
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Explainable neural networks

Diploma thesis

Vojtěch Drahý

Study program: Open Informatics
Specialisation: Cyber Security

Supervisor: Ing. Radek Mǎŕık, CSc.

Prague, May 2023

ii

Thesis Supervisor:
Ing. Radek Mař́ık, CSc.
Department of Telecommunication Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Czech Republic

Copyright © May 2023 Vojtěch Drahý

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

481891 Personal ID number: Drahý Vojtěch Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Cyber Security Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Explainable neural networks

Master’s thesis title in Czech:

Vysvětlitelnost neuronových sítí

Guidelines:

The aim is to propose a computational method for evaluating explainability of neural networks with regard to the input data
and network components.
Recommended steps:
1/ Create a survey of published methods or their approximations for evaluating explainability of neural networks with regard
to the input data and network components.
2/ Select suitable methods and implement them or adapt existing software libraries appropriately.
3/ Design an experimental validation and evaluate the obtained results.
4/ Try to apply the proposed procedure to bridge structure data.

Bibliography / sources:

[1] N. Deo, Graph theory : with applications to engineering and computer science. Prentice-Hall of India ; Prentice-Hall
International, 1994.
[2] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” 2017.
[3] E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual predictions with feature contributions,”
Knowledge and Information Systems, vol. 41, no. 3, pp. 647–665, 2014.
[4] R. Mitchell, J. Cooper, E. Frank, and G. Holmes, “Sampling permutations for shapley value estimation,” 2021.
[5] Freeborough, W.; van Zyl, T. Investigating Explainability Methods in Recurrent Neural Network Architectures for Financial
Time Series Data. Appl. Sci. 2022, 12, 1427.
[6] Shapley, Lloyd S. (August 21, 1951). "Notes on the n-Person Game II: The Value of an n-Person Game". Santa Monica,
Calif.: RAND
Corporation.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Radek Mařík, CSc. Department of Telecommunications Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 10.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Radek Mařík, CSc.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Declaration

I hereby declare I have written this diploma thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles for
writing an academic thesis. Moreover, I state that this thesis has neither been submitted
nor accepted for any other degree.

In Prague, May 2023

..
Vojtěch Drahý

Acknowledgements

I would like to thank my supervisor Ing. Radek Mař́ık, CSc., for his patience, guidance
and help. But most of all, I thank him for the knowledge and experience he gave me.
Furthermore, I thank Matouš Pikous for his patient text proofreading.

v

vi

Abstract

The explainability of neural networks is an often discussed issue in machine learning.
Neural networks have experienced massive development in recent years - they are used
in a wide range of tasks, from image recognition to language processing to marketing.
However, people perceive neural networks as black boxes that have some inputs, some
outputs, and a lot of unknowns inside. This problem of unknown, poorly grasped and
humanly incomprehensible behaviour makes applying them in fields such as medicine or
critical infrastructure difficult. Apart from obtaining the result, in these fields, is even
more important to be able to justify it and describe the way in which it came about.
Therefore, it is necessary to investigate neural networks and make them explainable and
interpretable. Explainability tells which parts of the input data are important to the model
and which parts of the model process them. Interpretability based on the conclusions of
explainability aims to create a humanly understandable summary of the aspects of the
solved problem from the point of view of the neural network.

This work presents an overview of different approaches to solving the explainability of
neural networks. Furthermore, a task from the critical infrastructure field in materials en-
gineering is presented here. The work aims to use neural networks and their explainability
to conduct an initial investigation of the given task, to find out the aspects of machine
learning application and propose the direction of the further procedure from the results
achieved.

Keywords: Neural networks, explainability, communities detection, Shapley values, ma-
terial engineering.

Abstrakt

Často diskutovaným problémem ve strojovém učeńı je vysvětlitelnost neuronových śıt́ı.
Neuronové śıtě zaznamenaly v posledńıch letech masivńı rozvoj – použ́ıvaj́ı se v široké
škále úloh, od rozpoznáváńı obrazu přes zpracováńı jazyka až po marketing. Lidé však
vńımaj́ı neuronové śıtě jako černé skř́ıňky, které maj́ı uvnitř nějaké vstupy, nějaké výstupy
a spoustu neznámých. Tento problém neznámého, špatně uchopeného a lidsky nepocho-
pitelného chováńı ztěžuje jejich uplatněńı v oborech, jako je medićına nebo kritická infras-
truktura. V těchto oborech neńı d̊uležité jen ř́ıct výsledek, ale ještě d̊uležitěǰśı je umět jej
zd̊uvodnit a popsat zp̊usob, jakým k němu došlo. Proto je nutné neuronové śıtě prozk-

vii

viii

oumat a učinit je vysvětlitelnými a interpretovatelnými. Vysvětlitelnost ř́ıká, které části
vstupńıch dat jsou pro model d̊uležité a které části modelu je zpracovávaj́ı. Interpreto-
vatelnost na základě závěr̊u vysvětlitelnosti má za ćıl vytvořit lidsky srozumitelný souhrn
aspekt̊u řešeného problému z pohledu neuronové śıtě.

Tato práce představuje přehled r̊uzných př́ıstup̊u k řešeńı vysvětlitelnosti neuronových
śıt́ı. Dále je zde uvedena úloha z oblasti kritické infrastruktury v materiálovém inženýrstv́ı.
Práce si klade za ćıl pomoćı neuronových śıt́ı a jejich vysvětlitelnosti provést prvotńı prozk-
oumáńı zadané úlohy, zjistit aspekty aplikace strojového učeńı a z dosažených výsledk̊u
navrhnout směr daľśıho postupu.

Keywords: Neuronové śıtě, vysvětlitelnost, detekce komunit, Shapleyho č́ısla, materiálové
inženýrstv́ı.

List of Tables

4.1 Partial curve: training (A-dataset) . 47
4.2 Partial curve: test (A-dataset) . 47
4.3 Full curve: training (A-dataset) . 47
4.4 Full curve: test (A-dataset) . 47
4.5 Partial curve: training (B-dataset) . 48
4.6 Partial curve: test (B-dataset) . 48
4.7 Full curve: training (B-dataset) . 48
4.8 Full curve: test (B-dataset) . 48
4.9 Partial curve: training (C-dataset) . 49
4.10 Partial curve: test (C-dataset) . 49
4.11 Full curve: training (C-dataset) . 49
4.12 Full curve: test (C-dataset) . 49
4.13 Reduction of trainable parameters (B-dataset) 53
4.14 Reduction of trainable parameters (C-dataset) 53

ix

x LIST OF TABLES

List of Figures

1.2 Violin distribution of peaks points. 4
1.3 Distribution of peaks point according to the material parameters. 5
1.4 Correlation of example points. 6

2.1 Diagram of CAM-network. [Koz21] . 11
2.2 Example of Dense NN architecture . 27
2.3 General 1D-conv chain [SH20] . 28
2.4 LSTM chain [Ola15]. 29
2.5 Vanilla and attention encoder-decoder architectures [Man21] 31
2.6 BLSTM architecture, image taken from [Ami19] 31
2.7 LSTM networks architectures, images taken from [Ami19] 32

3.1 Schema of the partial curve problem. 36
3.2 Used CNN, the image generated by the NN-SVG tool [LeN19] 37
3.3 Similarity contour heatmap (natural logarithm scale) on A-dataset. The

axes represent the order of the points on the curves. 40
3.4 Feedforward Maen (F-Maen). 41
3.5 LSMT Maen (L-Maen). 42
3.6 LSMT-Attention Maen (L-A-Maen). 43

4.1 Gradient tracking (example model) . 50
4.2 Correlations with the expected output for all neurons outputs. 51
4.3 Correlations with the expected output for two neurons in the first layer. . . 52
4.4 The comparison of dataset points, original big model and newly generated

cut models with the level of significance. 52
4.5 L-A-Maen model - tracking aggregated changes of parameters of attention

modules. 54
4.6 F-Maen model with Shapley values explanation over all datasets. 55
4.7 L-Maen model with Shapley values explanation over all datasets. 56
4.8 L-A-Maen model with Shapley values explanation over all datasets. 57

xi

xii LIST OF FIGURES

Contents

Abstract vii

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2

2 State of the art 7
2.1 Analysing neural network topologies . 7

2.1.1 Analysing and arranging topologies 7
2.1.2 Explainability of neural networks . 9

2.2 Communities detection . 19
2.2.1 Terminology in the communities detection 19
2.2.2 Communities detection approaches 22

2.3 Conventional neural networks models . 26
2.3.1 Dense NN . 26
2.3.2 Convolutional neural network . 27
2.3.3 Recurrent and LSTM neural networks 28
2.3.4 Attention neural network . 32

3 Methods, proposed approaches and results 35
3.1 Used conventional models . 36

3.1.1 c2c model . 36
3.1.2 CNN . 36
3.1.3 Dense NN . 37
3.1.4 LSTM NN . 38

3.2 Proposed approaches . 38
3.2.1 Proposed models . 38
3.2.2 Proposed explainability methods . 43

4 Experimental results and evaluations 45
4.1 Experimental results of neural networks . 45
4.2 Experimental results of explainability . 50

4.2.1 Experimental examples of proposed explainability approaches 50
4.2.2 Experimental evaluations of explainability approaches on bridges task 53

5 Conclusion 59

Bibliography 61

xiii

xiv CONTENTS

Chapter 1

Introduction

1.1 Motivation

People usually think of neural networks as a black box. They believe that when they have

input data and corresponding labels, they just need to take some large enough neural

network architecture and push such a universal box on any problem thanks to the enor-

mous computing power of graphics cards. The first, and often the last choice in business

practice, is the creation of several fully-connected / convolutional layers of a neural net-

work, with the expectation that it will somehow turn out. People often do not care about

the distribution of the input data, whether some parts of the input data carry similar in-

formation, whether the proposed architecture correctly reflects the problem being solved

and whether it is robust enough to solve problems with critical deficiencies in the training

data. Although neural networks provide a decision on a sample, people are unable to

explain the path to the decision. This very property prevents neural networks and other

machine learning algorithms from being applied in critical systems such as medicine or

critical transport infrastructure, including civil engineering. Generating the results is not

enough; the “reason why” is a business fundamental.

Understanding the input data, sections on which the model focuses, and understanding

the significance of the components and layers that make up the model is important for

its further development and for justification in a specific industrial solution. It is impor-

tant to go down to the level of individual neurons and trainable parameters. Revealing

the insignificant ones will make it possible to prune the model and reduce its memory

requirement. Nowadays, neural networks are often used in computer vision applications

on smartphones, where there is strong pressure to optimise hardware requirements and

reduce memory requirements.

Thanks to the explainability of data and statistical models, it is, therefore, possible to

better understand the problem being solved, optimise the model architecture (topology and

1

2 CHAPTER 1. INTRODUCTION

trainable parameters), better set the policy of the processes that the network is supposed

to manage and present humanly comprehensible conclusions about the functioning of

the model, which are an essential part of every security management principle critical

infrastructure.

1.2 Problem statement

The goal of the solved problem is to determine the material parameters of the concrete

beam of a bridge; the schema of the object is shown in Figure 1.1a. Load-dependence

curves on the material deflection are the input data. The required output is a vector

of four parameters characterising the material: modulus of elasticity (Ec), compressive

strength (Fc), tensile strength (Ft) and fracture energy (Gf).

Conventionally, such a task is solved using the finite element method, a theory de-

scribed by Brenner and Scott in [BS08]. Its main disadvantage is that it takes a lot of

time to compute. In practice, extensive problems, from the point of view of a complex

object in shape and deformation, are incalculable. The goal is to replace the finite element

method calculations with a statistical model that will allow recalculation in near real-time.

In practical use, structural engineers on bridge constructions will be able to perform im-

mediate calculations on mobile devices. Therefore, the utilization of neural networks for

this task is examined here.

The data is subject to three problems. The first is the considerable lack of samples,

the second is their variability (including labels), and the third is non-periodically sampled

curves. Three datasets were available. The first A-dataset with 100 samples, the second

B-dataset with 400 samples, and the C-dataset with 1000 samples. Each sample represents

a 2D curve of 61 points.

As a criterion for the success of the statistical model, a relative error of the middle

value of up to 20 % was established since that error occurs when using the finite element

method.

In Figure 1.1b are five example samples from the A-dataset. It is noticeable that

the curves are similar in shape but differ in the point where they break and are scaled

differently. There is, therefore, a problem of data following a global course but locally

varying.

The dataset consists of curves (the sample is a matrix of two-dimensional points)

representing the input data. Each curve is assigned the four-dimensional vector of material

parameters that represent labels. A fundamental problem in training the models was the

critical lack of samples. Figure 1.1b shows that the individual samples are similar in the

first third of their curves (elastic deformation of the material). On the contrary, significant

1.2. PROBLEM STATEMENT 3

(a) The material object on which the dataset was
generated with displayed deformation.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

0

0.01

0.02

0.03

0.04

0.05

0.06

Deflection [m]

Lo
ad

s
[M

N
]

(b) Example of samples from the A-dataset.

differences are visible between samples in the other parts (inelastic deformation, fracture,

and deformation).

In general, the load behaviour of the material can be described as follows. First, elastic

deformation occurs when the material bends without breaking and is able to return to its

original shape after the end of the load. As the load continues, elastic deformation is

followed by inelastic deformation. Slight cracks in the material may already begin to

occur during it. However, these cracks are not considered to be fundamental damage to

the material. On the curve of dependence of load on deflection, they appear as slight

local decreases. At the highest point of the curve, the material breaks and is deformed.

Subsequently, the curve decreases or undulates depending on how the cracks spread in

the object. It can be concluded that the moment of destruction of the material, i.e. the

position of the breaking point (peak) on the curve, will play a significant role in the

parameters characterising the quality of the material.

Figure 1.3 shows the dependence of the material parameters (labels) values on the

peak point of the sample curve (the point where the curve breaks and the material failure

occurs from a physical point of view). Evidently, the values are not correlated, and we can

speak of an even distribution. Heteroskedasticity can be observed for the dependence of

the fracture energy Gf . With the increasing number of samples in the dataset, according

to this initial exploration, it could be said that the location of the breaking point is slightly

correlated with the fracture energy and thus has an effect on this parameter.

Figure 1.4 shows the correlation of the example points (it is the Pearson correlation

between certain points identified by their indexes on the curve; calculated over the entire

dataset). The red colour points are outliers determined by the ccf method introduced by

Barratt et al [BAB20] and implemented by Satman et al. [SAAA21]. From the example,

there are visible correlations of nearby points, thus, it makes sense to deal with the detec-

tion of communities. It is noticeable that points close in order carry similar information,

while points far from each other on the curve (sample) are not correlated. From this, it

4 CHAPTER 1. INTRODUCTION

can be considered that processing the curve in parts that carry similar information could

not only reduce the number of trainable parameters of the model and thus its computation

complexity but also improve the functioning of the model itself.

Figure 1.2 shows the distribution of characteristics (load, deflection, norm - distance

from the origin) of the peak point for individual datasets. It is visible that the A-dataset,

marked in blue, has very significantly scattered peak points - so it can be said that,

unlike the two other datasets, it contains samples with strongly different material qualities.

Combined with the fact that this dataset has the least number of samples, the worst results

can be expected on it. In contrast, the C-dataset has peak points located relatively close

to each other with less variance, and therefore good results can be predicted on it.

A-dataset B-dataset C-dataset

0

0.001

0.002

0.003

0.004

0.005

0.006

Pe
ak

 d
ef

le
ct

io
n

(a) Deflection

A-dataset B-dataset C-dataset

0

0.02

0.04

0.06

0.08

0.1

0.12

Pe
ak

 lo
ad

(b) Load

A-dataset B-dataset C-dataset

0

0.02

0.04

0.06

0.08

0.1

0.12

Pe
ak

 n
or

m

(c) Norms

Figure 1.2: Violin distribution of peaks points.

1.2. PROBLEM STATEMENT 5

0.002 0.004
0

20k

40k

60k

0.002 0.004

−40

−20

0

0.002 0.004
0

1

2

3

0.002 0.004
0

50μ

100μ

peak deflection [m] peak deflection [m]

peak deflection [m] peak deflection [m]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(a) A-dataset (deflection)

0.05 0.1
0

20k

40k

60k

0.05 0.1

−40

−20

0

0.05 0.1
0

1

2

3

0.05 0.1
0

50μ

100μ

peak load [MN] peak load [MN]

peak load [MN] peak load [MN]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(b) A-dataset (load)

0.002 0.003 0.004 0.005 0.006

20k

30k

40k

50k

0.002 0.003 0.004 0.005 0.006

−40

−30

−20

0.002 0.003 0.004 0.005 0.006

1

1.5

2

2.5

0.002 0.003 0.004 0.005 0.006

40μ

60μ

80μ

peak deflection [m] peak deflection [m]

peak deflection [m] peak deflection [m]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(c) B-dataset (deflection)

0.04 0.06 0.08

20k

30k

40k

50k

0.04 0.06 0.08

−40

−30

−20

0.04 0.06 0.08

1

1.5

2

2.5

0.04 0.06 0.08

40μ

60μ

80μ

peak load [MN] peak load [MN]

peak load [MN] peak load [MN]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(d) B-dataset (load)

0.002 0.003 0.004 0.005

20k

30k

40k

50k

0.002 0.003 0.004 0.005

−40

−30

−20

0.002 0.003 0.004 0.005

1

1.5

2

2.5

0.002 0.003 0.004 0.005

40μ

60μ

80μ

peak deflection [m] peak deflection [m]

peak deflection [m] peak deflection [m]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(e) C-dataset (deflection)

0.04 0.06 0.08 0.1

20k

30k

40k

50k

0.04 0.06 0.08 0.1

−40

−30

−20

0.04 0.06 0.08 0.1

1

1.5

2

2.5

0.04 0.06 0.08 0.1

40μ

60μ

80μ

peak load [MN] peak load [MN]

peak load [MN] peak load [MN]

Ec
 [

M
Pa

]

Fc
 [

M
Pa

]

Ft
 [

M
Pa

]

G
f

[M
N

/m
]

(f) C-dataset (load)

Figure 1.3: Distribution of peaks point according to the material parameters.

6 CHAPTER 1. INTRODUCTION

−6 −4 −2 0

−4

−2

0

−4 −2 0

−4

−2

0

−4 −2 0

−4

−2

0

−4 −2 0

−4

−2

0

2

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(a) A-dataset (deflection)

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 0 2

−2

0

2

−2 −1 0 1 2

−2

0

2

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(b) A-dataset (loads)

−2 0 2 4 6

0

5

−4 −2 0

−4

−2

0

−4 −2 0
−4

−2

0

−4 −2 0

−4

−2

0

2

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(c) B-dataset (deflection)

−2 0 2 4
−2

0

2

4

−2 −1 0 1
−2

−1

0

1

−2 0 2

−2

0

2

−2 −1 0 1
−2

−1

0

1

2

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(d) B-dataset (loads)

−10 −5 0 5

−10

−5

0

5

10

−6 −4 −2 0
−8

−6

−4

−2

0

−5 0

−5

0

−8 −6 −4 −2 0

−5

0

5

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(e) C-dataset (deflection)

−2 0 2 4
−2

0

2

4

−2 −1 0 1

−2

−1

0

1

−2 0 2

−2

0

2

−2 −1 0 1
−2

−1

0

1

2

point 18 point 30

point 44 point 10

po
in

t
20

po
in

t
31

po
in

t
45

po
in

t
30

(f) C-dataset (loads)

Figure 1.4: Correlation of example points.

Chapter 2

State of the art

This part provides an overview of state-of-the-art approaches in conventional neural net-

works, the explainability of machine learning models, and community detection on graphs

to simplify explainability tasks.

2.1 Analysing neural network topologies

This subsection provides a state-of-the-art overview of analysing and explaining neural

network topologies.

2.1.1 Analysing and arranging topologies

The different topologies and architectures may be more suitable for different tasks and

machine learning problems. Depending on the processed data, the architectures may have

different strengths and weaknesses in fitting and generalising. When developing a neural

network, it is advisable to consider several possible architectures. A common procedure

in the search for a suitable model is to convert the solved problem to a known and already

solved problem, typically from the field of computer vision. Different approaches, for ex-

ample, for sequence processing, overlap in many ways. When solving specific and atypical

problems, existing architectures are combined with the aim of obtaining, orchestrating and

putting together the solution for the given task. To solve problems with a small amount

of training data or poorly distributed data (for example, subject to heteroscedasticity), it

is necessary to look for topologies that describe the essence of the problem.

Stier et al. [SGGZ18] state that machine learning is always built on large, mostly fully

connected architectures; however, large parts are redundant and irrelevant. The worst case

of the topology behaviour lies in the complete impossibility of optimisation and immediate

overfitting. When developing a neural network, it is important to be able to identify those

parts of its topology that directly cause inaccurate or bad model output.

7

8 CHAPTER 2. STATE OF THE ART

The method of dividing the neural network into submodels to increase accuracy is

discussed by Yang et al. in [YGG+13]. Their approach divides the solved problem into

several smaller sub-models while always training together those whose outputs are corre-

lated. It is not a method that aims to reduce the number of trainable parameters but to

better organise the training process. Yang et al. state that the method helps to resolve

the internal interference inherence inside large networks.

Two fundamental concepts in system processing and developments are applicable to

identify the optimal architecture of the neural network model - bottom-up and top-down.

The bottom-up, promoted by psychologist E. J. Gibson [Gib66], methods start from a

small architecture with only a few trainable parameters or layers and interactively extend

the model range to improve accuracy until overfitting occurs. The top-down (promoted

by Harlan Mills and Niklaus Wirth in 1970 [Mil83]) approach methods start with a large

architecture that overfits on initialisation and prunes the topology of the architecture by

removing the low-contributing components. The first of these approaches requires prior

knowledge of the solved problem. When proposing the model architecture, there must be

awareness of the direction of the design workflow. The second of the mentioned approaches

has the advantage that we do not need any apriori knowledge about the problem at the

beginning of the model development. Applying a suitable method of explaining the model’s

components (both from the point of view of computational complexity and the provided

outputs) leads to the knowledge of the information flow and the possibility of rebuilding

the architecture with the aim of highlighting and trimming irrelevant parts. Thanks to

the trimming, the number of trainable parameters is reduced. Together with parameters

and components reduction, the computational complexity of training is also reduced. By

removing confusing components for decision-making, the model outputs can become more

accurate.

Furthermore, there is one more purely practical business reason why it is important

to reduce the model’s complexity and number of parameters - large neural networks take

up a large part of the memory, apart from training, also during evaluation. Although

this is usually not a problem on servers and computers, it is a significant problem on

mobile devices such as smartphones or IoT devices. An unnecessarily complex neural

network model in a phone application can make a demand on hardware and slower service

functioning.

2.1. ANALYSING NEURAL NETWORK TOPOLOGIES 9

2.1.2 Explainability of neural networks

Before the introduction approaches interpretation and explanation of neural network mod-

els, there is a terminology list related to the work presented by Saleem et al. [SYK+22].

• Understandability represents the ability to characterize a model without knowing

its internal structure. It is possible to answer questions such as “Where should the

model be used?”, “What are the limits of the model?” and “For what inputs does

the model fail?”

• Explainability represents the ability to characterize the model’s internal structure.

The explainability answers the questions “Which parts of the model are irrelevant?”,

“Which parts of the input are confusing for the model?” and “How model makes

decisions and what influences them?”.

• Interpretability is the justification and human-capable summarising of the ex-

plainability results. The discussions about the principles of how the model works

are conducted.

• White box is a model with completely provided information about architecture

and parameters. It is possible to describe the computational graph of the model

structure and mathematically formalise it. However, a specific description is not

available to justify and explain the decision-making process, including the logic of

assigning a semantic description.

• Transparent box is the addition to the white box. It provides not only a complete

description of the structure but furthermore it also allows the justification of that

behaviour and its explanation.

• Black box is a model with a completely unknown architecture and the internal

structure cannot be altered. It is unclear whether some very extensive architectures

of deep learning neural networks should be called white or black boxes. Although

very extensive network topologies are formally white boxes, but their scale makes

them so difficult to read and informatively explain from a human point of view that

they can be considered black boxes.

Understandability, explainability, and interpretability can have several human-capable

goals. These goals differ depending on the purpose for which the model is investigated.

• Input data - investigating the usefulness of individual parts of the input data. In

the case of images and point clouds, these can be bounded areas of pixels and points.

In processing time-dependent events, the usefulness of input data can be examined

10 CHAPTER 2. STATE OF THE ART

with regard to either the flow of information over time or the characteristics of the

features in the given time records. Furthermore, the input data can be examined from

the point of view of multiple instance learning, i.e. which objects or communities

within the input sample are carriers of information.

• Components of the model - investigating the contribution of the sub-parts that

make up the complex model. It is an examination of the topology of the computa-

tional graph with the aim of reflecting the complexity and structure of the solved

problem. Revealing the low-benefit parts of the topology allows the model’s archi-

tecture to be rebuilt, pruned, and improved.

• Trainable parameters - examining the usefulness of individual trainable parame-

ters of the model or their groups (such as neurons or groups of neurons) will allow

revealing those that reduce accuracy or those that are redundant for functioning.

Due to the reduction of their number, the computational effort will be reduced and

the training of the model will be accelerated while freeing up the hardware memory

for training.

• Information flow - monitoring the flow of information between individual compo-

nents of the model - vertices of the computational graph - will allow less significant

connections to be cancelled. This simplifies the topology and speeds up differentia-

tion during training.

There are various specific methods for the explainability of statistical models and

neural networks, depending on the goals mentioned above and, simultaneously, on the

computational complexity of the algorithms of the given methods for the explanation.

Activation mapping approaches

Tjoa and Guan [TG19] state that in computer vision, a common and popular approach

to explaining models processing image data is the use of Class Activation Mapping ap-

proaches. These approaches aim to point to the parts/areas of the input sample that the

model considers essential for its decision. A typical visualisation of the output of these

methods is a heatmap covered over the input sample (image).

According to Zhou et al.,u [ZKL+15], the CAM method (Class Activation Mapping)

rearranges the model (neural network based on convolutional layers) by replacing the

last fully-connected layers with a layer of global average pooling and one fully-connected

layer with softmax function. The modified network generates a feature map. The final

class activation map is computed as a linear combination of (previously generated) feature

maps. Figure 2.1 shows the computation process.

2.1. ANALYSING NEURAL NETWORK TOPOLOGIES 11

Figure 2.1: Diagram of CAM-network. [Koz21]

The following equation is expressed as computing the CAM heatmap for class k.

CAMi =
∑
k

wk
i F

k, (2.1)

where wk
i is a weight connecting the kth feature map with the ith class, and Fk is the

global-average-pooled output obtained in the following way:

Fk =
1

Z

∑
m

∑
n

Ak
ij , (2.2)

where Ak is the kth feature map at location (m,n) and Z is the count of entities inside

the feature map.

According to Rahimzadeh et al., [RPSM21], the disadvantage of the CAM method

is that there could be a loss of spatial information. The problem lies in global average

pooling, especially in processing large feature maps.

The Grad-CAM method, introduced by Selvaraju et al. [SCD+19], performs the com-

putation using the gradient information obtained with respect to the last convolutional

layer. Compared with the pure CAM method, where the weights of the linear combination

of the feature maps are obtained from the single fully-connected layer, the weights used in

Grad-CAM are taken from the gradient information. The algorithm is described by Isaac

Castro [Cas19] in three following steps in Algorithm 1.

The Grad-CAM method has an improvement called Score-CAM. The generated acti-

vation maps are used as convolutional masks in the original input sample. The forward-

passing of such newly obtained masked samples creates score-based weights related to

the classes. According to Wang et al., [WDYZ19], the score-CAM results are a linear

combination of activation maps and score-based weights.

12 CHAPTER 2. STATE OF THE ART

Algorithm 1 Grad-CAM algorithm

Input: the neural network model, input sample and corresponding label.

Output: heatmap.

1. Let be yi output for the ith class. The gradient for the feature map Ak will

be

f ′
i,k(y,A) =

∂yi

∂Ak
. (2.3)

2. The outputs of the global average polling will be

αi
k =

1

Z

∑
m

∑
n

f ′
i,k(y,A). (2.4)

3. The heatmap Hi for the ith class is defined as

Hi = ReLU(
∑
k

αi
kA

k). (2.5)

Integrated gradients

The Integrated gradients is an attribution method introduced by Sundararajan et al.

[STY17]. The main advantage of the method is that it does not require any modification

to the original network, and at the same time, it is extremely simple to implement. The

principle of the method is based on repeated calculations of the gradient of the computa-

tional graph.

The method is formally described in the following expressions. The model is repre-

sented by the following function:

f : Rn −→ [0, 1], (2.6)

the input to the model is x⃗ ∈ Rn, and the x⃗′ ∈ Rn is the baseline input (often represented

by zero vector).

Integrated gradients are calculated as accumulated gradients obtained along the straight

line path from the baseline input x⃗′ to the current input x⃗. The path gradient for the ith

dimension of the input sample is defined in the following way:

InterGradsi(x⃗) = (x⃗i − x⃗′i) ·
∫ 1

t=0

∂f(x⃗′ + t · (x⃗− x⃗′))

∂x⃗i
dt (2.7)

The approximation of the integral for implementing the integrated gradients is performed

2.1. ANALYSING NEURAL NETWORK TOPOLOGIES 13

via a summation in a way that follows.

InterGradsapproxi (x⃗) =
x⃗i − x⃗′i

s
·

s∑
k=1

∂f(x⃗′ + k
s · (x⃗− x⃗′))

∂x⃗i
, (2.8)

where s is the count of steps in the Riemann approximation.

Opposite to the advantages, such as simple implementation, there are also disadvan-

tages of the method. Since the approach needs to iteratively evaluate the gradient of

the model with gradually slightly different inputs, Ancona et al. [ACÖG19] state that a

limitation of integrated gradients is its relatively high computational cost. Ancona et al.

also warn that the method for deep neural networks exacerbates the problem of shattered

gradients [BFL+17] because in the model function lies a high count of piece-wise linear re-

gions, so the course of the gradient becomes discontinuous. The result of the method turns

into noise sensitively depending on small variations in input to the model. The method

is thus useful for small-scale networks or piecemeal applications to subcomponents of the

larger model.

The experimental evaluation of the Integrated gradients approach was evaluated (dur-

ing the research for the purpose of this thesis) on the material object (bridge) problem, but

the interpretability of explainability was very questionable. For that reason, the method

of Integrated gradients is not presented in the chapter with experimental evaluations and

results.

Ablation

The principle of the ablation approach iteratively involves removing or ablating parts or

regions of the input sample to receive the region’s contribution. Freeborough and Zyl

present the approach [FvZ22] in investigating financial time series data.

For the explainability of time-dependent data problems, Freeborough and Zyl recom-

mend using forward filling with the average of previous inputs as ablation. They propose

this for the purpose of passing on contextual information along the time dimension. This

is because the context component is ablatively removed in recurrent neural networks using

the average of previous inputs. The mechanism of the approach is described in Algorithm 2.

The ablation approach is a simplification of the Integrated gradients method and a

modification for time-dependent data. A fundamental advantage over Integrated gradients

is simply counting the outputs of the model and not its gradients.

The disadvantage of the ablation approach is the dependence on its pattern. When

ablation is performed, it is necessary to know its appropriate shape (such as zeroing,

averaging, and adding Gaussian noise). Different implementations can lead to different

14 CHAPTER 2. STATE OF THE ART

Algorithm 2 Ablation algorithm

Input: model, sample X ∈ Rl×f (where l is the time dimension of the sample and f
is the features dimension).

Output: error matrix Eavg ∈ Rw×f (where w is the size of the input window

step).

Eavg ← []
ŷ ← model(X)
for q in f do

Ef ← []
for i in 1:k do ▷ k is the range of region to be ablated through iterations.

Xablated ← ablate(X, i+ w, q)
ŷablated ← model(Xablated)

Ef ← concat(Ef ,
|ŷablated−ŷ|

ŷ)
end for

Eavg ← 1
k

∑k
j=1 Ef [j]

end for

models’ explanation results. Another major disadvantage in the specific implementation

of ablation along the time dimension of the input sample is that the method does not

consider the mutual interaction of regions (communities) of instances of the given sample.

Thus, it is not possible to detect contiguity and causality between temporal events in a

given sample.

Game theory approach

The problem of the explainability of a neural network can be thought of as a task from

the field of game theory. Sub-parts of the model - submodels, components, layers, and

parameters - can be seen as agents (players) of a team cooperative game. This point of view

has the advantage of dealing with interactions such as information that passes between

individual agents. The problem of explainability is thus converted to the problem of

the contribution examination. The contribution is examined not only with regard to the

abilities of the given agent as an individual but also with regard to its cooperative abilities

and the expediency of cooperation with other agents in a broader team concept.

Pelegrina and Siraj [PS22] state that the mechanism is to distribute the proceeds of a

cooperative game among the coalition members by measuring the marginal contribution

to the final outcome.

In a coalition cooperative game, the game results of different quality can be obtained

by applying different subsets of agents. The prerequisite for investigating such behaviour

is the determinism of the game; the computational model must always provide the same

output for repeated evaluations of the same input sample.

A fundamental solution to the problem of the contribution of cooperative game agents

2.1. ANALYSING NEURAL NETWORK TOPOLOGIES 15

is the Shapley value calculation concept introduced by Lloyd S. Shapley [Sha51]. To

obtain the contribution of the ith agent to the success of the team in the game, the

method calculates the differences in the contributions of all subsets of agents playing with

and without the ith agent. The formal expression is the following:

ϕi(model, x⃗) =
∑

S⊆U\{i}

|S|!(|U | − |S| − 1)!

|U |!
[model(S ∪ {i}, x⃗)−model(S, x⃗)], (2.9)

where x⃗ is the input sample, U is the set of rankings1 of all agents from which a model is

constructed, S are (iteratively) all subsets of the agents rankings, and ϕi is the Shapley

value of the ith agent. The higher is the Shapley value, the more important is the role of

the agent (component) in the team (model); on the contrary, a negative value indicates the

confusing behaviour of the agent leading to a deterioration of the model’s performance.

The calculation of the Shapley number for a set of agents proceeds analogously to the

calculation for a single agent. The difference consists only in replacing the ranking number

i with the set of ranking numbers of the corresponding agents for which the calculation is

performed.

The Shapley values can be expressed in terms of permutations [MCFH22]

ϕi(model, x⃗) =
1

|U |!
∑
σ∈P

[model([σ]i−1 ∪ {i}, x⃗)−model([σ]i−1, x⃗)], (2.10)

where P is the set of (all) permutations for agent rankings, σ is the permutation that

assigns a rank j to the element i in a way

σ(i) = j. (2.11)

A simple example of the σ permutation is the following. Let the permutation be

σ = (2 4 1 3), (2.12)

the vector of items is

v⃗ = (x1 x2 x3 x4)
T (2.13)

and is turned into the

v⃗′ = (x3 x1 x4 x2)
T . (2.14)

1Ranking of an agent is there used in the meaning of identification.

16 CHAPTER 2. STATE OF THE ART

The [σ]i−1 represents the set of agent rankings that are ranked lower than i according to

the order given by the permutation σ.

According to Mitchell et al., [MCFH22], the Shapley values are unique and satisfy the

four properties:

1. Symmetry - Two agents with the same contribution to all coalitions (subsets of the

rest of agents) have the same Shapley values. Formally, it is expressed by formula

∀S ⊆ U\{i, j} : model(S ∪ {i}) = model(S ∪ {j})⇒ ϕi = ϕj .

2. Efficiency - The sum of Shapley values of independent agents belonging to a certain

subset (coalition) is equal to the Shapley value of a given subset. Formally, it is

expressed by equation
∑

i∈S ϕi = ϕS .

3. Linearity - The Shapley value of the combined situations (games) is equal to the

sum of particular Shapley values of isolated situations. Formally, it is expressed by

equation ϕ(model1 +model2, x⃗1 + x⃗2) = ϕ(model1, x⃗1) + ϕ(model2, x⃗2).

4. Null agent - dummy - The agent with a negligible impact on all subsets of agents

has a Shapley value equal (or almost equal) to zero. Formally, it is expressed by

formula ∀S ⊆ U\{i} : model(S ∪ {i})−model(S) < ϵ1 ⇐⇒ ϕi < ϵ2, where ϵ1 and

ϵ2 are almost zero.

According to Deng and Papadimitriou [DP94], the computation of the Shapley values

is in terms of the theory of complexity of the NP-hard problem. Mitchell et al. [MCFH22]

propose the Monte Carlo estimation via sampling the permutations used in equation 2.10.

The approximation lies in reformulating the task into

ϕi(model, x⃗) =
1

|U |!
∑
σ∈Π

[model([σ]i−1 ∪ {i}, x⃗)−model([σ]i−1, x⃗)], (2.15)

where Π ⊂ P is a subset of uniformly sampled permutations.

Mitchell et al. propose an approach of sampling permutations of the length d by a

relaxation to the Euclidean hypersphere

Sd−2 = {x⃗ ∈ Rd−1 : ∥x⃗∥ = 1}, (2.16)

which is similar to the approach presented by Plis et al. [PLC10]. Relaxation simplifies

the problem of selection of uniformly distributed samples. The method lies in mapping

the hypersphere points to the nearest permutation represented by a vertex of a Cayley

graph [Cay78] inscribing the hypersphere.

2.1. ANALYSING NEURAL NETWORK TOPOLOGIES 17

The basis of the method is to determine the mapping of permutations σ ∈ Pd of length

d to the Euclidean space Rd in a following way:

p⃗i = σ−1(i), ∀i ∈ {1, 2, ..., d}

σ ∈ Pd

p⃗ ∈ Rd

(2.17)

Algorithm 3 Sampling permutations on permutahedron (Mitchell et al.)

1. The permutahedron is shifted and scaled.

σ̂−1 =
σ−1 − µ

∥σ−1∥
, (2.18)

where

µ =
1

2
(d+ 1, d+ 1, ...) (2.19)

is the mean vector of all permutations.

2. Uniformly selected vector x⃗ ∈ Rd−1 and ∥x⃗∥ = 1 from the surface Sd−2.

3. Project x⃗ to hyperplane in Rd.

ˆ⃗x = M̂T x⃗ (2.20)

where M̂ is the matrix
1 −1 0 . . . 0
1 1 −2 . . . 0

...
...

1 1 1 . . . −(d− 1)

 (2.21)

normalised by rows.

4. The nearest permutation σ̂−1 is found by maximising the dot product.

σ̂−1 = argmax
s⃗

(ˆ⃗x · s⃗) (2.22)

The vector s⃗ is just a reordering of the same constants, which implies that

the argmax can be simplified into the sorting

σ = argsort(ˆ⃗x) (2.23)

such that

ˆ⃗xσ0
≤ ˆ⃗xσ1

≤ ... ≤ ˆ⃗xσn
. (2.24)

The mapping of all permutations of length d creates the vertices of the permutahedron

polytope, which is a d − 1 dimensional object in d dimensional space. The inversion of

permutations gives a Cayley graph of the symmetric group. Each vertex in the permuta-

18 CHAPTER 2. STATE OF THE ART

hedron has d−1 neighbours and each differs in one transposition. The process of sampling

the permutations is described in Algorithm 3.

The Neuron Shapley framework introduced by Ghorbani and Zou [GZ20] is an applica-

tion of the mentioned principle and method based on the calculation of Shapley numbers.

Their contribution is in quantifying and estimating the performance of the layers and

neurons of the deep network. Their work resulted in the finding that removing just thirty

filters corresponding to the highest Shapley numbers completely destroys the accuracy of

Inception-v3 on ImageNet. Based on this, it is possible to very well mark the important

parts of the network and cut off the confusing ones. Ghorbani and Zou solve the high

asymptotic complexity of calculation Shapley numbers by approximating the calculation

and introducing a multi-armed bandit algorithm for detecting agents (neurons, filters,

layers) with the highest Shapley numbers.

2.2. COMMUNITIES DETECTION 19

2.2 Communities detection

In this subsubsection, the detection of communities on graphs is introduced. The goal is

to introduce approaches that can be used to simplify computationally demanding methods

of explainability of neural networks. Furthermore, an approach to creating topologies of

neural networks based on the output of the detection of communities of features in input

samples is outlined here.

Since within one community, there are parts of the data or entities that carry similar

information. Explainability can be done at the level of communities and not directly at

the level of individual data features. In the case that the input to the neural network is

a vector with a dimensionality, at least in the higher tens, the evaluation of the Shapley

method is extremely computationally demanding. The same is in the case of investigating

the trainable parameters of a neural network. Models usually have at least on the order

of thousands of parameters, but quite commonly, millions. Generating all Shapley subsets

would thus lead to an incomputable problem. On the other hand, community detection,

whether at the level of input data or model layers or components, or at the level of

trainable parameters, can significantly reduce the amount of generated subsets due to the

aggregation of entities with similar information, and thus enable Shapley to be evaluated

in a reasonable time.

Based on the detection of communities over the input data, from the point of view

of community features of the sample, it is possible to gain better insight into the solved

problem and thus better design the topology of the model. Thus, it allows the model to

be better grasped to process parts of data carrying similar information.

2.2.1 Terminology in the communities detection

Before the declaration of the terms below, there is an assumption of knowledge of the

theory from N. Deo: Graph Theory with Applications to Engineering and Computer

Science [Deo94]. Formalisation is defined according to Réka and Barabási [AB02] and M.

Newman [New10].

• Complex network - graph representing interdependent entities and displaying non-

trivial topological features defined as

N := N (A,E), (2.25)

where

A := A(A1, ...,An), (2.26)

20 CHAPTER 2. STATE OF THE ART

where Ai is the ith agent and

E := {(Ai,Aj)|Ai,Aj ∈ N ∧Ai ̸= Aj} (2.27)

is the set of interactions (edges) between them. The edges together define patterns

of entity connections that are not purely random. The information could be carried

by degree distribution (mostly in unweighted graphs), edge weights (such as correla-

tion), directions of edges (reciprocity of entities), or by a hierarchical structure which

reflects dependencies between entities. While analysing the complex networks, we

must ask which properties we are looking for, which entities are more important than

others, how to distribute entities between communities and look for some repeating

pattern in the network. The characteristics properties are degree heterogeneity and

the existence of bridge vertices and small worlds.

• Network agent - node

Ai := Ai(Pi) ∈ N (2.28)

representing the entity of the problem with properties Pi related to the network

N . The agent could carry various types of information and may be connected to

other agents (for example, by correlation of the carried information). From the game

theory point of view, we can speak about cooperative agents in case they are mostly

correlated with each other. The community of these agents can be considered for

the analysis as one superagent.

• Agent ranking - mapping

m : (Ai,E)→ R (2.29)

assigning significance to the particular agent (degree of the vertex in the graph,

weighted degree, median degree of the neighbours, the modularity contribution -

change of the modularity after removing the vertex).

• Community - a group of entities (vertices) with common properties, meaning, or

cooperative influence. Radicchi et al. [RCC+04] state that the community is part of

a network where the internal connections are denser than the external ones. They

provide two definitions of community, strong and weak.

The strong sense means that the community is the subgraph Cs if

Ain
i < Aout

i , ∀Ai ∈ A. (2.30)

The above definition says that each agent has more connections within the commu-

nity than with the agents in other communities.

2.2. COMMUNITIES DETECTION 21

The weak sense means that the community is the subgraph Cw if

∑
Ai∈A

Ain
i >

∑
Ai∈A

Aout
i . (2.31)

The weak sense definition says that the sum of all degrees within the community

is larger than the sum of degrees with the agents in other communities.

As mentioned by Radicchi et al., their definitions do not represent the only possible

choice, and at the same time, they are not completely general. So it is not easy

to formally define the concept of community. For that reason, we present here the

definition, which is built on the idea of mapping between spaces. The formalisation

is following:

d : A× E −→ C, (2.32)

where d is the mapping of the agent space and their interactions to the community

space C. At the same time as the above-mentioned mapping, the objective function

lossd is optimised during community detection, which determines the quality of the

dividing agents into communities according to a predefined criterion. From the

above, the set of communities is formally defined as

C = argmin
d

(lossd(N))(A× E). (2.33)

Based on the chosen representation of d, fundamentally different community detec-

tion outputs can be achieved. Mapping can enable or disable overlapping communi-

ties for which:

∃ Ci, Cj ∈ C : Ci ∩ Cj ̸= ∅, (2.34)

or hierarchical-based, where

∃ Ci, Cj ∈ C : Ci ⊆ Cj . (2.35)

As a ranking objective function lossd, various methods can be used in network graphs.

The connectivity inside communities could be described by density (the best con-

nections are cliques, or the problem can be relaxed to dense subgraphs). It can

also be described by the degree of vertices (communities of the same-degree neigh-

bours or communities of one high-degree vertex and its low-degree neighbours) or by

modularity maximisation. Based on the task, the point of interest can be centrality

vertices, outliers, or bridge vertices (vertices that connect two or more communities).

22 CHAPTER 2. STATE OF THE ART

2.2.2 Communities detection approaches

The fundamental problem of clustering on large-scale networks is the time complexity. Due

to that, there is usually looked for some approximation and not precisely the optimal so-

lution. There are three fundamental concepts of clustering on graphs: divisive algorithms

(finds bridge connections between communities and remove them) by Girvan and New-

man [GN02], agglomerative (merge similar communities from the one-agent-community

to the more-agents) by Pons and Latapy [PL06] and the optimization (maximization or

minimization of the objective function).

The most direct way to find communities in graphs and networks is to transform the

problem into finding cliques and their close subgraphs. A clique of the graph (network)

is the most robust community in terms of mutual connection. However, the fundamental

disadvantage of such an idea is that finding a maximal clique in a graph is an NP-hard

problem from the point of view of Complexity Theory. The decision variant of such a prob-

lem is NP-complete - it is one of Richard Karp’s original 21 problems shown NP-complete

[Kar72]. The Bron-Kerbosch algorithm [BK73] can be used to find the maximum

cliques. It is an enumerative algorithm on undirected networks that sequentially searches

all subsets of agents and checks whether the current subset is a clique. The fundamental

disadvantage of the Bron-Kerbosch is the exponential time complexity of O(3N/3), where

N is the number of vertices (agents). The asymptotic time complexity can be reduced by

relaxing the problem from maximal cliques to any. For this, a greedy approach can be

used based on the aggregation of agents so that the partial component is a clique. Find-

ing a clique starting epoch of the algorithm from each agent by the greedy approach has

an asymptotic complexity of O(N2) (linear asymptotic time for each agent). The clique

methods have got the disadvantage of finding relatively small communities. Searching for

dense subgraphs (near clique) is presented by Khuller and Saha in [KS09]. They focus on

developing fast polynomial time algorithms. Their work deals with variations algorithms

in searching dense subgraphs for directed and undirected graphs. The agglomerative

Khuller and Saha greedy approaches are shown in Algorithms 4 and 5. The ad-

vantage of near-clique methods is the polynomial complexity, but the algorithms do not

guarantee an optimal solution.

Another possible approach to finding communities on graphs is the approach using

entropy-based clustering. This method belongs to the methods using the optimization

of the objective function. Le and Kim [LK15] applied that approach to find protein struc-

tures and protein-protein interactions. Their approach consisted of determining locally

optimal clusters by aggregating from an initial cluster by combining selected seeds while

minimising the cluster’s entropy. The approach is described as follows. The entropy e of

2.2. COMMUNITIES DETECTION 23

Algorithm 4 Khuller and Saha: Densest-Subnetwork greedy

Input: N.

Output: error matrix Eavg ∈ Rw×f (where w is the size of the input window

step).

n← |A|
Hn ← N
for i = n to 2 do

Let Ai be an agent in Hi of minimum degree.

Hi−1 ← Hi\{Ai}
end for

return Hj which has the maximum density over all Hi, i ∈ {1, ..., n}.

Algorithm 5 Khuller and Saha: Densest-at-least-k

Input: N, k.
Output: error matrix Eavg ∈ Rw×f (where w is the size of the input window

step).

D0 ← ∅
N0 ← N
i← 1
while V (Di) < k do

Hi ← maximum-density-subgraph(Ni−1)
Di ← Di−1 ∪Hi

Ni ← shrink(Ni−1, Hi)
i← i+ 1

end while

for each Di do

Add an arbitrary set of max(k - A(Di), 0) vertices to form D
′

i

end for

return D
′

j which has the maximum density among all D
′

i.

a community C is defined as:

e(C) =
∑
Ai∈A

−pi(Ai)log2pi(Ai)− (1− pi(Ai))log2(1− pi(Ai)), (2.36)

where

pi(Ai) =
ni

mi
, (2.37)

where ni is a count of neighbouring agents of the agent Ai inside the community C and mi

is the total count of the neighbouring agents of the agent Ai. The Le and Kim Entropy-

based clustering algorithm is performed in four steps:

1. Select two seeds as an initial community.

24 CHAPTER 2. STATE OF THE ART

2. Add all neighbours if the adding will decrease community entropy.

3. Remove agents added in the previous step if the removing will decrease community

entropy.

4. Repeat steps 2 and 3 until there is no choice in entropy decreasing. Shape the

community, remove agents from the network and repeat the process from step one.

Zhao et al. [ZLW21] dealt with community detection using subgraph compression on

large-scale social networks, which is a hierarchically agglomerative approach. The CDEP

method consists of four parts.

1. Compressing - produces a compressed network obtained by iteratively merging agents

with a degree 1 or 2 into their neighbours of a higher degree.

2. Seeding determination - defines density and quality of agents and computes the

probability of agents being community seeds.

3. Expansion - iteratively expanding the community. Each community is initialized

on agents designated as seeds. Agents are assigned to communities based on the

calculation of community membership scores.

4. Propagation - the community results are propagated to the original network based

on the compressing affiliation.

But the fundamental problem of this approach lies in the assumption that several almost

isolated agents in the network have only one or two neighbours. The approach is therefore

designed especially for large-scale social networks, where people can expect just such

behavioural interactions. However, on strongly connected networks, this approach fails

and produces only one community as an input network - the method has nothing to catch

in the first step on strongly connected networks.

The Louvain method is a greedy approach for community detection on graphs with

log-linear time complexity which is its main advantage. The method uses the principle

of graph modularity optimization; it was first used in identifying language communities

in a Belgia mobile network by Blondel et al. [BGLL08]. The method is used to detect

non-overlapping communities, and its main advantage lies in the fact that it outperforms

other methods in computation time.

The modularity is a rating of the quality of the communities partition. It is a scalar

between -1 and 1, defined as

Q =
1

2m

∑
i,j

[
Aij − kikj

2m

]
δ(ci, cj), (2.38)

2.2. COMMUNITIES DETECTION 25

where Aij is a weight of edges between i and j agents of the network N ,

ki =
∑
j

Aij (2.39)

is the sum of the weights of the edges attached to the agent i, ci is the community of the

ith agent, δ(a, b) is 1 if u = v and 0 otherwise, m is the sum of all the weights of the edges.

Maximising modularity improves the quality of dividing network agents into communities.

According to Brandes et al., [BDG+06], the disadvantage of direct maximization of mod-

ularity is the high time complexity - it is an NP-complete problem that cannot be solved

in polynomial time. The Louvain method solves this problem by introducing a hierarchi-

cal approach to dividing agents into communities and calculating only the change in the

modularity of the graph, not the entire value. The change in modularity is only affected

by the calculation on the agent, which changes the community and its neighbours. The

change in modularity when assigning the ith agent to the community Cc is defined as:

∆Q =
[∑

in +ki,in
2m −

(∑
tot +ki
2m

)2]
−[∑

in
2m −

(∑
tot

2m

)2
−
(

ki
2m

)2]
,

(2.40)

where
∑

in is the sum of the edges weights within the community Cc, the
∑

tot is the sum

of edges weights incident to the community Cc, ki is the edges weights sum incident to ith

agent, ki,in is the edges weights sum between ith agent and agents inside the node Cc and
m is the sum of all edge weights. The method works as described in Algorithm 6.

Algorithm 6 Louvain method

Input: N.

Output: the tree graph of hierarchical communities clustering.

for each each agent Ai do

1. The neighbours Aj of Ai are considered.

2. The gain of modularity for moving Ai to the community of Aj.

3. The agent Ai is placed into the community for which the gain is maximum,

but only if the gain is positive.

end for

Build new network N ′ whose agents are communities found during the first phase

and repeat the whole process until there is only one-super-agent-community.

The result of the Louvain method is the dendrogram - hierarchical tree representing a

successive division of the agent network into communities.

White and Smyth in [WS05] presented a spectral clustering approach to finding

communities in graphs. Their approach lies in optimizing the modularity function, which

26 CHAPTER 2. STATE OF THE ART

is reformulated as a spectral relaxation problem. The key idea is to turn the modularity

function into a spectral problem in which the graph can be embedded into Euclidean

space. On a graph represented in a Euclidean space, fast clustering algorithms such as

K-mean, which is based on geometric principle, can then be used to identify the clusters.

Compared to the Louvain method, the disadvantage of the spectral method is the time

complexity O(n3) during computing eigenvectors.

2.3 Conventional neural networks models

This subsection contains an overview of the conventional neural network models widely

used in many typical machine learning tasks such as computer vision, sequence prediction,

and regression or classification problems.

2.3.1 Dense NN

A fully connected (dense) neural network, also known as a multilayer perceptron (MLP

as a deep learning model introduced by A. G. Ivakhnenko [ILLM67]), consists of layers in

which every neuron of one layer is connected to every neuron in the following layer; thus,

it is a feedforward neural network. Each neuron performs a linear combination of its input

data followed by an activation function in a way:

y⃗i = α⃗ · x⃗i + bi, (2.41)

where y⃗i is the output of the i
th layer, α⃗ and bi are trainable parameters of the correspond-

ing neuron and x⃗i is the input to the ith layer (output of the (i− 1)th layer). The output

of the last layer could be a scalar value, a probability distribution, or a multidimensional

vector of class labels. Dense neural networks are useful for any arbitrary task of super-

vised machine learning. According to Danishvar et al., [DDS+21], the main advantage of

Dense NN is that there are no assumptions about specific structure, data handling and

processing - the network is structure agnostic. Although fully connected networks are very

broadly applicable and simply implementable, such networks tend to perform weaker than

special-purpose networks built accordingly to the structure of a solved problem. Often the

limitation of dense networks is a tendency to overfitting, especially if the amount of the

trainable parameters (directly proportional to the count and dimensionality of the hidden

layers) is large in relation to the size of the dataset.

The dense network schema shows Figure 2.2 generated by the NN-SVG tool [LeN19].

The example schema contains four layers - one input, two hidden, and one output.

2.3. CONVENTIONAL NEURAL NETWORKS MODELS 27

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ²

Figure 2.2: Example of Dense NN architecture

2.3.2 Convolutional neural network

Convolutional neural networks are a type of artificial neural network that is used primarily

for pattern recognition and signal processing (Lo et al. [LCL+95]). Compared to fully

connected networks, the CNN architecture solves the dimensionality problem of processed

data samples. Each network layer processes the data flow by applying a convolutional

mask to the blocks of data. The length of the step to move the mask to the next block

of data is called a stride. The amount of masks used in parallel on the same layer is

referred to as the dimensionality of the filter. The behaviour of convolution masks on

the first layers of the model typically corresponds to edge detectors; the deeper layers are

usually responsible for detecting abstract data patterns and capturing different aspects

of data features. The output of the last convolutional layer is passed into the chain of a

few fully connected layers (or recurrent layers) that process the learnt features or newly

generated hidden features. According to Kiranyaz et al., [KAA+19], CNN is essential for

segmentation and detection in image processing, speech processing and synthesis, and thus

time-dependent series in general.

Although convolutions are mainly used in computer vision applications, they are also

effective for classification or regression tasks in processing time-dependent data. The

architecture of such an application is based on one-dimensional convolutions. The main

challenge of time-dependent data processing is capturing the temporal dependencies in

the sequences, which can be handled by properly specifying kernel mask size. The one-

dimensional kernel mask filter is applied along the time dimension of the data sequence.

Long-size masks are designed to capture long-term and global trends, and smaller masks,

especially in hidden layers, capture short-term feature dependencies.

The general schema of the 1D convolution chain is shown in the picture 2.3.

The main components of the convolutional network architecture are as follows:

• Convolutional layer applies a kernel mask (convolutional tensor) on an input

28 CHAPTER 2. STATE OF THE ART

Figure 2.3: General 1D-conv chain [SH20]

tensor in a way (1D convolution):

g(x, a, b) = bias(x) +
a∑

dx=1

µ(dx) · f(x+ dx), (2.42)

where f(x, y) is an input feature map, µ(x) is a kernel mask of size (a).

• Activation function adds a nonlinearity into the network.

According to Hosseini et al., [HP17], the fundamental problem with convolutional neu-

ral networks is the adversarial problem and generally poor noise immunity. Furthermore,

there is a significant problem when dealing with irregularly sampled input data of different

lengths.

2.3.3 Recurrent and LSTM neural networks

Recurrent neural networks (RNN) are types of artificial neural networks mainly used

for pattern recognition in sequences, regression and encoder-decoder problems of time-

dependent data. Compared to feedforward networks (fully-connected, convolutional),

whose principle of data processing is a uniform flow of information, RNNs contain loops

in their architecture. According to Schmidt [Sch19], the existence of loops within the ar-

chitecture allows the network to remember contextual information about the flow of data

and to make decisions based on aggregated information from (temporally) previous inputs

and not just from the one currently being processed. The formal expression of processing

the context is as follows:

h⃗t = ϕ1(U x⃗t +W h⃗t−1 + b⃗h),

y⃗t = ϕ2(V h⃗t + b⃗y),
(2.43)

2.3. CONVENTIONAL NEURAL NETWORKS MODELS 29

where h⃗t is the contextual vector of the hidden state at step t, U , V , W , b⃗h and b⃗y

are coefficients that are shared temporally and ϕi are activation functions. Amidi [Ami19]

states that the main advantage of recurrent neural networks is the possibility of processing

input of any length, while the number of trainable parameters of the model does not

increase with the increasing range of the processed sample. However, the implementation

of the RNN network architecture itself, as it was defined, has the disadvantage of forgetting

information about the context of the sequence. If an event at its beginning characterises

a long sequence, it will be forgotten during processing and this information will not be

transferred to the network output. The general phenomena that are often encountered in

the context of recurrent neural networks are vanishing/exploding the gradient2.

The Long short-term memory, introduced by Hochreiter & Schmidhuber, 1997 [HS97],

are recurrent models described by Chien et al. [CTB+21], that exploit gating mechanisms

to support the retention of information for longer inputs. LSTM cells deal with the

vanishing gradient problem and improve the recurrent neural networks concept, and have

the ability to train and remember long addictions of information sequences. The neural

network is built with a chained repeating cell, as is visible in Figure 2.4. The LSTM cell

Figure 2.4: LSTM chain [Ola15].

has three entry instances: previous internal cell state vector c⃗t−1, previous output vector

h⃗t−1 and actual input vector x⃗t. Two resulting instances3 are the current internal cell

state vector c⃗t and the current output vector h⃗t.

The first sigmoid on the left of the cell diagram 2.4 is called the forget gate layer,

which decides how the previous internal state will be treated in the current cell. The

second sigmoid from the left and the hyperbolic tangent block represent the input gate

2According to the Pascanu et al. [PMB13], if the gradient becomes too small and almost zero, it does
not occur to update the early layers. It leads to a state where a model is only learning the last layers of
the network - parameters (of the last few layers) are adapting to the training data. The problem typically
occurs while using hyperbolic tangent activation functions. On the contrary, the gradient explosion occurs
when the error gradients are accumulated and result in very large gradients. According to J. Brownlee
[Bro19], the explosion can result in an unstable network that cannot learn from training data.

3For all experimental settings of models containing LSTM layers, the initial context cell state vector
c0 was experimentally set to the zero vector, and after the evaluation of the layer, the context vector was
reset.

30 CHAPTER 2. STATE OF THE ART

layer through which the cell’s internal state is updated. The right part of the cell with the

last sigmoid acts as an output gate layer for calculating the output vector h⃗t. According

to Salem [Sal18], the result depends on the modified cell internal state vector and the

previous inputs.

The LSTM equations according to Figure 2.4 are following:

p⃗t = σ(x⃗tU
p + h⃗t−1W

p + b⃗p)

q⃗t = σ(x⃗tU
q + h⃗t−1W

q + b⃗q)

r⃗t = tanh(x⃗tU
r + h⃗t−1W

r + b⃗r)

s⃗t = σ(x⃗tU
s + h⃗t−1W

s + b⃗s)

C⃗t = σ(p⃗t ⊙ C⃗t−1 + q⃗t ⊙ r⃗t)

h⃗t = tanh(C⃗t)⊙ s⃗t

(2.44)

where b⃗ are bias vectors, W are weights matrices and ⊙ is a element-wise (Hadamard)

product.

According to Chien et al., [CTB+21], the advantage of networks based on LSTM cells is

the ability to work with time-dependent data and resistance to vanishing gradient (unlike

RNN and convolutional neural networks). The disadvantage is mainly the mechanism of

forgetting, which results in an exponential loss of information over time and a limitation

of the ability to capture information in the long term.

A possible solution to the aforementioned shortcoming of the LSTM network is to

consider as output not only the last output vector hlast, but all (or at least a certain part)

of the vectors ht. The hlast contains condensed information, but, in contrast, considering

more ht vectors enables us to pay attention to the previous states of the sequence. The

attention mechanism, by Bahdanau et al. [BCB15], enables the network to learn which

hidden cell state attends to information and how much. Figure 2.5 shows the difference

between the usage of the vanilla encoder-decoder of the RNN / LSTM architecture, where

there is only one connection between layers (which is subject to forgetting) and the ar-

chitecture of the attention mechanism where the layers are inserted the dense layer that

enables the transfer of information from all hidden states.

In addition to the attention mechanism, there is another improvement of the LSTM-

based networks - bidirectional LSTM (BLSTM) described by Cui et al. [CKPW20] and

[CKW18]. In such cases, the layer is exploited to capture spatial features and bidirectional

temporal dependencies from historical data. The LSTM block processes the data in a

forward direction and backwards by another block. The outputs of both directions are

2.3. CONVENTIONAL NEURAL NETWORKS MODELS 31

Figure 2.5: Vanilla and attention encoder-decoder architectures [Man21]

merged or aggregated. The formal notation of the bidirectional LSTM layer is as follows:

blstm(x, f) = f(
n∑

i=1

l1(x⃗i),
n∑

i=1

l2(x⃗n−i)), (2.45)

where l1 and l2 are LSTM cells, f is a merging-aggregation function and

x ∈ Rn×m, (2.46)

where n is the time series dimension, m is a feature dimension, and

x⃗i ∈ Rm. (2.47)

The BLSTM architecture is shown in the picture 2.6.

Figure 2.6: BLSTM architecture, image taken from [Ami19]

32 CHAPTER 2. STATE OF THE ART

Figure 2.7 shows typical topological architectures of recurrent neural networks.

• many-to-one used for sequence classification, but subject to the forgetting problem

mentioned above.

(a) Many-to-one architecture (b) Many-to-many architecture

(c) One-to-many architecture

Figure 2.7: LSTM networks architectures, images taken from [Ami19]

• many-to-many used for recognition or classification and is prepared for using the

attention mechanism to solve the above-mentioned forgetting problem.

• one-to-many used for sequence generation or prediction.

2.3.4 Attention neural network

Attention is a technique to reduce the computational complexity of the neural network

model by introducing a block that focuses on specific features or regions of the input

data rather than uniformly covering the entire sample. The mechanism was introduced

by Bahdanau et al. [BCB15] in a machine translation model. The technique is used in

different fields of machine learning, such as image recognition, natural language processing,

or time-series processing. The following formulation can be introduced for the attention

mechanism. The input sample is called a sentence of words. Each word is characterized

by its letters. Attention mapping highlights letters, and thus words, which are essential

for the solved task. Non-important, irrelevant or noisy words are assigned low-ranked

weights, and thus values of their letters are lowered. Ideally, irrelevant words are zeroed

by the zero weights. Important words have assigned high-rank weights, which increase

2.3. CONVENTIONAL NEURAL NETWORKS MODELS 33

their letter values. The setting of the weights is realized by gradient descent in the same

way as in other parts of the neural network.

The Bahdanau et al.’s attention mechanism consists of three steps:

1. Alignment score calculation. The actual score et,i is calculated by the model m based

on the previous output st−1 and the current hidden state hi in a way

et,i = m(st−1, hi). (2.48)

2. The weights are computed by the softmax function from the scores.

αt,i = softmax(et,i) (2.49)

3. The context vector ct is a scalar product of weights and hidden states.

ct =
∑
i

αt,ihi (2.50)

The above attention mechanism corresponds to recurrent (LSTM) models in returning all

hidden vectors and their processing with a dense layer.

The general attention mechanism was introduced by the GoogleBrain team [VSP+17],

the concept is used in the transformer neural network blocks. The general mechanism

is described by D. Soydaner [Soy22] and Brauwers and Frasincar [BF23]. In the general

approach, the input data are divided into three components, queries Q, keys K, and

values V. The attention weights corresponding to the data features are computed from

these components. The queries are generalisations of the vector st−1 in the Bahdanau

approach; the values and keys are related to the vectors hi. Keys represent the most

relevant features for computing the attention weights, queries correspond to the features

that are being attended to, and values are actual attendee information. The steps of the

general attention mechanism are the following:

1. Query vectors are matches against keys. Scores are scalar products of queries and

keys.

eq,ki = q · ki (2.51)

2. The weights are computed by the softmax function from the scores.

αt,i = softmax(et,i) (2.52)

34 CHAPTER 2. STATE OF THE ART

3. The generalised attention is a weighted sum of the value vectors with the corre-

sponding keys.

attention(q,K,V) =
∑
i

αq,kivki (2.53)

The approach allows the neural network to better target the direction of the gradient to

those features that carry information from the point of view of the given issue. Also,

because the approach can be applied to a wide range of problems, it is very flexible. A sig-

nificant advantage of the attention mechanism is its direct explainability. The obtained

attention weights can be visualised to provide insight into how the model is processing the

input data and which features are relevant - the features of the input data with assigned

attention weight around zero represent noisy/irrelevant information.

Chapter 3

Methods, proposed approaches

and results

This part provides an overview of the methods used. The neural network models and algo-

rithms for their explainability are listed with detailed summaries to facilitate replication

of the experimental evaluations.

As mentioned in the introduction, the main task solved is to estimate four parameters

characterizing the quality of the material from the curve of dependence of load on a

deflection. This task was divided into two subtasks.

In the first subtask, called partial curve problem, only the first twenty points (of the

total sixty-one) of the curve are considered as the input sample. Figure 3.1 shows the

problem schema. The twenty points enter the c2c (curve to curve) neural network model,

which calculates the remaining 41 points. This model generates the rest of the curve, which

enters the main model, which determines the four material parameters. The main model

and c2c model were trained separately. The reason for the cutting of the curve at the

twentieth point is the fact that the breakpoints (peaks) occur only after this boundary, and

such an approach allows use without knowing exactly the breakpoint. So it is a question

of determining the parameters of the material without its deformation occurring.

The second subtask, called full curve problem, considers the input sample to be a

complete curve of all sixty-one points, which enters the main model that produces the

material parameters. This approach considers information about the breaking point and

the subsequent behaviour of the material after breaking but requires deformation of the

object, which can be problematic and expensive in industrial practice.

35

36 CHAPTER 3. METHODS, PROPOSED APPROACHES AND RESULTS

Figure 3.1: Schema of the partial curve problem.

3.1 Used conventional models

This subsection contains summaries of the used conventional neural network models. The

first of them, the c2c, is a model used to generate the full curve in the partial curve

problem. The rest are models used to solve the problem of material parameters in both

partial curve problem and full curve problem.

3.1.1 c2c model

A c2c (curve to curve) model based on LSTM and Dense layers was used to generate the

surrogate curve. At the input of the model was the vector of the first twenty points of

the curve, and the model added the next forty-one points to the complete curve of the

given sample. The model contained 101 173 trainable parameters. The specific layers of

the chain were as follows:

1. LSTM layer with an attention mechanism,

2. dense layer: input dimension 20, output dimension 200,

3. LSTM layer with an attention mechanism,

4. dense layer: input dimension 200, output dimension 400,

5. LSTM layer with an attention mechanism,

6. dense layer: input dimension 400, output dimension 41.

3.1.2 CNN

The built convolutional neural network consisted of five convolutional layers (with linear

activation function), one flattened layer and one fully connected dense layer. The network

contained 23 904 trainable parameters. The specific layers of the chain were as follows:

3.1. USED CONVENTIONAL MODELS 37

1. convolutional layer: mask dimension 30, filters (2, 10),

2. convolutional layer: mask dimension 15, filters (10, 20),

3. convolutional layer: mask dimension 10, filters (20, 30),

4. convolutional layer: mask dimension 5, filters (30, 40),

5. convolutional layer: mask dimension 5, filters (40, 40).

6. flatten layer.

7. dense layer: input dimension 40, output dimension 4.

The LeNet schema of the network is in the picture 3.2.

Conv1D Conv1D Conv1D Conv1D Conv1D Conv1D

2@61x1
10@32x1

20@18x1

30@9x1

40@5x1 40@1x1

1x40
1x4

Figure 3.2: Used CNN, the image generated by the NN-SVG tool [LeN19]

3.1.3 Dense NN

The built Dense neural network consisted of five layers. The model contained 71 204

trainable parameters. The specific layers of the chain were as follows:

1. flatten layer.

2. dense layer: input dimension 122, output dimension 300,

3. dense layer: input dimension 300, output dimension 100,

4. dense layer: input dimension 100, output dimension 40,

5. dense layer: input dimension 40, output dimension 4.

38 CHAPTER 3. METHODS, PROPOSED APPROACHES AND RESULTS

3.1.4 LSTM NN

The built LSTM-based neural network consisted of six layers. The element-wise sum-

mation was used as the merging-aggregation function in the BLSTM layers. The model

contained 6 762 trainable parameters. The specific layers of the chain were as follows:

1. dense layer: input dimension 61, output dimension 61.

2. bidirectional LSTM layer with an attention mechanism.

3. dense layer: input dimension 61, output dimension 40.

4. bidirectional LSTM layer with an attention mechanism.

5. flatten layer.

6. dense layer: input dimension 80, output dimension 4.

3.2 Proposed approaches

This part contains an overview of the proposed approaches of neural network models and

explainability.

3.2.1 Proposed models

The goal was to design models of neural networks, which with their architecture, will reflect

the distribution of information in the data, processing input samples in parts carrying

common information. For that reason, the first step was to build a similarity (unoriented,

weighted) graph - the vertices of such a graph represent the points of the input curve and

the weights of the edges of the measure carrying information together.

The similarity graph was constructed based on the Dynamic time warping1 of the

curves in the dataset in the following way. Let

a⃗ := (a1, a2, ..., aN),

b⃗ := (b1, b2, ..., bN)
(3.1)

1Dynamic time warping is an algorithm to measure the similarity between two time-dependent
sequences which differ in speed. The algorithm dates back to the 1960s; for the purposes of this work, a
review by P. Senin was used [Sen09]. Dynamic time warping (DTW) calculates optimal mapping (match)
between sequences with the following constraints:

• Every point in each sequence must be matched with at least one point from the other sequence.

• The mapping between sequences points is monotonically increasing.

• First points in sequences must be mutually matched.

• Last points in sequences must be mutually matched.

3.2. PROPOSED APPROACHES 39

be (curves) samples of length N . The warping path denoting the mapping of points

between curves is a sequence of pairs P = (p1, ..., pL). The pair pi = (pi,1, pi,2) means

that the pthi,1 point of the curve a⃗ is mapped to the pthi,2 point of the curve b⃗. The quality

of the DTW path is given by optimising (minimising) the aggregated sum of Euclidean

distances between mutually mapped points2. Define the mapping matrix Da,b in the

following way:

Da⃗,⃗b
i,j =

1, if a⃗i is mapped to b⃗j

0, otherwise.
(3.2)

The weights matrix W of the similarity graph is obtained as

W =
∑
a⃗∈X

∑
b⃗∈X
a⃗ ̸=b⃗

Da⃗,⃗b, (3.3)

where X is set of samples and n is the number of points in the input sample (n = 61).

On the obtained similarity graph, communities were detected using the Louvain method.

Figure 3.3 shows the log-scale similarities of points in curves3. On the diagonal of the

heatmap, there is a line with black points (please notice that the line is not continuous

and spaces are highlighted by green vertical lines). The segments of such line show points

belonging to common communities. The first ten points of the curves were evaluated as

ten isolated communities by the DTW-Louvain methods. Since such communities would

have one point each, they were grouped into one community. It can be seen from the

heatmap that the division into communities is densest between the twentieth and fortieth

points, where the most breaking (peak) points are also located.

2Considering that these are the distances of points in space, where the base vectors correspond to
different physical quantities (and therefore also units), the values of the coordinates of the points were
normalized by components.

3Similarity of two points in given by the weight of the edge between corresponding vertices of the
similarity graph.

40 CHAPTER 3. METHODS, PROPOSED APPROACHES AND RESULTS

0 10 20 30 40 50 60

0

10

20

30

40

50

60

1

2

3

4

5

6

7

8

Point rank

Po
in

t
ra

nk

Figure 3.3: Similarity contour heatmap (natural logarithm scale) on A-dataset. The axes
represent the order of the points on the curves.

Three architectures of neural network models were created based on the distribution

of sample points. Their architecture was implemented in the tool Maen (Multiple agents

ecosystem network) developed by V. Drahý [Dra23].

In the following diagrams of the neural network model, the input sample’s orientation

(relative to the order of the curve points) is indicated by a dashed arrow.

Figure 3.4 shows the topology schema of the Feedforward Maen (F-Maen) neural

network model. The model is composed of the following components layers:

1. InputAgents components marked by yellow color - components that represent

input data divided into communities. The InputAgents transform two-dimensional

points of the input sample into vectors of complex numbers.

2. HiddenAgents components marked by orange colour - perform geometrical trans-

formations by applying dense layers with complex numbers parameters.

3. HiddenAgents components marked by blue colour - vertically concatenate the re-

sults of two previous neighbouring orange Hidden Agents to pass the information of

neighbouring communities forward and apply a dense layer with complex numbers

3.2. PROPOSED APPROACHES 41

parameters. Based on this, the blue layer considers not only isolated community

information but also the context of the immediate surroundings of the communi-

ties. At the same time, within the network, all information between components

is forwarded between layers (layers marked with colours). There is no information

transfer within a single layer. For that, the network is called Feedforward Maen.

4. HiddenAgents components marked by green colour - perform concatenation of

results of the blue layer from the vector of complex numbers into a vector of real

numbers. Next, apply three dense layers with real numbers parameters (output

dimension is a dimension of labels).

5. OutputAgent marked by red colour concatenates results of the green layer com-

ponents and performs one single dense layer resulting in a dimension of labels.

Figure 3.4: Feedforward Maen (F-Maen).

Figure 3.5 shows the topology schema of the LSTM Maen (L-Maen) neural network

model. The model is composed of the following components layers:

1. InputAgents components marked by yellow color - components that represent

input data divided into communities.

2. HiddenAgents components marked by orange colour - contain bidirectional LSTM

cells to process time dependencies within each community.

3. HiddenAgents components marked by blue colour - the results of three adjacent

components from the orange layer are concatenated and processed by one dense

42 CHAPTER 3. METHODS, PROPOSED APPROACHES AND RESULTS

layer in the HiddenAgents components of the blue layer. Based on this, the blue

layer considers the extended surroundings of the information processed in the orange

layer.

4. HiddenAgents components marked by green colour - components containing bidi-

rectional LSTM cells to process time dependencies of newly generated hidden fea-

tures from blue layer components (output dimension is a dimension of labels).

5. OutputAgent marked by red colour concatenates results of the green layer com-

ponents and performs one single dense layer resulting in a dimension of labels.

Figure 3.5: LSMT Maen (L-Maen).

Figure 3.6 shows the topology schema of the LSTM-Attention Maen (L-A-Maen)

neural network model. The model is composed of the following components layers:

1. InputAgents components marked by yellow color - components that represent

input data divided into communities.

2. HiddenAgents components marked by purple color - components with a general

attention mechanism. Their goal is to highlight parts of the data according to the

focus of the attention module.

3. HiddenAgents components marked by green colour - contain bidirectional LSTM

cells to process time dependencies within each community. Furthermore, these com-

ponents transmit to each other (in the direction of the order of the points of the

input curve) the context vector of LSTM cells. Thus, time-dependent information

is processed within each component, and time-dependent context is passed between

components.

3.2. PROPOSED APPROACHES 43

4. HiddenAgents components marked by orange colour - their role is identical to

that of the green colour components, with the only difference being that they move

in the opposite (relative to the order of the input curve points) direction.

5. HiddenAgents components marked by blue colour - perform concatenation of re-

sults of green and orange corresponding components and applies dense layer (output

dimension is a dimension of labels).

6. OutputAgent marked by red colour concatenates results of the blue layer compo-

nents and performs one single dense layer resulting in a dimension of labels.

Figure 3.6: LSMT-Attention Maen (L-A-Maen).

3.2.2 Proposed explainability methods

Two approaches are presented here to determine the usefulness of neural network model

components. The first one is based on monitoring the gradient during model training. The

second approach identifies statistically significant correlations between component outputs

on the one hand and expected labels on the other.

Tracking gradient is based on the idea that the optimizer searches the space in-

tending to get the parameter to the optimum value as the network learns and shrinks the

44 CHAPTER 3. METHODS, PROPOSED APPROACHES AND RESULTS

gradient. Thus, the gradient with respect to the trainable parameter typically decreases

exponentially. If the parameter fails to learn, its value oscillates. For non-converging

parameters, gradient values are not reduced. Formally expressed as follows.

f := loss(model(x⃗, p⃗)) (3.4)

The f is defined as a result of the loss function of the neural network model with input

vector x⃗ and vector of trainable parameters of the model p⃗. The sequence sg is obtained by

following the gradient with respect to jth parameter during model training. The sequence

sp by following parameter changes generates.

sg :=

(
∂fi
∂pj

)I

i=1

,

sp :=

(
|pj,i−1 − pj,i|

)I

i=2

,

(3.5)

where I is the number of iterations while training, pj,i is a value of jth parameter in ith

iteration of training. Both sequences should converge to zero when training the given

parameter correctly. Suppose they do not converge, oscillate, or settle to a non-zero

value. In that case, it means that the optimizer cannot find the correct value of the given

parameter - this implies that the given parameter is confusing for the model.

Identifying statistically significant correlations between component outputs and

expected labels is based on the idea that the outputs of the relevant components (neu-

rons) of the model should carry information with an influence on the model’s outputs, and

thus the component’s outputs are correlated with corresponding labels. Depending on the

significance level of the statistical correlation test, the threshold of how much the given

component is related to the label can be changed. The t-test (Pearson’s correlation coef-

ficient follows Student’s t-distribution; Rahman, N.A. [Rah68]) determines the statistical

significance of the correlation between two signals.

Chapter 4

Experimental results and

evaluations

4.1 Experimental results of neural networks

In the experimental setting, the mean square error was always set as a loss function for

training neural networks, as the Adam optimizer with a preset learning rate of 0.001 and

a decay of momentums of 0.9 and 0.999. The median relative error was determined as a

measure of quality.

Due to the fact that the experiments took place on three different (especially in terms of

the number of samples) datasets and the compared models differed greatly in the number

of trainable parameters, the efficiency of the parameter pe) was introduced to compare the

performance of the networks in the following way:

pe =
1

n ·m
, (4.1)

where n is the count of trainable parameters of the model and m is the median relative

error.

Training and evaluation of the models were carried out by cross-validation in five

epochs. The distribution of the dataset in each epoch was 64% samples for training,

16% for validation and 20% for testing, with no overlap in test data between epochs.

The models were learned on the training data after epochs, and the final set of trainable

parameters was chosen for the iteration with the best model quality on the validation

data; test data was evaluated for this parameter setting.

From the results (median relative errors) presented in Tables 4.1 to 4.12, it can be seen

that lower median relative errors are achieved on all datasets when considering the com-

plete curve as an input sample, which means that the neural networks consider information

45

46 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

about the peak breaking point of the monitored object to be important. Furthermore, it

can be concluded from such a finding that the subsequent behaviour of the object after

breaking is also essential for the decision-making of the models - in general, two behaviour

scenarios occur - complete deformation and a rapid decrease in the observed load or partial

deformation with a slow decrease in the load, when the material is still able to withstand

a certain pressure. According to the obtained results, it can be said that the absence of

accurate information about this behaviour worsens the results of neural networks.

The results show that the parameter Fc is determined as the worst, while Ec is the

best. Therefore, it can be said that the value of Fc does not share the informational

connection with the input data, regardless of the neural network model, dataset, and

number of samples.

As the number of samples in the datasets increased, the quality of the model results

improved significantly. It, therefore, makes sense to create large datasets for the given

task, which currently do not exist, as the systematic generation of datasets is very compu-

tationally intensive, and real physical measurement is very expensive due to the fact that

the measured objects must be destroyed.

The required maximum 20% relative error was achieved on the A-dataset (in the test

data) only for the parameter Ec, on the B-dataset as well as the C-dataset for the param-

eters Ec, Ft and Gf .

Furthermore, it can be observed from the results that for a small number of samples,

it is worthwhile to create a specific, complex topology of a neural network, which, even on

small data, can set the parameters for solving the problem. This can be observed in the

test results of L-A-Maen on the A-dataset. In contrast, a neural network architecture with

a large number of trainable parameters and a topologically simple structure cannot absorb

the problem and generalize it on small data, but with the growing number of samples in

the dataset, the behaviour of the large-scale network improves and the quality exceeds

that of small, topologically special networks, which can be observed on the Dense NN

results.

4.1. EXPERIMENTAL RESULTS OF NEURAL NETWORKS 47

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.148 0.087 0.144 0.126 0.114 0.120
Fc 0.314 0.346 0.287 0.273 0.232 0.296
Ft 0.234 0.198 0.236 0.221 0.216 0.209
Gf 0.241 0.226 0.250 0.242 0.209 0.245

Mean 0.234 0.214 0.229 0.216 0.193 0.218

Model params count 23904 71204 6762 12308 2600 33028
pe 0.018 0.007 0.065 0.038 0.200 0.014

Table 4.1: Partial curve: training (A-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.167 0.131 0.176 0.171 0.149 0.128
Fc 0.380 0.326 0.379 0.380 0.394 0.353
Ft 0.325 0.267 0.302 0.329 0.292 0.275
Gf 0.357 0.364 0.357 0.318 0.362 0.326

Mean 0.307 0.272 0.304 0.300 0.299 0.271

Model params count 23904 71204 6762 12308 2600 33028
pe 0.014 0.005 0.049 0.027 0.129 0.011

Table 4.2: Partial curve: test (A-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.203 0.082 0.166 0.128 0.136 0.156
Fc 0.373 0.274 0.337 0.205 0.254 0.355
Ft 0.237 0.144 0.210 0.175 0.199 0.249
Gf 0.188 0.144 0.164 0.158 0.161 0.311

Mean 0.250 0.161 0.219 0.166 0.188 0.268

Model params count 23904 71204 6762 12308 2600 33028
pe 0.017 0.009 0.067 0.049 0.205 0.011

Table 4.3: Full curve: training (A-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.221 0.169 0.187 0.136 0.152 0.177
Fc 0.480 0.424 0.394 0.326 0.272 0.541
Ft 0.378 0.348 0.264 0.317 0.207 0.271
Gf 0.238 0.251 0.237 0.219 0.204 0.334

Mean 0.329 0.298 0.271 0.250 0.209 0.331

Model params count 23904 71204 6762 12308 2600 33028
pe 0.013 0.005 0.055 0.033 0.184 0.009

Table 4.4: Full curve: test (A-dataset)

48 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.123 0.052 0.129 0.133 0.133 0.054
Fc 0.332 0.321 0.326 0.302 0.325 0.314
Ft 0.234 0.169 0.203 0.289 0.272 0.147
Gf 0.237 0.153 0.220 0.251 0.255 0.151

Mean 0.231 0.174 0.220 0.244 0.246 0.166

Model params count 23904 71204 6762 12308 2600 33028
pe 0.018 0.008 0.067 0.033 0.156 0.018

Table 4.5: Partial curve: training (B-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.122 0.055 0.116 0.139 0.142 0.056
Fc 0.333 0.322 0.333 0.312 0.333 0.334
Ft 0.249 0.170 0.185 0.291 0.261 0.153
Gf 0.266 0.157 0.221 0.260 0.258 0.158

Mean 0.242 0.176 0.214 0.250 0.249 0.175

Model params count 23904 71204 6762 12308 2600 33028
pe 0.017 0.008 0.069 0.032 0.155 0.017

Table 4.6: Partial curve: test (B-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.108 0.058 0.096 0.149 0.086 0.068
Fc 0.297 0.275 0.293 0.317 0.285 0.321
Ft 0.230 0.120 0.216 0.263 0.296 0.212
Gf 0.169 0.112 0.159 0.246 0.179 0.161

Mean 0.201 0.141 0.191 0.244 0.211 0.191

Model params count 23904 71204 6762 12308 2600 33028
pe 0.021 0.010 0.078 0.033 0.182 0.016

Table 4.7: Full curve: training (B-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.121 0.068 0.105 0.150 0.087 0.065
Fc 0.320 0.310 0.309 0.334 0.283 0.347
Ft 0.241 0.156 0.245 0.272 0.258 0.224
Gf 0.185 0.146 0.174 0.262 0.181 0.202

Mean 0.217 0.170 0.208 0.255 0.202 0.210

Model params count 23904 71204 6762 12308 2600 33028
pe 0.019 0.008 0.071 0.032 0.190 0.014

Table 4.8: Full curve: test (B-dataset)

4.1. EXPERIMENTAL RESULTS OF NEURAL NETWORKS 49

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.141 0.061 0.163 0.144 0.135 0.071
Fc 0.341 0.314 0.341 0.338 0.325 0.315
Ft 0.276 0.154 0.300 0.292 0.284 0.128
Gf 0.234 0.120 0.233 0.222 0.225 0.136

Mean 0.248 0.162 0.259 0.249 0.242 0.163

Model params count 23904 71204 6762 12308 2600 33028
pe 0.017 0.009 0.057 0.033 0.159 0.019

Table 4.9: Partial curve: training (C-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.147 0.063 0.171 0.146 0.150 0.070
Fc 0.348 0.321 0.350 0.338 0.332 0.310
Ft 0.281 0.154 0.288 0.297 0.282 0.134
Gf 0.225 0.120 0.225 0.212 0.228 0.138

Mean 0.250 0.164 0.258 0.248 0.248 0.163

Model params 23904 71204 6762 12308 2600 33028
pe 0.017 0.009 0.057 0.033 0.155 0.019

Table 4.10: Partial curve: test (C-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.109 0.061 0.106 0.099 0.095 0.059
Fc 0.322 0.290 0.322 0.315 0.295 0.324
Ft 0.221 0.127 0.226 0.222 0.200 0.180
Gf 0.178 0.118 0.158 0.171 0.166 0.127

Mean 0.207 0.149 0.203 0.202 0.189 0.172

Model params 23904 71204 6762 12308 2600 33028
pe 0.020 0.009 0.073 0.40 0.204 0.018

Table 4.11: Full curve: training (C-dataset)

CNN Dense NN LSTM NN L-Maen L-A-Maen F-Maen

Ec 0.119 0.066 0.111 0.103 0.101 0.063
Fc 0.331 0.304 0.336 0.317 0.296 0.322
Ft 0.231 0.138 0.230 0.239 0.208 0.184
Gf 0.179 0.128 0.168 0.170 0.173 0.138

Mean 0.215 0.159 0.211 0.207 0.194 0.177

Model params 23904 71204 6762 12308 2600 33028
pe 0.019 0.009 0.070 0.039 0.198 0.017

Table 4.12: Full curve: test (C-dataset)

50 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

4.2 Experimental results of explainability

In the experimental part, the proposed approaches for output correlation, gradient tracking

and model parameter changes are first presented. The approaches are presented first with

simple examples for easy demonstration. Subsequently, they are applied to models related

to the task of bridges. Next, there are presented the result of the experimental evaluation

of the Game theory approach with the usage of Shapley values on Maen models.

4.2.1 Experimental examples of proposed explainability approaches

Tracking the gradient and parameters - simple example

A simple example of gradient tracking is presented on a task of linear regression with the

usage of a neural network. The model is following:

model(x) = d1(x) + d2(u), (4.2)

where d1 and d2 are linear functions (dense layers with bias), x is the input scalar to the

model and u is a Gaussian noise (scalar which is for each call of the model different). From

the mentioned model, it can be assumed that the function d1 will be significant for its

functioning, while the function d2 will be confusing, and the gradient will not be able to

learn its parameters. Figure 4.1 show such behaviour.

1000 2000 3000 4000 5000

0

0.0005

0.001

1000 2000 3000 4000 5000

−1000

−500

0

d2
d1
d2
d1

iterations

iterations

ag
g

pa
ra

m
et

er
s

ch
an

ge
gr

ad
ie

nt
 c

ha
ng

e

Figure 4.1: Gradient tracking (example model)

4.2. EXPERIMENTAL RESULTS OF EXPLAINABILITY 51

The dependence of the aggregated changes of the parameters of the model functions on

the iterations shows that the function (d1), into which the relevant data enters, does not

change its parameters from the three thousandth iteration, while the second function (d2),

into which the noisy irrelevant data enters, performs, after converging, small oscillations

around a steady value. Similar behaviour can also be seen in the dependence of the

size of the gradients on the iterations, where it can be seen that the gradient relative to

the function with a noisy input oscillates around zero. From the above observation, an

assumption can be made about the usefulness of the model components.

Identifying statistically significant correlations - simple example

Here, we present a simple example of identifying statistically significant correlations. The

task is to interpolate two-dimensional points (data are visible as blue points in Figure 4.4).

The model is a Dense neural network with the five following dense layers:

1. dense layer: input dimension 1, output dimension 32,

2. dense layer: input dimension 32, output dimension 64,

3. dense layer: input dimension 64, output dimension 128,

4. dense layer: input dimension 128, output dimension 10,

5. dense layer: input dimension 10, output dimension 1.

The input to the neural network is the first coordinate x of data points, and the second

coordinate y is an expected result to be interpolated. The fact that it makes sense to be

concerned with the correlation of the neuron outputs with the expected outputs of the

model is demonstrated in Figure 4.3, where it is shown that for the 27th neuron of the

first layer of the model, its outputs are correlated with the expected outputs of the model

(y) for positive expected outputs, while for the 5th neuron, there is visible a dependency

for negative expected outputs (y) of the model.

Figure 4.2: Correlations with the expected output for all neurons outputs.

52 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

Figure 4.2 shows the heatmap of Pearson correlations between neurons outputs and

expected outputs of the model. It is evident, that there are many neurons whose outputs

are not correlated with the expected output of the neural network according to the dataset

points.

0 0.1 0.2 0.3

−1

−0.5

0

0.5

1
neuron 27
neuron 5

first layer output

y

Figure 4.3: Correlations with the expected output for two neurons in the first layer.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
points
big model
cut model 0.01
cut model 0.05
cut model 0.1

x

y

Figure 4.4: The comparison of dataset points, original big model and newly generated cut
models with the level of significance.

Based on the knowledge about correlations of neurons outputs with model expected

outputs there was performed model’s pruning. The original model, in which all neurons

4.2. EXPERIMENTAL RESULTS OF EXPLAINABILITY 53

of all layers are contained, is named big model. Models with cut layers and removed

neurons are marked as cut model. Cut models were created from the original big model by

removing neurons whose outputs at a certain level of significance are not correlated with

the expected outputs of the entire model. The significance level of the correlation statistic

test determines the threshold affecting how many neurons will be removed from the model.

Along with lowering this threshold, there is a higher loss of information when removing

neurons from the model. The model created on the basis of applying a significance level

of 0.1 contains 64% of the parameters of the original model; in the case of a significance

level of 0.01, it is 62%. Large losses of interpolation information occurred with the further

lowering of the threshold. Figure 4.4 shows a comparison of the interpolation of individual

models against the dataset points.

4.2.2 Experimental evaluations of explainability approaches on bridges

task

Identifying statistically significant correlations - bridges task

The experimental evaluation was performed between Dense NN model neuron outputs,

and material parameters are presented as follows. There was no point in dealing with the

A-dataset due to its small size and distribution. Removing neurons from a model trained

on a small dataset resulted in an immediate loss of transfer information and a significant

increase in relative errors. On the B-dataset, it made sense to deal with the correlations

to the material parameters Ec, Ft and Gf , for which there were no significant increases in

the relative error when reducing the number of neurons. The experiment was evaluated

according to the procedure of performing correlation tests of the outputs of all neurons

against one of the material parameters. The results are presented in Table 4.13. On the

C-dataset, it only made sense to deal with the correlations to the material parameters Ec

and Gf . The results are presented in Table 4.14.

Material parameter Significance level Relative error Parameters reduction

Ec 0.15 0.20 9.2%
Ft 0.15 0.19 9.5%
Gf 0.005 0.2 11.22%

Table 4.13: Reduction of trainable parameters (B-dataset)

Material parameter Significance level Relative error Parameters reduction

Ec 0.003 0.17 6.6%
Gf 0.001 0.16 11.3%

Table 4.14: Reduction of trainable parameters (C-dataset)

54 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

Tracking the gradient and parameters - bridges task

The approach was applied to the L-A-Maen model for attention modules. The parame-

ters of each of the modules were aggregated by summation of their absolute values into

one scalar. Figure 4.5 shows the dependence of such aggregated parameter changes on

iterations during gradient training of the model (Figure is generated by evaluation on the

A-dataset, but the trends were very similar for all three datasets). It is noticeable that the

optimizer was looking for a path for approximately the first hundred iterations. Only after

the hundredth iteration can we talk about the gradual convergence of the parameters. It

can be seen from the graph that approximately every fifty iterations, the optimizer tries to

step out of the local minimum and find a different path while searching the space, which

is reflected in the curves by periodic peak locations. Between these peaks, all attention

blocks, except blocks four and ten, have only small parameter changes. At block ten, the

parameter changes are damped only from the two-hundred-and-fiftieth iteration, which

means that prematurely terminating the model training would mean that the parameters

of this block will not be set correctly. On the other hand, the fourth block apparently starts

to relearn from this iteration and the changes in its parameters increase. Overall, based

on the trends in the graph, it can be stated that the attention modules are catching on to

the data since the hundredth iteration and converge. The modules are not redundant.

50 100 150 200 250

0

0.002

0.004

0.006

0.008

0.01

0.012

attention module 1
attention module 2
attention module 3
attention module 4
attention module 5
attention module 6
attention module 7
attention module 8
attention module 9
attention module 10

iterations

ag
g

pa
ra

m
et

er
s

ch
an

ge

Figure 4.5: L-A-Maen model - tracking aggregated changes of parameters of attention
modules.

4.2. EXPERIMENTAL RESULTS OF EXPLAINABILITY 55

Shapley values - Maen models

Explainability at the level of individual components of Maen models was performed using

Shapley values. A full Shapley calculation examined the input components (yellow colour)

- that is, by performing the analysis over all subsets without approximation. These are ten

components corresponding to ten communities on each data sample, which was feasible

from the point of view of the time required for the calculation. In contrast, on the hidden

components of the model, the analysis was performed using approximation. From the point

of view of the practical implementation of the method, the outputs of the components

that were discarded in the given epoch were zeroed in the case of input components and

multiplied by Gaussian noise in the case of hidden components.

Figure 4.6: F-Maen model with Shapley values explanation over all datasets.

Figures 4.6, 4.7 and 4.8 show the significance of the components of the models according

to Shapley numbers - depicted by grayscale distributions according to quantiles. The

first quantile, corresponding to the smallest Shapley numbers, is represented by white

rectangles, and the fourth quantile by black. Quantile distributions were applied separately

for the input and hidden components. Three rectangles corresponding to the results on

56 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

datasets A, B and C are assigned to each component.

Figure 4.7: L-Maen model with Shapley values explanation over all datasets.

In the case of analyzing the explainability of the input components of all three Maen

models, due to the evaluations of all datasets, it can be concluded that the first two

components (communities of sample data properties), then one to two middle components

and the last two components are important for functioning. From the point of view of

interpretability explainability, it can be concluded from these experimental observations

that the models draw information from the parts of the curves corresponding to the elastic

deformation, as well as the behaviour of the curve in the area just after the break and

the deformation of the material object. The last part of the sample carrying important

information is the end state of the curve - that is, information about the behaviour of the

material after the propagation of cracks and fracture defects has stabilized. For the F-Maen

and L-Maen models, the hidden components approximately take over the significance of

the input components to which they are linked. In the case of the explainability of the

L-A-Maen model, an interesting observation is the cascading transfer of information in

orange components. The left part of the model is assigned lower Shapley values than for

the right part, which is especially evident on the blue and green layers. In general, it can

be said about this architecture that the last (red) component, in the form of the decision-

4.2. EXPERIMENTAL RESULTS OF EXPLAINABILITY 57

making layer, takes into account more the right side of the diagram than the left. The

results of the explainability of the L-A-Maen model for all three datasets came out almost

identically, which means that for this model, the Shapley values approximation does not

cause excessive loss of explainability information.

Figure 4.8: L-A-Maen model with Shapley values explanation over all datasets.

58 CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATIONS

Chapter 5

Conclusion

This thesis introduced several approaches to the explainability of machine learning models.

There were proposed neural network models for solving a task from the field of material

engineering. Subsequently, the explainabilities of the approaches were performed. In

addition to the explainability of the components of neural networks, the interpretability

of the achieved results was carried out both from the point of view of explainability and

from the point of view of the accuracy of the functioning of the given models.

On the basis of experimental evaluations of methods and approaches, it has been shown

that it makes sense to deal with thorough pre-processing of data, including the detection

of communities over the properties of data samples. On the basis of data preprocessing,

architectures of neural network models can subsequently be created, which can accom-

modate the solved problem while simultaneously significantly reducing the computational

complexity of the model through the reduction of trainable parameters of the neural net-

work.

On the basis of the presented metric of the efficiency of the model parameters, the

L-A-Maen model works best, which, thanks to its specific architecture, was able to solve

the problem, even on a very small scale of the dataset. The conventional fully connected

Dense NN was able to accommodate the solved problem with a sufficiently large dataset,

due to its large number of trainable parameters. From the point of view of the accuracy

of the models, it is, therefore, a trade-off between a dataset size on the one hand, and the

necessity of data preprocessing on the other.

The creation of specific architectures of the neural network also has a big bonus for its

explainability in terms of clear aggregation of neurons into components, which can signif-

icantly reduce the computational complexity of explainability methods (Shapley values).

At the same time, the components of the topology, unlike only fully connected Dense lay-

ers or convolutions, can also be assigned human-understandable behaviour, for example,

in the form of processing physical phenomena or transmitting contextual information of

59

60 CHAPTER 5. CONCLUSION

time-dependent events.

A comparison of approaches for explainability can be said to mainly depend on the use

case. For the examination of larger functional blocks, it is advisable to use the Shapley

number method or, due to the time complexity, its approximation. To examine individual

trainable model parameters, it is more computationally efficient to monitor their conver-

gence during model training. In the case of the possibility of easy or effective visualization

of data, especially in the field of computer vision, it is advisable to use one of the methods

based on the Grad-CAM principle.

The following conclusions can be drawn for the solved problem from the field of materi-

als engineering. It is necessary to address the critical lack of dataset samples by collecting

additional data. Using a larger dataset significantly improved model training. Given that

the input curves carried information through values corresponding to the elastic deforma-

tion (and partially inelastic), it would be appropriate to increase the sampling during data

collection at this stage of the loads on deflection measurement. The curves also carried

information through the behaviour after stabilization of the propagation of cracks, which,

however, from a practical point of view, is poorly usable information, if it is not possible

to allow the destruction of the material object. Therefore, it is necessary to focus on the

area of the curve before the phenomenon of material destruction (peak point of the sample

curve). In the current datasets that were available, this is only 20 points out of a total of

61. Increasing the sampling during data collection would allow for better capture of the

course of the curve, including the formation and propagation of small cracks even before

the curve breaks. Small cracks form in the material during the transition between elastic

and inelastic deformation, without fatal fractures and destruction, but these phenomena

can tell about the character of the material and should be paid attention to. Contrary

to original expectations, the most important information for solving the problem was not

information about the breaking point, where the destruction of the material will occur.

This can be explained by the fact that these points were widely scattered (especially on

the A-dataset) and so poorly grasped by neural network models.

Bibliography

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Rev. Mod. Phys., 74:47–97, Jan 2002.

[ACÖG19] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Gradient-
Based Attribution Methods, pages 169–191. Springer International Publishing,
Cham, 2019.

[Ami19] Shervine Amidi. Cs 230 — deep learning. https://stanford.edu/~shervin
e/teaching/cs-230/, 2019.

[BAB20] Shane Barratt, Guillermo Angeris, and Stephen Boyd. Minimizing a sum of
clipped convex functions. Optimization Letters, 14, 11 2020.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[BDG+06] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and
D. Wagner. Maximizing modularity is hard, 2006.

[BF23] Gianni Brauwers and Flavius Frasincar. A general survey on attention mech-
anisms in deep learning. IEEE Transactions on Knowledge and Data Engi-
neering, 35(4):3279–3298, apr 2023.

[BFL+17] David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma,
and Brian McWilliams. The shattered gradients problem: If resnets are the
answer, then what is the question? CoRR, abs/1702.08591, 2017.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of Statis-
tical Mechanics: Theory and Experiment, 2008(10):P10008, oct 2008.

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16:575–577, 1973.

[Bro19] Jason Brownlee. A gentle introduction to exploding gradients in neural net-
works, Aug 2019.

[BS08] Susanne C. Brenner and Larkin R. Scott. The Mathematical Theory of Finite
Element Methods, volume 15 of Texts in Applied Mathematics. Springer, 2008.

61

https://stanford.edu/~shervine/teaching/cs-230/
https://stanford.edu/~shervine/teaching/cs-230/

62 BIBLIOGRAPHY

[Cas19] Isaac Castro. Gradcam-keras. https://github.com/isaaccasm/GradCAM-k
eras, 2019.

[Cay78] Professor Cayley. Desiderata and suggestions: No. 2. the theory of groups:
Graphical representation. American Journal of Mathematics, 1(2):174–176,
1878.

[CKPW20] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and Yinhai Wang. Stacked bidirectional
and unidirectional lstm recurrent neural network for forecasting network-wide
traffic state with missing values, 2020.

[CKW18] Zhiyong Cui, Ruimin Ke, and Yinhai Wang. Deep bidirectional and unidirec-
tional LSTM recurrent neural network for network-wide traffic speed predic-
tion. CoRR, abs/1801.02143, 2018.

[CTB+21] Hsiang-Yun Sherry Chien, Javier S. Turek, Nicole Beckage, Vy A. Vo,
Christopher J. Honey, and Theodore L. Willke. Slower is better: Revisit-
ing the forgetting mechanism in LSTM for slower information decay. CoRR,
abs/2105.05944, 2021.

[DDS+21] Morad Danishvar, Sebelan Danishvar, Francisco Souza, Pedro Sousa, and
A. Mousavi. Coarse return prediction in a cement industry’s closed grinding
circuit system through a fully connected deep neural network (fcdnn) model.
Applied Sciences, 11:1361, 02 2021.

[Deo94] Narsingh Deo. Graph theory : with applications to engineering and computer
science. Prentice-Hall of India ; Prentice-Hall International, 1994.

[DP94] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooper-
ative solution concepts. Mathematics of Operations Research, 19(2):257–266,
1994.

[Dra23] Vojtěch Drahý. Maen. https://github.com/drvojtex/Maen/, 2023.

[FvZ22] Warren Freeborough and Terence van Zyl. Investigating explainability meth-
ods in recurrent neural network architectures for financial time series data.
Applied Sciences, 12(3), 2022.

[Gib66] J. J. Gibson. The senses considered as perceptual systems. Houghton Mifflin,
Boston, 1966.

[GN02] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
jun 2002.

[GZ20] Amirata Ghorbani and James Zou. Neuron shapley: Discovering the respon-
sible neurons, 2020.

[HP17] Hossein Hosseini and Radha Poovendran. Deep neural networks do not rec-
ognize negative images. CoRR, abs/1703.06857, 2017.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, nov 1997.

https://github.com/isaaccasm/GradCAM-keras
https://github.com/isaaccasm/GradCAM-keras
https://github.com/drvojtex/Maen/

BIBLIOGRAPHY 63

[ILLM67] A.G. Ivakhnenko, V.G. Lapa, V.G. Lapa, and R.N. McDonough. Cybernetics
and Forecasting Techniques. Modern analytic and computational methods in
science and mathematics. American Elsevier Publishing Company, 1967.

[KAA+19] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gab-
bouj, and Daniel J. Inman. 1d convolutional neural networks and applications:
A survey, 2019.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computa-
tions, The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[Koz21] Vojtěch Kozel. Hierarchical models of network traffic — dspace.cvut.cz. http
s://dspace.cvut.cz/handle/10467/94650, 2021. [Accessed 30-Mar-2023].

[KS09] Samir Khuller and Barna Saha. On finding dense subgraphs. pages 597–608,
01 2009.

[LCL+95] Shih-Chung B. Lo, Heang-Ping Chan, Jyh-Shyan Lin, Huai Li, Matthew T.
Freedman, and Seong K. Mun. Artificial convolution neural network for med-
ical image pattern recognition. Neural Networks, 8(7):1201–1214, 1995. Au-
tomatic Target Recognition.

[LeN19] Alexander LeNail. Nn-svg: Publication-ready neural network architecture
schematics. Journal of Open Source Software, 4(33):747, 2019.

[LK15] Viet-Hoang Le and Sung-Ryul Kim. Using entropy cluster-based clustering
for finding potential protein complexes. volume 9043, 04 2015.

[Man21] Manu. A simple overview of rnn, lstm and attention mechanism. https:

//medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-m

echanism-9e844763d07b, Feb 2021.

[MCFH22] Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling
permutations for shapley value estimation, 2022.

[Mil83] H.D. Mills. Software Productivity. Little, Brown Library of Radiology. Little,
Brown, 1983.

[New10] M. E. J. Newman. Networks: an introduction. Oxford University Press,
Oxford; New York, 2010.

[Ola15] Christopher Olah. Understanding lstm networks. Understanding LSTM Net-
works – colah’s blog, Aug 2015.

[PL06] Pascal Pons and Matthieu Latapy. Computing communities in large net-
works using random walks. Journal of Graph Algorithms and Applications,
10(2):191–218, 2006.

[PLC10] S. Plis, Terran Lane, and Vince D. Calhoun. Permutations as angular data:
Efficient inference in factorial spaces. 2010 IEEE International Conference on
Data Mining, pages 403–410, 2010.

https://dspace.cvut.cz/handle/10467/94650
https://dspace.cvut.cz/handle/10467/94650
https://medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-mechanism-9e844763d07b
https://medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-mechanism-9e844763d07b
https://medium.com/swlh/a-simple-overview-of-rnn-lstm-and-attention-mechanism-9e844763d07b

64 BIBLIOGRAPHY

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learn-
ing, volume 28 of Proceedings of Machine Learning Research, pages 1310–1318,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[PS22] Guilherme Dean Pelegrina and Sajid Siraj. Shapley value-based approaches
to explain the robustness of classifiers in machine learning, 2022.

[Rah68] N.A. Rahman. A Course in Theoretical Statistics: For Sixth Forms, Technical
Colleges, Colleges of Education, Universities. Griffin books on statistics and
mathematics. Griffin, 1968.

[RCC+04] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceed-
ings of the National Academy of Sciences, 101(9):2658–2663, feb 2004.

[RPSM21] Mohammad Rahimzadeh, Soroush Parvin, Elnaz Safi, and Mohammad Reza
Mohammadi. Wise-srnet: A novel architecture for enhancing image classifi-
cation by learning spatial resolution of feature maps. CoRR, abs/2104.12294,
2021.

[SAAA21] Mehmet Hakan Satman, Shreesh Adiga, Guillermo Angeris, and Emre Akadal.
Linregoutliers: A julia package for detecting outliers in linear regression. Jour-
nal of Open Source Software, 6(57):2892, 2021.

[Sal18] Fathi M. Salem. Slim lstms. https://arxiv.org/abs/1812.11391, 2018.

[SCD+19] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. International Journal of
Computer Vision, 128(2):336–359, Oct 2019.

[Sch19] Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction
and overview. CoRR, abs/1912.05911, 2019.

[Sen09] Pavel Senin. Dynamic time warping algorithm review. 01 2009.

[SGGZ18] Julian Stier, Gabriele Gianini, Michael Granitzer, and Konstantin Ziegler.
Analysing neural network topologies: a game theoretic approach. Procedia
Computer Science, 126:234–243, 2018. Knowledge-Based and Intelligent In-
formation & Engineering Systems: Proceedings of the 22nd International Con-
ference, KES-2018, Belgrade, Serbia.

[SH20] Alex Shenfield and Martin Howarth. A novel deep learning model for the
detection and identification of rolling element-bearing faults. Sensors (Basel,
Switzerland), 20, 09 2020.

[Sha51] Lloyd S. Shapley. Notes on the N-Person Game — II: The Value of an
N-Person Game. RAND Corporation, Santa Monica, CA, 1951.

[Soy22] Derya Soydaner. Attention mechanism in neural networks: where it comes
and where it goes. Neural Computing and Applications, 34(16):13371–13385,
may 2022.

https://arxiv.org/abs/1812.11391

BIBLIOGRAPHY 65

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. CoRR, abs/1703.01365, 2017.

[SYK+22] Rabia Saleem, Bo Yuan, Fatih Kurugollu, Ashiq Anjum, and Lu Liu. Ex-
plaining deep neural networks: A survey on the global interpretation methods.
Neurocomputing, 513:165–180, 2022.

[TG19] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence
(XAI): towards medical XAI. CoRR, abs/1907.07374, 2019.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[WDYZ19] Haofan Wang, Mengnan Du, Fan Yang, and Zijian Zhang. Score-cam:
Improved visual explanations via score-weighted class activation mapping.
CoRR, abs/1910.01279, 2019.

[WS05] Scott White and Padhraic Smyth. A spectral clustering approach to finding
communities in graph. volume 5, 04 2005.

[YGG+13] Shang Yang, Sheng-Uei Guan, Shu Guo, Lin Zhao, Wei Li, and Hong Xue.
Neural network output partitioning based on correlation. Journal of Clean
Energy Technologies, pages 342–345, 01 2013.

[ZKL+15] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. CoRR,
abs/1512.04150, 2015.

[ZLW21] Xingwang Zhao, Jiye Liang, and Jie Wang. A community detection algorithm
based on graph compression for large-scale social networks. Information Sci-
ences, 551:358–372, 2021.

	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem statement

	State of the art
	Analysing neural network topologies
	Analysing and arranging topologies
	Explainability of neural networks

	Communities detection
	Terminology in the communities detection
	Communities detection approaches

	Conventional neural networks models
	Dense NN
	Convolutional neural network
	Recurrent and LSTM neural networks
	Attention neural network

	Methods, proposed approaches and results
	Used conventional models
	c2c model
	CNN
	Dense NN
	LSTM NN

	Proposed approaches
	Proposed models
	Proposed explainability methods

	Experimental results and evaluations
	Experimental results of neural networks
	Experimental results of explainability
	Experimental examples of proposed explainability approaches
	Experimental evaluations of explainability approaches on bridges task

	Conclusion
	Bibliography

