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Abstract

This bachelor’s thesis aims to enhance
an established ball and beam system by
introducing a novel mode named Flying
Ball and Beam. A designed hybrid sys-
tem incorporates three distinct mathemat-
ical models representing different ball and
beam movements. The hardware model is
derived from the Flying Ball in Hoop lab-
oratory model established at FEE CTU,
which was modified and updated to create
the Flying Ball and Beam. A visualization
is developed to enable the verification of
each mathematical model. Subsequently,
three balancing tasks are implemented in
Matlab and Simulink and tested on the
real model. Matlab and Simulink are the
principal software tools utilized in this
work. The work culminates in writing
documentation detailing the setup and
utilization of the new laboratory model.
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Abstrakt

Tato bakalarska prace si klade za cil rozsi-
Fit znamy systém kulicka na tyci o rezim s
nazvem Létajici kulicka na tyci. Navrzeny
hybridni systém zahrnuje tfi matematické
modely predstavujici razné pohyby ku-
licky na tyc¢i. Hardwarovy model vychéazi
z laboratorniho modelu Létajici kulicka
v obrud navrzeny na FEL CVUT, ktery
byl modifikovan s cilem vytvorit novy mo-
del Létajici kulicka na tyci. Vytvorena
vizualizace systému umoznuje ovéreni ma-
tematickych model hybridniho systému.
Nasledné jsou implementovany tri tlohy
vyvazovani v prostredi Matlab a Simulink
a otestovany na redlném modelu. Matlab a
Simulink jsou hlavnimi néstroji pouzitymi
v této préaci. Prace je zakoncena dokumen-
taci, kterd popisuje nastaveni a spusténi
tohoto laboratorniho modelu.

Klicova slova: Kulicka na tyci,
Modelovani systému, Hybridni systém,
Vizualizace, Uloha vyvazovani

Preklad nazvu:
na tyci

Systém létajici kulicka
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Chapter 1

Introduction

The ball and beam system is a classic and well-known problem in control
engineering, widely used as a benchmark for developing and evaluating control
strategies. The system has been described by a well-known control systems
researcher Peter E. Wellstead, who has extensively studied different control
systems, including the ball and beam system. He has made significant
contributions to its analysis and control; see [1] and [2].

Wellstead describes the ball and beam system as an example of a control
system that provides a simple and intuitive way to understand the principles
of feedback control while representing a difficult open-loop unstable control
problem. The system, depicted in Figure 1.1a, consists of a beam linked
directly to a motor shaft or a linkage connecting the beam and a cam driven
by a motor. The ball rolls freely on the beam, and the ball’s position is
controlled by varying the angle of the beam.

Another well-known system described by Wellstead is the ball and hoop
system [3]. The system, seen in Figure 1.1b, contains a ball that can freely
rotate within a hoop connected to a motor that can apply torque to it. The
system represents another interesting control system rich in dynamics and
can be, e.g., used to study the dynamics of certain liquid slosh problems.

Based on the ball and hoop design, a system called Flying Ball in Hoop
was created at FEE CTU and originally developed by the AA4CC! group
members Jifi Zemének and Martin Gurtner in 2017.

The Flying Ball in Hoop system? introduced a more complex task named
flying mode on top of the relatively simple control of the ball in the hoop.
Controlling the hoop’s rotation, the ball could fly inside the hoop, demon-
strating a more comprehensive range of system modeling and control design
possibilities in control engineering.

This bachelor’s thesis aims to expand upon this existing laboratory model.
The Flying Ball and Beam system, which replaces the hoop with a beam
attached to the motor, is heavily based on the Flying Ball in Hoop system
and serves as the master model from which this work proceeds from [4].

LAA4CC, which stands for Advanced Algorithms for Control and Communication, is an
academic research group fostered by the Department of Control Engineering at FEE CTU.

2More information about the Flying Ball in Hoop system, including the system description
and its setup, can be found at https://aadcc.github.io/flying-ball-in-hoop.
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1. Introduction

(a) : Ball and beam. (b) : Ball in hoop.

Figure 1.1: Two examples of control systems studied and described by Peter
Wellstead.

The main objective of this thesis is to create a mathematical model for the
Flying Ball and Beam system, which will incorporate three control modes
and form a hybrid system. The follow-up aims are to design a controller for
balancing the ball in two modes on the beam and projecting the ball from
one place to another within the beam based on a camera used to track the
ball’s position. The Flying Ball in Hoop is photographed in Figure 1.2 while
the Flying Ball and Beam can be seen in Figure 2.1 in Section 2.1 on the
next page.

Resembling the two examples with the flying ball is a similar system called
Butterfly robot [5], whose task is to stabilize a ball in periodic motions on a
beam suggestive of a butterfly’s wings. A similar balancing task could also
be considered a ball on plate system [6], where the ball is balanced on a plate
that can be tilted along axis x and y using a camera in the same way.

Instructions on setting up and using the Flying Ball and Beam system are
described in the system’s documentation, available in the Flying Ball and
Beam GitHub repository. Links to all software source codes I use in this
work, including the thesis repository, can be found in Appendix A.

Figure 1.2: Flying Ball in Hoop system developed at FEE.



Chapter 2

System Description

B 21 System Structure

The Flying Ball and Beam system is divided into two separate units. The
first unit is a user’s computer, and the second is a ball and beam system. The
principal parts of the system are a Raspberry Pi device, a motor, a camera,
and finally, a ball and a beam. Communication is set between the Raspberry
and the user’s computer from which the system is operated. This means
control design and its implementation are performed on the computer and
then deployed on the Raspberry Pi.

Both the camera and the motor are connected to the Raspberry Pi, where
the camera is utilized for detecting the ball’s position. The motor controls
the ball’s position by altering the beam’s angle using the camera’s output.
Constituent parts of the system mentioned above are minutely described in
Section 3.1.

Providing that contact is ensured, a dashed line in Figure 2.2 shows
coordinates of the ball’s center of gravity representing the possible ball
trajectory around the beam.

Figure 2.1: Flying Ball and Beam system developed at FEE.



2. System Description

Figure 2.2: Possible trajectory of the ball on the beam.

Dimensions of the ball and the beam are presented in Figure 2.3 with pa-
rameters noted in Table 2.1, where a variable index 1 marks out a beam
parameter, whereas an index 2 is a ball parameter.

For simplicity and clarity, the beam groove will not be considered for the
modeling tasks and will be disregarded in all schemes. This simplification
proffers one to consider the distance from the ball center to the beam center
pivot as r1 + ro in the middle of the beam. This distance is also relevant for
the ball-beam distance along the rounded part of the beam. The beam length
dy from the parameters table is computed as dy = 1 — 2ry.

Finally, I assume the gravitational acceleration to be g = 9.807 ms™2.

Mg
e e,
o' 2 ;{gl Ihw
C e

L wy

Figure 2.3: Significant system parameters including dimensions, masses, and
frictions.

system part | parameter symbol value unit
mass m 64 g
length Il 204 mm
length di 170.5 mm
beam width w1 20 mimn
height hy 345 mm
radius 1 17.3 mm
groove g1 3 min
mass ma 32.7 g
ball diameter do 20 mim
radius 79 10 mm
beam-ball height hio 24.3 mm

Table 2.1: Enumerated parameters of the system.



Chapter 3

Hardware and Software

. 3.1 Hardware

The Flying Ball and Beam system consists of a baseboard with a motor holder
and an electronics box. The board is a laser-cut plexiglass board coated with
matte black paint. A controller and a motor from the MJBOTS company
are powered by 24 VDC and are mounted on a holder made of PET plastic.
A beam that can freely rotate is attached directly to the motor shaft. The
beam has a groove around its whole perimeter in which a metal ball rolls.
Two rubber bands are stretched around the perimeter on both sides of the
beam serving as high-friction rails and preventing the ball from bouncing in
the groove.

The electronics box is a wooden case built from individual rectangular
sides and houses a Raspberry Pi, powered by 5 VDC via a USB-C cable.
The box also includes a small area to store the ball with additional ones. A
plexiglass is used as a cover keeping the box away from possible dust. The
last component of the system is a Raspberry camera attached to the box’s
front side and connected to the Raspberry.

A scheme in Figure 3.1 shows how these key hardware components are
connected, forming the Flying Ball and Beam system. Details about the
electronic components are mentioned below.

® Raspberry Pi — The fundamental system constituent is the Raspberry
Pi Model 4 B with a 32-bit Raspberry Pi OS installed. T discovered
that a 64-bit operating system could not be used as it does not support
the picamera package in Python, which is necessary for the RaspiCam
camera operation. The Raspberry is connected to the user’s computer
by an ethernet cable. One can then communicate with the Raspberry
via an SSH connection from the computer’s terminal window. Due to
heating issues, the passive cooling on the Raspberry was insufficient, and
I had to add a Raspberry Armor Fan case to cool the device.

® MJBOTS motor — For spinning the beam, I use an MJBOTS Moteus
high-performance 5208 brushless motor attached to the motor mount on
the baseboard.



3. Hardware and Software

8 MJBOTS controller — The motor is controlled using a controller named
MJBOTS Moteus r4.11. The communication between the Raspberry and
the Moteus motor is arranged by an MJBOTS FDCANUSB device, which
provides a USB 2.0 interface to a CAN-FD bus. This setup connects the
controller to the Raspberry Pi via a USB-A port.

® RaspiCam — The RaspiCam module consists of a Raspberry Pi cam-
era and two rings of LEDs. Twenty-four LEDs, powered by 48 VDC,
illuminate the scene, resulting in a better input image. The camera is
connected to the Raspberry Pi via a ribbon cable.

B 3.1.1 System Modification

Initially, the Flying Ball and Beam system fully adopted the hardware setup
from the Flying Ball in Hoop platform except for the beam. It used a brushless
motor and a controller from the company ODrive to spin the beam.

The motor should have been able to be controlled in three different modes:
positional, velocity, and current mode. Even with the help of the ODrive
documentation and its online community discourse with various tutorials, 1
could not resolve how to enable the velocity or current mode. I could only
control the motor in the positional mode, which allows one to set a position
the motor is supposed to reach. Being unable to use the motor in the current
mode could potentially introduce significant limitations in future system
control, so I had to find an alternative for the ODrive gear.

Eventually, I replaced the original gear with an MJBOTS motor and
controller used in other AA4CC projects. In this case, I could easily set up
both positional and current modes in the controller and control the motor.

The motor change meant I had to redesign the beam, as the Moteus motor
has different mounting points than the original motor. I designed the beam
in Fusion 360, a 3D CAD software developed by Autodesk. The beam design
can be found in the system’s repository with an illustration in Appendix A.

,,,,,, [— MJBOTS Motor
» 24V ﬁ
|| Raspi
»------ — ® Shutdown
PC }---- P — RaspiCam
2$V 77777 ] Ca@era
48 V Light

Figure 3.1: Scheme of the system’s architecture with its principal components.!

'Raspberry and MJBOTS company logo images were downloaded from their websites
https://www.raspberrypi.com/trademark-rules and https://mjbots.com.

6


https://www.raspberrypi.com/trademark-rules
https://mjbots.com

3.2. Software

. 3.2 Software

The principal software tools employed in this work are Matlab and Simulink.
Matlab is used to develop a mathematical model of the Flying Ball and Beam
system, model visualization, and identification of parameters. Simulink is
used to design and implement control for the ball and beam system. Using
Simulink, one connects to the Raspberry, which controls the system.

For a Simulink—Raspberry communication, I use the ERT Linux, which
stands for Minimalist Simulink Coder Target for Linuz. This software, created
at FEE, permits Simulink-generated code to be compiled, deployed, and
launched on a Linux device - in this case, on the Raspberry Pi.

For motor control, I take advantage of a Moteus API in Simulink devised
by Loi Do. The interface includes a System Objects block which allows the
user to control the motor within the Simulink workspace.

Lastly, based on image processing, I use RaspiBallPos in Python to detect
the ball’s position created at FEE. RaspiBallPos, previously utilized in the
Flying Ball in Hoop system, enables one to use a System Objects block in
Simulink to obtain a real-time ball position from the image.

The Raspberry can be shut down with a button and a Python script,
enabling the Raspberry shutdown service introduced in the Flying Ball in
Hoop system. The button is connected to the Raspberry via a GPIO pin.

B 3.3 Simulation Setting

The sampling time of the RaspiCam, including the image processing, is set
to 30ms. Initially, I assumed that the whole system’s simulation had to
be performed using the same sampling time. However, the control of the
balancing tasks was far from fast and smooth with this sampling time.

I then discovered that the simulation sampling time could be chosen
independently on the RaspiCam, meaning that the system would receive the
same ball’s position for the duration of one sampling step of the RaspiCam.
The sampling time set to 1ms was too high and caused aliasing. The
simulation frequency was thus empirically set to 5ms.

B 34 RaspiCam Setting

Before using the RaspiCam, it is necessary to calibrate the camera to capture
the ball’s position on the beam properly. After turning on the camera with
a command in the Raspberry terminal window, the camera is calibrated in
a web interface. In the interface, the user can set the number of objects
appearing in the image, including their parameters, such as radius. Then,
one can adjust the color and white balance of the objects in the image while
watching a real-life masked output image from the camera.

7
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B 35 Camera Homography

The output of the RaspiCam is pixel coordinates x and y of the ball’s position
in the image with the origin pixel [0,0] in the bottom right corner and
resolution of 480x 480 px. The Raspberry camera delivers the image upside
down, resulting in having the origin pixel in the image’s bottom right corner.

I used the camera homography H to map the image coordinates to the
world coordinates. The homography is calculated based on a set of calibration
points, which are the coordinates on the image plane x and their corresponding
world coordinates X complying

X = Hx. (3.1)

The calibration points are depicted in Figure 3.2. For the homography
calculation, I used a homogeneous estimation method based on singular value
decomposition (SVD) [7].

Since the beam can rotate, only two colorful markers were individually
stuck on one of the two projection points included on one side of the beam.
The image plane coordinates were captured for 10s, then the median value
was chosen as the output from the RaspiCam slightly fluctuated. The world
coordinates were calculated using goniometric functions with the origin in the
center pivot of the beam. Although only four points were necessary, I decided
to get twelve of them to obtain better accuracy. The world coordinates were
obtained by making combinations from a set of lengths D = {30,60} mm
and a set of angles A = %”, k € {0,...,5}. I used a Matlab script named
hom_calib available in the RaspiBallPos repository to get the homography.

[480,480]
o o
o o .
( o o e o o )
o o
‘o . o
[0,0]

Figure 3.2: Calibration points utilized for the homography with the beam in
positions where the markers were captured.



Chapter 4

Parameters ldentification

Having measured parameters describing the Flying Ball and Beam system
enumerated in Table 2.1, I will now determine the remaining unknown
parameters: motor friction by and ball friction bs. I will also verify the motor
torque by comparing the input reference torque with the real torque spinning
the motor with the beam.

. 4.1 Motor and Beam Friction

Regarding the ball friction coefficient bo, I consider the same ball friction
previously computed for the Flying Ball in Hoop since I use an identical ball
as in the Flying Ball in Hoop system, and the beam is printed from the same
material as the hoop. The friction by is thus given by

by = 2.574- 10 Nmsrad™'. (4.1)

The friction of the Moteus motor by is left to be determined. For its estimation,
I used a method called Grey-Box Model Estimation in Matlab, which enables
one to estimate coefficients of linear and nonlinear differential equations.
Considering the motor friction linear, I derived the differential equation
representing the motor from a bond graph!, as shown in Figure 4.1.

blI£
s, T 1 ———R:b
x P
I
£ 1
pll

IZIl

Figure 4.1: Bond graph model of the motor.

'The bond graph was generated using a LaTeX Bond Graph Package created by Martin
Gurtner. The package is available at https://github. com/martingurtner/mgbondgraph.
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4. Parameters Identification

The differential equation is derived from the bond graph as

;bz—l%lp—i-T, (4.2)
1

where p is generealized momentum and 7 the input torque. Firstly, I had to
create a rectangular waveform of various input torques 7 € [—0.05,0.05] N m,
which spun the motor. Considering the equation (4.2), I decided to estimate
not only the motor friction b; but also the moment of inertia of the beam I;.

Recording the input torque waveform and the spinning motor’s correspond-
ing velocity in Simulink, the two parameters were estimated using idnlgrey
and nlgreyest functions. Firstly, idnlgrey created a linear grey-box model
of the motor and nlgreyest then estimated the two coeflicients.

After that, I used a different set of input torques to simulate the motor
model with the estimated parameters using ode45, a numerical method for
solving differential equations, and to spin the hardware motor. Comparing
the velocities from the simulation and the real data, I then slightly adjusted
the parameters’ values. The motor friction b; and moment of inertia of the
beam I; are thus given by

by =15.893-10"*Nmsrad™?  and I, =8.860 10 *kgm?. (4.3)

A comparison of the velocities from the simulation and the recorded real data
is shown in Figure 4.2.

The inaccuracy in the estimation is likely caused since I approximated the
friction with a linear parameter to model the motor and did not consider
cogging torque characteristic of a brushless DC motor. The model is, however,
helpful in estimating the behavior of the Moteus motor and assessing the
unknown parameters. Regardless of the simplified model, I will consider the
estimated parameters to enumerate nonlinear models of the hybrid system
developed in Chapter 5.

B 22 Motor Torque Verification

In this section, I want to verify that the real torque, which spins the motor,
corresponds to the input reference torque. I compare these two quantities
with a digital force gauge named SHITO FS-20N.

To compute the torque 7 from the force of the motor F' measured by the
force gauge, I consider an equation

T = Flsin(v), (4.4)

where [ is the distance measured from the beam center pivot to a point where
the force is applied to the sensor of the force gauge. Angle v is the angle
between the beam and the gauge’s sensor. I used a rectangular waveform with
different amplitudes 7 € [0.02,0.7] Nm as a reference torque. The lower limit
of the interval is the minimum torque required to spin the motor. Torque
7 =0.01 Nm was too low and could not move the motor. The upper limit

10



4.2. Motor Torque Verification

7 = 0.7 Nm was chosen because I could no longer hold the beam and carry
out the force measurement with the device for higher torques.

The force was measured for [ = 0.06 m with the beam in the vertical
position so that ¢ = 5. I verified that the measured force corresponds to the
reference torque. The slight inaccuracy is likely caused by the force gauge not
being perfectly rectangularly aligned with the beam while measuring. The
comparison of the reference and measured torque is shown in Figure 4.3.

20+ = Real motor
= Motor model

Velocity [rad/s]

Time [s]

Figure 4.2: Comparison of the simulated model’s velocity determined using the
identified parameters and the real motor’s velocity.

]
—
E06F s 1
Z, °
B o !
o
5045 s 1
o ] °
g
S (]
§ 0.2} . 1
[ ]
= o® e Reference values
° ® Measured data
0 [ L I I L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Reference torque [N m]

Figure 4.3: Comparison of the input reference torque and the real torque measured
with the force gauge.
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Chapter 5
Hybrid System

B 51 Hybrid System Description

As the introduction mentions, I will incorporate three modes describing
different ball motions on the beam. The three separate modes signify creating
a system that contains discrete-valued signals with if-then-else conditions and
also involves real-valued signals. Such a system is called a hybrid system and
describes dynamical interactions between continuous and discrete signals in
one common framework [8].

The modes, which represent the components of the hybrid system, are
namely a balancing mode, a revolving mode, and a projectile mode. All three
modes are portrayed in Figure 5.1. The aim is to create a model of the hybrid
system, which will be able to transition between these modes depending on
the ball’s position in relation to the beam. Figure 5.2 exhibits a schematic
diagram comprising all three modes of the model, with index ¢ denoting a
specific mode and +;; signifying a guard condition for transitioning from the
current mode 7 to the next mode j. All three modes will be delineated now
in detail below. To describe the hybrid system, I distinguish two parts of the
beam: the flat part of length d; and the rounded part of radius .

@
C . D)

(a) : Projectile mode. (b) : Balancing mode. (c) : Revolving mode.

Figure 5.1: Three modes forming the hybrid system.

M3 >0 Y12 > 0

Projectile mode Balancing mode Revolving mode

S v31 > 0 ; 2

o1 > 0

Figure 5.2: Diagram of the hybrid system, including the guard conditions.

13



5. Hybrid System

® Balancing mode — This is the fundamental mode of the hybrid system,
where the goal is to balance the ball anywhere on the flat part of the
beam. Depending on the RaspiCam positional output of the ball, the
motor with the beam tilts and moves the ball into the desired position.

The system always begins with this mode on start-up and then, if desired,
changes the mode to one of the other two. The system enters this mode
before and after the revolving, and the projectile mode run.

® Revolving mode — This mode commences with a slight beam tilt with
two possible scenarios when the ball approaches one of the beam’s ends.
The first option is that the beam makes a half rotation (7 rotation), and
the ball simultaneously traverses the rounded part and reaches the other
flat part of the beam. The balancing mode is activated afterward to
balance the ball on the beam. The second option is to balance the ball
on the rounded part in the beam’s vertical position.

It is essential that the ball stays in contact with the beam and does not
leave the groove throughout any of the two motions.

8 Projectile mode — With a rapid beam tilt, the beam projects the ball,
starting a free-fall motion. The beam returns to its horizontal position.
Before the ball touches the beam, the beam slightly tilts in the same
direction as the landing ball to dampen the fall. The balancing mode is
then activated to balance the ball.

The ball can be projected from any point on the beam. The landing
point on the flat part of the beam is determined based on the tilt causing
the projectile motion.

Derivations of the model motion equations will be described in Sections 5.2,
5.3, and 5.4. T will use the Fuler-Lagrange formalism to derive the equations
and model the individual modes. Before delving into the derivations, I would
like to break down the selection of the coordinate systems in which the models
will be described.

Firstly, polar coordinates are an obvious choice for the revolving mode,
as the mode represents a circular motion. The polar coordinates will also
be used for the balancing mode. Although expressing all three modes in
the same coordinate systems would be convenient, Cartesian coordinates are
more suitable for the projectile mode because the mode’s motion equations
will be linear. With this choice of coordinates, one has to reconcile himself to
a transformation of coordinates when transitioning between two modes with
different coordinates. The transformations will be described in Section 5.5.

To simplify the model equations, I will not state the time dependence
of generalized coordinates. Also, I will not display the angle unit rad for
enumerated angles for the rest of the text.

For a beam moment of inertia I1, I assume the beam to be a bar of length
1 and mass my with the axis of rotation going through the center pivot of
the bar. For the ball, I consider a moment of inertia I of a homogeneous

14



5.2. Balancing Mode

sphere with radius r2 and mass mgy with the axis of rotation going through
the sphere’s center of gravity. The formulas and values for both moments are

1

L= milf =2.220- 10 kgm®, (5.1)
2

Iy = Zmyr} = 1.308 - 10~ kgm®. (52)

Having both estimated and calculated the beam moment of inertia, I can
now draw a comparison between the estimated (4.3) and the computed (5.2)
value. One can see that the moments’ orders correspond; the estimated value
is, however, four times bigger. For the following computations, I will consider
the moment of inertia discovered with the Grey-Box Model Estimation as
the formula (5.2) is only a theoretical approximation neglecting the exact
dynamics of the bar.

B 52 Balancing Mode

In this section, I will derive the motion equations for balancing the ball on the
beam based on [9]. I choose length d and angle 6 as generalized coordinates,

resulting in q = (9 d)T. The coordinate d corresponds to the distance of
the ball center to a position where the ball is situated in the middle of the
beam’s flat part. Angle 6 is the angle of the beam w.r.t. the horizontal axis
of the world frame. The coordinates are shown in Figure 5.3.

The kinetic co-energy is

1. 1 . . 1. .
7*:§AM+§mxf#+d%+§bw+¢ﬁ. (5.3)
A rotation of the ball ¢ can be expressed as
d
p=—++0. (5.4)
2

The potential energy is given by
V = magh, (5.5)

Figure 5.3: Balancing the ball on the beam denoted with the generalized
coordinates 6 and d and the moments of inertia I; and Is.
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5. Hybrid System

where

h = dsin(0) + (r1 + r2) cos(6) . (5.6)
The dissipation function of the ball and the beam is
1. . 1
D = —b10* + ~bogp*. .
50107 + 5o (5.7)
Considering the Lagrangian
L=T" -V, (5.8)

I can now write the Euler-Lagrange equations
doL 0L 0D

TRl a7 Iakd (59)
doL oL oD

aoL o0& O0Y _ 1
dt od 8d+8d 0, (5.10)

where 7 represents the external torque applied to the beam from the motor.
I will not state the differential equations directly as I think expressing the
equations in a matrix form will be more apparent. For this purpose, I use a
dynamic equation

M(q)4 + C(q,q)q + G(q) = Q, (5.11)

where M is the inertia matrix, C is the Coriolis matrix, G is the gravity
vector, and Q is the vector of external forces.
Substituting the equations (5.9) and (5.10) into the matrices, one gets

i I
L +41 + m2d2 2*2
T
M(q) = I L ,
2—= ") + mo
L T2 5
- by
b1 + by + 2modd 7
C(q,q) = , 20,
by mgfd b% (5.12)
L T2 5
N [magd cos(6) — mag(r1 + r2) sin(6)
G(q,q) = g sin(6) ;
1
Q=|y|

Bl 5.2.1 Balancing Mode Linearization

Unlike the projectile mode, the balancing mode’s equations are nonlinear.
This means that the mode linearization in a relevant equilibrium point is
required to design a control for the system in this mode. The linear model
will be described using a state-space representation of the form

X = Ax + Bu,

5.13
y = Cx + Du, ( )
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5.3. Revolving Mode

. AT
where x = (0 0 d d) is the vector of the system’s states and u the
system’s input torque. Deriving a second-order system from the matrices
(5.12) and creating the state-space model, one can linearize the model around

-
the equilibrium point X = <() 0 0 0) . The enumerated state-space
matrices of the linearized model are

0 1 0 0 0
A | 11881 —0.484 —360.420 —3.720 B |1123.9
0 0 0 1| 0o |’
|—7.073 —0.166  2.060 —16.847 —6.423| (514)

01 0 0 0
C=10 0 0 11’ D_M'

B 53 Revolving Mode

For the revolving mode, a sketch of the ball in a revolving motion is shown
in Figure 5.4 with angles o and 8 chosen as generalized coordinates having

T
q= (9 oz) . Again, angle 0 is the angle of the beam w.r.t. to the horizontal
axis of the world frame. Angle « is the angle of the ball center position w.r.t.
the center of the beam’s rounded part.

The ball position on one of the beam’s rounded parts can be determined
with the generalized coordinates, where the position of the rounded part’s
center is labeled with coordinates x; and y;. Knowing this position, one
can then define the ball center position with coordinates z9 and 2. Both
positions are highlighted with a light blue mark in the figure.

o

Figure 5.4: Revolving ball on the beam denoted with the generalized coordinates
and « and the moments of intertia I; and Is.
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5. Hybrid System

The computation of the coordinates is given by

d d
xr = ?1 cos(6), Yy = ?1 sin(#) , (5.15)
T2 = x1 + (11 +712) cos(f + a) Y2 = y1 + (r1 +r2)sin(f + a).
The ball angle ¢ can be expressed as
p=0+a—. (5.16)
2
The kinetic co-energy is
P T 9 ov  Loos o
The potential energy is
V = magys . (5.18)
The dissipation function of the ball and the beam is
Loz 1 o

Reckoning up the Lagrangian (5.8), I can compute the Euler-Lagrange equa-
tions of the generalized coordinates 6 and «, similarly to (5.9) and (5.10).
The matrices of the two differential equations describing the revolving motion
are

_ |mar ma2
M(a) = a1 M2
b1 + ba — maRd; sin(a)d bgr—l — ng% sin(a)&
) r
C(qa q) = b 1 Rdl . 9 2 b T% )
| b2 + ma 5 sin(«) gg (5.20)
[ d
G(q,q) = mgggl cos(#) + magR cos(0 + «) 7
i magR cos(f + )
1
Q = 0 7—7
where
R= L+ 712,

d2
myy = Iy + 45 + moR% + mgzl + maRd; cos(a) ,

oL 2 &
muy = 2L+ ma R ma R cos(a) (5.21)

d
mao] = 2[211 +moR? + ngEI cos(a),
T2

2
1 2
Moo = [Qﬁ + moR*.
2
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5.4. Projectile Mode

Bl 5.3.1 Revolving Mode Linearization

For the revolving mode, the required linearization of the state-space descrip-
tion using the matrices (5.20) is analogous to the balancing mode linearization.

. T
The vector of the system’s states is x = (9 0 « d) and the equilibrium

T
point is X = (% 00 O) . The enumerated state-space matrices of the

linearized model are

[0 1 0 0 0
A | 3916 0.023 —25.045 0788 | g | 10923 |
0 0 0 1 0
295.617 —4.812 406.644 —11.085 —4061.2)  (5:22)
0 1 0 0 0
C_0001]’ D_M'

B 5.4 Projectile Mode

For the projectile motion of the ball, a ball position x, y and a ball angle ¢

will be considered generalized coordinates meaning q = (x Y go) . Angle
 is the angle of the ball w.r.t. the vertical axis of the ball frame.
The kinetic co-energy is

1 1
T = 5mQ(jc2 +9%) + §IQ¢2. (5.23)
The potential energy is given by
V =magy. (5.24)
This model will not consider the ball’s air resistance in the free-fall motion.
Because of the mass and the size of the metal ball, the air resistance can be
omitted without any detriment to correctness resulting in D = 0.
With (5.8), the Euler-Lagrange equations are

meZ =0, may +mag =0, Lg=0. (5.25)

The equations (5.25) can be modified to get their final form. The equations
of the ball in the free-fall motion are thus given by

i=0, j=-g, $=0. (5.26)
As I mentioned in the description of the hybrid system, the choice of the
Cartesian coordinates for this mode signifies that linearization of the projectile

mode is unnecessary because the equations (5.26) are already linear.
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5. Hybrid System

Figure 5.5: Projecting the ball on the beam denoted with the generalized
coordinates x, y and ¢ and the moments of inertia I; and I5.

. 5.5 Coordinates Transformation

Having computed the homography in 3.5, the origin of the world plane O is
set to the center pivot of the beam. To control the Flying Ball and Beam
system, one has to compute two transformations to obtain the generalized
coordinates q necessary for the balancing, revolving, and projectile modes.
As the angle 6 is obtained directly from the motor block in Simulink,
the length d is the only unknown coordinate for the balancing mode. The
coordinate d is considered to be a signed distance, which is given by

T
_ [cos(8) AN

() (6)- () 2

where x and y are the Cartesian coordinates of the ball. The point P is

calculated as
P 0
Tl =R , 5.28

where R is the 2-dimensional rotation matrix. For the revolving mode, the

angle « is given by
z— P,
a = — atan , 5.29
= (520

0
(?) =R (ch) : (5.30)
v 2

The negative sign in (5.29) is added because of the angle « orientation in
Figure 5.4. No transformation is needed for the projectile mode because the
ball position x and y provide the generalized coordinates.

where
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5.6. Transitioning between Modes

The ball rotation ¢ cannot be precisely determined or computed during
the projectile motion as the camera’s output is only 2-dimensional. Still, the
rotation of the ball could be estimated, which is, however, out of the scope of
this work.

B 56 Transitioning between Modes

The hybrid system was implemented using a Stateflow diagram in Simulink.
Stateflow (SF) provides a graphical language that includes state transition
diagrams, flow charts, state transition tables, and truth tables. One can use
Stateflow to describe how Matlab algorithms and Simulink models react to
input signals, events, and time-based conditions [10].

The SF diagram of the hybrid system consists of three states, which
correspond to the three modes of the Flying Ball and Beam system. The
states are represented by the state-space description of the modes, while a set
of guard conditions triggers the transitions between the states (see Figure 5.2)
analyzed below. Every transition includes the guard condition and generalized
coordinates transformations between the leaving and the upcoming state.
The initial values of the upcoming state’s transformed coordinates are marked
with index 0.

® Transition v — The system switches from the balancing mode to the
revolving mode the moment the ball reaches the end of the beam’s flat
part, where the ball starts the revolving motion. The modes transition
is executed if the condition ~y;9 is satisfied:

d
m2(q) = |d] = 5 >0, (5.31)

m
oy = :l:§ s
where the sign of ag depends on the direction of the ball’s movement.
If the ball moves towards the right end of the beam, the distance d is
positive, and the sign of «q is positive, too. For the ball moving towards

the left, it is vice versa. The angle 6 remains unchanged.

® Transition v9; — The system switches from the revolving mode back
to the balancing mode as soon as the ball finishes circumscribing the
rounded part of the beam and returns to the flat part of the beam. The
modes transition is executed if the condition 91 is satisfied:

v
Y21(q) = |af — 5> 0, (5.32)
d
%:ié,

where the sign of dy depends on the direction of the beam’s rotation.
If the beam rotates clockwise, the sign of dj is positive, and vice versa.
The angle # remains unchanged.
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5. Hybrid System

® Transition v;35 — As the description of the projectile mode states, the
ball can be projected from any point on the beam’s flat part. As soon
as the ball approaches the desired point, where the ball is released, the
system switches from balancing to projectile mode. The modes transition
is executed if the condition ~;3 is satisfied:

v3(q) =d+s—d, >0, (5.33)
xg = dcos(f) — higsin(f),
yo = dsin(6) + hia cos(0) .

where d), is the distance between the desired release point and the center
ball position on the beam. The distance s is a non-zero threshold, which
signifies the approach distance to the release point.

® Transition y3; — When the ball approaches the beam after reaching
the apex point of the projectile motion, the system switches from the
projectile mode back to the balancing mode. This switch sets in right
before contact between the ball and the beam emerges. The modes
transition is executed if the condition ~3; is satisfied:

’}/31((]) =s—p>0, (534)
do =,
00:07

where p is the distance between the beam and the ball, and s is a non-zero
threshold. Calculating a minimum distance between a line segment and
a point represents the distance p between the ball and the beam. The
line segment corresponds to the flat part of the beam, and the point
is the ball position. The calculation of this distance is done by using
vectors [11].

When the ball lands back on the beam, one can presuppose that the
beam angle would be close to zero, which signifies

0~0 — dr~ . (5.35)

. 5.7 Modes Simulation

To simulate the individual modes of the hybrid system and verify the hybrid
system’s correctness, I intended to use Runge-Kutta 4th and 5th order method.
Beginning with the balancing mode, I tried to simulate the nonlinear model
of the mode described with the state-space vector.

To simulate the model, I used ode45 with a time span of the system’s
sampling time. The simulation, however, proved to be unsuccessful as the
simulation did not finish. To simulate the model, I then utilized Fuler-
Lagrange tool package', which enables one to generate a state-space vector

!The package can be downloaded from MathWorks File Exchange site: https://www.
mathworks.com/matlabcentral/fileexchange/49796-euler-lagrange-tool-package.
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5.7. Modes Simulation

of the model from a kinetic co-energy, potential energy, and the dissipation
function. Using this tool, the simulation of the model emerged to be successful;
for the mathematical model of the balancing mode, both frictions b; and
bs were fine-tuned to match the real model. A comparison of the simulated
mathematical model and the real model responses to an initial state xgn,0 =

T
(0 0 d O) , where d = 30 mm, is shown in Figure 5.6. At the beginning
of the simulation, the ball is placed on the beam to the distance d. The beam
overbalances because of zero input torque, and the ball rolls down the groove.

T T T
—— Mathematical model y
——Real model

o

o
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Ball distance [m]
o
o
(o]

0.02 Il Il Il Il
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(a) : Ball distance d.

T T T
—— Mathematical model
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(b) : Ball velocity d.
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_1 H{———Real model 3

Beam angle [rad]
<}
ul

0 005 0.1 0.15 0.2 0.25 03 035 04
Time [s]

(c) : Beam angle 6.

o
|

'
N

[|=—Mathematical model
—Real model

Beam velocity [rad/s]
N

0 005 0.1 0.15 0.2 0.25 03 035 04
Time [s]

'
()]

(d) : Beam angular velocity 6.

Figure 5.6: Comparison of the simulated mathematical model and the real model
responses to the initial state xgm,o.

23



5. Hybrid System

The simulation verifies the mathematical model of the balancing mode com-
pared to the real model. While the ball distance d and beam angle 6 corre-
spond, the difference in the ball velocity d and the beam angular velocity 9
of the mathematical and real model appears to be more significant than I ini-
tially assumed. This might be because the mathematical model is not entirely
accurate in describing the ball and beam motion as it relies on simplifications
and approximations in defining the exact mode’s dynamical behavior. The
second reason for this difference could be an improperly chosen simulation.
Using the input torque in the simulation and simulating the ball motion on
the beam could demonstrate the model’s behavior more accurately.
Simulating the revolving mode, I wanted to verify the model’s behavior

for the initial state xgn,o = (g 00 0)T with no input torque as this
state represents an unstable equilibrium of the model. First, the angles and
angular velocities of the ball and the beam are zero and remain constant. In
t = 2.5s, the ball and the beam leave the equilibrium, ending up in a chaotic
motion. This behavior was expected as the model reflects only the ball’s
motion with the ball angle o € [~F, §]. Because of this uncertainty in the
model’s correctness, the graphs are not presented.

The simulation of the projectile mode is more straightforward as the model
is linear. For the simulation of the projectile mode, the initial state is

T
XPM,0 = (0 0y 00 0) , where y = 0.1m. Omitting the ball’s air

resistance, the model only depends on the gravitational acceleration g. The
mathematical mode simulation shows the ball’s free-fall motion in Figure 5.7.

©
i

0.05

Ball position y [m]

o

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time [s]

Figure 5.7: Simulated ball projectile motion response to the initial state xpu,0.
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Chapter 0

System Visualization

The particular modes of the system are visualized using Matlab. The ball
and the beam, portrayed using different geometric shapes with 1inspace, are
initially drawn by £ill function. The ball comprises four quarter-circle arcs,
and two semicircles with two line segments are used to portray the beam. A
small circle in the beam’s center marks the beam’s center pivot point.

The portrayal of the two system’s objects is not deleted and redrawn. Still,
the properties of the objects are changed using the set function to increase
the visualization’s performance. The changes in their properties are then
updated with drawnow. The visualization of the ball with the beam both in
the initial position on the beam’s flat sides and in the projectile motion is
shown in Figure 6.1.

Both objects are updated on every iteration with a transformation matrix.
The beam’s parameter is the angle 6, and the ball’s parameters are the
Cartesian coordinates x and y and the angle ¢.

To visualize the Flying Ball and Beam system, a class named Trajectory
prepares the input data of the visualization. The class is initialized with the
system’s generalized coordinates 6 and d, the input torque, and the time
vector.

0.102 1 0.102 -

World plane Y
o
°
World plane Y
o

-0.102 1 1 -0.102

-0.102 0 0.102 -0.102 0 0.102
World plane X World plane X

(a) : The ball and the beam in a steady state (b) : The ball and the beam in a projectile
position with 6 = 0. mode motion with § = — /6.

Figure 6.1: Visualization of the Flying Ball and Beam performed in Matlab.
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6. System Visualization

For the balancing mode, the angle ¢ is calculated from the generalized
coordinates d and 6 using the equation 5.4. The time is sampled with
the system’s sampling time, and the coordinates and the input torque are
interpolated with interpl. Lastly, the ball coordinates x and y are calculated
using a rotation matrix based on the two generalized coordinates.
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Chapter 7
Control Tasks

. 7.1 Cascade Motor Control

As the subsection 3.1.1 mentions, the motor can be controlled either in a
positional or a current mode. Considering the positional mode, the input to
the motor’s Matlab System Object in Simulink is the desired angle 6 of the
beam, whereas, for the current control, one sets the input torque .

The positional mode is, however, not convenient for control tasks such as
balancing the ball. With this motor setting, I did not manage to control and
balance the ball efficiently in any desired position on the beam. Therefore, I
decided to switch to the current control mode. To control the motor in the
current mode, one has to set the motor PID constants to zero during the
Moteus controller configuration. The configuration is performed using the
Moteus gui named tview, which lets one configure and inspect the state of
the controller.

The current control requires setting a cascade control structure to control
the motor’s torque, i.e., the moment of the motor, by choosing a reference
position. The reference position is the beam angle . The structure comprises
two closed loops, both controlled by a PD controller, where the inner loop is
a moment control loop, and the outer one is a speed control loop.

Initially, I individually implemented the inner loop with one controller and
tuned its proportional and derivative constant. As reference velocities, I used
sine and pulse waveforms with various amplitudes. After I set the inner loop
controller, the outer loop with the second controller was added to the scheme
and tuned likewise.

B 7.2 Flat Part Balancing

The first task of the system control is balancing the ball in any position on the
flat part of the beam so that § = 0. The system’s architecture implemented in
Simulink is depicted in Figure 7.1, and all function blocks used in the control
scheme are described in detail below. Balancing the ball in a desired position
on the beam by following a reference position is displayed in Figure 7.3.
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7. Control Tasks

Ref
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Figure 7.1: Control loop for the flat part balancing.

8 Coords Transform — The ball’s Cartesian coordinates x and y are
firstly transformed to a signed distance d using the equation (5.27).

® Controller — For controlling the ball’s position on the beam, I employed
a PID controller with the following constants

K, =0.0031, K; =0.0021, Kq =0.0029. (7.1)

8 Estimator — As the Section 3.3 states, the sampling time of the Raspi-
Cam is T, = 30 ms, while the system sampling time is 7T}, = 5ms. The
difference between the two sampling times means the ball position is
updated in every sixth sample of the simulated system. With this setting,
the beam could not effectively control the ball’s position, as the beam
tilting was not sufficiently smooth.

This issue was solved by introducing a linear estimator to the scheme 7.1.
For its functionality, I approximated the ball’s motion on the beam with
a linear motion. The velocity of the ball is calculated using the current
position of the ball d. and the previous position d._; from the camera

- dc - dcfl

v T,

(7.2)
The five unknown ball positions between every two camera samples
(position dy is the only known) are then calculated using an equation

d; =d, +ivTy,,  i=0,...,5. (7.3)

The index i is determined by a counter, which always counts to six with
the system’s sampling time and then resets back to zero.

8 Moving Mean Filter — Considering the current and previous values of
the ball distance d. and d._1, I discovered during the control design that
some differences between the two values turned out to be too distinct.
In some cases, velocity v calculated from such a significant change in
the ball position was overly large. The velocity used for the following
five estimated distances did not then resemble the real velocity of the
ball as the ball could be, in reality, slowed down by the beam. The
inappropriately obtained velocity thus resulted in the wrong estimation
of the ball position.

28



7.2. Flat Part Balancing

On that account, I added a moving mean to the control loop, which
limits the vast distances of the ball estimated with the algorithm. This
way, it uses the trend of the ball position and prevents the ball from
moving too fast on the beam.

The moving mean is calculated from the last six distances corresponding
to the length of one sample from the camera. The choice of the moving
mean proved to be an efficient solution for an appropriate estimation
of the ball position and was achieved by using delay blocks in Simulink.
The equation of the moving mean is represented by

1 5
Uj+1 = 6 Z ui,j . (74)
7=0

The comparison of the position from the RaspiCam and the estimated
position with the estimator and moving mean is shown in Figure 7.2.
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Figure 7.2: Comparison of the real ball position captured directly by the RaspiCam
and the estimated position obtained using the estimator and the moving mean.
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Figure 7.3: Balancing the ball in various positions on the flat part of the beam by
following a reference position.
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7. Control Tasks

® Dead Zone — Although the ball remains steady on the beam and does not
move, the distance d fluctuates £0.5 mm around the reference position.
The added dead zone prevents the motor from compensating for such
small fluctuations as well as minor position differences if the ball does
not exactly reach the reference position. The dead zone is thus given by

|det — d] < 1.5mm . (7.5)

B 7.3 Rounded Part Balancing

Balancing the ball on the beam’s rounded part signifies that 6 = 5 with the
aim to control the system so that o = 0, which is shown in Figure 5.4. The
ball’s coordinates = and y are transformed with (5.29) to control the angle a.

Barriers were added to the sides of the beam in the vertical position
preventing the ball from falling. To control the o deviation, I designed a PID
controller with a similar scheme architecture to the one used to balance the
ball in the horizontal position.

However, the control was never efficient and fast enough to steadily hold
the ball in the desired position. I wanted to ascertain thus that controlling
the ball on the rounded part was feasible with this hardware.

At first, I measured the system’s delay, which is the time it takes for the
controller to react to the a deviation. To measure correctly the delay between
capturing and processing the image from the RaspiCam to computing the
regulator’s control input, I switched the simulation sampling time back to
the original value 30 ms and measured two significant times.

I used the motor in the positional mode with a reference position d = 0 mm
and balanced the ball on the beam in its horizontal position. I then deflected
the beam by hand and captured the time of the first angle change df, which
is the motor block output. To get the second time, I measured the time of
the first control input from the controller, corresponding to the motor input.
By subtracting these two times, I got the system’s delay, which is 90 ms.

After that, I measured the time it took the ball to move from the tip of
the beam’s rounded part to a position where the controller could no longer
control it. For that position, I chose an angle v ~ . This revolving motion
was captured by a super slow-motion mode on a mobile phone camera. Using
the OpenCYV library in Python, I calculated the number of frames in the
recorded video and divided it by the slow-motion mode frame rate of the
mobile phone’s camera, which is 960 Hz [12]. The resulting time was 145 ms.
This means that the system has to balance the ball on the beam’s rounded
part with only one sample of the control input provided by the controller.

This signifies that the system’s hardware is unsuitable for such control task.
Considering the system’s delay, one has to take into account the Raspberry
camera’s frame rate, the time it takes to process the image, and the delay in
the communication between the Raspberry and the Moteus controller and the
motor. The most significant improvement would be to use a higher frame-rate
camera and a faster image-processing algorithm.
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7.4. Ball Projecting

. 7.4 Ball Projecting

The third control task is the projectile mode, where the ball is projected by
tilting the beam. The ball performs a free-fall motion and lands back on the
beam. For this task, I assume that the ball’s motion can only be directly
controlled while the ball is in contact with the beam. When the ball starts
the free-fall motion, the motion of the ball is only affected by the gravity
force.

The variable parameters of this task are three different positions of the
beam. The first is the ball’s initial position, and the second is the point where
the ball is released from the beam and projected. The third parameter is the
point where the ball is balanced after landing back on the beam. With these
preconditions, I divided the projectile mode into five sequential motions.

The ball can be projected from any position on the beam; for the following
description of the projectile mode, I assume that the ball is projected from
the left half of the world plane, which implies a negative distance d. The five
motions of the projectile mode are as follows:

# Release point approach — The entire mode starts with the ball moving
from the initial position toward the release point. This maneuver is
executed by the same control algorithm for balancing the ball on the
beam’s flat part.

® Ball projecting — Once the ball approaches the desired release point,
the beam tilts slightly in the direction of the forthcoming projectile
motion so that df is negative. Such a tilt should prevent the ball from
flying in the wrong direction and landing away from the beam because
of the centrifugal force applied to the ball. After that, the motor rapidly
tilts the beam, causing the beam to project the ball, which starts the
free-fall motion.

® Free-fall — After projecting the ball, the beam returns to the horizontal
position so that § = 0, and the ball follows a parabolic trajectory.

® Fall dampening — When the ball approaches the beam, it tilts in the
direction of the ball’s fall to dampen its impact. The function that
calculates the distance between the ball and the beam was introduced in
Section 5.6 and is implemented in PLS_dist.m. The fall dampening is
controlled using the equation (5.34).

®m Ball balancing — After the ball lands back on the beam, the ball is
balanced in the desired position in the same way as in the balancing
mode.

The beam tilt, which projects the ball and the beam’s subsequent return to
the horizontal position, is set directly with a reference position waveform
controlling the beam’s position. The waveform is created as a fractional
function composed of several linear functions corresponding to ramp functions.
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7. Control Tasks

The waveform is designed and can be adjusted by changing parameter k in
each linear function’s equation y = kx + g and the duration of every ramp.
The script for generating such a waveform can be found in create_FF_wav.m
and is depicted in Figure 7.5.

The projectile task is implemented in Simulink. The control scheme consists
of the motor block, camera block, and the particular motions of the projectile
mode described above. The elements of the projectile mode are activated
successively by three switches depending on the ball position. The logic
behind the control of the mode is clarified with a diagram in Figure 7.4.
In the diagram, Leave pos and End pos is the mode’s second and third
parameters of the mode. Block Switch2FF controls switching between the
Release point approach motion and the Ball projecting motion, as well as
between the Free-fall, Fall dampening and Ball balancing motion. For the
diagram’s simplicity, signals from the block Switch2FF triggering the switches
are not shown in the figure.

Completing the task within the prescribed period proved unattainable in
light of the time limitation, which resulted in being unable to test and debug
the implemented projectile mode introduced and described above.

l
<«
Switch2FF ja—

Balancing

T,y

RaspiCam

Projecting

Uil

. Landing

Figure 7.4: Diagram of the projectile mode control.
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Figure 7.5: Reference beam’s position used to project the ball and level the beam in
its horizontal position.
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Chapter 8

Conclusion and Outlook

B s1 Summary

The objective of this bachelor’s thesis was to introduce a Flying Ball and
Beam system, which extends the established ball and beam control system
by incorporating two new modes, resulting in a hybrid system. The hybrid
system comprises three modes: balancing, revolving, and projectile, each
representing distinct motions of the ball and beam. The modes were described
with mathematical models derived in Chapter 5. In terms of hardware, the
Flying Ball and Beam makes use of a laboratory model called Flying Ball in
Hoop, which was adjusted and modified. The hardware and software setup of
the model is detailed in Chapter 3.

Subsequently, two balancing tasks were conducted on the real model. The
first task involved controlling a ball at any desired position on the beam
balanced in its horizontal position, as analyzed in Section 7.2. The second
task aimed to balance the ball on the beam in its vertical position, which
proved unsuccessful due to limitations in the real model’s hardware.

The third task focused on demonstrating ball projection on the beam. The
implementation of the task is described in Section 7.4. Given the limited
time available, testing and verifying the last task on the real model was not
feasible.

Documentation for the setup and usage of the Flying Ball and Beam system
is available in the system’s GitHub repository, which also contains the source
codes used in this work.

Videos documenting the ball balancing on the horizontal beam position
are provided. The first video, named pos_dev.mp4, showcases balancing
the ball at a desired position and demonstrates the system’s response to
disturbances in the form of ball position deviations. The second video, named
ref_flw.mp4, illustrates balancing at various positions along the beam by
following a reference position waveform. This video corresponds to the ball
balancing on the beam depicted in Figure 7.3.
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8. Conclusion and Outlook

B s> System Use

While working on the Flying Ball and Beam system, I used a PC in the office
labeled KN:E-8 in the Department of Control Engineering. As mentioned in
Chapter 3, the Raspberry Pi and the computer communicate thanks to SSH
communication.

I have discovered that a connection to the same network and setting the
SSH communication for such a system can be made with two methods. The
first and easiest option is connecting the Raspberry Pi and the user’s computer
with two Ethernet cables to the same router.

The second option is to connect the Raspberry Pi wirelessly to a Wi-Fi
network. In this case, the user’s computer must also be connected wirelessly
to the network. The advantage of this option is that the computer does not
have to be connected physically to the system. On the other hand, only some
PCs have a Wi-Fi card enabling a wireless connection. One can use either a
Wi-Fi USB adapter or a notebook instead of a PC. I used the first option for
my bachelor’s thesis and connected both devices to the same router.

To use the Flying Ball and Beam system with another computer, one has
to take into consideration choosing the suitable connection option. Installing
and setting all required software on the computer in the office to control the
system turned out to be heavily time-consuming. Following the system’s
documentation will facilitate the installation and help set the system up on
another computer.

. 8.3 Future work

Future work on the Flying Ball and Beam could focus on designing control
for the three modes of the implemented hybrid system. The derived models
could be used to design, e.g., LQR stabilizing controllers and utilize them
on the real model. Although the model’s camera proved to be a slight
drawback when controlling the ball in the beam’s vertical position, executing
the revolving mode and then balancing the ball on the beam in the horizontal
position should be feasible. The hybrid system could be first tested using the
visualization and then performed on the real model to demonstrate switching
between the modes.

34



Appendix A

Additional information

. A.1 Source Codes

This section lists the software packages’ source codes used in this thesis and
their source links. The first link is the GitHub repository of the Flying Ball in
Hoop system, which served as a master model for this thesis. The Flying Ball
and Beam repository contains all files I created for the system identification,
hybrid system implementation, and system control. Considering the system’s
hardware, links to source codes for Matlab System Objects, namely the
RaspiBallPos and the Moteus API, are listed below, too. The last source
code link is the ERT Linux used for the Simulink—Raspberry communication.

The repositories also include installation instructions on installing and
running these software packages.

® Flying Ball in Hoop —
https://github.com/aa4cc/flying-ball-in-hoop

® Flying Ball and Beam —
https://gitlab.fel.cvut.cz/lehkysim/flying-ball-and-beam

® ERT Linux — https://github.com/aadcc/ert_linux
® Moteus API — https://github.com/doloi456/moteusapi_ert

® RaspiBallPos — https://github.com/aa4cc/raspi-ballpos

. A.2 Documentation

The system documentation describes installing the software packages and

other software libraries required for the system’s functionality. The documen-

tation also includes a description of how to run and control the system.
One can find the documentation! in the system’s GitHub repository.

'The documentation of the Flying Ball and Beam system is available at
https://gitlab.fel.cvut.cz/lehkysim/flying-ball-and-beam/-/tree/main/docs.
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A. Additional information

. A.3 Beam lllustration

An illustration of the 3D beam model created in Fusion 360 can be seen from
three different view angles in Figure A.1.

O @@@@ (@) O

(a) : Front and left side view.

(b) : Top right view.

Figure A.1: Illustration of the beam model in Fusion 360 with the four calibration
points and three holes used to mount the beam on the motor.
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