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Abstract
The goal of this thesis was to study
the behaviour of E5+1 solver for
the semi-generalized camera pose
estimation problem. The thesis
develops and presents experiments
studying how the camera pose es-
timation accuracy is affected by
the distance between the query and
database cameras and by the dis-
tances between used database cam-
eras. The results show that the
pose estimation accuracy is mostly
not dependent on the distance be-
tween query and database cameras,
but the accuracy decreases when a
small number of database cameras
is used. The experimental results
suggest that for images capturing
distant objects, the database im-
age used should not be too close to
the query one to achieve reasonable
pose estimate precision.
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camera, pose estimation,
generalized camera,
semi-generalized camera, minimal
solvers
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Abstrakt
Cílem této práce bylo prozkoumat
chování řešiče E5+1 pro problém
semi-generalizovaného odhadu po-
zice kamery. Byly navrženy a
provedeny experimenty zkoumající,
jak je přesnost odhadu pozice
ovlivněna vzdáleností odhadované
kamery od databázových kamer
a vzdálenosti použitých databázo-
vých kamer. Výsledky ukazují, že
přesnost odhadu pozice kamery
převážně nezávisí na vzdálenosti
odhadované kamery od databázo-
vých, ale přesnost odhadu klesá,
pokud je použit malý počet data-
bázových kamer. Výsledky experi-
mentů naznačují, že při odhadu po-
zice kamery snímající vzdálené ob-
jekty vede použití databázových ka-
mer příliš blízko u sebe k nepřes-
nému odhadu.

Klíčová slova: trojrozměrné
počítačové vidění, vizuální
lokalizace, perspektivní kamera,
odhad pozice, generalizovaná
kamera, semi-generalizovaná
kamera, minimální řešiče
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Chapter 1

Introduction

In many applications, such as robot or self-driving car localization, cameras
are still one of the preferred sensors from which the position and orienta-
tion of the camera (and consequently of the object to which the camera is
attached) can be estimated. The task of estimation of camera pose (posi-
tion and orientation) based on the image taken by the camera is known as
visual localization. Visual localization is one of the classical problems of com-
puter vision, due to its wide range of applications. Camera pose estimation
task is present in applications such as augmented and virtual reality or in-
door and outdoor navigation. Navigation itself includes various applications,
from people navigation using mobile phone cameras to autonomous robot
or self-driving car navigation, sometimes combined with the usage of depth
cameras or LIDARs.

In navigation applications, estimation of absolute camera pose – that
means position (translation) with scale and orientation (rotation) – is needed.
The terms position and orientation mean pose in the (previously established)
world coordinate systems, while the terms translation and rotation are more
likely used when emphasizing relation to some other camera. The absolute
pose estimation problem can be solved using the geometric properties of
cameras and point-to-image projection and methods of algebraic geometry.

State-of-the-art methods of visual localization are based on the 2D-3D cor-
respondences – they use correspondences between pixels (2D points) in the
image from query camera1 and 3D points from existing model. This approach
requires the existence and maintenance of a scene 3D model along with corre-
spondences between 3D points and 2D points in the query camera image. In
this case Perspective-n-Point algorithms (PnP) [1] are widely used. The most

1cameras for which the pose is being estimated will be throughout the text referred to
as query camera and cameras with known pose and intrinsics used for estimation will be
referred to as database cameras
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1. Introduction .......................................
common solver used for camera localization is the well-known calibrated P3P
solver [2].

Although PnP algorithms generally have very high precision, the usage of
3D models has several disadvantages. Creation and maintenance of 3D mod-
els can be both time- and space-consuming. For triangulation of 3D points,
such points must be visible in at least two database cameras. Therefore,
points visible in the query camera but only in one database camera cannot
be used for pose estimation.

As an alternative, the scene can be represented with a set of images with
known extrinsic (pose) and intrinsic parameters (focal length, principal point
coordinates, pixel aspect ratio, skew angle etc.). Then, for the pose estima-
tion, 2D-2D correspondences are used between the query image and database
images. If there are used 2D-2D correspondences between query image and
a single database image, only relative pose of the query camera can be esti-
mated (rotation and translation without scale). For translation scale estima-
tion (so-called absolute camera pose estimation problem), correspondences
with multiple database cameras need to be used. Algorithmically, these mul-
tiple database images are represented as a generalized camera, i.e. a camera
with multiple centres of projection. Consequently, the problem of estimating
the pose of a single perspective camera w.r.t. a generalized camera is also
known as semi-generalized camera pose estimation problem. Algorithms that
use this approach are proposed by Zheng and Wu in [3] and by Bhayani et
al. in [4]. A combination of 2D-2D and 2D-3D correspondences is used for
semi-generalized pose estimation by Bhayani et al. in [5].

However, the semi-generalized pose estimation methods are not applicable
as generally as the absolute pose methods that use only 2D-3D correspon-
dences. The main reasons are that semi-generalized solvers either consider
only special cases of a scene (planar or close to planar in case of [4]), they
are much slower than methods using 2D-3D correspondences (case of E4+2
and Ef5+2 solvers from [3]), or the accuracy of the resulting pose is worse
in comparison to methods using 2D-3D correspondences (as in case of E5+1
and Ef6+1 solvers from [3] compared to the P3P solver).

The aim of this work is to investigate further how the accuracy of semi-
generalized pose estimation algorithms, particularly the E5+1 algorithm from [3],
depends on camera configuration and whether the accuracy can be improved
by establishing constraints on choosing the used database cameras. These
constraints can be the distance between used database cameras or the dis-
tance between the query camera and database cameras.

2



..................................... 1.1. Thesis Structure

1.1 Thesis Structure

First, Chapter 2 describes the problems of visual localization and camera pose
estimation, along with a description of a localization pipeline and details on
generalized and semi-generalized cameras, and the semi-generalized camera
pose estimation problem formulation. In addition, the chapter raises a set of
research questions regarding the dependency of semi-generalized camera pose
estimation accuracy on the distance relations between query and database
images. The Chapter 3 contains detailed information about the experiments
performed and aims to answer the questions asked in the previous chapter.
In Section 3.1, implementation details and the used software libraries are
described. The Section 3.2 provides information about the used dataset and
error measures. These are then followed by sections describing the exper-
iments themselves – used setup and results. The last chapter 4 aims to
conclude the obtained results and suggest future work.

There is no separate section on the current State-of-the-Art. Rather, these
works (along with related work) are sufficiently described in Chapter 2, par-
ticularly in Sections 2.1, 2.2, and 2.3.

1.2 Thesis Contribution

The thesis contributes understanding of the performance of the E5+1 solver
used for semi-generalized camera pose estimation through an experimental
analysis. The goal is to study the solver behaviour when the query and
database cameras are in different configurations. Particularly, the effect of
the distance between query camera and database cameras and the distances
between database cameras is examined. The discovered dependencies could
help to improve the E5+1 solver accuracy by choosing appropriate database
cameras for pose estimation during the camera pose estimation stage of visual
localization.

3
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Chapter 2

Visual Localization Based on
Semi-Generalized Camera Pose Estimation

2.1 Visual Localization

As outlined in Chapter 1, visual localization approaches try to estimate the
pose of a query camera with respect to a given scene. Visual localization
algorithms are part of interesting real-world applications, such as self-driving
cars and other autonomous robots [6], and augmented and virtual reality
applications [7, 8].

Localization algorithms can be divided into groups based on the representa-
tion of the scene they use: Traditionally, explicit representations, i.e. storing
a set of 3D points [9, 10] or a set of database images with known poses [3, 11],
are used. With rising popularity of deep learning methods, more implicit rep-
resentations are proposed [12, 13, 14, 15]. These approaches represent the
scene through the weights of machine learning models (mostly neural net-
works). They are trained to directly regress the pose (either absolutely with
respect to the scene as in [13] or relatively, w.r.t. a given set of database
images as in [16]) or to predict a set of 2D-3D matches for PnP-based pose
estimation (scene coordinate regression, in [17, 14, 15, 12]). Pose regressors
are currently significantly less accurate than methods based on the explicit
scene representations [18]. It is currently unclear whether scene coordinate
regressors or explicit representations are better [19]. This thesis focuses on
explicit representations. More specifically, it aims to investigate the perfor-
mance of methods that are based on storing a set of database images with
their poses (and intrinsic calibrations) and that estimate the query pose w.r.t
these database images.

The following text first reviews a localization pipeline commonly used in
the literature that stores a 3D point cloud and uses PnP algorithms for

5



2. Visual Localization Based on Semi-Generalized Camera Pose Estimation .............
pose estimation. Section 2.3 reviews work on (semi-)generalized camera pose
estimation, derives the E5+1 solver used in this thesis starting from a more
general definition of semi-generalized pose estimation, and explains how the
localization pipeline from the previous section can be adapted to use semi-
generalized pose estimation. Finally, Section 2.4 raises research questions
which this thesis aims to address.

2.2 A Common Localization Pipeline

Probably the most popular traditional approach to visual localization is to
represent the scene through a (sparse) 3D point cloud [9, 10]. This 3D model
is computed in an offline pre-processing stage: Given the database images,
features [20] are extracted from each database image and matched between
the database images. This results in a set of 2D-2D correspondences. If
the intrinsic calibration and camera poses of the database images are known,
the 3D points corresponding to these 2D-2D matches can be obtained by
triangulation. If these parameters are not known, they can be estimated
using Structure-from-Motion [21]. In both cases, the result is a 3D point
cloud, where each 3D point was triangulated from features found in multiple
images. As such, each 3D point can be associated with the corresponding
feature information, in particular a feature descriptor [20].

During online operation, the pipeline tries to estimate the absolute pose of
a given query image w.r.t the 3D point cloud. To achieve this, it established
matches between features extracted from the query image and 3D points in
the scene, which is possible by comparing the descriptors of the 3D query
features with the descriptors associated with the 3D points. This results in
a set of 2D-3D correspondences that can be used for pose estimation.

Pose estimation is done using a PnP solver. The solver itself only needs
a small number of correspondences. However, not all correspondences will
be correct, i.e. one cannot just take a small subset of the matches for pose
estimation and ignore all others. Thus, the solver itself is run in a RANSAC
(RAndom SAmple Consensus [1]) loop. In every iteration of the RANSAC
loop, the appropriate number of random correspondences from random im-
ages (RANdom SAmple) is selected and used for pose estimation by the
solver. The resulting pose is then evaluated on all correspondences. For each
correspondence, it measures the reprojection error between the 3D point and
the corresponding 3D feature. If the error is lower than some chosen thresh-
old, the correspondence is counted as inlier – ’correct correspondence’ – that
is the Consensus part. The loop has either fixed number of iterations or it
is stopped on some criterion, e.g. when the probability of missing a better
model falls below a chosen threshold. The pose with the most inliers is then
presented as the algorithm result (it is the beast pose from the tested ones,

6



.......................... 2.3. Semi-Generalized Camera Pose Estimation

but it could happen not to be precisely the global optimum and it usually is
not).

There exist some modifications of the standard RANSAC algorithm: MLE-
SAC (Maximum Likelihood Estimation SAmple Consensus, [22]) does not
count the number of inliers, but the impact of every inlier is weighted based
on its distance from the reprojection error threshold (outliers are given a con-
stant weight). This amount to optimizing a robust cost function, which has
been shown to lead to better results. Another modification is LO-RANSAC
(Locally Optimized RANSAC, [23]) algorithm, which uses local optimization
of each newly found best model to reduce the impact of noise on the pose
estimated, resulting in more accurate poses. Both modifications are recom-
mended in practice [24].

Comparing the descriptor of a query feature against the descriptors of
the 3D points can be time-consuming, especially in large scenes. a common
approach is thus to use an intermediate image retrieval step [25, 26] that
identifies a small subset of database images that are visually similar to the
query image. The features in the query image are then matched against the
features extracted from the retrieved database images, resulting in 2D-2D
matches. From the pre-processing stage, it is known which database features
correspond to 3D points. With this information, the 2D-2D matches are
lifted to 2D-3D matches for pose estimation.

2.3 Semi-Generalized Camera Pose Estimation

The following first reviews state-of-the-art algorithms for (semi-)generalized
camera pose estimation, then derives the semi-generalized pose estimation
problem and the E5+1 solver, and finally explains how the localization pipeline
from the previous section can be adapted to use a solver for semi-generalized
pose estimation.

2.3.1 State-of-the-Art

When estimating the relative pose (orientation and translation without scale)
of one image with respect to another, only the translation direction, but not
the magnitude of the translation, can be estimated. In the context of visual
localization, the magnitude is required. Thus, the pose of a query image
needs to be estimated relative to multiple database images. To simplify the
modelling of such a situation, the concept of generalized camera ([27], [28])
was established. A generalized camera is a camera with multiple projection

7



2. Visual Localization Based on Semi-Generalized Camera Pose Estimation .............
centres (or even more generally a set of common rays without the same
principal point).

There exist solvers for relative pose estimation of two generalized cam-
eras (from 6 correspondences estimating the orientation and translation with
scale), e.g., the 6pt solver for relative generalized pose problem [29]. But this
is generally a very hard problem and state-of-the-art algorithms are too slow
for practical usage in real applications. For the problem of a single perspec-
tive camera pose estimation w.r.t a generalized camera, they are not even
needed, because the substitution of one generalized camera with a single per-
spective camera, the model is simplified and so are the equations that need
to be solved. The problem of absolute pose estimation of a single perspective
camera w.r.t. generalized camera is called semi-generalized pose estimation.

In [3], several solvers for the semi-generalized pose estimation problem are
proposed. The problem can be divided into two cases based on the distribu-
tion of correspondences between the cameras in the generalized camera (see
figure 2.1).

Pinhole cameraGeneralized camera

(a) : Semi-generalized camera model.

Pinhole cameraGeneralized camera

(b) : Correspondences distribution used
in E5+1 solver.

Figure 2.1: General model of semi-generalized camera and configuration used
in E5+1 solver. Inspired by [3].

The absolute camera pose problem has 6 degrees of freedom (DOFs), and
7 in the case of an uncalibrated camera (where the focal length is also es-
timated), therefore 6 (resp. 7) correspondences need to be used. First one
is a case, where there are five correspondences with one camera and one
remaining correspondence with another camera (or Ef6+1 in the case of an
uncalibrated camera). In the case of the E5+1 solver, one can use the stan-
dard 5pt essential matrix estimation algorithm [30] on the image with five
correspondences. The essential matrix is then decomposed into relative ro-
tation and translation and from the additional image correspondence, the
scale of translation is computed. The Ef6+1 solver analogously uses the 6pt
algorithm (the original problem was described by Stewenius et al. in [31], [3]
uses a more robust formulation and implementation from Bujnak et al. [32]).

8



.......................... 2.3. Semi-Generalized Camera Pose Estimation

The other case is where 4 or less correspondences are with one camera. For
this case, new minimal solvers E4+2 and Ef5+2 were developed in [3].

In visual localization pipelines, cameras are usually assumed to be cali-
brated, therefore the solvers for uncalibrated cases will not be examined in
this thesis. The E5+1 solver is much faster than the E4+2 solver, it only
runs a few microseconds (because it is based on the well-known efficient 5p
relative pose solver by Nister [30]) and therefore can be used for real appli-
cations. Thus, only the E5+1 solver and not the E4+2 solver will be further
examined in this thesis.

2.3.2 Semi-Generalize Camera Pose Estimation

In semi-generalized camera pose estimation, the goal is to estimate the po-
sition and the orientation of a perspective camera, denoted as P, w.r.t. a
generalized camera, denoted as G. In this thesis, we study the problem
where the generalized camera G consists of a set of k fully calibrated perspec-
tive cameras {G1, . . . Gk} with known poses and the internal calibration of P
is known as well.

In general, 2D points detected in the generalized camera G can come from
different perspective cameras Gj . Therefore, the standard way how to repre-
sent a 2D image measurement in the generalized camera G is using a 3D line
L defined in the coordinate system of the generalized camera. Such a 3D
line can be represented using Plücker coordinates as L = [qT , q′T ]T ∈ R6. In
this case, the vector q ∈ R3 is the unit direction of the line L, and q′ ∈ R3

is a vector such that q′ = q × p for any point p on the line L. With this
representation, any point p(λ) on the line L can be represented as

p(λ) = q′ × q + λq (2.1)

for λ ∈ R and two lines L1 = [qT
1 , q′T

1 ]T and L2 = [qT
2 , q′T

2 ]T intersect in
space if and only if

q1q′
2 + q′

1q2 = 0. (2.2)

Without loss of generality, let us assume that the global coordinate system
corresponds to the coordinate system of the generalized camera G. The
goal is to estimate the rotation R and the translation t that transform the
coordinate system of the query camera P to the global coordinate system.
For this task, we can use 2D image point correspondences detected in the
perspective query camera P and the generalized camera G, respectively, in
one of its perspective cameras Gj . These 2D image point correspondences
are represented by 3D rays from P and Gj .

For the ith 2D point correspondence, let the Plücker coordinates of the 3D
ray from P, in the coordinate system of P, be denoted as Li = [qT

i , q′T
i ]T ,
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2. Visual Localization Based on Semi-Generalized Camera Pose Estimation .............
and the Plücker coordinates of the 3D ray from Gj , in the coordinate system
of G, be denoted as Lij = [qT

ij , q′T
ij ]T . After transforming these two 3D lines

in the same coordinate system, i.e., the coordinate system of G, these lines
should intersect. Using equation (2.2), this results in the semi-generalized
epipolar constraint

qT
i Rq′

ij + q′T
i Rqij − qT

i [t]×Rqij = 0, (2.3)

where [t]× represents the skew-symmetric cross-product matrix.

The constraint (2.3) can be further simplified by assuming that the camera
centre of P is the origin of its local coordinate system. In this case q′

i = 0
and the equation (2.3) has the form

qT
i Rq′

ij − qT
i [t]×Rqij = 0. (2.4)

If less than 5 points are detected in the same camera Gj of the generalized
camera G, the semi-generalized relative pose estimation problem results in
a quite complex system of equations. Such a system can be solved from the
minimum number of six point correspondences using algebraic methods, e.g.
Gröbner bases. However, the resulting solvers are large and slow for practical
applications [31, 3].

On the other hand, if five point correspondences are detected by the same
camera, e.g., G1 of the generalized camera G, the situation is significantly
simpler. In this case, without loss of generality, we can assume that the
camera centre of G1 is the origin of the coordinate system of G. This means
that q′

i1 = 0 and the semi-generalized constraint (2.4) for the points detected
in G1 has the form

qT
i [t]×Rqij = 0. (2.5)

This is a well-known standard epipolar constraint with the unknown essential
matrix E = [t]×R.

Five point correspondences detected between the query camera P and the
database camera G1 give us five equations of the form (2.5). Note that here
these equations are homogeneous and they can be used to estimate the un-
known translation only up to scale. The five equations of the form (2.5) can
be highly efficiently solved using the well-known 5pt relative pose solver [30].
Then the scale of the translation can be computed using sixth point corre-
spondence coming from some other camera Gj , j ̸= 1.

2.3.3 Structure-less Visual Localization

The visualization pipeline described above can be adapted for E5+1 solver.
When using the 2D-2D correspondences, the offline pre-processing stage,

10



.............................2.4. Motivation of Experimental Analysis

where 3D model is created is not needed. In first step of the pipeline, 2D-2D
feature matches between query and database cameras are established and
they are directly used as 2D-2D correspondences for pose estimation. Image
retrieval can be used here as well. Pose estimation in this case is done using
E5+1 solver and it is run in the RANSAC loop, in the same manner as the
PnP solver in the structure-based pipeline above.

2.4 Motivation of Experimental Analysis

Experiments performed on multiple datasets have shown that the localization
pipeline (outline above) based on the semi-generalized pose estimation leads
to less accurate pose estimates when compared to the standard pipeline based
on PnP solver. These observations, made outside of the scope of this thesis,
have served as the motivation for this thesis. Particularly, the aim of this
thesis is to understand the factors that affect the pose accuracy of localization
pipelines based on semi-generalized pose estimation.

To this end, the following is investigated in the thesis:

. How is the pose accuracy affected by the distance between the pose of
the query image and the poses of the database images? Does the pose
accuracy drop if the query image was taken too close or too far away from
the database images? Understanding this relation allows practitioners
to judge whether localization systems based on semi-generalized pose
estimation are suitable for their problem setting.. In some settings, e.g. when the scene is represented by a dense 3D
model [33], it is possible to render synthetic views of the scene from
novel viewpoints. This can be exploited in the context of localization by
generating additional views around an initial pose estimate of the query
image. To this end, the thesis aims to understand how different ways
how to generate these views (that is, how to select their orientation and
distance to the query pose) impact pose accuracy.. How does the distance between the database images impact the pose
accuracy? Is it helpful to select database images that have a certain
minimal distance? Or are clusters of database images (with similar
poses) not an issue in practice?

Chapter 3 addresses these questions through experiments on both real and
synthesized data.
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Chapter 3

Experiments

This chapter is structured as follows: Section 3.1 provides implementation de-
tails, including which libraries were used. Section 3.2 describes the datasets
used for experimental evaluation. Section 3.2.1 details the error measures
used for evaluation. All subsequent parts aim to address the research ques-
tions posed in Section 2.4.

3.1 Implementation

All experiment code was written in Python version 3.9.2 with libraries PoseLib [34]
and pycolmap [35] (which is library providing Python bindings for C++ li-
brary COLMAP [36, 21]). For rotation manipulation is used Rotation object
from scipy.spatial.transform library [37].

All codes, along with measured data are available on https://gitlab.
fel.cvut.cz/smutnale/experiments-on-e5-1-solver.

3.1.1 PoseLib

The solver implementation used in this thesis is from the PoseLib [34], library
of minimal solvers for camera pose estimation from V. Larsson. This library
contains state-of-the-art solvers and their implementation is fast and robust.
Besides the solvers themselves, this library provides the implementations for
many parts of a full visual localization pipeline, including data normalization,
LO-RANSAC loop and post-RANSAC non-linear refinement of the estimated
pose on the inlier set. The library is written in C++, but it does have also
Python bindings, which were used in this thesis as all code is in Python. In
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3. Experiments .......................................
this thesis, the tested solver is the semi-generalized relative pose estimation
solver that uses 5 + 1 points (correspondences). The method from PosLib,
that is used, is estimate_generalized_relative_pose(), which applies the
E5+1 solver inside a LO-RANSAC loop, followed by non-linear refinement of
the estimated pose on the predicted inlier set.

3.1.2 COLMAP

The dataset used in this thesis is in format compatible with COLMAP li-
brary [21, 36]. This library provides general-purpose Structure-from-Motion
and Multi-View Stereo pipelines with graphical and command-line interfaces.
In this thesis the reconstruction tools provided in this library were not used,
only the method for data (cameras, images and 3D points) manipulation. Us-
ing the dataset format readable by COLMAP library, the library interface for
work with cameras, images and 3D points can be used. This allows to access
the camera intrinsic calibration, image and 3D points poses and also meth-
ods for 3D points projection and coordinate systems transformation. The
library is written mostly in C++, but in this thesis was used Python library
pycolmap [35], which exposes part of the COLMAP library to Python.

Throughout these thesis, the distance between cameras (images) means the
distance between their projection centres. Camera projection centre position
can be computed using COLMAP method, but the camera object does not
store this camera parameter directly, only camera rotation and translation
is stored. Therefore when the camera projection centre position needs to be
changed, from the changed values of projection centre and rotation matrix
the camera translation vector needs to be computed and saved.

3.2 Cambridge Landmarks dataset

The Cambridge Landmarks dataset [38] is widely used to benchmark visual
localization techniques, e.g. in [39] or [40]. This dataset consists of six
outdoor scenes (Great Court, King’s College, Old Hospital, Shop Facade,
Street and St. Mary’s church), with different number of captured images
and partial overlap between the scenes (e.g., the Street scene contains areas
covered in the King’s College and St. Mary’s Church scenes). Visualizations
of scenes are in figure 3.1. The scenes differ extensively, e.g. in size – compare
Shop Facade and Great Court – or shape – Old Hospital scene is close-to-
planar, Shop Facade scene consists of two planar parts perpendicular to each
other, Kings College is a very indented building and St. Mary’s Church or
Great Court scenes are depicting very not planar landmarks. The scenes,
as they are outdoor, also contain the 3D points reconstructed from moving
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............................... 3.2. Cambridge Landmarks dataset

pedestrians and vehicles, which add to the point cloud points with depth
(distance from camera) different from the the 3D points that are on the
buildings or landmarks.

Every scene data consists of a set of video recordings of the landmark, cap-
tured by pedestrian walking around the landmark in different illumination
and weather conditions. From this high definition video, images were pro-
duced by subsampling the video. One image was captured every 2 s, which
is equivalent to approximately 1 m distance between two subsequent camera
positions. From these images was generated 3D point cloud (in .nvm format)
using the VisualSFM Structure-from-Motion method from Wu [41]. Each
scene has in addition also text files with selection of train and test images,
along with ground truth camera poses.

In this thesis, the dataset information are transformed from VisualSFM’s
file format into the format in which the COLMAP library stores its represen-
tation of the dataset. To this end, COLMAP was used to extract and match
SIFT [20] features. The known poses and intrinsics of the images, together
with the matches, are then used to triangulate the 3D point cloud. The re-
sults are three binary files and one text file with list of query cameras, which
is the same as the test set from original dataset, but it does not include the
ground truth positions (since they are present in the binary files). In the
first binary file, there are 3D points positions with information about the
images containing particular point. In the second one, there are information
about cameras – their intrinsic parameters, their model, etc. In third one,
there are information about images – by which camera it was taken, the cam-
era pose from which the image was taken and how many and which points
visible in the image are triangulated (and therefore present in the 3D point
cloud). Although the COLMAP terminology distinguishes between cameras
and images, where cameras include information only about camera model
and intrinsic and images include the information about name of the camera
that captured the image (through this it can be connected to information
from camera object), camera pose and captured 3D points, further in this
thesis there will be used both the terms camera and image with same mean-
ing, joining the information about camera intrinsics, pose and 3D points in
particular image.

The scenes have different number of triangulated 3D points, database cam-
eras and query cameras, particular values are shown in table 3.1. Notice that
in this thesis, the Street scene is not used. The underlying 3D geometry is
not fully correctly estimated, leading to the same physical structure being
duplicated multiple times in the model. It is this common to not use the
Street scene for evaluation.
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3. Experiments .......................................

(a) : Great Court.

(b) : Old Hospital.

(c) : Shop Facade. (d) : St. Mary’s Church.

(e) : King’s College.

Figure 3.1: Cambridge landmarks dataset scenes. Query cameras are depicted
in blue and database cameras are red.
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................ 3.3. Experiments with distance between query and database cameras

scene # query cameras total # cameras # 3D points
Great Court 760 2292 211 902
King’s College 343 1563 161 339
Old Hospital 182 1077 136 157
Shop Facade 103 334 43 933
St. Mary’s Church 530 2017 274 012

Table 3.1: Parameters of Cambridge Landmarks dataset. # sign means ’number
of’.

3.2.1 Error meassures

The examined task in this thesis is camera pose estimation. A pose consists
of two distinct parts, translation and orientation, for which the errors need
to be computed separately. The position error ϵpos was computed as the
Euclidean norm of difference between computed and ground truth position
of query camera projection centres

ϵpos = ∥Cgt − C∥2 , (3.1)

where Cgt is the ground truth projection centre position vector and C is
estimated projection centre position vector (both in the world coordinate
system of 3D model) and it is reported in meters. Orientation error ϵor was
computed as

ϵor = arccos
(
trace

(
RT

gtR
)

− 1
)

, (3.2)

where Rgt is ground truth rotation matrix and R is estimated rotation matrix.
The error is reported in degrees. As is common [13], median position and
orientation errors over the query images are reported per scene.

3.3 Experiments with distance between query and
database cameras

The first experiment aims to answer question 1 raised in Section 2.4, i.e.,
whether the distance between the query and database images affects pose
accuracy. Notice that for further experiments, relevant database images per
query are determined by shared 3D points in the 3D models, not by using
actual image retrieval as to avoid introducing a potential error source. Sim-
ilarly, matches are obtained via the 3D points, not by running a separate
matching algorithm, for the same reason.
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3. Experiments .......................................
3.3.1 Experiment setup

The experimental process on one scene and one query camera-database cam-
eras distance was following:..1. From all 3D points in the 3D model, 3D points that are visible by query

camera and database cameras are picked and saved in a structure pre-
serving the correspondence information...2. For every query camera:

1. The set of all database cameras is restricted to set of the ones in
given distance from query camera and with at least 10 correspon-
dences with query camera. This means that both cameras used in
E5+1 solver are within a given distance.

2. The list of database cameras is sorted in descending order accord-
ing to the number of correspondences and only first 1000 is used
further.

3. All visible 3D points are projected into the query camera and
corresponding database cameras using funcionality provided by
COLMAP.

4. To every projected point is added random noise, generated from
uniform distribution on a circle with radius 1 px.

5. These points are saved as correspondences.
6. Correspondences, database cameras pose and intrinsics, and query

camera intrinsics are given as input to the PoseLib semi-generalized
pose estimation method.

7. The pose obtained from the estimation method is compared with
the ground truth and position and orientation errors are computed
(as described in Section 3.2.1) and saved.

The described process is run for a set of multiple minimum and maxi-
mum distances between query and database cameras. The minimum distance
changes from 0 m to 15 m with 1 m step and the maximum distance changes
from 1 m to 15 m also with 1 m step. In the last run, maximum distance is
set to 10 000 m, which means that all database cameras farther than 15 m
from query camera are considered (since there are used real datasets, bound
10 000 m is high enough to not cut any camera out). The distance between
database cameras is not restricted in this experiment.

If for any query camera there are not enough cameras in a given range of
distances to run E5+1 solver (at least 2 database cameras are needed), that
query camera is not considered in the computation of error.
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................ 3.3. Experiments with distance between query and database cameras

3.3.2 Results

Median position errors for all scenes are shown in figure 3.2. Median errors in
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Figure 3.2: Dependency of the median position error on the distance between
query and database cameras.

the Shop Facade scene show different trend than the errors in the other scenes.
The median position error for the closest distance range is significantly higher
than for the rest of distances for all scenes except the Shop Facade. This can
be caused by insufficient number of successfully (with at least two database
cameras with enough correspondences shared) estimated camera poses (as
shown in figure 3.3). In the case of the closest range, the Shop Facade
scene has highest ratio of estimated camera poses from all scenes, while with
increasing distance (from distance of 11 m up) the ratio falls rapidly. Also
the number of database cameras with enough correspondences shared with
query camera is low for close ranges for all scenes and also for far ranges for
the Shop Facade scene (see figure 3.4).

In terms of absolute values, the highest median position errors were mea-
sured on the Great Court scene. From figure 3.4, it is visible that the Great
Court scene has low average number of usable database cameras in all dis-
tance ranges. This is probably due to large spatial extent of this scene – both
cameras and 3D point are distributed on large area, therefore the distance
scale used in this experiment is a bit inappropriate. If applying a more ap-
propriate scaling of the distance ranges used, it is possible that the errors

19



3. Experiments .......................................

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance between query and database cameras [m]

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f e

st
im

at
ed

 q
ue

ry
 c

am
er

a

GreatCourt
KingsCollege
OldHospital
ShopFacade
StMarysChurch

Figure 3.3: Ratio of query cameras for which a pose could be estimated.

would be comparable to other scenes. But the inappropriate scaling allows
to see one possible influence on the pose estimation errors, which is the low
number of usable database cameras. This dependency is confirmed also by
median position errors on other scenes in particular distance ranges. It is
particularly visible on distant ranges in the Kings’ College scene – decrease
in number of database cameras leads to an increase in position error – and
the Old Hospital scene – increase in number of database cameras leads to
decrease in position error.

Median position errors are reasonably low for St. Mary’s Church, King’s
College and Shop Facade scenes. But a low median error does not need
to mean that all measured errors are low. The graphs of position errors
measured on these scenes are in figure 3.5. The difference between median
and mean values is smallest for the St. Mary’s Church scene, for other two
scenes, it has some exceeding values. The general trend of the third quartile
is similar to the median one, showing that the estimation algorithm behaves
best in the medium distance ranges, not closer than 1 m or 2 m and not
farther than 12 m or 13 m.

Median orientation errors are shown in figure 3.6. The orientation errors
are comparable for most scenes, except the Shop Facade and Old Hospital
scenes.

The orientation error for the closest range is higher, which corresponds
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Figure 3.4: Average number of database cameras with shared correspondences
with query images as a function of the distance between the query and the
database images.

with the measurements of median position errors. But the differences for
the rest of the distance ranges are (if Shop Facade and Old Hospital scenes
are omitted) small. Even the error for the Great Court scene is comparable
with (or even lower than) errors on other scenes. This could be caused by
the nature of the scene. The farther distance of 3D points from cameras
can cause higher position errors, while it can be beneficial when estimating
the orientation. This corresponds to the human experience – when you are
looking at some distant object and walk some small distance, the position
of distant object on the ’projection plane’ of the human eye changes only a
little (if at all), while when you rotate a little, the position of distant object
in the ’projection plane’ changes a lot.

In the case of the Shop Facade scene, the median orientation errors are
low for close ranges and increasing for far ranges, which corresponds to the
trend of the median position error and it is probably caused by the same
reason, i.e., the small number of usable database cameras and also the smaller
number of estimated poses. Therefore, the statistics can be non-descriptive
regarding the general behaviour of the algorithm. In the case of the Old
Hospital scene, which has also slightly larger median position errors than the
rest (except for Great Court scene), the median orientation error is multiple
times higher than the median orientation error on the King’s College and
Great Court scenes. The Old Hospital scene does have a sufficient number
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Figure 3.5: Position errors, black lines are medians, cyan lines are mean values.
Errors for closest distance range were omitted since they worsen the readability
and they are irrelevant for examination of error distribution of ranges with low
median error. Outliers are not present.

of usable database cameras, therefore the reason of the higher error needs
to be elsewhere. Another possible explanation could be that in the Old
Hospital scene, cameras are close to the nearest 3D points (the cameras do
look perpendicular to the facade direction, therefore the nearest 3D points
are seen by the cameras) and the same explanation as in the case of Great
Court can be applicable (reversely). But the median position error is in
comparison with other scenes higher as well. From the collected data, it is
not obvious, what is the cause of higher errors measured on Old Hospital
scene.

3.3.3 Conclusion

Both position and orientation median error is high for the closest range (up
to 1 m). This could be caused by an insufficient number of database cameras
sharing correspondences with the query camera. But this could not be the
only cause. Based on the performed experiments, no conclusion regarding
the suitability of database cameras in different distances from query camera
can be made. It needs to be further investigated the algorithmic behaviour
for database cameras close to the query camera and for an equal number of
cameras in each distance range.
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Figure 3.6: Dependency of median orientation error on the distance between
query and database cameras.

Because one of the main cause of higher errors seems to be the lack of
database cameras sharing the correspondences with the query camera. There-
fore, I would suggest not to restrict the used cameras in any way which could
result in using only a small number of database cameras as input to the
RANSAC loop.

The median position errors for scenes and distance ranges, where the num-
ber of database cameras and correspondences was sufficient (St. Mary’s
Church, King’s College and Shop Facade scenes with database cameras be-
tween 1 m and 13 m far from the query camera) are smaller than 5 cm, the
third quartile of position errors on mentioned scenes and distances (see figure
3.5) is smaller than 10 cm.

The median orientation errors are for all scenes and all distance ranges
except the closest one (up to 1 m) smaller than 0.3°, for scenes with lower
errors, it is even smaller than 0.1°. This is an error, which ensures sufficient
precision for most of the applications.
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3. Experiments .......................................
3.4 Experiments for close distances between query
and database cameras

For closer distance ranges (up to 2 m) the errors for all scenes except the
Shop Facade are much higher than for the farther distances. The number of
database cameras in this distance range from query cameras (average number
of database cameras in particular distance range from query camera is shown
in figure 3.4) in particular scenes could be one of the causes. But the error
is a little bit higher for close ranges than for more distant ones also in the
case of Shop Facade dataset, therefore it could have also other causes, e.g.
the E5+1 algorithm produces poses with higher errors if query and database
cameras are close to each other.

To further investigate this behaviour, an experiment with distance ranges
from 0 m up to 2 m, width of each range was 0.1 m, was performed. To
ensure sufficiently many database images, synthetic views were generated, as
to eliminate issues caused by an insufficient number of database images. At
the same time, this experiment will provide guiding information for question
2 from Section 2.4.

3.4.1 Experiment setup

The experiment pipeline is the same as in the previous experiment (see sec-
tion 3.3.1), with two differences. Firstly, database images are synthetically
generated and not real images. Synthetic images, place close to the query
images, are used, as the real database images are typically not available in
the close range (as discussed above and shown in the dataset visualizations in
figure 3.1). Secondly, as the database cameras (their poses) are synthetically
generated, there is no information about shared correspondences. Since the
cameras are generated in such way that their field of view is more less the
same as the field of view of the query camera, as correspondences shared
between the query and database cameras are used all 3D points visible by
the query camera.

Synthetically generated cameras

In the previous experiment, scenes with low errors on middle distance ranges,
e.g., the St. Mary’s Church or King’s College scenes, had more than 10
usable database cameras per query. But the sufficient number of database
cameras with shared correspondences is eliminating only one case of possible
problems – the database cameras that are in the wrong configuration with
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.............. 3.4. Experiments for close distances between query and database cameras

query camera. The second part is sufficient number of correspondences to
eliminate the effect of point outliers, usually wrong correspondences. In
the used experiment setup, wrong correspondences are not present, as there
is one 3D point projected into two cameras. But what can happen and
affect the correspondence precision is, e.g., when the projected 3D point
is really far away from the cameras and when adding 1 px noise, it can,
when computing, e.g., the reprojection error (or applying other loss function),
behave as an outlier from the point of view of RANSAC. Therefore not only
a sufficient number of generated cameras was required in this experiment,
but also a sufficient number of correspondences. The average number of
correspondences per query camera for the previous experiment is shown in
figure 3.7. From that, it can be seen that except for King’s College scene,
the number of correspondences is smaller than 4 000. It is reasonable to
assume that with 4 000 correspondences the effect of insufficient number of
correspondences should be eliminated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance between query and database cameras [m]

0

2000

4000

6000

8000

Av
er

ag
e 

nu
m

be
r o

f c
or

re
sp

on
de

nc
es

 p
er

 q
ue

ry
 c

am
er

a GreatCourt
KingsCollege
OldHospital
ShopFacade
StMarysChurch

Figure 3.7: Average number of shared correspondences per query camera.

Therefore the number ndbcam of database cameras generated for every
query camera was set as

ndbcam = max
(

10,

⌊
4 000
nvp

⌋)
, (3.3)

where nvp is number of 3D point visible in the query camera. This is because
in this experiment, all 3D point visible by the query camera are projected
both in the query and all database cameras. It can be done so because
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3. Experiments .......................................
database cameras are generated in such way (details are described below)
that it is reasonable to assume that generated cameras will see the 3D points
visible by the query camera.

Synthetic database camera for one query camera in one distance range
experiment was generated as follows:..1. Query camera projection centre was saved...2. Random translation of unit length is generated from uniform distribu-

tion...3. Translation vector is multiplied by random number (again from uniform
distribution) in range given by examined distance range...4. Generated camera projection centre is computed as sum of query camera
projection centre and generated translation vector...5. Generated camera orientation is generated, used methods are described
below...6. From projection centre C and orientation in form of rotation matrix R
of generated camera is computed generated camera translation t as

t = −RC . (3.4)..7. Generated translation and rotation (in the form of rotation quaternion)
along with the query camera intrinsics were saved as a new synthetic
camera.

Orientation generation

Three different methods how to generate orientation for the new camera were
used in this thesis.

The first method is to simply copy the orientation of the query camera.
Because only small translations of projection centre (up to 2 m) were applied,
the database camera looking in the same direction as the query camera will
still see the same 3D points as the query camera. This is not true generally,
for cameras too close to 3D points it would be affected by field of view of
the cameras. But this is not the case for datasets used in this thesis, where
cameras are far enough from the captured 3D points. Camera generation
can be simplified for this case – it is not needed to translate the projection
centre and from that compute the translation vector again. It is possible
to translate the translation vector itself and the projection center is trans-
lated accordingly. Projection centres distance is, since the rotation matrix
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of both cameras is the same and rotation matrix does not change the norm
of multiplied vector, equal to

∥Cq − Cdb∥ =
∥∥∥−RT

q tq + RT
dbtdb

∥∥∥ =
∥∥∥RT (−tq + tdb)

∥∥∥ = ∥tq − tdb, ∥ .

(3.5)

The second method tries to simulate real image capturing. The orienta-
tion is generated in such a way that the resulting camera looks in direction
given by a 3D point selected randomly from the 3D points visible by the
query camera. This is done by changing the base vectors of camera coordi-
nate system and compound rotation matrix from them. As can be seen in
figure 3.8, depicting the pinhole camera model, direction in which the camera
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Figure 3.8: Pinhole camera model with camera and image coordinate systems.
Camera coordinate system has center in projection centre C and consist of x,
y and z vectors. Image coordinate system has centre at principal point xp and
consist of u and v vectors. O is optical axis and π is image plane.

looks is the direction of z-axis. Therefore the desired direction, computed
as normalized difference between selected 3D point and generated camera
(already translated) projection centre, is written in third column of new ro-
tation matrix. Because rotation matrix must be orthogonal, also the other
two columns (camera coordinate system basis vectors) need to be computed.
First, it is computed new y-axis (second column of new rotation matrix), as
vector (cross) product of the new z-axis and old x-axis (in this order), nor-
malized to unit vector. New x-axis (first column of new rotation matrix) is
computed as normalized vector product of new y-axis and new z-axis. The
new rotation matrix is transformed into rotation quaternion and saved as
newly generated database camera orientation. The difference between query
camera orientation and database camera orientation generated using this
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3. Experiments .......................................
method depends on the position of randomly selected 3D point and can be
larger than in the case of small rotation from third method. But this method
generates orientation changes scalable with distance of 3D points from cam-
eras. It operates with content of the projection plane (projected points) and
this operation has similar results for all types of scenes, as opposed to the
fixed (limited from above) rotation value from the third method.

The third method is to rotate the query camera randomly. This is done
using rotation axis-angle representation. A random rotation vector is gen-
erated (from uniform distribution) and normalized to unit length. A ran-
dom angle is drawn uniformly from the range −0.01 rad to 0.01 rad, which
equals approximately to 0.57° and that is equivalent as if the 3D point in
a distance of 15 m on which the camera looks shifts 30 cm. The generated
vector is multiplied by generated angle and this angle-vector representation
is transformed into a rotation matrix. Rotation matrix of query camera is
then multiplied (from left) by generated small rotation and saved as newly
generated database camera orientation.

3.4.2 Results

Median and mean values of visible points per query camera for all scenes
are in table 3.2. When compared to the previous experiment, the number

scene v. p. mean v. p. median gen. cam. mean
Great Court 1080 1162 12
King’s College 1712 1765 10
Old Hospital 1312 1396 10
Shop Facade 1150 1192 10
St. Mary’s Church 1507 1478 10

Table 3.2: Visible points and generated cameras statistics per query camera for
all scenes, rounded to integers.

of database cameras is smaller than in case of real data, but the number of
correspondences will be comparable (or even higher) to the real data, because
all 3D points visible by query camera are used and not only subset shared
with database cameras. Therefore the errors could be generally smaller in
absolute values (in comparison to the previous experiment), because there
is sufficient number of correspondences to choose from inside the RANSAC
loop.

Median position errors measured on the Shop Facade scene are in figure 3.9.
In absolute values, the median position errors measured for the other meth-
ods than same orientation one are comparable with the values for closest
ranges measured on real data. The median position errors measured on St.
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.............. 3.4. Experiments for close distances between query and database cameras
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Figure 3.9: Dependency of median position error on distance between query
and database cameras measured on the Shop Facade scene.

Mary’s scene are very similar to the ones measured on the Shop Facade scene.
These two scenes have similar also median orientation errors (orientation er-
ror measurement on St. Mary’s Church scene shown in figure 3.11.

The median position errors for the method, where orientation is computed
to point to random 3D point from the points visible in query mage, do not
seem to depend on distance between query and database images (for all
scenes). In comparison with other camera orientation generation methods,
for some scenes it is higher – that is the case for the Great Court and King’s
College scenes – and for some lower (in comparison to the random noise
method, same orientation method has the lowest error for all scenes, at least
in distances larger than 0.5 m) – that applies for Old Hospital scene – or
comparable – in case of Shop Facade and St. Mary’s Church.

Median position errors measured for same orientation method (see figure
3.10) show dependency of median position error on query and database cam-
eras distance. The values are by order higher for close distance ranges (up to
approximately 0.3 m, depending on the scene). In this experiment, the error
can no longer be affected by the low number of usable database cameras
and shared correspondences or by some scene property, because this effect
is visible on all scenes. Therefore it is reasonable to assume, that the higher
errors (on close distances between query and database images, with similar
orientation) are caused by the properties of E5+1 solver. The most likely
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Figure 3.10: Dependency of median position error on distance between query
and database camera for database cameras generated with the same orientation
as the query camera.

explanation is that the E5+1 solver does not generate accurate translation
estimated if the query image is too close to the query image. The errors on
distant ranges are multiple times lower than the ones measured on real data
in distance up to 2 m. This could mean that the precision for database cam-
eras that are at least 0.5 m from query image, but has very similar rotation,
increases.

Measured median position errors are in absolute values comparable or
better than the errors measured in previous experiment for more distant
query and database images and on real data. This can be caused by the small
orientation difference between query image and generated images, whereas
in case of real data, the database images orientation has probably wider
distribution.

The median orientation errors of all three methods compared on St. Mary’s
Church scene are in figure 3.11. Although the values of errors measured for
random noise method and direction towards random point method are not
the same for all scenes (and it also varies which of the method produces
higher errors), for all scenes hold that they are comparable (or even same)
throughout all distance ranges. These methods do not show any dependency
of orientation error on distance. The comparison of median orientation er-
rors measured on all scenes with database cameras generated by the same
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Figure 3.11: Dependency of median orientation error on distance between query
and database camera measured on the St. Mary’s Church scene.

orientation method is in figure 3.12. The orientation errors for this method
are multiple times higher for close ranges (up to 0.1 to 0.5 m, depending on
the scene. Same behaviour was observed on the median position errors for
the same orientation database camera generation method. That supports
the hypothesis that the high errors for close distance and similar query and
database cameras orientations are caused by E5+1 solver.

3.4.3 Conclusion

The fact, that there exists camera generation method for which the median
position and orientation errors are not dependent on the distance between
query and database cameras suggests, that the accuracy of E + 5 + 1 solver
does not depend solely on this distance. The errors measured with database
images generated with same orientation as the query image suggest, that
problematic is combination of close distance and similar orientation. Based
on the results, I would suggest avoiding usage of database images that are
close to the query image and have similar orientation with it. For simplicity
of implementation, only the distance threshold (based on the experiment the
suitable value appears to be 0.5 m) can be used and the orientation similarity
does not need to be examined.
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Figure 3.12: Dependency of median orientation error on distance between query
and database camera, using same orientation camera generation method.

3.5 Experiments with database camera distance

Another factor, that can impact the query camera pose estimation accuracy
is the distance between database cameras. The hypothesis is that the small
distance between database cameras leads to worse accuracy (see question 3
in Section 2.4). Therefore the impact of minimum distance between every
pair of database cameras on the pose estimate accuracy was tested.

3.5.1 Experiment setup

The experiment pipeline is similar to the one used in previous experiments
except for the step where database cameras that satisfy the distance con-
straints are selected. In this experiment, distance between database cameras
and query cameras was not restricted. Because there would not be sufficient
number of database cameras for which the distance of each pair is in particu-
lar distance, only minimum distance between every pair of selected database
cameras was restricted. That means that the distance between database
cameras is constrained only from below. The selection process of suitable
database cameras was following:
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......................... 3.5. Experiments with database camera distance..1. The database cameras with at least 10 shared correspondences were
sorted in descending order according to the number of correspondences
shared with query image...2. Database number with highest number of shared correspondences is
added as first to the list of selected database cameras...3. The sorted list of database cameras is iterated. For every camera Cdb1
it is iterated over the list of already selected cameras...4. For every camera Cs from the selected cameras list the distance between
Cdb and Cs is computed...5. If this distance does not satisfy the distance constraint, next database
camera Cdb is examined...6. If the distance satisfies the distance constraint for every Cs camera, it
is added to the list of selected cameras.

This selection process creates the list of selected database cameras, where
all cameras share at least 10 correspondences with the query camera and
the distance between every pair of cameras satisfies the distance constraint.
This is needed because in the E5+1 solver, two cameras are used and one of
the simple ways how to ensure that the two database cameras selected by
the RANSAC loop satisfy the distance constraint, is to select them from the
pool where every two cameras satisfy the distance constraint.

3.5.2 Results

Median position errors are shown in figure 3.13 and median orientation er-
rors are shown in figure 3.14. The general trend of both median position
and orientation error is increasing with increasing minimum distance between
database cameras. This holds for all scenes, although in absolute values both
median position errors and median orientation errors for different scene varies
significantly. The number of database cameras (and consequently the num-
ber of correspondences) decreases with increasing minimum distance between
database cameras, which can be the cause of increasing errors. The increase
in error can also be caused by the properties of E5+1 solver, but from this
experiment, the results are not sufficiently proving any dependency. To get
results not affected by the decreasing number of database cameras, experi-
ment with same number of cameras for each minimum distance text would
need to be performed.
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Figure 3.13: Dependency of median orientation error on minimum distance
between database cameras.

3.5.3 Conclusion

The results of this experiment are not sufficiently convincing, therefore no
conclusion regarding the selection of database cameras can be made, based
on the results of this experiment.

3.5.4 Experiment with at most 10 database cameras per
tested minimum distance

In this experiment, the setup was same as in the previous one, but the number
of used database cameras was constrained from above to at most ten. The
number of database cameras used should be the same as in experiment on
closer distances between query and database cameras, but it could happen
that the number of database cameras with large minimum distance will be
smaller and therefore the results will say only slightly more than the previous
experiment. Because the used database cameras are selected from top of the
list sorted in descending order by number of shared correspondences and the
number of shared correspondences is probable to be higher for closer images,
in this experiment, although only minimum distance of database cameras is
restricted, there will be preference on closer cameras (cameras close to the
minimum distance limit).
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......................... 3.5. Experiments with database camera distance
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Figure 3.14: Dependency of median orientation error on minimum distance
between database cameras.

3.5.5 Results

The dependency of average number of database cameras used on the mini-
mum distance between database cameras is shown in figure 3.15. It can be
seen that when increasing the minimum distance between database images,
the number of usable database cameras drops and therefore only the results
for minimum distance between database cameras up to 5 m can be compared,
and the results for larger ranges can only be analyzed for the Great Court,
Kings College and Old Hospital scenes.

Median position errors are shown in figure 3.16. The median position er-
rors decrease (or not grow in case of the Shop Facade scene) for minimum
distance between database cameras smaller than 2 m and for larger mini-
mum distances position errors increase. Because for minimum distances up
to 5 m the number of database images used is the same, this can not be
caused by insufficient number of cameras (when compared to the results of
previous experiment, the errors are in absolute value higher for the case with
limited number of database cameras, but the number is limited for all min-
imum distances, therefore comparison between different minimum distances
of database cameras is valid). As mentioned before, in this experiment, the
database cameras in distances close to the minimum distance limit are im-
plicitly preferred. Thus, it cannot be concluded, that the pose estimation
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Figure 3.15: Average number of database cameras with shared correspondences
with query images as a function of the distance between each pair of database
images.

accuracy increases for minimum distance of database cameras up to 2 m be-
cause the constraint of minimum distance is not the only factor here, also the
actual small distance between used database cameras could have an impact.

To distinguish between the impact of minimum database camera distance
and impact of the limited number of cameras with most shared correspon-
dences (and consequently the probable small distance between database cam-
eras), it would be good to measure the distribution of the database cameras’
distance for the database cameras that were used for the estimation (the
ones chosen by RANSAC loop). But this is problematic in experiment setup
used in this thesis, where the solver with RANSAC loop is used as black box
from external library and it could require the modification of the PoseLib
implementation of E5+1 solver pipeline. From the accessible data, there can
be computed only distribution of distances between all pairs of database cam-
eras selected as input for the E5+1 solver black box. But this distribution
can have no relevance to the result (but it can have and it is not possible to
decide, which case it is).

Same trend can be seen also on graph of median orientation errors in
figure 3.17.

From the comparison of trends of median position and orientation errors
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Figure 3.16: Dependency of median orientation error on distance between
database cameras, if at most 10 database cameras are used.

measured on the Great Court, Kings College and Old Hospital scenes (the
ones with not rapidly decreasing average number of database cameras) –
which is increasing with increasing minimum database cameras distance –
can be concluded that if the minimum database image distance is set to large
distance, the accuracy of pose estimation decrease. From comparison of the
absolute value of the median position error with the lowest errors measured
in experiment with query and database cameras distance, it is reasonable to
not set larger values than 7 m. This means that the inclusion of database
cameras closer to each other can be beneficial.

The case of the Shop Facade scene is different. The median errors increase
only with increasing minimum distance, the initial high errors and following
drop is absent. There are two possible interpretations. First one is, that there
is no dependency of the pose estimate accuracy on small minimum distance
between database cameras (and the conclusions made based on the results on
the rest of scenes are wrong). The second possibility is, that these results are
caused by the nature of the scene. This scene is smaller than the rest of them
– there are two perpendicular walls (the corner) of the building captured from
the adjacent street. This means that most of the database images which see
the same points are within a few meters from each other. And the database
images far from each other are most likely to capture different walls. In this
scene, as opposed to the scenes, where the 3D points are farther from the
images, the angle between the projection rays of two database cameras close
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Figure 3.17: Dependency of median orientation error on distance between
database cameras, if at most 10 database cameras are used.

to each other to the same 3D point can be large enough to obtain precise pose
estimate. Thus, for the smaller scenes, it seems that the usage of database
cameras close to each other is not problematic.

3.5.6 Conclusion

To conclude, for scenes, where 3D points are far from the cameras, the usage
of database cameras too close to each other (less than 2 m) can decrease the
accuracy of pose estimate. In case of scenes with 3D points close to the
cameras, this is not happening.
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Chapter 4

Conclusion

The aim of this work was to investigate how the accuracy of semi-generalized
pose estimation algorithms, particularly the E5+1 algorithm from [3], de-
pends on camera configuration and whether the accuracy can be improved
by establishing constraints on choosing the used database cameras. Partic-
ularly, the constraints examined were the distance between used database
cameras and the distance between the query camera and database cameras.

The pose accuracy is generally not affected by the distance between the
pose of the query image and the poses of the database image. But this is not
true for database cameras with similar orientation as the query camera. If
these are used, then for close ranges (up to 0.5 m) the pose accuracy drops
significantly. For spatially small scenes where images are captured with small
camera rotation, the visual localization based on the semi-generalized pose
estimation can be unsuitable.

In settings, when it is possible to render synthetic view of the scene from
novel viewpoints, the results suggest to generate cameras with orientation
similar to the query camera, but in distance from the query camera larger
than 0.5 m.

The experiments on the impact of the distance between the database im-
ages on the pose accuracy do not show any significant results applicable gen-
erally. However, there are results suggesting, that in case of scenes, where
the cameras are distant enough from the objects captured, use of database
cameras too close to each other (not closer than 2 m) can be problematic.
On the contrary in scenes, where the 3D points (the objects captured) are
close to the cameras, using camera clusters is not an issue.

Besides the distance dependencies, it was discovered that the pose estimate
accuracy is dependent on number of database cameras that share correspon-
dences with query camera and also on the number of established correspon-
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4. Conclusion........................................
dences. Low number of database cameras and shared correspondences can
increase the pose estimation accuracy significantly.

4.1 Future work

The results of the experiment on closer distances between query and database
cameras suggest, that not only distance but also the orientation similarity
between query and database camera does have an impact. Therefore this is
suggested to be further examined.

In this thesis, the localization pipeline using E5+1 solver was tested only on
outdoor (and therefore spatially large) scenes. The proposed improvement
tricks could be tested also on smaller scenes (rooms or even smaller ones).

The E5+1 solver uses correspondences from two database cameras. One
database camera is used to estimate the essential matrix and from the other
one, the translation scale is extracted. Interesting question if the pose esti-
mate accuracy does depend on pose of one of them differently than on the
other one – that is, if, for example, the camera used for essential matrix
estimation should be close and the one used for scale estimation far, or vice
versa.
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