of the Minimum
Spanning Tree. Here we briefly introduce the related concepts. A TSP graph can be viewed as an
undirected graph G = (V,E) with V as the set of |V | nodes and E as the set of edges weighted
by distances. A spanning tree of G is a connected graph with |V | − 1 edges from G and no cycles
where any pair of nodes is connected by a path. A 1-tree of G is a spanning tree for the graph of
node set V \{1} combined with two edges in E connected to node 1, an arbitrary special node in
V . A minimum 1-tree is the 1-tree with minimum length. The α-measure of an edge (i, j) ∈ E for
graph G is defined as α(i, j) = L(T+(i, j))− L(T), where L(T) is the length of Minimum 1-Tree
T and L(T+(i, j)) is the length of Minimum 1-Tree T+(i, j) required to include the edge (i, j). The
α-measure of an edge can be viewed as the extra length of the Minimum 1-Tree to include this edge.

The edge candidate set consists of the k edges with the smallest α-measures connected to each node
(k = 5 as default). During the λ-opt searching process, the edges to be included into the new tour
are limited to the edges in this candidate set, and edges with smaller α-measures will have higher
priorities to be searched over. Therefore this candidate set not only restricts but also directs the search.

Moreover, the quality of α-measures can be improved significantly by a subgradient optimization
method. If we add a penalty πi to each node i and transform the original distance si,j of the edge
(i, j) to a new distance ci,j as ci,j = si,j + πi + πj , the optimal tour for the TSP will stay the same
but the Minimum 1-Tree usually will change. Because by definition, a Minimum 1-Tree with node
degrees all equal to 2 is an optimal solution for the corresponding TSP instance. With the length of
Minimum 1-Tree resulting from the penalty π = (π1, ..., π|V |) as L(Tπ), w(π) = L(Tπ)− 2Σiπi is
a lower bound of the optimal tour distance for the original TSP instance. LKH applies subgradient
optimization [11] to iteratively maximize this lower bound for multiple steps until convergence by
applying πτ+1 = πτ + tτ (dτ − 2) at step τ , where tτ is the scalar step size, dτ is the vector of node
degrees in the Minimum 1-Tree with penalty πτ . Therefore, the node degrees are pushed towards
2. The α-measures after this optimization will substantially improve the quality of edge candidate
set. Furthermore, the transformed edge distance ci,j after this optimization helps find better solutions
when used during the searching process for λ-opt exchanges.

3

Figure 2.4: A visualization of the NeuroLKH adopted from [22].

The reported results for the NeuroLKH are based on the trained NeuroLKH randomized
datasets only but compared with the LKH [11]. The NeuroLKH managed to obtain improved
results within the same computational time compared to the LKH with a slight difference from
the optima. Combining the NN method and LKH allows the NeuroLKH to search the solution
space more efficiently.

9

Chapter 2. Related Work

Although the reported results of the NeuroLKH are promising, it does not provide encoding
that can be used straightforwardly as a feature vector for an instance descriptor. Therefore,
we do not consider it in the proposed solution.

2.5 Neural Large Neighbourhood Search

The Neural Large Neighborhood Search (NLNS) is a combination of the traditional combi-
natorial heuristic Large Neighborhood Search (LNS) with deep learning [21]. The idea is to
determine an initial solution to which the LNS explores the search space and improves the so-
lution. The LNS is a combinatorial metaheuristic technique that systematically explores large
sets of candidates. The proposed idea is to employ NN to suggest promising neighborhoods
to examine.

Regarding the combination of NN with existing a regular combinatorial heuristic, the
NLNS represents a powerful approach for solving combinatorial optimization problems. It
was proposed for the Capacitated VRP and the Split Delivery VRP. In both problems, the
NLNS outperforms the AM with sampling [18] and reinforcement learning approach with
beam search [33] in the solution quality and also the required computational time. Moreover,
the results of the NLNS are compared to the LNS, LKH [31] and Unified Hybrid Genetic
Search (UHGS) [34, 35]. The NLNS provides better solutions than the non-learning LNS
within less computational time. On the other hand, it gives competitive results to the LKH,
but the UHGS outperforms all compared methods in the solution quality and time demands.
The NLNS leverages the strengths of the learning and non-learning approaches to generate
high-quality solutions quickly and efficiently. Nevertheless, we do not consider the NLNS in
the proposed solution because it is not optimized to the regular TSP.

2.6 Conclusion on Solving the TSP by Neural Networks

The presented selected NN-based approaches to the TSP suggest that standalone NN models
are insufficient to provide high-quality solutions competitive to the well-established combina-
torial heuristics such as the LKH. On the other hand, combining NN-based techniques with
the regular approaches to the TSP can leverage their advantages. NN-based models excel in
their adaptability to pre-solved solutions, while regular approaches demonstrate effectiveness
in exploring the combinatorial space of feasible solutions. By integrating the approaches, we
expect to leverage the strengths of both paradigms and achieve improved performance and
results. It is the central idea and the hypothesis is answered in the thesis.

10

CHAPTER 3
Problem Statement

In the thesis, we study the Traveling Salesmen Problem (TSP) intending to employ recent
advancements on NN-based approaches combined with existing powerful heuristic solutions
in a hybrid approach that would increase the quality of found solutions and computational
requirements. We aim to develop a method to quickly find, possibly high-quality, initial
solutions that a combinatorial metaheuristic can improve further. Further, we aim to answer
whether we can improve the solution quality using optimal (or high-quality) solutions for some
instances that can be similar to a new instance. Therefore, in the rest of the chapter, the TSP
is formulated and formally defined in Section 3.1, and an overall idea of the expected hybrid
approach is introduced in Section 3.2.

3.1 Euclidean Traveling Salesman Problem

Due to the almost exclusive focus of existing NN-based methods on Euclidean instances of the
TSP in a plane, we consider Euclidean TSP in the rest of the thesis, which can be formally
defined as follows. Let V = {v1, . . . ,vn} be a set of two-dimensional locations to be visited
and ‖va − vb‖ denotes the Euclidean distance between any two locations va and vb. The
TSP can be formulated as an optimization problem to find an optimal sequence Σ of visits
to the n given locations such that the length of the closed path (denoted L(Σ)) visiting the
locations and returning to the initial location is minimized. The solution can be represented as
a sequence of location indexes Σ = 〈σ1, . . . , σn〉. The problem is formulated and summarized
in Problem 3.1.

Problem 3.1 Traveling Salesmen Problem (TSP).

min
k,Σ

L(Σ) = ‖vσ1 − vσn‖+
n∑
i=2

∥∥vσi−1 − vσi
∥∥

s. t. Σ = 〈σ1, . . . , σn〉
σi ∈ {1, . . . , n}
∀i, j, i 6= j : σi 6= σj

(3.1)

11

Chapter 3. Problem Statement

3.2 Hybrid Approach

The hybrid approach combines some construction heuristics with an improvement procedure
to find a better solution than the initial solution provided by the construction heuristic. We
plan to employ existing NN-based methods as a construction heuristic to quickly find some
initial feasible solution to a particular instance of the TSP. Nevertheless, we can also use
any traditional construction heuristic. However, we also aim to employ a set of precomputed
solutions and determine a suitable technique to represent an instance of the TSP to retrieve
a similar instance with an available solution. Then, we like to use the solution of a similar
instance to construct a solution of a new instance that can be further improved by the im-
proving heuristic. The pipeline to validate the hypothesis that solving the TSP can benefit
from available solutions of similar problems is depicted in Fig. 3.1.

Figure 3.1: The proposed idea of the hybrid pipeline is to solve the TSP using an alternative to
regular construction heuristics followed by an improving heuristic. The orange pipeline represents
approaches using regular heuristics. The green pipeline represents the proposed approach of obtaining
an initial solution using a set of available solutions using a similarity matching of the instances.

A solution pipeline using regular (traditional) combinatorial heuristics with a constructive
phase generating the initial solution followed by an improving phase is depicted in orange
in Fig. 3.1. The construction heuristic can be a simple method such as random or cheapest
insertion. Then, the improving heuristic has to make many steps to obtain a decent solution.
Thus, the initialization based on already solved solutions could help decrease the number of
steps in the improving phase or even enhance the result. However, the problem is determining
a similar instance to the given one. Here, we propose to utilize the NN-based approach to
provide a data abstraction over the input data. Then, based on the similarities within the set
of already solved instances, we can retrieve a solution of the most similar instance and use it
to create a feasible solution. The proposed pipeline is depicted in green in Fig. 3.1.

3.2.1 Research Question

Within the hybrid approach, we aim to answer the following research question.

• Would usage of the NN-based instance characterization yield a similarity measure to
retrieve a similar instance with a solution that would yield an improved initial solution
than a traditional construction heuristic?

12

CHAPTER 4
Background

The proposed approach to combine NN-based methods with existing techniques to the TSP
is to find an alternative to construction heuristics that will provide a better solution (best in
less computational time) and then improved by employing an improving heuristic. Based on
the literature review on NN-based methods, we aim to develop a solution pipeline that would
better scale with the instance size.

We target solving instances with hundreds of locations, while the reported learned-model
are trained on tens up to 100 locations. Therefore, we propose to exploit a set of available
solutions to construct a new instance solution using an existing solution for the most similar
instance. However, finding a similar instance might be tricky using the standard properties
of a graph. Therefore, we propose to utilize embeddings of the NN-based methods to extract
a feature vector characterizing the instance. We assume that NN can learn different charac-
teristics of high dimensional input data, and only by activating the most important neurons
creates a “non-human,” low-dimensional description of the input data that can be used for
similarity assessment.

We follow the proposed pipeline depicted in Fig. 3.1 and consider existing techniques
described in the rest of this chapter as expected building blocks for the development of the
pipeline. In particular, we consider encoder-decoder architecture, and embedding as suitable
techniques to address the similarity assessment of a new instance and instances with known
solutions. Moreover, we consider GSOA [16] as an unsupervised learning-based technique to
the TSP that can initialize a solution to different instances. Therefore, we provide a brief
overview of GSOA in Section 4.2 to make the thesis self-contained. Further, our choice for an
improving heuristic is the combinatorial metaheuristic Variable Neighborhood Search (VNS)
because it has already been successfully deployed to several routing problems at the training
workplace, where the thesis is solved. The fundamental principles of the VNS are overviewed
in Section 4.3.

4.1 Encoder-Decoder Architecture

The encoder-decoder architecture is a NN architecture commonly used for image segmenta-
tion, machine translation, speech recognition, and other sequence-to-sequence tasks where the

13

Chapter 4. Background

Figure 4.1: A principled schema of the encoder-decoder architecture. The green part on the left
encodes the input data and provides embeddings. Then the blue decoder on the right yield a result
base on the embedding.

TSP might be seen as a graph-to-graph translation. The basic idea of the encoder-decoder
architecture is to use two separate neural networks. In Fig. 4.1, the encoder network is drawn
in green, and the decoder network is depicted in blue. The encoder network takes in an input,
such as an image, a sequence of words, or a graph, and converts it into a fixed-size represen-
tation, called the embedding, which contains all the relevant information needed to perform
the task. The decoder network takes the bottleneck representation generated by the encoder
and generates an output.

An embedding is a vector representation of a high-dimensional data point in a lower-
dimensional space. It is learned through a NN which maps the input data into a lower-
dimensional representation that preserves the most relevant features of the data. Such a
lower-dimensional representation can be used as a feature vector in downstream tasks. We
aim to utilize it as a descriptor to determine a similarity score of two TSP instances.

Embedding as a Feature Vector

A feature vector is a mathematical representation describing a particular object or phe-
nomenon. It is a list of numerical values that represent various characteristics or features
of data. In the context of signal processing, including images, where NN-based methods ex-
hibited great results, features can be color, shape, size, texture, or other properties of an
object, such as various acoustic or linguistic features of a sound or language. Feature vectors
are commonly used in machine learning and pattern recognition algorithms, where they are
used to represent the input data that the algorithm uses to learn or classify patterns.

Particular existing examples are feature vectors representing the intensity and color of
each pixel in an image. In speech recognition, a feature vector can represent the frequency
and amplitude of each sound wave. In natural language processing, word embeddings are
used to represent words as feature vectors. These embeddings are learned through a neural
network that predicts the context of a word in a text corpus based on its surrounding words.
The resulting word embeddings capture the semantic and syntactic similarities between words
and can be used to perform sentiment analysis, text classification, or machine translation.
Similarly, in computer vision, image embeddings can be learned through a CNN that extracts
features from the image and maps them to a lower-dimensional space. These embeddings can

14

Chapter 4. Background

be used as feature vectors for object detection, image classification, or image retrieval tasks.
We assume similar properties can be achieved for TSP instances, where an embedding of

the learned NN can be used as the feature vector (descriptor) for computing the similarity
score of an instance with instances from a Set of Solutions (SoS) with known solutions. Various
techniques can be used to compute the similarity score, including Kullback–Leibler divergence
for probability distributions. However, in the present work, we consider L2 Norm and the
nearest neighborhood algorithm to determine the most similar instances from the SoS.

4.2 Growing Self-Organizing Array

The Growing Self-Organizing Array (GSOA) [16] is an unsupervised learning-based heuristic
that originates from SOM. Even though it is an iterative procedure, it can be considered a
construction heuristic because once the model is stabilized, the solution is no longer improving
with increasing learning epochs. The procedure iteratively adapts an array of nodes represent-
ing a path (ring) in the input space. The nodes are connected by straight-line segments into
which a new node can be added during the learning. In each learning epoch, all locations to
be visited are examined randomly to avoid local minima. For each location, the best matching
unit is determined using the shortest distance between the location and segments of the ring.
The segment’s point closest to the location is used to insert a new node into the ring, and the
node is denoted winner for the particular location. Then, the winner node and its neighboring
nodes are adapted toward the locations with the power defined by a learning function depicted
in Fig. 4.2. Since a new node is added for each location in every learning epoch, all nodes from
the previous epoch are removed from the array (ring) at the end of each epoch. Hence, the
array contains the same number of nodes as the number of locations. Furthermore, each node
has an associated location, and thus the sequence of visits to all locations can be retrieved by
traversing the array.

The adaptation is a de facto movement of the node position ν toward the location v
according to the neighboring function

ν ′ = ν + µe−d
2/G2

(v − ν) . (4.1)

The power of adaptation is decreased with the distance d of the neighboring node ν from
the winner node ν∗. Besides, the power is further controlled by the learning rate µ and
learning gain G, decreased using the gain-decreasing rate at the end of each learning epoch.
Thus, depending on the initial value of the learning gain and the gain decreasing rate, after
a specific number of epochs, the gain becomes so low that no adaptation is performed, and
the array (ring) becomes stable. Therefore, the GSOA runs in a fixed number of epochs. An
interested reader is referred to [16] for a detailed description of the adaptation, convergence,
and parameter settings.

The array of nodes is adapted in the input space; therefore, the array can be straightfor-
wardly initialized from some, even partial, solution. A solution as a sequence of locations can
be directly used as the initial array (ring) of nodes. Depending on the value of the initial
learning gain, the power of the adaptation might completely change the initial solution (high
values), or only small adjustments can be made.

15

Chapter 4. Background

Figure 4.2: The GSOA ring adaptation where each node ν is dragged toward the green location v
based on distance from the winner node ν∗. The filled orange nodes represent the ring state before
adaptation and the new state is depicted by the outlined nodes.

4.3 Variable Neighborhood Search

The Variable Neighborhood Search (VNS) [7] is a general metaheuristic framework for solving
combinatorial optimization problems. The VNS systematically searches through the neigh-
borhood space of feasible solutions using predetermined neighborhood operators. Within the
context of the TSP, the neighborhood can be defined as all possible sequences of visits to
the locations created by applying a particular operator, such as exchanging two nodes in the
sequence. The VNS algorithm starts with an initial solution (e.g., found by a construction
heuristic) and iteratively explores the solution space by using Shake and Local Search proce-
dures. The Shake procedure is applied to the current solution to escape local optima, while
the Local Search iteratively applies different operators to improve a candidate solution further.
If the solution is improved, it is accepted as the current best solution found, and the search
continues. The algorithm is summarized in Algorithm 1.

Algorithm 1: Variable Neighborhood Search (VNS)
Input: V = {v1, . . . ,vn} – n locations to be visited, Σinit = 〈σ1, . . . , σn〉 – initial

sequence of visits to the set of V .
Output: Σ – The sequence of visits to the set of V .

1 Σ← Σinit

2 for stopping condition is not met do
3 Σ′ ← shake(V,Σ)
4 Σ′′ ← localSearch(V,Σ′)
5 if L(Σ′′) < L(Σ) then
6 Σ← Σ′′

7 end
8 end
9 return Σ

In the regular VNS, the neighborhood operators are applied systematically, which can be
too demanding. Therefore, the Randomized Variable Neighborhood Search (RVNS) variant
randomly searches the neighborhood space up to n2 operations, where n is the instance size.
Furthermore, the performance of the VNS highly depends on the operators’ demands. In [36],
the authors use four operators depicted in Fig. 4.3.

The Shake procedure uses the Path Move operator, which shifts a path subsequence to

16

Chapter 4. Background

(a) Point Move (b) Path Move

(c) Point Exchange (d) Path Exchange

Figure 4.3: Four Variable Neighborhood Search operators used in [36].

a different position, and the Path Exchange operator, which picks two non-overlapping path
parts and exchanges them. The Local Search uses the Single Point Move and the Single Point
Exchange. These operators are also used to employ the RVNS as the improving heuristic in
Fig. 3.1.

17

Chapter 4. Background

18

CHAPTER 5
Proposed Hybrid Approach

Following the proposed architecture in Fig. 3.1, we develop a novel method to utilize Neu-
ral Network (NN) methods for addressing the re-usage of already solved instances. Several
pipelines can be implemented based on a specific implementation of the particular blocks in
Fig. 3.1. However, our main focus is on the Feature Extractor to access the set of precom-
puted solutions and the Feasible Solution Creator (FSC), described in the following parts of
this chapter. Moreover, we detail the used improving heuristic in Section 5.4, based on the
RVNS.

5.1 Set of Solutions Concept

The idea of the Set of Solutions (SoS) is motivated by the assumption that practical instances
might be similar in overall shape but can change in detail. Specifically for large instances in
logistics, we can imagine that major cities to be visited might be a few, but changes can be in
the particular locations within the city area. Therefore, we propose to create a SoS where we
can “index” an instance by a similarity measure using an instance descriptor.

Although clustering and other relatively intuitive methods can be utilized for the Euclidean
TSP, we are also motivated by further extensions towards non-Euclidean instances and possibly
the VRP generalized to time windows where such intuition does not work. Therefore, we
propose to utilize an instance descriptor that can provide an abstraction over high-dimensional
data. Then, the extracted instance descriptor can be matched with instances from the SoS to
find a solution for a similar instance.

Let us assume, we have a feature vector characterizing an input instance shown in Fig. 5.1.
The similarity can be measured based on the L2 Norm between the feature vectors of the
query instance and instances in the SoS. By finding the instance descriptor with the smallest
L2 Norm, the most similar instance to the query instance is obtained. Then, the solution of
the query instance can be based on the solution of the most similar instance from the SoS.
The particular feature descriptor is described in the following section.

19

Chapter 5. Proposed Hybrid Approach

Figure 5.1: Concept of the Set of Solutions (SoS) and input instance. By retrieving the most similar
instance from the SoS to the input instance based on the smallest distance of the feature vectors, a
solution with some resemblance to the input instance is obtained.

5.2 Feature Extractor

We propose to use NN-based feature extractor and the corresponding feature descriptor. The
motivation is to utilize a part of some sequence-to-sequence NN for the TSP. We assume that
the bottleneck information in the encoder-decoder architecture, alias the embedding, should
provide enough information to retrieve the solution in the decoder part. Thus, the encoder
separately, depicted in Fig. 5.2, can be used as a feature extractor, and its provided embedding
can be seen as the feature descriptor.

Figure 5.2: Neural network encoder used as a feature extractor. The NN encoder takes a TSP
instance as the input and outputs embedding that is directly used as an instance descriptor.

The particular NN approach is the encoder-decoder architecture of the Attention Model
(AM) presented in [18] because of reported promising results of the TSP. The authors of [18]
made three pre-trained models for the TSP available, which can be directly used. Hence, a pre-
trained model taught on the instances with 100 locations has been deployed in the proposed
solver due to the best generalization to larger instances and the empirical results are reported
in the following chapter. However, it is necessary to address possible different scales of the
TSP instances, and therefore, the instances need to be normalized.

20

Chapter 5. Proposed Hybrid Approach

Instance Space Normalization

The TSP instances can highly vary, however, the instance space depends on the Feature
Extractor method. Since the used extractor has been trained on random instances generated
in a unit square, it is necessary to scale any instance to a similar space. Thus, the input
locations V = {v1, . . . ,vn} need to be scaled into a unit square. Furthermore, the locations
are shifted to fill the unit square evenly within the intervals from zero to one; 〈0, 1〉 × 〈0, 1〉.

5.3 Feasible Solution Creator

Having a solution of a similar instance from the SoS to the query instance, the solution has to
be mapped to the input instance and create a feasible solution. We propose two approaches, a
greedy method, and employment of GSOA, that are detailed in Section 5.3.1 and Section 5.3.2,
respectively. Note that the query instance is normalized, and the solution is found in the
normalized input space. Once a sequence of visits is determined, the original instance is
utilized to determine the solution length of the original input instance.

5.3.1 Greedy Construction of Feasible Solution

The greedy feasible solution construction is based on pairing each location in the solution
with the location of the input instance. Then, if the size of the input instance is larger than
the similar instance, the locations are added to the initial tour using cheapest insertion. An
example of the construction is visualized in Fig. 5.3, and it works as follows.

(a) (b) (c)

Figure 5.3: The greedy FSC first chooses the closest locations of the input instance to a similar
instance. If the input instance location has matched more than one similar instance location, the
closest similar location is paired. The remaining locations are added to the path using the cheapest
insertion.

Since the solution is a sequence of indices, the pairing is based on the shortest distances
between the locations so that the similar solution’s sequence indices are assigned to the closes
input instance locations. Thus, a partial solution is determined as depicted in Fig. 5.3b. Then,
the remaining locations not visited by the partial solution are greedily inserted between two
locations such that the prolongation of the closed path is minimal, see Fig. 5.3c.

The greedy feasible solution construction is relatively straightforward and does not consider
possible rotation changes of the input instance and the retrieved similar instance from the SoS.
Therefore, we further consider feasible solution construction using GSOA.

21

Chapter 5. Proposed Hybrid Approach

5.3.2 GSOA-based Construction of Feasible Solution

Mapping a different instance solution to the input instance is straightforward with GSOA.
Each node in the array of nodes corresponds to a location in the input space. Thus, the
initialization of the array is direct usage of the similar instance solution. However, we might
need to adjust the initial learning gain to prevent considerable adaptation from the initial
solution. Therefore, the suggested learning gain 10 [16] is lowered to 5. The value of the
learning gain has been empirically determined as the lowest value without a significant impact
on the solution quality. Since the learning gain directly affects the number of learning epochs,
lower values decrease the computational time. All the other parameters of GSOA are used as
suggested in [16].

5.4 Improvement Heuristic

The RVNS is employed as the improving heuristic with the operators used in [36]. The
implementation consists of the shake procedure, modifying the current solution. It randomly
chooses between two operators

1. pathMove(Σ):

σi = σ′(i+r mod n)+1 for 1 ≤ r ≤ n ,

Σ′ = 〈σ′1, . . . , σ′a−1, σ
′
b+1, . . . , σ

′
c, σ
′
a, . . . , σ

′
bσ
′
c+1, . . . σ

′
n〉

for 1 ≤ a ≤ b ≤ n , c ∈ {1, . . . a− 1, b+ 1, . . . , n}
(5.1)

2. pathExchange(Σ):

σi = σ′(i+r mod n)+1 for 1 ≤ r ≤ n

Σ′ = 〈σ′1, . . . , σ′a−1, σ
′
c, . . . , σ

′
d, σ
′
b+1, . . . , σ

′
c−1, σ

′
a, . . . , σ

′
b, σ
′
d+1, . . . σ

′
n〉

for 1 ≤ a ≤ b < c ≤ d ≤ n
(5.2)

Both operators shift the path indexed by r to new σ′i to obtain an even subpath going over
the start and end of the sequence Σ because the TSP solution is a closed tour. The operator
pathMove randomly choses a, b, and c indices of the sequence and puts the sequance 〈σ′a, . . . , σ′b〉
after the location index σ′c, which is depicted in Fig. 4.3b. Whereas pathExchange switches
two non-overlapping subsequences defined by randomly chosen a, b, c, and d.

The Local Search iteratively explores the solution space by the same operators used in the
shake procedure but with two additional operators:

3. pointMove(Σ):
Σ′ = 〈σ1, . . . , σa−1, σa+1, . . . , σb, σa, σb+1, . . . σn〉

for 1 ≤ a ≤ n , 1 ≤ b ≤ n , a 6= b
(5.3)

4. pointExchange(Σ):

Σ′ = 〈σ1, . . . , σa−1, σb, σa+1, . . . , σb−1, σa, σb+1, . . . σn〉
for 1 ≤ a ≤ n , 1 ≤ b ≤ n , a 6= b

(5.4)

22

Chapter 5. Proposed Hybrid Approach

In contrast to [36], these two operators are an addition to the pathMove and pathExchange.
In the pointMove operator, the solution is changed by placing the location index σa after σb
for some random a and b. On the other hand, the pointExchange swaps the indices σa and σb.

The particular local search technique of the employed RVNS is summarized in Algorithm 2.
It tries different randomized operators in the loop for n2 times, where n is the instance size. If
the operator improves the solution as the sequence Σ′, it is considered as the current solution Σ.

Algorithm 2: localSearch(V,Σ)

Input: V = {v1, . . . ,vn} – n locations to be visited, Σ = 〈σ1, . . . , σn〉 – sequence of
visits to the set of V .

Output: Σ – The sequence of visits to the set of V .
1 for j: 1 . . . |V |2 do
2 switch j mod 4 do
3 case 0 do
4 Σ′ ← pointMove(Σ)
5 case 1 do
6 Σ′ ← pointExchange(Σ)
7 case 2 do
8 Σ′ ← pathMove(Σ)
9 otherwise do

10 Σ′ ← pathExchange(Σ)
11 end
12 end
13 if L(Σ′) < L(Σ) then
14 Σ← Σ′

15 end
16 end
17 return Σ

23

Chapter 5. Proposed Hybrid Approach

24

CHAPTER 6
Results

The proposed hybrid approach has been empirically evaluated on two types of benchmark
instances. The first type is random instances adopted from [18] with locations fitted into a
unit squared. The locations coordinates are placed randomly using a normal distribution. The
size of the instances ranges from 20 to 500 locations, and the instances are grouped according
to the number of locations into scenarios: Random 20, Random 50, Random 100, Random 200,
Random 300, and Random 500. For each scenario, 5 random instances have been generated
using seed 777. Instances in the second type of scenarios are selected from the TSP benchmark
called the TSPLIB [32], which includes real-world instances with various spatial distribution
and distance metrics; however, only instances with the Euclidean distance are used because of
the utilized trained models. The TSPLIB scenario consists of 42 instances that are listed in
Tables A.3, A.4, A.7 and A.8. An example of the instances is depicted in Fig. 6.1.

The evaluated scalability of the models also suggested limiting the size of the examined
instance to 500 locations. The examined GNNs approaches [20] allocates excessively a large
amount of memory for large instances. Nevertheless, the models are trained on instances from
20 to 200 locations, and the examination of scenarios with up to 500 locations provides insights
into the scalability of the models.

The solutions found by the proposed hybrid approach are compared with the optimal
solutions determined by the Concorde solver [3]. The available implementation of the Attention
Model (AM) [18] and Graph Neural Network (GNN) [20] have been used. The implementations
are in Python using the PyTorch library. We further employed GSOA [16] with the available
implementation in C++. It is a stochastic algorithm; therefore, each instance has been solved
for 10 trials, and the mean solution cost is reported. Besides, we examined the greedy heuristic
implemented in Python. All solvers have been run within the same computational environment
with the Intel Core i7-9700 running at 3.0 GHz.

The solution quality of a found sequence Σ is reported as the relative optimality Gap
determined using the optimal solution cost L∗:

Gap(Σ) =

(
L(Σ)

L∗
− 1

)
· 100 [%] , (6.1)

where L(Σ) is the length of the found solution or mean solution cost in the case of GSOA.

25

Chapter 6. Results

(a) Random 50-1 (b) Random 100-2 (c) Random 300-3

(d) TSPLIB – berlin52 (e) TSPLIB – eil101 (f) TSPLIB – d198

Figure 6.1: Example of benchmark instances scaled to a unit square, three randomly generated
instances and three instances from the TSPLIB [32], berlin52, eil101, and d198. The black frame
represents the unit square; it can be seen that eil101 and d198 do not resemble the randomly generated
instances. Locations are clustered in eil101 while a grid of locations with a smaller height than width
can be observed for d198.

Due to the relatively high number of test instances, the instances in the Random and
TSPLIB scenarios are grouped according to the number of locations, and aggregated results
are reported. The Random instances are aggregated into group with 20, 50, 100, 200, 300, and
500 locations. The TSPLIB instances into groups with 1–90, 91–150, 151–250, 251–350, 351–
500 locations. The aggregated results are reported as average performance indicators denoted
Avg and standard deviation denoted Std.

The reported empirical results are organized as follows. Evaluation of the NN-based ap-
proaches is reported in the following section. The influence of the Set of Solutions (SoS) is
examined in Section 6.2. The Feasible Solution Creators (FSCs) are examined in Section 6.3.
The influence of the initial solution on the performance of the VNS-based improving heuristic
of the proposed hybrid approaches is studied in Section 6.4.

6.1 Performance of the Existing NN-based Solvers

We consider two models for each NN-based approach. The Attention Model (AM) [18] trained
on 50 locations is denoted as AM50, and the AM model trained on 100 locations is denoted
AM. The Graph Neural Network (GNN) model [20] trained on instnaces with 20–50 and 200 is

26

Chapter 6. Results

denoted GNN20-50 and GNN200, respectively. Aggregated results on the Random and TSPLIB
instances of the AM and GNN are depicted in Fig. 6.2. The full results are listed in Tables A.1
to A.4.

1-90
91-150

151-250
251-350

351-500
0

20

40

60

80

100

G
ap

[%
]

AM50 AM GNN20-50 GNN200 Greedy GSOA

20 50 100 200 300 500
0

20

40

60

80

100

G
ap

[%
]

(a) Random

1-90
91-150

151-250
251-350

351-500
0

20

40

60

80

100

G
ap

[%
]

(b) TSPLIB

Figure 6.2: Aggregated results of the Attention Model (AM) [18] and Graph Neural Network
(GNN) [20] solvers. The AM model trained on 50 and 100 locations is denoted AM50 and AM,
respectively. The GNN20–50 and GNN200 stand for the GNN trained on 20–50 and 200 locations,
respectively. The average gap is shown with the bars denoting the standard deviation.

Overall, the GSOA approach provides the best results among the examined heuristic
solvers. It generalizes to instances with any spatial distribution and sizes. The AM50 and the
GNN20–50 approaches provide better results than the Greedy solver, but mostly for relatively
small instances. The generalization of the AM and GNN approaches is poor for increasing the
size of the random instances. Because the AM model generalizes better for larger instances
than the AM50 and both GNN, it is chosen to be a part of the proposed hybrid model pipeline
in the following examinations.

27

Chapter 6. Results

6.2 Influence of using SoS Instances

The feasibility of the proposed Set of Solutions (SoS) presented in Section 5.1 is evaluated on
the TSPLIB instances. The SoS is filled with the instances, AM embeddings, and optimal
solutions found by Concorde. Since the AM is deterministic, the embeddings should match
exactly its embedding in the SoS; thus, a similar solution should be the optimal path. We
consider two SoS instances to validate that. The first is SoSRandom, which is filled by solutions
of the random instances. The second is SoSTSPLIB filled with the TSPLIB instances. For both
cases, we employed greedy FSC (Section 5.3.1).

Table 6.1: Aggregated results for SoSRandom and SoSTSPLIB

|V |

SoSRandom SoSTSPLIB

Gap [%] Gap [%]

Avg Std Avg Std

T
SP

LI
B

1–90 18.4 4.0 0.0 0.0

91–150 17.3 4.5 0.0 0.0

151–250 14.3 2.8 0.0 0.0

251–350 16.6 3.2 0.0 0.0

351–500 19.8 4.1 0.0 0.0

Aggregated results depicted in Table 6.1 support the expectation that the embedding
can be utilized to retrieve the solution of the already stored instance as the gap is zero for
querying solutions of the TSPLIB instances from the SoSTSPLIB. On the other hand, the
gap for SoSRandom is about 14–20 %. Examples of selected input instances and the retrieved
solution of the similar instance from the SoSRandom are depicted in Fig. 6.3. For instances in
Figs. 6.3a and 6.3d, the matched similar instances have approximately the same number of
locations, and the majority of locations are concentrated in resembling positions.

6.3 Influence of Feasible Solution Creators

The two proposed FSCs are the Greedy approach FSCGreedy and the one utilizing GSOA
labeled as FSCGSOA. In the evaluation of both approaches, the SoS is filled with the solutions
of the random instances with 50 and 100 that are generated with the seed 42. Thus, the
instances are different from the instances of the Random scenario. The aggregated results are
depicted in Fig. 6.4 and detailed results can be found in Tables A.5 to A.8.

Since the AM is used to retrieve similar instances from the SoS, the results suggest the
FSCGreedy worsens the results of the AM and Greedy heuristic used solely. A noticeable
improvement can be seen for large TSPLIB instances, which might be due to the less restricting
partial solution, and more locations being inserted greedily by the FCSGreedy. Nevertheless,
its overall performance is poor. The FCSGSOA noticeably helps, and the initialized GSOA
provides better solutions despite the lowered learning gain. Moreover, the FCSGSOA also
leverages the ability of GSOA to generalize, finding better solutions even on larger instances.

28

Chapter 6. Results

(a) Random 50-0 (b) Random 100-0 (c) Random 300-0

(d) TSPLIB – berlin52 (e) TSPLIB – eil101 (f) TSPLIB – kroA150

Figure 6.3: Examples of the retrieved similar instances from SoSRandom for the input instances. The
green disks represent the input locations, and the orange curve is for the solution of the retrieved most
similar instance.

6.4 Influance of the Initialization to the VNS-based Improve-
ment Heuristic

The last performed empirical evaluation focuses on the initialization’s influence of the VNS-
based improving heuristic. Here, we aim to answer whether a different initialization would help
faster convergence to better results of the employed VNS-based solver. Therefore, the VNS has
been initialized by solutions provided by the AM learned on 100 locations, Greedy solver, one
(randomly picked) solution of the GSOA, and by the proposed hybrid approaches FSCgreedy
and FSCGSOA, both with the SoS. The VNS has been limited to 2000 iterations with addi-
tional termination conditions for the maximum number of consecutive iterations without an
improvement set to 100. Because of high computational requirements, the performance study
of the VNS-based solver is reported only for four selected instances: Random 100-0, Random-
300-0, and eil101 and kroA150 from TSPLIB, which represent instances with the number of
locations closer to the learned AM and above it. Besides, the AM provides relatively good
solutions for the TSPLIB instance eil101, while kroA150 is difficult for the learned AM.

The results suggest that for Random instances, the initialization is crucial, and the VNS
does not converge to a similar solution. On average, the VNS is prematurely terminated before
reaching the used limit of 2000 iterations. The improvement of the proposed hybrid approach
with the FSCGSOA is very slow, which might indicate the solution is stuck in a local optimum

29

Chapter 6. Results

1-90
91-150

151-250
251-350

351-500
0

10

20

30

40

50

G
ap

[%
]

AM Greedy GSOA FCSgreedy FCSGSOA

20 50 100 200 300 500
0

10

20

30

40

50

G
ap

[%
]

(a) Random

1-90
91-150

151-250
251-350

351-500
0

10

20

30

40

50

G
ap

[%
]

(b) TSPLIB

Figure 6.4: Aggregated results using FCSgreedy and FCSGSOA of the Random and TSPLIB instances,
and SoS filled with different random instances with 50 and 100 instances. The results of the AM,
Greedy, and GSOA do not use SoS. The reported values are the average gaps per group with standard
deviation visualized as the error bar.

as the average gap is about 2 % for the instance kroA150, see detail result in Table A.7.
However, the VNS generally improves the solutions and provides stable results.

6.5 Discussion

The presented results assess the existing NN-based methods and the proposed hybrid approach.
The NN-based approaches (AM and GNN) provide competitive solutions only for instances
the size close to the instances used for learning. The approaches do not scale with increasing
instance size. Besides, we consider the approaches fail on instances from the TSPLIB. Fur-

30

Chapter 6. Results

0 100 200 300 400
Iterations

660

670

680

690

700

710

L(
Σ

)
AM Greedy GSOA FSCgreedy FSCGSOA

0 200 400 600
Iterations

7.75

8.00

8.25

8.50

8.75

9.00

L(
Σ

)

(a) Random 100-0

0 200 400 600
Iterations

13.5

14.0

14.5

15.0

L(
Σ

)

(b) Random 300-0

0 100 200 300 400
Iterations

660

670

680

690

700

710

L(
Σ

)

(c) TSPLIB – eil101

0 100 200 300 400 500
Iterations

27k

28k

29k

30k

31k

L(
Σ

)

(d) TSPLIB – kroA150

Figure 6.5: Influence of different initializations to the VNS for up to 2000 iterations and termination
after 100 consecutive iterations without improvement. Different Initializations of the VNS algorithm on
two Random instances and two instances from TSPLIB where the TSPLIB instance eli101 is selected
because the AM provides good results, whereas kroA150 is difficult. The solid bold curves represent
average results over 10 runs, and the same colored area around the curve represents a difference between
the best and worst solutions found at each particular iteration of the VNS. The average iteration when
the VNS has been prematurely terminated because the solution has not improved is denoted by crosses.

thermore, the computational requirements are significantly higher than for Concorde providing
optimal solutions. However, it might be caused by the Python implementation. On the other
hand, for small random instances, and in a few cases also for small instances from the TSPLIB,
the AM yields better results than the average solutions provided by GSOA.

Regarding the proposed hybrid approach, the results support the feasibility of the Set of
Solutions (SoS) and using embedding of the AM to retrieve similar instances. Furthermore,
the initialization using the optimal solution of the retrieved similar instance yields an improved
solution found by GSOA. Although, in a few cases, the average solution cost is worse for the
hybrid approach with the initialization than without it, the solutions are noticeably improved,
specifically for selected large instances from the TSPLIB.

Based on the results and observations, we can answer the research question from Sec-
tion 3.2.1 as follows.

31

Chapter 6. Results

• Would usage of the NN-based instance characterization yield a similarity measure to
retrieve a similar instance with a solution that would yield an improved initial solution
than a traditional construction heuristic?

The proposed Set of Solutions (SoS) based on embeddings of the Attention Model
(AM) [18] allows to retrieve similar instance, which in the case of the instance already
in the SoS retrieves the same instance. A solution of the similar instance used for ini-
tializing the GSOA-based solver yields noticeably better solutions than solutions found
by GSOA without the initialization. Therefore, we consider the results supportive and
the proposed hybrid solver vital.

32

CHAPTER 7
Conclusion

In the thesis, we study the well-known TSP by relatively recent NN-based approaches. Based
on the survey of the existing methods, we selected AM and GNN based methods with promising
results reported in the literature. However, examining their performance on instances larger
than those used for learning indicates relatively poor scalability. The results support the
observation that models only learned on generated random instances are not able to generalize
to real-world instances of the TSPLIB. However, the AM approach is suitable for providing
data abstraction, and the methods combining the NNs with classical heuristics showed to be
promising.

The proposed hybrid approach is based on finding similar solutions using the AM decoder
as a feature extractor providing an instance descriptor. It utilizes a SoS with solved instances
from which the most similar solution to the query instance is determined using the L2 Norm
of the instances’ descriptors. A similar solution is provided to the FSCs based on the greedy
algorithm and GSOA, where GSOA shows to provide better results. The improvement part
of the proposed hybrid approach shows only a slightly fine-tuned initial solution using the
combinatorial metaheuristic VNS. Overall, the hybrid approaches showed that the FSC is an
important part of the pipeline, and even without an improving heuristic, the hybrid approach
can improve the current methods.

Future work can exploit the modular architecture of the proposed hybrid pipeline, where
alternative methods can eventually improve every part of it. For example, the most straightfor-
ward feature extraction for the Euclidean TSP can be based on K-means clustering. Moreover,
the presented feature extractor can be trained on a new dataset generated by various distri-
butions to address real-world instances. Moreover, rather than retrieving only a single similar
instance, k-nearest neighbors can be utilized to obtain k initial solutions that can be used for
the initialization of the population-based combinatorial metaheuristics.

33

Chapter 7. Conclusion

34

i
Bibliography

[1] David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. The Traveling
Salesman Problem. Princeton university press, 2011.

[2] Gregory Gutin and Abraham P Punnen. The Traveling Salesman Problem and Its Vari-
ations, volume 12. Springer Science & Business Media, 2006.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE TSP Solver, 2003. [cited
May22, 2023].

[4] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group, 1976.

[5] Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Sejla Dizdare-
vic. Genetic algorithms for the travelling salesman problem: A review of representations
and operators. Artificial Intelligence Review, 13:129–170, 1999.

[6] Alex Van Breedam. Improvement heuristics for the vehicle routing problem based on
simulated annealing. European Journal of Operational Research (EJOR), 86(3):480–490,
1995.

[7] Pierre Hansen and Nenad Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research (EJOR), 130(3):449–467, 2001.

[8] Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6(2):109–133, 1995.

[9] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, 1973.

[10] Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman
heuristic. European journal of operational research, 126(1):106–130, 2000.

[11] K. Helsgaun. LKH, version 2.0.10, 2022. [cited May, 22 2023].

35

Bibliography

[12] John J Hopfield and David W Tank. “Neural” computation of decisions in optimization
problems. Biological cybernetics, 52(3):141–152, 1985.

[13] Sreeram VB Aiyer, Mahesan Niranjan, and Frank Fallside. A theoretical investigation
into the performance of the hopfield model. IEEE Transactions on Neural Networks,
1(2):204–215, 1990.

[14] Bernard Angeniol, Gael De La Croix Vaubois, and Jean-Yves Le Texier. Self-organizing
feature maps and the travelling salesman problem. Neural Networks, 1(4):289–293, 1988.

[15] Bernd Fritzke and Peter Wilke. FLEXMAP – a neural network for the traveling salesman
problem with linear time and space complexity. In International Joint Conference on
Neural Networks (IJCNN), Singapore, pages 929–934, 1991.

[16] Jan Faigl. GSOA: Growing self-organizing array - unsupervised learning for the close-
enough traveling salesman problem and other routing problems. Neurocomputing,
312:120–134, 2018.

[17] Zhengxuan Ling, Xinyu Tao, Yu Zhang, and Xi Chen. Solving optimization problems
through fully convolutional networks: An application to the traveling salesman problem.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12):7475–7485, 2020.

[18] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing prob-
lems! In International Conference on Learning Representations (ICLR), 2019.

[19] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for
solving routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871,
2020.

[20] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent.
Learning TSP requires rethinking generalization. In International Conference on Princi-
ples and Practice of Constraint Programming (CP), 2021.

[21] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated
vehicle routing problem. In European Conference on Artificial Intelligence (ECAI), pages
443–450. IOS Press, 2020.

[22] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learning
model with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem.
Advances in Neural Information Processing Systems, 34:7472–7483, 2021.

[23] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

[24] T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[25] J. C. Fort. Solving a combinatorial problem via self-organizing process: An application
of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics,
59(1):33–40, 1988.

[26] R. Durbin and D.J. Willshaw. An analogue approach to the travelling salesman problem
using an elastic net method. Nature, 326(16):689–691, April 1987.

36

Bibliography

[27] Samerkae Somhom, Abdolhamid Modares, and Takao Enkawa. A self-organising model
for the travelling salesman problem. Journal of the Operational Research Society, pages
919–928, 1997.

[28] Jan Faigl. On the performance of self-organizing maps for the non-euclidean traveling
salesman problem in the polygonal domain. Information Sciences, 181(19):4214–4229,
2011.

[29] Jan Faigl. Unsupervised learning-based solution of the close enough dubins orienteering
problem. Neural Computing and Applications, 24(32):18193–18211, 2020.

[30] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz
Khan, and Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys
(CSUR), 54(10s):1–41, 2022.

[31] Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained
traveling salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

[32] Gerhard Reinelt. TSPLIB – a traveling salesman problem library. ORSA Journal on
Computing, 3(4):376–384, 1991.

[33] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Rein-
forcement learning for solving the vehicle routing problem. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

[34] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter
Rei. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60(3):611–624, 2012.

[35] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified
solution framework for multi-attribute vehicle routing problems. European Journal of
Operational Research (EJOR), 234(3):658–673, 2014.

[36] Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska. Dubins orienteering problem.
IEEE Robotics and Automation Letters, 2(2):1210–1217, 2017.

37

Bibliography

38

APPENDIX A
Detailed Results

39

Appendix A. Detailed Results

T
ab

le
A
.1
:
P
er
fo
rm

an
ce

of
th
e
ex
is
ti
ng

N
N
-b
as
ed

ap
pr
oa
ch
es

on
th
e
R
an

do
m

in
st
an

ce
s
–
P
ar
t
1

C
on

co
rd
e
[1
]

A
M

50
[1
8]

A
M

[1
8]

G
N
N
20

-5
0
[2
0]

G
N
N
20

0
[2
0]

G
re
ed
y

G
SO

A
[1
6]

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

20
-0

4.
10

60
0.
0

37
1.
5

2
52
6

2.
1

3
64
4

11
.1

45
0

2.
2

2
2.
4

1

20
-1

3.
91

60
0.
0

37
3.
2

2
55
3

3.
3

3
62
2

5.
9

2
13
2

3.
2

2
6.
3

1

20
-2

4.
26

50
0.
7

39
11
.8

2
51
9

2.
6

3
66
2

35
.0

2
53
7

0.
0

2
2.
3

1

20
-3

3.
63

40
1.
7

35
2.
8

2
53
8

0.
0

3
65
5

9.
7

2
82
4

5.
7

2
4.
6

1

20
-4

4.
10

40
1.
1

33
17
.5

2
54
1

0.
8

3
59
4

78
.8

2
80
3

0.
0

2
1.
7

1

50
-0

5.
87

34
0

2.
8

1
86
1

3.
0

5
19
8

7.
3

6
39
2

18
.7

5
60
5

3.
6

4
3.
0

4

50
-1

5.
42

33
0

0.
0

53
1

0.
0

5
20
4

1.
5

6
38
9

47
.2

5
68
6

9.
6

4
4.
1

4

50
-2

5.
25

36
0

1.
9

53
2

7.
6

5
20
0

2.
6

6
38
7

27
.9

5
63
1

7.
2

4
2.
9

4

50
-3

5.
23

34
0

2.
5

97
5.
7

5
21
4

3.
4

6
38
7

39
.7

5
61
6

6.
8

4
1.
7

4

50
-4

5.
52

33
0

0.
0

2
74
5

4.
8

5
21
8

6.
7

6
33
7

36
.6

5
60
5

6.
5

4
4.
1

4

10
0-
0

7.
59

93
0

4.
2

1
80
2

2.
7

9
17
0

6.
6

10
85
1

29
.0

9
20
0

9.
1

8
4.
7

11

10
0-
1

7.
64

95
0

6.
1

21
7

5.
2

9
61
4

9.
8

11
21
0

35
.6

7
97
6

15
.2

8
6.
6

11

10
0-
2

7.
86

96
0

2.
3

17
7

6.
6

9
72
4

12
.8

10
74
1

28
.9

6
11
3

7.
8

8
4.
6

12

10
0-
3

7.
77

96
0

5.
4

2
99
3

4.
3

9
76
0

13
.8

10
70
9

37
.9

1
56
5

8.
7

8
5.
1

12

10
0-
4

7.
68

95
0

6.
9

1
99
6

5.
2

9
73
6

11
.6

10
78
7

37
.5

1
35
2

9.
6

8
3.
5

11

40

Appendix A. Detailed Results

T
ab

le
A
.2
:
P
er
fo
rm

an
ce

of
th
e
ex
is
ti
ng

N
N
-b
as
ed

ap
pr
oa
ch
es

on
th
e
R
an

do
m

in
st
an

ce
s
–
P
ar
t
2

C
on

co
rd
e
[1
]

A
M

50
[1
8]

A
M

[1
8]

G
N
N
20

-5
0
[2
0]

G
N
N
20

0
[2
0]

G
re
ed
y

G
SO

A
[1
6]

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

20
0-
0

10
.5
2

2
01
0

16
.3

1
64
9

9.
0

23
11
3

20
.3

24
31
1

38
.7

23
41
6

8.
5

17
8.
8

43

20
0-
1

10
.7
9

2
21
0

17
.1

7
24
0

9.
7

23
11
3

20
.3

24
32
0

44
.4

23
51
2

13
.5

25
6.
9

43

20
0-
2

10
.8
7

2
12
0

13
.7

15
16
5

8.
5

23
18
3

16
.1

24
32
6

41
.1

14
26
5

8.
2

16
5.
7

43

20
0-
3

10
.7
7

2
10
0

12
.0

19
31
1

6.
3

23
18
9

13
.9

24
40
0

32
.2

6
28
6

10
.5

17
6.
5

43

20
0-
4

10
.4
2

2
63
0

13
.7

4
58
3

8.
1

23
21
8

21
.0

24
57
4

39
.0

13
84
1

12
.0

17
5.
5

42

30
0-
0

12
.8
5

3
15
0

23
.7

4
68
0

11
.9

41
57
1

24
.7

43
45
1

47
.2

41
92
7

13
.9

26
6.
8

10
2

30
0-
1

12
.8
2

3
12
0

20
.8

24
58
8

12
.0

41
56
1

27
.3

43
37
4

42
.2

42
52
4

13
.7

27
7.
9

10
2

30
0-
2

12
.9
6

3
31
0

18
.0

8
23
8

10
.6

41
51
2

22
.3

43
60
2

37
.7

42
14
1

10
.2

26
7.
0

10
2

30
0-
3

12
.8
7

3
30
0

21
.0

5
45
6

13
.4

41
47
8

27
.1

43
26
9

40
.4

42
07
8

15
.3

26
6.
5

10
2

30
0-
4

13
.1
6

3
35
0

23
.7

9
99
7

14
.2

41
58
7

21
.6

43
56
2

45
.1

42
09
7

14
.8

27
5.
8

11
3

50
0-
0

16
.7
0

6
51
0

32
.1

29
97
7

18
.9

68
16
8

35
.0

70
32
1

51
.9

58
82
6

14
.0

48
6.
4

28
4

50
0-
1

16
.4
8

6
31
0

30
.7

21
94
3

20
.3

68
40
0

40
.1

70
79
6

49
.2

68
89
6

11
.4

46
6.
7

30
3

50
0-
2

16
.4
9

6
65
0

23
.8

18
32
9

18
.4

68
14
2

32
.1

70
24
4

52
.8

64
65
4

13
.3

47
5.
7

28
7

50
0-
3

16
.5
1

6
55
0

31
.2

26
11
9

20
.3

68
17
4

34
.8

70
15
0

54
.2

68
92
6

12
.6

49
6.
6

29
1

50
0-
4

16
.4
4

8
00
0

26
.6

50
09
2

20
.2

68
16
4

34
.9

70
48
1

56
.7

68
45
5

13
.4

49
7.
7

28
8

41

Appendix A. Detailed Results
T
ab

le
A
.3
:
P
er
fo
rm

an
ce

of
th
e
ex
is
ti
ng

N
N
-b
as
ed

ap
pr
oa
ch
es

on
th
e
T
SP

LI
B

in
st
an

ce
s
–
P
ar
t
1

C
on

co
rd
e
[1
]

A
M

50
[1
8]

A
M

[1
8]

G
N
N
20

-5
0
[2
0]

G
N
N
20

0
[2
0]

G
re
ed
y

G
SO

A
[1
6]

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

ei
l5
1

42
9

30
2.
4

5
31
3

2.
7

5
36
8

6.
6

6
41
0

25
.6

2
11
6

8.
5

4
5.
4

4

b
er
li
n
52

7
54
4

40
6.
3

5
39
3

10
.2

5
37
6

10
.6

6
47
2

32
.7

3
28
7

4.
5

4
9.
3

4

st
70

67
8

60
3.
6

7
25
9

2.
3

7
23
3

8.
5

6
32
6

23
.1

3
91
3

4.
9

6
3.
2

7

p
r7
6

10
8
15
9

43
0

3.
0

7
80
6

5.
5

7
77
2

5.
0

5
20
7

31
.6

7
58
9

19
.3

6
4.
2

8

ei
l7
6

54
5

30
3.
9

7
78
0

4.
2

7
86
6

6.
7

8
60
1

28
.4

1
54
9

11
.8

6
5.
3

8

ra
t9
9

1
21
9

15
0

14
.9

9
89
0

11
.5

9
80
8

22
.9

9
72
3

10
8.
9

5
73
6

31
.4

8
5.
9

12

kr
oD

10
0

21
29
4

16
0

9.
2

9
95
4

6.
4

9
88
6

16
.6

10
00
6

40
.7

9
77
4

9.
9

8
4.
3

12

kr
oC

10
0

20
75
1

80
5.
5

9
96
2

6.
6

9
89
5

10
.9

10
23
0

42
.6

9
69
6

4.
9

8
1.
7

12

kr
oB

10
0

22
13
9

18
0

2.
7

9
99
4

9.
6

9
93
4

15
.1

10
08
9

39
.2

1
71
9

11
.2

8
5.
3

12

kr
oA

10
0

21
28
5

11
0

4.
0

9
95
8

10
.2

9
92
9

22
.0

10
09
2

40
.3

3
24
3

5.
2

8
3.
1

12

kr
oE

10
0

22
06
9

22
0

5.
7

9
95
3

8.
6

9
89
3

19
.9

3
24
7

60
.7

10
05
7

7.
8

8
4.
7

11

rd
10

0
7
91
0

70
6.
7

9
98
1

7.
6

9
91
8

12
.7

9
01
9

24
.5

5
44
5

12
.3

8
5.
8

12

ei
l1
01

64
2

70
6.
1

10
02
1

5.
7

9
98
3

9.
3

10
88
1

27
.7

4
73
2

11
.2

8
5.
8

13

li
n
10

5
14

38
3

60
15
.7

10
36
9

7.
0

10
33
4

24
.8

10
54
1

45
.0

10
26
0

25
.9

9
2.
9

13

p
r1
07

44
30
2

12
0

12
.4

10
60
4

52
.3

10
56
6

11
.9

4
50
3

37
.7

2
38
3

16
.9

9
1.
4

13

p
r1
24

59
03
1

29
0

6.
8

12
10
6

5.
5

12
05
4

17
.9

10
78
8

45
.7

78
0

13
.8

10
3.
3

17

b
ie
r1
27

11
8
29
4

18
0

15
.3

12
24
6

8.
6

12
23
8

30
.2

13
15
7

45
.0

11
55
4

12
.0

10
6.
1

19

ch
13

0
6
11
1

20
0

7.
0

15
46
5

5.
2

15
42
1

12
.8

16
36
4

34
.0

15
12
1

6.
3

11
5.
4

19

p
r1
36

96
77
1

40
0

5.
0

16
30
7

9.
2

16
20
6

12
.5

15
81
1

43
.3

2
99
3

36
.3

11
6.
2

21

p
r1
44

58
53
5

26
0

4.
2

17
17
6

8.
2

17
21
8

8.
5

16
32
7

31
.4

11
66
8

45
.1

12
5.
3

23

kr
oA

15
0

26
52
5

41
0

16
.2

17
82
8

17
.2

17
73
5

24
.2

17
25
6

39
.6

5
10
4

7.
9

12
5.
8

24

ch
15

0
6
53
1

33
0

11
.0

17
77
1

6.
0

17
66
3

19
.0

18
57
4

32
.0

17
33
6

9.
4

13
4.
9

25

42

Appendix A. Detailed Results

T
ab

le
A
.4
:
P
er
fo
rm

an
ce

of
th
e
ex
is
ti
ng

N
N
-b
as
ed

ap
pr
oa
ch
es

on
th
e
T
SP

LI
B

in
st
an

ce
s
–
P
ar
t
2

C
on

co
rd
e
[1
]

A
M

50
[1
8]

A
M

[1
8]

G
N
N
20

-5
0
[2
0]

G
N
N
20

0
[2
0]

G
re
ed
y

G
SO

A
[1
6]

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

kr
oB

15
0

26
12
7

49
0

10
.0

17
87
1

10
.5

17
77
2

21
.9

17
58
5

43
.2

10
41
6

4.
9

12
3.
6

25

p
r1
52

73
68
4

79
0

7.
8

18
05
9

10
.8

17
99
9

16
.4

9
66
4

33
.4

4
64
5

25
.0

13
4.
1

26

u
15

9
42

07
6

13
0

12
.7

18
88
1

15
.4

18
76
6

24
.8

14
20
1

50
.8

5
74
2

25
.6

13
5.
5

27

ra
t1
95

2
33
4

3
02
0

22
.9

22
81
5

15
.5

22
87
2

36
.2

14
32
8

17
5.
4

13
44
2

31
.9

17
8.
7

43

d
19

8
15

80
9

1
09
0

23
0.
9

23
12
6

88
.7

22
99
3

59
.2

23
98
2

66
.1

22
00
0

12
.3

18
8.
2

42

kr
oB

20
0

29
44
0

29
0

17
.2

23
48
0

15
.7

23
28
8

21
.3

17
95
5

50
.2

7
27
1

11
.8

17
5.
1

43

kr
oA

20
0

29
36
9

56
0

19
.4

23
50
6

15
.7

23
28
1

22
.8

11
98
4

47
.8

8
69
3

8.
4

16
5.
7

43

ts
p
22

5
3
85
9

1
12
0

22
.6

26
28
1

14
.0

26
18
3

27
.7

21
86
7

52
.5

9
21
3

17
.0

20
7.
2

56

ts
22

5
12
6
64
6

3
54
0

15
.6

26
25
2

13
.7

26
16
1

17
.7

19
94
6

42
.2

11
25
3

37
.2

19
8.
8

55

p
r2
26

80
37
0

34
0

7.
0

26
29
4

8.
8

26
37
3

9.
7

18
23
2

51
.1

7
58
5

28
.8

26
3.
6

58

gi
l2
62

2
38
9

1
49
0

17
.5

36
84
6

11
.9

36
68
6

24
.9

37
84
9

39
.5

9
70
2

9.
5

23
5.
9

81

p
r2
64

49
13
5

33
0

28
.3

37
09
9

30
.0

37
21
8

36
.0

31
12
4

68
.2

17
01
8

16
.5

24
6.
6

83

a2
80

2
58
8

54
0

27
.9

38
40
2

22
.8

38
52
3

40
.8

39
49
3

52
.3

23
25
8

19
.7

26
10
.1

93

p
r2
99

48
19
5

2
02
0

30
.8

41
75
6

25
.9

41
91
6

39
.6

16
70
5

76
.9

17
98
9

26
.3

27
5.
3

10
6

li
n
31

8
42

04
3

93
0

18
.7

44
37
9

15
.2

44
47
3

33
.0

42
23
2

71
.7

37
02
3

20
.6

28
7.
1

11
9

rd
40

0
15

27
8

20
46
0

22
.8

55
45
9

16
.1

55
18
8

31
.3

41
22
5

47
.4

20
57
9

10
.9

37
6.
5

19
6

fl
41

7
11

91
5

6
02
0

14
.9

57
57
7

20
.4

57
61
3

36
.7

58
69
8

75
.0

9
46
1

16
.0

38
5.
6

20
5

p
r4
39

10
7
21
5

15
70
0

32
.0

60
58
5

49
.6

60
54
2

53
.4

48
45
9

74
.6

58
34
3

28
.0

42
7.
2

23
2

p
cb
44

2
50

78
4

7
04
0

32
.9

61
14
0

23
.7

61
00
0

34
.3

13
55
3

54
.8

25
46
4

25
.0

42
9.
0

23
2

d
49

3
35

02
2

23
53
0

47
.4

67
64
8

40
.5

67
98
0

62
.2

68
63
0

59
.7

32
96
1

24
.4

47
6.
1

30
2

43

Appendix A. Detailed Results

T
ab

le
A
.5
:
P
er
fo
rm

an
ce

of
th
e
pr
op

os
ed

hy
br
id

ap
pr
oa
ch
es

on
th
e
R
an

do
m

in
st
an

ce
s
–
P
ar
t
1

C
on

co
rd
e
[1
]

A
M

[1
8]

G
re
ed

y
G
SO

A
[1
6]

F
C
S

gr
ee

d
y

F
C
S

G
S
O

A

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

20
-0

4.
10

60
1.
5

2
52
6

2.
2

2
2.
4

1
6.
9

73
9

0.
0

1

20
-1

3.
91

60
3.
2

2
55
3

3.
2

2
6.
3

1
7.
3

70
8

0.
0

2

20
-2

4.
26

50
11
.8

2
51
9

0.
0

2
2.
3

1
11
.4

73
1

1.
7

1

20
-3

3.
63

40
2.
8

2
53
8

5.
7

2
4.
6

1
5.
7

71
4

5.
9

1

20
-4

4.
10

40
17
.5

2
54
1

0.
0

2
1.
7

1
19
.3

73
0

5.
8

1

50
-0

5.
87

34
0

3.
0

5
19
8

3.
6

4
3.
0

4
16
.4

74
3

2.
0

4

50
-1

5.
42

33
0

0.
0

5
20
4

9.
6

4
4.
1

4
19
.9

73
3

0.
0

4

50
-2

5.
25

36
0

7.
6

5
20
0

7.
2

4
2.
9

4
9.
3

73
3

1.
7

3

50
-3

5.
23

34
0

5.
7

5
21
4

6.
8

4
1.
7

4
25
.2

75
0

1.
0

4

50
-4

5.
52

33
0

4.
8

5
21
8

6.
5

4
4.
1

4
17
.9

73
3

0.
9

4

10
0-
0

7.
59

93
0

2.
7

9
17
0

9.
1

8
4.
7

11
20
.8

93
1

5.
6

13

10
0-
1

7.
64

95
0

5.
2

9
61
4

15
.2

8
6.
6

11
18
.6

94
6

6.
4

14

10
0-
2

7.
86

96
0

6.
6

9
72
4

7.
8

8
4.
6

12
26
.0

93
0

4.
3

13

10
0-
3

7.
77

96
0

4.
3

9
76
0

8.
7

8
5.
1

12
19
.8

94
5

6.
8

13

10
0-
4

7.
68

95
0

5.
2

9
73
6

9.
6

8
3.
5

11
18
.6

93
3

1.
9

13

44

Appendix A. Detailed Results

T
ab

le
A
.6
:
P
er
fo
rm

an
ce

of
th
e
pr
op

os
ed

hy
br
id

ap
pr
oa
ch
es

on
th
e
R
an

do
m

in
st
an

ce
s
–
P
ar
t
2

C
on

co
rd
e
[1
]

A
M

[1
8]

G
re
ed
y

G
SO

A
[1
6]

F
C
S

gr
ee

d
y

F
C
S

G
S
O

A

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

20
0-
0

10
.5
2

2
01
0

9.
0

23
11
3

8.
5

17
8.
8

43
19
.8

93
4

5.
6

49

20
0-
1

10
.7
9

2
21
0

9.
7

23
11
3

13
.5

25
6.
9

43
17
.7

93
9

5.
4

49

20
0-
2

10
.8
7

2
12
0

8.
5

23
18
3

8.
2

16
5.
7

43
11
.9

94
1

3.
5

49

20
0-
3

10
.7
7

2
10
0

6.
3

23
18
9

10
.5

17
6.
5

43
14
.9

89
4

3.
7

47

20
0-
4

10
.4
2

2
63
0

8.
1

23
21
8

12
.0

17
5.
5

42
19
.0

94
2

4.
4

48

30
0-
0

12
.8
5

3
15
0

11
.9

41
57
1

13
.9

26
6.
8

10
2

17
.5

1
36
6

2.
8

11
4

30
0-
10

0-
10

0-
1

12
.8
2

3
12
0

12
.0

41
56
1

13
.7

27
7.
9

10
2

18
.4

1
44
8

4.
9

11
6

30
0-
2

12
.9
6

3
31
0

10
.6

41
51
2

10
.2

26
7.
0

10
2

16
.3

1
45
3

4.
4

11
3

30
0-
3

12
.8
7

3
30
0

13
.4

41
47
8

15
.3

26
6.
5

10
2

17
.8

1
46
1

4.
1

11
4

30
0-
4

13
.1
6

3
35
0

14
.2

41
58
7

14
.8

27
5.
8

11
3

15
.4

1
49
1

4.
9

11
4

50
0-
0

16
.7
0

6
51
0

18
.9

68
16
8

14
.0

48
6.
4

28
4

14
.5

1
44
5

4.
8

35
3

50
0-
1

16
.4
8

6
31
0

20
.3

68
40
0

11
.4

46
6.
7

30
3

14
.7

1
49
0

5.
4

32
6

50
0-
2

16
.4
9

6
65
0

18
.4

68
14
2

13
.3

47
5.
7

28
7

15
.2

1
50
2

4.
4

34
7

50
0-
3

16
.5
1

6
55
0

20
.3

68
17
4

12
.6

49
6.
6

29
1

12
.8

1
48
8

4.
8

32
3

50
0-
4

16
.4
4

8
00
0

20
.2

68
16
4

13
.4

49
7.
7

28
8

11
.8

1
49
2

5.
1

32
7

45

Appendix A. Detailed Results
T
ab

le
A
.7
:
P
er
fo
rm

an
ce

of
th
e
pr
op

os
ed

hy
br
id

ap
pr
oa
ch
es

on
th
e
T
SP

LI
B

in
st
an

ce
s
–
P
ar
t
1

C
on

co
rd
e
[1
]

A
M

[1
8]

G
re
ed
y

G
SO

A
[1
6]

F
C
S

gr
ee

d
y

F
C
S

G
S
O

A

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

ei
l5
1

42
9

30
2.
7

5
36
8

8.
5

4
5.
4

4
14
.2

75
2

2.
3

4

b
er
li
n
52

7
54
4

40
10
.2

5
37
6

4.
5

4
9.
3

4
19
.4

74
1

2.
5

3

st
70

67
8

60
2.
3

7
23
3

4.
9

6
3.
2

7
27
.5

95
3

1.
4

7

p
r7
6

10
8
15
9

43
0

5.
5

7
77
2

19
.3

6
4.
2

8
16
.9

96
2

5.
4

8

ei
l7
6

54
5

30
4.
2

7
86
6

11
.8

6
5.
3

8
14
.3

93
4

0.
8

8

ra
t9
9

1
21
9

15
0

11
.5

9
80
8

31
.4

8
5.
9

12
21
.8

93
5

3.
5

13

kr
oD

10
0

21
29
4

16
0

6.
4

9
88
6

9.
9

8
4.
3

12
21
.2

94
5

2.
8

12

kr
oC

10
0

20
75
1

80
6.
6

9
89
5

4.
9

8
1.
7

12
12
.1

87
9

1.
0

12

kr
oB

10
0

22
13
9

18
0

9.
6

9
93
4

11
.2

8
5.
3

12
19
.2

95
5

2.
0

13

kr
oA

10
0

21
28
5

11
0

10
.2

9
92
9

5.
2

8
3.
1

12
21
.1

94
2

0.
9

12

kr
oE

10
0

22
06
9

22
0

8.
6

9
89
3

7.
8

8
4.
7

11
12
.1

88
5

5.
4

12

rd
10

0
7
91
0

70
7.
6

9
91
8

12
.3

8
5.
8

12
13
.5

93
3

3.
1

13

ei
l1
01

64
2

70
5.
7

9
98
3

11
.2

8
5.
8

13
9.
4

87
6

3.
2

13

li
n
10

5
14

38
3

60
7.
0

10
33
4

25
.9

9
2.
9

13
18
.0

94
4

0.
8

14

p
r1
07

44
30
2

12
0

52
.3

10
56
6

16
.9

9
1.
4

13
12
.4

94
6

0.
8

14

p
r1
24

59
03
1

29
0

5.
5

12
05
4

13
.8

10
3.
3

17
27
.8

94
1

4.
2

17

b
ie
r1
27

11
8
29
4

18
0

8.
6

12
23
8

12
.0

10
6.
1

19
12
.9

95
1

2.
5

21

ch
13

0
6
11
1

20
0

5.
2

15
42
1

6.
3

11
5.
4

19
17
.6

88
2

2.
2

21

p
r1
36

96
77
1

40
0

9.
2

16
20
6

36
.3

11
6.
2

21
19
.6

94
6

3.
7

23

p
r1
44

58
53
5

26
0

8.
2

17
21
8

45
.1

12
5.
3

23
25
.2

95
1

3.
2

22

kr
oA

15
0

26
52
5

41
0

17
.2

17
73
5

7.
9

12
5.
8

24
11
.9

95
0

2.
1

27

ch
15

0
6
53
1

33
0

6.
0

17
66
3

9.
4

13
4.
9

25
21
.4

94
9

2.
6

28

46

Appendix A. Detailed Results

T
ab

le
A
.8
:
P
er
fo
rm

an
ce

of
th
e
pr
op

os
ed

hy
br
id

ap
pr
oa
ch
es

on
th
e
T
SP

LI
B

in
st
an

ce
s
–
P
ar
t
2

C
on

co
rd
e
[1
]

A
M

[1
8]

G
re
ed
y

G
SO

A
[1
6]

F
C
S

gr
ee

d
y

F
C
S

G
S
O

A

L
∗

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]
G
ap

[%
]

t
[m

s]

kr
oB

15
0

26
12
7

49
0

10
.5

17
77
2

4.
9

12
3.
6

25
13
.3

93
2

2.
4

27

p
r1
52

73
68
4

79
0

10
.8

17
99
9

25
.0

13
4.
1

26
6.
3

94
7

4.
5

28

u
15

9
42

07
6

13
0

15
.4

18
76
6

25
.6

13
5.
5

27
14
.2

94
5

4.
4

29

ra
t1
95

2
33
4

3
02
0

15
.5

22
87
2

31
.9

17
8.
7

43
20
.8

95
3

7.
0

46

d
19

8
15

80
9

1
09
0

88
.7

22
99
3

12
.3

18
8.
2

42
11
.2

94
6

7.
2

45

kr
oB

20
0

29
44
0

29
0

15
.7

23
28
8

11
.8

17
5.
1

43
14
.6

95
1

2.
5

48

kr
oA

20
0

29
36
9

56
0

15
.7

23
28
1

8.
4

16
5.
7

43
16
.8

94
5

1.
4

47

ts
p
22

5
3
85
9

1
12
0

14
.0

26
18
3

17
.0

20
7.
2

56
14
.7

89
2

5.
1

60

ts
22

5
12
6
64
6

3
54
0

13
.7

26
16
1

37
.2

19
8.
8

55
17
.3

95
4

10
.5

59

p
r2
26

80
37
0

34
0

8.
8

26
37
3

28
.8

26
3.
6

58
13
.0

97
1

1.
7

58

gi
l2
62

2
38
9

1
49
0

11
.9

36
68
6

9.
5

23
5.
9

81
9.
5

1
47
4

4.
4

85

p
r2
64

49
13
5

33
0

30
.0

37
21
8

16
.5

24
6.
6

83
17
.8

1
47
4

5.
0

86

a2
80

2
58
8

54
0

22
.8

38
52
3

19
.7

26
10
.1

93
20
.7

1
37
2

7.
7

98

p
r2
99

48
19
5

2
02
0

25
.9

41
91
6

26
.3

27
5.
3

10
6

19
.3

1
47
9

5.
5

11
0

li
n
31

8
42

04
3

93
0

15
.2

44
47
3

20
.6

28
7.
1

11
9

15
.9

1
48
3

6.
0

12
9

rd
40

0
15

27
8

20
46
0

16
.1

55
18
8

10
.9

37
6.
5

19
6

13
.8

1
48
4

3.
5

22
0

fl
41

7
11

91
5

6
02
0

20
.4

57
61
3

16
.0

38
5.
6

20
5

29
.9

1
50
0

4.
0

21
4

p
r4
39

10
7
21
5

15
70
0

49
.6

60
54
2

28
.0

42
7.
2

23
2

18
.2

1
48
2

6.
4

24
3

p
cb
44

2
50

78
4

7
04
0

23
.7

61
00
0

25
.0

42
9.
0

23
2

19
.9

1
49
4

4.
5

24
5

d
49

3
35

02
2

23
53
0

40
.5

67
98
0

24
.4

47
6.
1

30
2

17
.4

1
50
4

4.
1

31
7

47

Appendix A. Detailed Results

48

	Introduction
	Related Work
	Convolutional Neural Network
	Attention Model
	Graph Neural Network
	NeuroLKH
	Neural Large Neighbourhood Search
	Conclusion on Solving the TSP by Neural Networks

	Problem Statement
	Euclidean Traveling Salesman Problem
	Hybrid Approach
	Research Question

	Background
	Encoder-Decoder Architecture
	Growing Self-Organizing Array
	Variable Neighborhood Search

	Proposed Hybrid Approach
	Set of Solutions Concept
	Feature Extractor
	Feasible Solution Creator
	Greedy Construction of Feasible Solution
	GSOA-based Construction of Feasible Solution

	Improvement Heuristic

	Results
	Performance of the Existing NN-based Solvers
	Influence of using SoS Instances
	Influence of Feasible Solution Creators
	Influance of the Initialization to the VNS-based Improvement Heuristic
	Discussion

	Conclusion
	Bibliography
	Detailed Results

