
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Implementing Multiple Inheritance Support
in JOPA

Bc. Jan Kolovecký

Supervisor: Ing. Martin Ledvinka, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

475384 Personal ID number: Kolovecký Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Implementing Multiple Inheritance Support in JOPA

Master’s thesis title in Czech:

Implementace podpory vícenásobné dědičnosti v knihovně JOPA

Guidelines:

1. Become familiar with Semantic Web languages RDFS and OWL (2) and their logic-based background. Familiarize
yourself also with the persistence library JOPA.
2. Research and compare approaches of mapping multiple inheritance from RDFS/OWL (2) to Java.
3. Design an extension of JOPA that would allow the use of multiple inheritance in JOPA object models.
4. Implement support for multiple inheritance in JOPA according to your design.
5. Evaluate the correctness of your implementation by testing provided inheritance models. Ensure also backward
compatibility of your changes to JOPA.

Bibliography / sources:

[1] M. Keith and M. Schincariol, Pro JPA 2: Mastering the Java™ Persistence API, Apress, 2009
[2] S. Harris and A. Seaborne, SPARQL 1.1 Query Language, W3C recommendation, W3C, 2013
[3] R. Cyganiak, D. Wood, and M. Lanthaler, RDF 1.1 Concepts andAbstract Syntax, W3C recommendation, W3C, 201

Name and workplace of master’s thesis supervisor:

Ing. Martin Ledvinka, Ph.D. Knowledge-based Software Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 26.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Martin Ledvinka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank Ing. Martin Led-
vinka, Ph.D. for his continued support
throughout both the bachelor’s and mas-
ter’s theses. His dedication is only pre-
ceded by his attention to detail.

I also extend my thanks to my whole
family, which has supported me endlessly
through my studies.

My last thanks belongs to all of my col-
leagues, for I cannot imagine my studies
without them.

Declaration
I declare that I have made the submit-
ted work independently and that I have
listed all the sources used in line with the
Methodological Guideline on Compliance
with Ethical Principles of preparation of
academic final theses.

Prague, 22. May 2023

Jan Kolovecký

v

Abstract
JOPA is an established library for work-
ing with ontologies and semantic data in
Java programming language. One of the
features of semantic data is the ability of a
class to have multiple parent classes. The
aim of this thesis is to implement support
for multiple inheritance in JOPA. This is
complicated by the fact that Java does not
support class-based multiple inheritance,
therefore, a suitable method of emulating
it must be chosen first.

The thesis consists of a description of
relevant technologies, a discussion about
ambiguities in multiple inheritance, a de-
scription and analysis of multiple methods
of emulating multiple inheritance and of
design and implementation of the selected
solution. The last part evaluates the im-
plementation by creating an application
that takes advantage of multiple inheri-
tance in JOPA.

Keywords: RDF, OWL, Ontology,
Semantic technologies, JOPA, JPA, Java,
Multiple inheritance, Diamond problem,
OOM, OOP

Supervisor: Ing. Martin Ledvinka,
Ph.D.

Abstrakt
JOPA je již zavedenou knihovnou zamě-
řenou na práci s ontologiemi a sémantic-
kými daty v programovacím jazyce Java.
Jednou z vlastností sémantických dat je
schopnost třídy mít více tříd jako ro-
diče. Cílem této práce je implementovat
podporu pro vícenásobnou dědičnost v
knihovně JOPA. Toto je stíženo tím, že
vícenásobná dědičnost není podporována
v jazyce Java, tudíž nejdříve musí být
vybrána vhodná metoda emulace vícená-
sobné dědičnosti.

Tato práce se skládá z popisu relevant-
ních technologií, diskuze o nejednoznač-
nosti vícenásobné dědičnosti, popisu a
analýze několika metod emulace vícená-
sobné dědičnosti a z návrhu a implemen-
tace vybraného řešení. V poslední části
práce je provedená implementace zhodno-
cena vytvořením programu, který využívá
vícenásobnou dědičnost v knihovně JOPA.

Klíčová slova: RDF, OWL, Ontologie,
Sémantické technologie, JOPA, JPA,
Java, Vícenásobná dědičnost,
Diamantový problém, OOM, OOP

Překlad názvu: Implementace podpory
vícenásobné dědičnosti v knihovně JOPA

vi

Contents
1 Introduction 1
2 Background 3
2.1 RDF . 3
2.2 RDFS . 3
2.3 Ontology . 4
2.4 OWL . 4
2.5 SPARQL . 4
2.6 Object-relational and
Object-ontological Mappings 5

2.7 JOPA . 6
2.7.1 Architecture 7
2.7.2 Metamodel 8

2.8 Multiple Inhertance 10
2.8.1 Diamond Problem. 10
2.8.2 Java and Multiple Inheritance 13

3 Analysis 15
3.1 Implementing Multiple
Inheritance . 15
3.1.1 Interfaces with Default
Methods . 15

3.1.2 Composition 17
3.1.3 Kivakit Mixins 18
3.1.4 AspectJ 20
3.1.5 Javassist 21
3.1.6 Results 21
3.1.7 Comparing with JOPA Needs 22
3.1.8 Annotating Setters and
Getters . 22

4 Design 25
4.1 Multiple Inheritance 25
4.1.1 Abstract Identifiable Type . . 25
4.1.2 Metamodel Creation 26
4.1.3 Deserialization 26

4.2 Method Annotating 26
4.2.1 Pairing Fields and Accessors . 27
4.2.2 Relaxing Model Constraints . 30

5 Implementation 33
5.1 Metamodel Hiearchy Changes . . 33
5.2 Using Annotations from Methods
During Metamodel Creation 35

5.3 Comparing Annotations 35
5.4 Documentation 35
6 Evaluation 37
6.1 JOPA Tests 37
6.1.1 Changes in Existing Unit Tests 37

6.1.2 New Unit Tests 38
6.1.3 Integration Tests 38

6.2 Demo Application 39
6.3 Code Maintainability 41
7 Conclusion 43
7.1 Future work 43
Bibliography 45
A Supported annotations on
accessors 49
B Proposed New Documentation
Page 51
B.1 JOPA and Multiple Inheritance 51
B.1.1 Usage . 51
B.1.2 Examples 52
B.1.3 Notes . 53

vii

Figures
2.1 Example of RDF graph 4
2.2 RDF and RDFS layers [6] 5
2.3 overview of JOPA architecture [18] 7
2.4 Simplified process of deserialization
of RDF class 8

2.5 UML diagram of behavioral
diamond problem 11

2.6 UML diagram of state diamond
problem [22] 12

2.7 UML diagram of state diamond
problem without ambiguity. S stands
for shared, R for replicated. 13

3.1 UML diagram of base example . 16
3.2 UML diagram of interface
approach . 16

3.3 UML diagram of Composition
approach . 17

5.1 UML diagram of changes in the
class hierarchy. Some classes and
relations were omitted for brevity. 34

6.1 UML diagram of the class model
with two parents containing two
properties with equal names and
mappings. 39

6.2 UML diagram of the class model
with diamond hierarchy. 40

Tables
2.1 Table showing JOPA terms along
with their annotations, and their
meaning in OWL namespace 6

3.1 Table of comparisons of different
methods of implementing multiple
inheritance with JOPA needs 23

4.1 Table showing examples of accessor
method names and field names
extracted from them 30

A.1 Table denoting which field
annotations can also be declared on
accessor methods 50

viii

Chapter 1
Introduction

At the turn of the century, the father of the World Wide Web, Tim Berners-
Lee, envisioned the evolution of his invention. He created the World Wide
Web as a system for information management. It was created for people to
be used by people.

As such, it is hard for computer programs to understand and process the
information on it. Even if a program can perfectly understand information
on one page, this understanding does not translate to other pages, where the
data structure is different, the same terms can have different meanings, and
the author expects some prior knowledge from the reader.

Tim Berners-Lee, along with his colleagues, therefore proposed an extension
to the World Wide Web, an information management system, which would
be designed for machines. It was to be called the Semantic Web, a web where
every piece of information is machine-readable and has a well-defined meaning.
This would enable computer programs to make associations between pieces
of information available and greatly enhance the ability to use the web for all
machines [1].

Currently, the Semantic Web is a collection of standards defined by the
W3C organization, and it uses many different technologies to support the
idea. One of those technologies is the Web Ontology Language, a language
used to represent the semantics of information on the web [2, 3].

Web Ontology Language (OWL) is an ontology language that enables users
to build and use complex ontologies (descriptions of domain knowledge) [4].
These ontologies offer a unique view into a knowledge base and enable users
to infer new knowledge and discover new relations and properties.

Developing applications that use these ontologies can be cumbersome and
error-prone. For these reasons, the Java OWL Persistence API (JOPA) was
created. JOPA enables developers to use simple abstracted API with Java
classes instead of raw queries and statements. It also dynamically checks the
data for integrity errors, stopping them from propagating further.

For developers, it is significant that the data models supported by JOPA
and OWL models are philosophically as close to each other as possible. If
there are significant differences between models, then the process from an
idea to concrete action in ontology is much harder because the developer
needs to be asking questions such as: “Is this action even possible in JOPA”

1

1. Introduction
and “How does this JOPA action translate to change in OWL data”.

One of those differences that developers face today is multiple inheritance.
Multiple inheritance is a feature supported and widely used in OWL and
conceptual modeling in general but is not supported in JOPA. A subset of
multiple inheritance features can be achieved right now, but its usage is both
cumbersome and can lead to errors.

Therefore, this thesis aims to enable developers to use multiple inheritance
in applications using the JOPA library in a way that is easy to use and can
offer safety from errors caused by discrepancies between JOPA and OWL
domain models. As the JOPA library is used in many projects, ensuring that
all changes are backward compatible is vital.

In chapter 2, the relevant terms are defined together with a brief overview
of JOPA. In chapter 3, the analysis of implementation is done, and these
findings are used in chapter 4 to design the needed changes in the JOPA
library. In chapter 5 the implementation of selected changes is described. The
implementation is then evaluated in section 6. The thesis is then concluded
in chapter 7.

2

Chapter 2
Background

This chapter provides the needed background for the terms, languages, and
technologies used in this thesis.

2.1 RDF

RDF (Resource Description Framework) is simply a data model [5], which
can flexibly express information about resources. RDF, as such, is abstract
and therefore is not dependent on any domain or concrete implementation.

RDF data consists of triples (statements) with the following structure:

<subject> <predicate> <object>

A subject is a resource typically identified by the IRI. A resource is a
concrete entity about which statements are being made.

The predicate describes relations between two resources, or a resource and
literal1. IRI also identifies predicates. In fact, almost everything in RDF
is identifiable by IRI. The predicates are directional. If the relationship is
bidirectional, it needs to be explicitly stated.

An object is a resource with which a subject is in relation.
Statements can be visualized and used as directed graphs of knowledge [7].

Nodes are resources that are connected by properties. An example of such a
graph can be seen in figure 2.1.

2.2 RDFS

RDF Schema (RDFS) is an extension of RDF that provides data modeling
vocabulary. This vocabulary provides mechanisms for describing groups of
related resources and relationships between resources [8].

RDFS enables the unified creation of hierarchies of classes and relations
[9]. It also allows to specify domains and ranges of relations - limitations on
which resources can be in the given relation.

1 Literal is an atomic value - for example, a string or number [6]. As such, it is always
an object in a triple, never a subject.

3

2. Background

Figure 2.1: Example of RDF graph

The amount of metadata that RDFS brings to RDF can be seen in figure
2.2.

2.3 Ontology

The term ontology originates from the Latin word ontologia (“science of
being”), and is used widely in philosophy, as a discipline studying reality, its
nature, and structure [7, 9, 10].

When dealing with ontology in computer science, the term can be defined
as a “formal, explicit specification of shared conceptualization”[11]. In other,
more concrete words, an ontology in computer science is a description of some
explicitly defined domain. Because the description is explicitly defined, it can
be easily shared [12].

2.4 OWL

OWL 2 Web Ontology Language is a semantic web modeling language used
for describing ontologies. It is more expressive than RDF(S), allowing a more
precise description of a given domain [4].

The OWL describes relations between classes, instances, and properties in
a declarative way. This information can be used in tools called reasoners to
infer further knowledge from given data.

2.5 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a language for
querying RDF datasets [13, 14].

4

.................... 2.6. Object-relational and Object-ontological Mappings

Figure 2.2: RDF and RDFS layers [6]

Its syntax bears some degree of likeness to the syntax of the SQL language,
but its core principle is different. Whereas SQL is based on matching sets of
single values, SPARQL is based on matching sets of triple patterns.

A simple example of a SPARQL query selecting all movies released in the
year 2022, together with their titles, can be found in listing 2.1.

2.6 Object-relational and Object-ontological
Mappings

Object-relational mapping (ORM) and object-ontological mapping (OOM)
are two closely related terms. Both aim to ease working with data by mapping
raw data in storage to objects and their attributes. This allows developers
to treat data stored in a storage as if it were just simple objects in memory
of the developed application, allowing developers to work with data more
intuitively, and making it easier to write code that interacts with storage.

Object-relational mapping (ORM) maps raw data from relational databases
to objects [15]. An example of a standard that defines ORM for the Java

5

2. Background

PREFIX sv: <http :// foo.bar/sv/ elements /1.1/ >
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

SELECT ?movie ?title
WHERE

{ ?movie sv:title ?title ;
sv: released "2022"^^ xsd:gYear .

}

Listing 2.1: Example of SPARQL query

OWL term JOPA term JOPA Annotation
OWL Class Entity class @OWLClass
Instance (named individual) Entity -
Class assertions Type specification @Types
Property assertions Properties specification @Properties
Property assertion Attribute @OWLAnnotationProperty,

@OWLObjectProperty,
@OWLDataProperty

Table 2.1: Table showing JOPA terms along with their annotations, and their
meaning in OWL namespace

language is JPA [16]. Should one venture into other programming languages,
GORM2 is an example of an OOM library for the Go language.

On the other side, object-ontological mapping maps raw data from ontolo-
gies to objects. Typical OOM libraries are JOPA3 and AliBaba4

2.7 JOPA

Java OWL Persistence API (JOPA) is a Java OWL persistence library aimed
at efficient programmatic access to OWL2 ontologies and RDF graphs in Java
[17, 18].

To ease the adaptation of this library by developers, JOPA developers try
to use the same mechanisms and terminology as JPA. For this reason, many
terms used in this work are terms from the JPA specification [16].

Since OWL and JPA terminology differ, translations from OWL terminology
to JOPA terminology, and the other way around, are necessary. Terms with
corresponding meanings are displayed in table 2.1.

2https://gorm.io [visited on 22-12-16]
3https://github.com/kbss-cvut/jopa [visited on 22-12-18]
4https://bitbucket.org/openrdf/alibaba/src/master/ [visited on 22-12-18]

6

https://gorm.io
https://github.com/kbss-cvut/jopa
https://bitbucket.org/openrdf/alibaba/src/master/

..2.7. JOPA

2.7.1 Architecture

JOPA can be divided into two main parts.

. Ontodriver providing access to the actual storage. Deals only in axioms5.
Its API is storage independent, with storage-dependent implementations..OOM realizes the object-ontological mapping, transactions, and meta-
model functions.

The architecture of the JOPA library can be seen in figure 2.3. This figure
shows the entire application stack, albeit simplified, from the user interface
to storage.

Figure 2.3: overview of JOPA architecture [18]

The part of JOPA with which its users interact primarily is represented
by the EntityManager interface. Entity manager manages persistent context
and can be used for basic CRUD operations, queries, and transactions.
An implementation of the UnitOfWork design pattern represents persistent
context, and it handles change management, (de)serialization of objects,
caching and interaction with Ontodriver [19].

For creating instances, populating their attributes, and detecting associa-
tions JOPA needs extensive information about their structure, annotations,
and more. This information could be extracted at runtime in each CRUD
operation, but doing this would be highly inefficient.

5Axiom in the context of JOPA is either RDF triple or OWL axiom

7

2. Background
For this reason, JOPA generates a metamodel at the start of the application.

This metamodel has data about all model classes, their attributes, associations,
and more.

2.7.2 Metamodel

As mentioned above, metamodel keeps data about entities throughout the
application lifecycle. These data are generated at the start of the application.

The metamodel consists of the following key parts:

Entity type. The cornerstone of the metamodel is the entity type. This
class keeps metadata about one particular model class and its attributes.

Whenever it is needed to serialize a class into axioms, the serializer needs
to know which attributes are supposed to be serialized, which are not, their
ontological type, the identifier of the class, and more.

The same applies to deserialization. During this process, the deserializer
needs to know to which attribute which value belongs. The role of entity
type can be seen in figure 2.4, where the simplified deserialization process is
shown.

Figure 2.4: Simplified process of deserialization of RDF class

Metamodel class. The metamodel class keeps all entity types instances,
along with the information about relations between entity types. Whenever
an entity type has another entity type as a property, this relation is saved in
the metamodel too.

8

..2.7. JOPA

Creation of Metamodel

The metamodel is created dynamically at the start of the application. At
first, a class path scanner is run to detect all potential entity classes. These
entity classes are determined by OWLClass annotation.

Then, all potential entity classes are processed. This consists of:..1. Checking all prerequisites are met. These prerequisites include the
existence of no argument constructor and an identifier attribute...2. Checking if the supertype of the class is already processed, processing it
immediately otherwise...3. Resolving lifecycle listeners6...4. Processing all fields. This does not include fields inherited from super-
classes, as they are processed with their respective class...5. Processing Named queries7.

The most complex part of this process is processing the class fields because
the field can belong to one of the multiple categories from the JOPA viewpoint.
Mapping fields to their respective categories is done via property mapping
annotations.

These categories are closely related to the OWL assertions from table
2.1, and are listed below, along with their respective property mapping
annotations:.OWL object property - @OWLObjectProperty - field whose value is

another entity in OWL ontology.. OWL data property - @OWLDataProperty - field whose value is literal in
an OWL ontology..OWL annotation property - @OWLAnnotationProperty - field whose
value is annotation property - commonly a description/commentary to
OWL entity.. Query attribute - @Sparql - field whose value is a result of some SPARQL
query.. Non-property attribute - @Transient - field not mapped in an ontology.. Types - @Types - field containing all assertions of ontological classes of
an instance.. Properties field - @Properties - a map with unmapped attributes (prop-
erty assertions) - assertions that are not defined in the model but exist
in storage.

6 Lifecycle listeners are methods that are defined by the developer and are called during
object lifecycle events, such as before removing or after loading from storage.

7Named queries are a set of SPARQL queries that is coupled with entity class.

9

2. Background
Fields from each of these categories need to be handled differently during

(de)serialization, and even while accessing values stored in these fields. It is
possible to define eager/lazy loading8 on properties in JOPA, therefore JOPA
needs to be able to load the value into the field when it is accessed.

Along with property mapping annotations, multiple other annotations can
be declared on fields - annotations specifying participation constraints in
relations, types converters, and more. These annotations are processed along
the property mapping annotations.

2.8 Multiple Inhertance

“Multiple inheritance is good, but there is no good way to do it” [20]
Multiple inheritance in object-oriented programming (OOP) is the ability

of class, or object, to inherit features from more than one parent. Multiple
inheritance enables a greater degree of flexibility in a class hierarchy in
comparison to single inheritance. However, with this flexibility comes several
kinds of potential ambiguities in code, which cannot be easily dealt with.
Therefore, many OOP languages support only single inheritance (class has at
most one superclass), and may try to achieve some degree of the lost flexibility
in other ways [21].

2.8.1 Diamond Problem

The diamond problem9 is the most known ambiguity caused by multiple
inheritance. This ambiguity occurs if a class has two ancestors who share a
common predecessor. Then, from the point of the child class, there can exist
multiple conflicting features in the hierarchy - different versions of methods
with the same signature, states that can have different meanings, etc. [22, 23,
21].

One implementation-dependent characteristic of the diamond problem is
the way the shared common ancestor is represented during program execution
- whether there should be two distinct instances (replication), or one shared
by all descendants (sharing).

The diamond problem can be looked upon from two points of view -
ambiguity from a behavioral standpoint and from a state standpoint.

Behavioral Ambiguity

Behavioral ambiguity is ambiguity between methods inherited from parent
classes. Figure 2.5 displays a simple example of behavioral ambiguity.

The class Person has method payTaxes, which is overridden in its descen-
dant class Student. If method payTaxes is called on an instance of class

8 When fetching an entity from storage, properties of this entity marked as eagerly
loaded are fetched immediately. Lazily loaded properties are loaded dynamically by JOPA
when they are being accessed for the first time [19].

9Also known as fork-join inheritance [22].

10

..................................2.8. Multiple Inhertance

Figure 2.5: UML diagram of behavioral diamond problem

c l a s s D { i n t foo () { r e t u r n 1 ; } ; } ;
c l a s s B : D {} ;
c l a s s C : D { i n t foo () { r e t u r n 2 ; } ; } ;
c l a s s A : B, C {} ;

A a ;

a .B : : f oo () ; // 1
a . C : : f oo () ; // 2

a . foo () ; // Throws e r r o r , u n l e s s method foo was e x p l i c i t l y
q u a l i f i e d i n c l a s s A d e c l a r a t i o n by ’ u s i n g C : : foo ’ ;

Listing 2.2: Method qualification in C++. Same example hierarchy as in figure
2.5. Please note that parts of the code are omitted for brevity.

Working Student, should method Person.payTaxes or Student.payTaxes
be called implicitly? Or both? If both, then in what order? Furthermore,
if the method would return some value, how should the return values be
combined?

Fortunately, this ambiguity is easily distinguishable by compilers (inter-
preters), and ambiguity can be resolved in child classes by overriding methods
and explicitly qualifying method calls. Such a qualification can be used in
the C++ language, and an example of such a qualification can be seen in
listing 2.2.

This approach handles ambiguity but makes the hierarchy quite fragile
toward changes in classes [21].

Although behavioral ambiguity is more severe if the common predecessor
is shared, it can occur even with replication of the shared predecessor. The
main ambiguity is in which order should the predecessors be methods called
and in how to combine return values from classes.

This usually depends on the order in which inheritance is declared. Travers-
ing the hierarchy may be needed in complex hierarchies to determine this
order. For this, special algorithms are used, for example, the C3 linearization
algorithm [24].

11

2. Background
State Ambiguity

State ambiguity is not as easily dealt with as behavior ambiguity.
A model situation is displayed in figure 2.6. Here, seniority could stand

for two different viable values, as an employee can have different seniority
as a lecturer and as administrative staff.

Figure 2.6: UML diagram of state diamond problem [22]

Having two distinct instances (replication) of UniversityEmployee in
the hierarchy could solve this, but then a potential data inconsistency is
created, with regards to name and address, as changes could be made to
UniversityEmployee via the Lecturer instance, but they would not affect
the AdministrativeStaff instance.

The trivial solution would be to move the seniority state to the lower level
of the hierarchy. But that does not make sense from a modeling perspective,
as all university employees share this property.

A better solution would exist if it were possible to choose if a class is shared
or replicated in the hierarchy. Then the UniversityEmployee class could be
split into two, one containing personal data (name, address) and the second
one data on employment at the university. The first class, with personal data,
would be shared, whereas the second one replicated [22]. This solution can
be seen in figure 2.7. Setting class (inheritance) as either shared or replicated
is possible in the C++ language by declaring inheritance as virtual [23, 25].

The example above is basic and relatively easy to solve with the right
tools. However, more complex, and hard-to-solve situations can emerge from
multiple inheritance. And dealing with these situations requires a rather
significant change of hierarchy if done retrospectively, or excellent knowledge
of the problem domain for designers to predict that such cases will occur in
the future.

12

..................................2.8. Multiple Inhertance

Figure 2.7: UML diagram of state diamond problem without ambiguity. S
stands for shared, R for replicated.

2.8.2 Java and Multiple Inheritance

Java programming language does not support multiple inheritance. The main
reason is that Java was created as a direct competitor to C++. During its
development, James Gosling, the founder of the Java language, wanted to
omit “many rarely used, poorly understood, confusing features of C++ that
in our experience bring more grief than benefit”. James Gosling directly
denotes multiple inheritance as one of these confusing features [26, 27].

James Gosling also defined Java as a robust language. Robust meaning
being reliable in a variety of ways, and multiple inheritance would jeopardize
Javas’ robustness.

Interfaces and Multiple Inheritance

Still, there exists some discussion about whether interfaces in Java should be
thought of as a way to achieve some degree of multiple inheritance, as a class
(or interface) can implement multiple interfaces [28, 29, 30, 31].

If one accepts that interfaces are Java’s version of multiple inheritance,
how does Java deal with the diamond problem?

State ambiguity. While it is possible to declare a field in an interface, the
declared field will always be final and static. This renders interfaces capable of
holding only a global, unmodifiable state. Furthermore, if a class or interface
has multiple predecessor interfaces with two or more fields with the same name,
it is required to specify the interface whose field is being accessed. Otherwise,
an exception is thrown during compilation. This effectively eliminates state
ambiguity [32].

13

2. Background
i n t e r f a c e D {

d e f a u l t v o i d foo () { System . out . p r i n t l n ("D") ; }
}

i n t e r f a c e B e x t e n d s D{
d e f a u l t v o i d foo () { System . out . p r i n t l n ("B") ; }
}

i n t e r f a c e C e x t e n d s D{}

c l a s s A implements B, C {
@Over r ide
p u b l i c v o i d foo () {

B . s u p e r . foo () ; /// p r i n t s "B"
}

}

Listing 2.3: Method qualification in Java. Same example hierarchy as in figure
2.5.

Behavioral ambiguity. With version 8.0, Java added the possibility to
declare default methods in interfaces. Default methods could theoretically
become susceptible to the behavioral diamond problem. However, as stated
in 2.8.1, qualifying method calls makes the behavioral diamond problem
relatively easily solvable. Whenever a class or interface inherits two unrelated
default methods that share the same arguments, name, and return type10

Java compiler requires that the inheriting class or interface overrides this
method [33]. An example of Java qualification can be seen in listing 2.3.

10 More precisely, if two default methods are override-equivalent, see [33] for more details.

14

Chapter 3
Analysis

This chapter analyses the problem at hand. The main goal is to find the most
suitable method to emulate multiple inheritance, first with general criteria,
and then with regard to JOPA needs.

3.1 Implementing Multiple Inheritance

Even though an alternative version of the Java programming language could
be created, and multiple inheritance implemented directly into it, this would
not be the ideal approach, mainly because of its complexity and integration
with other tools.

Fortunately, there exist a few methods that can sufficiently emulate multiple
inheritance.

These methods will be introduced, demonstrated, and discussed in this
section. The demonstration will be done by using the methods to implement
a basic example, which can be seen in figure 3.1. Two base classes, Notebook
and Tablet, with some methods and fields, are two parent classes of the
class Surface. This hierarchy cannot be directly implemented in Java, as the
Surface class extends two classes.

The discussion will focus on the advantages and disadvantages of methods
and the differences between them.

At the end of this section, the most suitable method will be chosen to be
used to emulate multiple inheritance in JOPA.

3.1.1 Interfaces with Default Methods

Even though Java class can extend (inherit from) only a single class, it can
implement multiple interfaces. Since Java 8, there is also the possibility to
implement default methods in interfaces [33]. These default implementations
will be used if the descendent entity does not implement this function. Default
methods have significant limitations, however. Because only final static fields
can be declared in interfaces, only static final class fields are in scope in
default methods. However, any non-static (and non-final) variable can be
accessed through their respective setter and getter functions, given that
they are declared in the interface. Therefore, it is possible to implement

15

3. Analysis

Figure 3.1: UML diagram of base example

almost anything that can be done in a standard class method by accessing all
variables through getters and setters. In the descendent classes, only getters
and setters need to be implemented, not all methods.

Implementing multiple inheritance using interfaces is relatively straightfor-
ward. For each would-be base class, an interface with the same methods as
those in the base class is created. All methods, except getters and setters,
are implemented as default methods. Then, a child class that implements all
interfaces is created. In this class, all non-default methods from the interfaces
are implemented, along with all the needed fields. See the listing 3.1 for a
shortened example of the implementation of the base example, and figure 3.2
for the UML diagram describing this implementation.

Figure 3.2: UML diagram of interface approach

As seen from the listings, the main disadvantage of this method is the need
for re-implementing all non-default methods and all fields.

The main advantages are the simplicity of this method, its familiarity, and
no need for external dependencies.

16

........................... 3.1. Implementing Multiple Inheritance

/// base i n t e r f a c e
i n t e r f a c e Notebook {

Set<I n t e g e r > ge tKey sPre s s ed () ;

d e f a u l t v o i d p re s sKey (I n t e g e r k e y I d) {
ge tKey sPre s s ed () . add (k e y I d) ;

}

d e f a u l t boo l ean i s F u n c t i o n K e y P r e s s e d () {
r e t u r n ge tKey sPre s s ed () . c o n t a i n s (42) ;

}

}
/// c h i l d c l a s s − Tab le t methods and f i e l d s omi t ted
c l a s s S u r f a c e implements Tablet , Notebook {

Set<I n t e g e r > k e y s P r e s s e d = new TreeSet <>() ;

@Over r ide
p u b l i c Set<I n t e g e r > ge tKey sPre s s ed () { /// o n l y g e t t e r i s

implemented
r e t u r n k e y s P r e s s e d ;
}

}

Listing 3.1: Multiple inheritance via interfaces

3.1.2 Composition

Another approach is composition. In composition, the children’s class consists
of (composes of) multiple base classes. It is not as much inheritance as a
delegation because the implementation of children’s methods consists only of
delegating the call to one of the base classes. The polymorphism is achieved
using interfaces. The child class implements the same interfaces as base
classes [34].

Figure 3.3: UML diagram of Composition approach

Similarly, to the interface method, for every base class, there exists a single
interface. However, for every interface, a behavior class is created. This class
implements the interface and all its methods and needed fields. Then, the

17

3. Analysis
children class implements all interfaces and has all behavior classes as fields.
Implementation of inherited methods consists of calling a given behavior class
and returning the result.

Shortened implementation of this method can be seen in listing 3.2. UML
diagram in figure 3.3 describes this concrete implementation.

This approach does have the advantage of not requiring to re-declare all
class fields in every child class compared to the interface approach.

However, the disadvantages are clear - a lot of boilerplate code and the
need to repeat the same lines of code in child classes.

3.1.3 Kivakit Mixins

Mixins can be thought of as an alternative/supplement to classic OOP. They
are abstract classes that can be embedded into a class hierarchy to augment
the capabilities of individual classes. Multiple mixins can be embedded into
each class, adding new methods and fields.

Mixins may also be considered as a set of field and method declarations.
They can add this set of fields and methods to any number of classes, and
any class can have multiple independent sets [35]. This allows us to improve
modularity and avoid code repetition.

Kivakit is a set of libraries/frameworks that aims “to provide a new vision
for the development of Java software that takes code reuse to a new level.”
[36].

Among all the tools that should enable this goal is the KivaKit implemen-
tation of mixins. The implementation of multiple inheritance via KivaKit
mixins can be seen in the listing 3.3

This implementation is more complex than the previous ones. All mixins
have to be interface and extend concrete interface provided by the library.
Because interfaces cannot have non-static non-final fields, every access to
mixin properties must be via Mixin.mixin() function, which memorizes this
value during execution.

This approach does not produce any boilerplate code and is simple to use.
Unfortunately, there are many disadvantages. One of them is the lack

of a direct way to change values. There is only a getter for properties, so
if a change in the value of the property is wanted, the property needs to
be wrapped in some wrapper. Also, there is a limit of one property per
mixin1. Another disadvantage of this approach is the way the mixin values
are saved. They are all held in a global (static) map of all properties across
all objects in JVM. This only brings about potential difficulties from memory
and multi-threading perspectives.

1 For more properties per one mixin the AttributedMixin interface must be used. This
is a mixin that saves all values in a map. This effectively loses all information about the
static typing of these properties.

18

........................... 3.1. Implementing Multiple Inheritance

i n t e r f a c e Tab l e t {
Set<Pai r <I n t e g e r , I n t e g e r >> getTouchLocat i ons () ;

v o i d touch (I n t e g e r x , I n t e g e r y) ;

v o i d t u r n O f f () ;
}
/// b e h a v i o r c l a s s − some methods omi t ted
c l a s s T a b l e t B e h a v i o r implements Tab l e t {

Set<Pai r <I n t e g e r , I n t e g e r >> t o u c h L o c a t i o n s = new HashSet <>() ;
boo l ean isOn = f a l s e ;

p u b l i c v o i d touch (I n t e g e r x , I n t e g e r y) {
i f (! i sOn) {

r e t u r n ;
}
t o u c h L o c a t i o n s . add (new Pai r <>(x , y)) ;

}

p u b l i c v o i d t u r n O f f () {
isOn = f a l s e ;
t o u c h L o c a t i o n s . c l e a r () ;

}
}
/// c h i l d c l a s s − Tab le t methods omi t ted
c l a s s S u r f a c e implements Notebook , Tab l e t {

Notebook notebookBehav io r = new NotebookBehav ior () ;
Tab l e t t a b l e t B e h a v i o r = new T a b l e t B e h a v i o r () ;

@Over r ide
p u b l i c Set<Pai r <I n t e g e r , I n t e g e r >> getTouchLoca t i ons () {

r e t u r n t a b l e t B e h a v i o r . ge tTouchLoca t i ons () ;
}

@Over r ide
p u b l i c v o i d touch (I n t e g e r x , I n t e g e r y) {

t a b l e t B e h a v i o r . touch (x , y) ;
}

@Over r ide
p u b l i c v o i d t u r n O f f () {

t a b l e t B e h a v i o r . t u r n O f f () ;
}

}

Listing 3.2: Multiple inheritance via composition

19

3. Analysis
/// c h i l d ’ s c l a s s
c l a s s S u r f a c e implements Notebook , Tab l e t
{}

i n t e r f a c e Notebook e x t e n d s Mix in {
/// r e t u r n s saved v a l u e
d e f a u l t Set<I n t e g e r > ge tKey sPre s s ed () {

r e t u r n mix in (Notebook . c l a s s , HashSet : : new) ;
}

d e f a u l t v o i d p re s sKey (I n t e g e r k e y I d) {
ge tKey sPre s s ed () . add (k e y I d) ;

}

d e f a u l t boo l ean i s F u n c t i o n K e y P r e s s e d () {
r e t u r n ge tKey sPre s s ed () . c o n t a i n s (42) ;

}
}

Listing 3.3: Multiple inheritance via KivaKit mixins

p u b l i c a s p e c t NotebookAspect {
Set<I n t e g e r > Notebook . k e y s P r e s s e d = new TreeSet <>() ;

p u b l i c Set<I n t e g e r > Notebook . ge tKey sPre s s ed () {
r e t u r n k e y s P r e s s e d ;

}

p u b l i c v o i d Notebook . p re s sKey (I n t e g e r k e y I d) {
k e y s P r e s s e d . add (k e y I d) ;

}

p u b l i c boo l ean Notebook . i s F u n c t i o n K e y P r e s s e d () {
r e t u r n k e y s P r e s s e d . c o n t a i n s (42) ;

}

}

Listing 3.4: Aspect that modifies Notebook interface

3.1.4 AspectJ

AspectJ is a library that is used to implement the aspect-oriented program-
ming paradigm in Java [37]. In addition to this, AspectJ allows developers to
use extension methods. Extension methods allow developers to add methods,
fields, and interfaces to existing classes and even interfaces. These modifica-
tions can be done through aspects - special constructs with Java-like syntax
[37]. An example of such an aspect is shown in the listing 3.4. This aspect
adds the keysPressed field and three methods to the Notebook interface,
which can be seen with the child class in the listing 3.5.

AspectJ is a simple and quick approach, with only one significant disad-
vantage: the methods must be declared in aspect. For developers without
knowledge of AspectJ, it can be dazzling where the methods are implemented,
as they are not implemented in ordinary Java constructs. Another disad-
vantage could be the need for external dependency, but JOPA already uses

20

........................... 3.1. Implementing Multiple Inheritance

i n t e r f a c e Notebook {
Set<I n t e g e r > ge tKey sPre s s ed () ;

v o i d p re s sKey (I n t e g e r k e y I d) ;

boo l ean i s F u n c t i o n K e y P r e s s e d () ;

}

c l a s s S u r f a c e implements Notebook , Tab l e t {
// A l l methods a r e a l r e a d y implemented by
// s i m p l y add ing the i n t e r f a c e !

}

Listing 3.5: AspectJ implementation of multiple inheritance

AspectJ for certain entity-related operations.

3.1.5 Javassist

Javassist is a Java library that enables the manipulation of Java bytecode, for
example, modification and creation of new classes at runtime. This library
can be used to implement multiple inheritance in a way very similar to the
composition method, but without the need for boilerplate code. For this
reason, the code snippet is not shown.

As stated above, this approach is very similar to composition, as both base
interfaces and behavior classes implementing these interfaces are being used.
However, a children class is not implemented manually, only an interface that
extends all base interfaces. At runtime, the Javassist library creates a class
that implements this interface and all inherited methods by delegating to
concrete instances of behavior classes.

Compared to composition, the advantage is a reduction in both the boiler-
plate code and manual delegation in bodies of methods.

Unfortunately, there are many disadvantages, mainly the difficult, indirect
creation of objects - the child’s class must be instantiated in some factory
method. This can cause difficulties in integration with different libraries used
in the JOPA library. Also, bytecode manipulation is quite complex and can
cause many unwanted behaviors.

3.1.6 Results

From the comparison of all the methods mentioned above, from the point of
code reusability, boilerplate, and ease of usage, three methods were chosen
for another comparison from the perspective of the JOPA library:. Interfaces with default methods. Composition. AspectJ

21

3. Analysis
3.1.7 Comparing with JOPA Needs

After choosing three promising methods from a general point of view, it is
time to compare them with the JOPA library in mind.

Criteria

Backward compatibility. Because JOPA is not a new library, there exist
many projects using it. Therefore, the chosen method must not require
changes to already existing classes.

JOPA entity type class. The typical entity type class in JOPA is quite
straightforward. A shortened example of such a class can be seen in listing
3.6. Several Java annotations can be seen on both the class and fields. The
class has no methods with complex logic, only constructors, getters, and
setters. The chosen method should reflect this fact.

Serialization and deserialization. The main part of JOPA is serializing and
deserializing classes to and from axioms. The chosen method should use as
much of the existing implementation as possible. The changes should follow
the existing ideas.

Results

The results of the comparison of the chosen methods with the JOPA criteria are
shown in table 3.1. Based exclusively on the table, the AspectJ method would
seem like the most suitable method for implementing multiple inheritance.
However, taking into account the comfort of users, namely the need for aspects
in their source code, the interface method was chosen for implementation.

Also, at the time of writing, the decision to remove AspectJ dependency
from JOPA was made, therefore effectively invalidating the AspectJ method.

3.1.8 Annotating Setters and Getters

The only significant disadvantage of the method chosen in the preceding
section is the need for repetition of annotations on fields across the hierarchy.
This could lead to potential inconsistencies where annotations and their values
declared on the same OWL property could mistakenly differ.

Currently, JOPA annotations that specify attribute mapping (table 2.1)
can be declared only on fields. Enabling these annotations on getters and
setters would enable developers to define the attributes and their values in
parents, leading to a single source of truth.

This is also supported by JPA and its annotations, where the annotation
on getters and setters defines whether the field should be accessed directly
or by its accessor methods2 [16]. Even though JOPA aims to use the same

2 The term accessor (method) means a method that is either a getter or a setter to some
field of a class [38].

22

........................... 3.1. Implementing Multiple Inheritance

Backward compatibility

Interfaces No changes needed
Composition No changes needed
AspectJ No changes needed

JOPA entity type class

Interfaces Fields, together with annotations on them, must be declared in child classes,
this could lead to inconsistencies across hierarchy

Composition Supports all traits
AspectJ Supports all traits

Serialization and deserialization

Interfaces Minimal changes needed
Composition Significant changes needed
AspectJ Minimal changes needed

Table 3.1: Table of comparisons of different methods of implementing multiple
inheritance with JOPA needs

mechanisms as JPA, and this thesis should aim to uphold this, it will not be
in the scope of this thesis to implement the support for specifying access to
fields in JOPA. This thesis will use the annotations on accessors only as a
way to create a single source of truth.

23

3. Analysis

@OWLClass (i r i = Vocabu la ry . notebook)
p u b l i c c l a s s Notebook {

@Id
p r i v a t e URI i d ;

@ P a r t i c i p a t i o n C o n s t r a i n t s (nonEmpty = t r u e)
@OWLDataProperty (i r i = Vocabu la ry . c reated_on)
p r i v a t e I n s t a n t c r e a t e d ;

@ P a r t i c i p a t i o n C o n s t r a i n t s (nonEmpty = t r u e)
@OWLObjectProperty (i r i = Vocabu la ry . owned_by)
p r i v a t e URI owner ;

@OWLObjectProperty (i r i = Vocabu la ry . p r e s s ed_key)
p r i v a t e Set<Key> k e y s P r e s s e d ;

p u b l i c Notebook () {
}

/// o t h e r c o n s t r u c t s ommited

p u b l i c I n s t a n t g e t C r e a t e d () {
r e t u r n c r e a t e d ;

}

p u b l i c v o i d s e t C r e a t e d (I n s t a n t c r e a t e d) {
t h i s . c r e a t e d = c r e a t e d ;

}
/// o t h e r g e t t e r s and s e t t e r s ommited

}

Listing 3.6: Snippet showing JOPA Entity Type class and its annotations.
Certain methods were omitted for brevity.

24

Chapter 4
Design

As JOPA is a complex library, changes must be designed carefully so they can
be integrated with already existing code, and do not break already existing
functionality.

In this chapter, the parts of JOPA which could need some augmentations
are identified, discussed, and if any augmentation is needed, it is designed.

This chapter is divided into two parts. In the first part are discussed
and designed changes needed for support of multiple inheritance, and in the
second, changes needed to support annotations on methods.

4.1 Multiple Inheritance

The metamodel module is the main part of JOPA that needs to be changed.
The reason is that it reflects the hierarchy of ontology classes in itself. This
module needs to reflect all new possible class hierarchies that come with
multiple inheritance.

Only a few, if any, changes are expected in the other parts of the library.

4.1.1 Abstract Identifiable Type

As mentioned in analysis (2.7.2), the entity type contains metadata about a
single entity class. However, the EntityType is a simple interface in JOPA
that is implemented by the AbstractIdentifiableType (AIT) class.

As such, AIT keeps a number of metadata about an entity class. One is a
supertype field whose value is another AIT class (if a class has a parent).
This field must be changed to accommodate the possibility of multiple parents.

The primary reason for AIT to have this kind of a reference is that if the
entity class extends some parent class, it inherits all attributes of that parent
class. Information about these attributes is not duplicated in the child class,
and so the information is queried from the parent(s) recursively at runtime.
AIT checks its attributes, if the queried attribute is not found among them,
the instance queries its ancestors recursively, and either the attribute is found,
or the root of the hierarchy is reached.

After the changes to the supertype field, there is no need to change the
attribute querying method drastically, as attributes can be declared only in

25

4. Design..
class parents, not interface parents. And since Java class can have only one
parent class, only one parent will be queried. AIT will need to find this class
parent among all other parents before recursively querying. This is needed
because it is vital to remember all parents, including interface parents, as
they are needed for other reasons, such as resolving lifecycle listeners.

4.1.2 Metamodel Creation

Other changes are needed while creating a metamodel.
When scanning classes for manageable classes, a class must satisfy two

conditions to be considered manageable. It must have an @OWLClass anno-
tation and must not be an interface. This must be changed to allow parent
interfaces to be processed.

In addition, AIT has the subtypes field, which is used in deserialization.
Implementation needs to guarantee the addition of all children’s classes to
their respective superclasses during metamodel creation and vice versa.

4.1.3 Deserialization

When JOPA tries to deserialize some abstract class, it must determine to
which nonabstract entity it should deserialize. This is done in the class
PolymorphicEntityTypeResolver, where the hierarchy is recursively tra-
versed to find the most specific non-abstract type.

This procedure could be reused when JOPA needs to deserialize some
parent entity type, which is an interface to find its descendant, which can
then be instantiated.

The decision of whether to find a nonabstract descendant or to deserialize
the class directly depends on the class being abstract from the point of view of
JOPA, more concretely on method AbstractIdentifiableType.isAbstract.
This method returns true if the type is abstract, and false if otherwise.

This method has to be modified to include interface types as abstract types.

4.2 Method Annotating

As proposed in 3.1.8, annotations on accessor methods would greatly improve
the usability of JOPA.

Consider the example hierarchy in listing 4.1. Annotation OWLDataProperty
is declared on the setter, and the field itself is left unannotated. The goal
is to change the metamodel creation so there is no difference in created
metamodels between the annotation directly on the field and the annotation
on the method, as shown in the listing.

Therefore, the solution needs to be able to :..1. Correctly pair fields and their respective accessor methods..2. Use annotations from paired accessor methods while processing fields

26

..................................4.2. Method Annotating

@OWLClass (i r i =Vocabu la ry . Foo)
p u b l i c i n t e r f a c e Foo {

@OWLDataProperty (i r i =Vocabu la ry . p_name)
v o i d setName (S t r i n g name) ;

}

@OWLClass
p u b l i c c l a s s Bar implements Foo {

p r i v a t e S t r i n g name ;

@Over r ide
p u b l i c v o i d setName (S t r i n g name) {

t h i s . name = name ;
}

}

Listing 4.1: Snippet showing annotation declared on setter and field to which
the annotation would belong. Certain parts of code were omitted for brevity.

4.2.1 Pairing Fields and Accessors

Two distinct methods were considered for the first point- top-down and
bottom-up approaches.

Top-down. During the field processing, if a field has no property mapping
annotations, which would categorize the field into one of the categories from
2.7.2, it is saved in an array, where the value is a pair - class, and field.

After processing all entity classes and all their fields with this modification,
a new phase of metamodel creation is added. In this phase, all entities are
iterated over, along with their methods.

If a JOPA property annotation is found on the method, the method is
checked if it is an accessor method. An exception is thrown if the annotated
method is not an accessor method. If the method passes this check, a field
name is extracted from the method name. Then, the class hierarchy is
traversed top-down, using the hierarchy information stored in the metamodel,
starting at the class the method belongs to.

During the traversal, all descendants are checked for fields with names that
match the name extracted from the method. This checking is done through
the array in which the unannotated fields were saved. If such a field is found,
type compatibility1 is checked. If the field is compatible, it is processed as
usual, along with annotation from the method. The field is then removed from
the array. If the field is not type-compatible with the method, an exception
would be thrown.

After iterating over all entities, the array should be empty. If not, this
means that there exist some unannotated fields. This is not allowed2, and an

1 Types are compatible if the field type is assignable from a return type, if the method
is a getter, or argument if the accessor is a setter.

2All fields in entity classes must be annotated to be properly processed (see 2.7.2). Fields
not mapped in an ontology must be explicitly marked as such (annotation @Transient, or
one of static, final or transient field modifiers).

27

4. Design..
exception is to be thrown.

Bottom-up. During the processing of an entity class, a new phase is added
before processing individual fields. This new phase traverses all methods of
the entity class, searching for methods annotated with property mapping
annotations. All found methods are checked to determine whether they are
accessors, throwing an exception if otherwise. If the method passes the check,
it is saved in an array, as a pair consisting of the entity class and the annotated
method.

While processing fields, if the field has no annotation, a hierarchy is
traversed bottom-up, where the root is the entity, the field belongs to.

All parents of the entity are searched for annotated methods through the
array. If there is an accessor method, and its name corresponds to the name
of the field, type compatibility is checked, and an exception is thrown if the
types are not compatible.

If all checks are passed, the field is processed as usual, along with annotation
from the method.

If no belonging method is found, an exception is thrown, for an unannotated
field is not allowed in entity class in JOPA.

Detecting Multiple Accessors to One Field

Both methods also need to be able to detect when one field pairs with multiple
annotated accessors. This is invalid, as that would mean that two or more
distinct mappings exist to a single field (this rule is further discussed in
section 4.2.2).

In the bottom-up approach, the solution is straightforward, as the approach
is processing a single field at a time. A simple flag, if the accessor method
was found, could be sufficient.

In the top-down approach, this is slightly more complicated as multiple
fields are being processed at once, along with a single method. A solution
could be a modification of the array, where each entry would have a simple
flag to indicate whether the accessor method to the field has been found.
Instead of deleting the item from the array, it would simply be marked.

Comparison

The comparison of the two methods yields quite a complete dualism.. Top-down stores fields in the array, bottom-up methods. Top-down traverses the hierarchy once for each method, bottom-up once
for each field. Top-down matches single method to multiple fields, bottom-up single
field to multiple methods. The time complexity of top-down grows linearly with the number of
annotated methods, bottom-up with the number of unannotated fields

28

..................................4.2. Method Annotating

As the count of unannotated fields in a typical hierarchy should be higher
than the count of annotated methods, the top-down method should be faster
in most cases. However, time complexity is not a significant factor since a
metamodel is built once at a startup. More important is the cohesion in
the steps of the algorithm. The code that processes all fields at the same
time/place is more readable and modifiable than the code that does it in two
separate places.

Therefore, the bottom-up approach was chosen.

Extracting Field Name from Method

In order to correctly pair fields and their respective accessor methods, a way
to extract the name of the field from the method (or vice versa) must be
designed.

A strict set of rules for method/field naming must be used for extraction
to be reliable and possible.

Fortunately, Java has extensively supported naming conventions, which can
be used both for naming fields and accessors [38]. Only one addition should be
applied - a getter for boolean value can be named has<field name>, as this
form for getter is widely used and not in the convention. Table 4.1 contains
examples of methods named accordingly to these conventions and field names
extracted from them.

Package java.beans provides many tools centering around Java Beans3.
Among them are tools enabling their introspection. Nevertheless, since there
is no technical difference between Java Bean and Java class, BeanInfo can
be used to introspect all Java classes [38].

With the use of BeanInfo.getPropertyDescriptors method, an array of
information about properties4 of a single class can be retrieved. This set of
information includes the name of the property, along with accessor methods
to this property and their names.

However, BeanInfo adheres strictly to the Java naming convention, and
therefore does not recognize getters with has prefix.

With this disadvantage in mind, the decision was made to create a custom
extractor to handle the has prefix too. This extraction consists of two
steps, where the first step is removing the prefix, and the second step is
decapitalizing the rest. Decapitalizing is not as trivial as setting the first letter
to lowercase, for in special cases, when the second letter is also capitalized,
the string is not modified. This is applied, for example, in the method
setURL, as setURL is a setter for the field URL, not uRL. For this modified

3 Java Beans are defined as “a reusable software component that can be manipulated
visually in a builder tool”[38]. Java Beans are tightly coupled with the Java GUI framework
AWT and are thought of as building blocks of applications. But at its core, Java Beans are
simply Java classes with public fields and methods that can be reused in many different
environments.

4 In the context of Java Beans, properties are “named attributes associated with a bean
that can be read or written by calling appropriate methods on the bean” - a class field with
at least one public accessor method.

29

4. Design..
Method Name Extracted Field Name

getFoo foo
setURL URL
isParked parked
hasJoined joined

Table 4.1: Table showing examples of accessor method names and field names
extracted from them

decapitalizing, the method Introspector.decapitalize from the already
mentioned java.beans package can be used.

4.2.2 Relaxing Model Constraints

In the current design, an exception would be thrown if multiple annotated
methods were to belong to a single field.

Unfortunately, this would mean that creating any diamond-like hierarchy
(hierarchy with a common predecessor) with an annotated method in a
common predecessor5 would throw an exception during metamodel creation.
This is because, in the current bottom-up algorithm, one entity class will be
visited multiple times if there exist more paths to this class in the hierarchy.
Therefore, any annotated method in this class would be found and re-added
to the field multiple times.

This would severely constrain the usability of the solution. Therefore, the
algorithm should be modified so that finding the same annotated method to
which the field belongs multiple times will not throw an exception.

How should this equality of annotated methods be defined? The annotated
method consists of two parts - annotation and the method on which the
annotation was declared. The need for equality of annotations is without
discussion, but should the equality of methods be enforced too?

A simple hierarchy is shown in listing 4.2. This hierarchy is valid from the
modeling perspective and represents a hierarchy that JOPA should support.
However, the methods are not equal, so if equality was enforced on methods
too, this hierarchy would not be valid in JOPA. Therefore equality of methods
should not be enforced.

In conclusion, if more than one annotated method belonging to one field
is found, the equality of annotations is checked. If all annotations are equal
(their types and values are equal), then no exception should be thrown. If
annotations differ, the hierarchy is considered invalid, and an exception should
be thrown.

This relaxation of rules does not create any new potential ambiguity, that
was not in the previous versions of the algorithm, as all annotations must
agree.

5 More precisely, if there exists an annotated method in ancestor to which exists two
distinct paths in a hierarchy.

30

..................................4.2. Method Annotating

@OWLClass (i r i = Vocabu la ry . Book)
i n t e r f a c e Book {

@OWLDataProperty (i r i = Vocabu la ry . T i t l e)
v o i d s e t T i t l e (S t r i n g t i t l e) ;

}

@OWLClass (i r i = Vocabu la ry . Reco rd ing)
i n t e r f a c e Reco rd ing {

@OWLDataProperty (i r i = Vocabu la ry . T i t l e)
S t r i n g g e t T i t l e () ;

}

@OWLClass (i r i = Vocabu la ry . AudioBook)
c l a s s AudioBook implements Record ing , Book {

S t r i n g t i t l e ;
/// code s h o r t e n e d

}

Listing 4.2: Pseudocode snippet showing hierarchy with two distinct methods
belonging to one field. These methods are annotated by annotations that are
equal.

However, this applies to ambiguity from annotations. What about ambi-
guity from methods? If equality is not enforced among them, could some
ambiguity be created there?

Two parameters from methods are taken into account. A method name
is used for pairing with fields. Any difference between a pair of methods
in extracted names means that the methods belong to two distinct fields.
Ambiguity is more potent with the method type6. Two different getters
could have equal mappings and names, while returning different value types.
However, this would raise an error during the compilation7. This error can be
circumvented if the methods have different names, for example, two getters
isUsed and getUsed, or one getter and one setter. This is, however, detected
during metamodel creation. When a method with a name that corresponds
to the field is found, its type compatibility is checked. If the types are not
compatible (the method type is not a (sub)type of the field type), an exception
is thrown.

Therefore, a degree of compatibility on both parameters used from methods
is enforced, and any ambiguity is detected at the latest during metamodel
creation.

6 Type is the return type if the method is a getter or type of argument if the method is
a setter.

7 It is a compile-time error to declare two methods with the same name and parameters
(override-equivalent signature) but different return types in one class. For more details, see
[33].

31

32

Chapter 5
Implementation

After a solution was analyzed and designed, an implementation took place.
In this chapter, a few selected parts of the implementation are presented.

These parts are just a small part of the whole implementation, and all changes
can be seen in the pull requests to the JOPA GitHub repository1.

5.1 Metamodel Hiearchy Changes

As discussed in 4.1.1, to accommodate the ability to reuse the current way
of determining non-abstract descendants, the implementation needs to en-
sure that the entity type declared on an interface, is abstract from the
JOPAs perspective. This is achieved by returning true on the method
AbstractIdentifiableType.isAbstract. This method returns true if the
type is abstract and false if otherwise.

Two approaches were proposed for ensuring that the value true is returned
by the method AbstractIdentifiableType.isAbstract on types that are
interface.

An easier way would be to use the current approach of JOPA. The current
approach dynamically determines the abstractness of a class during the
method call, using Modifier.isAbstract method.

The second method would be to change the class hierarchy to differentiate
between the concrete (non-abstract) entity and interface (abstract) entity in
the class hierarchy and override the method.

The second method was chosen because of the easier modifiability in the
future.

The hierarchy changes can be seen in figure 5.1. The EntityTypeImpl was
abstracted and split into two classes, one for concrete entity types, which
are non-abstract, and the second one for abstract, non-instantiable entity
types (such as interfaces or abstract classes). The method isAbstract in
class AbstractIdentifiableType is now abstract and its implementation is
left to child classes.

1 https://github.com/kbss-cvut/jopa/pull/160 and https://github.com/
kbss-cvut/jopa/pull/162 [visited on 23-05-17]

33

https://github.com/kbss-cvut/jopa/pull/160
https://github.com/kbss-cvut/jopa/pull/162
https://github.com/kbss-cvut/jopa/pull/162

5. Implementation....................................

Fi
gu

re
5.
1:

U
M
L
di
ag
ra
m

of
ch
an

ge
s
in

th
e
cl
as
s
hi
er
ar
ch
y.

So
m
e
cl
as
se
s
an

d
re
la
tio

ns
w
er
e
om

itt
ed

fo
r
br
ev
ity

.

34

............... 5.2. Using Annotations from Methods During Metamodel Creation

5.2 Using Annotations from Methods During
Metamodel Creation

As designed in 4.2, annotations from methods must be used while processing
paired fields.

However, it is imperative that the new implementation still supports fields
with annotations declared directly on them. As processing a field and its
annotations is a complex process, it would be impractical to create a new
implementation for processing fields with annotations on methods that would
exist alongside the current one.

A more suitable solution was chosen, which relies on a new interface
PropertyInfo. It is a simple wrapper around a field or a field and accessor
method. This interface defines a few methods which return data about a
field, such as a name or a type, and a method that queries annotations of
the field. This query is redirected to the method if annotations were declared
on it or to the field if annotations were declared on the field. A shortened
pseudocode of implementation can be seen in listing 5.1.

This interface is passed to all methods that process fields with annotations
during metamodel creation. For these methods there is no difference between
a field with annotations declared on a method or itself.

5.3 Comparing Annotations

As stated in 4.2.2, determining if two annotations are equal is crucial.
Although it is not possible to implement methods in the annotation inter-

face2, all classes in Java extend the Object class, and all annotation interfaces
extend the interface java.lang.annotation.Annotation.

In this interface, among others, the method equals is defined. This
method’s behavior differs from the behavior of Object.equals, as it, along
with type checking, recursively checks if all properties (members) are equal
[39].

This is a straightforward and clean way to check equality on annotations,
and as such, it is used in the implementation.

5.4 Documentation

Javadoc is a standard method of documenting code in Java and is widely
used in JOPA.

Therefore, the main part of the documentation is written using Javadoc.
Javadoc was primarily used to document the usage and behavior of new or
modified classes and methods.

2 The annotation interface is to annotation as the class is to the class instance. An
annotation interface is a blueprint, a definition, whereas annotation is a concrete usage of
an annotation interface.

35

5. Implementation....................................
p u b l i c i n t e r f a c e P r o p e r t y I n f o {

ge tAnnota t i on (a n n o t a t i o n C l a s s) ;

getName () ;
}

c l a s s F i e l d I n f o implements P r o p e r t y I n f o {

@Over r ide
getName () { r e t u r n f i e l d . getName () ; }

@Over r ide
ge tAnno ta t i on (a n n o t a t i o n C l a s s) {

r e t u r n f i e l d . g e tAnno ta t i on (a n n o t a t i o n C l a s s) ;
}

}

c l a s s MethodInfo implements P r o p e r t y I n f o {

@Over r ide
S t r i n g getName () { r e t u r n f i e l d . getName () ; }

@Over r ide
ge tAnno ta t i on (a n n o t a t i o n C l a s s) {

r e t u r n method . ge tAnno ta t i on (a n n o t a t i o n C l a s s) ;
}

}

Listing 5.1: Pseudocode snippet demonstrating implementation of PropertyInfo
wrapper

However, as Javadoc is primarily used for documenting code on individual
elements (classes, fields, methods, etc.), and as such, it can be difficult
to document complex features spanning several classes in it. Therefore, a
candidate wiki page for JOPA’s GitHub repository3 was proposed. This
documentation page discusses the usage of multiple inheritance in JOPA and
contains a few code examples along with an explanation of the code. The
proposed wiki page can be seen in appendix B.

3https://github.com/kbss-cvut/jopa/wiki [visited on 23-05-21]

36

https://github.com/kbss-cvut/jopa/wiki

Chapter 6
Evaluation

The evaluation of the solution consisted of two separate parts. At first, the
existing suite of tests in JOPA was adjusted and extended to new behavior.
Second, a demo application demonstrating functionality and usage of multiple
inheritance in JOPA was created.

At the end of the chapter, the quality and execution of the implementation
were evaluated.

6.1 JOPA Tests

The JOPA library contains an extensive suite of both unit and integration
tests [40, 41]. Tests in JOPA use JUnit1 and Mockito2 frameworks, together
with Hamcrest3 library.

Some existing tests needed to be adjusted to adapt to the changes in the
existing code and many tests were added to cover new parts of JOPA.

6.1.1 Changes in Existing Unit Tests

The implemented changes caused some of the existing tests to fail, some
during compilation and others at runtime.

Most of the compilation errors were caused by passing a single AIT to the
function AbstractIdentifiableType.setSupertypes, which, after changes
accepts Set<AbstractIdentifiableType>. This was fixed by wrapping
passed AIT in Collections.singleton method, which creates a set from a
given element.

In the same category were compilation failures caused by the PropertyInfo
wrapper around the fields (5.2).

In both cases, the solution was straightforward, although many tests were
affected by these changes.

Some errors were caused by changes in logic. For example, the test
entityLoaderIgnoresInterfaceWithOwlClassAnnotation originally veri-

1https://junit.org[visited on 23-05-05]
2https://site.mockito.org/[visited on 23-05-05]
3https://hamcrest.org[visited on 23-05-05]

37

https://junit.org
https://site.mockito.org/
https://hamcrest.org

6. Evaluation
@Paramete r i zedTest
@ValueSource (s t r i n g s = {" i s F o o " , " getFoo " , " hasFoo " })
v o i d f r o m P a r s e s B o o l e a n I s G e t t e r C o r r e c t l y (S t r i n g methodName) throws

NoSuchMethodException {
Method g e n e r i c G e t t e r =

MethodHolder . c l a s s . getDec laredMethod (methodName) ;

Annota tedAcces so r a c c e s s o r =
AnnotatedAcces so r . from (g e n e r i c G e t t e r) ;

a s s e r t E q u a l s (g e n e r i c G e t t e r , a c c e s s o r . getMethod ()) ;
a s s e r t E q u a l s (" foo " , a c c e s s o r . getPropertyName ()) ;
a s s e r t E q u a l s (Boolean . c l a s s , a c c e s s o r . ge tPrope r tyType ()) ;

}

Listing 6.1: Code snippet showing example of a parametrized test

fied that interfaces with annotation OWLClass were not considered to be
manageable.

This test was reused to verify that interfaces with OWLClass annotation
are now considered manageable.

6.1.2 New Unit Tests

Multiple unit tests were created to test the behavior of correctly processing
fields while creating a metamodel. The focus was on the correct traversing
of a metamodel hierarchy and the correct detection of ambiguities in it. As
field processing is a process tightly integrated with multiple other classes, the
use of class mocking was heavily leveraged [41].

Another thoroughly tested area was the AnnotatedAccessor class, where
the extraction of a field name from a method is implemented. As this class
is self-sufficient, no class mocks were needed. However, as there are many
edge cases in name extraction, a great number of individual tests with a
common flow but different inputs are needed. This is an ideal situation for
parametrized testing, and it was used extensively. An example of such a test
can be seen in listing 6.1.

6.1.3 Integration Tests

No changes were needed in integration tests, as the changes made to JOPA
were backward compatible concerning the developer-facing part of JOPA.

The newly created integration test focused on a few areas:. Correct saving of instances of classes with multiple parents into storage
and consequent retrieving from storage.. Correct polymorphism handling - one object can be found as an instance
of all its parent classes.. Correct handling of annotations on methods and their effect on fields.

38

.................................. 6.2. Demo Application

During implementation, a form of Test Driven Development (TDD)4 was
used, as a first step in implementing a feature was to create an integration
test that tested this new feature. This was useful, as JOPA is a library and
therefore does not have any executable part (except the tests).

6.2 Demo Application

As part of the evaluation, two distinct class models that use multiple inheri-
tance were provided.

The first hierarchy (figure 6.1) displays a hierarchy where the class AudioBook
has two parents, Book and Recording. Both parents independently declare a
single property. However, these two properties are equal in name and RDF
mapping.

Figure 6.1: UML diagram of the class model with two parents containing two
properties with equal names and mappings.

The second example contains a typical diamond hierarchy (figure 6.2). This
means that a child class, Copier, inherits from two parents, Scanner and
Printer, which share a common ancestor - class Device.

A simple application that enables CRUD operations over these two models
was created5. The application provides REST API for data operations, which
is used by a set of Postman6 tests. These tests were created to test and
showcase the application.

4 TDD is a software development process where tests for new functionality are created
before the new functionality. These tests should fail, as the functionality is not yet
implemented. After this, a feature is implemented as fast as possible and the tests should
pass successfully. When all tests are passing, code refactoring follows before the process
repeats [41].

5 Available from https://github.com/Kulda22/jopa-multiple-inheritance-demo
[visited on 23-05-17]

6https://www.postman.com/ [visited on 23-05-06]

39

https://github.com/Kulda22/jopa-multiple-inheritance-demo
https://www.postman.com/

6. Evaluation

Figure 6.2: UML diagram of the class model with diamond hierarchy.

This demo application demonstrates the usage and capabilities of multiple
inheritance in JOPA. One of the prominent features of (multiple) inheritance
is polymorphism, whose effect can be demonstrated in multiple ways. The
first one is that the same AudioBook can be found by querying the application
for a Book by its ISBN or by querying for Recording by its URI. The second
one is that, if, for example, the endpoint for reading all objects of the class
Device is queried, all instances of classes Device, Printer, Scanner, and
Copier are returned. This is because all copiers are also devices, and so on.

Emulating this behavior with two or more parents without multiple inheri-
tance would be difficult. Emulating with single inheritance only would require
a significant amount of unnecessary code and manual SPARQL queries, and
any change in the hierarchy would demand extensive rewrites in the source
code.

However, the demo shows a considerable weakness in the chosen solution.
In both examples, all parent entity classes are interfaces, as it is required7

for the hierarchies to be created in JOPA. Therefore, any parent cannot be
instantiated directly, as they are only interfaces. That means that instances
of class Book cannot be created, only AudioBook.

This can be mitigated by creating a special entity class for each interface
parent, which shares the same class IRI and implements only the parent
interface. If there is a need for an instance of the interface parent, an instance

7 Only one of Scanner or Printer entity classes in the diamond hierarchy could be a
class, not an interface.

40

................................. 6.3. Code Maintainability

of this special class can be used instead. This is a simple and effective solution.
On the other side, it forces the creation of new boilerplate classes. Therefore,
it should not be used automatically, only when needed.

6.3 Code Maintainability

After implementing tests and creating the demo application, the decision
was made to support more annotations on methods. So far, only property
mapping annotations (OWLObjectProperty, OWLAnnotationProperty, and
OWLDataProperty) were considered. However, the evaluation so far demon-
strated that this list should be extended with ParticipationConstraints,
Convert, Enumerated and Sequence annotations, as they are exclusively
used with property mapping annotations.

Excluding them would lead to needless code repetition and potential
ambiguities.

One of the metrics of code quality is maintainability, and one part of the
maintainability of the code is the amount and complexity of changes needed
to implement a new feature [42, 43]. As enabling a new set of annotations to
be declared on methods can be looked at as a new feature, it can be used to
evaluate the modifiability of implementation.

Only two parts of the code had to be modified to implement the new
feature.

To specify where can the given annotation be declared, annotation can be
annotated by annotation @Target, which specifies in which context the given
annotation is applicable [44]. This had to be modified to include the usage of
annotation on methods.

The second modification was adding the newly supported annotations to
the method, which checks if all annotations in two different methods are equal
during hierarchy traversal to prevent ambiguities.

Along with these two code changes, new tests were implemented to test
the new behavior.

As these changes were minimal in scope and complexity, it can be declared
that the code is maintainable.

41

42

Chapter 7
Conclusion

As stated in chapter 1, this thesis aimed to:. Implement multiple inheritance in JOPA. Prevent errors caused by differences between JOPA and OWL domain
models. Be fully backward compatible

As demonstrated by the tests in JOPA and the demo application, in chapter
6, the implementation successfully enabled the usage of multiple inheritance
in JOPA.

Runtime errors caused by unchecked access to properties of parents of the
class can now be prevented. With JOPA supporting multiple inheritance, a
plethora of errors caused by the differences between domain models can now
be prevented, as developers can now leverage Java’s powerful type system
while working with properties declared in class parents.

The critical point is that all changes are backward compatible. No change
in the source code of applications using JOPA will be required due to the
new features. This is because from the developer’s point of view only two
things changed:. Interfaces can now be used as entity classes. Annotations can be declared on methods

In conclusion, it can be stated that all the goals of the thesis were achieved
successfully.

7.1 Future work

Even though multiple inheritance was implemented successfully and com-
pletely, more work could be done to enhance the capabilities of the whole
JOPA library using work done in this thesis.

One is the support for more JOPA annotations on accessor methods.
Annotations such as @Transient, or @Sparql, could benefit from this option,
if the need for it ever arises.

43

7. Conclusion......................................
Another possible feature would be the option to define whether the field

during (de)serialization should be accessed directly, or by its accessor method,
as supported by JPA [16]. This feature could re-use a substantial part of the
work done in this thesis.

Implementation of above-mentioned features, or any others, depends solely
upon the needs of developers using JOPA in their applications.

44

Bibliography

1. BERNERS-LEE, Tim; HENDLER, James; LASSILA, Ora. The Seman-
tic Web. Scientific American Magazine. 2001, vol. 2001, no. 284, pp.
28–37.

2. Semantic Web [online] [visited on 2022-12-14]. Available from: https:
//www.w3.org/standards/semanticweb/.

3. MOTIK, Boris; PATEL-SCHNEIDER, Peter; PARSIA, Bijan. OWL 2
Web Ontology Language: Structural Specification and Functional-Style
Syntax (Second Edition) [online] [visited on 2022-12-30]. Available from:
https://www.w3.org/TR/owl2-syntax/.

4. HITZLER, Pascal; KRÖTZSCH, Markus; PARSIA, Bijan; PATEL-
SCHNEIDER, Peter F.; RUDOLPH, Sebastian. OWL 2 Web Ontology
Language Primer (Second Edition) [online] [visited on 2022-12-10]. Avail-
able from: https://www.w3.org/TR/owl2-primer/.

5. SCHREIBER, Guus; RAIMOND, Yves. RDF 1.1 Primer [online] [visited
on 2022-12-10]. Available from: https://www.w3.org/TR/rdf11-
primer/.

6. ANTONIOU, Grigoris; HARMELEN, Frank van. A semantic web primer.
Third Edition. Cambridge: MIT Press, c2012. ISBN 978-026-2012-423.

7. KOTRLÝ, Zdeněk. Mapování atributů založené na SPARQL dotazech
v knihovně JOPA. Prague, 2021. Available also from: https://dspace.
cvut . cz / handle / 10467 / 94516. Bachelor Thesis. Czech Technical
University in Prague, Faculty of Electrical Engineering, Department of
Computer Science.

8. BRICKLEY, Dan; GUHA, R.V. RDF Schema 1.1 [online] [visited on
2022-12-10]. Available from: https://www.w3.org/TR/rdf-schema/.

9. LEDVINKA, Martin. Leveraging Semantic Web Technologies in Domain-
specific Information Systems. Prague, 2020. Available also from: https:
//dspace.cvut.cz/handle/10467/91091. Dissertation Thesis. Czech
Technical University in Prague, Faculty of Electrical Engineering, De-
partment of Computer Science.

10. SIMONS, Peter. Ontology [online] [visited on 2022-12-18]. Available
from: https://www.britannica.com/topic/ontology-metaphysics.

45

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/
https://dspace.cvut.cz/handle/10467/94516
https://dspace.cvut.cz/handle/10467/94516
https://www.w3.org/TR/rdf-schema/
https://dspace.cvut.cz/handle/10467/91091
https://dspace.cvut.cz/handle/10467/91091
https://www.britannica.com/topic/ontology-metaphysics

Bibliography
11. GRUBER, Thomas R. Toward principles for the design of ontologies

used for knowledge sharing? International Journal of Human-Computer
Studies. 1995, vol. 43, no. 5-6, pp. 907–928. ISSN 10715819. Available
from DOI: 10.1006/ijhc.1995.1081.

12. GUARINO, Nicola; OBERLE, Daniel; STAAB, Steffen. What Is an
Ontology? Handbook on Ontologies. 2009, pp. 1–17. ISBN 978-3-540-
70999-2. Available from DOI: 10.1007/978-3-540-92673-3_0.

13. PRUD’HOMMEAUX, Eric; SEABORNE, Andy. SPARQL Query Lan-
guage for RDF [online] [visited on 2022-12-16]. Available from: https:
//www.w3.org/TR/rdf-sparql-query/.

14. BECKETT, Dave. What does SPARQL stand for? [online] [visited
on 2022-12-16]. Available from: https://lists.w3.org/Archives/
Public/semantic-web/2011Oct/0041.html.

15. ELLIOTT, James; FOWLER, Ryan; O’BRIEN, Tim. Harnessing Hiber-
nate. Sebastopol: O’Reilly, 2008. ISBN 05-965-1772-6.

16. JCP. JSR 317: JavaT M Persistence API, Version 2.0. 2009. Technical
report. Java Community Process.

17. KŘEMEN, Petr; KOUBA, Zdeněk. Ontology-Driven Information System
Design. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews). 2012, vol. 42, no. 3, pp. 334–344. ISSN
1094-6977. Available from DOI: 10.1109/TSMCC.2011.2163934.

18. LEDVINKA, Martin; KŘEMEN, Petr. JOPA: Stay Object-Oriented
When Persisting Ontologies. In: Enterprise Information Systems. Cham:
Springer International Publishing, 2015, pp. 408–428. ISBN 978-3-319-
29132-1. Available from DOI: 10.1007/978-3-319-29133-8_20.

19. FOWLER, Martin. Patterns of enterprise application architecture. Boston:
Addison-Wesley, c2003. ISBN 03-211-2742-0.

20. WEGNER, Peter. Panel on inheritance: Varieties of Inheritance. ACM
SIGPLAN Notices. 1988, vol. 23, no. 5, pp. 35–40. ISSN 0362-1340.
Available from DOI: 10.1145/62139.62142.

21. SCHÄRLI, Nathanael; DUCASSE, Stéphane; NIERSTRASZ, Oscar;
BLACK, Andrew P. Traits: Composable Units of Behaviour. ECOOP
2003 – Object-Oriented Programming. 2003, pp. 248–274. ISBN 978-3-
540-40531-3. Available from DOI: 10.1007/978-3-540-45070-2_12.

22. TRUYEN, Eddy; JOOSEN,Wouter; VERBAETEN, Pierre; JØRGENSEN,
Bo Nørregaard. A Generalization and Solution to the Common Ancestor
Dilemma Problem in Delegation-Based Object Systems. 2004.

23. STROUSTRUP, Bjarne. Multiple Inheritance for C++. C/C++ users
journal. Vol. 1999. ISSN 1075-2838.

46

http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1007/978-3-540-92673-3_0
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
https://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
http://dx.doi.org/10.1109/TSMCC.2011.2163934
http://dx.doi.org/10.1007/978-3-319-29133-8_20
http://dx.doi.org/10.1145/62139.62142
http://dx.doi.org/10.1007/978-3-540-45070-2_12

.......................................Bibliography

24. BARRETT, Kim; CASSELS, Bob; HAAHR, Paul; MOON, David A.;
PLAYFORD, Keith; WITHINGTON, P. Tucker. A monotonic super-
class linearization for Dylan. Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. 1996, pp. 69–82. ISBN 089791788X. Available from DOI:
10.1145/236337.236343.

25. Multiple Inheritance in C++. Programming with Objects. 2003. ISBN
9780470547144. Available from DOI: 10.1109/9780470547144.ch16.

26. GOSLING, James; HSU, Hansen; WEBER, Marc. Gosling, James oral
history, part 1 of 2. Mountain View, CA: Computer History Museum,
2019.

27. GOSLING, James. Java: an Overview: the original Java whitepaper.
1995.

28. MARTIN, Robert C. Java and C++: a critical comparison. Java Gems:
jewels from Java Report. 1998th ed., pp. 51–68.

29. More OO in Java—Interfaces and Abstract Classes. Foundations of
Java for ABAP Programmers. 2006, pp. 57–60. ISBN 978-1-59059-625-8.
Available from DOI: 10.1007/978-1-4302-0140-3_12.

30. CHARATAN, Quentin; KANS, Aaron. Java: Interfaces and Lambda
Expressions. In: Programming in Two Semesters. Cham: Springer In-
ternational Publishing, 2022, pp. 455–479. ISBN 978-3-031-01325-6.
Available from DOI: 10.1007/978-3-031-01326-3_19.

31. DATHAN, Brahma; RAMNATH, Sarnath. Exploring Inheritance. In:
Object-Oriented Analysis, Design and Implementation. Cham: Springer
International Publishing, 2015, pp. 223–273. ISBN 978-3-319-24278-1.
Available from DOI: 10.1007/978-3-319-24280-4_9.

32. GRAND, Mark. Java: Language Reference. Second Edition. O’Reilly
Media, 1997. ISBN 978-1565923263.

33. GOSLING, James; JOY, Bill; STEELE, Guy; BRACHA, Gilad; BUCK-
LEY, Alex. The Java Language Specification: Java SE 8 Edition. 5th ed.
Upper Saddle River, NJ: Addison-Wesley, 2014. ISBN 978-0-13-390069-9.

34. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John.
Design patterns: elements of reusable object-oriented software. Boston:
Addison-Wesley, 1995. ISBN 978-0201633610.

35. ANCONA, Davide; LAGORIO, Giovanni; ZUCCA, Elena. Jam - design-
ing a Java extension with mixins. ACM Transactions on Programming
Languages and Systems. 2003, vol. 25, no. 5, pp. 641–712. ISSN 0164-0925.
Available from DOI: 10.1145/937563.937567.

36. LOCKE, Jonathan. The KivaKit Manifesto — A New Vision for Java
[online] [visited on 2022-12-11]. Available from: https://medium.com/
the-techlife/kivakit-a-new-vision-for-java-66e7f6b18ae6.

47

http://dx.doi.org/10.1145/236337.236343
http://dx.doi.org/10.1109/9780470547144.ch16
http://dx.doi.org/10.1007/978-1-4302-0140-3_12
http://dx.doi.org/10.1007/978-3-031-01326-3_19
http://dx.doi.org/10.1007/978-3-319-24280-4_9
http://dx.doi.org/10.1145/937563.937567
https://medium.com/the-techlife/kivakit-a-new-vision-for-java-66e7f6b18ae6
https://medium.com/the-techlife/kivakit-a-new-vision-for-java-66e7f6b18ae6

Bibliography
37. COLYER, Adrian. Eclipse AspectJ: aspect-oriented programming with

Aspectj and the Eclipse Aspectj development tools. Upper Saddle River:
Addison-Wesley, c2005. ISBN 03-212-4587-3.

38. HAMILTON, Graham. JavaBeansTM: API specification. Version 1.01-A.
Sun Microsystems, 1997.

39. JavaTM Platform, Standard Edition 8 API Specification: Interface An-
notation [online] [visited on 2023-05-05]. Available from: https : / /
docs.oracle.com/javase/8/docs/api/java/lang/annotation/
Annotation.html.

40. CRISPIN, Lisa; GREGORY, Janet. Agile testing: a practical guide
for testers and agile teams. New Jersey: Addison-Wesley, c2009. ISBN
978-0-321-53446-0.

41. KENT, Beck. Test Driven Development: By Example. 1st. Addison-
Wesley Professional, 2002. ISBN 978-0321146533.

42. COLEMAN, Ron. Beauty and Maintainability of Code. 2018 Interna-
tional Conference on Computational Science and Computational Intel-
ligence (CSCI). 2018, pp. 825–828. ISBN 978-1-7281-1360-9. Available
from DOI: 10.1109/CSCI46756.2018.00165.

43. VISSER, Joost; RIGAL, Sylvan; LEEK, Rob van der; ECK, Pascal van;
WIJNHOLDS, Gijs. Building Maintainable Software, Java Edition: Ten
Guidelines for Future-Proof Code. 1st edition. O’Reilly Media, 2016.
ISBN 9781491953495.

44. JavaTM Platform, Standard Edition 8 API Specification: Annotation
Type Target [online] [visited on 2023-05-05]. Available from: https:
//docs.oracle.com/javase/8/docs/api/java/lang/annotation/
Target.html.

48

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Annotation.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Annotation.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Annotation.html
http://dx.doi.org/10.1109/CSCI46756.2018.00165
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html

Appendix A
Supported annotations on accessors

Table A.1 denotes which annotations can be used on accessor methods.

49

A. Supported annotations on accessors...........................

JOPA Annotation Supported on accessor methods
@Asserted No
@Convert Yes

@Enumerated Yes
@Id No

@Individual No
@Inferred No

@OWLAnnotationProperty Yes
@OWLDataProperty Yes
@OWLObjectProperty Yes

@ParticipationConstraints Yes
@Properties No
@Sequence Yes
@Sparql No

@Transient No
@Types No

Table A.1: Table denoting which field annotations can also be declared on
accessor methods

50

Appendix B
Proposed New Documentation Page

Within the scope of the thesis, a new documentation page concerning multiple
inheritance in JOPA was created. This page will be added to the wiki section
of the GitHub repository of JOPA1.

B.1 JOPA and Multiple Inheritance

Multiple inheritance is now supported in JOPA. Please see the text below for
details and usage.

B.1.1 Usage

As Java does not directly support multiple inheritance, an entity class cannot
extend multiple entity classes (or mapped superclasses) at once.

JOPA takes advantage of interfaces, as a class can implement multiple
interfaces simultaneously. In order to support multiple inheritance, it is
possible to declare interfaces as entity classes in JOPA with @OWLClass
annotation, the same as plain Java classes. A child class can then implement
multiple of these interface entity classes, along with almost all features of
single inheritance.

The use of interface entity classes has some caveats that emerge from Java
interface constraints.. It cannot be directly instantiated, as it is an interface.. It cannot declare any non-static non-final properties. Child classes cannot

inherit any attributes from these entity classes.

The second caveat is partly omitted by using property annotations on
methods.

Property Annotations on Methods

In order to reduce code duplication and mistakes from duplication, JOPA
supports declaring field annotations (OWLDataProperty, OWLObjectProperty,

1 Please note that some changes have been made, as the original was written in a
Markdown markup language.

51

B. Proposed New Documentation Page
@OWLClass (i r i = Vocabu la ry . CLASS_BASE + " AParent I ")
i n t e r f a c e AParent I {}

@OWLClass (i r i = Vocabu la ry . CLASS_BASE + " BParent I ")
i n t e r f a c e BParent I {}

@OWLClass (i r i = Vocabu la ry . CLASS_BASE + " I n t e r f a c e C h i l d ")
c l a s s I n t e r f a c e C h i l d implements AParent I , BParent I {

@Id
p r i v a t e URI u r i ;

}

Listing B.1: Simple hierarchy with multiple inheritance

OWLAnnotationProperty, ParticipationConstraints, Convert, Enumerated
and Sequence) on getters and setters.

This means that the property annotation, along with IRI and other pa-
rameters, can be declared once in the parent entity class. All non-abstract
children entity classes then only need to implement the method and declare
the field without any annotations, as the field will inherit property annotation
from the annotated method.

The assignment of the field to annotated method starts when an unanno-
tated field is discovered during metamodel creation. The hierarchy is searched
bottom-up, looking for annotated methods in parent entity classes. If an
annotated method is found, the field name is extracted from the method
name based on Java naming conventions. If the name matches the name of
the field, the field is processed with property annotations from the method.

B.1.2 Examples

Simple Hierarchy

In code example B.1, a simple hierarchy is defined. This hierarchy mirrors
some arbitrary ontology. In Java’s single inheritance, a decision would have
to be made, which class would be a parent, and which would be omitted from
the hierarchy. However, this would disconnect the Java model from the model
in underlying storage, which is problematic.

This example shows the power of polymorphic behavior. Storage can be
queried using the <T> T EntityManager.find method. EntityClass argu-
ment is a Java class to look for and return. With multiple inheritance, we
can pass any of the three classes InterfaceChild,BParentI and AParentI,
with valid identifier and have returned instance of InterfaceChild, as in
example B.2.

Annotated Methods

The hierarchy from listing B.3 contains field foo which inherits property
annotation from method getFoo().

52

............................ B.1. JOPA and Multiple Inheritance

f i n a l I n t e r f a c e C h i l d c h i l d = new I n t e r f a c e C h i l d () ;
c h i l d . s e t I d (i d) ;

em . p e r s i s t (c h i l d) ;

OWLChildClassA f o u n d C h i l d = em . f i n d (I n t e r f a c e C h i l d . c l a s s , i d) ;

AParent I parentBFound = em . f i n d (AParent I . c l a s s , i d) ;

BParent I parentAFound = em . f i n d (BParent I . c l a s s , i d) ;

Listing B.2: Snippet demonstrating polymorphic behavior

@OWLClass (i r i = Vocabu la ry . B a r I n t e r f a c e)
p u b l i c i n t e r f a c e B a r I n t e r f a c e {

@OWLDataProperty (i r i = Vocabu la ry . f oo)
S t r i n g getFoo () ;

}

@OWLClass (i r i = Vocabu la ry . Ba rCh i l d)
p u b l i c c l a s s Ba rCh i l d implements B a r I n t e r f a c e {

p r o t e c t e d S t r i n g foo ;

@Over r ide
p u b l i c S t r i n g getFoo () { r e t u r n foo ; }

}

Listing B.3: Code snippet demonstrating annotations on methods

Two Parents With Same Properties

A field can inherit annotations from multiple methods as long as the anno-
tations are equal (shown in listing B.4). If annotations are not equal, an
exception is thrown during metamodel creation.

Other Examples

For more examples, see integration tests in MultipleInheritanceTestRunner.java
in /jopa-integration-tests/src/main/java/cz/cvut/kbss/jopa/test/runner
or JOPA examples (https://github.com/kbss-cvut/jopa-examples) repos-
itory.

B.1.3 Notes

Mixing field annotations and method annotations

Do not mix field and method annotations on a single property. Field annota-
tions SHOULD overwrite the method annotations, but they are considered
undefined behavior.

53

https://github.com/kbss-cvut/jopa-examples

B. Proposed New Documentation Page

@OWLClass (i r i = Vocabu la ry . ParentA)
p u b l i c i n t e r f a c e ParentA {

@OWLDataProperty (i r i = Vocabu la ry . name)
v o i d setName (S t r i n g name) ;

}

@OWLClass (i r i = Vocabu la ry . ParentB)
p u b l i c i n t e r f a c e ParentB {

@OWLDataProperty (i r i = Vocabu la ry . name)
v o i d setName (S t r i n g name) ;

}

@OWLClass (i r i = Vocabu la ry . Ba rCh i l d)
p u b l i c c l a s s C h i l d implements ParentA , ParentB {

p r o t e c t e d S t r i n g name ;

@Over r ide
p u b l i c v o i d setName (S t r i n g name) { t h i s . name = name ; }

}

Listing B.4: Code snippet demonstrating multiple methods with annotations
belonging to one field

54

	Introduction
	Background
	RDF
	RDFS
	Ontology
	OWL
	SPARQL
	Object-relational and Object-ontological Mappings
	JOPA
	Architecture
	Metamodel

	Multiple Inhertance
	Diamond Problem
	Java and Multiple Inheritance

	Analysis
	Implementing Multiple Inheritance
	Interfaces with Default Methods
	Composition
	Kivakit Mixins
	AspectJ
	Javassist
	Results
	Comparing with JOPA Needs
	Annotating Setters and Getters

	Design
	Multiple Inheritance
	Abstract Identifiable Type
	Metamodel Creation
	Deserialization

	Method Annotating
	Pairing Fields and Accessors
	Relaxing Model Constraints

	Implementation
	Metamodel Hiearchy Changes
	Using Annotations from Methods During Metamodel Creation
	Comparing Annotations
	Documentation

	Evaluation
	JOPA Tests
	Changes in Existing Unit Tests
	New Unit Tests
	Integration Tests

	Demo Application
	Code Maintainability

	Conclusion
	Future work

	Bibliography
	Supported annotations on accessors
	Proposed New Documentation Page
	JOPA and Multiple Inheritance
	Usage
	Examples
	Notes

