Bachelor Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Simulation of Automated Cayenne Porsche
in the CARLA Simulator

Miroslav Matéjcek

Supervisor: Ing. Jifi Vlasak

Supervisor—specialist: Ing. Michal Sojka, Ph.D.

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science
May 2023

ii

Acknowledgements

I would like to take this opportunity to
express my deepest gratitude to my super-
visor Ing. Jifi Vlasék, for his exceptional
patience, particularly during the revisions
of this text. I am immensely grateful
for his guidance and valuable feedback
throughout the entire process.

I would also like to extend my grati-
tude to Ing. Michal Sojka, Ph.D., for his
valuable professional advice and insights.
His contributions greatly enriched the re-
search and development of this work.

Special thanks to my family, girlfriend,
and friends for their endless support
throughout not only my study but my
whole life.

Last but not least, I would like to men-
tion the open-source community for their
continuous efforts in sharing solutions to
a wide range of issues, extending beyond
the scope of the CARLA simulator.

iii

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses
In Prague, 26. May 2023

Abstract

The automotive industry deals with the
advances in the automation of driving.
Automation promises improvement in
safety, provided that all systems are func-
tioning properly. This thesis explores the
usage of simulation for the purpose of Au-
tomated Driving System testing. Namely,
the thesis presents the simulation of the
Porsche Cayenne (equipped with sensors
and actuators for automated driving) in
the CARLA simulator. Based on the com-
parison of the real-world and simulation
experiments, the conclusion is that the
presented simulation environment is suit-
able for Automated Driving System test-
ing.

Keywords: Automated Driving,
CARLA Simulator, ROS, Porsche
JUPITER, Livox Horizon

Supervisor:
CIIRC A-517,
Jugoslavskych partyzénu 1580/3,
Praha 6

Ing. Jifi Vlasak

iv

Abstrakt

Automobilovy pramysl se potyka s po-
kroky v automatizaci fizeni. Automati-
zace slibuje zvyseni bezpecnosti za pred-
pokladu, ze vsechny systémy funguji bez-
problémové. Tato prace zkoumd vyuziti
simulaci za tcelem testovani systému au-
tomatizovaného rizeni. Konkrétné pired-
stavuje simulaci Porsche Cayenne (vyba-
veného senzory a aktuatory pro automari-
zované Fizeni) v simuldtoru CARLA. Na
zakladé porovnani vysledka experimentu
provedenych s redlnym vozidlem a v si-
mulaci usuzuje, ze predstavené simulacni
prostiedi je adekvatni k testovani systému
automatizovaného ftizeni.

Klicova slova: Automatizované tizeni,
Simuldtor CARLA, ROS, Porsche
JUPITER, Lidar Livox

Pteklad nazvu: Simulace
automatizovaného Porsche Cayenne v
simulatoru CARLA

Contents

Project Specification 1
1 Introduction 3
1.1 Background 4
Unreal Engine 4
CARLA 4
ROS ... 4
CARLA-ROS Bridge 4
Project JUPITER 4
Livox ...)

2 Adding Porsche Cayenne into
CARLA 7
2.1 Building CARLA from Source ... 7
2.2 Adding Porsche Cayenne into

CARLA 8
2.3 Adding Livox Lidar into CARLA 9
2.4 Exporting a Package 10
3 Simulating Porsche Cayenne in
CARLA 13
3.1 Simulation Environment 13
3.2Slalom 18
3.3 Parking, 19
4 Comparing Real Vehicle with the
Simulation 21
41Lidar.........., 21
4.2 Parking 24
5 Conclusion 29
Bibliography 31
A List of attachments 33
source_code.zip 33

B CARLA Is Awesome 35

Figures
1.1 Comparison of architecture used in
a simulator (left) and in the real

vehicle (right). The figure is taken
from [4]. ... oo 3

2.1 Added model of Porsche Cayenne

in CARLA. 8
2.2 Exporting 3D model from CARLA. 9
2.3 Livox horizon lidar in CARLA. . 10

3.1 Coordinate systems of CARLA

under ROS. 15
3.2 Coordinate systems of ADS. ... 16
3.3 HUD in Manual Control. 16
3.4 Communication between nodes in

simple slalom. 18
3.5 Slalom simulation. 19
3.6 Simple scenario with the JUPITER

vehicle., 19
3.7 Communication with parking

ADS. ... 20
3.8 Complex scenario with the

JUPITER vehicle. 20
4.1 Scanned environment. 22
4.2 Lidar data collected in 5s. 22
4.3 Lidar data collected in 0.1 s. ... 23

4.4 Visualisation data from 3
consecutive messages from used
lidars. ..o 23
4.5 GNSS data from Simple scenario. 24
4.6 GNSS data from Complex

SCENATIO. « v v v v e e 25
4.7 Headings in Simple scenario. ... 25
4.8 Headings in Complex scenario. . 26
4.9 Speed and acceleration in Simple

SCENATIO. « v vt v 26
4.10 Speed and acceleration in

Complex scenario. 27

4.11 Experiments on simple scenario. 27
4.12 Experiments on complex
SCENATIO. « v v vt v e e e 28

vi

Listings

2.1 Exporting own CARLA pack-
age. ... 10

2.2 Launching CARLA. ... 11

3.1 Example of simple translator. 17

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

Student's name: Matéjcek Miroslav Personal ID number: 498854
Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science

_ Y,
[l. Bachelor’s thesis details

Bachelor’s thesis title in English:

Simulation of Automated Cayenne Porsche in the CARLA Simulator

Bachelor’s thesis title in Czech:

Simulace automatizovaného Porsche Cayenne v simulatoru CARLA

Guidelines:

Preparing the simulation environment with the CARLA simulator for experiments with the Porsche Cayenne equipped with
sensors and actuators for automated driving.

1. Familiarize yourself with the CARLA simulator and project JUPITER -- Porsche Cayenne prepared for experiments with
automated driving.

2. Create a virtual model of the vehicle JUPITER in the CARLA simulator, including sensors (especially Livox LiDAR), and
prepare an interface to the vehicle that resembles the real vehicle as much as possible. Use the ROS 2 framework.

3. Create simple applications in ROS 2 to control the simulated vehicle, e.g. emergency braking, adaptive cruise control,
lane keeping.

4. In collaboration with the supervisor, run and test the developed applications in the vehicle JUPITER. Compare the
behavior of the control algorithms in the simulation and in the real vehicle. Based on the experimental results, improve the
simulation to resemble the real vehicle as much as possible.

5. Document the results accurately.

Bibliography / sources:

[1] “J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles - SAE International.” Accessed August 2, 2022. https://www.sae.org/standards/content/j3016_202104/.

[2] Dosovitskiy, Alexey, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. “CARLA: An Open Urban
Driving Simulator.” In Proceedings of the 1st Annual Conference on Robot Learning, 1-16, 2017.

[3] Riedmaier, Stefan, Thomas Ponn, Dieter Ludwig, Bernhard Schick, and Frank Diermeyer. “Survey on Scenario-Based
Safety Assessment of Automated Vehicles.” IEEE Access 8 (2020): 87456—77.
https://doi.org/10.1109/ACCESS.2020.2993730.

[4] Weissensteiner, Patrick, Georg Stettinger, Johannes Rumetshofer, and Daniel Watzenig. “Virtual Validation of an
Automated Lane-Keeping System with an Extended Operational Design Domain.” Electronics 11, no. 1 (January 2022):
72. https://doi.org/10.3390/electronics11010072.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jifi Vlasak Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 23.01.2023 Deadline for bachelor thesis submission: 26.05.2023

Assignment valid until: 22.09.2024

Ing. Jifi Vlasak prof. Ing. Tom&s Svoboda, Ph.D. prof. Mgr. Petr Péata, Ph.D.

k Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Chapter 1

Introduction

Automated driving has become an increasingly significant topic in the au-
tomotive industry. Nowadays, it is common for new cars to have some
driving automation features like parking assistants, Adaptive Cruise Control,
emergency braking or Automated Lane-Keeping Systems, and companies are
continuously trying to develop higher levels of Automated Driving Systems [1].
To ensure safety, these systems must undergo thorough testing before being
deployed in traffic [2]. Due to the challenges associated with real-world
testing, there is a growing trend to conduct as much testing as possible in
simulations [3], [4].

L
Python API
ScenarioRunner

e 15t vehicle

Python API

ROS2

FlexRay/Ethemet
bridge

DP/IP \UDP/IP

CARLA ROS bridge

ROS Bridge Sensor topics \Carla Ackermann Control topic ROS2

(Sensmrs translatﬂr) Q-\ctuatimn tra nslataa Senscrs publlshersj Gctuatmn subscnber
@;’nsgs: Image, PointCloud2 /ackermann_msgs: AckermannDrive @‘msgs Image, PointCloud2 /ackermann_msgs: AckermannDrive
Automated Driving Sy stem: ALKS Autumated Dnvlng System: ALKS

Figure 1.1: Comparison of architecture used in a simulator (left) and in the real
vehicle (right). The figure is taken from [4].

The advantage of a simulator is the possibility of testing under various
traffic conditions and weather, regardless of the time of day or season. Testing
in a simulator also allows testing of software that is still under development,
and its safe operation in a real environment cannot be guaranteed. Detecting
software errors during the simulation can prevent high property damage or
even injury that could happen in real-world tests.

This thesis describes the utilization of the CARLA simulator [5] to create
the simulation of the Porsche Cayenne equipped with sensors and actuators
for autonomous driving, namely the camera, lidar and GNSS sensor, and
compares the simulation with the real vehicle.

3

1. Introduction

This requires incorporating the model of the Porsche Cayenne into the
CARLA simulator, integrating the Livox Horizon lidar into the CARLA
simulator, creating a simulation with added Porsche Cayenne and sensors
appropriately attached to it, and ensuring communication between the sim-
ulator and automated driving system. Subsequently, make experiments in
the simulator and compare them with corresponding experiments done in the
real car.

B 11 Background

This section contains a description of used terms and related projects.

B Unreal Engine

A comprehensive gaming engine for 3D graphics developed by Epic Games,
Inc [6]. It includes an integrated editor, the Unreal Editor, that allows the
addition of custom models into its projects.

H CARLA

Car Learning to Act [5], [7] is an open-source urban driving simulator created
under Unreal Engine 4 that is being developed to test, train and validate
autonomous driving systems.

B ROS

Robot Operating System in an open-source set of software tools and packages
for developing robots that enable easy communication between individual
components. One of these tools is Robot Visualizer (RViz) that enables the
visualisation of data from ROS, for example, data generated by lidars.

Il CARLA-ROS Bridge

A collection of ROS packages that allows CARLA to be controlled using
ROS [8]. The packages can for example spawn objects, control simulated
vehicles or launch prepared scenarios.

B Project JUPITER

Joint User Personalized Integrated Testing and Engineering Resource is
a project of Porsche Engineering Services that established an automotive
platform based on the ROS system for researching automated driving. The
part of the project is three vehicles Porsche Cayenne equipped with sensors.
One of them is currently being used in research at the Czech Institute of
Informatics, Robotics, and Cybernetics in Prague.

4

1.1. Background

B Livox

A company that is creating industrial lidars used in automated mobility. Livox
Horizon lidar equipped on the Porsche Cayenne is made by their company.

Chapter 2
Adding Porsche Cayenne into CARLA

This chapter describes how to add a model of the Porsche Cayenne along
with Livox lidar to the CARLA simulator [9] version 0.9.13 on Ubuntu 20.04.

Adding custom assets like vehicle or sensor models requires the CARLA
simulator to be compiled from the source code. Because CARLA is based
on Unreal Engine 4 [6], custom models must be specified in .uasset format,
which can be created in the Unreal Engine editor.

The following sections summarise the process of adding assets to the
CARLA simulator. Particularly, Section 2.1 describes the compilation of
the CARLA simulator from the source code, adding a model of the Porsche
Cayenne is summarised in Section 2.2 and Livox lidar in Section 2.3, and
Section 2.4 describes how the CARLA standalone package with custom assets
is created.

B 2.1 Building CARLA from Source

The CARLA simulator is based on Unreal Engine 4 (UE4). So, to compile
CARLA, UE4 must be installed first. UE4 is very demanding on storage
and performance. At least 100 GB of free disk space and 6 GB of GPU are
required. The engine often uses over 20 GB of RAM, so it is recommended
to expand the swap memory sufficiently.

To obtain the source code of the Unreal Engine, it is necessary to have
a GitHub account and an Epic Games account and to have these accounts
linked together.

When the prerequisites are satisfied, the rest of the installation of the UE4
is straightforward.

The compilation of CARLA requires another 30 GB of memory, and the
other prerequisites are the same as for the installation of UE4. The installation
should then happen without complications. However, it may happen that the
compilation of PythonAPI fails due to downloading libzerzes. In such a case,
it is necessary to modify line 431 of the Util/BuildTools/Setup.sh file to:

XERCESC_REPO=https://archive.apache.org/dist/xerces/c/3/
sources/xerces-c-${XERCESC_VERSION}.tar.gz

2. Adding Porsche Cayenne into CARLA

Finally, when the engine starts, the individual assets are still being compiled.
Therefore, it is recommended to leave the program running for a few hours
until the assets are compiled.

B 2.2 Adding Porsche Cayenne into CARLA

Adding a custom vehicle model requires the CARLA simulator to be compiled
from the source code. There are strict requirements for the 3D model to be
added to CARLA. Although there are two tutorials in official documentation
on how to add a vehicle, it is easier to reuse already created models from the
simulator. Such an approach to creating the model is demonstrated in the
tutorial from Haowei Zhang'. The Porsche Cayenne added to the CARLA is
shown in Figure 2.1.

pygame window

Figure 2.1: Added model of Porsche Cayenne in CARLA.

It takes some time to grasp creating assets for Unreal Engine. It can take
several attempts to add a vehicle properly. The rest of the section provides
suggestions that can help with this.

® Tesla 3D model can be exported from Content Browser in Unreal En-
gine. Path to it from CARLA directory is Unreal/CarlaUE4/Content/
Carla/Static/Vehicles/4Wheeled/Tesla/SM_TeslaM3_v2.uasset as
demonstrated in Figure 2.2.

'Video tutorial about adding a vehicle into CARLA - https://www.youtube . com/watch?
v=0F3ugwkISGk

https://www.youtube.com/watch?v=0F3ugwkISGk
https://www.youtube.com/watch?v=0F3ugwkISGk

2.3. Adding Livox Lidar into CARLA

Figure 2.2: Exporting 3D model from CARLA.

® If your model is composed of multiple parts, the shortcut in Blender for
merging them is alt+p.

® After importing the model into UE4, click on save all to save all assests
like materials, that will not be modified.

8 When modifying the physics asset, change the Physics Type to Kinematic
only for the wheels, the body must remain Default.

8 The Collision Mesh for the wheels’ blueprint should be Wheel shape
despite older sources saying Clylinder.

The following are interesting sources about content creation for CARLA.

® Videotutorial of adding vehicle into CARLA [10]
https://www.youtube.com/watch?v=0F3ugwkISGk

® GitHub issue where people discuss they problems about adding a vehicle
into CARLA [11]
https://github.com/carla-simulator/carla/issues/2738

® Official documentation about adding an vehicle into CARLA
https://carla.readthedocs.io/en/latest/tuto_A_add_vehicle/

® Official documentation about creating an vehicle model
https://carla.readthedocs.io/en/latest/tuto_content_authoring_
vehicles/

® Videotutorial about adding a vehicle into Unreal Engine [12]
https://www.youtube.com/watch?v=0F3ugwkISGk

B 2.3 Adding Livox Lidar into CARLA

The Livox lidar differs from the default lidar in CARLA. The main difference
is in the shape of the trajectory of the rays. The Livox lidar’s trajectory is
complex; the default lidar’s trajectory from CARLA is circular.

9

https://www.youtube.com/watch?v=0F3ugwkISGk
https://github.com/carla-simulator/carla/issues/2738
https://carla.readthedocs.io/en/latest/tuto_A_add_vehicle/
https://carla.readthedocs.io/en/latest/tuto_content_authoring_vehicles/
https://carla.readthedocs.io/en/latest/tuto_content_authoring_vehicles/
https://www.youtube.com/watch?v=0F3ugwkISGk

2. Adding Porsche Cayenne into CARLA

Figure 2.3: Livox horizon lidar in CARLA.

Adding a custom sensor into the CARLA simulator requires changes in its
source code. This section describes the changes needed to the CARLA source
code to add Livox Horizon lidar.

Adding a sensor to CARLA involves reverse engineering how the sensor
works, writing the sensor actor, the serializer and the corresponding data
class. Changes in the CARLA-ROS bridge are needed to control the sensor
through ROS.

The source code of the Livox lidar for the CARLA simulator has already
been published as an open-source project [13]. The rest of this section
describes how to merge this project into the CARLA source code.

The Livox lidar source code is meant to be only moved into proper di-
rectories and be recompiled along with the rest of the CARLA source code.
However, because the project is done for an older version of the CARLA
simulator, the files cannot be just replaced. It is necessary to merge parts
of the Livox lidar code into the CARLA source files. We have published an
updated version of the CARLA simulator that includes the code of Livox
lidar?. We also published an updated CARLA-ROS bridge?.

Figure 2.3 shows a visualisation of the added Livox lidar after recompilation
of the simulator.

B 24 Exporting a Package

CARLA standalone package needs to be created to run the CARLA with
custom assets without Unreal Engine.

Creating the CARLA standalone package can be done by the CARLA
build system, as can be seen in Listing 2.1. The process takes several hours
and produces approximately 14 GB of CARLA assets, including executables,
maps, vehicles, sensors and Python API.

make package ARGS='"--packages=Carla'"

Listing 2.1: Exporting own CARLA package.

2Carla with Livox lidar - https://github.com/matejm42/carla/tree/livox
3CARLA-ROS bridge with Livox lidar https://github.com/matejmé42/ros-bridge/
tree/0.9.13-1ivox

10

https://github.com/matejm42/carla/tree/livox
https://github.com/matejm42/ros-bridge/tree/0.9.13-livox
https://github.com/matejm42/ros-bridge/tree/0.9.13-livox

2.4. Exporting a Package

To run the CARLA simulator from an exported package with Nvidia drivers,
the environmental variable has to be exported before launching CARLA:

export VK_ICD_FILENAMES="/usr/share/vulkan/icd.d/
nvidia_icd.json" && ./CarlaUE4.sh

Listing 2.2: Launching CARLA.

11

12

Chapter 3
Simulating Porsche Cayenne in CARLA

This chapter describes simulations of the Porsche Cayenne (ADS) in the
CARLA simulator. Particularly with ADS for parking developed with the
cooperation between the Czech Technical University in Prague and Porsche
Engineering Services.

To perform the simulation, it is necessary to: 1) Spawn Porsche Cayenne
with sensors appropriately attached to it. 2) Create ROS nodes that translate
status information from the CARLA simulator to ROS messages for the ADS.
3) Create ROS nodes that control the simulated vehicle according to ROS
messages from ADS. 4) Launch the ROS node with the ADS function.

(1) - (3) relates to CARLA-ROS bridge [14], as covered in Section 3.1.
Sections 3.2 and 3.3 deal with (4). In Section 3.2, the simulation environment
is verified on a simple example of a slalom between cones. Finally, the
simulation environment is used with an automated parking system for the
JUPITER vehicle in Section 3.3.

. 3.1 Simulation Environment

This section describes, how to set up a simulator with Porsche Cayenne with
needed sensors attached and how to translate messages between CARLA and
ADS. All the communication between the developed ADS and the JUPITER
vehicle is done through the ROS framework. CARLA-ROS bridge is used to
communicate with the CARLA simulator over ROS.

Because everything is controlled by ROS, a ROS launchfile can be created
to launch all parts of the system: packages from the CARLA-ROS bridge to
communicate with the CARLA simulator and nodes responsible for translating
the messages between the CARLA-ROS bridge and ADS. It also allows passing
parameters to all nodes and defining their default values. The values can be
also set by exporting the corresponding environment variable, which is also
suitable when using a Docker environment. Parameters of the CARLA-ROS
bridge allow to choose a map for the simulation or an IP address of the
simulator since it can be run on a remote server. Another parameters belongs
to the CARLA Spawn Objects package that allows spawning vehicles into
the simulation.

CARLA Spawn Object takes objects definition file in JavaScript Object

13

3. Simulating Porsche Cayenne in CARLA

Notation (JSON) format as a parameter, where objects to spawn are defined.
It contains the type of the vehicle to spawn, and a set of sensors with their
parameters and relative positions to the vehicle. Besides a vehicle and sensors
from CARLA, also pseudosensors can be defined there. They are part of the
ROS bridge and turn on publishing extra topics with information about the
simulation or vehicle. They are not necessary for the simulation, because the
state of the vehicle is described in summary message status, but they enable
the usage of some other ROS packages like CARLA Manual Control or some
visualisation features in RViz.

For translating the messages between the CARLA-ROS bridge and ADS
nodes called translators are used. They listen for the messages from CARLA
and send the same information in the format expected by ADS. An example
of this translator is in listing 3.1.

The camera translator listens for messages from the camera sensor on the
simulated vehicle. The ADS expect the same standard image format as comes
from the CARLA-ROS bridge, so only the name of the topic and header is
changed and the same message is published.

The front and rear lidar translators work the same as the translator for
the camera because data from lidars are also in a standard format.

The tricky part is handling coordinate systems and headings because both
the CARLA-ROS bridge and JUPITER car use multiple different systems.
All used data came from the CARLA-ROS bridge, but it is good to point
out that the CARLA simulator has the left-handed coordinate system, to be
compatible with the unreal engine. This system CARLA-ROS bridge changes
to right-handed, which is standard for ROS.

Translator for GNSS data listens for GNSS sensor in CARLA simulator.
Its message is in a standard format and GNSS data are mapped 1:1 between
the simulator and ADS.

GNSSaps = GNSScARrLA

The translator for heading listens for a summary message from the simulator
vehicle status. Both the simulator and ADS use quaternion format to store
heading, but the angle has to be changed. Heading expected by ADS has
a different positive direction, than heading that is part of simulated vehicle
status. Furthermore, the sensor expected by ADS gives zero value, when the
car is heading north, the simulated when heading east.

Haps = —1- Hcarpa + 7/2

The translators handling messages with information about the state of the
vehicle listen for a summary message from the simulator vehicle status. This
message is split into topics in the proprietary format of messages from a bus
in the Porsche Cayenne. They contain information about speed of the vehicle,
speed of rear wheels, stand still flag and the relative heading of the vehicle
(gierwinkle). The gierwinkle has the same direction as the heading form the
CARLA simulator, but it is shifted by the starting position and stored in
radians.

G = Hcarra — HsTaArT

14

3.1. Simulation Environment

The system used for describing the parking path and visualisation has
the origin in starting position and the x-axis in the direction Hgpagr. The
distance from the origin is computed in meters from GNSS and transformed

sin(Hsrarr) cos(HsTART) | moved_east | _ |z
—sin(HsTarr) cos(HsTART) moved_north| |y

The differences in coordinate systems are shown in Figures 3.1 and 3.2.
The easiest way to visualise them in CARLA is to use the CARLA Manual
Control package, which displays information about the vehicle organized in
the status bar as shown in Figure 3.3. Part of this information is also a
cardinal direction, but that is wrong. It can be seen from Figure 3.1 that the
displayed cardinal direction does not correspond to GNSS data. Moreover,
the east can not be to the left from the north. We pushed an issue informing
about the problem and merge request suggesting fixes [15].

Carla Odometry Carla GNSS senzor
y Latitude (N)
I > X ‘ » Longitude (E)
Carla Heading Carla ROS manual control HUD
90
Right-handed }
180 0 s > N
90 w

Figure 3.1: Coordinate systems of CARLA under ROS.

There is only one translator, that translates communication from ADS to
the simulator. It listens for a proprietary control message, which contains
desired acceleration, steering angle and direction (Front, Back, Stay). The
acceleration is integrated to get speed and sent with steering angle as ack-
ermann control message to CARLA Ackermann Control, which is a node
that through PID controller computes throttle and steering to control the
simulated vehicle in CARLA.

15

3. Simulating Porsche Cayenne in CARLA

GNSS Heading GNSS

0 Latitude (N)
(50.103,14.395)

v

151 0.5m » Longitude (E)

1rad

Gierwinkel (yaw) Initial Pose

0.51 y

(-2.0)

-0.51

Figure 3.2: Coordinate systems of ADS.

0:

Height:

Throttle
Stees

running

= for help

Figure 3.3: HUD in Manual Control.

16

3.1. Simulation Environment

import rclpy

from rclpy.node import Node

import sensor_msgs.msg as msgs

QS = 10 # Quality of service profile

class ExampleTranslator(Node) :
def __init__(self):
super().__init__(’example_translator’)
self.subscription = self.create_subscription(
msgs.Image, ’carla/ego_vehicle/camera/image’,
self.translate, QS)
self.publisher = self.create_publisher(
msgs.Image, ’jupiters_camera/image’, QS)

def translate(self, img):
new_img = copy.deepcopy (img)
new_img.header.frame_id = '"cameras_id"
self.publisher.publish(new_img)

if __name__ == ’ main__’:

rclpy.init ()

example_translator = ExampleTranslator()

try:
rclpy.spin(example_translator)

except KeyboardInterrupt:
example_translator.get_logger () .info(f’Ending the

node.’)

finally:
example_translator.destroy_node()
rclpy.shutdown()

Listing 3.1: Example of simple translator.

17

3. Simulating Porsche Cayenne in CARLA

. 3.2 Slalom

The functionality of written translator nodes and the simulation environment
is tested by the simple ADS that drives Porsche Cayenne between the cones
in the CARLA simulator. On a five-line road in CARLA was spawned a
vehicle with sensors and the translators were launched using the launch file
as described in Section 3.1. Then 4 cones were spawned via Python API as
ROS Bridge can spawn only vehicles and sensors. Simple ADS, launched as
another ROS node, then navigated the vehicle between the cones. The ADS
communicates only with translators representing Porsche Cayenne.

CARLA simulator
A
Vehicle status,
GNSS, Lidar,
/ Camera
CARLA-ROS Bridge Translators
ROS Bridge node Control translator Sensor translators

Speed, Speed,

Steering [Steering GNSS [Lidar, Camera

A
Ackermann Control RViz visualizator for ROS

Figure 3.4: Communication between nodes in simple slalom.

Slalom ADS

The data flow of this test can be seen in Figure 3.4. Data from CARLA
are transferred into ROS by the CARLA-ROS bridge. Sensor translators
listen for vehicle status and data from sensors and translate them into the
format expected by the ADS. Lidar and camera can be visualised in RViz
though they are not used by the Slalom ADS. The visualisation is shown in
Figure 3.5.

The ADS uses GNSS to determine speed and steering of the vehicle to
navigate it between the cones. Control translator sends desired speed and
steering angle to CARLA Ackermann Control package. Ackermann Control
package uses a PID regulator to compute throttle, brake and steering that
are, through ROS Bridge, used back in the CARLA simulator to control the
simulated Porsche Cayenne.

18

3.3. Parking

File panels Help

Gynterac | GMowCamers [lselect 4pFomusCamera SoMeasure < 2DPoseEstimate - 2DGoalPose @ Publish Point

O Displays

» ® Global Options
» v Global Status: Ok
» @ Grid

ivox_rear
The Foint Cloud2 display shows data from a
(recommended) sensor_msgs/PointCloud2 message.

Add || Duplicate || Remove Rename

Reset 3ifos g

Figure 3.5: Slalom simulation.

B 33 Parking

This section describes the testing of ADS written for the JUPITER vehicle in
the simulator. We were provided with an automated parking system for the
JUPITER vehicle that has already been tested on the real vehicle on multiple
scenarios. We also got files with parking paths and logs from performed
experiments. These logs are compared with our simulation in Chapter 4.

Figure 3.6: Simple scenario with the JUPITER vehicle.

This system takes a precalculated path, a parameter for its P regulator and
starting position. Then it uses information from the FlexRay bus and GNSS
sensor, which also returns a heading of the vehicle, to navigate the vehicle
through the desired path. It also sends real-time markers for visualisation of

19

3. Simulating Porsche Cayenne in CARLA

the position and logs all the data from the experiment.

The simulated Porsche Cayenne was spawned on a five-line road, and
translators were launched. The automated parking system was able to control
the simulated vehicle according to the given paths.

CARLA simulator
y
Vehicle status,
/' GNSS

CARLA-ROS Bridge

ROS Bridge node

Translators

Control translator

Acceleration,
[Direction,
Steering

Sensor translators

GNSS, FlexRay

Ackermann Control RViz visualizator for ROS

Figure 3.7: Communication with parking ADS.

Speed,
Steering

Position, Path

Parking ADS

The data flow of this test can be seen in Figure 3.7. Data from CARLA are
transferred into ROS by the CARLA-ROS bridge. Sensor translators listen
for vehicle status and data from the GNSS sensor, change the sensor’s topic
and publish proprietary messages about the state of the vehicle.

The parking ADS uses this data to compute the vehicle’s desired direction,
acceleration and steering angle. The control translator uses them, computes
desired speed and sends it with a steering angle to the CARLA Ackermann
Control package. Ackermann Control package uses a PID regulator to compute
throttle, brake and steering that are, through ROS Bridge, used back in the
CARLA simulator to control the simulated Porsche Cayenne.

Complex
scenario

Figure 3.8: Complex scenario with the JUPITER vehicle.

20

Chapter 4

Comparing Real Vehicle with the Simulation

This chapter compares the results of experiments in the simulation with the
experiments on the real vehicle. In Section 4.1, Livox lidar is compared
to the default lidar sensor available in CARLA and to the simulated Livox
lidar. In Section 4.2, the results of the experiments with ADS for parking are
presented.

B 31 Lidar

This section briefly compares the Livox lidar installed in the real vehicle, the
default lidar sensor of CARLA, and the Livox lidar added to the CARLA
simulator as described in Section 2.3.

The parameters of CARLA lidar were set according to the Livox manual:

Horizontal field of view | 81.7°

Vertical field of view 25.1°
Detection range 260 m
Points per second 240 000

Table 4.1: Livox specification.

The real Livox lidar was recorded using rosbag, so the ROS data from
rosbag and CARLA-ROS bridge can be compared.

The rosbag has 31 s and 3345 lidar data messages. This means that the lidar
sends data every 0.0093 s. To simulate this, the time between simulation ticks
had to be lowered. It is achieved by setting parameter fized_delta_ seconds
when starting CARLA-ROS bridge. The data were visualised by the tool
RViz.

Figure 4.2 shows how lidars can scan the environment in 5 s. The CARLA
lidar, shown in the middle, covers it the least because it always scans the
same points, so a big time window for scanning does not reveal more different
points. To reveal more points, more lasers can be set for this lidar. Simulated
and real Livox scanned detailed images of the environment in front of the car.
The simulated Livox seems to cover more distanced objects better than the
real one and has a wider range of intensity on near points than the real one.

21

4. Comparing Real Vehicle with the Simulation

(a) : Real (b) : CARLA

Figure 4.1: Scanned environment.

(a) : Real Livox lidar (b) : CARLA Ray cast lidar (c) : Simulated Livox lidar

Figure 4.2: Lidar data collected in 5 s.

The shorter time period and three individual data messages for every Lidar
were visualised in figures 4.3 and 4.4. The lidar from CARLA is rotating and
scans only one angular section at a time. Livox lidars scan wider surroundings
through some pattern.

22

4.1. Lidar

(a) : Real Livox lidar (b) : CARLA Ray cast lidar (c) : Simulated Livox lidar

Figure 4.3: Lidar data collected in 0.1 s.

Real Livox lidar CARLA Ray cast lidar Simulated Livox lidar

Figure 4.4: Visualisation data from 3 consecutive messages from used lidars.

4. Comparing Real Vehicle with the Simulation

B a2 Parking

Recorded data used in this next section comes from the experiments conducted
on two parking scenarios: Simple and Complex. These data were recorded
during experiments with the automated parking system on the JUPITER
vehicle. The same experiments were done using the simulated car in the
CARLA simulator, and data from these experiments can be compared.

The ADS was launched with the same settings as during the experiments
on the real car. Parameters for Ackermann drive described in Section 3.1
were found experimentally and set to p = 0.05,7 = 0,d = 0.

On the graphs 4.5 and 4.6 can be seen that in both experiments, the
simulated vehicle does the expected manoeuvres to follow the desired path. It
drove a trajectory with the same length, changed the direction when desired,
and turned in the direction of the desired angle.

The real car had problems with a sharp turn in the Simple scenario, but
the Complex scenario drove almost perfectly.

6 T T T T =i
5 ; — =
4 . .
3 s " -
—_ 2 - / -4
E /
Data from = 1 / .
o — -
real car e \\i §
2 i
3 1 1 ! 1 1
-15 -10 -5 o 5 10 15
[m]
8 T T T T T
- e]
6 [~ Vb B
5 [g e - =]
4 - / // -
Data from & [o !]
simulated o . i
B S i
car A \t .
2L
3 1 1 1 1 1
15 10 -5 o 5 10 15

Figure 4.5: GNSS data from Simple scenario.

24

4.2. Parking

8 T
. L i
6 - -
5 .
— 4 -
Data from = =f -
2 - -
real car L |
0P el -
a I I 1 1
-10 -5 (1] 5 10 15
m)
8 T T T
7+ -
6 — -
5 |- -
Data from g 4| i
. 3 .
simulated i _ 4
car ; C . T)]
-15 10 -5 1] 5 10 15

[m]

Figure 4.6: GNSS data from Complex scenario.

Figures 4.7 and 4.8 display the relative heading of the car to the starting
point in degrees. From the figures, it can be seen that the simulated car turns
slower than desired. One can see that the heading is not always improving to
the desired but often remains constant. This is because the vehicle’s heading
changes only when the vehicle is moving. These constant parts correspond to
parts with low speed on Figures 4.9 and 4.10.

Req. heading Heading
0 T T
20 | u
-40 |- -
60 | .
= g | -
Data from 3
g -100 |- —
real car 120 - -
140 | .
-160 - -
-180 | |
0 10 20 30 40 50 60 70
Time [s]
Req. heading Heading
20 T T T T T T
°r \.,/f]
20 |- -
40 |- -
Data from = =} 1
g 80 B
simulated 2 awlb]
-120 |- —
I
ca o -]
-160 |- -
180 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Time [s]

Figure 4.7: Headings in Simple scenario.

25

4. Comparing Real Vehicle with the Simulation

Req. heading
100 T T T T

Heading

T T T T T

Data from
real car 20 - g

Angle [°]

Time [s]

Req. heading

Heading

Data from
simulated
car

Angle [°]

120

Time [s]

Figure 4.8: Headings in Complex scenario.

Figures 4.9 and 4.10 show speed in km/h, and also an acceleration in m/s?.
They show that the real car reacts to acceleration and breaking messages
with some delay. On the other hand, the reaction delay of the simulated
vehicle is shorter. Differences in delay and intensity of reaction are projected
into the oscillation amplitude.

All the data together are available in Figures 4.11 and 4.12 for better
context.

Req. acc

Req. speed ——— Act. speed Backward
T T T T T T

- C]
e 35 4
= 3 .
E 25 .
Data from & 2f]
LTl
» 1} -
real car E o5l]
g 0 .
<< 0.5 -
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Time [s]
Req. acc Req. speed ——— Act. speed Backward
_ 6 T T T T T T T
: T ‘ | [.
= af i i ‘ I -
Data from § . ‘ e L B
@ \ I\ i | | | | | |
simulated g’ SIMEh [AEANANAG i .
car g 0) .) W\‘% i
1 1 1 1 1 1 1 1
1] 10 20 30 40 50 60 70 80

Figure 4.9: Speed and acceleration in Simple scenario.

26

4.2. Parking

%‘ -
E 4
Data from &]
% 4
real car £]
8 _
100
Time [s]
Req, acc Req. speed ——— Act. speed Backward

6 T T T T T
€ s -
5 4 —
Data from § , |
simulated g 2 T
E 1 -
car g o | i

-1

120

e:f eif —
GPS °f - i ~—
: e
g of] F o]
Heading < [] Ll]
I I
Speed e e
e .
and FaE NS 1
desired 1 if [\] L
e o i
acceler- B T :
ation
Experiment on real car Experiment in CARLA

Figure 4.11: Experiments on simple scenario.

27

4. Comparing Real Vehicle with the Simulation

_if S 7]

GPs == e
"
Heading * o
O N a—
Speed ﬁ s
and 1 il B
. i L3N N

desired : £l LAl
acceler- ' S
ation o

Experiment on real car Experiment in CARLA

Figure 4.12: Experiments on complex scenario.

28

Chapter 5

Conclusion

This thesis presents the simulation environment for the JUPITER vehicle to
test the Automated Driving Systems. The simulation environment is based
on the state-of-the-art CARLA simulator extended with the custom model of
a Porsche Cayenne and Livox lidar sensor.

The simulation environment includes ROS nodes translating ROS messages
between the Automated Driving System and the CARLA Simulator because
the subsystems of the JUPITER vehicle communicate via ROS.

The last chapter describes the differences between the results of experiments
with the JUPITER vehicle and the simulation. The visual comparison of
the lidar measurements shows that added model of lidar simulates the real
Livox lidar better than the default lidar of the CARLA simulator. Moreover,
the last chapter compares automated parking with a real vehicle and in the
simulation.

The results from the experiment correspond to the expectations. It is
possible to test the functionality of Automated Driving Systems developed for
the JUPITER vehicle in the simulation environment presented in this thesis.

Based on the experiments, the direction for future work is to improve the
physical parameters of the vehicle model and adjust the configuration of the
ROS nodes translating ROS messages between the Automated Driving System
and the CARLA Simulator. These changes would improve the simulation
accuracy.

29

30

1]

Bibliography

Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles. [Online|. Available: https://doi.org/
10.4271/33016_202104.

0. Krejci, “Test environment for automated lane keeping system verifi-
cation”, Bachelor’s Thesis, CTU, 2022.

P. Weissensteiner, G. Stettinger, J. Rumetshofer, and D. Watzenig, “Vir-
tual validation of an automated lane-keeping system with an extended
operational design domain”, FElectronics, vol. 11, no. 1, p. 72, Dec. 2021.
[Online]. Available: https://doi.org/10.3390/electronics11010072.

J. Vlasak, M. Sojka, and Z. Hanzalek, “Simulation environment for
validation of automated lane-keeping system”, International Conference
on Advances in Vehicular Systems, Technologies and Applications, Mar.
2023. [Online]. Available: https://www.thinkmind.org/articles/
vehicular_2023_1_50_30013.pdf.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator”, in Proceedings of the 1st Annual
Conference on Robot Learning, 2017, pp. 1-16.

Epic Games, Unreal engine, version 4.26, Jan. 30, 2023. [Online|. Avail-
able: https://www.unrealengine.com.

S. Malik, M. A. Khan, and H. El-Sayed, “CARLA: Car learning to
act — an inside out”, Procedia Computer Science, vol. 198, pp. 742—
749, 2022. DOI: 10.1016/j.procs.2021.12.316. [Online]. Available:
https://doi.org/10.1016/j.procs.2021.12.316.

E. Barbour and K. McFall, “Autonomous vehicle simulation using open
source software carla”, Journal of the UAB FEarly Career Technical
Conference, vol. 18, pp. 50-57, Nov. 2019. [Online|. Available: https:
//facultyweb.kennesaw.edu/kmcfall/2019ECTCO1. pdf.

CARLA Team. “Carla documentation”. (), [Online|. Available: https:
//carla.readthedocs.io/ (visited on 11/2022).

H. Zhang. “How to add a vehicle/truck in carla using unreal engine editor
4 + blender for beginners”. (Mar. 2021), [Online]. Available: https:
//www .youtube . com/watch?v=0F3ugwkISGk (visited on 05/2023).

31

https://doi.org/10.4271/j3016_202104
https://doi.org/10.4271/j3016_202104
https://doi.org/10.3390/electronics11010072
https://www.thinkmind.org/articles/vehicular_2023_1_50_30013.pdf
https://www.thinkmind.org/articles/vehicular_2023_1_50_30013.pdf
https://www.unrealengine.com
https://doi.org/10.1016/j.procs.2021.12.316
https://doi.org/10.1016/j.procs.2021.12.316
https://facultyweb.kennesaw.edu/kmcfall/2019ECTC01.pdf
https://facultyweb.kennesaw.edu/kmcfall/2019ECTC01.pdf
https://carla.readthedocs.io/
https://carla.readthedocs.io/
https://www.youtube.com/watch?v=0F3ugwkISGk
https://www.youtube.com/watch?v=0F3ugwkISGk

5. Conclusion

[11]

[12]

[13]

[14]

[15]

MingooJ. “How do i add new car? #2738”. (Apr. 2020), [Online].
Available: https://github.com/carla-simulator/carla/issues/
2738 (visited on 11/2022).

pinkpocketTV. “Unreal engine 4 tutorial | drivable cars and vehicle
physics”. (Dec. 2020), [Online]. Available: https://www.youtube.com/
watch?v=_ZBQg7293v0 (visited on 11/2022).

IKAROS93. “Livox laser simulation for carla”. (Jul. 2022), [Online].
Available: https://github.com/IKAR0S93/Livox_laser_simulation_
for_CARLA (visited on 03/2023).

CARLA Team. “Ros bridge documentation”. (), [Online]. Available:
https : // carla . readthedocs . io /projects /ros - bridge /en/
latest/ (visited on 11/2022).

M. Matejcek. “Carla ros bridge manual control hud cardinal direc-
tion mismatch gnss #676”. (May 2023), [Online]. Available: https :
//github.com/carla-simulator/ros-bridge/issues/676 (visited
on 05/2023).

32

https://github.com/carla-simulator/carla/issues/2738
https://github.com/carla-simulator/carla/issues/2738
https://www.youtube.com/watch?v=_ZBQg7293v0
https://www.youtube.com/watch?v=_ZBQg7293v0
https://github.com/IKAROS93/Livox_laser_simulation_for_CARLA
https://github.com/IKAROS93/Livox_laser_simulation_for_CARLA
https://carla.readthedocs.io/projects/ros-bridge/en/latest/
https://carla.readthedocs.io/projects/ros-bridge/en/latest/
https://github.com/carla-simulator/ros-bridge/issues/676
https://github.com/carla-simulator/ros-bridge/issues/676

Appendix A

List of attachments

[source__code.zip

source_code.zip is an archive of the source code of ROS packages with
translators, launchfiles and configuration files. They should be used with the
CARLA-ROS bridge.

They are meant to be compiled together with packages containing interfaces
of proprietary messages of ADS for the JUPITER vehicle. These interfaces
are not attached due to licensing.

33

34

Appendix B
CARLA Is Awesome

o 2+l @ @ = 1=]

35

	Project Specification
	Introduction
	Background
	Unreal Engine
	CARLA
	ROS
	CARLA-ROS Bridge
	Project JUPITER
	Livox

	Adding Porsche Cayenne into CARLA
	Building CARLA from Source
	Adding Porsche Cayenne into CARLA
	Adding Livox Lidar into CARLA
	Exporting a Package

	Simulating Porsche Cayenne in CARLA
	Simulation Environment
	Slalom
	Parking

	Comparing Real Vehicle with the Simulation
	Lidar
	Parking

	Conclusion
	Bibliography
	List of attachments
	source_code.zip

	CARLA Is Awesome

