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Abstract

Recent advancements in the field of nat-
ural language processing (NLP) have led
to more generalized neural language mod-
els that effectively tackle multiple tasks
across diverse natural languages simulta-
neously. These advancements are driven
by the development of novel neural ar-
chitectures, the utilization of multilin-
gual pre-training methods, and the de-
ployment of multitask learning (MTL).
Building upon these achievements, this
thesis focuses on improving the perfor-
mance of existing multilingual neural text
classifiers by leveraging MTL methods,
resulting in the development of models
that competitively handle 6 tasks in 17
languages and achieve state-of-the-art re-
sults on the Czech fact-checking task,
CTKFactsNLI.

Keywords: NLP, MTL, text
classification, NLI, task embeddings,
LoRA, multilingual

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt

Nedávné inovace v oblasti zpracování při-
rozeného jazyka (anglicky natural lan-
guage processing, NLP) umožnily vytvo-
ření obecnějších neuronových jazykových
modelů, které efektivně řeší více úloh
v různých přirozených jazycích najed-
nou. Tyto pokroky jsou výsledkem vý-
voje nových neuronových architektur, vy-
užívání metod vícejazyčného předtréno-
vání a uplatnění víceúlohového učení (an-
glicky multitask learning, MTL). V ná-
vaznosti na tyto úspěchy se tato práce
zaměřuje na zlepšení výkonu stávajících
vícejazyčných neuronových klasifikátorů
textů s využitím metod MTL, což vede
k vývoji modelů, které kompetitivně řeší
6 úloh v 17 jazycích a dosahují tzv.
state-of-the-art výsledků v úloze ověřo-
vání faktů (anglicky fact checking) v češ-
tině, ČTKFactsNLI.

Klíčová slova: NLP, MTL, text
classification, NLI, task embeddings,
LoRA, multilingual

Překlad názvu: Víceúlohové učení pro
NLP klasifikátory
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Chapter 1

Introduction

Humans can naturally learn multiple tasks simultaneously and leverage the
knowledge learned in one task to help the learning of another task. For exam-
ple, it is common for humans to learn multiple natural languages throughout
their lives. By doing that, they acquire skills for communication in new
languages and refine their knowledge of the languages they already speak.
Inspired by this analogy, multitask learning (MTL) [1], a machine learning
(ML) paradigm, aims to learn multiple tasks in parallel in order to improve
the generalization performance. In the natural language processing (NLP)
field, neural language models’ generalization capabilities have rapidly grown
in recent years. These models are now able to solve multiple tasks in many
natural languages. Such advances can be attributed to the development of
new neural architectures, extreme scaling of models, methods for pre-training
the models on large cross-lingual corpora and MTL deployment. Multitask-
ing and multilinguality are invaluable properties of modern language models
used for real-world problems. Pragmatically, running one instance of a uni-
versal model is cheaper and easier to manage than running a different model
for each combination of tasks and languages.

This work aims to research possibilities for improving the performance of
existing multilingual neural classifiers with MTL methods. Some resulting
models achieve state-of-the-art (SOTA) results on the Czech fact-checking
task CTKFactsNLI [2]. The concepts and methods are introduced in Chap-
ter 2. They are applied to create an MTL setup (see Chapter 3). In Chapter
4, the setup is jointly trained and evaluated on a selection of tasks from
the XGLUE [3] multilingual benchmark, then the performance of the result-
ing models is compared on the target task (CTKFactsNLI). The results are
discussed in Chapter 5.
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.......................................... 1. Introduction

The source code of the setup1 and the experimental runs2 are available
online. The trained weights will be gradually published3.

1https://github.com/semindan/mtl_thesis
2https://wandb.ai/semindan/thesis
3https://huggingface.co/semindan
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Chapter 2

Theory

2.1 Text classification

Definition 2.1. Text classification. Given a text unit x and a set of labels
R, assign a label r ∈ R to x.

Text classification (TC) or text categorization tasks are popular bench-
marks in natural language understanding (NLU). They have numerous real-
world applications, such as spam classification, news categorization and sen-
timent analysis. A review of models and datasets for TC is presented in [4].
For automatic TC, rule-based approaches, which require a deep understand-
ing of the task, were replaced by ML methods. Classical ML algorithms for
classification, such as naive Bayes, support vector machines, hidden Markov
models, random trees and forests, traditionally have relied on hand-crafted
features extracted from textual units. To obtain good performance, data re-
quired feature engineering and analysis. The design of these features mostly
depends on task-specific knowledge, which often limits the generalization ca-
pabilities to new tasks. Embedding methods, which encode text information
as low-dimensional feature vectors, address this problem. Modern neural
models almost exclusively use learned features. While generally achieving
better performance on tasks including TC, they are criticized for lacking ro-
bustness and interpretability. Still, neural networks, particularly pre-trained
models based on the transformer architecture [5], are the current SOTA in
TC.
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......................................... 2.2. Transformer

In benchmarks, it is common to test the model on tasks related to natural
language inference (NLI), a pair-input classification task aiming to predict
whether a hypothesis can be inferred from a premise. There are typically
three possible labels: entailment, neutral and contradiction. A general ver-
sion of NLI involves deciding if one sentence is a paraphrase of the other in
a sentence pair. Fact verification is one of the formulations of NLI, which
is particularly interesting. The goal of the fact-checking system, given the
claim and evidence, is to determine whether this evidence supports or refutes
the claim or if there is not enough information to decide.

2.2 Transformer

The transformer architecture [5] has changed the landscape of NLP. It im-
proves upon the previous SOTA architecture, recurrent neural networks
(RNN). Primarily, it alleviates RNN’s long dependency issues by process-
ing the input sequence as a whole. The critical component in transformer
is the attention mechanism. It has become a standard unit in NLP models
since its application to long short-term memory (LSTM) RNNs for machine
translation [6].

Figure 2.1 shows the visualization of the architecture. It consists of the
encoder and decoder, stacks of multiple identical layers. Initially, the model
replaces each token in the input sequence with an embedding vector. The
sequence of embeddings is summed with positional encodings and passed
into the encoder. The encoder aims to produce a ”useful” representation,
sometimes denoted as ”context.” Each encoder layer is formed by two sub-
layers: a multi-head self-attention layer and a position-wise fully connected
feed-forward network. An encoder layer yields a sequence of hidden state vec-
tors, which are then processed by the next encoder layer. The second block
is the decoder that generates the final output sequence. A decoder layer is
similar to an encoder layer, yet its multi-head self-attention is masked to
ensure that already decoded positions cannot attend to the following posi-
tions. A decoder layer adds a third sub-layer – multi-head attention over the
encoder’s final output. The first input to the decoder is the [SOS] (start-
of-sequence) token. That way, the decoder always receives the right-shifted
sequence. The linear layer and the softmax layer are used for converting the
resulting hidden states of the decoder’s stack into probability vectors, each
having the length of the model’s ”vocabulary.” At this point, the output to-
kens can be constructed (e.g., using greedy decoding) and passed back to the
decoder to generate the next token.

4



......................................... 2.2. Transformer

A residual connection and layer normalization wraps the output of each
sub-layer in the model. Dropout [7] is applied to the output before perform-
ing these operations. Additionally, dropout is applied to the input of both
encoder and decoder stacks, i.e., to the sums of the embeddings and the
positional encodings.

This overview of transformer would be incomplete without discussing its
inner workings.

Figure 2.1: Visualization of transformer, the image is from [5]

Self-attention

The variant of attention used in transformer is called self-attention. It is
usually presented as a function that takes a query and a set of key-value pairs
as input and outputs a weighted sum of the values. In practice, inputs are
embedding vectors packed into matrices Q, K and V . All three matrices come
from an input sequence. Self-attention is applied to each element separately
and identically. It captures the relation of every element to all other elements

5
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in a given set.

Scaled Dot-Product Attention

The output of the self-attention layer is computed with scaled dot-product
attention. The dot products of larger vectors tend to have larger magnitudes.
Due to this, the softmax function produces values close to 1 or 0, resulting in
small gradients. To counteract this, the authors introduce the scaling factor

1√
dk

. This operation is formalized as

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

Multi-head attention

Transformer utilizes multiple parallel attention layers called heads. Each
head learns its own weight matrices to project Q, K and V to low-dimensional
linear subspaces before performing the attention function. Output matrices
of heads are concatenated and, finally, linearly projected by an additional
weight matrix to the subspace of the model dimension. Mathematically multi-
head attention is expressed like this:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

where
headi = Attention(QW Q

i , KW K
i , V W V

i )

While highlighting relevant information, single-head attention may elim-
inate other valuable aspects of it. Deployment of multiple heads mitigates
this disadvantage. They increase the model’s capacity and allow it to view
the information from different perspectives.

6
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Positional encodings

Multi-head self-attention is a set operation – it ignores the order of elements
in an input sequence. In most cases, it is crucial to preserve the order of
words in a text sequence. RNNs do this by design as they utilize hidden states
derived from the previous words to process the subsequent ones. Transformer,
however, does not involve any recurrence or convolution. Other techniques
must be deployed to capture the structure of the input. Authors solve this
by injecting positional information into the sequence of embeddings right
before passing it to a transformer’s block. While the positional encodings
used in the original transformer are fixed, learned positional encodings, or
positional embeddings, produce almost identical results. The fixed version
has an advantage: it is not limited by the sequence lengths encountered
during training. The proposed encodings are computed with sine and cosine
functions of varying frequencies:

PE(pos, 2i) = sin( pos

10000
2i

dmodel

)

PE(pos, 2i + 1) = cos( pos

10000
2i

dmodel

)

where pos is the position and i is the dimension, dmodel is the size of each
embedding.

These positional encodings match the shape of the input embedding se-
quence, and the two are summed. Recent models, starting with BERT [8],
use learned encodings over static ones.

Position-wise Feed-Forward Network

This layer has two linear transformations and a rectified linear unit (ReLU)
activation between them. They are applied to each position of the multi-head
attention layer outputs separately and identically.

FFN(x) = max(0, W1x + b1)W2 + b2

7
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2.3 Multilinguality

Ruder1 argues that many reasons exist for working on languages beyond En-
glish. In short, more than 7000 languages are spoken worldwide, yet NLP
research is English-centric. Only 1% of known languages [9] enjoy a large
amount of labeled and unlabelled data (groups 4, 5 in Figure 2.2), while
other languages are mostly neglected. From the ML perspective, contempo-
rary multilingual neural models are far from being language agnostic – many
of their inductive biases are specific to English and other high-resource lan-
guages.

It takes work to create multilingual datasets for each target language. Typ-
ically, human annotators develop validation and test datasets for each target
language, and the training data is usually annotated only in English. The
training corpus can be translated into other languages as means of data
augmentation. Modern multilingual models achieve competitive results on
multilingual datasets by only learning a task in one source language. This
emergent ability (and the learning scheme itself) is referred to as zero-shot
cross-lingual transfer. In NLP, multilinguality is a complex field, the theo-
retical details of which are out of the scope of this work.

Multilinguality in transformers

BERT [8] encoder-only architecture introduced the ”pre-train, then fine-tune”
framework for transformers. The model learns general language representa-
tions during the pre-training by training on two self-supervised tasks. The
first is masked language modeling (MLM). With a chosen probability, tokens
in an input sequence are replaced with a [MASK] token. The model with a
language modeling head predicts what tokens were replaced. The second is
next sentence prediction (NSP): the model receives a two-sentence segment
and, using a binary classification head, decides if the second sentence is the
actual sentence that follows the first sentence. The two described tasks are
performed on the same input, and the respective losses are summed. The
authors of BERT released a multilingual version of the model, trained on the
Wikipedia corpora from 104 languages. This multilingual version, denoted
mBERT, can perform cross-lingual generalization, even successfully transfer-
ring between languages with no lexical overlap [10]. The next considerable
improvement of the pre-training strategy was RoBERTa [11]. The most sig-
nificant changes involve the removal of the NSP objective. In MLM, instead

1https://ruder.io/nlp-beyond-english/
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........................................ 2.3. Multilinguality

of copying the same segments and masking different tokens, they are ran-
domly masked right when they are fed to the model. XLM-R [12] leverages
this strategy and trains on 100 language corpora from the cleaned Com-
monCrawl2. T5 [13] and its multilingual counterpart mT5 [14], which are
text-to-text models in contrast to BERT-based models, extend the BERT-
style pre-training process. They replace spans of tokens with sentinel tokens
and the model’s objective is to produce only the replaced tokens (see Figure
2.3).

Figure 2.2: Language data distribution, the image is from [9]

The input word sequence is tokenized before being passed into the model,
and when the model is expected to generate tokens as output, the output
is detokenized. The multilingual model should be able to handle many di-
verse languages, therefore, handle different scripts and separation modes (e.g.,
Japanese and Chinese do not separate words with spaces). On the other hand,
a reasonable vocabulary size is desired, i.e., there should be a way to choose
what tokens to include. Modern multilingual transformers use SentencePiece
[15] that solves these problems. In short, it is a subword tokenizer that treats
the input text as a sequence of characters (space is not treated in any spe-
cific way). SentencePiece implements the unigram segmentation [16] and
byte pair encoding [17] to build a vocabulary (of a pre-defined size) based on
subwords. In short, the most frequent words end up in the vocabulary. The
other words are constructed with subwords.

2https://commoncrawl.org/
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....................................... 2.4. Multitask learning

Figure 2.3: T5’s pre-training objective, the image is from the original paper [13]

2.4 Multitask learning

The Motivation for developing a neural network able to perform multiple
tasks is pragmatic – instead of running and switching between n instances
for n tasks, a single model handles n tasks. The memory is allocated only
for one network, and there is no additional overhead during inference.

In their seminal paper [1], Caruana lays the foundation for MTL and, in
various ways, demonstrates that artificial neural networks and even specific
traditional ML algorithms benefit from learning multiple related tasks simul-
taneously. Caruana defines MTL as ”an inductive transfer mechanism whose
principle goal is to improve generalization performance.” MTL learns related
tasks in parallel while using a shared representation. By doing this, MTL
leverages the domain-specific information contained in their training signals.
Although the concept is straightforward, the MTL framework and its goals
differ greatly depending on the application. Terms like task relatedness and
domain are ambiguous. The paper specifies the latter as a complex task in-
volving many subtasks (e.g., road-following domain, medical decision-making
domain). A domain may be equally interpreted as a topical difference in one
modality, for example, NLP for medical data or legal documents. Moreover,
in NLP, different languages are sometimes treated as domains [18], even for
the same tasks (e.g., multilingual text classification). The following para-
graphs use the term domain to distinguish tasks based on their formulation,
such as text generation or question-answering domains.

Parameter sharing

In MTL, parameter sharing is necessary for creating a general representation
suitable for multiple tasks. In backpropagation models, the training process
is centered around minimizing a loss function by updating model parame-

10
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ters. When the parameters are shared, training signals from different tasks
contribute to the update of the parameters. Caruana observes that ”MTL
tasks prefer hidden layer representations that other tasks prefer” [1]. Neu-
ral networks for MTL are typically designed using hard parameter sharing
or soft parameter sharing [19]. The first denotes a model that shares most
of its hidden layers between all tasks and separates task-specific output lay-
ers. Canonically, MTL encoder-only models deploy this sharing strategy [20].
The encoder is shared, and task-specific layers (e.g., classification heads) are
attached to it. Hard parameter sharing is widely used – a majority of modern
large networks, which are often encoder-decoder models [13] or decoder-only
models [21, 22], share all parameters and do not have any task-specific layers.
On the other hand, in soft parameter sharing, each task has its own separate
model. The sharing comes from regularizing the distance between the lower
layer parameters, which encourages the parameters to be similar.

Datasets for MTL

There are generally two MTL settings in NLP [23]. First, one dataset is
associated with multiple outputs (e.g., named entity recognition and relation
extraction on the same input). In computer vision, MTL is usually performed
for tasks with the same inputs (e.g., detecting cars and pedestrians in the
same image). This setting allows the model to compute and manipulate
losses for these tasks in a single forward pass. However, creating such multi-
faceted datasets for NLP tasks is highly labor-intensive. The second setting,
which is a default situation for NLP, involves multiple datasets with their
respective labels, where samples are drawn from different tasks and jointly
learned in parallel. Currently, the most popular benchmarks in this setting
are XGLUE [3], XTREME [24] and MMLU [25].

Task relatedness

Task relatedness is yet to be formalized, considering its counterintuitive na-
ture: in practice, seemingly related tasks may have underlying competing
dynamics [26]. On the other hand, unrelated tasks may still be beneficial for
the training process as a source of ”noise” [1]. Therefore, manual task se-
lection is often a fruitless approach. Nevertheless, if the learned tasks come
from the same domain, say TC, there is a particular intuitive assumption
that these tasks are more related to each other than any task from TC to
any task from text generation, question-answering or any other domain. The
straightforward method to measure task relatedness is to train models on the

11
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given tasks and then measure the performance gain with respect to single-
task training. This method is computationally expensive, even for a small
set of tasks. However, such massive empirical studies bring an opportunity
to evaluate methods for approximating task relatedness. In computer vision,
Task2Vec [27] is a method to encode a task into a vector representation to
predict task similarities. In NLP, this paper [28], based on Task2Vec, in-
troduces two methods for finding the best intermediate task for transferring
knowledge to the target task. The first, TextEmb, collects the average of
the final layer token-level representations hx for each sample x of a dataset
D from a pre-trained model’s encoder without fine-tuning. The final task
embedding is an average of these pooled vectors over the entire dataset:

∑
x∈D

hx

|D|

TextEmb is supposed to capture the linguistic properties of the input text
and does not depend on the training labels. The second method, TaskEmb,
describes the task by highlighting the parameters most beneficial to the task.
This is achieved by computing the empirical Fisher information matrix (FIM)
with respect to parameter θ derived from the fine-tuned model’s weights:

Fθ = 1
n

n∑
i=1

[∇θ log Pθ(yi|xi)∇θ log Pθ(yi|xi)T ]

Only the diagonal entries are considered in order to reduce computational
complexity. FIM is computed with respect to different components of the
model and additionally with respect to the outputs of the components. The
latter is averaged over the input tokens and the entire dataset. The resulting
embeddings of the source tasks are ranked by cosine similarity with the target
task’s embeddings by component. The final score is computed according to
the reciprocal rank fusion (RRF) algorithm [29]:

RRF (s) =
c∑

i=1

1
60 + ri

where s is a source task, c is a component index, ri is a rank score assigned to
s by the component i of the model. TaskEmb and TextEmb can be further
combined using RRF to produce the aggregated score.

Although TextEmb and TaskEmb originally are not intended for MTL, the
current MTL research [30] deploys conditional adapters [31] to derive task
embeddings and uses TextEmb and TaskEmb as baselines.

12
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Another notable category of approaches is to learn or manage task relations
dynamically during training. PCGrad [32] is a decent representation of this
group of methods. The core idea behind the algorithm is to mitigate gradient
interference by performing ”gradient surgery.” The conflicting gradients are
each projected onto the normal plane of the other. This method prevents the
interfering components of the gradient from being applied to the network.

MTL at different stages of training

We may want to achieve better performance on one target task by train-
ing it together with auxiliary tasks. Even though it is a reasonable goal
for MTL, some researchers [33] claim this objective is more suitable for the
adjacent framework called transfer learning. They state that MTL, in con-
trast to transfer learning, aims to improve performance on all of the learned
tasks. Transfer learning, in short, happens when the model is pre-trained on
a task or a set of tasks and only then is fine-tuned on a target task, therefore
transferring the knowledge gained during pre-training. The two frameworks
are often combined at different stages. For pre-training, BERT [8] jointly
learns masked language modeling and next-sentence prediction tasks. Au-
thors of the T5 paper [13] claim that in NLP, unsupervised pre-training and
then single-task fine-tuning consistently outperforms MTL setups. They ex-
periment with setups to ”close the gap.” They demonstrate that a classic
unsupervised pre-training is roughly equivalent to a multitask ”mix” of un-
supervised and supervised tasks during pre-training. In both pre-training sce-
narios, subsequent single-task fine-tuning produces almost identical results.
Currently, the most popular approach is to add a selection of supervised
tasks as an intermediate step after unsupervised pre-training. Initially intro-
duced in [20], this idea developed into a new approach known as multitask
pre-finetuning [34]. Given a model pre-trained in an unsupervised fashion,
the current SOTA MTL approach is to gather a massive selection of tasks to
learn jointly before individual fine-tuning. Apparently, past a certain num-
ber of tasks, the massively pre-finetuned model provides a better basis for
task-specific fine-tuning.

Catastrophic forgetting

Given a pre-trained MTL model, it is common to fine-tune it on the target
task. A problem arises: updating the model’s parameters on a new task de-
grades the model’s performance on the ”old” tasks. This problem is known as
catastrophic forgetting or catastrophic interference [35]. Freezing the shared
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layers of the model and updating exclusively task-specific layers is not com-
petitive to the full fine-tuning. To alleviate the issue, the recent approaches
freeze the model, inject new parameters and update only them (e.g., adapter
layers [36]). One of the prominent methods is LoRA [37]. It constrains an
update of a pre-trained matrix W0 by representing the former with a low-
rank matrix decomposition. During training, W0 is frozen, and two matrices,
A and B, are updated. The forward pass is then formalized in the following
way:

h = W0x + ∆Wx = W0x + BAx

The authors of LoRA report that the method can approach the performance
of full fine-tuning. The advantage is that LoRA adds a small number of
parameters to the model (typically 1-2% of the original model size). These
added weights are lightweight and can be quickly replaced with other LoRA
weights on demand during inference. As the number of trained parameters
is low, the training process is significantly less demanding computationally,
allowing to train large models on consumer hardware. In contrast to adapter
layers, there is no additional inference latency as the new weights can be
precomputed.

When fine-tuning a pre-trained model, the pre-trained representations are
likewise subject to catastrophic forgetting, e.g., a model that forgets how
to perform its MLM task on certain languages practically forgets these lan-
guages. The R3F and R4F methods [38] prevent the degradation of generaliz-
able representations of pre-trained models during fine-tuning by reweighting
the loss. The new loss with applied R3F/R4F is:

LR3(f, g, θ) = L(θ) + λKLS(g · f(x) || g · f(x + z)) R3F
subject to z ∼ N(0, σ2I) or z ∼ U(−σ, σ)
subject to Lip{g} ≤ 1 optional R4F

where θ denotes a parameter, λ is a weighting factor, KLS is symmetric
Kullback-Leibler divergence (KL), · is function composition, f is function
performed by the model’s shared layers, g is a function of a classification
head, z is a sample from a parametric distribution – N normal or U uniform.
R4F ”adds a constraint on the smoothness of g by making it at most 1-
Lipschitz.” In practice, spectral normalization is applied to the last layer of
a classification head.
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Chapter 3

Setup

3.1 Models

Transformer-based models are the current SOTA in a majority of NLP do-
mains, including TC. It is well-known that SOTA performance is often achieved
by larger models. For multilingual transformers, assuming the model is open-
source and its pre-trained weights are publicly available, XLM-R, mT5 and
their derivatives perform competitively across all scales. Additionally, I use
mBERT for reference in initial experiments.

Regarding model sizes, I use base versions: mBERT has 110 million param-
eters, XLM-Rbase has 270 million and mT5base has 582 million. Although it
may be arguably incorrect to compare these models, in practice, it is a fair
comparison. The discrepancy between mBERT and XLM-R is given by the
vocabulary size (119 thousand token embeddings vs. 250 thousand). The
computational cost is similar for the same input size. mT5 uses a decoder,
which has the same structure (except for cross-attention) as an encoder and
has a linear output layer. Its encoder has roughly the same number of param-
eters as XLM-R. mT5 requires twice as much memory as XLM-R. However,
for TC tasks, the decoder acts as a classification head over the vocabulary
and only generates a few additional tokens – usually a label and the end-of-
sequence token. Therefore, the computational cost is roughly similar [14].

I am particularly interested in mT5 as it represents a unified text-to-text
framework, which is highly popular in larger models, such as LLaMA [21].
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mT5 can be viewed as a predecessor to the latest frameworks as initially it has
no task-specific layers, in contrast to MTL XLM-R, and distinguishes tasks
based on simple instructions: a task prefix and task-specific feature names in
the input sequence. Despite having more parameters than equivalent versions
of encoder-only models, mT5 was pre-trained using only 1

6 as much data as
XLM-R [14].

3.2 Datasets

I have chosen TC tasks from XGLUE [3] as a benchmark for joint MTL
experiments. XGLUE is a set of 11 cross-lingual tasks, 6 of which are classifi-
cation tasks. The classification tasks in this benchmark seem closely related.
The held-out dataset for testing the benefits of MTL pre-finetuning is CTK-
FactsNLI [2]. All used datasets are curated, meaning they are ready to use.

Natural Language Inference (XNLI)

XNLI [39] is a cross-lingual natural language inference corpus. English vali-
dation and test sets are translated into 14 languages: French, Spanish, Ger-
man, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, Hindi, Swahili and Urdu. Moreover, the authors provide machine-
translated training datasets. XNLI is the largest dataset in my selection,
with more than 392 thousand training examples.

Paraphrase Identification (PAWS-X)

PAWS-X [40] is a cross-lingual paraphrase identification task. XGLUE ver-
sion incorporates English, French, German and Spanish. The original dataset
additionally has Chinese, Japanese, and Korean. The dataset contains 49
thousand of training examples.
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News Categorization (NC)

NC is a single-input task aiming to predict the category of a news article,
focusing on five different languages, including English, Spanish, French, Ger-
man, and Russian. Each instance in the dataset consists of a news title,
body, and category (overall, there are ten categories). The data is collected
from a commercial news website, and the metric is multi-class accuracy.

Query-Ad Matching (QADSM)

QADSM is a task of predicting whether an advertisement is relevant to an in-
put query. It covers three languages, including English, French and German.
The dataset is based on a commercial search engine.

Web Page Ranking (WPR)

In WPR, the task is to decide how much a given web page is relevant to
an input query on a scale ranging from ”Bad” to ”Perfect” (overall, there
are five categories). It covers seven languages: English, German, French,
Spanish, Italian, Portuguese and Chinese. This dataset is likewise based on
a commercial search engine.

Question-Answer Matching (QAM)

QAM is a set of question-answer pairs, and the task is to decide if the passage
is the answer to the question or not. It covers three languages: English,
French and German. The dataset is constructed on data from a commercial
search engine.
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CTKFactsNLI

CTKFactsNLI is a fact-checking task in the Czech language based on the
Czech News Agency1 news reports. It is a low-resource task comprising
3626 labeled claim-evidence pairs for training, 482 for validation and 558 for
testing.

Pre-processing

I reformulate the tasks to text-to-text format for mT5. The labels are ad-
ditionally stored in the text format and the features are transformed into a
single string. For MTL, I prepend the input string with a task prefix. An
example of the pre-processed entry is in Figure 3.1. XLM-R processes a
sentence or a sentence pair separated by [SEQ] token. Tokenizer automati-
cally inserts this token when the features are passed separately. In order to
conform to this format, I concatenate the advertisement title and body in
QADSM, web page title and snippet in WPR. NC is a single-input task, so I
concatenate the news title and body. Other XGLUE datasets do not require
any pre-processing.

I pre-process CTKFactsNLI in two modes: a standalone task and a refor-
mulation of XNLI (for mT5). In both cases, I reorder the mapping of label
names to label indices: SUPPORTS to 0, NOT ENOUGH INFO to 1 and REFUTES
to 2. If the task is reformulated, e.g., for a zero-shot evaluation, the features
are renamed: evidence becomes premise, claim becomes hypothesis. The
same pre-processed example in two modes for mT5 is showcased in Figure
3.2.

3.3 Metrics

Choosing a metric for a task is crucial for a correct performance assessment.
All described datasets, except for WPR and CTKFactsNLI, use accuracy as
a metric. It is formulated as follows:

Accuracy = number of correct predictions
number of examples

1https://www.ctk.eu

18

https://www.ctk.eu


........................................... 3.3. Metrics

I should note that accuracy is usually not a metric of choice for unbalanced
data. Although, for instance, NC uses accuracy and has a highly unbalanced
label distribution in the validation sets, this is compensated by a similar
imbalance in the training set (foodanddrink and sports categories outweigh
the rest, see Figure 3.3). This way, the matching unbalanced sets do not
interfere with the ”true” label distribution as it is assumed to be unbalanced.

Performance on WPR is calculated with normalized discounted cumulative
gain (nDCG). For this task, I additionally insert so-called ”guids” into the
dataset – simply, entries have the same guid if and only if they belong to
the same query. For practical purposes, I assume the predictions and ground
truth vectors have the same size, and the latter are sorted by relevancy.
Mathematically, nDCG over the whole input of size n is expressed as:

nDCGn = DCGn

IDCGn

where DCGn is

DCGn =
n∑

i=1

reli
log2(i + 1)

reli is a graded relevance of the result at position i, and IDCGn is the ideal dis-
counted cumulative gain, computed the same way as DCGn from the ground
truth list.

CTKFactsNLI is a small and unbalanced dataset (see Figure 3.4), which
uses F1 macro score. Each label receives its F1 score, and the scores are
averaged. The formula for one label is:

F1 = TP

TP + 1
2(FP + FN)

where TP, FP and FN are standard acronyms for true positive, false positive
and false negative.

{'label': 0,
'input': 'nc: news_title: How to whisk egg whites
news_body: Great British Chefs demonstrates
how to whisk egg whites',

'target': 'foodanddrink'}

Figure 3.1: mT5 data format

{'label': 0,
'input': 'ctkfacts_nli: evidence: Střelec z denverského kina
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předstoupil před soud claim: Denverský střelec
byl u soudu.',

'target': 'SUPPORTS'}

{'label': 0,
'input': 'xnli: premise: Střelec z denverského kina předstoupil
před soud hypothesis: Denverský střelec byl u soudu.',

'target': 'entailment'}

Figure 3.2: CTKFactsNLI pre-processed example in the text format. The sec-
ond entry showcases its reformulation as XNLI

foo
da

nd
dri

nk
spo

rts
tra

ve
l

fin
an

ce

life
sty

le
ne

ws

en
ter

tai
nm

en
t

he
alt

h
vid

eo
au

tos
0

5000

10000

15000

20000

25000

30000

co
un

t

NC label distribution
train
validation.en
validation.de
validation.es
validation.fr
validation.ru

Figure 3.3: The highly unbalanced label distribution of NC

3.4 Methods

Models are trained with the recommended optimizers: XLM-R, mBERT
and LoRA are trained with Adam [41], mT5 is trained with Adafactor [42].
Initially, I use unsupervisedly pre-trained multilingual transformers and eval-
uate them on multilingual tasks. As XNLI and PAWS-X provide translated
training sets, it may be beneficial to incorporate the training data in differ-
ent languages. Additionally to the cross-lingual zero-shot transfer setting
(a model is trained in one language and evaluated in all target languages),
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Figure 3.4: The label distribution of CTKFactsNLI

I evaluate other training schemes: translate-train (a model is trained and
evaluated only in one language) for XLM-R and mBERT and, for the most
resourceful task XNLI, a modified version of translate-train-all (a model is
trained on a concatenation of all languages). Instead of concatenating data
from all languages, I reconstruct XNLI using disjoint partitions in different
languages and denote it XNLImix.
I use hard parameter sharing for MTL experiments, where XLM-R has task-
specific classification heads and mT5 has a shared decoder. MTL has several
methods for improving performance and mitigating the negative knowledge
transfer between tasks. Methods that involve gradient manipulation, such as
PCGrad, are expensive memory-wise. The tangible methods in most setups
are loss reweighting and data sampling. Following [34], I apply the R3F
method and loss scaling. After reweighting with R3F, the loss is scaled:

Lscaled
i (xi, yi; θ) = Li(xi, yi; θ)

log n(i)

where Li is a loss for data point i and n is a function that returns the number
of predictions (e.g., 2 for binary classification, vocabulary size for generation).
The authors have found this scaling method to be more effective than other
forms of loss scaling they have tried (the ”other” techniques are not specified
in the paper). I do not apply R4F due to the inconsistencies stated in 3.5.
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I additionally explore mixing in mT5’s MLM task with a fixed probability,
as it was reported to be beneficial for performance [14]. For the MLM task,
n in the scaling factor returns the vocabulary size. The languages used in
MLM are the target languages of the selected tasks.
Regarding data sampling, I follow [34] and preserve the original data size
distribution. For that, I use proportional sampling, meaning the probability
of sampling from a task i is proportional to the size of its dataset Di:

pi ∝ |Di|

Besides, I experiment with using task-heterogeneous effective batches, mean-
ing the effective batch is formed by the batches drawn from different tasks.
The motivation for this is to include as many tasks as possible in each effective
batch. Each optimizer step is then performed on the aggregated gradients
computed from different tasks.
Finally, I showcase the performance of models on the target task CTKFact-
sNLI. I compare MTL models with models pre-trained on the best interme-
diate task for transfer, following [28]. I additionally compare LoRA perfor-
mance on the target task with the fine-tuned mT5.
In all experiments, I pick the best checkpoint based on the average of the
validation set score over all tasks and languages.

3.5 Implementation details

All my experiments are conducted on RCI cluster2. I train the models on
4 Tesla A100 40GB GPUs on a single node. The code for the experiments
is written in Python and utilizes popular libraries for working with neural
networks.

Hugging Face transformers and datasets

Hugging Face [43] library transformers offers ready-to-use transformer mod-
els and utilities for training. Hugging Face has a hub where users share pre-
trained and fine-tuned models. On top of that, transformers have specialized
model wrappers for prefix tuning, prompt tuning and training the adapter
modules. The other convenient library by Hugging Face is datasets. The
datasets can be shared on the same hub. The library provides methods for
mapping functions over all splits of the dataset. It is compatible with Py-
Torch [44] Dataset class and uses fast Arrow tables for storing the datasets.
Hugging Face transformers library offers a Trainer class for managing the
training process. However, it is not as flexible as the framework I have de-
cided to use for this purpose.

2https://login.rci.cvut.cz
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PyTorch Lightning

Pytorch Lightning is a framework for training neural networks. It includes
callbacks for logging results, checkpointing models and early stopping of the
training process, distributed training strategies, classes for data processing
and loading and model training. Every stage of the process (training, valida-
tion, testing, prediction) is under the user’s control, which makes Lightning’s
Trainer more flexible than Hugging Face’s Trainer. I wrap the models into
a LightningModule class with model-specific code and wrap the model mod-
ule with an outer LightningModule, where I log the metrics. The data is
managed in LightningDataModule.

Distributed training

Multiple GPUs accelerate the training process, yet they need to communicate
with each other to achieve this. Due to the global interpreter lock in Python,
multithreading is not a viable option (except for input-output operations).
Therefore, multiprocessing is utilized. Lightning relies on multiprocessing
in the distributed data-parallel (DDP) strategy. Each GPU is assigned to
a separate process. Every process runs a model instance that is identical
across all processes. During training, the forward pass is local and, during
the backward pass, the computed gradients are accumulated in parameter
buckets. The prepared buckets are then averaged across processes. This way,
the grad field of the parameters is the same across all DDP processes. The
optimizer step is then applied locally. The tradeoff of DDP is that it requires
extra memory to store the parameter buckets.

Model-specific code

For XLM-R, I combine two parts from the transformers library: the first
is the XLM-R encoder itself and the second is a generic classification head.
I pass a list of tuples consisting of task names and their number of labels. I
initialize the required classification heads from this list and collect them into
a dictionary (keys are the task names) using nn.ModuleList from PyTorch.
mT5 is from transformers and used as is.

R3F and R4F

The R3F and R4F methods are adapted from the Meta’s fairseq library3.
At the time of writing, their implementation of R3F is numerically unsta-
ble on mT5 – the training loss becomes nan after a few steps. To compute
Kullback-Leibler divergence, the predictions are passed to log softmax before-
hand, and the targets are passed to softmax. Then, the empirical formula is
formalized as:

KL(ypred, ytrue) = ytrue · (log(ytrue) − ypred)
3https://github.com/facebookresearch/fairseq/tree/main/examples/rxf
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where · denotes pointwise multiplication.
The numerical instability of the procedure seems to be caused by the dif-
ference between computing the log softmax from the original logits us-
ing the torch.nn.LogSoftmax function and computing the log of the
output of torch.nn.Softmax inside the Kullback-Leibler divergence func-
tion torch.nn.functional.kl_div. The solution is to pass the tar-
gets to torch.nn.LogSoftmax instead of torch.nn.Softmax and set the
log_target parameter of KL to true. The flag was introduced to
combat the instability4. Assuming both of the inputs are outputs of
torch.nn.LogSoftmax, the formula translates to:

KL(ypred, ytrue) = exp(ytrue) · (ytrue − ypred)

R4F is implemented by wrapping the last Linear layer of the classification
head with torch.nn.utils.parametrizations.spectral_norm. However,
I have observed that with this method, the model produces decent results
in evaluation during training and significantly worse results on the same
data in the validation phase (in Lightning, the model is loaded from the
best checkpoint after training). The use of DDP may cause the problem,
though DDP promises to keep the instances identical after every optimizer
step. Right now, the cause is still unclear to me.

LoRA

Hugging Face now supports parameter-efficient fine-tuning (PEFT) with
their library peft. LoRA is one of the offered methods. The peft ini-
tialization function receives the model and returns the model with injected
LoRA parameters. The original model’s weights are frozen as a result of
that operation. The training process proceeds as usual. I have encountered
a problem: when loading the model’s weights from a checkpoint, Lightning
first initializes the model and only then loads the state dictionary. However,
if I wrap the model with LoRA during initialization, the keys are mismatched
as LoRA pushes the keys of a base model deeper into the state dictionary.
I have partially solved this by wrapping the model with LoRA during opti-
mizer initialization, i.e., after the weights are already loaded. I additionally
save the LoRA weights separately.

Handling data

I adapt some tricks from the developers of jiant [45]. I use an MTL data
loader that accepts task data loaders as an argument, picks a task to sample
and yields a task batch from the respective data loader. I add arguments for
a list of task probabilities and a seed for more control over the task sampling.
XLM-R chooses the head using a task name, thus the task name must be
somehow stored in a batch. The second trick is to iterate through the data
loader and add the desired information to each batch. However, PyTorch

4https://github.com/pytorch/pytorch/issues/32520
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tensors can only contain numerical values, it does not allow the strings on
the CUDA device. Thus I use another trick that wraps the string with a str
subclass that only contains a to method, which is just the identity function.
When to is called on the task name, the string is not moved to the target
device.
In order to create the multilingual training set XNLImix leveraging the trans-
lated training sets of XNLI, I shuffle the translated sets in different languages
(including the original English training set) with the same seed and then add
them to a new list, gradually taking a block of equal size from each trans-
lated set, resulting in non-overlapping partitions. To merge the resulting list
of data blocks I pass it to datasets.interleave_datasets. The result is
XNLImix, which consists of disjoint partitions from the XNLI’s training set.
Pseudocode of the procedure is in Figure 3.5.
I adapt the code from the Hugging Face repository5 to reproduce the
correct MLM preparation for mT5’s training process. The dataset is
mC46, as in the original paper [14]. The partitions of high-resource lan-
guages have massive sizes, reaching multiple terabytes. Therefore I use
the streaming option when loading the data with datasets.load_dataset.
In order to acquire multilingual batches, I mix the monolingual sets with
datasets.interleave_datasets.
Aside from the standard feature pre-processing and tokenization, the data
should be prepared for DDP. Each model instance should have a unique batch
in the forward pass. Otherwise, DDP has no computational benefits. I use
PyTorch’s sampler called DistributedSampler. In DDP, every process has
a unique rank. The distributed sampler receives this rank and the number of
all training processes as an argument and evenly distributes dataset indices
between them. I pass the sampler to a task-specific data loader, wrap the
latter with a data loader providing the task name and then pass the list of
data loaders to the described MTL data loader.

Task embeddings

To reproduce the results of [28], I adapt the code from the official repos-
itory7. Tracking of gradients of layer outputs for TaskEmb and TextEmb
is implemented by retaining the gradients of the target tensors using the
retain_grad method. For TaskEmb, only diagonal entries of FIM are con-
sidered. Thus it suffices to raise the collected gradients to the power of 2
before normalization. igraph library8 is utilized for visualizations.

5https://github.com/huggingface/transformers/blob/main/examples/flax/
language-modeling/run_t5_mlm_flax.py

6https://huggingface.co/datasets/mc4
7https://github.com/tuvuumass/task-transferability
8https://python.igraph.org/en/stable/
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Logging

I use Weights & Biases9 for logging. The library is flexible and intuitive
and provides many ready-to-use solutions for tracking gradients (helps with
detecting divergence during training). Moreover, it allows the user to set up
custom notifications, which has helped me track longer experiments more
conveniently.

Notes on tools for MTL

Validation and test phases over multiple datasets are supported in most
frameworks, yet there is little support for simple mixing and serving datasets
in the training phase. One of the promising libraries for that is seqio, a pro-
totype of which was used for T5 training. It is specifically designed to handle
multiple tasks and mix them. Unfortunately, it is not yet mature for different
dataset formats and it utilizes TensorFlow, which is a significant downside
in the current era. Maintenance of an MTL library jiant, explicitly built
for training models in an MTL setting, combining datasets and managing
multiple classification heads of models, was discontinued in 2021.

language_sets = list()
for language in XNLI_LANGS:

language_set = load_xnli_train(language).shuffle(seed)
language_sets.append(language_set)

train_size = length(language_sets[0])
language_count = length(XNLI_LANGS)
partition_size = floor(train_size / language_count)

partitions = list()
for index, language_set in enumerate(language_sets):

start = index * partition_size
end = (index + 1) * partition_size
partition = language_set.select(range(start, end))
partitions.append(partition)

xnli_mix = interleave_datasets(blocks, seed)

Figure 3.5: The creation of XNLImix from the translated training sets of XNLI,
XNLI_LANGS denotes a list of the 15 languages used in XNLI, seed is a parame-
ter

9https://wandb.ai/site
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Chapter 4
Experiments and results

I perform a series of experiments to explore MTL’s benefits in the chosen
setup. Due to the temporal and computational constraints, I do not test
many possible combinations of hyperparameters and methods. The results
are reported on validation sets unless stated otherwise.
For reproducibility, I list the used hyperparameters. The effective batch size
is invariantly 128. The batch size per GPU is 32 for XLM-R. For mT5, the
batch size per device is 16, and, to achieve the desired effective batch size,
the gradients are accumulated over two batches. In MTL and LoRA runs,
gradient accumulation and batch size per device are changed depending on
the memory requirements. The input sequence length is 512 as a compro-
mise between mT5 (pre-trained on the sequence length 1024) and XLM-R
(256). The learning rate is constant, 7.5e-6 for XLM-R (Adam) and mBERT
(Adam), 1e-3 for mT5 (Adafactor) and 5e-4 for LoRA (Adam). XGLUE
tasks and MTL setups train until they reach ten epochs or 20 thousand opti-
mizer steps (in larger experiments, it is extended to 23 thousand steps), and
CTKFactsNLI is trained for 100 epochs. Models are evaluated every 200 op-
timizer steps. Other hyperparameters and their modifications are mentioned
when relevant to the experiment.
Hyperparameters are consistent across all experiments except the first one.
I conducted it for my semestral project using a different setup. The results
are reported on the test sets, provided only for comparison between mBERT
and XLM-R, and do not influence subsequent experiments. The models from
the old setup are explicitly denoted with a subscript old. The effective batch
size is 128. The learning rates vary in some cases due to unstable training.
Finally, to increase the speed and lower the memory footprint of training,
the precision of matrix multiplication is set to ”medium” in PyTorch, mean-
ing float32 matrix multiplications use the bfloat16 datatype for internal
computations. The results should still be similar if the chosen hardware does
not support this feature.

4.1 Multilingual experiments

In order to investigate the discrepancy between training approaches and de-
sign choices used for multilingual pre-training, I train and evaluate XLM-
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R and mBERT individually on every target language of XNLI and origi-
nal PAWS-X. This training scheme is called translate-train. Then, models
trained only on English data are evaluated in all target languages (cross-
lingual zero-shot transfer). The latter scheme will be later used in all MTL
experiments unless stated otherwise. With this, I assess the difference be-
tween translate-train (the results are in Table 4.1) and cross-lingual zero-shot
transfer (see Table 4.2). XLM-R outperforms mBERT in both scenarios.
mBERT fails at cross-lingual zero-shot transfer on XNLI. There is a signifi-
cant average performance drop of 12. The decline in XLM-R’s performance
on XNLI is only 3.7. On PAWS-X, both models underperform in Japanese
(ja) and Korean (ko).

model mBERTold XLM-Rold mBERTold XLM-Rold
dataset PAWS-X PAWS-X XNLI XNLI

ar - - 69.9 75.5
bg - - 74.6 79.6
de 87.0 88.3 76.3 79.9
el - - 73.4 79.9
en 93.5 93.9 79.3 84.4
es 89.2 90.4 76.9 80.5
fr 89.5 91.0 76.6 79.8
hi - - 66.9 71.9
ru - - 74.1 78.7
sw - - 65.8 70.7
th - - 66.1 77.3
tr - - 71.5 76.5
ur - - 61.3 67.1
vi - - 75.4 78.6
zh 82.8 84.0 76.1 78.1
ja 80.8 81.1 - -
ko 80.5 81.4 - -

AVG 86.2 87.2 72.3 77.2

Table 4.1: Translate-train scheme using the old setup, test set results (AVG
stands for average)

In contrast to the translate-train-all scheme, which was reported to boost
the performance on XNLI [12], XNLImix, a dataset constructed from the
translated training sets of XNLI, maintains the size of the original XNLI
training set. I hypothesize XNLImix can still be beneficial for overall per-
formance on XNLI when compared to the cross-lingual zero-shot transfer
setting. Moreover, this can be used later in an MTL setup as XNLI has
the biggest language overlap with the chosen XGLUE datasets. I compare
the performance on XNLImix to XNLI. The results are in Table 4.3. In all
models, there is a drop in English performance, which is compensated by
the positive gain in all other languages except for mT5’s Urdu (ur) score.
For mBERT and XLM-R, Spanish (es) has the lowest positive gain. The
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model mBERTold XLM-Rold mBERTold XLM-Rold
dataset PAWS-X PAWS-X XNLI XNLI

ar - - 58.7 72.5
bg - - 61.6 77.1
de 86.2 87.5 65.2 75.8
el - - 59.5 75.0
en 93.5 93.9 79.3 84.4
es 87.8 88.0 70.0 78.0
fr 87.6 89.0 67.4 77.8
hi - - 54.0 69.3
ru - - 63.3 73.7
sw - - 45.7 63.9
th - - 42.2 71.1
tr - - 54.1 72.4
ur - - 51.9 65.4
vi - - 67.5 73.1
zh 79.0 80.1 63.4 73.7
ja 75.6 75.0 - -
ko 74.6 72.8 - -

AVG 83.5 83.8 60.3 73.5

Table 4.2: Cross-lingual zero-shot transfer using the old setup, test set results

mT5’s smallest gain is in Vietnamese (vi) and the biggest is in Chinese (zh).
Overall, XNLImix improves performance in all three cases.

4.2 mT5 experiments

For a quick overview of the results of this series of experiments, refer to
Figure 4.1.

Single-task baseline

I set the single-task baseline on XGLUE tasks. Starting with this experiment,
the XGLUE version of PAWS-X is used. The results (see Table 4.4) are used
as a reference in later experiments.

MTL experiments

Using the initial setup and training on the XGLUE tasks jointy, I present
the baseline for mT5 MTL experiments in Table 4.5. The overall score is
already close to the single-task baseline. The average English (en) score is
higher. I observe negative transfer on NC, PAWS-X and XNLI. On the other
hand, QADSM and QAM have a significant positive gain. When computing
the overall average, 15 terms out of 37 come from XNLI. Thus, to optimize
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model mBERT mBERT XLM-R XLM-R mT5 mT5
dataset XNLImix XNLI XNLImix XNLI XNLImix XNLI

ar 67.7 64.8 73.5 72.7 73.5 72.9
bg 73.2 69.5 77.7 76.9 77.6 75.8
de 74.5 71.7 78.8 76.6 77.8 76.3
el 70.3 67.1 78.1 76.1 77.6 76.7
en 78.4 81.1 83.1 85.2 80.8 82.6
es 75.8 75.4 79.8 79.7 78.9 78.4
fr 75.7 74.2 78.5 77.8 78.7 77.7
hi 66.4 62.4 73.5 70.2 72.8 70.8
ru 69.8 68.5 77.6 75.3 75.7 73.9
sw 61.2 51.5 68.5 65.2 68.5 67.7
th 64.6 54.5 76.2 73.2 74.6 71.2
tr 69.9 64.6 75.8 72.6 73.6 72.0
ur 64.2 59.1 68.7 66.5 68.1 68.3
vi 72.4 70.1 76.6 74.7 72.9 72.8
zh 73.5 70.6 77.9 74.0 77.1 73.1

AVG 70.5 67.0 76.3 74.4 75.2 74.0

Table 4.3: A comparison of XNLImix results to English-only XNLI, results in
bold highlight some of the significant gains when using XNLImix

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.9 72.9
bg - - - - - 75.8 75.8
de 85.4 87.6 63.4 69.0 75.7 76.3 76.2
el - - - - - 76.7 76.7
en 93.2 93.3 69.5 68.1 77.2 82.6 80.6
es 84.5 90.0 - - 74.4 78.4 81.8
fr 78.2 91.0 67.4 67.6 73.6 77.7 75.9
hi - - - - - 70.8 70.8
it - - - - 66.6 - 66.6
pt - - - - 76.5 - 76.5
ru 79.2 - - - - 73.9 76.5
sw - - - - - 67.7 67.7
th - - - - - 71.2 71.2
tr - - - - - 72.0 72.0
ur - - - - - 68.3 68.3
vi - - - - - 72.8 72.8
zh - - - - 60.5 73.1 66.8

AVG 84.1 90.5 66.8 68.2 72.1 74.0 75.7

Table 4.4: mT5 single-task baseline, results in bold highlight the average result
in English and the overall average
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NC PAWS-X QADSM QAM WPR XNLI AVG
task

70

75

80

85

90

sc
or

e

single-task baseline
mtl baseline
mtl hete
mtl accum
mtl xnli_mix
mtl r3f + loss scaling

Figure 4.1: Results of mT5 MTL experiments with averages across tasks, where
every keyword in ”mtl” entry stands for the modification it adds, ”hete” denotes
heterogeneous batches, ”accum” denotes accumulation over more batches

the overall average score, it is crucial to include XNLI in as many optimizer
steps as possible.
At each global step, the MTL data loader selects a task from which it pro-
duces a batch. Suppose all MTL data loaders in DDP processes are initialized
with the same seed. At every step, each data loader chooses the same task.
As I accumulate gradients over two batches in the baseline, the effective batch
consists of batches from 2 tasks. The first modification introduces more het-
erogeneity in the effective batch as every data loader receives a unique seed.
This way, the task choice in each process does not depend on the rest. There-
fore, the effective batch at each step potentially consists of 8 samples from
different tasks, which covers my set of 6 XGLUE tasks. I hypothesize this
modification may be beneficial for performance as more tasks are included at
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dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.3 72.3
bg - - - - - 76.0 76.0
de 80.4 85.9 65.9 69.5 75.6 75.8 75.5
el - - - - - 76.5 76.5
en 92.2 93.8 71.3 69.1 77.5 83.2 81.2
es 82.9 88.1 - - 74.8 78.1 80.9
fr 76.5 90.5 68.7 67.6 73.2 77.6 75.7
hi - - - - - 68.9 68.9
it - - - - 66.6 - 66.6
pt - - - - 76.9 - 76.9
ru 79.1 - - - - 73.8 76.5
sw - - - - - 65.8 65.8
th - - - - - 71.5 71.5
tr - - - - - 71.0 71.0
ur - - - - - 65.8 65.8
vi - - - - - 72.4 72.4
zh - - - - 60.8 72.9 66.9

AVG 82.2 89.6 68.6 68.7 72.2 73.4 75.4

Table 4.5: mT5 MTL baseline, results in bold highlight the average gain in
English and the overall average

each optimizer step. The results are in Table 4.6. The average performance
on all tasks, except XNLI, decreases, yet the change in the overall average
indicates that XNLI compensates for the losses on other tasks. This modi-
fication is necessary for creating a task-heterogeneous effective batch when
gradient accumulation is not utilized. Besides, the authors of [34] advocate
for this modification. I keep it as I expect additional gains when introduc-
ing the other methods. In the later MTL experiments, all models use the
heterogeneous batches modification.
I then add the mT5’s MLM task to the training process with a chance of
sampling once in every 100 batches. As the loss of the MLM task is usually
larger, and the task itself is unrelated to TC tasks, I also test if R3F with
loss scaling may be helpful in this case. I provide only the average scores (see
Table 4.7). MLM brings no benefit to my setup. Even with loss scaling over
the vocabulary size, the score is lower. I continue without the MLM task.
Building on the heterogeneous batches, the second modification changes the
number of batches per GPU to 8 and gradient accumulation batches to 4.
With this change, the training step requires roughly half GPU memory.
Besides, there is a potential of sampling smaller batches from more tasks,
though the chosen task set is already covered without this change. The ini-
tial setup without this modification in conjunction with the R3F method
runs out of memory, thus it is necessary to test whether this modification
harms performance. The average results are in Table 4.8. The only signifi-
cant changes are a positive gain on NC and a drop on QADSM. The setup
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dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.7 72.7
bg - - - - - 77.0 77.0
de 80.9 86.3 66.6 68.8 75.5 75.6 75.6
el - - - - - 76.3 76.3
en 92.0 92.3 69.8 68.0 77.7 82.4 80.4
es 82.2 88.9 - - 74.6 77.9 80.9
fr 76.1 89.9 67.4 67.3 73.5 77.4 75.3
hi - - - - - 70.0 70.0
it - - - - 65.9 - 65.9
pt - - - - 76.8 - 76.8
ru 79.2 - - - - 74.3 76.8
sw - - - - - 65.5 65.5
th - - - - - 71.0 71.0
tr - - - - - 72.0 72.0
ur - - - - - 66.9 66.9
vi - - - - - 72.2 72.2
zh - - - - 60.6 73.1 66.9

AVG 82.1 89.3 67.9 68.0 72.1 73.6 75.3

Table 4.6: mT5 MTL more heterogeneous batches, the result in bold highlights
the overall average

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
MLM 83.4 89.4 66.8 67.7 72.0 72.6 74.9
+ R3F

+ loss scaling 83.8 86.9 68.2 67.5 72.4 73.4 75.2

Table 4.7: mT5 MTL average results with MLM mixed in, the second row of
results is MLM with R3F and loss scaling

is sustainable, and the overall average is the same.

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
AVG 83.4 89.2 66.9 68.0 72.1 73.7 75.3

Table 4.8: mT5 MTL average results with more gradient accumulation, the
result in bold highlights the overall average

The next step involves replacing the XNLI training set with XNLImix. I an-
ticipate positive gains across tasks that share target languages with XNLI
and some improvement on XNLI-exclusive low-resource languages. The re-
sults are presented in Table 4.9. My first hypothesis fails due to the drop
on QADSM (68.6 baseline vs. 67.5) and QAM (68.7 baseline vs. 68.5).
However, XNLImix elevates several languages, not only low-resource ones.
Overall, the result is positive, I continue with XNLImix.
The final modification introduces the R3F method with loss scaling. It was
reported in [34] that these methods (including heterogeneous batches) are
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dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 70.6 70.6
bg - - - - - 76.4 76.4
de 82.4 85.5 64.3 69.2 76.2 74.8 75.4
el - - - - - 75.9 75.9
en 93.3 94.1 71.2 68.8 77.5 81.2 81.0
es 82.6 89.0 - - 74.6 77.5 80.9
fr 77.1 90.0 67.0 67.6 73.2 76.9 75.3
hi - - - - - 70.3 70.3
it - - - - 65.7 - 65.7
pt - - - - 77.1 - 77.1
ru 79.7 - - - - 74.1 76.9
sw - - - - - 68.0 68.0
th - - - - - 72.7 72.7
tr - - - - - 71.5 71.5
ur - - - - - 68.4 68.4
vi - - - - - 72.5 72.5
zh - - - - 60.7 74.2 67.5

AVG 83.0 89.7 67.5 68.5 72.1 73.7 75.5

Table 4.9: mT5 MTL results when XNLI training set is replaced with XNLImix,
the results in bold highlight the significatnt gains on XNLI and the overall
average

effective on larger sets of tasks. I treat XNLImix as a collection of separate
low-resource tasks. For R3F, the noise is sampled from a uniform distribu-
tion with σ set to 1e-5, and the weight λ is set to 1e-2. The results are listed
in Table 4.10. Surprisingly, average English (en) performance degrades, es-
pecially on QADSM (71.2 previously vs. 66.5). On the other hand, the
overall performance is higher. If I replace the XNLI results in the single-task
baseline with the single-task XNLImix result, the final score of the single-task
setup becomes 76.2. My final mT5 MTL setup loses against the single-task
setup by 0.6.

4.3 XLM-R experiments

Single-task baseline

The single-task baseline is presented in Table 4.11. Instantly, XLM-R has
better performance than mT5 in a single-task setup.

MTL experiments

Although I do not accumulate batches in XLM-R’s initial setup, I introduce
heterogeneous batches in the first run. The results are in Table 4.12. The
overall score is similar to what was observed on mT5 with more heterogeneous
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dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 71.8 71.8
bg - - - - - 76.9 76.9
de 82.3 85.9 68.7 68.5 75.6 76.1 76.2
el - - - - - 76.0 76.0
en 92.7 92.9 66.5 66.1 77.5 80.7 79.4
es 82.2 89.3 - - 74.6 77.7 81.0
fr 76.5 89.8 68.8 67.2 73.6 77.3 75.5
hi - - - - - 70.8 70.8
it - - - - 66.3 - 66.3
pt - - - - 77.4 - 77.4
ru 78.9 - - - - 75.1 77.0
sw - - - - - 69.9 69.9
th - - - - - 73.7 73.7
tr - - - - - 71.8 71.8
ur - - - - - 66.9 66.9
vi - - - - - 73.3 73.3
zh - - - - 60.7 75.5 68.1

AVG 82.5 89.5 68.0 67.3 72.2 74.2 75.6

Table 4.10: mT5 MTL results with XNLImix, R3F and loss scaling, the results
in bold highlight the significant gains on XNLI and the overall average

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.7 72.7
bg - - - - - 76.9 76.9
de 86.0 87.0 64.4 67.7 76.1 76.6 76.3
el - - - - - 76.1 76.1
en 92.5 93.0 71.1 70.2 77.5 85.2 81.6
es 84.6 88.3 - - 74.8 79.7 81.9
fr 78.5 89.0 68.2 66.0 73.8 77.8 75.6
hi - - - - - 70.2 70.2
it - - - - 66.3 - 66.3
pt - - - - 77.3 - 77.3
ru 79.4 - - - - 75.3 77.3
sw - - - - - 65.2 65.2
th - - - - - 73.2 73.2
tr - - - - - 72.6 72.6
ur - - - - - 66.5 66.5
vi - - - - - 74.7 74.7
zh - - - - 61.0 74.0 67.5

AVG 84.2 89.3 67.9 68.0 72.4 74.4 75.9

Table 4.11: XLM-R single-task baseline, the results in bold highlight the best
result on English XNLI data across experiments and the overall average
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batches.

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 71.7 71.7
bg - - - - - 76.6 76.6
de 86.3 83.7 63.6 68.2 75.6 76.9 75.7
el - - - - - 75.7 75.7
en 92.2 92.2 70.2 68.4 77.2 83.7 80.7
es 84.9 86.9 - - 74.3 78.7 81.2
fr 78.0 86.2 65.9 65.9 73.8 77.1 74.5
hi - - - - - 69.3 69.3
it - - - - 66.3 - 66.3
pt - - - - 76.9 - 76.9
ru 79.6 - - - - 74.6 77.1
sw - - - - - 64.2 64.2
th - - - - - 72.9 72.9
tr - - - - - 73.4 73.4
ur - - - - - 66.1 66.1
vi - - - - - 73.7 73.7
zh - - - - 60.6 74.6 67.6

AVG 84.2 87.3 66.5 67.5 72.1 73.9 75.3

Table 4.12: XLM-R MTL with heterogeneous batches, the result in bold high-
lights the overall average

Then, I combine the steps I applied to mT5: increasing the number of gradi-
ent accumulation batches, replacing XNLI with XNLImix, applying R3F and
loss scaling. The average performance should be similar to the final mT5
MTL performance and have better XNLI results than the previous exper-
iment. The results are in Table 4.13. There is a significant drop on NC
and decent positive gains on PAWS-X and QADSM. Performance on XNLI
is significantly higher, contributing to my setup’s highest final MTL score.
However, if the single-task XNLImix result is taken into consideration, the
overall single-task average for XLM-R is 76.7, which outperforms the final
MTL setup by 1 point.

4.4 CTKFactsNLI experiments

In this series of experiments on the CTKFactsNLI task, I evaluate the benefit
of MTL pre-finetuning by comparing the pre-finetuned models with several
training schemes. First, I fine-tune XLM-R and mT5 only on the target
task. Second, I perform transfer learning from the best source task accord-
ing to TaskEmb and TextEmb. TaskEmb of each task is computed using a
model that is fine-tuned for three epochs. The results are presented as ori-
ented graphs, where every oriented edge points to the target task from the
best intermediate task, ”ctk” denotes CTKFactsNLI: TextEmb results are
in Figure 4.2, TaskEmb results are in Figure 4.3 and the aggregated version,
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dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 73.5 73.5
bg - - - - - 77.0 77.0
de 82.8 85.3 66.8 68.2 75.2 77.9 76.0
el - - - - - 76.8 76.8
en 85.2 94.2 69.3 69.2 77.3 81.6 79.4
es 80.3 88.8 - - 74.4 78.2 80.4
fr 76.1 89.9 68.0 66.1 73.3 77.7 75.2
hi - - - - - 73.3 73.3
it - - - - 66.2 - 66.2
pt - - - - 77.3 - 77.3
ru 78.8 - - - - 75.6 77.2
sw - - - - - 66.9 66.9
th - - - - - 75.4 75.4
tr - - - - - 73.3 73.3
ur - - - - - 69.6 69.6
vi - - - - - 75.7 75.7
zh - - - - 60.4 76.1 68.3

AVG 80.6 89.5 68.0 67.8 72.0 75.3 75.7

Table 4.13: XLM-R MTL results with XNLImix, R3F and loss scaling, the
results in bold highlight the significant gain on XNLI and the overall average

TaskEmb + TextEmb, is presented in Figure 4.4. TextEmb in both models
indicates that NC is the closest task to CTKFactsNLI based on linguistic
properties. However, TaskEmb is more relevant as it promises to capture
the semantic properties of the tasks. In XLM-R, the best intermediate task
for CTKFactsNLI is XNLI. The trained classification head is dropped, and
the CTKFactsNLI classification head is initialized. In mT5, it is QAM. For
CTKFactsNLI, the aggregated version does not change any of the TaskEmb’s
results. I take the required models from the single-task baselines and fine-
tune them on CTKFactsNLI for 100 epochs. Third, instead of fine-tuning
mT5, I utilize LoRA with inner dimension and scaling factor both set to
32 and dropout probability of 0.1. The results are in Table 4.14. XLM-R
demonstrates that, in this setup, the transfer from the best source task is as
effective as pre-finetuning. More importantly, both schemes are beneficial
for the resulting performance. On the other hand, transferring from QAM
degrades the resulting performance of mT5. LoRA successfully adapts when
the task is presented in the XNLI format. LoRA is not able to learn the tar-
get task with no pre-finetuning. For the two XLM-R runs with the highest
scores, the best mT5 run and the best LoRA run, I provide the results on
the test set (see Table 4.15). The highest reported result on CTKFactsNLI
in the original paper [2] is 76.9. It was achieved with XLM-Rlarge trained
on the question-answering task SQuAD2.0 [46] before final fine-tuning. At
the time of writing, the highest reported result on the test set is 80.7 [47].
The setup used the RobeCzech model [48] in conjunction with active learning
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(a) : Based on TextEmb embeddings ex-
tracted from the mT5’s encoder
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(b) : Based on TextEmb embeddings ex-
tracted from the XLM-R’s encoder. The
graph has two components as XNLI is the
best intermediate task for PAWS-X and
vice versa

Figure 4.2: TextEmb results, the edges point to the target task from the best
intermediate task, ”ctk” denotes CTKFactsNLI

methods. Judging by the test results of my experiments, my pre-finetuned
mT5 sets a new record on CTKFactsNLI with 81.9.

4.5 Test set results

I additionally evaluate the single-task and MTL baselines and the final MTL
models on the test sets. The tables are presented in Appendix A. mT5’s MTL
baseline outperforms the final MTL version. The latter sees a significant drop
on QAM (69.8 vs. 67.2). XLM-R with R3F and loss scaling performs better
compared to the heterogeneous batch MTL baseline (75.8 vs. 75.3).
On average, single-task baselines still outperform the MTL models. For mT5,
as can be seen in Figure 4.5, QADSM is the only task that benefits from MTL
with a gain of 5.1 in German (de) and 1.3 average gain on that task. In
XLM-R’s final MTL version, PAWS-X and XNLI benefit from MTL, while
NC has a large drop (7) in English (en) performance and 3.4 drop on that
task (see Figure 4.6).
Lastly, I compare the final MTL versions of XLM-R and mT5 (see Figure
4.7). The overall result is similar, mT5 performs better on NC and WPR,
while XLM-R produces stronger results on the rest of the tasks. XLM-R
outperforms mT5 in this setting by 0.1.
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(b) : Based on TaskEmb embeddings ex-
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Figure 4.3: TaskEmb results, the edges point to the target task from the best
intermediate task, ”ctk” denotes CTKFactsNLI
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(b) : Based on the aggregated embed-
dings extracted from the XLM-R’s en-
coder

Figure 4.4: TaskEmb + TextEmb aggregated results, the edges point to the
target task from the best intermediate task, ”ctk” denotes CTKFactsNLI
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model methods F1
XLM-R - 68.4

transfer from XNLI 74.5
pre-finetuned 74.6

mT5 - 73.1
transfer from QAM 70.9
pre-finetuned 73.8
pre-finetuned + R3F + loss scaling 74.1
pre-finetuned + XNLI format 73.1
pre-finetuned + XNLI format + R3F + loss scaling 74.0
LoRA 54.1
pre-finetuned + LoRA 64.7
pre-finetuned + XNLI format + LoRA 73.0

Table 4.14: results on CTKFactsNLI, the results in bold highlight significant
scores across models and methods

model methods F1
XLM-R transfer from XNLI 81.2

pre-finetuned 79.1
mT5 pre-finetuned + R3F + loss scaling 81.9

pre-finetuned + XNLI format + LoRA 81.5

Table 4.15: results on CTKFactsNLI, test set results, the results in bold high-
light scores higher than the previous SOTA
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Figure 4.5: Comparison of the final mT5 MTL model with the single-task
baseline, test set results
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Figure 4.6: Comparison of the final XLM-R MTL model with the single-task
baseline, test set results
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MTL model, test set results
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Chapter 5
Discussion

In the initial experiments, the models trained on the English training set of
PAWS-X underperformed in Japanese (ja) and Korean (ko), which indicates
that low lexical overlap between English and target languages degrades per-
formance. With XNLImix, I saw a decent performance boost on each trained
model. However, in MTL experiments, this did not benefit other tasks,
only resulting in better performance on XNLI-exclusive languages. While
XNLImix improved mT5’s overall MTL performance, the effect was mixed:
some XNLI-exclusive languages saw a drop in performance, and some saw
a significant boost. The mT5’s MTL baseline had a better average score in
English (en) than its single-task baseline. The MTL model performed more
optimizer steps on English data, which might have been the cause. However,
it would contradict the findings of the subsequent MTL experiments, where
English performance got worse (as in the last mT5 MTL experiment). Apart
from that, I did not find any significant language-specific pattern. Mixing
the mT5’s MLM task has been fruitless, I suppose it has no positive effect
on TC performance in general. The final combination of XNLImix with R3F
and loss scaling resulted in the best-performing models on validation sets.
Ultimately, the performance gap between MTL models and their single-task
counterparts was not closed. Pre-finetuning improved the target task perfor-
mance and effectively allowed LoRA to learn at all. The similarity between
XNLI and CTKFactsNLI allowed for the reformulation trick, further im-
proving LoRA’s performance. TaskEmb failed on mT5 by predicting QAM,
possibly due to a low amount of training conducted for this method (each
task for three epochs). Nevertheless, on XLM-R, it determined an intuitively
correct intermediate task, XNLI, transferring from which provided the best
result. It could mean that, for XLM-R, the chosen XGLUE tasks lead to
negative transfer when learned jointly. Both of my XLM-Rbase models pro-
duced better results than had been reported on XLM-Rlarge in the original
paper [2], which might have been caused by an unfortunate choice of hyper-
parameters in the latter case. My pre-finetuned mT5 has updated the SOTA
on CTKFactsNLI, yet the previous SOTA result [47] was achieved with a
significantly smaller model (mT5base has 582 million parameters, RobeCzech
has 125 million). Even though this aligns with a common notion that larger
models perform better, RobeCzech is a monolingual Czech model, while the
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...........................................5. Discussion

Czech language occupies only 1.72% of mT5’s pre-training volume.
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Chapter 6
Conclusion

In this work, I investigated the application of MTL methods to multilingual
transformers to solve multiple TC tasks. While the joint MTL experiments
on the chosen set of tasks produced competitive models, the single-task fine-
tuning still outperformed the MTL models. However, MTL pre-finetuning
has proven to be beneficial for the performance on the target task. In case
of XLM-R, transferring from an intermediate task predicted by TaskEmb
embeddings outperformed the MTL model. I have demonstrated that pre-
finetuning provides a strong basis to build upon when using parameter-
efficient fine-tuning methods, such as LoRA. Finally, the pre-finetuned mT5
has updated the SOTA on CTKFactsNLI.
MTL is a complex yet exciting paradigm. It is one of the components that
modern language models heavily rely on. MTL, combined with multilingual-
ity, produces models that are more universal in their capabilities (compared
to single-task models) and are easier to use for non-English speakers. I hope
my work has provided a decent overview of what MTL has to offer, even in
a small-scale multilingual setup.
It has been an excellent opportunity to learn about these topics. I have
read many research papers and blog posts on various topics to gather the
materials for this work. The implementation process has been chaotic, and
the setup has been rewritten multiple times. On the other hand, I have
gained some experience working with PyTorch Lightning and Hugging Face
libraries. Adapting and implementing the code from the research papers has
been a great challenge that has helped me be more critical and attentive
to details. I have explored multiple methods and hyperparameter choices in
this work, which has developed my intuition for the training process. Finally,
I have spent many hours debugging the code, planning and tracking the
experiments, which has been stressful, yet worth the time and effort.
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Chapter 7
Future works

Regarding this work, I plan to rewrite the code in a cleaner format, raise
several issues (including the fix for R3F and the inconsistency of R4F) and
answer the questions on online forums about basic MTL setups. Besides,
It would be beneficial to try other learning strategies, such as fully sharded
data parallel (FSDP).
This work has combined several topics that I am interested in. First, I would
like to research the possibilities of multilingual models further. There is still a
gap in filtering the colossal data sources for pre-training. A more systematic
approach is desired. Second, MTL is being widely adopted in modern mod-
els. The development of new MTL-related methods and frameworks happens
at an overwhelmingly rapid pace. The new wave of instruction fine-tuning
methods [49] offers an excellent opportunity for exploration and experimen-
tation. Another direction I am excited about is the application of LoRA and
similar parameter-efficient fine-tuning methods to existing large pre-trained
models.
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Appendix A
Test set results

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.9 72.9
bg - - - - - 77.6 77.6
de 84.9 89.1 63.2 69.1 76.7 76.2 76.5
el - - - - - 76.1 76.1
en 92.8 94.2 69.1 67.4 77.6 82.9 80.6
es 83.8 89.3 - - 74.7 78.7 81.6
fr 78.6 90.0 68.3 68.9 73.6 78.0 76.2
hi - - - - - 70.5 70.5
it - - - - 68.5 - 68.5
pt - - - - 75.3 - 75.3
ru 79.5 - - - - 75.7 77.6
sw - - - - - 68.8 68.8
th - - - - - 71.5 71.5
tr - - - - - 71.5 71.5
ur - - - - - 67.8 67.8
vi - - - - - 73.5 73.5
zh - - - - 61.8 73.6 67.7

AVG 83.9 90.6 66.8 68.5 72.6 74.4 76.0

Table A.1: single-task mT5 baseline, test set results, the result in bold high-
lights the overall average
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........................................ A. Test set results

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 73.2 73.2
bg - - - - - 77.3 77.3
de 79.7 88.9 66.1 71.1 77.1 75.9 76.5
el - - - - - 76.2 76.2
en 91.9 94.1 70.9 68.9 78.3 83.4 81.3
es 82.0 90.1 - - 75.4 78.5 81.5
fr 76.3 89.5 69.9 69.3 74.3 77.3 76.1
hi - - - - - 69.0 69.0
it - - - - 68.9 - 68.9
pt - - - - 75.4 - 75.4
ru 79.3 - - - - 75.6 77.4
sw - - - - - 66.5 66.5
th - - - - - 72.2 72.2
tr - - - - - 70.6 70.6
ur - - - - - 66.1 66.1
vi - - - - - 73.5 73.5
zh - - - - 61.8 72.9 67.3

AVG 81.8 90.6 69.0 69.8 73.0 73.9 75.9

Table A.2: MTL mT5 baseline, test set results, the result in bold highlights
the overall average

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 72.5 72.5
bg - - - - - 76.8 76.8
de 81.9 87.7 68.3 67.9 76.7 76.6 76.5
el - - - - - 77.2 77.2
en 92.7 92.9 65.8 65.2 77.6 81.5 79.3
es 81.9 88.7 - - 74.8 77.7 80.8
fr 76.8 88.6 70.2 68.6 74.3 76.6 75.9
hi - - - - - 70.9 70.9
it - - - - 68.9 - 68.9
pt - - - - 75.2 - 75.2
ru 78.9 - - - - 75.7 77.3
sw - - - - - 69.1 69.1
th - - - - - 74.0 74.0
tr - - - - - 72.5 72.5
ur - - - - - 66.9 66.9
vi - - - - - 72.7 72.7
zh - - - - 61.6 75.2 68.4

AVG 82.5 89.5 68.1 67.2 72.7 74.4 75.7

Table A.3: MTL mT5 final version (more heterogeneous batches + XNLImix +
R3F + loss scaling), test set results, the results in bold highlight a significant
boost in German (de) on QADSM and the overall average
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........................................ A. Test set results

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 73.1 73.1
bg - - - - - 78.0 78.0
de 84.9 86.5 65.3 67.7 77.0 77.0 76.4
el - - - - - 75.6 75.6
en 92.4 94.2 72.5 69.7 77.5 84.7 81.8
es 84.2 88.3 - - 74.9 78.7 81.5
fr 78.6 88.7 68.7 68.2 73.4 77.4 75.9
hi - - - - - 70.1 70.1
it - - - - 68.7 - 68.7
pt - - - - 74.8 - 74.8
ru 79.6 - - - - 76.1 77.9
sw - - - - - 65.4 65.4
th - - - - - 73.0 73.0
tr - - - - - 72.5 72.5
ur - - - - - 66.6 66.6
vi - - - - - 75.0 75.0
zh - - - - 61.9 74.2 68.1

AVG 83.9 89.5 68.8 68.6 72.6 74.5 76.1

Table A.4: single-task XLM-R baseline, test set results, the result in bold
highlights the overall average

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 71.7 71.7
bg - - - - - 76.6 76.6
de 86.3 83.7 63.6 68.2 75.6 76.9 75.7
el - - - - - 75.7 75.7
en 92.2 92.2 70.2 68.4 77.2 83.7 80.7
es 84.9 86.9 - - 74.3 78.7 81.2
fr 78.0 86.2 65.9 65.9 73.8 77.1 74.5
hi - - - - - 69.3 69.3
it - - - - 66.3 - 66.3
pt - - - - 76.9 - 76.9
ru 79.6 - - - - 74.6 77.1
sw - - - - - 64.2 64.2
th - - - - - 72.9 72.9
tr - - - - - 73.4 73.4
ur - - - - - 66.1 66.1
vi - - - - - 73.7 73.7
zh - - - - 60.6 74.6 67.6

AVG 84.2 87.3 66.5 67.5 72.1 73.9 75.3

Table A.5: MTL XLM-R (heterogeneous batches), test set results, the result in
bold highlights the overall average
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........................................ A. Test set results

dataset NC PAWS-X QADSM QAM WPR XNLI AVG
ar - - - - - 73.5 73.5
bg - - - - - 77.8 77.8
de 82.4 87.4 67.0 68.2 76.0 76.6 76.3
el - - - - - 76.1 76.1
en 85.4 94.5 69.7 67.8 77.4 81.3 79.3
es 79.7 88.1 - - 74.1 78.0 80.0
fr 76.0 89.6 69.7 68.2 73.6 77.3 75.7
hi - - - - - 72.3 72.3
it - - - - 68.9 - 68.9
pt - - - - 75.2 - 75.2
ru 78.9 - - - - 76.4 77.6
sw - - - - - 67.4 67.4
th - - - - - 73.8 73.8
tr - - - - - 73.8 73.8
ur - - - - - 68.9 68.9
vi - - - - - 75.8 75.8
zh - - - - 61.2 75.7 68.5

AVG 80.5 89.9 68.8 68.1 72.3 75.0 75.8

Table A.6: MTL XLM-R final version (heterogeneous batches + XNLImix +
R3F + loss scaling), test set results, the results in bold highlight the average
scores of the tasks that benefit from MTL and the overall average
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