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Abstract

At present, models exploiting the Trans-
former architecture are reigning over
challenges in the NLP field. These
models, however, share a drawback -
their quadratic computational complex-
ity, which constrains the input size for the
standard Transformer model between 512
and 1024 tokens, an amount inadequate
for long inputs. The objective of our mas-
ter’s thesis is to employ Multiple Instance
Learning techniques for processing long in-
put Natural Language Processing models,
while utilizing one of many pre-trained
Transformer models. Multiple Instance
Learning is a classification approach for in-
stance sets. Our presented method relies
on sequentially breaking down long inputs
into shorter parts. Transformer-based lan-
guage models process these shorter sec-
tions and collectively classify them using
the MIL technique. In the experimental
part, we tested the functionality of our
model on three diverse datasets, two in En-
glish and one in Czech with input length
up to 13,926 tokens. While the results
revealed our model could handle even
the longest inputs - a standard achieve-
ment language model-based methods fail
to meet - we didn’t observe a substantial
contribution in enhanced accuracy com-
pared to other models. In some instances,
the results were even below the baseline.
We discussed the results in more detail,
described potential shortcomings, and pro-
posed directions for further research.
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Abstrakt

V soucasnych aplikacich v oblasti zpra-
covani prirozeného jazyka prevazuji mo-
dely vyuzivajici Transformer architekturu,
tyto modely spolu ovSem sdili jednu nevy-
hodu. Tou je kvadraticka vypocetni slozi-
tost, ktera omezuje velikost prijimaného
vstupu pro standardni Transformer model
na 512 az 1024 tokent, coz je v pripadé
dlouhych vstupi nedostateény pocet. Ci-
lem préace bylo vyuzit metod Multiple In-
stance Learning pro zpracovani dlouhych
vstupu v modelech pro zpracovani priroze-
ného jazyka. Diky tomu mizeme vyuzivat
siroké skaly jiz predtrénovanych Transfor-
mer modeli. Multiple Instance Learning
je technika pro klasifikaci mnozin instanci.
Nase metoda vyuziva sekvenc¢niho zpra-
covani dlouhého vstupu na kratsi casti.
Tyto kratsi ¢asti jsou zpracovany jazyko-
vymi modely zalozenymi na Transformer
architekture a nasledné spole¢né klasifi-
kovany za pouziti Multiple Instance Lear-
ning techniky. V experimentalni ¢asti jsme
funk¢énost modelu ovérili na 3 riznych da-
tovych sadach, 2 v jazyce anglickém a 1
v ¢eském, s nejdelsim vstupem o velikosti
13926 tokent. Ackoliv vysledky ukézaly,
ze navrzeny model je schopen zpracovat i
ty nejdelsi vstupy, coz standardni metody
vyuzivajici jazykové modely nezvladly, tak
nebyl zjistén vyrazny prinos v oblasti zvy-
Sené presnosti v porovnani s jinymi mo-
dely. V nékterych pripadech byly dokonce
vysledky pod trovni standardu. Vysledky
jsme blize diskutovali, popsali mozné ne-
dostatky a navrhli pripadné sméry pro
dalsi vyzkum.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a subfield of artificial intelligence that
focuses on enabling computers to understand, interpret, and generate human
language. NLP has been an area of interest and research for several decades,
with the earliest work dating back to the 1950s and 1960s [Hut04]. Since
then, it has been an active area of research, with applications ranging from
sentiment analysis to machine translation. However, new challenges arise
as the demand for more sophisticated NLP models increases. One of those
challenges is in handling long input texts.

Progress in NLP’s ability brings new possibilities for its application. This
work is part of a larger effort under Artificial Intelligence Centre (AIC)
at Czech Technical University in Prague (CTU) to provide a solution for
automated fact-checking. The spread of fake news during covid-19 pandemic
showed us the need for a solution to counter this emerging threat. The fact-
checking task can be generalised as a text classification task. The current state-
of-the-art solution for such a task are Transformer models. However, when
facing a very long input, these models are limited by quadratic computational
complexity and memory requirements. The objective of this thesis is to
investigate the effectiveness and ability of Multiple Instance Learning (MIL)
to enhance the performance of long input NLP models. Specifically, we focus
on the use of MIL for text classification tasks, where the input text is often
lengthy and complex.

1 ctuthesis t1606152353



1. Introduction

Multiple Instance Learning is a type of weakly supervised machine learning
where the training data is composed of bags, each containing multiple in-
stances. The goal is to classify the bag based on the properties of the instances
it contains rather than the properties of individual instances. This makes
MIL particularly suitable for NLP tasks involving long input text, where the
MIL aggregation function summarises long inputs or where labelling each
instance would be time-consuming.

The remainder of this thesis is organized as follows. In Chapter 2, we
comprehensively explore key concepts underpinning the thesis’s research
approach. It delves into Multiple Instance Learning (MIL) |[DLLP97] as
a weakly supervised learning technique. The chapter then transitions into
Natural Language Processing (NLP) [NOMC11], introducing the field, its
development and its applications. Then focus on the Transformer model
[VSPT17|, its implementation in BERT [DCLT18]|, its adaptations for long
sequence handling, and its adaptation in Set Transformer [LLK™19]. Lastly,
it investigates Text Classification, linking its challenges and context to the
research objectives.

Chapter |3| outlines the methodology designed to tackle the problem of
processing long inputs in NLP models. It begins by addressing the issue
and examining previous attempts. The chapter then presents the proposed
solution, a text classification model that combines MIL and Transformer-based
models to manage long sequences. It also details the three diverse datasets
used for model evaluation, their classification tasks, and their relevance to
the research.

In Chapter 4], we report the experimental results and analyze the perfor-
mance of the MIL-based NLP models compared to the non-MIL models.

The Discussion in [5, summarizes our findings, discusses their implications
and proposes future work. Finally, in Chapter [6, we conclude the thesis.

ctuthesis t1606152353 2



Chapter 2

Related Work

In this chapter, we explore critical concepts that inform and shape the
approach used in our thesis. We begin with Multiple Instance Learning
(MIL), a form of weakly supervised learning that allows for more efficient
handling of labelling of data, a technique central to the processing of long
inputs in our thesis.

Next, we delve into the realm of Natural Language Processing (NLP),
an essential field which enables us to process and interpret text data. The
discussion then turns to the Transformer model and its variations. First,
focusing on its initial implementation in the BERT model and then on its
variations managing long input sequences, a challenge directly related to
the objectives of our thesis. We also examine the Set Transformer, which
introduces new methodologies for set handling, a concept employed in our
proposed solution.

Finally, we explore Text Classification, the primary goal of our thesis,
offering a detailed understanding of its context, challenges, and its connection
to our research goals.

3 ctuthesis t1606152353



2. Related Work

B 21 Multiple Instance Learning

Multiple Instance Learning (MIL) is a form of supervised machine learning
that offers a novel approach to classification problems. Introduced by Di-
etterich et al. in 1997 [DLLP97], MIL differs from traditional supervised
learning in its labelling approach.

Instead of assigning labels to individual instances, labels are associated with
a set || (or bag) of instances. More specifically, MIL is a weakly supervised
form due to having only bag-level labels. A bag is classified as positive if at
least one instance in the bag is positive and negative only if all instances are
negative. This is a response to cases where the labelling of each instance in
training data is not possible or too expensive. Example of bags with various
labels can be seen in Figure 2.1l

ve Bags
\

|

f— Positi

Negative Bags

Figure 2.1: Visualization of multiple bags and their appropriate labels. + are
positive instances and - are negative, note that bag level classification does
misclassify some instances. Reprinted from [Min23].

This unique approach to classification has been applied to various domains,
including computer vision |[CZL"17], medical imaging |[LXZ17|, and text
categorization [Zho04]. In computer vision, for instance, it has been utilized

!Throughout this thesis, we frequently refer to ’set’. However, it’s important to note
that it can technically be considered as 'multi-set’.

ctuthesis t1606152353 4



2.1. Multiple Instance Learning

to identify objects within an image where the exact object location is unknown.
In the context of text categorization, MIL has been applied to situations where
only the document-level label is available but not the labels for individual
sentences or phrases.

An important aspect of MIL is the choice of instance aggregation function,
which determines how the bag-level representation is obtained from individual
instances. These functions play a critical role in the performance of the MIL
model.

Despite the strengths of MIL, there are certain trade-offs. The most notable
one is that some information might be lost during the aggregation process
due to the need to condense multiple instance representations into a single
bag representation [Bab0§].

In summary, Multiple Instance Learning provides a unique approach to
handling tasks where ambiguity exists in the instance labels. Its flexibility
makes it adaptable to various domains and tasks, and integrating it with
deep learning techniques further enhances its potential.

B 2.1.1 Neural Multiple Instance Learning

The proposed approach in this work employs neural networks to address
Multiple Instance Learning problems. Therefore, we must delve deeper into
the structure of Neural Multiple Instance Learning models. The structure is
visualized in Figure [2.2.

The first part of the architecture is a pre-processing layer. It is an instance-
level neural network that transforms individual instances into a new feature
space. This instance-level network is applied independently to each instance
in a bag, essentially learning to extract meaningful features useful for the
bag-level prediction task.

After the pre-processing layer has transformed all instances in a bag, an
aggregation function is applied to these transformed instances to produce a

) ctuthesis t1606152353



2. Related Work

fixed-size bag-level representation. This function needs to be permutation-
invariant, meaning that the order of the instances in a bag should not impact
the resulting bag representation. Common choices for the aggregation function
include the mean, max, or a learned function such as attention.

Finally, the bag-level representation is passed through post-processing.
That is another neural network used to produce the final output, which is
the prediction for the entire bag.

bag with 3
"""" instances
4 ¥ ¥
Pre-processing Neural Netwok
_______ instance-level
representation
MIL @
Classifier Aggregation Function
....... bag-level
representation
Post-processing Neural Network

i

classification label

Figure 2.2: Visualization of described neural network Multiple Instance Learning
model.

This architecture allows Neural MIL models to handle bags of varying sizes,
learn to extract useful instance-level features, and make a prediction at the
bag level, all of which are key requirements for multiple instance learning
problems. Presented architecture is generalized approach inspired by [PS17].

ctuthesis t1606152353 6



2.1. Multiple Instance Learning

B 2.1.2 Formal Notation for Multiple Instance Learning

In the context of Multiple Instance Learning, we consider a dataset D that
consists of a set of bags. A single bag B; € D, where i = 1,..., N and
N is the total number of bags, is defined as a collection of instances B; =
{xi1, xi2, ..., xin, }, where x;; denotes the j-th instance in the i-th bag and
n; is the number of instances in bag i. Each instance z;; is a vector in R,
where d is the dimensionality of the instance space.

In the MIL framework, labels are associated with bags, not with individual
instances. The bag label Y; € Y = {0,1} indicates the class of bag i. In the
binary classification scenario, ¥; = 1 indicates a positive bag (i.e., contains at
least one positive instance), while Y; = 0 indicates a negative bag (i.e., all
instances are negative).

The objective is to construct a function A(X) : X — Y, where X represents
all bags, and ) is the set of corresponding bag labels. This function, h,
is designed to predict the label of any new bag, based on the instances it
comprises.

The hypothesis space of MIL, denoted as H, includes all possible functions
that map from the power set of R? (encompassing all potential bags of
instances) to the set of bag labels, Y. The learning procedure in MIL is
designed to identify a function h € H that minimizes the expected risk, which
is equivalent to minimizing the expected loss over the distribution of all
potential bags and their labels.

It’s worth noting that different MIL algorithms will employ various strate-
gies to represent and learn from the bags of instances, such as different
instance aggregation functions to form bag-level representations, different
costs functions and methods for optimization of costs (gradient descent,
heuristic search). These strategies can significantly influence the performance
of the MIL model.

7 ctuthesis t1606152353



2. Related Work

B 22 Natural Language Processing

The goal of Natural Language Processing (NLP) is to enable computers to
understand, interpret, generate, and communicate with humans using natural
language. NLP is a subfield of artificial intelligence (AI) and linguistics that
focuses on developing algorithms, models, and techniques to analyze, process,
and generate human language. Areas of utilization are text classification, text
summarization, machine translation, sentiment analysis, speech recognition,
natural language inference and many more. NLP aims to bridge the gap
between human and machine communication, allowing for more natural and
intuitive interactions with machines and applications.

B 2.2.1 Early NLP Development

During the early stages of Natural Language Processing, initial tasks fo-
cused primarily on understanding the structure of language and developing
algorithms for parsing sentences. The field was heavily influenced by Chom-
sky’s introduction of transformational-generative grammar, which laid the
groundwork for parsing techniques [Cho57]. Early NLP tasks also included
machine translation, which aimed to automatically translate text from one
language to another, as demonstrated by the Georgetown-IBM experiment
in the 1950s [Hut04]. However, mentioned experiment dealt with a limited
vocabulary and a narrow set of grammar rules, which limited its adapt-
ability and effectiveness in real-world translation tasks. Other early tasks
involved keyword extraction and information retrieval, with methods relying
on rule-based systems and basic statistical techniques, like Markov Models or
Clustering, to accomplish these goals [MS99|.

B 2.2.2 Current State

The current state of NLP has advanced significantly from its early stages,
primarily due to breakthroughs in machine learning, deep learning, and the
availability of large-scale datasets. State-of-the-art methods now rely on

ctuthesis t1606152353 8



2.3. Transformers

neural network-based models, which have achieved impressive performance
across a wide range of NLP tasks [NOMC11].

One of the most significant advancements in recent years is the develop-
ment of Transformer-based models, such as BERT (Bidirectional Encoder
Representations from Transformers) [DCLT1§|, GPT (Generative Pre-trained
Transformer) [RNS™ 18|, and RoBERTa (A Robustly Optimized BERT Pre-
training Approach) [CKG™'19]. These models have shown remarkable success
in various NLP tasks, including sentiment analysis, named entity recognition,
machine translation, text summarization, and question answering.

These models are pre-trained on large amounts of text data and can be
fine-tuned for specific tasks using smaller labelled datasets. Large-scale
datasets are typically derived from extensive and diverse sources, including
web archives like Common Crawl, Wikipedia dumps, BooksCorpus, and Web-
Text derived from Reddit submissions. This pre-training and fine-tuning
approach has enabled these models to learn and generalize from vast amounts
of linguistic knowledge, resulting in state-of-the-art performance across a wide
range of NLP applications. Such applications are sentiment analysis, named
entity recognition, question answering, text summarization, translation, and
text generation. These tasks leverage fine-tuning of pre-trained Transformer
models on specific, smaller labelled datasets, adapting their broad under-
standing of language to the particular requirements of each task. A more
detailed discussion of Transformer-based models and their advantages can be
found in the section below.

. 2.3 Transformers

This section focuses on the evolution of the Transformer model, an influential
architecture in the field of Natural Language Processing. It was introduced
in the seminal "Attention is All You Need' paper [VSPT17], where the
Transformer model revolutionized NLP with its unique attention mechanism,
enabling the model to capture long-range dependencies in text effectively.
The BERT model, built on the foundational Transformer architecture, further
propelled the field forward, achieving state-of-the-art results across a broad
spectrum of NLP tasks through its innovative pre-training and fine-tuning

9 ctuthesis t1606152353



2. Related Work

approach [DCLT18|. However, a significant limitation of these models is the
processing of long input sequences. This led to the development of BERT
derivatives, such as Longformer [BPC20] and Big Bird [ZGD™ 20|, specifically
designed to handle long input sequences more efficiently.

In our exploration of Transformer models, we also discuss a variant known
as the Set Transformer. While it does not strictly align with the standard
Transformer models commonly employed in NLP, it introduces novel methods
for handling sets [LLK™19|. In particular, it’s Pooling by Multihead Attention
(PMA) function is employed in our classifier, making it relevant to our
discussion. We discuss each mentioned solution, its mechanism and its
implications in NLP.

B 2.3.1 Transformer Architecture

Paper Attention is All You Need [VSPT17] presents a new neural network
architecture for working with NLP tasks called Transformer. The key feature
of the Transformer is the attention mechanism, which allows the model to cre-
ate context-aware representations of the input space. Attention mechanisms
have become an integral part of effective sequence modelling and transduction
models in various tasks, enabling the modelling of dependencies regardless
of their distance in the input or output sequences. Unlike traditional recur-
rent networks (RNNs) [LQHI16], the Transformer model does not contain
any recurrent or convolutional layers. Instead, it relies solely on attention
mechanisms to create dependencies between input and output. This design
choice enables increased parallelization of computations and, therefore, faster
computation times, making the Transformer a popular choice for large-scale
NLP applications.

The self-attention mechanism computes value v, key k, and query q vectors
for each input vector in a sequence. It calculates attention coefficients for
every input vector based on the dot-product of its key and query vectors
and applies the softmax function to calculated dot-products. The output is
a context-aware representation of each input token, generated by summing
the value vectors of all tokens, where the importance of each value vector is
determined by the similarity between the current token’s query vector and the
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other tokens’ key vectors. If we consider having multiple mentioned vectors
in matrices V, K and Q, we can formally denote attention as following 2.1l

Attention (Q, K, V) = softma QK’ A% (2.1)
ntion (Q, K, V) = softmax .
Vi

The context-aware representations produced by the self-attention mecha-
nism serve as input to subsequent layers in the Transformer model. These
representations capture the relationships between tokens in the input sequence,
providing valuable information about the syntactic and semantic structure
of the text. The computation and memory complexity of the self-attention
mechanism is ©(n?), where n is the sequence length. As the self-attention
mechanism is permutation invariant, positional encoding is needed to integrate
information about the order of the sequences. Recurrent models like RNNs,
LSTMs, and GRUs process sequences sequentially, making it harder for them
to capture long-range dependencies [LBE15]. In contrast, self-attention allows
the model to directly relate each token in the sequence to all other tokens,
making it easier to capture relationships between distant tokens.

Multi-head attention is an extension of the attention mechanism that allows
the model to learn and capture multiple types of relationships between tokens
simultaneously. In multi-head attention, the attention mechanism is applied
multiple times (multiple "heads") with different learned linear projections
of the key, query, and value vectors. Each head computes its own set of
attention coefficients and context-aware representations. The outputs of
all heads are then concatenated and linearly transformed to produce the
final output of the multi-head attention layer. It is formally denoted in [2.2]
where W?, WE € RImoderxde WV ¢ Rmoderxdv  and WO ¢ RoXdmodel are
the projections of parameter matrices. The dimension dyodel, dv, di. denotes
dimensions of output, values and keys . The h denotes number of heads
(parallel attention layers).

MultiHead (Q, K, V) = Concat (head, ..., heady) wo

2.2
head; = Attention (QWiQ, KWFK, VWY) 22
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In complex sentences or scenarios where multiple relationships exist between
tokens, a single attention mechanism might struggle to capture all these
relationships effectively. The attention mechanism could potentially focus on
one dominant relationship while missing or giving less importance to other
important relationships in the sequence, while multi-head attention limits
such a situation from happening. Described situation is pictured in Figure
2.3, where multi-head attention is used to capture all relationships of the
word ’it’.

The The The The
‘animal animal animal animal
didn’t didn’t didn’t didn’t
cross Ccross cross cross
the the the the
street street street street
because because because ) g because
it it it ~u

was was was was
too too too too
tired tired wide wide

Figure 2.3: Visualization of attention scores for tokens in relationship with
word ’it’. 'It’ could reference to various words in text. The picture is reprinted
from [Blo17].

The Transformer architecture uses a stacked encoder-decoder structure. The
encoder processes the input sequence through multiple layers, each consisting
of multi-head self-attention and position-wise feed-forward networks, creating
a continuous representation of the input. The decoder generates the output
sequence using multiple layers, each with multi-head self-attention (for output
tokens), multi-head cross-attention (to incorporate information from the
encoder), and position-wise feed-forward networks. The encoder captures the
input’s syntactic and semantic information, while the decoder combines this
information with the output sequence context to generate the final output.
The architecture is displayed in Figure (2.4l
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Figure 2.4: Visualization of the architecture of the Transformer model. On the
left side is the encoder, which feeds its output to decoder on the right side. The
picture is reprinted from [VSPT17].

B 23.2 BERT

A language representation model BERT is introduced in [DCLT18]. The
acronym stands for Bidirectional Encoder Representations from Transformers.
BERT's construction is based on the Transformer model proposed in [VSPT17].
The language models preceding BERT were based on unidirectional repre-
sentation, unlike BERT, which is designed to learn bidirectional language
representation. When the unidirectional language model processes a partic-
ular token, it can use only the tokens it has already processed, while the
bidirectional language model works in both directions, so any token attends
to all the remaining tokens. Thanks to that, the attention mechanism can
capture the context of the entire input. However, as mentioned in the previous
section, such a solution introduces additional computational and memory
complexity, which is ©(n?) [DCLT18].
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Working with BERT consists of two steps - pre-training and fine-tuning.
Pre-training phase is done in two tasks. The first task is creating a masked
language model that masks a part of tokens by [MASK] token in the input
sequence. The model then has to use the complete context of the sequence
to predict masked tokens correctly. This is known as Masked Language
Modelling, a token-level prediction task. Thanks to the first task BERT is
able to avoid the unidirectionality in token representation. In the second task,
BERT tries to understand the relationships between two given sentences and
determine whether one sentence directly follows another. This is the Next
Sentence Prediction task, a sequence-level prediction task.

BERT is a versatile tool that can be easily fine-tuned with respect to specific
tasks. The additional module can be “mounted” on top of it. The process of
fine-tuning can be seen as a case of transfer learning, where the model uses the
knowledge it already gained during its pre-training. The pre-trained model
can be fine-tuned for various specific tasks, but it needs to be pre-trained
only once. Compared with a situation where we would always have to train
our model from scratch, this is an enormously time and money-saving step.
There is a large amount of pre-trained models shared among the community,
for example, on HuggingFace [WDS™20).

Thanks to the special tokens, it can be used for both sequence-level and
token-level tasks mentioned above and many of their adaptations like question
answering, natural language inference or sentiment analysis. Each sequence of
tokens fed into BERT initiates and ends with a special [CLS] token. Typically,
the final embedding of this token is utilized for tasks involving classification
at the sequence level. Another special type of token is [SEP] token. If
BERT processes as input two sequences simultaneously, each having a unique
relevance to the task being performed. These two sequences are treated as
a unified sequence, with a distinctive [SEP] token acting as a divider. This
functionality proves to be particularly useful in scenarios such as question
answering tasks.

BERT can work with sequences up to the length of 512 tokens due to the
quadratic computational complexity of the self-attention mechanism. Longer
inputs are too computationally complex.
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B 2.3.3 Long Inputs in Transformers

Despite the remarkable success of Transformer-based models in various NLP
tasks, their ability to handle long input sequences remains a significant
challenge due to their quadratic computational complexity. This limitation is
caused by the self-attention mechanism, which computes pairwise attention
scores for all tokens in the input sequence. As a result, the computational and
memory requirements grow quadratically with the sequence length, rendering
these models infeasible for long sequences.

To tackle this issue, several adaptations of the original Transformer architec-
ture have been proposed, specifically designed to process long input sequences
more efficiently. These models, including the Longformer [BPC20] and Big
Bird [ZGD™20|, employ various strategies to use a more computationally
efficient sparse attention patterns.

B LongFormer

The Longformer, proposed by Beltagy et al. in 2020 [BPC20|, is a modifi-
cation of the Transformer model, which has been designed to handle long
input sequences more efficiently. Retaining the original architecture of the
Transformer, Longformer strategically alters the self-attention mechanism to
reduce the computational complexity and memory requirements from ©(n?)
to ©(n), where n is the sequence length. However, a reduction in complexity
comes at the cost of loss of full context.

This is achieved by limiting the number of tokens that each token can
attend to, instead of the standard practice where every token attends to
all others in the sequence. It introduces different sparse attention patterns,
such as the sliding window pattern and the dilated window pattern. The
sliding window pattern restricts each token’s attention to a constant-sized
neighbourhood around it, while the dilated window pattern introduces gaps
between attended tokens, providing more diversity in the local context. A
comparison of the full attention pattern and patterns introduced in Longformer
is visualized in Figure [2.5
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(a) : Full n? at- (b) : Sliding win- (c) : Dilated slid- (d) : Global +
tention dow attention ing window sliding window

Figure 2.5: Visualization of the paterns of full attention mechanism and the
paterns introduced in the Longformer [BPC20| paper. Reprinted from [BPC20].

Additionally, the Longformer designates a predefined number of tokens as
‘global’, which are allowed to attend to, and be attended by, all other tokens
in the sequence. This ensures that important information is not missed due
to the local attention restriction.

Despite the local attention patterns, the model can still capture a broader
context from the input sequence by stacking multiple layers of its sparse
self-attention mechanism and thus expand the receptive window of the tokens.

Mentioned alternation to attention patterns can be performed on any
pre-trained Transformer-based language model.

Bl Big Bird

The Big Bird model, introduced by Zaheer et al. in 2020 [ZGD™20|, is
another adaptation of the Transformer architecture designed to handle longer
sequences. Authors reduced the time and memory complexity from quadratic
O(n?) to linear O(n) for sequence length n, thus enabling the processing
of longer sequences. It achieves this by implementing a sparse attention
mechanism similar to the one used in Longformer [BPC20], but with an
additional feature. Besides the sliding window attention and global attention,
Big Bird also introduces random attention, where each token attends to a
random set of tokens outside its window.
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This random attention mechanism, inspired by principles in graph theory,
helps decrease the average lengths of the shortest paths between pairs of
tokens, enabling faster propagation of information throughout different parts
of the sequence. Using these attention patterns effectively makes Big Bird
and similar models utilize graph theory, as the attention patterns could be
viewed as graph adjacency matrices [ZGD™20,vac23|.

I I I I \ [T ]
jj L]SDD LT [ [T
O T 1] I
. " - R e
] 1T O
0 (] 1 ‘ [
1T L] ]
|
- 1 [ 5 T H []
(a) : Random at- (b) : Window at- (c) : Global at- (d) : Big Bird
tention tention tention

Figure 2.6: Visualization of multiple patterns that together present Big Bird
self-attention mechanism [ZGD™20]. Reprinted from [ZGD™20].

Zaheer et al. provided theoretical evidence demonstrating that the linear
sparse attention mechanisms possess characteristics similar to the quadratic
attention mechanism used in standard Transformers [ZGD™20, DCLT18|.
Moreover, when suitably designed, they affirmed that these sparse attention
mechanisms could serve as universal approximators of sequence functions.
This strategy significantly augments the capability of Big Bird to process
lengthier sequences, which can successfully scale up to 8x longer (4096 to-
kens) sequences than previous models like BERT while retaining competitive
performance. The authors demonstrate that the model can be used effectively
in genomics and other domains where long-sequence data is prevalent.

B 2.3.4 Set Transformer

The Set Transformer model, as proposed by Lee et al. in 2019, is an attention-
based set-input neural network architecture [LLK"19|. It is an adaptation of
the Transformer model specifically designed to process and model interactions
among elements in the input set. The key feature is that it incorporates
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self-attention mechanisms in a way that is permutation-invariant, i.e., the
order of the input elements does not affect the output. This feature sets it
apart from traditional Transformers, which are intended to handle sequences
where the order of elements is significant.

The architecture of the Set Transformer is based on the same groundwork
as the standard Transformer. Unlike basic pooling operations like mean or
max, the paper introduces an aggregation function Pooling by Multihead
Attention (PMA), which can be parametrized and learned to the problem
at hand. Below is formal definition of all mentioned architecture subparts,
definitions are generalized, for full context visit [LLKT19).

The encoder uses self-attention to concurrently encode the whole set X,
thus giving us interactions among instances during the process. For this
purpose, the Set Transformer uses the adaptation of a Multihead Attention
Block (MAB) from the Transformer [VSPT17], utilizing the same multi-head
attention (from Equation 2.2) but without positional encoding and dropout.
To compute self-attention between the elements in the set, the authors define
Set Attention Block (SAB). These blocks are stacked together to encode
higher-order interactions. The rF'F' in equations is any row-wise feed-forward
layer. Given the input matrices X,Y € R"*4,

MAB(X,Y) = LayerNorm(H + rFF(H)) (2.3)
where
H = LayerNorm(X + Multihead(X,Y,Y)) (2.4)
Encoder(X) = SAB(SAB(X)) (2.5)
where
SAB(X) = MAB(X, X) (2.6)

Features Z € R™ ¢ from the encoder are then passed to the decoder, which
feeds them to the feed-forward network to get the final outputs. As can
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be seen from the Equation [2.8] the features are passed through the PMA
aggregation function and SAB block before reaching the feed-forward network
for the final output. Such construction is beneficial since the influence of each
instance on the target is not necessarily equal.

The Pooling by Multihead Attention (PMA) is defined as applying multi-
head attention on a learnable set of k seed vectors. PMA starts with a
trainable matrix S € R¥*? of k seed vectors. The seed vectors k can be
thought of as representing different 'points of view’ on the input data, and the
multi-head attention mechanism can focus on different parts of the input from
each of these points of view. This results in a pooled output that captures
more complex relationships in the data than simple averaging or max pooling
would.

Decoder(Z) = rFF(SAB(PMA,(Z))), (2.7)
where
PMA(Z) = MAB(S, tFF(Z)) (2.8)

Lee et al. prove that Set Transformer is a universal approximator for
permutation invariant functions [LLK™19.

In some cases, the SAB quadratic complexity may be too expensive for
large sets. The authors propose a more scalable solution called the Induced
Set Attention Block (ISAB). It reduces complexity by introducing m inducing
points forming a matrix of trainable parameters I € R™*% for X € R"*4,
These inducing points are essentially learnable parameters or "inducible
vectors" that represent a subset of the input data. The idea is that inducing
points can learn to represent the most important features of the input set
and can thus provide a good approximation of the full attention mechanism
with a fraction of the computational cost, which is ©(mn), where m is the
number of inducing points, typically smaller than n and n is the size of the
input set X € R"*4,
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ISAB(X) = MAB(X, H) (2.9)
where
H =MAB(I, X) (2.10)

The Set Transformer has been shown to perform well on various tasks,
including point cloud classification, set anomaly detection, and amortized
clustering, among others, demonstrating its versatility and effectiveness in
handling set inputs. Unlike the already existing set-input models, which tend
to lose some information about interactions between items of sets during
encoding.

. 2.4 Text Classification

As the primary objective of our thesis is to develop a MIL-based text classifier,
we aim to provide a more in-depth exploration of text classification to better
understand the context and challenges associated with this task.

Textual classification is one of the disciplines of Natural Language Pro-
cessing. The definition of textual classification is assigning a label or class
to a given text. This task is essential to many real-world applications, such
as fact-checking, sentiment analysis, spam detection, topic categorization,
and document tagging. According to [MKC™21] text classification can be
divided into 2 groups based on their approach to making classification de-
cisions. Rule-based techniques categorize text by applying a predefined set
of rules, requiring comprehensive domain knowledge. In contrast, machine
learning-based approaches learn to classify text by analyzing data patterns.
A machine learning algorithm discovers relationships between texts and their
corresponding labels through training on pre-labelled examples [MKC™21].

Because we are developing a machine learning method for NLP models, we
will further focus on the second group - machine learning approaches. They
are further divided into 3 main categories: traditional machine learning, deep
learning and hybrid methods.
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Traditional machine learning methods for text classification combine specific
text preprocessing, such as bag-of-words or TF-IDF [KJMH™ 19|, with classic
ML classifiers like SVM, Naive Bayes, or Decision Trees. These methods are
relatively simple, interpretable, and computationally efficient. However, they
rely on handcrafted features and may struggle with capturing the complexities
of natural language or handling large-scale datasets and complex NLP tasks
that require context and semantic understanding.

Deep learning techniques for text classification employ neural networks,
such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU),
and Transformer-based models (e.g., BERT, GPT, RoBERTa) [MKC™21,
KJMHT™19|. These methods can automatically learn high-level features from
the text data, reducing the need for manual feature engineering. Word
embeddings, like Word2Vec, GloVe, and contextualized embeddings from
Transformer-based models, are often used to represent text as dense vectors
[KIMH™'19]. We will dive deeper into the differences between mentioned
methods in their respective chapters.

However, the primary difference is that deep learning models can automat-
ically learn high-level, complex features from the data, while classic machine
learning techniques typically rely on manually crafted features.

Hybrid methods combine elements from both classic machine learning and
deep learning techniques. These methods often use deep learning models to
extract features from the text and then feed those features into a traditional
machine learning classifier.

Such methods, for example, involve combining Transformer-based models
for encoding text with different types of classifiers, such as Support Vector
Machines, Graph Neural Networks (GNN) [vac23|, or, as is introduced in our
thesis, Multiple Instance Learning (MIL).

They can leverage the strengths of both classic and deep learning techniques
and potentially improve the performance compared to a single approach.
However, such methods can be more complex to implement and fine-tune,
which may require additional computational resources.
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B 2.4.1 Fact Verification

One of the subtasks of our thesis is to evaluate our MIL classifier on a
dataset and utilize fact-checking pipeline presented in the paper below. The
"CsFEVER and CTKFacts: Czech Datasets for Fact Verification’ publication
[DUR™22] aims to acquaint readers with the existence of Czech data sets
for automatic fact-checking, as well as how these sets are used to automate
fact-checking, including complex procedures for fact-checking. The solution
chosen for the Czech language meets the problem of lack of data for training
fact-checking models. This problem is common to all low-resource languages.

The first of the two new Czech fact-checking datasets is called CsSFEVER,
and it is based on Wikipedia articles. The CsFEVER is a version of the En-
FEVER [TVCM18|] dataset localized in the Czech language using a document
alignment between Czech and English Wikipedia abstracts. The final dataset
has 127 thousand machine-translated claims. The downside to this dataset
is the fact that claims are translated from English and aligned with Czech
claims. Due to this post-processing, the achieved precision is 66%. Lower
precision might be a problem for models that are sensitive to noise.

The second of the new Czech fact-checking datasets is CTKFacts. In
comparison with the previous dataset, the authors have chosen a completely
different approach for creating this dataset. It is generated from 2 million
news reports from Czech News Agency, which were manually anotated. The
final cleaned dataset consists of 3097 claims. Further, the authors made
available an open-source annotation platform. Despite being multiple times
smaller than CsFEVER, this dataset offers language forms and types of
articles we would not be able to get in CsFEVER.

A new approach for claim generation and claim labelling in documents
with missing inter-document linking is presented. The method is based on
document retrieval and clustering. Dictionaries are created from relevant and
semantically diverse documents without interlinking them.

Furthermore, there are presented methods for the analysis of fact-checking
datasets, such as inter-annotator agreement and spurious cue analysis. CTK-
Facts and CsFEVER datasets are analyzed to determine whether or not they
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contain annotation patterns leading to the overfitting of NLP models.

A full fact-checking pipeline is presented, utilizing document retrieval and
natural language inference stages. In document retrieval, the stage is a
comparison of four baseline models. Two of them are classical key-word
approaches, DRQA [CFWB17] and Anserini [YFL17], and the remaining two
(M-BERT [DCLT18] and ColBERT [KZ20]) are based on Transformer neural
architectures. Then is the final natural language inference stage, where the
veracity of a claim is classified based on the previously retrieved evidence.
Several pre-trained Transformer models are examined. Specifically used
models are Multilingual-BERT [DCLT18|, SlavicBERT |[ATKS19|, Sentence
M-BERT |RG20], original M-BERT [DCLT18|, XLM-ROBERTA |[CKG™19],
FERNET-C5 [LS21] and ROBECZECH [SNSS21].
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Chapter 3

Methodology

The following chapter outlines the framework and strategies employed to
address the challenge of processing long input sequences in Natural Language
Processing models.

The "Problem Statement’ section discusses the difficulties faced by current
machine learning models in processing lengthy inputs and prior attempts at
resolving these issues.

The "Proposed Solution’ section describes a text classification model that
leverages the power of Multiple Instance Learning (MIL) and Transformer-
based models. The model processes long input sequences by breaking them
into smaller parts, which are treated as instances within a bag, with the
bag representing the original, unsegmented long sequence. We also describe
Alternative Graph Neural Network approach .

The ’Datasets’ section describes the three distinct datasets we used to
evaluate our model - MultiSource, Hyperpartisan News Detection, and CTK
Facts. Each of these datasets provides a different challenge for our model,
testing its versatility and effectiveness. We provide detailed descriptions of
each dataset, explaining why they were chosen and how they will contribute
to the research.
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The 'Evaluation Metrics’ section defines metrics used for evaluation of
proposed model.

. 3.1 Problem Statement

Despite the rapid advancements in Natural Language Processing (NLP),
tackling the challenge of processing long input sequences remains a significant
hurdle. Standard Transformer-based models, which are currently heavily
used in a plethora of NLP applications [VSPT17,[DCLT18§]|, are particularly
affected by this limitation.

The crux of the problem lies in the quadratic computational complexity and
memory requirements of the self-attention mechanism, which is at the heart of
these models. This complexity, denoted as © (n?), where n is the number of
input tokens, renders the use of Transformers rapidly unfeasible for sequences
longer than 512 tokens. Various solutions have been proposed to alleviate
this issue 2. The most straightforward among them is truncating the input
sequence to fit within the model’s limits, either by retaining the first Nyax
tokens or concatenating key parts of the input sequence, such as its beginning
and end. However, this method inevitably results in a loss of potentially
crucial information. Other techniques aim to alter the attention mechanism
itself to reduce its computational complexity, such as LongFormer [BPC20)|
and Big Bird [ZGD™20]. Both are direct adaptations of BERT, specifically
devised to tackle long input sequences. A different approach is represented by
Performer [CLD"20]. It approximates the full attention mechanism [CLD™20].
These methods can process significantly longer inputs, allowing them to
capture a larger amount of information, which proves particularly beneficial
for tasks such as question answering or summarization. They have been
further introduced in section [2.3.3in the Related Work chapter.

This problem statement sets the stage for our work, which aims to harness
the capabilities of the MIL classifier in combination with pre-trained language
models. This approach aims to address the classification of input sequences
of long lengths, thereby extending the applicability and performance of NLP
systems.
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B 3.2 Proposed Solution

In this work, we propose a text classification model that harnesses the power of
Multiple Instance Learning (MIL) and Transformer-based models to manage
long input sequences that exceed typical Transformer size limitations. This
methodology is adaptable and can be tailored to different text classification
tasks such as sentiment analysis, document classification, fact-checking, etc.

Our classifier operates by segmenting the lengthy input sequence into
smaller parts. Each of these parts is separately processed by a Transformer-
based model, such as BERT, RoBERTa or one of its derivatives. The individu-
ally processed parts of the input, represented as embeddings, are treated as
instances within a bag, with the bag representing the original, unsegmented
long sequence.

The centre of our model lies in the MIL classifiers that process these bags
of instances. The classifiers are designed to aggregate the instances within
each bag using specific aggregation functions, including max, mean, or a
pooling by multi-head attention. The outcome of this aggregation step is a
representative feature vector for each bag, which encapsulates information
from all instances in the bag, ready for the final classification stage. Intrinsic
to our MIL classifiers are the preprocessing and postprocessing neural layers.
The preprocessing layers take the Transformer-generated embeddings as input,
transforming these into intermediate representations that are subsequently
aggregated. After aggregation, the representative feature for each bag is fed
into the postprocessing layer, which makes the final classification decision.

The classifier is by utilization of MIL becoming permutation invariant,
which means we lose the information about the order in which instances
within a bag are presented. Thus the order of instances does not affect the
output of the model. What matters is the contents of the bag as a whole. In
circumstances where instance order is crucial for classification, we need to
incorporate additional positional encoding mechanisms similar to the ones in
Transformer [VSPT17].

One trade-off of the Multiple Instance Learning (MIL) approach is that
some information might be lost during the aggregation process [Bab0g|. Each
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Figure 3.1: A diagram of the proposed model. Original input is split into
multiple instances (parts), forming a single bag together. These instances
(parts) are then embedded individually by the Transformer model. Created
embeddings are then passed as a bag into the MIL classifier, where they go
through pre-processing, aggregation and post-processing layers and finally output
the classification label. The green rectangles represent different dimensions of
features during pre-processing and post-processing.
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instance in the bag is processed independently, and then these representations
are aggregated to form a bag-level representation. Depending on the aggrega-
tion function used, this could result in a loss of specific details from individual
instances. Even complex functions such as PMA may not perfectly preserve
all information due to the need to condense multiple instance representations
into a single bag representation. However, in theory, the Set Transformer, of
which the PMA is a crucial part, is proven to be a universal approximator.

The model proposed in this thesis is highly flexible and can be adjusted to
accommodate different text classification tasks. The segmentation of input
into individual parts, the choice of aggregation function, and the design of
the preprocessing and postprocessing layers can all be adapted according to
the specific task requirements. However, there is the mentioned trade-off
between the ability to process larger inputs by MIL classifier and the ability
to maintain a richer, more detailed representation of the input data in the
case of standard language models because they process the entire input as a
whole without the need for aggregation.

Our objective is to establish a model that leverages the strengths of
Transformer-based models and the flexibility of Multiple Instance Learn-
ing to handle long sequences in text classification tasks efficiently.

The implementation of the proposed model is publicly available at |'. It
shares portions of its codebase with the Graph Neural Networks (GNN)
classifier introduced in ’Graph Neural Networks for Long Input NLP Models’
[vac23]. Methods derived from the GNN classifier are used for dataset
import/export, evaluation and baseline model. All affected methods are
appropriately cited within the codebase.

B 3.2.1 Alternative Graph Neural Network Approach

In parallel to our exploration of Multiple Instance Learning for managing long
inputs in NLP models, a separate thesis written by Vaclav Hlavac examined
the potential of Graph Neural Networks (GNN) for the same challenge [vac23].

Thttps://github.com/aic-factcheck /long-input-mil

29 ctuthesis t1606152353


https://github.com/aic-factcheck/long-input-mil

3. Methodology

In the following section, we introduce the GNNs solution and compare it with
ours.

Both the Multiple Instance Learning (MIL) and Graph Neural Network
(GNN) models handle the challenge of lengthy input sequences by breaking
them into manageable parts for initial processing via Transformer-based
models. Each part is encoded into embeddings.

Despite these similarities, the two methods use fundamentally different
approaches. MIL sees each part as an instance within a bag and then
aggregates these instances into a bag-level representation. The initial task is
then considered to be a task of bag classification. Conversely, GNN treats
each encoded part as a node in a graph, utilizing the topology to model
interactions between parts. Finally, text classification is seen as a graph
classification task. An encoding of the entire graph is obtained through a
pooling operation and then utilized to perform the final classification.

The GNN model considers two distinct graph topologies: the ’complete’
topology and the ’local + global’ topology. The ’complete’ topology connects
every pair of nodes, creating a permutation invariant network where all
nodes can directly communicate. This topology could resemble the self-
attention [VSP*17], they share the ©(n?) complexity. It is permutation
invariant like our model presented above. The ’local + global’ topology, in
contrast, connects nodes corresponding to parts that appear sequentially in
the input. It also introduces an additional latent node connected to all other
nodes, enabling indirect communication. This configuration is sensitive to
the input order, resulting in a graph that reflects the inherent sequence of
the text and thus is not permutation invariant.

Graph Neural Networks are computationally more complex due to their
need to model and process intricate relationships between nodes, which
involves multiple computations across interconnected nodes in the graph.
While Multiple Instance Learning may be more computationally efficient by
simply aggregating over a bag of instances, they risk losing some information
during the aggregation process. Graph Neural Networks can capture more
complex relationships within data, potentially leading to better performance
on tasks where these relationships are crucial.
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. 3.3 Datasets

In this section, we explore the datasets used for testing classifiers used in
our study. We leverage three datasets—MultiSource, Hyperpartisan News
Detection, and CTK Facts—each with unique characteristics and challenges.

The MultiSource dataset initially featured in Vaclav Hlavac’s thesis [vac23]
is used to classify a set of input sequences based on their source. The
Hyperpartisan News Detection dataset, sourced from various online news
articles, assesses our classifier’s ability to handle lengthy input sequences.
Lastly, the CTK Facts dataset, a Czech fact-checking dataset, is utilized to
explore fact-checking in the Czech language.

Each dataset is unique, presenting different challenges for long-input NLP
classifiers, which we will delve into in the subsequent sections.

B 3.3.1 Multisource

The MultiSource task and its dataset were introduced as part of a broader
initiative at AIC to develop Long Input NLP models. Due to the scarcity of
text classification datasets with a substantial number of examples, we have
created our synthetic dataset, allowing us to parametrize and fine-tune it to
our desires. It was originally featured in a thesis by Vaclav Hlavac [vac23|.
The MultiSource task involves classifying a set of input sequences based on
their source. In our example, we treated sentences as individual instances,
and the objective was to determine whether the set of sentences originated
from a single document. A set is labelled as false if it comes from a single
document and true if it consists of sentences from multiple documents.

The method for creating multisource datasets can be generalized to any
collection of documents containing sufficiently numerous sequences. To com-
pare classifiers in my thesis and thesis by Vaclav Hlavac [vac23|, we utilized
MultiSource datasets generated from an English Wikipedia snapshot.
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Algorithm 1 Generating a part of a MultiSource dataset split. Reprinted
from [vac23|.

1: procedure GENERATEMULTISOURCESPLIT(D, N, Sy, Srandom)
examples < J
fori=1to N do
example < &
dorig < sample_document (D, min_sentences = S, — Srandom)
example < example U sample_sentences (dorig, n_sentences = S, — Srandom)
for ,] =0to Srandom do
drandom < sample_document (D, min_sentences = 1)
example < example U sample_sentences(dmmdom,n_sentences ::1)
10: end for
11: examples < examples U {example}
12: end for
13: end procedure

The MultiSource dataset generation process involves treating documents
as collections of sentences and creating train, validation, and test splits
individually. Each split consists of multiple parts with defined parameters for
the number of sentences (.S, ), the number of sentences from different sources
(Srandom), and the number of examples (V). To create an example, an initial
document is sampled, and a base set of sentences is selected. Additional
sentences from other documents are added based on the size of Sy4ndom, and
the resulting set forms the complete example. The label is determined by
the number of random sentences, with positive labels assigned when at least
one random sentence exists in the example. Finally, sentences are shuffled
randomly to prompt the classifier to focus on comparing the text rather than
identifying changes in the text’s structure. Each sentence can be picked into
the example only once. The number of positive and negative examples in
each generated split and dataset is equal. Table [3.1] presents info about the
dataset used as a baseline in MultiSource experiments. The complete process
of generating dataset split is shown in pseudocode at Algorithm [1l

number of random sentences train validation test

0 20000 1000 1000
2 5000 250 250
4 5000 250 250
6 5000 250 250
8 5000 250 250

Table 3.1: MultiSource Dataset with distribution of splits and instances, gener-
ated by similar sampling.
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{
"label ": false ,
"ids ": ["Adult_adoption", "Adult_ adoption", "

Adult__adoption", "Adult_adoption"],

"sentences": |

"In the United Kingdom, only children may be adopted

"However, adoption of a person between the ages of 18
and 20 (inclusive) transfers both inheritance
rights and filiation.",

"Adult adoption is a form of adoption between two or
more adults in order to transfer inheritance
rights and/or filiation.",

"Depending on the laws of the jurisdiction , adult
adoption may not be available as a legal option
.

}

Figure 3.2: The example of a negative instance in MultiSource Dataset, where
N =4 and Siandom = 0. The IDs represent articles of origin. In this case every
sentence is from "Adult adoption" article on Wikipedia.

The selection of documents for the MultiSource dataset greatly influences its
difficulty. Uniformly sampling documents creates easily classifiable examples,
so an option to sample more similar documents was added, making the task
more challenging. The Anserini toolkit [YFL17] is used to retrieve similar
documents for the selection of random sentences into positive examples. By
utilizing Anserini, the k£ most similar documents are found. From the top k
documents found, random sentences are sampled and added to the original
set of sentences in the example. This process allows control over the dataset’s
difficulty by adjusting the number of random sentences in positive examples
and using similar document sampling. For instance, using a single sentence
from a different yet similar source document can turn the task into a far more
difficult than finding multiple random sentences. An example of a positive
instance is shown at Figure 3.3, and a negative instance is shown at Figure 3.2
For further information about dataset generation, visit the relevant chapter
at [vac23|.
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"label": true,
"ids ": ["Isaac_Milner", "Barbara_ Wilberforce", '

Isaac__Milner", "William__ Whiston"],

"sentences": |
"He was instrumental in the 1785 religious conversion
of William Wilberforce and helped him through
many trials and was a great supporter of the
abolitionists > campaign against the slave trade,
steeling Wilberforce with his assurance before
the 1789 Parliamentary debate.",

"Following her husband’s death in 1833, Barbara Wilberforce
spent her time with her sons, Robert and Samuel, or with
her sister Ann Neale in Taplow in Buckinghamshire."

"Isaac Milner 11 January 1750 1 April 1820 was a
mathematician, an inventor, the President of
Queens College, Cambridge and Lucasian Professor
of Mathematics.",

"In 1710 he lost the professorship and was expelled from the
university as a result of his unorthodox religious views."]

Figure 3.3: The example of a positive instance in MultiSource Dataset, where
N = 4 and Siandom = 2. The random sentences are highlighted. The IDs
represent articles of origin.

In our preliminary experiments, we assessed both random document sam-
pling and similar document sampling methods. However, we found that the
uniform sampling of random documents made the task too straightforward
for both our classifier and baseline methods. To achieve sufficient complexity,
we decided to use datasets created through similar document sampling for all
our experiments involving the MultiSource dataset.

B 3.3.2 Hyperpartisan News Detection

The Hyperpartisan News Detection dataset is compiled from online news
articles sourced from various websites. This dataset focuses on the task of
identifying articles that exhibits blind, prejudiced, or unreasoning allegiance
to one party, faction, cause, or a person [KMS™19], without offering opposing
views or opinions. These articles tend to present information in a deceptive
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manner and employ potent language to elicit emotional reactions from the
reader.

The dataset was chosen as a benchmark for comparing methods of handling
long input sequences in both my thesis and the thesis by Vaclav Hlavac,
where he tackles the same problem with GNNs [vac23|. This dataset serves to
assess whether our classifier can effectively manage extremely lengthy input
sequences. The longest input sequence in the dataset contains 13,296 tokens,
with a median token count of 863. Given that Transformer-based models
typically have a limitation of 512 tokens, this dataset’s instances exceed those
constraints in most cases.

Split positive negative
train 164 281
validation 37 63
test 37 63

Table 3.2: Size of splits in Hyperpartisan News Detection with distribution of
classes.

On the other hand, the dataset comprises just 645 examples, featuring
an imbalanced class distribution as displayed in Table 3.2. The dataset is
divided into training, validation, and testing subsets, created using stratified
sampling to ensure the label distribution remains consistent with the full
dataset.

The example of instance in dataset is displayed in Appendix Al due to large
size.

B 3.3.3 CTK Facts

The CTK Facts dataset, mentioned earlier in the Related Literature section
2.4.1, is output from Herbert et al. publications [DUR™22]. It is a Czech
fact-checking dataset chosen for further experimentation in our thesis for
two main reasons. First, we aim to explore a language other than English,
potentially using different language models. Second, the dataset focuses on
the subtask of text classification - fact-checking task, which involves classifying
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a claim as true or false based on evidence obtained from a knowledge base.
As the prevalence of fake news increases [VRA1S], there is a growing need for
methods to address this issue since manual fact-checking is a time-consuming
process [GSV22].

Split SUPPORTS REFUTES NEI
train 1104 556 723
validation 142 85 105
test 176 79 127

Table 3.3: Size of splits in CTK Facts dataset with distribution of classes.

The process of claim verification involves a fact-checking pipeline, which
consists of two main components. The first component is document retrieval,
which identifies a set of evidence from a knowledge base relevant to the given
claim. The second component involves classifying the claim based on the
provided evidence. Using Natural Language Inference, the claim-evidence
pair is assessed and classified as either supporting or refuting the claim. In
cases where the evidence does not clearly support or refute the claim, a "not
enough information" (NEI) label is assigned.

The dataset is a result of a joint effort between the FactCheck group at
AIC CTU and the Department of Journalism at the Faculty of Social Sciences,
Charles Univerrsity. News reports from the Czech News Agency (CTK) serve
as the data source for the claims. Journalism students reviewed and annotated
each claim and its corresponding evidence. The dataset contains a total of
3,097 claims. An example of a single claim and its supporting evidence can be
found in Figure [3.4. Table 3.3| displays the number of claims in each dataset
split and the label distribution. Additional information about the dataset
can be found in the Related Literature section [2.4.1] or the original paper by
Herbert et al. [DUR™22].

. 3.4 Evaluation Metrics

In the process of evaluating the performance of the classifiers in our experi-
ments, we utilize several metrics: accuracy, Fl-score, precision, and recall.
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Claim: Spojené staty americké hranic¢i s Mexikem.
EN: The United States of America share borders with Mexico.

Verdict: SUPPORTS

Evidence 1: “Mexiko a USA sdileji 3000 kilometria dlouhou hranici,
kterou ro¢né prekrodi tisice Mexicanti v nadéji na lepsi zivotni

podminky (...)”

EN: Mexico and the U.S. share a 3,000-kilometer border, crossed by
thousands of Mezxicans each year in hopes of better living conditions (... )

Evidence 2: “Mexiko také nelibé nese, ze Spojené stity stale buduji

na vzajemné, nékolik tisic kilometri dlouhé hranici zed, kterd ma zabranit
fyzickému ilegdlnimu prechodu Mexi¢anu do USA (...)”

EN: Mexico is also uncomfortable with the fact that the United States is
still building a wall on their mutual, several thousand kilometers long
border, to prevent Mexicans from physically crossing

illegally into the U.S. (...)

Table 3.4: Showcase of one claim from CTKFacts together with its evidence.

The example is from the original publications where the dataset was originally
introduced [DURT22].

Each of these metrics provides a unique perspective on the effectiveness of a
classifier.

Accuracy measures the proportion of total predictions that a model gets
right, serving as a straightforward and intuitive indicator of a model’s general
performance. However, accuracy can often provide a misleading picture in
the context of imbalanced datasets, where the majority class could dominate
the metric. We use it only in the case of the synthetic Multisource dataset,
which has balanced classes.

To provide a comprehensive and nuanced evaluation for imbalanced datasets,
we employ F1l-score, precision, and recall. Fl-score is a harmonic mean of
precision and recall, effectively balancing the two in evaluating the accuracy
of a classifier. It is beneficial in situations where both false positives and
false negatives are important. A higher F1-Score indicates a more accurate
and balanced classifier. Precision quantifies the proportion of positive class
predictions that are actually correct. Recall measures the portion of actual
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positive class examples that the classifier correctly identifies.

We calculate these metrics in both macro and micro settings. The micro
setting computes the metric globally across all classes, while the macro setting
calculates the metric for each class independently and then averages them. In
the context of imbalanced datasets like ours, macro settings prove beneficial as
they prevent the majority class from dominating the score, thereby ensuring
a balanced evaluation.
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Chapter 4

Experiments

We have conducted various experiments using the datasets introduced in the
previous chapter. Initially, we focus on the MultiSource dataset to investigate
the characteristics of our model. Next, we explore the Hyperpartisan News
Detection dataset, which presents challenges due to lengthy inputs and a
limited number of examples. Lastly, we assess the performance of our model
on the CTKFacts dataset, which introduces a challenge for language models
due to its Czech language localization.

B a1 Design of Experiments

In each experiment, we evaluate various settings of our MIL classifier. The
best variant of the MIL classifier is then further compared with the baseline
and GNN classifier to evaluate the effectiveness of our approach. Appropriate
performance metrics are selected based on the specific characteristics of each
dataset. These metrics are monitored throughout the training phase, and the
model parameters yielding the best performance on the validation splits are
chosen for use on the test splits.

All experimental results presented are original and were obtained through
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our own execution, with the exception of the computations involving the
GNN classifier. These specific results were reproduced from the thesis in
which the GNN was first introduced, authored by Vaclav Hlavac [vac23].

B 4.1.1 Preliminary Experiments

In the initial stages of our research, we recognized the computational burden
and time-intensive nature of hyperparameter tuning via traditional grid search
methods. Given the complexity of our models and the scale of our data, this
approach was not feasible. Instead, we carefully calibrated a subset of key
parameters in our experiments. These settings, found to be robust, served as
the consistent backbone for our subsequent experiments.

B 4.1.2 Setup of Experiments

® Type of MIL classifier - We utilize end-to-end classifier to enable
fine-tuning of language model. With respect to the architecture introduce
in chapter Methodology [3|, we specify preprocessing and postprocessing
layers used in experiments.

The preprocessing layer of our MIL model consists of a sequen-
tial arrangement of linear transformations and ReLU activation
functions: it first transforms the input from its original dimension
(input__size) to 1268, then to 634, and finally to 256, with a ReLLU
activation function following each linear transformation. The output
of this sequntial layer is then passed to aggregation function, which
executes computations and then passes to postprocessing layer.

The postprocessing layer of our MIL model features a sequence
of linear transformations and ReLU activations: it first reduces the
dimensionality from 256 to 128, then to 32, and ultimately to the
number of classes (k), with a ReLU activation function applied after
each transformation, before the final class assignment.

B Type of Utilized Language Model - Based on a task we select one
of the language models described below.
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8 Type of Used Aggregation Function - Max, mean or Pooling by
Multihead Attention (PMA) over instances in a bag.

® Used Optimizer - We train model with AdamW optimizer [LH17].

® Learning Rate - We are using learning rate o = 2 x 107, if not stated
otherwise.

® Weight Decay - To prevent overfitting we use weight decay A = 0.01.
#® Loss Function - As a loss function, we utilize Cross Entropy Loss.
8 Seed - Throughout experiments we are using seed set to 420.

#8 Number of Epochs - The number of epochs is set to 20, unless stated
otherwise.

® Batch Size - The batch size is 40 for Multisource, and 32 for both Hy-
perpartisan News Detection and CTKFacts. When memory constraints
imposed limitations on the classifier, we employed gradient accumulation
to achieve the intended batch size.

For a comprehensive understanding of the architecture and its implemen-
tation details, please refer to the dedicated repository || which houses the
complete codebase.

B 4.1.3 Used Models

Below is a list of models used throughout experiments. All of them are
acquired through HuggingFace [WDS™20].

8 FERNET-C5 - Model trained exclusively on Czech data obtained from
the common crawl |LS21].

B RobeCzech - RobeCzech is a Czech language model based on the
RoBERTa architecture, trained on a large corpus of Czech text [SNSS21].

Uhttps://github.com/aic-factcheck /long-input-mil
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® Multilingual BERT (M-BERT) - The model is pre-trained on a
large-scale multilingual corpus consisting of text from 104 languages
using masked language modelling. Trained in a similar approach as the
original BERT using data from Wikipedia [DCLT18].

8 XLM-RoBERTa - It is a multilingual transformer-based model built
upon the RoOBERTa architecture, designed for cross-lingual natural lan-
guage processing tasks. It is pre-trained on a large-scale multilingual cor-
pus, including 100 languages from the Common Crawl dataset [CKG™19).

® BERT - It is a pre-trained transformer-based language model that learns
deep contextual representations of words from large-scale unannotated
text data. It is the first model introduced in the BERT family of
transformer-based models. It laid the foundation for various other
models that built upon and extended its architecture, such as RoBERTa,
ALBERT, DistilBERT, and many more [DCLT18].

# RoBERTa - The 'Robustly optimized BERT approach’ (RoBERTa) is
a pre-trained language model based on the BERT architecture, which
was introduced to address certain limitations and improve upon BERT’s
performance. It uses a larger training dataset, removes the next-sentence
prediction objective, and modifies the training procedure with dynamic
masking and longer training time, resulting in a more accurate and
powerful language model [CKG™19).

® LongFormer - A transformer-based language model designed for long in-
put sequences. It employs a sliding window self-attention mechanism and
sparse global attention for computational efficiency and high performance
on long NLP inputs [BPC20).

. 4.2 Multisource

The MultiSource task and its appropriate datasets are the first conducted
experiments. The goal is to examine the behaviour of our model and test its
different variations against the baseline and GNN classifier. As the baseline
serves the BERT language model adjusted for classification tasks, the same
language model is utilized as a layer for computing the input embeddings
in conjunction with our classifier. Fach dataset comprises examples with
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10 sentences, but the specific arrangement of the examples may vary based
on the intended experiment. Unless stated otherwise, we use a version of
the Multisource dataset with 40,000 instances generated by similar sampling
for increased complexity. The exact setup of dataset splits shows Table 3.1
During dataset generation, language model limitations are taken into account,
ensuring that the language model can process each example in its entirety,
and thus comparability of classifiers is guaranteed.

In the case of the following experiments, each example in a dataset is a set
of N sentences, which are considered a bag. Each bag has its associated label
depending on the source of sentences, as described in the section about the
dataset. Our classifier aims to assign a negative label if sentences have the
same source and a positive otherwise. In the end-to-end settings, the BERT
language model embeds each sentence in a bag separately. Those embeddings
in the form of [CLS] tokens are processed through the sequential neural
layers before being passed to the aggregation function. This aggregation
function combines values from each instance in a bag and forwards output to
final neural layers for bag-level classification. We use max, mean, and PMA
functions as aggregation functions.

B 4.2.1 Initial Experiments

In these experiments, we examine the performance of our MIL classifier
utilizing different aggregation functions. Specifically, we will explore max,
mean, and Pooling by Multihead Attention (PMA) aggregation functions.
These functions will be compared with baseline BERT and GNN classifier
presented by Vaclav Hlavac in his thesis [vac23]. Through experimenting with
different aggregation functions, we can gain insights into which method is
best suited for combining instance-level information in a given scenario.

The results in Table 4.1] indicate that the additional complexity of the PMA
aggregation function does not yield better performance despite utilizing the
attention mechanism, which in theory should be beneficial for classifying bag
of sequences. The mean aggregation function does perform with comparable
accuracy, while the max falls behind.
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Types of classifiers Accuracy

MIL-PMA 0.7635
MIL-MAX 0.704
MIL-MEAN 0.7625
Baseline BERT 0.889
GNN 0.808

Table 4.1: Accuracy of our MIL classifier compared against baseline and GNN
solutions on test set.

As the results of baseline BERT classifier reveal, it outperforms MIL
classifiers, with an accuracy of 88.9%. The GNN classifier reaches 80.8% in its
finest settings [vac23]. The dominance of the BERT classifier is expected, as it
is a state-of-the-art model for text classification, and sequences in the dataset
used in this experiment falls within its input size limits, so our classifier could
not benefit from its advantage in processing long inputs.

The difference in performance between the MIL and GNN classifiers is
not substantial, and it can be attributed to the additional complexity of
GNNs. GNNs are designed to model complex interactions between nodes in
a graph structure, and this additional capacity to capture dependencies and
relationships can lead to improved performance.

This finding highlights the importance of selecting a suitable aggregation
function for effective MIL classification, such as PMA. However, the baseline
BERT model still demonstrates superior performance.

B 4.2.2 Combinations of Aggregation Functions

In our subsequent experiments, we explored various combinations of aggre-
gation functions to determine if they could yield any interesting results. By
combining aggregation functions into pairs, we aimed to discover if any syn-
ergies or complementary effects could improve the overall performance of our
MIL classifier.

The combination of aggregation functions is obtained through simple
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concatenating outputs from two aggregation functions. We take features
from the preprocessing layer of the MIL classifier, separately pass them to
both aggregation functions and concatenate the outputs afterwards. Thus
the dimension of the output of the aggregation step is twice the original size.

Types of Aggregation Function Accuracy

PMA 0.7635
PMA+MAX 0.769
PMA+MEAN 0.752
MEAN+MAX 0.736

Table 4.2: Accuracy of MIL classifiers with combinations of aggregation functions
into pairs on test set.

The experiment results are in Table |4.2l The introduction of combinations
of aggregation functions did not yield significant improvements for any orig-
inal function from the combination. The previously best-performing PMA
aggregation function in end-to-end settings is surpassed only by 0.55%. As a
result, we plan to continue experimenting with a single aggregation function.
However, we hope this experimentation contributes to a better understanding
of the nuances in MIL techniques and may inspire future research to discover
more impactful combinations or approaches.

B 4.2.3 Number of Random Sentences

In the following experiments, we examine various versions of Multisource
datasets which differ in the number of random sentences in positive examples.
The appropriate numbers are 2,4,6 and 8. We expect the difficulty will get
easier with the increasing number of random sentences. We aim to evaluate
our MIL classifier in two embedding settings on mentioned datasets. The
MIL classifers utilize either PMA or max aggregation function.

The first one is standard embedding, as we utilized it in previous examples.
The second one is embedding using a sliding window over sentences in a
bag. In this case, two sentences will be encoded as one instance and passed
to the MIL classifier. We expect the classifier’s performance to improve as
it can simultaneously access multiple instances in a bag. However, further
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Figure 4.1: Accuracy of end-to-end classifiers with different size of sliding
windows on datasets with changing number of random sentences RN D. The
'w:N’ represents size of window, where IV is the number of instances in window.
Original values are displayed in Table

experiments on the influence of multiple instance encoding are presented in
the following subsection.

The results are presented in Figure [4.1, and the best-performing classifier
for each window size is highlighted. As expected, the classifier performance
decreases with decreasing number of random sentences. The classifier achieves
better accuracy by encoding 2 sentences using a sliding window. The domi-
nance of 2 sentence solution increases with the increasing amount of random
sentences. Unlike in previous experiments, the MIL classifier shows compa-
rable performance with GNN classifier with differences in terms of accuracy
within 5%.

ctuthesis t1606152353 46



4.2. Multisource

IoMIL-PMA [ IMIL-MAX IO GNN

1 !
(@)
o0 0 o0
© _n 01010 gOOoo
— SR = =S —
o0 — O = —
o ) [ =
> =~ 2
708l S |
g S
)
<
0.6 | |
T T T T
1 2 3 4

Size of sliding window

Figure 4.2: Accuracy of classifiers with different size of sliding windows. Original
values are displayed in Table |A.2}

B Multiple Sentences as One Instance

In the last set of experiments on the Multisource dataset, we further inspect
the influence of increased moving window over sentences in an example. We
execute the following experiments with max and PMA aggregation functions,
and the final results are compared with the GNN classifier by Vaclav Hlavac
[vac23].

We expect that the task is partially passed down from classifier to encoder
by encoding multiple sentences in Transformer. The encoder should be able
to distinguish between sentences from different documents and thus help to
recognize the positive examples by embedding this information for further
processing by the MIL classifier. Nonetheless, this modification may diminish
the significance of our classifier. The diminishing significance of our classifier
can be seen in the levelling accuracy of max and PMA aggregation functions,
which in single sentence settings in previous experiments shows dominance of
PMA over max.

Presented opinion is supported by the outcome of experiments in Figure
4.2 where iterations with bigger sliding windows have better accuracy. The
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best accuracy for each sliding window is achieved by the MIL classifier with
the PMA aggregation function, which outperforms the same classifier with
the max aggregation function and GNN classifier in complete setting [vac23].
Used GNNGs utilize either local+global or complete settings, and these settings
influence how many edges are between nodes in a graph. The complete setting
connects every node. The GNN classifier is introduced closer in its respective
section in Methodology |3l

. 4.3 Hyperpartisan News Detection

As stated in the section with the introduction to the Hyperpartisan News
Detection dataset, it consists of long inputs. The median instance length
is 863 tokens, which significantly exceeds the 512-token limit of standard
language models. By conducting experiments on this dataset, we aim to assess
our model’s ability to handle long inputs up to 13,296 tokens and determine
the overall performance advantages compared to classifiers constrained by
language models.

The task is to classify news articles which tend to present information
deceptively and employ potent language to elicit emotional reactions from the
reader. In the following experiments, we utilize BERT and RoBERTa language
models in our MIL classifier in different aggregation function settings. The
second part compares best-performing MIL classifier versions against baseline
solutions utilizing only language models and the GNN classifier presented
in [vac23|. Apart from mentioned BERT and RoBERTa, we are going to
experiment with LongFormer. The Longformer is a transformer-based model
designed explicitly for processing long sequences of data, up to 4096 tokens,
by using a self-attention mechanism known as "sliding window attention",
which allows it to handle larger contexts without a significant increase in
computational demands [BPC20].

The setup of experiments and MIL classifier is the same as in previous
experiments. We are training our classifier on 20 epochs, batch size is 32 and
the learning rate is & = 2 x 107°. The remaining hyperparameter settings
are unchanged.
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B 4.3.1 Initial Experiments

The goal of the initial experiments is to find the best-performing setup of the
MIL classifier for applications with RoBERTa and BERT language models.
Each language model is evaluated with Pooling by Multihead Attention and
max aggregation functions.

The RoBERTa is trained on a more extensive dataset, which includes the
BooksCorpus dataset and a more substantial portion of the English Wikipedia.
Together with longer training time and training optimizations, like removing
the next sentence prediction (NSP) task and using dynamic masking instead
of static masking, the RoBERTa is considered to be an improved version
of BERT [CKGT19]. Thus, we expect it to show comparable or better
performance.

Types of language model PMA MAX

BERT 0.6754  0.7759
RoBERTa 0.8444 0.8217

Table 4.3: Fl-scores for MIL classifiers utilizing BERT or RoBERTa language
models with PMA and max aggregation functions. Performance is calculated on
validation split.

We are evaluating the experiments on F1-Score, which is a harmonic
mean of precision and recall, providing a single metric that balances both
considerations. As our dataset has an imbalanced distribution of classes,
we use macro computational settings to prevent the majority class from
dominating the score.

As can be seen in the Fl-score results of experiments in Table [4.3] the
RoBERTa-equipped MIL classifier shows superior performance with both
PMA and max aggregation functions. Due to its extensive and improved
training, we expected the MIL classifier using ROBERTa to dominate. We use
it as a benchmark for comparison with other baseline models. Nevertheless,
for further experiments, we will continue to include classifiers based on BERT
to observe any potential advantages provided by RoBERTa.

Our classifiers have successfully demonstrated their ability to manage ex-
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tended inputs of up to 13,296 tokens, effectively addressing the challenge of
lengthy sequences without compromising data integrity or requiring trunca-
tion.

B 4.3.2 Baseline Models Comparison

In these subsequent experiments, our goal is to evaluate the performance of
different classifiers and language models to identify the most efficient classifier.
We have classified our utilized classifiers into three categories. The first
category includes our MIL classifiers, which use the BERT and RoBERTa
language models and PMA as aggregation functions. The second category
consists of baseline language models, such as LongFormer, RoBERTa, and
BERT, adapted for classification tasks. LongFormer, in particular, is employed
due to the distinct architecture that enables it to process up to 4096 token
input sequences, making it ideal for handling extended texts [BPC20]. The
third category comprises GNN-based classifiers in local + global configurations
[vac23|, which use the BERT language model for embedding creation.

We are going to be evaluating F1-score, precision and recall on test split in
the macro computational settings.

The results presented in Figure 4.3| indicate a superior performance by the
MIL-RoBERTa classifier, leading in all metrics, including F1-score, Precision,
and Recall. This suggests that the MIL-RoBERTa classifier has achieved an
effective balance between correctly identifying true positives and avoiding
false positives or negatives. Interestingly, despite the underperformance of
MIL-BERT on the validation split, it shows quite competitive performance on
the test split, almost matching the score of MIL-RoBERTa. This may suggest
that MIL-BERT is more resilient to the specific quirks of the training data
and generalizes better to unseen data. The solid performance of language
models, like BERT and RoBERTa, despite their input size limitation, may be
attributed to the nature of the input data. News articles often summarize
the key information in the initial part and then delve into details later in the
text. Therefore, even if the whole text isn’t processed, the key information
necessary for accurate prediction might still be captured, leading to reasonable
performance. The Longformer, which is explicitly designed to handle extended
input sequences, has also shown robust performance. However, its metrics
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Figure 4.3: Comparison of performance of various classifiers. Performance is
calculated on test split. Original values are displayed in Table |A.3|

are still lower than those of the MIL-RoBERTa classifier. This suggests
that the ability to process longer inputs does not automatically translate
into superior performance in this context. It underscores the effectiveness
of the MIL framework combined with the RoOBERTa model in capturing
essential information from the text. The MIL classifiers using BERT or
RoBERTa outperforming the GNN classifier are intriguing. Despite GNN’s
complexity and superior performance on the MultiSource dataset, the MIL’s
straightforward approach paired with robust language models proves more
effective in this context.

The experiments show that our MIL model outperforms Longformer in
terms of performance, which reveals that combining our Multiple Instance
Learning (MIL) model with pre-trained Transformer models limited to short
inputs effectively meets one of the objectives of this work. This is to propose a
solution comparable to long-input Transformer models such as the Longformer
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for processing lengthy sequences. This means we can manage extensive inputs
without the need to train dedicated long-input Transformer models from
scratch, a process that is computationally expensive in comparison to our
approach. Additionally, our methodology gains from the extensive selection
of available pre-trained Transformer models.

. 4.4 CTKFacts

The CTKFacts dataset [DUR™22] introduces the fact-checking task, in which
claims are classified based on provided evidence. This presents a challenge for
language models, as the dataset consists exclusively of Czech data. As a result,
we must explore alternative language models beyond BERT for document
encoding. The BERT-based language models, trained on an extensive corpus
of English data, are not well-suited for Czech due to grammar, vocabulary,
and syntax disparities.

The language models chosen for this task can be categorized into two
distinct groups based on the data used for pretraining. The first group
contains multilingual models that have been trained on multiple languages,
including Multilingual BERT |[DCLT18|, pre-trained on 104 languages, and
XML-RoBERTa |[CKG™19|, which is finetuned on questions and answers based
on Wikipedia articles, with the added challenge of unanswerable questions
(SQUAD2) [RJL18|. As CTK-facts and SQUAD2 are datasets employed for
natural language understanding, we deem this finetuning beneficial.

The second group of selected models are those pre-trained only on Czech
data. These are FERNET-C5 and RobeCzech, which are further described in
Design of Experiments section [4.1.3|

We adopt the claim and evidence processing approach presented in the thesis
by Vaclav Hlavac [vac23] to enable a more precise comparison of the classifier
performance. Instead of processing the input as a single, unified sequence, we
handle them as pairs of input sequences separated by the specialized [SEP)]
token. This configuration allows for the straightforward extraction of evidence
from claims within the language model, and subsequently, the encoded input
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is passed to the Multiple Instance Learning (MIL) classifiers. For baseline
methods, the input is truncated due to maximum length constraints. The
predictions may be adversely impacted due to the MIL classifier’s permutation
invariance, potentially resulting in the loss of evidence significance after
passing the aggregation function.

We employ a full pipeline setting by Herbert et al. [DURT22] and retrieve
evidence through a method for document retrieval. Consequently, the predic-
tions may be affected by factors beyond the classifier’s performance, such as
the quality of the acquired evidence.

As a key performance metric, we selected micro and macro Fl-score.
The macro Fl-score gives equal importance to all classes regardless of their
frequency, while the micro gives equal weight to each instance, so it is more
sensitive to class imbalances.

In the experiments below, we test the ability of our classifier to process
long inputs by increasing the number of evidence passed together with a
claim. However, each evidence piece is truncated to fit into the encoder in
the language model utilized in our classifier. Our model takes as input claim
which has assigned evidence from document retrieval. In case where we have
evidence size 10, the MIL classifier processes the input as a bag. The bag
consists of 10 instances. Each has an embedded claim, [SEP] token and one
of the retrieved evidence. Together are then all evidence pieces evaluated in
aggregation function, and the claim is labelled.

B 4.4.1 Initial Experiments

In the initial experiments, we examine the influence of employing various
language models within the MIL classifier. The models are trained for 20
epochs, retrieving 10 semantically nearest pieces of evidence and utilizing
either Pooling by Multihead Attention (PMA) or MAX aggregation functions.
For comparative purposes, we have also established baseline classifiers that
use solely language models while maintaining an identical experimental setup.

We use Fl-micro and Fl-macro scores to compare different models’ per-
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formances. The Fl-micro score are displayed in Figures throughout the
section, while the macro scores are in Tables in Appendix |Al Results of
initial experiments are in Figure [4.4. The best-performing language model
is FERNET-C5, followed by XLM-RoBERTa, and the unofficial third place is
shared by Multilingual BERT (M-BERT) and RobeCzech. Since FERNET-C5
and RobeCzech are the only models trained specifically on Czech datasets,
we expected them to dominate. However, it’s interesting to see multilingual
language models like XLM-RoBERTa and M-BERT outperforming RobeCzech.

The reason for such an outcome could be that multilingual models are
typically trained on vast amounts of data from multiple languages. This ex-
tensive training data enables them to learn robust representations of language
features, which may generalize well to Czech, even if the model has not been
explicitly fine-tuned on Czech data. Czech is a Slavic language and shares
similarities with other Slavic languages in terms of grammar, vocabulary, and
syntax. Multilingual models might benefit from these similarities, as they
can transfer knowledge learned from one Slavic language to another.

The low performance of the original BERT model, which has been trained
solely on English data, is anticipated, as it primarily serves to exemplify the
potential limitations of applying a model ill-suited for the target task. Czech
and English languages significantly differ in vocabulary, grammar, and syntax.
It highlights the importance of employing language-specific or multilingual
models when working with non-English datasets.

Additionally, numerous instances exhibit that the baseline language mod-
els yield marginally superior performance compared to our MIL classifier.
Nevertheless, none of these instances demonstrate a substantial decline in
the performance of the MIL classifier, except for 0.3891 F1-macro score for
XML-ROBERTA in the PMA setting presented in Table |A.5l Regarding the
F1-score of the remaining, the difference does not exceed 0.03, constituting
less than 10% of the value. This relatively minor discrepancy is reasonable,
given that the MIL classifier inevitably loses some information during the
aggregation step.

The classifier with the PMA aggregation function performs better on the
Multisource dataset than the max aggregation function. In the case of the
given task, the MAX aggregation function shows comparable performance. A
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Figure 4.4: Results of Fl-score (micro) on validation set for compared classifier
utilizing various language models. The classifiers are MIL with PMA, MIL with
max and standalone language model. Values are displayed in Table [A.4l

possible explanation is the characteristics of the task at hand, which differs
from the one in Multisource experiments and is not as suitable for PMA.

Because the MIL classifier with FERNET-Cb outperforms every other classi-
fier in both micro and macro F1-scores, we will conduct further experiments
only with the MIL classifier utilizing FERNET-C5.

In Figure |4.5) we compared the performance of our MIL classifier with
FERNET-C5 against the baseline with FERNET-C5.

B 4.4.2 Size of Used Evidence

In the following experiments, we investigate the impact of varying evidence
sizes on the performance of the Multiple Instance Learning (MIL) classifier.
In prior experiments conducted on CTK-facts, the first 10 pieces of evidence
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Figure 4.5: Fl-scores of classifiers utilizing FERNET-C5 for test set. Values are
displayed in Table [A.8.

from available knowledge were used as a standard practice. However, now the
number of experiments will be subject to change. The remaining experimental
settings, identical to those in previous experiments, utilize the FERNET-C5
language model [LS21]for input processing in conjunction with the MIL
classifier. In this case, we selected two aggregation functions in the MIL
classifier. It’s Pooling by Multihead Attention (PMA) and max aggregation
function. For the purpose of comparative analysis and evaluation, we will
employ the standalone FERNET-C5 model and the GNN classifier introduced
by Vaclav Hlavac [vac23|, which utilized the FERNET-C5 language model as
well.

Reducing the number of evidence pieces supplied to the model might
negatively affect its performance due to the limited information available.
However, it is possible that using 10 pieces of evidence already introduces
excessive noise into the model.

A similar issue might arise when increasing the evidence size, where ad-
ditional evidence could contribute more noise to the model. Nevertheless,
the model could benefit from the extra evidence if an effective aggregation
function is employed.

We conducted experiments using 5, 10, 15, and 20 pieces of evidence
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Figure 4.6: Results of Fl-score (micro) on test set for compared classifiers.
Values taken from Table

provided to the model. The average token counts for evidence sets are 415,
708, 1056 and 1416. The evidence was selected using the document retrieval
method described in paper by Herbet et al. , ensuring the most
semantical relevant evidence is provided. By analyzing the outcomes of these
experiments, we aim to better understand the ideal balance between evidence
size and model performance and gain insights into the pros and cons of
different aggregation methods and alternative approaches.

The outcomes of the experiments are presented in Figure and Table
where we report both micro and macro F1-scores.

Upon comparing the two aggregation functions in our MIL classifier, the
MAX function consistently outperforms the PMA function across all evidence
settings. Moreover, the performance of the MAX aggregation function exhibits
a slight improvement with each increase in evidence size. In contrast, the
PMA function demonstrates the opposite trend, possibly due to its more
complex structure being overwhelmed by the additional noise introduced by
increased evidence.

Among the compared models, the best performing is GNN which stands
above our MIL classifier and FERNET-C5 model. Our classifier has slightly
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better performance with both aggregation functions than baseline FERNET-
C5. Results show that changing the size of evidence brings only a small
influence on the performance of models. Values for micro and macro F1-score
correlate, and evidence settings that dominate in one metric also dominate
in the other. So model’s overall classification performance increases, and
also it’s becoming better at handling class imbalances and providing a more
balanced performance across all classes.
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Chapter 5

Discussion

The model we have proposed does not bring any significant improvements in
terms of performance over the selected baseline methods. In some experiments,
the baseline methods displayed superior performance. In this section, we
discuss our solution, describe its drawbacks that might be the reason for
its underperformance and suggest areas for potential improvements during
further research.

We have pinpointed potential constraints that lie in embedding sections.
The first one is the embedding of the input into a single vector. This constraint
was already described in the GNN classifier proposed in the thesis by Vaclav
Hlavac [vac23|. Our classifier shares with the presented GNN the same
approach to input embeddings. This could be compared to the scenario with
recurrent neural networks, where using a single vector to represent an entire
input sequence had a limiting effect on their performance. However, this very
feature was also pivotal in our model, enabling us to handle extended input
sequences due to restricting their embeddings to only [CLS] tokens.

The second constraint of our approach is its independent handling of input
sequences during the creation of their embeddings. We split the initial long
input into shorter sequences and encode them individually. Because the
language model does not have access to the whole initial sequence during
embedding, it lacks the ability to capture the information in full context.
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Our initial hypothesis expected that MIL would be able to extract important
information for accurate classification from these embedded sequences and
fine-tune the language model accordingly. However, the described restriction
likely leads to the omission of certain information, as some input parts might
only be deemed significant for the embedding once they are merged with the
separated portion of the sequence. Consequently, this information might be
discarded during the encoding phase.

The last constraint lies in the method for processing and combining the
initially split sequences - the aggregation function. After embeddings are
created, we need to aggregate over the entire set of shorter sequences (entire
bag) to produce a classification of input. While experimenting with the model,
we utilized different aggregation functions, namely mean, max and Pooling by
Multihead Attention (PMA). Given the relative simplicity of mean and max,
we anticipated that the mean and max functions might overlook certain details
and fail to capture the full complexity of relationships between instances
within a bag. The inclusion of the PMA function was envisaged to enhance
the classifier’s expressivity due to the utilization of the attention mechanism
in PMA. However, the majority of experiments displayed PMA’s performance
as being on par with simpler alternatives, with only a handful of instances
exhibiting marginal performance improvements. The underperformance of
PMA may be attributed to the tasks’ incompatibility or a deficiency in our
PMA training process. Consequently, we suggest future work to focus on
further experimentation with the PMA aggregation function.

Apart from comparing our classifier with baseline models, we also compared
it against the GNN classifier introduced in the thesis by Vaclav Hlavac
[vac23]. Our solutions share some similarities, and both have been developed
concurrently under the supervision of Ing. Jan Drchal, Ph.D. The GNN
solution has been closely introduced in its section in Methodology chapter
3l It shares the same approach to the initial division of long input and
embeddings of its sequences, but the sequences are further passed to a graph
neural network. While our solution surpassed in performance the GNN
classifier on the Hyperpartisan News Detection dataset, their performance
was comparable on the CTK Facts dataset. In contrast, on the Multisource
dataset, the GNNs presented superior performance. One possible explanation
is that they can capture more complex relationships and interdependencies
between data points as they consider the entire topology of the graph, thus
achieving better expressivity. The reason behind the alternating performance
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between GNN and MIL can be explained by different characteristics of tasks
and datasets, where the described advantage of GNN can not be exploited
equally in each experiment.

On the other hand, we have demonstrated that by using our classifier, it
is possible to utilize already pre-trained language models for short inputs to
process long inputs. Such a feature can be exploited, for example, in the case
of low-resource languages like Czech, where instead of training long input
language models like Longformer [BPC20| from the ground up, we can utilize
already existing Czech language models.
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Chapter 6

Conclusion

In this thesis, our objective was to develop a sequence classification solution
that could transcend the constraints of the Transformer-based architecture
and therefore process inputs longer than 512 tokens.

The initial portion of our work involved a comprehensive review of related
literature, focusing on pivotal areas such as Multiple Instance Learning,
Natural Language Processing, Transformer models and their long input
adaptations, and the overarching task of text classification. These concepts
were integral to understanding and approaching the complex problem at
hand.

From this theoretical base, we presented our problem statement, which
grappled with the challenge of classifying long sequences that exceeded the
constraints of traditional Transformer models. In response, we proposed
a novel MIL-based classifier for processing long inputs. The initial input
is split into smaller sequences to form a bag. The classifier then leverages
pre-trained language models for individual sequence embedding and processes
these embeddings using an aggregation function to predict a bag-level label
representing the initial input.

To evaluate the performance of our proposed solution, we tested our
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classifier on three distinct datasets, each representing a different task. The
performance of our model was evaluated on different classifier setups and
compared against baseline methods and a concurrent solution utilizing GNNs.
The results exhibited the ability of our model to process long sequences of
up to 13,296 tokens. However, we have not achieved significantly superior
performance against mentioned methods. The experimental phase of our
work was crucial for validating our approach and uncovering areas of strength
and weakness within our model.

In the final stage of our work, we discussed our model’s capabilities and
limitations. This analysis aimed to provide a balanced perspective on the
model, offering insights into the areas that could benefit from further research
and optimization. Overall, our work presents a novel approach to sequence
classification, with the potential for refinement and extended application in
future studies.
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A. Additional Results

B Showcase of Hyperpartisan News Detection Dataset

{’text ’: '<p>Money ( <a href="https://farm8.static. flickr .com
/7020/6551534889_9c8ae52997 . jpg" type='"external'>Image</a
> by <a href="https://www. flickr .com/people /68751915@N05
/" type="external'>401(K) 2013</a>) <a href="https://
creativecommons.org/licenses /by—sa /2.0/" type="external">
Permission</a> <a type="internal">Details </a> <a type="
internal">DMCA</a></p> No Pill Can Stop Tinnitus, But
This 1 Weird Trick Can \n<p>The walls are closing in on
Congress.</p> \n<p>Terrifying walls of water from
Hurricanes Harvey and Irma, which, when the damage is
totaled , could rise to a half trillion dollars. The Walls
of War: The multi—trillion dollar ongoing cost of
Afghanistan, Iraq and other interventions. The crumbling
walls of the U.S. infrastructure , which need at least $3
trillion to be repaired or replaced. A wall of 11 million
undocumented immigrants, whose deportation could easily
cost $200 billion. The planned wall at the Mexican border
, which some estimates place at $67 billion. Then there
is the Wall of All, the $20 trillion national debt. The
walls of debt are closing in.</p> \n<p>At moments of
crisis in our nation, in addition to invoking the
assistance of Higher powers, we can call upon the
Constitution for guidance.</p> \n<p>Article I, Section 8,
of the U.S. Constitution contains a long—forgotten
provision , "the coinage clause ," which empowered Congress

"to coin (create) Money." The ability to create money to
meet the needs of the nation is a sovereign power, which
enables a nation to have control of its own destiny.</p>
\n<p>The same article indicates the Founders anticipated
having to borrow money on the full faith and credit of
the United States. Enter the Funding , ....7,

"title ’: ’Kucinich: Reclaiming the money power’,
"hyperpartisan ’: True,
‘url ’: "https://www.opednews.com/articles /Kucinich—Reclaiming

—the—m—by—Dennis—Kucinich—Banks_ Debt_ Funding_ Money
—170910—112.html ",
"published_at ’: ’2017—09—-10"}

Figure A.1: Example of instance in Hyperpartisan News Detection dataset.
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A. Additional Results

B Multisource - Additional Results

Here are presented tables used for bar chart construction in Experiments [4.

RND PMA-w:1 MAX-w:1 GNN-w:1 PMA-w:2 MAX-w:2 GNN-w:2

2 0.6335 0.572 0.639 0.699 0.638 0.7285
4 0.7175 0.6775 0.7570 0.851 0.786 0.8315
6 0.814 0.748 0.8125 0.9055 0.898 0.907
8 0.866 0.8095 0.874 0.95 0.9265 0.923

Table A.1: Accuracy of end-to-end classifiers with different size of sliding windows
on datasets with changing number of random sentences. The 'w:N’ represents
size of window, where IV is the number of instances in window.

Size of sliding window MIL-PMA MIL-MAX GNN

1 0.7635 0.704 0.808
2 0.856 0.838 0.848
3 0.875 0.851 0.8485
4 0.8915 0.8808 0.876

Table A.2: Accuracy of end-to-end classifiers with different size of sliding
windows.

B Hyperpartisan News Detection - Additional Results

Here are presented tables used for bar chart construction in Experiments 4.

Type of classifier Fl-score Precision Recall
Longformer 0.8462 0.8571 0.8387
BERT 0.7926 0.799 0.7879
RoBERTa 0.8341 0.8483 0.8252
MIL-RoBERTa 0.8739 0.8828 0.8672
MIL-BERT 0.8615 0.8739 0.8529
GNN (global+local) 0.8 0.7895 0.8108

Table A.3: Comparison of performance of various classifiers. Performance is
calculated on test split.
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A. Additional Results

B CTK Facts - Additional Results

Here are presented F1 micro and macro scores tables from experiments on
CTK Facts dataset.

Model PMA MAX  Baseline
FERNET-C5 0.5572 0.5542 0.5812
RobeCzech 0.5211 0.503 0.4762
XLM-RoBERTa  0.488 0.5211 0.5576
mBERT 0.5151 0.5181 0.5026
BERT 0.4277 0.3866 0.4869

Table A.4: Results of Fl-score (micro) on validation set for compared classifier
utilizing various language models. The classifiers are MIL with PMA, MIL with
max and standalone language model.

Model PMA MAX  Baseline
FERNET-C5 0.5521 0.5524  0.5375
RobeCzech 0.4637 0.4616  0.4999
XLM-RoBERTa 0.3891 0.5165 0.5345
mBERT 0.4995 0.4955 0.4622
BERT 0.3766 0.369 0.3988

Table A.5: Results of Fl-score (macro) on validation set for compared classifier

utilizing various language models. The classifiers are MIL with PMA, MIL with
max and standalone language model.
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A. Additional Results

Evidence Size MIL-PMA MIL-MAX GNN FERNET-C5

) 0.5737 0.5763 0.6126 0.5157
10 0.5632 0.6 0.6283 0.5812
15 0.5526 0.6053 0.6021 0.5393
20 0.5737 0.6105 0.6021 0.5497

Table A.6: Results of Fl-score (micro) on test set for compared classifers

Evidence Size MIL-PMA MIL-MAX GNN FERNET-C5

) 0.5531 0.5454 0.5762 0.4794
10 0.5244 0.5687 0.5959 0.5449
15 0.5108 0.5712 0.5606 0.5019
20 0.5243 0.5812 0.5545 0.5213

Table A.7: Results of Fl-score (macro) on test set for compared classifers

Model Fl-micro Fl-macro
Baseline 0.5812 0.5449
MIL-PMA 0.5632 0.5687
MIL-MAX 0.6 0.5244

Table A.8: Fl-scores of classifiers utilizing FERNET-C5 for test set.
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