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Abstract

In many robotic applications, the robot’s goal is to follow a prescribed path close
enough. An outdoor deployment can use a sequence of GNSS-defined waypoints. A
costmap is used for robot navigation, where the robot looks for the cheapest path. A
standard geometric costmap penalizes distance from the ideal path. However, some
environments require a special path dictated by traffic regulations or the robot’s safety.
Driving on a public road, street, or sidewalk could serve as an example. Semantic scene
segmentation shall provide another cost function to be combined with the geometric one.
The initial phase of the project focuses on driving on public roads or sidewalks — stable
driving on a roadside. The scene segmentation may include multimodal data.

Keywords: Visual semantic segmentation, Navigation

Supervisor: prof. Ing. Tom4as Svoboda, Ph.D.

Abstrakt

V mnoha robotickych aplikacich je cilem robotu nésledovat predepsanou drahy dostatecné
zblizka. Venkovni nasazeni mtze vyuzivat sekvenci GNSS bodi na trase. Pro navigaci
robotu se vyuzivad cenovd mapa, ve které robot hleda nejlevnéjsi cestu. Standardni
geometrickd cenovd mapa penalizuje vzdalenost od idealni drahy. Nicméné, v nékterych
prosttedich je vyzadovana specidlni trasa diktovana dopravnimy predpisy nebo bezpecnosti
robotu. Pohyb na verejnych silnicich, cestach nebo chodnicich muze slouzit jako jeden z
prikladti. Sémantickd segmentace scény muze poskytnout jinou cenovou funkci, aby se
mohla zkombinovat s tou geometrickou. Pocatecni faze tohoto projektu se zaméruje na
pohyb na vefejnych silnicich a chodnicich — stabilni pohyb po kraji cesty. Sémanticka
segmentace muze vyuzivat multimodalnich dat.

Klicova slova: Vizualni sémantickd segmentace, Navigace

Pteklad nazvu: Navigace robotu pomoci sémantické segmentace
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Chapter 1

Introduction

In many robotic applications, the robot’s goal is to follow a prescribed path
close enough. An outdoor deployment can use a sequence of GNSS-defined
waypoints. A costmap is used for robot navigation, where the robot looks for
the cheapest path. A standard geometric costmap penalizes distance from
the ideal path. However, some environments require a special path dictated
by traffic regulations or the robot’s safety.

When navigating in the environment, the robot may encounter obstacles
that it needs to avoid (and thereby deviate from the original prescribed
path) or areas that require special handling in order to obey the rules of
that environment. One example is public roads or pathways, where the robot
should keep to the side of the road when crossing, wait until the road is clear
of cars, and then minimize the time spent on the road. When the robot is on
a pathway, it should keep to the right where possible.

The purpose of this work is to guide the robot in the aforementioned
environment of public roads. The robot navigation is achieved indirectly
via generating a costmap, which is passed to a path planner module that
generates a path for the robot to follow. This costmap penalizes the planner
for choosing a path leading through undesired positions, such as the middle of
the road. To generate this costmap, the algorithm uses the robot’s front-facing
camera; however, in the future, more sensor types will be added and explored,
such as lidar inputs.

It is expected that the input data gathered from the sensors will be
imperfect, as well as its subsequent analysis, such as semantic classification
or object detection. One goal of this work is to utilize this imperfect input
and guide the robot correctly in spite of this issue.






Chapter 2

Related work

Autonomous navigation on public roads is a frequently covered topic, especially
in the domain of autonomous cars. There are various publications concerning
the semantic segmentation [1}-5] of datasets obtained while driving, such as
KITTI [6] or cityscapes [7]. Semantic segmentation, however, is only one part
that we need to achieve the goal. We need to navigate the robot according
to what it sees in the camera. A similar work [8] by Gregory Kahn, et al.
demonstrates the use of human operator disengagements as input data for
learning how the robot should react correctly the next time. Alessandro
Giusti et al. present in their work [9] a deep neural network used to classify
a forest path direction. This classification translates directly into control
inputs, whether the robot should steer left, straight, or right.

Neither of these works is directly comparable to this because this work aims
to let the robot navigate according to its mission requirements and intervene
or guide the robot only in situations when it would become dangerous for
the robot to continue (such as navigation on the road). The desired output
of this work is virtual barriers where the robot should not move. When these
barriers are not crossed, the robot is free to navigate according to some other
decision-making process.






Chapter 3

Experimental platform description

B 3.1 Hardware platform description

We have multiple robots, which are designed to be somewhat similar, both the
software stack as well as the computational and sensory systems. The overall
design supports the easy transfer of code from one robotic platform to the
other. One such platform that I am using for this project is Boston Dynamics
Spot [10]. Other available platforms include Husky and TRADR [12].
Relevant sensor suites of these robots include cameras that cover 360° around

Figure 3.1: Robot fleet, from the left: 2x Spot with arm, 2x Spot without arm,
TRADR, Husky

the robot, a set of stereo cameras to build a depth map, a lidar to build a
point cloud, and GNSS antennas for global localization. However, there are

5



3. Experimental platform description

differences in the particular sensors used or data quality on each robot. With
this in mind, the soft goal of this project is to be robot-independent, but
in case some specific sensors or processing is needed, the primary robotic
platform of choice is Spot, without the need to support all other platforms
simultaneously.

Unlike the other robots, the Spot robot provides some already preprocessed
data for the control system, such as a grid map of nearby terrain and obstacles.
However, this preprocessed data was not used in this thesis.

Figure 3.2: Gridmap of terrain and obstacles. The robot is placed near an open
door in a hallway. Green: terrain map, blue: distance to the nearest obstacle
(distance encoded as Z coordinate), purple: distance to the nearest “NoStep”
region (distance encoded as Z coordinate)

B 3.2 Robot Operating System

All our robots use the framework of the Robotic Operating System (ROS)
[13]. The Robot Operating System is an open-source set of software libraries
and tools that help with building robotic applications.

For the testing and development process, I often use ROS Bag files.
ROS Bags are packaged recordings of behavior from previous robotic runs.
These recordings include sensor data, such as camera frames, lidars, or GNSS
positions. Aside from raw sensory inputs, various internal states and decisions
of the robot are recorded. Using this recorded data from previous mission
runs or challenging environments significantly improves development time, as
it relieves the need for using physical hardware and robotic platform every
single time.



3.3. Existing control architecture

Figure 3.3: Spot’s sensor suite illustration — five internal grayscale cameras,
point-cloud surrounding the robot, green terrain map grid, GNSS localization
on a map

B 33 Existing control architecture

The robot’s control system is built from multiple independent modules that
communicate using ROS. Many of these modules were already developed
and prepared from previous work and use of the robot. I had to connect
my module to the already existing architecture. Figure illustrates the
high-level overview of the used modules.

The Road Navigation module (my work) reads raw sensor inputs and data
already preprocessed by other modules (such as information about the robot’s
current location, which is a sensor fusion between GNSS and visual odometry).
The output of this module is a costmap in the near vicinity of the robot. This
costmap is used by a planner module that was already developed. Developing
my own planner module is outside of the scope of this thesis. However, I
needed to tune this planner module substantially to obtain the results I was
expecting. The next module in the chain is a path tracker module, which
also already exists and is outside of this project’s scope. This path tracker
module uses the path from the planner as its input and generates locomotion
commands for the robot.



3. Experimental platform description

Sensor inputs (cameras, 3D pointcloud, GNSS, ...)

l

Sensor processing
(GNSS + SLAM, ...)

Y \ 4 \ 4

Road Navigation Module (my module)

costmap

\ 4

Path planner

path

Y

Path tracker

l locomotion commands
Robot actuators (legs, wheels, tracks, ...)

Figure 3.4: Control architecture diagram: Road navigation module interfaces
with the other parts of the system.



Chapter 4
Road Navigation Module

B 4.1 Version with GNSS and OpenStreetMaps only

As a starting point, I have created a module that, given the robot’s location,
generates a costmap (in the form of a labeled point cloud) using nearby roads
and pathways loaded from OpenStreetMaps . The cost for each point p is
assigned using a pre-determined profile, which is a function of distance d,, to
the nearest border of a road.

b= oo

The symbol nbp, denotes the nearest border cell to the point p — a cell
representing part of the road border, one that is the closest to the point p
of all road border cells. Please note that direct evaluation of calculating the
distance between each pair p; and border cell would be incredibly inefficient.
To speed up the computation, a binary image representing a boolean map
representing whether a road border is present at each particular cell, and then
the Euclidean distance transform function is applied. Note that these
cells in the boolean map images are referred to as pixels interchangeably in
this work.

The module uses a profile (see figure that returns low cost values
for points on either side of the road, and the cost gradually increases to a
maximum towards the middle of the road. For locations outside the road
polygon, there is a spike for the locations near the road (as a ditch may be
present) and then gradually levels to a constant “background value.” More
specifically, this profile is a poly-line that connects chosen points and is
constant on the range between infinity and the first defined point on either
side. Figure illustrates the costs provided by this profile, while table
shows specific points that were chosen. Cost output is always in the range
of 0 to 1. However, there is parameter COST_GAIN, which multiplies the cost
output of this module just before it sends it off to the next (planner) module.
This parameter is important for tweaking the overall significance of the road
borders for the robot’s mission. The setting of this and other parameters is
discussed more in section bl In short, decreasing the value of this parameter
will make the planner ignore the roads more.

9



4. Road Navigation Module

Cost profile
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Figure 4.1: Cost profile used for OpenStreetMap-based navigation. The plot
shows a cost as a function of distance dj, from the border of the road, with labels
of points or areas of interest.

Parameter

Distance d, | Cost | Note

Terrain cost
Curb end
Curb peak
Roadside
Corridor
Road danger
Road cost

—00
-1.8m
-1m
Om
0.6m
1.4m
o0

0.2
0.2
0.5

0

0
1
1

Terrain

Safe zone from the roadside up to this point
Start of the danger zone
Danger zone — middle of the road

Table 4.1: Parameters used in the described cost function. Each parameter is a
cost-distance pair (point).

10



4.2. Visual navigation

This profile, however, only captures a few real-life scenarios. It would be
relatively easy to set up multiple different profiles and auto-select which one
to use based on the general GNSS location of the robot. But this belongs to
the deployment phase of this module. For the purposes of development and
demonstration of functionality, the single profile is sufficient.

To demonstrate the functionality of the aforementioned module, I of-
fer the following scenario: In figure 4.2, we can observe that with the
Road Navigation Module enabled, the planned path keeps to the side of the
road for as long as possible, then quickly crosses the road to minimize time
spent in the middle and continues to the goal on the other side; For better
clarity, used cost profile slightly penalizes non-road areas as if it was terrain
in which the robot moves slower. This is a demonstration that the module 1

Figure 4.2: Demonstration of costmap and planned path (green line). Left:
Without Road Navigation Module, Right: With Road Navigation Module; Purple
denotes highest cost, blue denotes medium cost, yellow to light green denotes
very low cost, which corresponds to the area in which the desired path should
generally follow, orange denotes zero cost and appears only where there is no
data

have built has the ability to control the physical robot’s behavior (locomotion)
and successfully integrates with the existing control stack.

B 4.2 visual navigation

The overall goal of the thesis is to rely on visual data from the robot’s cameras,
not on the GNSS localization. I have used already existing software [1] for
visual semantic segmentation. The segmentation output of this software
misclassifies some parts of the image in many frames (more detail in section
and figure [4.3). Nevertheless, it provides results that are good enough
for our purposes. One of the goals of this project is to be able to navigate
the robot even with imperfect input data and handle discrepancies between
the real world and what is detected. The real world is very messy, and there

11



4. Road Navigation Module

won’t ever be segmentation software achieving 100% accuracy in every single
possible scenario.

The system I have developed could be described in several stages. Each
stage processes some data and provides its output as input to the next stage.
The following sections discuss the particulars of each different stage. The
stages are in the code organized as follows:

1. Semantic segmentation
This stage performs semantic segmentation of the image and finds and
detects contours in this segmentation. Section [4.2.1] describes the details
of the visual segmentation software used and why I decided to use this
particular tool. Section [4.2.2| describes the contour extraction process.

2. Project contours to ground-plane
Once the contours are isolated in the image frame, we need to project
them to the ground-plane coordinate system for further processing.
This transforms all the contours to the “top-down view”. Section 4.2.3
describes how.

3. Filter contours
Semantic segmentation introduces some noise to its output, and as such,
not all contours accurately represent the real-world scenario. At this
stage, we try to filter some to reduce noisy data for the following stages.
Section [4.2.4] describes the filtering method used.

4. Merge top-down contours to a bigger map
For various reasons, it is beneficial to consider more than just one image
frame at a time. This is done by building a top-down map of all previously
seen contours. Section 4.2.5|describes this process and reasons in more
detail.

5. Generate costmap
The final stage constructs a costmap from all the information gathered
by the previous stages. This costmap is then used by a planner module,
which generates a path for the robot to follow and thus guides the robot’s
movement. This is discussed in the section 14.2.6.

B 4.2.1 Semantic segmentation

There are several different visual segmentation tools publicly available [1-5],
as well as tutorials on how to write a new one from scratch [17]. I chose to use
software Autonomous-Vehicle-Environment-Perception [1| available on GitHub.
This software also ships with pre-trained weights for the neural networks
used, so I didn’t have to train them from scratch. This code was able to
process images using Python 3 and had all the pre-trained weights available.
Originally, this provided several different outputs for each image frame.

® Semantic segmentation classes, one for each pixel — This is the
most important part I was interested in. Combined together with the
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4.2. Visual navigation

lane estimation, I was expecting good results in contour detection of the
drivable (walkable) space.

= Estimated depth map — provided by a network designed by [18]. The
same network also outputs the semantic classes.

® Lane detection — in the background, a work by [19] was used for lanes
estimation.

® Objects in the scene — this part was using YOLO [20] network to
detect objects such as traffic lights (including the color it was signalizing),
signs, cars, and similar objects.

However, in the course of my thesis, I had to modify this module, as discussed
in sections [4.3.3l and 4.3.4.

I have tested this segmentation tool on our dataset, as shown in figure [4.3|
and there are several issues observed relatively often. Most notably, some
parts from the terrain class get misclassified as roads or sidewalks. Less
frequently observed misclassification was the other way around — parts of
the sidewalk class getting classified as terrain. However, the results seemed
satisfactory in spite of these problems, especially with the thesis goal in
mind that the robot should be able to deal with the somewhat noisy input
information.

B 4.2.2 Contour extraction from segmented image

The visual semantic segmentation module used is geared more toward auto-
motive applications. Among other things, this is apparent from the selection
of semantic classes that this module classifies into the following classes. Only
some classes are interesting for this work, marked in the list; all other classes
are ignored.

® CLS_ROAD - area class s CLS SKY
® CLS_ SIDEWALK - area class ® CLS PERSON
® CLS_BUILDING - area class s CLS RIDER

8 CLS__WALL - area class ®m CLS CAR

® CLS__FENCE - area class ® CLS TRUCK
= CLS POLE = CLS BUS

8 CLS_TRLIGHT s CLS_TRAIN

= CLS_VEGT = CLS_MCYCLE
® CLS_TERR - area class ® CLS BCYCLE

We don’t need many of these classes, such as poles or traffic lights. We are
only interested in classes representing areas on the ground, such as road, wall,
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4. Road Navigation Module

B649774034

FPS : 0.7912749488698737

Figure 4.3: Several chosen frames demonstrating segmentation results on our
dataset. Left column: Good and relatively clean and correct discrimination
between various classes. Further away from the camera, parts of the sidewalk are
erroneously classified as a road; however, this is not a big issue. Right column:
examples of less successful results, which produce a lot of noisy data to the
downstream modules.
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4.2. Visual navigation

or terrain. In fact, what we need are not even pixel areas classified with a
specific class but rather borders of neighboring classes, such as the border
where road and terrain meet. Only the borders between “area” classes are
taken into account. Meaning that the border between road and car class is
irrelevant, as the presence of a car does not imply the end of the road. Quite
the contrary, there is a high chance that underneath a car, there is also a
road, but it is just obscured in the picture. I call these borders “contours”.
The following pseudocode demonstrates the process of contour extraction.
Figure 4.4] shows an image frame with the contours detected.

Pseudocode — contour extraction from segmentation mask

for each relevant class c:
let mask m = segmentation output for c

# Noise filtering

se = [1 1 1] # structuring element for the morphological operations
[1 1 1] # simple max/min from the 3x3 area is used
[1 1 1]

m = dilation(m, se, iterations=2)

m = erosion(m, se, iterations=3)

# Find the mask edge by convolving the mask with a laplacian kernel
kernel = [0 1 0]

[1 -4 1]

[0 1 0]

let edge image e = convolve(m, kernel)

for each pair of relevant classes cl and c2:
# Find the overlap near the edge area of the two classes
# -> First, expand them a little so that they can overlap

# el, e2 are the edge images, with class labels cl and c2, respectively

el
e2

dilation(el, se, iterations=2)
dilation(e2, se, iterations=2)

e = el x e2 # e is true whereever both el and e2 is true.

# Find the core of the contour and ignore bigger "blobs"
e = thin(e, max_iterations=25)

# Connect bitmap contour pixels and vectorize
contours = find_iso_contours(e, fully_connected="high")

for each contour in contours

if length(contour) > MIN_CONTOUR_LENGTH_PX
yield contour
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4. Road Navigation Module

MIN_CONTOUR_LENGTH_PX 1is a parameter of the algorithm used as part of noise-
filtering. The exact effects and setting of this parameter are described in detail
in the section |5l

Figure 4.4: A selected image frame and the contours detected in it.

B 4.2.3 Contour projection to ground-plane

All contours are then transformed from an image frame into a robot odometry
frame and projected on the ground plane estimate underneath the robot. All
of the following processing is done using this 2D top-down view representation.

The module receives camera_info and TF messages from ROS. The first
contains information about the image sensor used, such as its focal length,
distortion correction parameters, and others. The most important parameter
obtained from this message is the camera projection matrix P. This matrix
contains all the information we need to project a 3D ray R, corresponding
to a particular pixel uv, according to the pinhole camera model. Let’s define
ray using a parametric equation

Ruy(t) = O, + D, - t,

where 0_; is the origin vector of the ray, and ﬁr is its direction. When
inversing the pinhole camera projection, we obtain

., U —Cg Jz
Dy=|v—cy | /| fy
1 1

The symbol |/ denotes an element-wise division. We should normalize the
vector D, before further processing. The origin vector O, is equal to 0 as
the ray originates from the center of the camera. Both vectors D, and O,
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4.2. Visual navigation

together fully define the ray Ry, which we need. It is currently in the camera
coordinate system; however, we might need to transform it later.

The TF messages contain rigid transformations between various frames on
the robots, among others, physical camera location with respect to the robot
body and estimated position and orientation of the ground plane underneath
the robot. Using the relative transformation between the ground plane
estimate gpe and the camera, we can find the intersection where the ray R,
hits the gpe plane. For the plane, it holds that each point Z that lies on the
plane satisfies the equation 7 - ¥ = z. The vector 7 is the normal vector of
the plane, and z is a shift along this vector. Now, combining this with the
ray equation, we obtain

ﬁ~<6r+5r~t):z,

solving for ¢,

. z—1- Jr
ii - D,

Ift > 0, we can substitute it to the ray equation and obtain the one intersection
point between the ray R, and the plane gpe; otherwise, they do not intersect.
We apply this method to each pixel in each contour detected in the previous
stage. This gives us all the contours we have detected from the “top-down”
view, “painted” on the gpe, as shown in the figure [4.5. This transformation
assumes flat terrain. The transformation gives use incorrect results when the
detected contours in the image are not on the ground plane but at a different
height (such as the top of a wall or the sides of a staircase). It does not pose
an issue, however, because gpe generally represents areas in the near vicinity
well, and we are interested only in the contours which are near us.

B 4.2.4 Contour filtering method

A set of isolated contours is further filtered to remove the noisy detections.
More specifically, the curvature of the contours is observed, and when the angle
between two consecutive line segments is over a threshold MAX_ALLOWED_ANGLE
(contour is not smooth, alongside the probable road, but zig-zag-ey), it is
split into two at that offending place (or places). Sometimes it is desired for
contours to have sharp edges — for example, 90-degree turns. That’s why
high curvature by itself is not a reason to discard the contour right away.
Nevertheless, after this step, contours that are too short are removed. This,
in turn, removes all contours which are very zig-zag-ey as they will be cut
into many (too) short segments with acceptable curvature.

B 4.2.5 Contour map — Temporal consistency

This section discusses the importance and method of fusing contours together
from multiple frames — multiple measurements, each at a different time.
Information obtained from the previous stage is gathered only from a single
frame. It can still be noisy, in spite of multiple attempts to clean the data as
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4. Road Navigation Module

ROl border

Figure 4.5: Transformation from the contours detected in the image (top; purple
and pink lines) to the world coordinate system, placed on the ground plane
(bottom; the grid represents the ground plane). The red dotted lines mark the
ROT area (more in sec for the contour extraction. Contours outside of this
area are ignored.
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4.2. Visual navigation

much as possible. Some contributing factors to the occurrence of this noise
include incorrect segmentations by the underlying semantic segmentation
tool, which may not be trained on a domain that perfectly represents the
deployment environment or the robot moving too quickly, and the processed
image being blurred and hard to read. For this reason, it is important that
the robot does not act solely on the observation provided from the latest
frame but fuses contours from multiple consecutive frames.

The way I decided to tackle this problem is by building a probabilistic map,
representing a probability that at each particular discretized location cell,
there is a contour — a border between traversable and untraversable terrain.

When updating this map with a new observation, the first step is to
translate the previous map correctly (this had its own issues, see section 4.3.1))
and then perform a Bayesian update (described in section |4.2.5.1) according
to the model of measurements (described in more detail in section 4.2.5.2)).
This procedure is known as a grid map approach.

Assuming that the observation model accurately represents error character-
istics of the semantic segmentation tool, the resulting grid map will stabilize
in the state, which shows a high probability at locations where is the real road
border and a low probability in all other (explored) areas. This is achieved
because observations that are consistent across multiple frames have one
thing in common — the underlying feature in the real world — the side of the
road. These correct observations will reinforce each other, while erroneous
observations will appear at random locations (different location in each frame)
and cancel each other out.

Another advantage of the grid map approach, except for the temporal
consistency, is that it enables the later steps of this computation pipeline to
reason also about areas that are not currently visible in the camera view.

B 4.25.1 Grid map bayesian update

To update the grid probabilities, the module uses Bayesian update [21]. In
the beginning, the probability P(I = border) is initialized to 0.5. In each
step, the posterior probability (after the measurement) is calculated from the
new measurement and an apriori probability at that location. The apriori
probability used is the posterior probability from the previous step. The full
equation is shown here:

p(z|l = border)P(l = border)
(z|l = border)P(l = border) + p(z|l = free)P(l = free)

P(l = border|z) =
( |2) ’

Symbol P(I = border|z) denotes a probability that a cell with location I
contains a road border after the fusion of measured data. P(l = border) is
the previous probability of the cell being occupied by the road border, and
p(z|l = border) is the probability that a cell is observed as one containing a
road border, given an actual occurrence of the road border at the location [
in the real world. This is the model of the measurements, and it is described
in the following section. Note: | = free is exact negation of | = border,
P(l = free) =1 — P(l = border)
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4. Road Navigation Module

B 4.2.5.2 Contour observation model

The purpose of this contour observation model is to capture the relation
between imperfect measurement and what it may correspond to in the real
world. The measurement is the detected location of the contour in the image,
and we are trying to estimate the position of the side of the road in the real
world.

This model assigns a probability of real-world occurrence of the side of the
road given distance from the closest detected contour in the image. Again,
this distance is not in the image coordinate frame but in the top-down grid
map frame.

Model of contours measurements for Bayes update
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Figure 4.6: Probability of detected contour at location [ given distance d, from
the closest real border of the road

Figure [4.6] depicts the values I have chosen for this model. It is a polyline,

Parameter | Distance d, ‘ p(z|l = border)
Max Om 1.0
Midpoint 0.45m 0.5
72 Start 0.9m 0.1
72 Mid 6m 0.1
73 10.5m 0.25
No detection 00 0.25

Table 4.2: Points of polylines of the contour update model.
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with all corner points shown in a table[4.2. As you can see, the plot shows
symmetric values in the graph, as the model considers only distance, not the
direction from the border. The peak is in the middle, at distance=0 (which
is the exact position of the border). In the near proximity around this peak,
the probability is still very high (but slightly decreases with the distance) as
the detection could have been just slightly off. In figure 4.6], this is shown as
a green zone Z1. The next section — red zone Z2 — represents an area that is
further away from the border, about one meter or so, and it is assumed that
it is unlikely that the detector would make such an error in the detection.
And finally, the last zone (orange, zone Z3) represents the fact that places
that are far away from the nearest border (are not the border themselves)
have a very low probability of being detected as borders. It is important that
both zones 2 and 3 have their probabilities (of positive occurrence) less than
0.5, meaning that it is more likely that there won’t be any contour detection
at that particular location.

This particular model was chosen somewhat arbitrarily and worked well
with the tool for semantic segmentation I used. It may be appropriate to
change this model for a different image semantic segmentation tool used. I
have not explored any other models in this work, as it didn’t seem to be
necessary.

B 4.2.6 Costmap

This part discusses how the flattened contour map is used to guide the
robot. The path planning system already implemented on the robot uses
costmaps. The path planning module receives different costs from various
modules running on the robot, builds one global costmap grid, and finds the
shortest path in this grid between cells representing its current location and
the target location. This path planner module also takes into account the
cost of heading angle adjustments (steering).

To ensure compatibility with this system, my module needs to export one
such costmap. The first somewhat naive version was to consider a distance
to the nearest contour as a cost function. In theory, the robot should move
exactly on top of the contours — zero distance = zero cost, and great distance
= great cost. However, this cost function is not sufficient.

First of all, we don’t want to walk on top of the contour, but rather just to
the side of it. And in the ideal scenario, we don’t want to walk too far away
from it (we want to walk on the side of the road, not in the middle). We can
re-use the idea of profiles from the previous GNSS-only version (section 4.1)),
but we will need some modifications.

Profiles of the cost function from the GNSS version are functions of vector-
ized geometric shapes of roads — the road has location, direction, and width.
We don’t have access to this information in this visual approach; we only
have a grid map of cells containing contours. For this reason, the profile used
in this work is a function of distance from the nearest contour cell. Figure 4.7
illustrates the mapping between distance from the contour and the cost that
it incurs for the planner. The cost ¢ of shown profile can be calculated using
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the following equation, where o is parameter OFFSET_M and s is parameter
PROFILE_SLOPE . These parameters are later discussed in section

_J1—dy/o d, <o
| min{1,(d, —0)-s} dy,>o

T T T T
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Figure 4.7: Currently used profile — a cost incurred for the planner given a
distance to the nearest contour cell.

The profile is symmetric; a contour in the grid map does not have a defined
direction on which side of the road it is. Notice the peak of minimum cost
at a distance OFFSET_M. This is a parameter of how far from the road border
we want the corridor through which the robot will walk. Two such corridors
exist, one on either side of the contour. In theory, the robot should follow the
one which is closer to his current location and not cross the middle barrier.
This was, however, not observed for various reasons, discussed in sections

4.3.2, and |4.2.8,

B 4.2.7 Additional grid map channel — Forbidden areas

To improve the quality of the generated paths, I have propagated more
information to the costmap generation stage in order to give better hints to
the path planner. More specifically, I started building a new grid map in the
same manner as the contour one from “forbidden areas,” which are defined as
areas segmented by the segmentation module as one of the non-road classes
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(not cLs_RoAD and not CLS_SIDEWALK ). These forbidden areas are transformed
to the top-down view in the robot’s odometry frame, the same as contours,
and then stitched together using the same Bayesian update method to the
full map.

When building a costmap, this information about forbidden areas is com-
bined with the previous method by adding high cost to areas that have a high
probability of being forbidden. This usually results in completely blocking
off one of the two corridors around the border.

Forbidden areas
Contours channel channel Cost map

Figure 4.8: Computation of various top-down views of the robot. Each row
shows a different scenario; the photos at the bottom are the views front the front-
facing camera at those respective scenarios. Left column: Contour probability
channel of the grid map. Middle column: Forbidden areas channel of the grid
map. Right: Both channels combined into one costmap.
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Figure 4.9: Top: Robot plans a path (green) alongside the sidewalk, rather
than direct — shortest Euclidean path. The costmap shows one side of the road
border with relatively low costs (white and close to white) and the other side
with higher costs (the more saturated red, the higher the cost is). Without this
last step of adding a channel for forbidden areas, both sides of the border would
be more less white, and the path would have a tendency to be more straight,
crossing the road border. Bottom: Same situation from the viewpoint of the
robot.
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B 4.2.8 Planning around the visible area

There is still a relatively lot of noise from the contour grid map, which
leads to creating arbitrary barriers in the middle of the road. This effect is
exacerbated even more when a part of the non-road area is in view. A lot of
false-positive contours tend to appear in these areas. The planner sometimes
has a tendency to avoid all of these “high-cost clusters” altogether and steer
around the observed areas into the unknown. The problem is that once it
leaves the road and ventures into the unobserved/terrain area, it will never
return back on the road as it doesn’t have enough incentive to cross the
border of the road again. This behavior can be observed in figure 4.10

I have partially fixed this behavior by introducing an artificial cost wall
around the currently observed area, which dissipates with the distance. This
incentivizes the robot to go forward and cross the visibility border there
rather than to turn on the spot and walk “around” the mapped area.

Figure 4.10: Planned path (green) from the robot to the goal (red box). Left:
The path ignores corridors and barriers in the detected area because the path
planner managed to “slip” outside of the detected area near the robot. Right:
This time, the path follows the shape of the road, as it cannot cross the detected
area boundary near the robot. The boundary can be seen as darker red (=
higher cost) cells in the right image.

B 43 Encountered problems

Bl 4.3.1 Top down contour map transformations

An essential part of building a top-down contour map from multiple frames
is knowing the correct transformation of how the robot moved (or rather,
camera pose) in between those frames. Spot’s API provides a coordinate
frame called vision , which is an inertial frame that estimates the fixed
robot 6DOF pose in the world (relative to where the robot booted up) and
is calculated using visual analysis of the world and the robot’s odometry.
My module grabs a robot pose in the vision frame at the time each image
is taken and uses the difference between the current and last robot’s pose
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to transform the top-down contour map. Once the map is transformed, it
updates it with the information acquired from the current image analysis.

At first, this approach had very bad results, as shown in figure (left).
After some investigation, I found an issue with the cameras themselves.
The image sent by the cameras was significantly delayed compared to the
timestamp it was associated with. This delay ranged from about 1s in some
experiments to 12s in the worst observed case. To mitigate this issue, I added a
parameter to my module CAMERA_DELAY_S, which should be set to the observed
delay. The robot software then uses older vision frame transformation, older
exactly by the time delay set by this parameter. This solved the issue while
testing on already recorded data, as shown in figure (right); however,
it is not a full solution to this issue. With the help of other colleagues, we
managed to find issues in camera configuration and decrease this delay to
about 0.3s, which is much better, but still not ideal. The details of this
configuration are not described, as it concerns a specific hardware issue and
is outside of the scope of this thesis.

1.0

0.0

Figure 4.11: Merged top-down contour map - the probability that there exists
a contour at a given world location. Left: Images from the camera are out of
sync by about one second with the transformation data of the robot. Right:
Images and transformations synced using appropriate CAMERA_DELAY_S. Both
images represent the same scenario, with the robot at roughly the same physical
position. We should see a relatively straight road with a left right-angle turn at
the end, which can be clearly observed in the right image.

B 4.3.2 Costmap resolution is too small

The planner’s costmap spatial resolution (0.5m per grid cell) is too small
for precise robot guiding. Features generated by different profiles are too
fine. The profile has to be very coarse, without big details. Otherwise, the
planner is not able to correctly navigate the corridors or react to the cost
gradients. We can’t increase the resolution of the planner’s costmap because
that is already on the limit of computational power. Currently, the planner’s
resolution is two samples per meter. It may fill a relatively large area with
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these points and then run a graph planning algorithm to find the shortest
path. Nevertheless, for our task, we don’t actually need a large area of
planning with a far-reaching horizon. It would be sufficient to just “nudge”
the robot locally in the desired direction. When the “nudging force” wouldn’t
be strong enough, the robot could cross the road border if the overall planner
wanted to. The magnitude of the “nudging force” could be calculated in the
same fashion as the profiles already described. I have not tried this approach
due to the lack of time.

B 4.3.3 Strong priors in the lane detection

The lane detection part of the Autonomous-Vehicle-Environment-Perception ||
module did not produce the results I was hoping for on our dataset. It seemed
like it was affected by a strong prior forcing the detected lane borders to
follow in the forward-facing direction of travel. This prior may work in an
automotive environment, but in our, it is not desired. Figure shows lane
borders detected where there are no lanes and all facing in the direction of
travel. I removed the lane detector completely because it was practically
useless for our application.

Figure 4.12: Two selected images with very incorrect detections of lane borders.
All detected lane borders face the forward direction.

B 4.3.4 Vision module is slow

The performance of the overall module, including the vision stage, is crucial
for an online control system. The time it took for the vision stage from a
received image frame to outputting of the results was long, more than one
second, which is not acceptable. I have solved this by partially rewriting
some parts but mainly removing all code that was not absolutely necessary
for the functionality of this stage. I removed the lane detection sub-system,
YOLO-based object detection (such as cars, cyclists, traffic signs, ...), as well
as signal color detection of the traffic lights and estimation of the distance to
the stopping line.
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B 4.3.5 Compass guiding the robot away

The magnetic compass of the robot has a relatively large drift. Usually, this
can be corrected by estimating the direction of travel from the GNSS when
the robot is walking; however, this is not possible when the robot is stationary
for some time. In such cases, it happens very often that robot plans a correct
route, sticking to the side of the road, relative to the observed contours in
the camera, but when it tries to execute this path, it first “corrects” its
pose, to align the magnetic reading with the desired orientation even before
starting to move. This results in the robot turning away from the road at the
beginning of the experiment and then moving forward. Sometimes “moving
forward” means directly across the road border. It is then almost impossible
for the robot to return back to its original intended path. Magnetic compass
misalignment is shown in figure We can see that the path gets planned
correctly (projected in the camera image); however, when the robot starts
following such a path, it steers off course instantly.

T [
ammnm :Mm» 0

AT {

Figure 4.13: Robot absolute heading misaligned due to a compass error. The
roadside is detected correctly (right image, green and yellow contours, pointed
to by an orange arrow). The same roadside is shown in the top-down view
(left image, same contours, again, pointed to by an orange arrow). In the top-
down view, the detected contour should be exactly aligned with the beige-green
interface on the map. The red dotted lines mark the ROI area (more in sec
4.4.2).

B 4.3.6 Computation power issues — the overall latency

The latency of each computational stage adds up to the overall photon-
to-movement latency. While working on this project, I have continuously
struggled with the lack of computational power, or rather, this latency being
too high. My module runs around 2 Hz, introducing 0.5s of latency on average.
The images from cameras this module takes as input were already delayed,
as described in section adding about 0.3s of latency at best. Processing
the costmap of my module also took a relatively long time. Sometimes it
was merged and used by the planner module nearly instantly (< 0.25s), but
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sometimes it took several seconds. I am not sure where this time delay comes
from. This compounds to about 1s of latency of the entire chain, which
proved to be too long for online robot guidance. I had temporarily mitigated
this issue by slowing down the speed of the robot’s locomotion significantly,
but this isn’t a very good long-term solution.

B aa Implementation details

B 441 LLA /UTM / UTM_local coordinate frames

The robot operates internally using UTM coordinates instead of latitude and
longitude . UTM coordinate has some nice properties; namely, it is metric.
However, values representing a location in a single UTM zone can quickly
overflow 32-bit floating point precision and cause issues in the processing
pipeline. ROS uses 32-bit floating point numbers in all of its standard
messages, which means we cannot use 64-bit ones. The solution is another
coordinate frame, UTM_local — which is UTM translated such that the robot
starting position is represented by 0,0 (UTM_local) . As a result, all coordinates
are near-enough for 32-bit floating point precision.

An unfortunate byproduct of using the UTM_local frame is that modules
using this frame (including my road navigation module) do not work without
a good GNSS lock, as they do not have this initial transformation — for
example, when starting the robot indoors.

B 4.4.2 Contour extraction ROI

The robot’s camera may see many different contours, but we are interested
only in some. More specifically, only in those which are on the ground and
are close enough to be considered relevant and reliable. Figure 4.14| shows a
side view of the robot with a camera and rays from the camera that project
to specific pixels. As we can see, the ground can be seen only by a part of
the field of view of the camera. The camera has a limited resolution (limited
number of pixels), which in turn sets the minimum angle o between two rays
of consecutive pixels, and that limits the minimum distance d,, which is a
distance between two ground points in the real world. Two such ray pairs
are shown in the figure. The further away from the camera these points
are, the longer this distance is, decreasing the precision of pixel-to-real-world
projection. Setting a constraint on this precision constraints the maximum
view distance. The other (near) end of the camera is constrained by the
nearest place the rays from cameras can reach (see Ray, in figure 4.14).
Everything between the robot and the place where this ray intersects with
the ground plane is an invisible area for the robot. For my work, I have
defined the reliable ROI (Region of interest) as an area in the image where
the distance between any two neighboring pixels projected to the ground
plane estimate is less than 0.5m.
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Camera Horizon - ray parallel with ground plane

Ground plane estimate ‘ Invisible area ROI dq’ ‘ dg

Figure 4.14: Rays projected from the camera onto a ground plane estimate.
Purple: Ray pair (of two neighboring pixels in the camera) whose distance d,
is higher than the ROI threshold. Green: Ray pair (of two neighboring pixels
in the camera), with the same angle «, whose distance d,, is within the ROI
threshold. Red: Area which is considered a reliable region of interest.

Note that this ROI calculation is entirely dynamic. Whenever the camera
orientation or ground plane is changed, the ROI region will be different. When
the robot walks and the camera tilts slightly, the ROI shifts accordingly. As
well, when the robot encounters stairs, the ground plane estimates rotate to
match the staircase. In theory, the camera could be mounted on a robotic
arm on top of Spot, move around, and the ROI would remain well-defined all
the time. The algorithm is able to work with both landscape and portrait
camera orientation. The illustration shows only a 2D side view; however, the
reasoning is the same in the horizontal axis as well. The ROI is shown in the
figures throughout this work as a dotted red contour.

B 4.4.3 Measuring the camera delay

To correctly measure the delay between the actual pictures provided by the
main camera and the transformation information from the robot, I have
written a little test program. This program reads the images from ROS as
well as the TF messages, containing the rigid transformations between the
camera, robot body, and ground plane estimate. The program reads the
image data and the transform data from different times, with constant time
offset between them. With this information, it renders red lines where the
horizon should be, according to the transform data. The pink lines represent
absolute heading marks. When the time offset is set correctly, the rendered
horizon should match the real horizon in all the images in the sequence. The
pink lines should stay in consistent heading directions when the robot rotates
around its yaw axis. Figure [4.15| shows two different settings of the time
offset, one to demonstrate incorrect camera-transform synchronization and
one to demonstrate the correct one.
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Figure 4.15: Left: Rendered horizon and heading lines do not line up with the
image — the transformation used and the photo itself are each from a different
time; Right: Rendered horizon and heading lines are in sync with the picture.
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Chapter 5

Experiments and results

This section discusses the importance and effects of various parameters men-
tioned in the description of the methods. It also discusses failed experiments
and what algorithmic changes and improvements they lead to.

B 51 Contour filtering

The initial semantic segmentation and following contour extraction (detection
of the bordering areas between different segmentation masks) yield a relatively
high number of undesired detections. For this reason, we need to filter
some detection, as described in the section |4.2.4. The parameters of this
algorithm are discussed here in this section. Some of the undesired erroneous
detections may be characterized as very short segments. The parameter
MIN_CONTOUR_LENGTH_PX classifies segments as noise or not based on their length.
Figure 5.1 shows several values of this parameter tested and which contours
are kept.

The second very strong feature of undesired contours is their shape. Man-
made environment (roads, sidewalks, city in general) tends to utilize long
straight lines very often. As such, the edges of a road or sidewalk tend to
be straight or with minimal curvature (a gradual turn). This means that a
correctly detected contour should copy this shape of minimal curvature. In the
detections, however, I have observed many odd-shaped “blobs”, which were
incorrectly detected (as shown in figure 5.2 — pointed to by the right arrow).
These blobs contain many low-radii turns (= high curvature turns). However,
not only do these incorrectly detected blobs contain low-radii turns, but also
sharp or even 90-degree angles between multiple straight line segments (as
shown in the same figure 5.2 — pointed to by the left arrow). The key difference
between these two situations is the overall length of the segments between the
low-radii turns. My filter splits the contour at the places of low-radius turn,
and in the case of the “odd-shaped blob”, it gets cut into many short segments,
and these segments will be removed using the MIN_CONTOUR_LENGTH_PX filter. In
the case of a sharp turn between two straight lines, the new contours created
by the split remain in the system as they are both long enough. The radius
is controlled by the parameter MAX_ALLOWED_ANGLE. Figure [5.3 illustrates two
of these values.
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Figure 5.1: Several values of MIN_CONTOUR_LENGTH_PX parameter. Top left: Opx —
any detected shape passes the filter. Notice several small contours around the
legs of the bench; Bottom left: 150px — The results are over-filtered. Contour
along the length of the sidewalk did not get detected as one continuous piece, but
rather two consecutive. As such, it was not long enough to pass; Right column:
25px — Balance between removing very small details but keeping many lines,
which may be good contour candidates. This experiment was executed with an
image resolution of 640x192. The red dotted lines mark the ROI area (more in

sec .
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Figure 5.2: Contour detections before max curvature filtering. Notice the 90-
degree bend in one curve between two straight segments (pointed to by the left
arrow) and an odd-shaped blob containing many sharp angle bends (segment
pointed to by the right arrow), which is caused by an incorrect detection.
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Figure 5.3: Left: parameter MAX_ALLOWED_ANGLE = 11.2 degrees — we can observe
contours split into many different sub-contours. Only the very, very straight
ones remained in one piece. Right: parameter MAX_ALLOWED_ANGLE = 90 degrees
— the more contour stay in one piece for longer. In both images, each contour is
depicted using its own hue. The red dotted lines mark the ROI area (more in

sec 1.4.2).

This filtering method did not work very well as is. The problem was with the
discretization of the contours. Contour positions come from the pixel locations
of the detected segmentation borders. In the image, all these contours are
8-neighborhood connected. After projecting the contours from the image
frame to the top-down frame, the angles between consecutive points become
relatively large, especially at the places which were previously 4-neighborhood
connected. Many out-of-line pixels may appear, even if it is just barely,
due to noise in the detection. Each misalignment has a big potential to
incur a sharp angle that would split the contour even when the contour is
overall nearly straight. These sharp-angle-splits are shown by blue arrows
in figure . For this reason, I had to have the value of MAX_ALLOWED_ANGLE
set to a really high number of 90 degrees. Future improvement could employ
some Gaussian smoothing of the shape of the line or spline fitting in smaller
segments. More changes would be required, however, because the contour
points are not spaced uniformly (projection from image to top-down view
places pixels which are further away from the camera to be far from each
other).

. 5.2 Choosing the appropriate profile function

The profile is a function with some properties. It has to be continuous, defined
on all real numbers in the interval (-MAP_RANGE, MAP_RANGE), and
output values between in an interval (0, 1). Aside from these requirements, the
function can be arbitrary. There were two different profile functions shown in
this work. One for the GNSS version (figure and one for the vision-only
(figure . Both of these profile shapes are the results of multiple iterations
of tweaking. The main thing to consider when designing a profile shape for
this module is the resolution of the planner module’s costmap. I tried using
a different profile (for the vision version) with much finer features (similar to
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Figure 5.4: Tllustration of sharp-angle-splits (at positions of blue arrows) along a
relatively smooth but discrete contour (red), which is comprised of points (black)
projected from the pixel grid with only a small deviation from an optimally fit
contour (green).

the GNSS type); however, most of these details got lost when transferring to
the planner. Furthermore, when downscaling the calculated values for the
resolution of the planner costmap, there is no notion of which profile features
are more important to keep and which ones are not. Whenever merging
the two costmaps, there may also be a rotational misalignment (planner
module’s reference frame being different than mine or similar reasons). The
downscaling algorithm is a simple sampling at the center points of the grid,
which more often than not has a contra-productive effect on the final costmap
(and, in turn, the planned path), as there is no control over which parts of
which profile features will be selected. This washes away most of the guiding
information, and the results may seem like random noise, completely ignoring
any corridors the profile may have created.

In the section Future work 6.2, I propose a new guiding idea, which is not
to use the path planner at all. T believe would have better results and could
accommodate finer details of the profile function for finer robot navigation.
It is expected that during deployment, the robot will have several fine-tuned
profiles for different geographical areas and auto-choose the appropriate profile
using the current GNSS location. This will allow for an even better definition
of the desired robot behavior. For example, in some areas, there might be
a ditch near the road, and the used profile would penalize navigating near
it with a high-cost wall. However, in other areas, we might want the robot
to walk in a corridor outside the road, not on the road itself (for example,
because of high-speed traffic). This is achievable using a different profile.

N 53 Costmap strength

The costmap from this road navigation module is only one part of the overall
input for the planner. There may be other costmaps from different modules,
and a natural question arises “How to combine multiple costmaps and balance
their effects?” The planner constructs one total costmap, which it uses for

36



5.4. Mission navigation with replanning

planning. The cost at a given location in the total costmap is calculated as
a weighted sum of all other input maps. The weight of the costmap of my
module is set using a parameter COST_GAIN, which is a constant that multiplies
the costmap before it is sent as a ros message. The higher this constant is,
the more effect this costmap will have. When this parameter is set to a small
value, the cost walls around the road borders may be ignored. Figure [5.5
shows the planned path, which results from different gain settings.

Figure 5.5: Planned path (green) from the robot to the goal while utilizing the
costmap. White parts of costmap — low cost; Red parts — high cost; Left: The
COST_GAIN is set to a low value of 1. Notice that the planner cuts across the
road border when the path starts to be much longer than the direct Euclidean
path; Right: COST_GAIN is set to a much higher value of 40. The planner plans
the path along the detected road border for a much longer span, essentially
until the end of the visible area. Side note: An observant reader may notice the
misalignment between the OpenStreetMap overlay and the heading of the detected
road. This is caused by a magnetic compass issue, discussed in section .

B 5.4 Mission navigation with replanning

The costmap that is being built from the scene semantics is only local — what
is in the camera ROI (section discusses the ROI computation) and in the
short-term Bayesian map. The missions usually span much larger areas than
what is covered by this. For this reason, the planner plans a path according
to what it already knows, and the cost of the unknown area in the costmap
is set to a constant value. This way, when planning outside of a known area,
the shortest path is equivalent to the shortest Euclidean path. (Note that the
path is planned in an eight-neighborhood grid, so the direct Euclidean path
is not always achieved.) The robot starts moving along this path, leading
toward the final goal, and as the robot moves, it collects more information
about the environment. It updates the internal costmap with the contours
from the newest images and replans the path. The robot is then kept on the
road all the time, even though the initial path plan proposed to go through
non-road terrain. This behavior is shown in figure [5.6, where several updated
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plans are shown as the robot moves along its path. The unused parts of the
older plans are shown in slightly less saturated color, where the robot started
moving along the new plan with newly detected contours.

. 5.5 Quantitative results

The robot is supposed to walk in the corridor of a minimal cost in the costmap.
We can observe the cost at the position where the robot has been and in
some areas around it. It should hold that the robot position has a minimal
cost (the center of the corridor), and all other surrounding places should have
a higher cost. We can log these values throughout the experiment, and if we
observe lower cost values at the robot’s path than around it for the majority
of an experiment, it shows us that the robot believes it walked in the area of
the lowest cost. It is ok when in some places, the robot’s local cost exceeds
those of its surroundings, as it may be necessary for the globally cheapest
plan to drive through some of the more expensive areas.

Figure [5.7| shows the costs throughout the run of the experiment described
in the previous section, and figure [5.6. We can see that at several places, the
robot wasn’t at the cheapest possible cost — Event A: around time 40, the
robot was very near the terrain sidewalk, and some detections of it may have
been erroneous. Event B: around time 90, the robot switched from tracking
the left contour of the sidewalk to the right side of it, crossing the centerline.
This can be observed as the orange path plan in figure [5.6. Event C: Nearing
the end, around time 125, the Spot took a little shortcut across the terrain
and didn’t stay on the road. Event D: Around time 140, a car arrived and
waited for a while in front of the robot camera, allowing the driver to take
some pictures. However, this made Spot’s vision system a little confused.

Note that this experiment considers only what Spot believes about its
surroundings (cost-wise). A similar experiment should be conducted, with
the addition of having the ground truth location data and comparing the
cost at the location at which Spot believes to be with the cost calculated
by applying the profile function on the OpenStreetMap data at the ground
truth location. One possible source for this ground truth data is a different
software pipeline, which already runs on the Spot and performs SLAM from
the onboard lidar. The generated map can be (manually) aligned with the
OpenStreetMaps, providing accurate robot localization. I wanted to perform
this and more experiments, particularly testing longer missions and different
improvements and parameter settings described in this work, but due to
technical difficulties!, I didn’t have time to finish them.

'For example, a forced firmware update from BostonDynamics introducing breaking
API changed for our Spot—ROS interface
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Figure 5.6: Sequence of plans to complete the mission — move from the top-left
corner to the bottom-right, using only roads or sidewalks. Top: Costmap built
from the local information from the vision system; the rest is set to a default
constant value. Bottom: Sequence of plan changes as the robot moves along the
planned path and new parts of the world come into view. The robot first follows
the green plan, then blue, purple, orange, and at the end, the very short green.
Not every plan update is shown in the figure, for the sake of clarity
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Costs throughout the experiment run
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Figure 5.7: Cost values at the robot’s position. The value at the exact position
of the robot is shown (blue), as well as mean values in the robot surrounding area
(orange, green). Several events that happened during the experiment are marked
(in red) at their respective times of occurrence. A — robot drove very near the
road edge; B — robot crossed the road; C — robot took a shortcut; D — robot
vision distracted by a distracted driver. These events are described in more
detail in the text.
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Chapter 6

Conclusion

In this thesis, I have proposed an algorithm that generates a new costmap
using a front-facing RGB camera. This costmap represents the semantic
meaning of the scene. The costmap serves as a main input for path planning
and navigating the robot. I have proposed using a Bayesian update to
improve the stability and temporal consistency of the computed results,
which enhanced the quality of the final costmap. In a controlled environment
(the CTU courtyard), the robot is able to navigate on the sidewalks, even
when the direct path to the target GNSS waypoint is through the non-road
terrain. However, the module is relatively sensitive to various real-world
disturbances or noisy measurements. The navigation system requires a good
GNSS position lock as well as precise heading information, which is not always
available. Based on the valuable experience gained whilst working on this
project, I have several ideas and improvements for future work. They are
discussed in the following section. The module is not completely finished
yet and is not ready for real-world deployment yet. Figure [6.1] anecdotally
illustrates one situation we have encountered outside of university grounds.

B 6.1 Code repository

Source codes for this work are available at Czech Technical University’s
GitLab. Repository [23] contains the source codes of the main module, all
stages except the vision module. It runs on Python2 with ROS Melodic
or Python3 with ROS Noetic. Repository [24] contains the vision module,
including my changes to it. This runs using Python3 only. The main project
invokes the vision project as its sub-process. This split into multiple was
necessary for the deployment on the physical robot, as only the older ROS
Melodic was available, but the vision module requires Python3.

. 6.2 Future work

Experience gained during this work leads me to believe that guiding the robot
using a costmap approach is not ideal. Two main reasons are:
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6. Conclusion

Figure 6.1: The robotic dog in the real world environment — standoff with a
meat-based dog.

® Global vs Local planning

The robot planner makes a full plan (path) of how to get to the target
waypoint. But while making this plan, most of the information about
the road is not available (it is not in view). The planner needs to replan
every so often because of this, and it does not always do so correctly
(this could however be addressed separately). However, frequent re-plans
are desired in the near vicinity of the robot, as finer information about
the exact road position comes into view, or the GNSS location of the
robot drifts a little. In general, these re-plans do not get triggered, as
the change is not considered important by the planner from the global
perspective. That means the robot is not going to adjust by half a meter
sideways, as half a meter is negligible in the overall 30m route, but it is
important locally for the robot not to get hit by a car.

8 Fine-ness of navigation
The difference between the two robot poses, one on the side of the road
and the other in the middle is very short in terms of Euclidean distance
(it can be even less than one meter), however very big in terms of cost or
safety of the operation. This disproportion is not addressed in the global
costmap. The global map cannot have a resolution adequate for guiding
in such a fine grid. And even if it did, it would need to recalculate the
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robot path even for a small change in the underlying costmap.

Planner operates in absolute coordinate system

The planner uses a coordinate frame linked with the GNSS navigation
system. More specifically, UTM frames. The vision system, however,
operates in the local system centered at the robot location. The output
of the vision system is in terms of “there is a danger on the left side
of the robot”. We need to transform this into an absolute UTM frame
for the planner to be able to use this information. The accuracy of this
transform relies on the accuracy and temporal stability of the GNSS lock
and compass heading. Neither of these reached high enough accuracy
in our experiments. The magnetic compass is especially problematic.
It is easily confused by electromagnetic noise in the environment as
well as one generated by the robot’s own powerful locomotion motors.
These magnetic deviations can reach up to 90 degrees within a single
experiment.

If I were designing a system for visual roadside navigation again, I would
choose a different approach. It would be a module that communicates with
the path follower module (figure 6.2 shows a revised architecture scheme) and
sends “nudges”, which way the robot should deviate from the original plan.
Similar to a cost wall, which would get applied only locally — the close the
robot gets to the wall, the stronger the “nudge”. These nudges would force
the robot to stick to the side of the road (or similar behaviors, as defined
by the currently selected profile). The locality of this approach solves all
three aforementioned problems with the costmap-based path planner. This
nudge-based system is similar to an obstacle avoidance system but using
virtual obstacles.

Sensor inputs (cameras, 3D pointcloud, GNSS, ...)

l

. Mission

......... »/ Sensor processing specifications
(GNSS + SLAM, ...) _
l ;

Road Navigation Module (my module) Path planner

path

Localization hints Navigation nudges
.......................................... ; Path tracker

l locomotion commands

Robot actuators (legs, wheels, tracks, ...)

Figure 6.2: Revised control architecture diagram: Road navigation module
interfaces with the other parts of the system.
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There are other possible areas where to improve the system, but these do
not seem as important. Or rather, they may further improve the results of
the new local-based system.

® Semantic detection of roads in the top-down contour map and
steering using the knowledge of the road object, not just by the contours
by themselves. This improvement would allow more sophisticated profiles
(distinction of the sides of the road; “middle of the road” defined as the
geometric middle, not as “a place far enough from the edge” and so on).

B Bayesian update model was chosen relatively arbitrarily in this work.
An improvement would be to learn this model by comparing the detection
against some ground truth. Other information could be used for this
model, not only contours but segmentation masks of different areas, the
confidence of the segmentation output, or OpenStreetMaps as a prior.
One mistake that is present in the current implementation is that the
lack of detected contour automatically implies that no contour is present
at that particular place. That may not be true in the case of occlusion.
Such occlusion may be extracted from the segmentation masks, and the
top-down Bayesian costmap should be updated accordingly. The lack of
this functionality did not pose an issue on our dataset.

® Absolute localization hints may be provided by this module when it
detects a road in the camera. The position and heading of the road may
be compared with the map data obtained from OpenStreetMaps, and if a
similar road is found in the OSM data, the robot may readjust its belief
about its current heading or position to minimize the inconsistencies
between these two data sources.
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