
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Using Machine Learning and Computer
Vision for Defects Detection in
Manufacturing

Josef Losos

Supervisor: Ing. David Kadleček, Ph.D.
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499267 Personal ID number: Losos Josef Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Using Machine Learning and Computer Vision for Defects Detection in Manufacturing

Bachelor’s thesis title in Czech:

Využití strojového učení a počítačového vidění pro detekci vad v průmyslové výrobě

Guidelines:

Nowadays, there is a great emphasis on reducing human resources in production and replacing them with automation.
One of the important approaches is quality inspection using machine learning and computer vision, which leads both to
saving human resources and to increasing the quality of inspection and its objectivity in general.
The objectives of this thesis are:
1) Make a survey of the types of defects that occur in different types of industrial manufacturing.
2) Make a survey of the leading machine learning and computer vision methods used to solve this problem.
3) Choose at least two defect detection methods, make them work, verify their functionality on data, and compare them.
4) For the most appropriate method, perform model fine-tuning.
5) For the trained model, objectively evaluate its quality on the provided data and evaluate the results.
For the purpose of the bachelor thesis, a subset of existing annotated images of inserts used for metal machining will be
provided. This dataset will be provided at the start of the bachelor thesis.

Bibliography / sources:

[1] Park, S.-S.; Tran, V.-T.; Lee, D.-E. Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole
Detection. Appl. Sci. 2021, 11, 11229. https://doi.org/ 10.3390/app112311229
[2] Fei-Fei, L., Jiajun, W., Ruohan, G., Stanford University CS231n: Deep Learning for Computer Vision, 2022
[3] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444, 2015.
[4] Jiadong, C., Wei, L., Xiang, W., Jingjing, F., Liwei, W., Rui, Z., MIAD: A Maintenance Inspection Dataset for Unsupervised
Anomaly Detection Tianpeng Bao, 2022.

Name and workplace of bachelor’s thesis supervisor:

Ing. David Kadleček, Ph.D. Centre for Knowledge Management FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 01.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Kadleček, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I thank my supervisor for the topic he had
chosen for me and for pieces of advice from
his co-worker Ing. Tomáš Paleček, thanks
to whom I successfully did my thesis.

Computational resources were provided
by the e-INFRA CZ project (ID:90140),
supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

Declaration
I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 26, 2023
Losos Josef

v

Abstract
This work aimed to analyze the types
of defects on metallic surfaces, to search
for the leading object detection meth-
ods that could be suitable for detect-
ing these defects, and to find out which
method is more suitable. DNAI and Sev-
erstal datasets were used for the eval-
uation task. The first dataset is from
a DNAI client, with images taken from
a production line. The second dataset
is from a Kaggle competition. YOLO
and U-net were selected for comparison.
The YOLO model performs better than
the U-net model on both datasets. The
main difference was in the number of false
positives. On the Severstal dataset, the
YOLO model achieved a recall of 90 % and
a precision of 69.3 % with the benevolent
metric. On the DNAI dataset, the results
were 72.2 % recall and 70.5 % precision.

Keywords: Computer Vision, defects,
object detection, YOLO, U-net

Supervisor: Ing. David Kadleček, Ph.D.

Abstrakt
Cílem této práce bylo analyzovat typy de-
fektů na kovových površích, provést rešerši
hlavních metod detekce objektů, které
by mohly být vhodné pro detekci těchto
vad a zjistit, která metoda je vhodnější.
Pro vyhodnocení byly použity datasety
DNAI a Severstal. První dataset je od zá-
kazníka DNAI, snímky přímo z produkce.
Druhý dataset je z Kaggle soutěže. Me-
tody YOLO a U-net byly vybrány pro
porovnání. Model YOLO je na obou data-
setech úspěšnější než model U-net. Hlav-
ním rozdílem byl počet falešně pozitivních
predikcí. Na datasetu Severstal dosáhl mo-
del YOLO s benevolentní metrikou recall
90 % a přesností 69,3 %. Na datasetu
DNAI byly výsledky 72,2 % recall a 70,5 %
přesnost.

Klíčová slova: počítačové vidění, vady,
detekce objektů, YOLO, U-net

Překlad názvu: Využití strojového
učení a počítačového vidění pro detekci
vad v průmyslové výrobě

vi

Contents
1 Introduction 1
2 Theoretical background 3
2.1 Computer Vision techniques 3

2.1.1 Image Classification 3
2.1.2 Object Detection 3
2.1.3 Segmentation 4

2.2 Annotation formats 5
2.2.1 COCO format 5
2.2.2 YOLOv5 format 6
2.2.3 Severstal format 6

2.3 Evaluation metrics for object
detection . 7
2.3.1 IoU . 7
2.3.2 Precision (P) and Recall (R) . 7
2.3.3 Average Precision (AP) 8
2.3.4 Mean Average Precision (mAP) 8
2.3.5 F1 score 8
2.3.6 Benevolent metric 9
2.3.7 Number of detected defects . . . 9

3 Defect types in manufacturing 11
3.1 DNAI dataset 13

3.1.1 Jagged edge 13
3.1.2 Material Remains 14
3.1.3 Material on the edge 15
3.1.4 Crack . 16
3.1.5 Extra material glued 17
3.1.6 Shipping defects 18

3.2 Severstal dataset 19
3.2.1 Dimple 19
3.2.2 Scratch 19
3.2.3 Abrasion 20
3.2.4 Blister . 20

4 Object detection methods 21
4.1 YOLO . 21

4.1.1 YOLOv1 22
4.1.2 YOLOv2 23
4.1.3 YOLOv3 24
4.1.4 YOLOv4 24
4.1.5 YOLOv5 25
4.1.6 YOLOv8 25

4.2 Faster R-CNN 26
4.3 SSD. 27
4.4 U-net . 28
5 Necessary prerequisites 29
5.1 Selection of methods used 29

5.2 Conversion of the CSV annotations
to RGB mask 30

5.3 Conversion of the annotations from
the RGB mask to the COCO 30

5.4 Conversion of the annotations from
the COCO to the YOLOv5 format 31

5.5 Conversion of the annotations from
the COCO to the CSV format 31

5.6 How to train and predict with
YOLOv5 model 31
5.6.1 How to train 31
5.6.2 How to run inference 32

5.7 Viewing the dataset using
FiftyOne . 33

6 Severstal dataset 35
6.1 Comparison of methods 35

6.1.1 U-net . 35
6.1.2 YOLO . 37
6.1.3 Summary comparison 37

6.2 Fine-tuning 40
6.2.1 Data preparation 40
6.2.2 Training and prediction

parameters 41
6.2.3 Baseline model using no

technique . 41
6.2.4 Slicing to 256 pixels sized slices 42
6.2.5 Minimal area ratio of defect . 43
6.2.6 Dataset with/without negative

samples . 44
6.2.7 Slicing to 400 pixels width

slices . 45
6.2.8 Slicing to 800 pixels width

slices . 46
6.2.9 Using a pre-trained model or

random initialization 49
6.2.10 Pre-trained model size 50
6.2.11 Using various confidence

threshold . 50
6.2.12 Comparison of fine-tuning

measurements 52
6.2.13 Evaluation of results 53

7 DNAI dataset 55
7.1 Fine-tuning 55

7.1.1 Data preparation 56
7.1.2 Training and prediction

parameters 56

vii

7.1.3 Baseline model 57
7.1.4 Slicing to 1280 pixels 58
7.1.5 Slicing to 640 without overlap 59
7.1.6 Slicing to 640 with overlap . . 60
7.1.7 Dataset with negative samples 61
7.1.8 Minimal area ratio of defect . 63
7.1.9 Pre-train model size 64
7.1.10 Using random initialization or

pre-trained model 64
7.1.11 Using various confidence

thresholds . 65
7.1.12 Comparison and summary of

measurements 67
7.1.13 Evaluation of results 70

7.2 Comparison of methods 71
7.2.1 U-net . 71
7.2.2 YOLO . 72
7.2.3 Summary comparison 73

8 Conclusion 77
A Bibliography 79
B Abbreviations 83
C User guide 85
C.1 Code . 85
C.2 Datasets . 86

C.2.1 Severstal 86
C.2.2 DNAI . 86

viii

Figures
2.1 Difference Semantic and Instance

Segmentation, taken from [13]. 4
2.2 COCO folder structure. 5
2.3 YOLOv5 annotation notation in

.txt file. 6
2.4 CSV annotation file example. . . . 6
2.5 The formula for calculating

precision. 7
2.6 The formula for calculating recall. 8
2.7 Examples of problematic

predictions for IoU metric. 9

3.1 Graph shows the count of each
defect class in the private dataset
given by DNAI. 12

3.2 Representation of each defect type
in the public Severstal steel dataset. 12

3.3 On the left side is a jagged edge
example. Annotation Heatmap,
generated by Roboflow [8], which
shows the typical placement of the
jagged edge, is on the right side. . . 13

3.4 Jagged edge annotations
distribution. 13

3.5 On the left side is a material
remains example. On the right side
is the annotation Heat-map, which
shows that the material remains
defects can be located on the surface
of any part of the product. The
heat-map was generated by Roboflow
[8]. 14

3.6 Material remains annotations
distribution. 14

3.7 On the left side is material on the
edge example. Annotation heat-map,
generated by Roboflow [8] on the
right side shows the typical placement
of the material on the edge. 15

3.8 Material on the edge annotations
distribution. 15

3.9 A crack example is on the left side.
Annotation heat-map, generated
by Roboflow [8] on the right side,
shows the typical location of this
defect. 16

3.10 Crack annotations distribution. 16

3.11 On the left side is extra material
glued example. The typical
placement of the extra material glued
is shown in the annotation heat-map
generated by Roboflow [8] on the
right side. 17

3.12 Extra material glued annotations
distribution. 17

3.13 A shipping defect example is on
the left side. On the right side
is an annotation heat-map generated
by Roboflow [8], which shows the
placement of shipping defects. 18

3.14 Shipping defect annotations
distribution. 18

3.15 Dimple example. 19
3.16 Scratch example. 19
3.17 Abrasion example. 20
3.18 Blister example. 20

4.1 YOLO object detector, taken from
[5]. 21

4.2 Object detection sequence of
YOLO, taken from [18]. 22

4.3 YOLOv1 architecture, taken from
[28]. 22

4.4 Faster R-CNN unified network,
taken from [22]. 26

4.5 SSD architecture, taken from [19]. 27
4.6 U-net architecture, taken from

[24]. 28

5.1 The annotations in CSV format
from the Kaggle 30

5.2 On the left side of the Figure is
shown the settings of category ids,
and on the right side are category
colors corresponding to colors in the
previous step. 5.2 30

6.1 Example predictions performed by
the U-net model. 36

6.2 Example predictions performed by
YOLOv5 model. 37

6.3 On the left side are predictions
from YOLO, and on the right side
from U-net. 38

ix

6.4 On the left side are predictions
from YOLO, and on the right side
are from U-net. This Figure shows
differences in false positive
prediction. 38

6.5 Prediction example for each defect
type. 41

6.6 Prediction example while using
slicing to 256-pixel sized slices. . . . 42

6.7 Prediction examples where the left
side displays prediction with the
model trained on slices with 20 %
minimal area of defect and on the
right side are predictions made with
the model trained on slices with 5 %
minimal area of defect. 43

6.8 Left side displays the prediction
performed by the model trained on
data containing only positive samples,
and the right side shows the
prediction made by the model trained
on data with negative samples. . . . 44

6.9 The prediction examples while
using slicing to 400-pixel width
slices. 45

6.10 The prediction example shows the
difference between using slicing to
400-pixel width slices on the right
side and 800-pixel width slices on the
left side for large defects. 46

6.11 This Figure compares predictions
made with slicing to 800 width slices,
but on the left are predictions made
without an overlap, and on the right
side are predictions made with an
overlap of 0.3. 47

6.12 Prediction example of using
random initialization on the left side
and using pre-trained model
yolov5m.pt on the right side. 49

6.13 Prediction example of using
confidence threshold corresponding to
F1 max on the left side and using
0.15 as confidence threshold on the
right side. 51

7.1 Prediction example of baseline
model on the private dataset. 57

7.2 Prediction example of the model
using slicing to 1 280 pixel-sized
slices. 58

7.3 Comparison of predictions for
slicing to 1 280 on the left side and
640 pixel-sized slices on the right
side. 59

7.4 Comparison of predictions for 640
pixel-sized slices without overlap on
the left and with an overlap of 25 %
on the right side. 60

7.5 Comparison of predictions for the
training set with 30 % in the first row
and keeping all available negative
samples in the last row. 62

7.6 Comparison of predictions for 20 %
minimal area ratio on the left and 5
% on the right side. 63

7.7 Comparison of predictions using F1
max as confidence threshold on the
left and confidence threshold 0.1 on
the right side. 65

7.8 Prediction example of material on
edge on the left side baseline method
without any improvement and on the
right side using slicing to
640-pixel-sized slices with overlap. 67

7.9 Prediction example of jagged edge
on the left side baseline method
without any improvement and on the
right side using slicing to
640-pixel-sized slices with overlap. 68

7.10 Example predictions performed by
U-net. 71

7.11 Example predictions performed by
YOLOv5. 72

7.12 Comparison of predictions
performed by U-net on the left side
and YOLO on the right side. 73

7.13 Comparison of predictions
performed by U-net on the left side
and YOLO on the right side. 74

x

Tables
6.1 Tables with the comparison of the

number of detected defects, TP, and
FP for the YOLO and U-net model in
the first two tables, where the second
one is for the more benevolent metric.
The mAP results are described in the
last table. The metrics in columns
are described in Section 2.3. 39

6.2 Tables show the number of
detected defects, TP, and FP for
slicing to 256-pixel-sized slices in the
first two tables. The table below
shows the results of mAP. 42

6.3 The first two tables shows the
number of detected defects, TP, and
FP for different minimal area ratios
of a defect. The last table shows the
results of mAP. 43

6.4 The number of detected defects,
TP, and FP for the model trained
with only positive samples in the row
named ’positive’ and with negative
samples in the row named ’negative’
are shown in the first two tables. The
last table shows the results of mAP. 45

6.5 The first two tables show the
number of detected defects, TP, and
FP for the model trained with
256-pixel-sized slices and 400-pixel
width slices. The last table shows the
results of mAP. 46

6.6 Tables demonstrating the number
of detected defects, TP, and FP for
the model trained with 400-pixel
width slices and 800-pixel width
slices. 47

6.7 The table displays the results of
mAP. 48

6.8 The first two tables show the
number of detected defects, TP, and
FP for the model trained with
800-pixel width slices where one row
is the case of prediction without
overlap and the second one is with
overlap. The third table shows the
results of mAP. 48

6.9 The first two tables show the
number of detected defects, TP, and
FP for a model trained from random
initialization or from pre-trained
yolov5m.pt model. The table below
shows the results of mAP. 49

6.10 The first two tables show the
number of detected defects, TP, and
FP for three different-sized
pre-trained yolov5 models. The table
below shows the results of mAP. . . 50

6.11 Table with differences between
results predicted with various
confidence thresholds. In the columns
header are values of confidence
thresholds that were used, where the
first one is the F1 max. 51

6.12 Table with result metrics for the
public dataset, where measurements
labeled from M1 to M4 are described
below. 52

7.1 The first two tables show the
number of detected defects, TP, and
FP for the baseline model. The table
below shows the results of mAP. The
metrics in columns are described in
Section 2.3. 57

7.2 The first two tables show the
number of detected defects, TP, and
FP for the baseline model compared
to using 1 280-pixel-sized slices. The
table below shows the results of
mAP. 58

7.3 Tables demonstrating the number
of detected defects, TP, and FP for
the model using slicing into 1 280
pixel-sized and 640 pixel-sized slices. 59

7.4 The table displays the results of
mAP. 60

7.5 The first two tables show the
number of detected defects, TP, and
FP for the model using slicing with
an overlap of 0.25 and for the model
without an overlap. The table below
shows the results of mAP. 61

xi

7.6 The first two tables show the
number of detected defects, TP, and
FP for the training set with 0 %, 30
%, or keeping all available negative
samples. The table below shows the
results of mAP. 62

7.7 The first two tables show the
number of detected defects, TP, and
FP for the model trained on data
using 20 % or 5% of minimal area
ratio. The table below shows the
results of mAP. 63

7.8 The first two tables show the
number of detected defects, TP, and
FP for medium-sized and extra-large
pre-trained models. The table below
shows the results of mAP. 64

7.9 The first two tables show the
number of detected defects, TP, and
FP for the model trained from
random initialization or from
pre-trained yolov5m weights. The
table below shows the results of
mAP. 65

7.10 Table with differences between
results predicted with various
confidence thresholds. Metrics in
rows are explained in section 2.3. In
the columns header are values of
confidence thresholds that were used,
where the first one is the F1 max. . 66

7.11 Table with result metrics for
material remains measurements
labeled from M1 to M7, which are
described at the end of this section. 67

7.12 Table with result metrics for
material on edge measurements
labeled from M1 to M7, which are
described at the end of this section. 68

7.13 Table with result metrics for
jagged edge measurements labeled
from M1 to M7, which are described
at the end of this section. 69

7.14 The first two tables are the
number of detected defects, TP, and
FP for the YOLO and U-net models
in the first table. The mAP results
are described in the last table. 75

xii

Chapter 1
Introduction

The following work aims to utilize computer vision methods in the domain
of quality inspection. The main objective is to implement an algorithm that
is capable of autonomous defect detection on metallic parts. This is achieved
by utilizing neural network-based computer vision techniques. The work
compares a YOLO-based solution [15] with a U-net-based solution [4]. YOLO
is widely used in practice for multiple object detection tasks, while U-net was
one of the best solutions for the Kaggle competition[3]. The goal is to find
out which of these methods provides better results. These methods are tested
on two datasets, one from DNAI and the second from the Kaggle competition.

Chapter 2 provides an overview of the computer vision techniques, an-
notation formats, and evaluation metrics. The survey of the defect types
from industrial manufacturing is provided in Chapter 3, where each subsec-
tion describes one defect type. An overview of the leading computer vision
methods is provided in Chapter 4. This overview focuses on the YOLO
method, which is currently one of the most widely used methods for object
detection. The following Chapter 5 provides the reasons for using the YOLO
and U-net methods in Section 5.1 and procedures needed to convert data
between individual annotations formats or a guide on how to use YOLO in all
rest sections. Chapter 6 provides a comparison of the chosen methods on the
Severstal dataset in Section 6.1. First, typical predictions for both methods
are described, followed by a comparison of predictions with significant dif-
ferences. The subsections of Section 6.2 describe individual measurements
using techniques such as slicing, overlapping slices, minimum defect area
ratio, using negative samples for training, and starting training from ran-
domly initialized weights or a pre-trained model. Subsection 6.2.13 describes
the evaluation of the achieved results. Chapter 7 provides results reached
on the DNAI dataset. Section 7.1 evaluates the measurements with the same
model improvements as for the Severstal dataset. Section 7.2 describes the
comparison of YOLO and U-net. Individual subsections contain the most
common predictions for individual methods and their differences. The overall
evaluation of the achieved results contains Chapter 8.

1

2

Chapter 2
Theoretical background

2.1 Computer Vision techniques

2.1.1 Image Classification

Image classification represents a basic technique in the field of Computer
Vision, with the objective of assigning single or multiple categories to a given
image. An image classifier has an image as input and afterward identifies
various objects in the image, such as people, animals, and plants. However,
image classification alone does not provide detailed information about the
image content, such as the number of people or their position in the image.
Other computer vision techniques are needed to get such information.

There are basically two types of image classification. binary classification
and multiclass classification. As the name suggests, binary image classification
looks for a single class in the given image and provides results based on whether
the image has that object.

2.1.2 Object Detection

Object detection is an important technique in Computer Vision that can
be used either as a step after image classification or as an approach that
uses image classification to detect objects in images. Object detection aims
to recognize objects within the bounding boxes and identify their relevant
classes. The goal is to imitate human intelligence in machines to accurately
identify and locate objects. Deep learning and machine learning technologies
are typically used by object detection to achieve accurate and efficient results.
The goal is to imitate human intelligence in machines to accurately identify
and locate objects.

Object detection has multiple uses, including object tracking, searching,
video surveillance, and captioning. Various techniques can be used to perform
object detection, including R-CNN, YOLO, etc.

3

2. Theoretical background
2.1.3 Segmentation

As one of the most classic tasks in the Computer Vision field, image segmenta-
tion aims to label pixels into different groups according to the objects to which
each pixel belongs. Image segmentation is considered a clustering problem.
Earlier segmentation techniques usually used methods of splitting and merg-
ing regions. Later segmentation algorithms used consistency indicators such
as intra-regional consistency and inter-regional dissimilarity. [30]

Figure 2.1: Difference Semantic and Instance Segmentation, taken from [13].

Segmentation can be separated into two subcategories. Semantic Seg-
mentation classifies similar objects as the same class from the pixel levels.
It gives meaning to each pixel in an image. Instance Segmentation can clas-
sify the object in an image similar to Semantic Segmentation but with more
detailed information. This technique can show that there are more instances
of a detected object.[13]

A commonly used loss function for deep-learning segmentation algorithms
is the intersection over union (IoU).

4

..................................2.2. Annotation formats

2.2 Annotation formats

2.2.1 COCO format

The COCO (Common Objects in Context) format [6] is a widely used file
format for object detection tasks in computer vision. It is a standardized
format that is used to represent datasets for various computer vision tasks,
including object detection, segmentation, and keypoint detection.

The COCO format consists of two main parts, as shown in Figure 2.2.
The JSON file contains metadata about the dataset, and an image directory
contains the images. The JSON file includes information about the images in
the dataset, the objects within each image, and the annotations for each object.

Overview of each field in JSON file of COCO format:..1. info: This field contains general information about the dataset, such
as the dataset name, version, and description...2. licenses: This field contains information about the licenses under which
the dataset is released. This can include the license name, URL, and
any specific terms and conditions...3. categories: This field defines the categories of objects that are present
in the dataset. Each category is defined by a unique identifier, a name,
and a supercategory (if applicable)...4. images: This field contains information about the images in the dataset,
such as their filename, unique identifier, width, and height...5. annotations: This field contains information about the objects in the
images, including their category label, bounding box coordinates, and
a unique identifier. Each annotation is associated with a specific image,
and the image ID links the annotations to their respective images.

Figure 2.2: COCO folder structure.

5

2. Theoretical background
2.2.2 YOLOv5 format

The YOLOv5 format is a custom format used by the YOLOv5 algorithm
to store the annotations for object detection tasks. This format creates a .txt
file for each image with the same name. Each text file is a simple text file
where every line represents an annotation for an object in the image with
the same name as the text file. The structure of each line in the text file
is shown in the following Figure 2.3 YOLOv5 format uses a YAML file for

Figure 2.3: YOLOv5 annotation notation in .txt file.

data configuration to define parameters and settings for training. The YAML
file contains the following parameters:..1. Class names: This parameter lists the names of the classes that the model

needs to detect...2. Number of classes: This parameter specifies the number of classes
the model must detect...3. Train and validation dataset paths: These parameters specify the paths
to the training and validation datasets in the system.

2.2.3 Severstal format

The format of annotations used on Kaggle is a CSV file containing the file
name in the ’ImageId’ column, RLE (Run Lenght Encoding) in the column
’EncodedPixels’, and class id of the defects described in RLE in column
’ClassId’.

Figure 2.4: CSV annotation file example.

6

......................... 2.3. Evaluation metrics for object detection

2.3 Evaluation metrics for object detection

2.3.1 IoU

Intersection over Union (IoU) measures the overlap between the predicted
and ground truth bounding boxes. It is calculated as the area of intersection
between the two boxes divided by the area of union. A threshold value
is usually set to determine whether a prediction is a true positive or a false
positive. If the IoU is greater than the threshold value, then the prediction
is considered a true positive otherwise, it is considered a false positive. [11]

.True Positive (TP): A predicted bounding box is a true positive if it has
an IoU score greater than a certain threshold with a ground truth bound-
ing box. In other words, it correctly identifies an object as belonging
to a particular class.. False Positive (FP): A predicted bounding box is a false positive if it has
an IoU score less than the threshold with all ground truth bounding
boxes of that class. In other words, it incorrectly identifies a background
region as belonging to a particular class.. False Negative (FN): A ground truth bounding box is a false negative
if there is no predicted bounding box with an IoU score greater than
the threshold. In other words, the model fails to detect an object that
belongs to a particular class..True Negative (TN): This term represents a correct misdetection. Many
possible bounding boxes should not be detected, so the metrics do not
commonly use TN. However, in some cases, it may be relevant to consider
the true negatives as the correctly identified background regions.

2.3.2 Precision (P) and Recall (R)

Precision (P) and Recall (R) are two metrics used to measure the performance
of object detection models. Precision is the fraction of true positives out
of all the predictions, while recall is the fraction of true positives out of all
the ground truth annotations.

Figure 2.5: The formula for calculating precision.

7

2. Theoretical background
Precision and Recall are important evaluation metrics because they can

help determine how well an object detection model correctly identifies objects
in the image. A higher precision value indicates that the model produces
fewer false positives, while a higher recall value indicates that the model
detects more ground true annotations.

Figure 2.6: The formula for calculating recall.

2.3.3 Average Precision (AP)

Average Precision (AP) is a metric for evaluating object detection models.
It is calculated by computing the precision and recall values for different
IoU thresholds and then computing the area under the precision-recall curve.
The AP metric is used to measure how well the object detection model
performs across all the IoU thresholds. A higher AP value indicates better
performance of the object detection model. [7]

2.3.4 Mean Average Precision (mAP)

Mean Average Precision (mAP) is a commonly used metric for evaluating
object detection models. It is the average of the AP values across multiple
object classes. The mAP metric is used to measure the overall performance
of the object detection model. [25]

mAP.50 is a variation of the mean average precision (mAP) metric where the
AP values are averaged only over the IoU threshold of 0.5. Same for mAP.75
or other specific IoU thresholds. mAPs, mAPm, and mAPl measure the
average precision of the object detection model on objects of different scales
by computing the AP values separately for each size category. Specifically,
mAPs computes the AP for small objects with bounding box areas below
32x32 pixels, mAPm computes the AP for medium objects with bounding
box areas between 32x32 and 96x96 pixels, and mAPl computes the AP for
large objects which have bounding box areas above 96x96 pixels.

2.3.5 F1 score

F1 score is a metric used to evaluate the overall performance of the object
detection model. It is the harmonic mean of precision and recall and is used
to balance both precision and recall. It is useful when the classes are imbal-
anced, and each class needs to balance precision and recall. A higher F1 score
indicates better performance of the object detection model.

8

......................... 2.3. Evaluation metrics for object detection

2.3.6 Benevolent metric

Here we are defining a more benevolent way of deciding if a prediction is true
positive or false positive. It uses instead of IoU only intersection of bounding
boxes. This metric has the following criteria:.When a prediction is smaller than the ground truth annotation, the

intersection of these two bounding boxes must be greater than 75 %
of the prediction area to mark the prediction as true positive.. For predictions larger than the ground truth annotation, the intersection
of these bounding boxes must be greater than 75 % of the ground truth
defect area to mark this prediction as true positive. Otherwise, it is a false
positive.

Figure 2.7: Examples of problematic predictions for IoU metric.

In Figure 2.7, red rectangles illustrate the predictions, and the green one
ground truth annotation. The left side of this figure shows the case when
the prediction is smaller than the real defect annotation, and the right side
displays the case when one large prediction contains more ground truth
annotations.

The example on the left shows much smaller predictions, but according
to IoU, it is not detected. To say this is detected, the IoU threshold must
be extremely low. Similarly, on the right side, one large prediction contains
all three ground truth annotations. And none of them is detected, according
to IoU. However, in practice, these detections would be sufficient. Thus,
we propose a custom metric to account for this fact.

This metric is in this work tagged with the suffix ’-B’ as TP-B for true
positives and FP-B for false positives calculated this way.

2.3.7 Number of detected defects

The number of detected defects is a metric used to evaluate the success rate
of predictions. If there is at least one true positive prediction for a defect
annotation, it is marked as detected.

This metric is in this work tagged as DC (Detected Count). DC calculated
with IoU threshold is tagged DC and, for the benevolent way described in the
previous subsection, is tagged DC-B.

9

10

Chapter 3
Defect types in manufacturing

This section will describe all defects in the datasets that will be used in this
Bachelor’s thesis.

The first one is a private dataset given by DNAI s.r.o., which contains
113 high-resolution examples with 13 154 annotations from the manufacturing
industry. Products in these 113 images can be divided into 28 different types.
All 113 images contain at least one annotation of defect from any category.

The second dataset is a public Severstal: Steel Defect Detection dataset
from the Kaggle competition. Used are only images from training set, because
for these images are available ground truth annotations. This subset consists
of 12 568 images with 18 505 annotations. There are 5 902 images without
any annotation and 6 666 images with at least one annotation of defect from
any category. All of them have resolution 1 600 × 256 pixels, which is much
lower than the private dataset.

11

3. Defect types in manufacturing

Figure 3.1: Graph shows the count of each defect class in the private dataset
given by DNAI.

Figure 3.2: Representation of each defect type in the public Severstal steel
dataset.

12

.................................... 3.1. DNAI dataset

3.1 DNAI dataset

3.1.1 Jagged edge

The first defect type from the private dataset is the jagged edge. The edges
of the product should be sharp. Breaking off the edge causes a jagged
edge with a typically slightly darker color. The shape of the defect at the
edge is in the shape of the product, but on the other side, it is very diverse.
The defect is mostly medium-sized.

Figure 3.3: On the left side is a jagged edge example. Annotation Heatmap,
generated by Roboflow [8], which shows the typical placement of the jagged edge,
is on the right side.

The given dataset has jagged edge 444 annotations in 101 images. The jagged
edge in most cases has 2 to 5 instances by image. The average jagged edge
area is 5 451 pixels.

The distribution of annotations of jagged edge defects shows in the graph
below. Types with the most annotations are DCMT11T and TNMG1604.
On the other hand, the lowest are S-APMT11 and RT100308.

Figure 3.4: Jagged edge annotations distribution.

13

3. Defect types in manufacturing
3.1.2 Material Remains

The second defect type from the private dataset is material remains, which
are minimal areas on the product surface covered with the remaining material.
These areas are lighter or darker than the remaining surface of the product.

Figure 3.5: On the left side is a material remains example. On the right side
is the annotation Heat-map, which shows that the material remains defects
can be located on the surface of any part of the product. The heat-map was
generated by Roboflow [8].

The given dataset has material remaining 10 430 annotations in all 113 im-
ages. The remaining material defects generally have 2 to 154 instances
by image. Several samples have even 461 to 511 instances by image. The av-
erage area of this defect is 354 pixels.

The distribution of annotations of this defect shows in the graph be-
low. Types with the most annotations are CNMM2509 and S-VCGX2205.
RT100308 and S-CCMT0602 have the least annotations.

Figure 3.6: Material remains annotations distribution.

14

.................................... 3.1. DNAI dataset

3.1.3 Material on the edge

Material on the edge is another type of defect from the private dataset.
It is the same defect as in the previous section but is located only on product
edges. The shape is typically narrow and long. The edge where the material
is located could be more perfectly straight but slightly wavy.

Figure 3.7: On the left side is material on the edge example. Annotation heat-
map, generated by Roboflow [8] on the right side shows the typical placement
of the material on the edge.

The given dataset has material on edge 1 779 annotations in 100 images.
The material on the edge count is mostly 2 to 23 by image but rarely
is it even 101 to 111 defect count by image. The average area for this defect
type is 4 117 pixels.

The distribution of annotations of this defect shows in the graph below.
Types that have the most annotations with material on edge are SNMG2509
and CNMG1906. S-CMG1204 and SNMG1204 have the least annotations.

Figure 3.8: Material on the edge annotations distribution.

15

3. Defect types in manufacturing
3.1.4 Crack

The private dataset contains a defect type called a crack, a small space in the
material that can be seen in images as a line darker than its surroundings.
And the crack has minimal surface area but may occur over a large portion
of the product surface.

Figure 3.9: A crack example is on the left side. Annotation heat-map, generated
by Roboflow [8] on the right side, shows the typical location of this defect.

The given dataset has 341 crack annotations in 31 images. The crack mostly
has 2 to 11 instances per image, but some samples with 42 to 46 instances
exist. The average area of the crack defect is 19 603 pixels.

The distribution of this defect shows in the graph below. Types with the
most annotations are S-TNMM3309 and CNMG1906 are types with the least
annotations of the crack defect.

Figure 3.10: Crack annotations distribution.

16

.................................... 3.1. DNAI dataset

3.1.5 Extra material glued

Extra material glued is another type of defect from the private dataset
occurring on the surface of the product. It has various sizes and shapes and
can be located on a surface in any part of the product. The structure of the
surface differs from the surroundings and has more wrinkles and darker colors.

Figure 3.11: On the left side is extra material glued example. The typical
placement of the extra material glued is shown in the annotation heat-map
generated by Roboflow [8] on the right side.

The given dataset has extra material glued 98 annotations in 26 images.
This defect count by image is mostly 1 to 4 but in rare cases, it is up to 25.
The average area for this defect type is 13 107 pixels.

The distribution of annotations of extra material glued is shown in the
graph below. The type which has the most annotations is SNMG2509. Most
of the product types have 0 % of annotations of this defect.

Figure 3.12: Extra material glued annotations distribution.

17

3. Defect types in manufacturing
3.1.6 Shipping defects

Defects from shipping are the last defect type from the private dataset. They
can be abrasions or scratches anywhere on the product. These defects are
typically irregularly shaped and large but rarely can be smaller too.

Figure 3.13: A shipping defect example is on the left side. On the right side
is an annotation heat-map generated by Roboflow [8], which shows the placement
of shipping defects.

The given dataset has shipping defect 62 annotations in 23 images. Shipping
defect count by image is mainly 1 to 3. The average area of the shipping
defect is 137 539 pixels.

The distribution of annotations of this defect shows in the graph below.
Most annotations of shipping defects have S-TNMM3309. Many types have
0 % of annotations.

Figure 3.14: Shipping defect annotations distribution.

18

................................... 3.2. Severstal dataset

3.2 Severstal dataset

3.2.1 Dimple

Small patches of a missing or incomplete surface are the first defect type from
the Severstal steel dataset. They typically appear as small, irregularly-shaped
regions with a color that differs from the surrounding area, ranging from
a few pixels to a few tens of pixels in diameter. They can be scattered
randomly across the image and can appear anywhere on the surface of the
steel. The count of annotations per image is mostly 1 to 4.

Figure 3.15: Dimple example.

3.2.2 Scratch

The second defect type from the Severstal steel dataset is elongated and
narrow, typically appearing as long and dark thin lines on the surface of the
steel. These defects are typically a few tens of pixels long and a few pixels
wide and can have various shapes and orientations. It can appear in clusters
or isolated instances. There is mainly one annotation per image of the scratch
defect type.

Figure 3.16: Scratch example.

19

3. Defect types in manufacturing
3.2.3 Abrasion

These defects can be irregular, with no specific pattern. This defect type
from the Severstal steel dataset has defects that are typically larger than
dimples and can appear as irregularly shaped patches on the surface of the
steel. They can range in size from a few tens of pixels to a few hundred pixels
in diameter. The number of abrasion annotations is 1 to 3 in most cases.

Figure 3.17: Abrasion example.

3.2.4 Blister

The fourth defect type from the Severstal steel dataset can be irregular
and complex, with no specific pattern. These defects are typically much
larger than abrasions and can appear as irregularly shaped patches or areas
of missing surface on the steel. They can range in size from a few hundred
pixels to a few thousand pixels in diameter. The majority of images contain
1 to 3 annotations of the blister.

Figure 3.18: Blister example.

20

Chapter 4
Object detection methods

This chapter provides a basic description of one object detection method
in each section. The Faster R-CNN, YOLO, SSD, or U-net are one of the
most popular methods for object detection, so these are included in this
survey.

4.1 YOLO

The YOLO (You Only Look Once) is a family of Computer Vision models
which provides real-time object detection. Following subsections describes
individual versions of YOLO.
Its network consists of three main components [26].. Backbone: A convolutional neural network that aggregates and forms

image features at various granularities.. Neck: A set of layers used to merge and combine image features to pass
to prediction.. Head: Consumes features from the neck and takes a box and class
prediction steps.

Figure 4.1: YOLO object detector, taken from [5].

The YOLO was realized similarly to the human object recognition sys-
tem. The front part of the YOLO network structure is a modified structure
of GoogleNet. The deeper the Convolution Neural Network, the better the per-
formance with more layers. However, the number of parameters to be learned

21

4. Object detection methods
increases as the network depth increases. The problem of the deep convolution
operation is a considerable amount of calculation and a significant number
of parameter values that must be set. [18]

Figure 4.2: Object detection sequence of YOLO, taken from [18].

4.1.1 YOLOv1

YOLOv1 arrived with some limitations. If a cluster of small objects appears,
they are not detected. Implementing an architecture for object generalization
is difficult if the image has a different size than the training image. The prob-
lem is the position of the objects in the input image. The architecture
of YOLOv1 is shown below.

Figure 4.3: YOLOv1 architecture, taken from [28].

22

....................................... 4.1. YOLO

4.1.2 YOLOv2

YOLOv2 (sometimes called YOLO9000) was introduced in 2016. This variant
of the YOLO algorithm can predict up to 9 000 different object categories
while still running in real-time from its derived name. An effort was made
to address the weaknesses of the previous version of YOLOv1, which had
problems detecting small objects and had a low recall.[17]

YOLOv2 improvements are better and faster functionality. The main
differences in YOLOv2 are as follows, taken from [28]. Batch Normalization: Normalize the input layer with a slight change and

zoom activation. Batch normalization reduces the offset of unit values
in the hidden layer. Adding batch normalization to the convolutional
layer increases the architectural mAP by 2 %..• Higher Resolution Classifier: The input size in YOLOv2 has been
increased from 224 * 224 to 448 * 448. An increase in the image input
size increases the mAP by 4 %..Anchor Boxes: One of the most obvious changes in YOLO v2 is the
introduction of the anchor box. YOLOv2 is classified and predicted in
a single framework. These anchor boxes are responsible for predicting
the bounding box and designing this anchoring box for a particular data
set by using clustering (k-means clustering).. Fine-Grained Features: One of the main problems that YOLOv1 must
solve is to detect smaller objects on the image. This problem has been
resolved in YOLOv2, which divides the image into smaller 13 * 13 grid
cells. Enabling YOLOv2 to recognize or locate smaller objects in the
image is also effective for larger objects..Multi-Scale Training: YOLOv2 uses a random image of different sizes
ranging from 320 * 320 to 608 * 608 for training.. Darknet 19: YOLOv2 uses the Darknet 19 architecture with 19 convo-
lutional layers and 5 maximum pooling layers, and a SoftMax layer for
classifying objects.

23

4. Object detection methods
4.1.3 YOLOv3

YOLOv3 was released in 2018. This version was based on the Darknet-53
architecture, which consisted of 53 convolutional layers, as opposed to the
Darknet-19 architecture used in YOLOv2.

One of the most significant changes in YOLOv3 was the introduction
of predictions at three different scales. This has enabled YOLOv3 to detect
and classify small objects, resulting in a higher average accuracy (AP) score
compared to previous versions. [17]

YOLOv3 improvements compare to the previous version, taken from [28]. Bounding Box Predictions: The YOLOv3 method gives the score for
the objects for each bounding box. It uses logistic regression to predict
the objectiveness score.. Class Predictions: YOLOv3 uses a logical classifier for each class instead
of the SoftMax used in the previous YOLOv2. By doing this in YOLOv3,
we can do multi-label classification.. Feature Pyramid Networks (FPN): The predictions made by YOLOv3
are similar to FPN, in which three predictions are extracted for each
location of the input image and features, and features are extracted from
each prediction. In this way, YOLOv3 has better features on different
scales. Each prediction consists of a bounding box, objectivity, and
80 category scores.. Darknet-53: Previous YOLOv2 used Darknet-19 as a feature extractor,
while YOLOv3 uses the Darknet-53 network as a feature extractor with
53 convolution layers. It is deeper than YOLOv2 and has a quick
connection. The Darknet-53 consists primarily of 3x3 and 1x1 filters
with quick connections.

4.1.4 YOLOv4

The YOLOv4 model is an optimized model based on YOLOv3. In comparison
to the network structure of YOLOv3, YOLOv4 introduces a modification
to the Darknet53 network, which is replaced with a variant called CSP
Darknet53. YOLOv4 significantly improves Average Precision (AP) and
Frames Per Second (FPS). In comparison to YOLOv3, YOLOv4 demonstrates
an important advancement, with a 10 % increase in AP and a 12 % boost
in FPS. [23]

Improvements to make the detector more suitable for training on a single
GPU, taken from [5]. New method of data augmentation Mosaic which mixes 4 training images.

Thus 4 different contexts are mixed, while CutMix combines only 2 input
images. This allows the detection of objects outside their normal context..The second new augmentation method Self-Adversrial Training (SAT)
operates in 2 forward-backward stages.

24

....................................... 4.1. YOLO

4.1.5 YOLOv5

YOLOv5 [14] is a model in the You Only Look Once (YOLO) family of Com-
puter Vision models. YOLOv5 is commonly used for detecting objects.
YOLOv5 comes in four main versions: small (s), medium (m), large (l), and
extra-large (x), each offering progressively higher accuracy rates. Each variant
also takes a different amount of time to train.

YOLOv5 keeps P5 architecture for training images with a size of 640 pixels
from YOLOv4 and adds P6 models for images with 1280 pixels. P6 models
include an extra P6/64 output layer for the detection of larger objects and
benefit the most from training at higher resolution.

The release of v7.0 YOLOv5 adds segmentation models, for instance seg-
mentation.

4.1.6 YOLOv8

The latest addition to the YOLO (You Only Look Once) family of object
detection models is the YOLOv8 [27], released in January 2023, representing
the current state-of-the-art deep learning-based object detection. YOLOv8
can be utilized for a wide range of computer vision tasks, such as object
detection, image classification, and instance segmentation. Ultralytics, the
developers of YOLOv8, have a proven track record in creating influential and
industry-defining models, with YOLOv5 being one such example.

YOLOv8 may be used directly in the Command Line Interface (CLI) with
a ’yolo’ command or may also be used directly in a Python environment and
accepts the same arguments as in the CLI, which are Task (detect, segment,
classify), Mode (train, val, predict, export, track) and ARGS are any number
of custom arg=value pairs like imgsz=320.

YOLOv8 pretrained models are available for detect, segment, and pose tasks,
which are pretrained on the COCO dataset, while models for classification
are pretrained on the ImageNet dataset.

At the time of this writing, there was no paper about YOLOv8.

25

4. Object detection methods
4.2 Faster R-CNN

The Faster Region-based Convolutional Neural Network (Faster R-CNN) has
been developed as a faster alternative to the Selective Search (SS) algorithm
in the original R-CNN (Region-based Convolutional Neural Network) model.
To generate regions of interest (ROIs), the Faster R-CNN model uses a com-
pact convolutional network called the Region Proposal Network (RPN). Faster
R-CNN introduces the concept of anchor boxes to handle variations in aspect
ratio, which are used to scale the ROIs. When it comes to performance,
Faster R-CNN is 250 times faster than R-CNN.

The first module of Faster R-CNN is a deep fully convolutional network
that proposes regions, and the second module is a Fast R-CNN detector
that uses the proposed regions. The entire system is a single unified object
detection network. [22]

Figure 4.4: Faster R-CNN unified network, taken from [22].

The RPN module tells the Fast R-CNN where to search for objects. The net-
work produces a convolutional feature map after processing the whole image
with several convolutional and max pooling layers. From a crop of the image,
called Region of Interest (RoI), one obtains a vector containing fixed-length
features determined from the map of features of each object. This vector
is sent to a sequence of fully connected layers that are fed finally to two
sibling output layers. One layer produces the maximum probability of estima-
tion over a number of object classes, whereas the other layer outputs 4 real
numbers for each class. [10]

26

.. 4.3. SSD

4.3 SSD

The Single Shot Detector (SSD) is a detection framework capable of identifying
multiple object categories in a single pass. The core of SSD is predicting
category scores and box offsets for a fixed set of default bounding boxes using
small convolutional filters applied to feature maps.

Convolutional feature layers were added to the end of the truncated base
to detect objects at various scales. These layers decrease in size and enable
object detection predictions at multiple scales.

SSD only needs an input image and ground truth boxes for each object
during training.

The SSD object detection composes of 2 parts [12]:. Extract feature maps.Apply convolution filters to detect objects.

Figure 4.5: SSD architecture, taken from [19].

The additional structure that was added to the network, taken from [19].Multi-scale feature maps for detection: Convolutional feature layers were
added to the end of the truncated base network. These layers decrease
in size progressively and allow predictions of detections at multiple scales.
The convolutional model for predicting detections is different for each
feature layer.. Convolutional predictors for detection: Each added feature layer can
produce a fixed set of detection predictions using a set of convolutional
filters.. Default boxes and aspects ratios: Default bounding boxes are associated
with each feature map cell for multiple feature maps at the top of the
network. The default boxes tile the feature map in a convolutional
manner so that the position of each box relative to its corresponding cell
is fixed.

27

4. Object detection methods
4.4 U-net

U-Net is a convolutional neural network architecture designed for image
segmentation tasks. It is called "U-Net" because of its U-shaped architecture,
consisting of a contracting path followed by an expanding path.

Figure 4.6: U-net architecture, taken from [24].

The first part of the U-Net architecture is the contracting path, composed
of convolutional and pooling layers that progressively reduce the resolution
of the input image while increasing the number of feature channels. Each
convolutional layer is typically followed by a rectified linear unit (ReLU)
activation function.

The last part of the contracting path is a bottleneck layer consisting
of a convolutional layer that combines spatial information from the input
image with the learned feature representation. Many filters are there to catch
the most important features.

The remaining half of the U-Net architecture is an expanding path that
reflects the contracting path. It is upsampling the feature maps back to the
input image size while decreasing the number of feature channels. Transposed
convolution layers are used in upsampling steps.

At the end of the expanding path, a convolutional layer with a sigmoid
activation function is used to get the final segmentation map with the same
resolution as the input image. The output of the U-Net model is a binary
mask for each class. [29] [24].

28

Chapter 5
Necessary prerequisites

This chapter describes the necessary steps before doing any experiments.
Some of these steps are the preparation of data format and choosing which
methods we want to use. The methods utilized are selected in 5.1. It is im-
portant to know how to run training and inference for chosen methods, which
is provided in Section 5.6. The private dataset was already received in COCO
format, so all needed to use YOLO was to convert the dataset from the
COCO format 2.2.1 to YOLOv5 format 2.2.2 and know how to train and
run inference. The public dataset has available annotations in CSV format
2.2.3. To use this dataset for YOLO was necessary to convert it with steps
in Sections 5.2, 5.3, and 5.4. While using U-net, the private dataset must
be converted using steps provided in Section 5.5. The public dataset does
not need to use any conversion to use it on U-net. But for both datasets, the
output of U-net must be converted by steps from Section 5.3 to get result
bounding boxes to compare.

5.1 Selection of methods used

The important condition in my selection of methods was that a method
is nowadays being used and to be able to compare their results.

The first used method is YOLOv5[15] because it is widely used in practice
for object detection nowadays. The main advantages of the YOLOv5 are that
it is easy to use and also easy to install because it only requires the installation
of a torch and some Python libraries from requirements.txt. Another benefit
is that the YOLOv5 models are training pretty quickly.

The second used method is Vanilla U-net, specifically the implementa-
tion from the Kaggle competition [4]. The Severstal dataset is from the
Kaggle competition, which has already ended, but many solutions are there.
So I decided to use one of the best solutions for its great success in this
competition.

Chosen YOLO generates prediction bounding boxes, and U-net performs
segmentation masks. Converting the result masks from the U-net to bounding
boxes is necessary to make the results comparable.

29

5. Necessary prerequisites
5.2 Conversion of the CSV annotations to RGB
mask

The annotations with train images were downloaded from the Kaggle compe-
tition [3] in the format shown in the following Figure. A mask was created for

Figure 5.1: The annotations in CSV format from the Kaggle

each image in the folder, which has a black color (’(0, 0, 0)’ in RGB), where
is no annotation. Areas, where annotations were placed, were following colors
according to defect class id. The ’(255, 0, 0)’ in RGB for the defect which has
id 1, ’(0, 255, 0)’ for the defect class with id 2, ’(0, 0, 255)’ for the defect class
with id 3 and ’(128, 0, 255)’ for defect class with id 4. These RGB masks
were saved as .png files. After these steps, CSV annotations were successfully
converted to RGB masks. The notebook [16] inspired this process.

5.3 Conversion of the annotations from the RGB
mask to the COCO

The git repository [9] was used to convert the RGB masks to the COCO format.
The ’create-custom-coco-dataset.ipynb’ file is needed, but some modifications
must be made first. Change the category ids in the format ’"defect_name":
id’ and category colors in the format ’"(R, G, B)": id’ as shown in the Figure
below.

Figure 5.2: On the left side of the Figure is shown the settings of category ids,
and on the right side are category colors corresponding to colors in the previous
step. 5.2

30

........... 5.4. Conversion of the annotations from the COCO to the YOLOv5 format

5.4 Conversion of the annotations from the COCO
to the YOLOv5 format

The conversion of the data in the COCO format to the YOLOv5 format
is performed in this work using the SAHI framework. This framework has
the following command:
sahi coco yolov5 --image_dir dir/to/images --dataset_json_path dataset.json
--train_split x [2]
, which will convert the given coco dataset to yolov5 format. The ’x’ parameter
for train_split is between 0 and 1, with a default value of 0.9. Instead
of using this command, it can be imported as a Python function ’from
sahi.scripts.coco2yolov5 import main’.

5.5 Conversion of the annotations from the COCO
to the CSV format

The conversion of the data in the COCO to the CSV format is using the
pycocotools function called ’annToMask’, which makes a mask from the
annotation. But all annotations need to contain the field ’segmentation’.
Some of the annotations from the private dataset do not contain segmentation,
it is needed to add it in the shape of the bounding box. If all annotations
have segmentation, it is appropriate to create a mask for each defect type per
image. And finally, for each mask generate RLE (Running Length Encoding)
and write it into a CSV file in column ’EncodedPixels’.

5.6 How to train and predict with YOLOv5 model

5.6.1 How to train

To run training of YOLOv5 is necessary to clone the git repository of YOLOv5
and install requirements in requirements.txt. Command to run training in ba-
sic is
python train.py --img img_size --batch batch_size --epochs N --data path/-
to/yaml --weights path/to/model.pt
where. ’--img’: The size of the input image for the model (e.g., 640, 1280, etc.).. ’--batch_size’: The number of images to include in each training batch

(e.g., -1 for automatic calculation or 8, 16, 32, 64, etc.).. ’--epochs’: The number of epochs to train the model for (e.g., 30, 100,
1000, etc.).. ’--data’: The path to the data config file (YAML file 2.2.2) containing
information about the training and validation data

31

5. Necessary prerequisites
. ’--weights’: The path to the initial weights file to use for training the model

(e.g., ” for random initial weight or yolov5s.pt, yolov5m.pt, yolov5l.pt,
etc.). ’--cfg’: The path to the model configuration file (YAML file) that defines
the architecture of the YOLOv5 model. This parameter has to be set
if are used randomly initialized weights.. ’--hyp’: the path to the hyperparameters file (YAML file) containing
values for various hyperparameters used during training (e.g., learning
rate, momentum, etc.).

5.6.2 How to run inference

Inference can run directly from YOLOv5, but to use techniques like slic-
ing, SAHI (Slicing Aided Hyper Inference) [1] will be used. Inference with
YOLOv5 detect.py:
python detect.py --img img_size --weights path/to/model.pt --source path/-
to/imgs --conf K
where. ’--img’: This specifies the input image size for the model. The default

value is 640, and larger values will increase the detection accuracy but
also increase the processing time and memory requirements.. ’--weights’: This specifies the path to the trained YOLOv5 weights file
to be used for inference.. ’--source’: This specifies the input source for the detection, which
can be a path to an image or video file, a directory containing images,
or a camera index.. ’--conf’: This sets the detection confidence threshold for filtering out
low-confidence detections. The default value is 0.25, and higher values
will result in fewer detections but higher precision.

Inference with SAHI is detailed described here [2], but important is SAHI
predict command:
sahi predict --slice_width slice_size --slice_height slice_size --overlap_height_ratio
overlap_ratio --overlap_width_ratio overlap_ratio --model_confidence_threshold
T --source image/file/or/folder --model_path path/to/model.pt where. ’--slice_width or height’: This sets the width or height of each slice to the

given integer value. The default value is 512 pixels.. ’--overlap_width_ratio or height’: This specifies the fractional overlap
in the height of each window (e.g., an overlap of 0.2 for a window of size
512 yields an overlap of 102 pixels). The default value is 0.2.. ’--model_confidence_threshold’: This is the same as the ’conf’ parameter
while using directly detect.py from YOLO.

32

........................... 5.7. Viewing the dataset using FiftyOne

. ’--source’: This is the same as the ’source’ parameter while using directly
detect.py from YOLO.. ’--model_path’: This is the same as the ’weights’ parameter while using
directly detect.py from YOLO.

5.7 Viewing the dataset using FiftyOne

In this work, the FiftyOne open-sourced toolkit was employed to facilitate
the examination of datasets. Specifically, a comprehensive analysis of all
samples was conducted to identify and describe all types of defects types
present within the data. The FiftyOne toolkit offers a multitude of additional
features, including the ability to generate customized datasets from scratch
or evaluate results and much more. [21]

33

34

Chapter 6
Severstal dataset

This chapter describes the results of measurements on the Severstal dataset.
These results are compared between YOLO and U-net in Section 6.1 and
then are experiments with the YOLO model to improve its performance
in Section 6.2. Achieved results are provided in Section 6.2.13. All figures
with example predictions in this chapter are consistent with green annotations
indicating ground truth, and the red-colored annotations represent predictions.
The testing set contains 1 006 images with 1 434 ground truth annotations,
of which is 201 dimple, 20 scratch, 1069 abrasion, and 144 blister defects.

6.1 Comparison of methods

Subsections 6.1.1 and 6.1.2 provide typical predictions reached by the rele-
vant method. But the Subsection 6.1.3 contains a comparison of the main
differences between YOLO and U-net predictions.

6.1.1 U-net

Results reached while using the U-net method from the Kaggle notebook
on the Severstal dataset are described here. The aim is to describe the most
common problems or achievements reached with U-net. The following results
were reached using U-net from the Kaggle competition trained with origin
source images with the 1 600 × 256 pixels resolution for 30 epochs with
200 steps per epoch.

35

6. Severstal dataset

Figure 6.1: Example predictions performed by the U-net model.

The first prediction example in Figure 6.1 shows no dimple is detected. On
the second row, the left example shows the blister defects, where all of them
are detected. All predictions except one are true positives according to a softer
metric consistent with visible predictions. The example on the right side
shows the case when many small predictions are performed along the whole
core of the defect. The example shows that two defects are correctly detected,
and one is not. The last row illustrates the prediction of the large defect.
The large defect is pretty well detected even when prediction separated this
defect into one smaller in the left part on the defect and the rest of the defect
on the right. The other one on the right side is well detected of the three
remaining smaller defects. Only a small bottom part of the defect is detected
on the left top part of the example, which is enough according to the more
moderate metric. And the last one in the top middle of the example defect
has detected the core of the defect.

From the observations above, it is evident that small defects are a problem
to detect, as shown by no dimple prediction. Scratch defect type is also
not detected at all, but scratch annotations are underrepresented in this
dataset, which may also cause it. U-net has good results on large defects
with pronounced edges or cores of medium-sized defects.

36

................................ 6.1. Comparison of methods

6.1.2 YOLO

The predictions of the YOLOv5 model trained on the Severstal dataset are
provided in this subsection. Example predictions are here, showing typical
results of the YOLO model. Training and prediction are performed on source
images with an origin resolution of 1600 × 256 pixels for 1000 epochs with
the patience of 100, batch 32, and used randomly initialized weights with
config file yolov5m.yaml.

Figure 6.2: Example predictions performed by YOLOv5 model.

The first example in Figure 6.2 shows the prediction of dimple defects,
where two defects are not detected, and the remaining two are detected in one,
a slightly bigger prediction. The middle example displays a blister defect.
One prediction detected two ground truth annotations pretty well, but the
smaller defect on the right was not detected because the prediction bounding
box does not contain a core of the defect and enough area of the defect.
The last example shows a good prediction of large abrasion defect but all
smaller defects are not detected.

In conclusion, from observation, small defects, such as dimple defect type,
are difficult to detect. Also problem with the detection of the underrepresented
scratch defect type, which was not detected at all. In the case of large
or medium-sized defects, the predictions are quite accurate.

6.1.3 Summary comparison

This subsection describes differences in results and predictions of both meth-
ods. The comparison is divided into three parts, where the first one compares
reached predictions, which have quite good results. The second part of the
comparison provides examples of false positives or unannotated defects. And
the last third part of the comparison takes numeric results and checks that
it is consistent with the observations made.

37

6. Severstal dataset

Figure 6.3: On the left side are predictions from YOLO, and on the right side
from U-net.

Figure 6.3 shows a pretty good predictions. The first row compares the
prediction of scratch defect where YOLO performed no prediction. In the
case of U-net, the scratch is not predicted, but the abrasion is at the place
where is a ground truth annotation of scratch. So U-net recognized the defect
but assigned it to a bad defect type. There are more wrong defect type
assignments, but they are rare. YOLO also has this problem but in smaller
quantities. The second row shows that YOLO detected one blister defect
with high accuracy, but the other one did not. In contrast, U-net detected
both defects but with more prediction bounding boxes less accurately and
with 2 false positives. The last row displays predictions of abrasion. YOLO
performed 2 predictions which detected 4 defects. Many smaller predictions
are performed by U-net detecting all defects, which may cause mark some
of these predictions as not accurate enough while using the IoU metric.

Figure 6.4: On the left side are predictions from YOLO, and on the right side
are from U-net. This Figure shows differences in false positive prediction.

Figure 6.4 shows differences in false positive predictions. The first example
shows the example which is according to the ground truth without defects.
As can be seen, the surface is peeled off, which looks like a blister defect.
Because there are more images like this, false positives are high in the case of
U-net. The example below shows the case when the regular pattern is on the
whole surface. The whole image is covered with predictions performed by U-

38

................................ 6.1. Comparison of methods

net, which are false positives according to the ground truth. YOLO performed
no prediction that can be considered as true negative. The third row is an
example of a damaged surface looking like a blister defect that is not a defect
according to ground truth annotations. Both methods detected this defect.
We believe it is an unannotated defect, and more cases like this are in this
dataset. The last row illustrates the problem when the differently colorized
surface looks like a defect. U-net performed predictions in places with these
different colors. So U-net got confused with this compared to YOLO, which
deals with it.

Metric DC P R TP FP
U-net 485 6.8 % 33.8 % 485 6 635
YOLO 505 50.9 % 35.2 % 507 490

Metric DC-B P-B R-B TP-B FP-B
U-net 913 20.1 % 63.7 % 1 428 5 818
YOLO 930 81.7 % 64.9 % 815 182

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

U-net 0.009 0.02 0.007 0.0 0.039 0.097
YOLO 0.098 0.21 0.076 0.03 0.215 0.365

Table 6.1: Tables with the comparison of the number of detected defects, TP,
and FP for the YOLO and U-net model in the first two tables, where the second
one is for the more benevolent metric. The mAP results are described in the
last table. The metrics in columns are described in Section 2.3.

The tables with numeric results reflex the problems from the observations,
like not detecting small defects. Both methods must deal with unannotated
defects or parts of the surface similar to defects, but YOLO handles these
cases much better for available ground truth annotations. Because it causes
a higher number of false positive predictions from U-net. U-net makes more
of the smaller predictions, which results in lower prediction accuracy.

Considering that unannotated defects are not annotated for some sensible
reason. Probably because this defect type is not important to detect. There-
fore we chose YOLO as a more appropriate algorithm. Despite the fact that,
in my opinion, some unannotated defects are of the type we want to detect.

39

6. Severstal dataset
6.2 Fine-tuning

This section describes experiments on the public dataset. These experiments
are performed on several datasets, which are variants of the public dataset.
The goal is to discover which techniques help improve the precision of models
for this dataset.

In experiments, the following techniques are used. Slicing source images
into smaller slices to improve the detection of small defects. Prediction is made
with or without overlap of the slices. Because slicing can cause splitting defect
annotation into more slices, find out how much of the defect area at least
needs to be kept on the slice to improve detection. Determine the effect
of negative samples in the training set. And verify if using the pre-trained
model is useful, and if so, find out which one is the most appropriate for this
dataset.

This section describes the effects of these techniques on the public dataset
and the differences between them.

6.2.1 Data preparation

Several datasets for experiments were created with different parameters such
as slice size, minimal object area, or the number of negative samples in the
training dataset. These datasets must be converted to yolov5 format with
steps mentioned in Chapter 5. Datasets for measurements were generated
with the following parameters:. Slice size 800, 400, or 256 pixels.Overlap of sliced images 0 %.Minimal area of defect in sliced image 5 % or 20 %. Percentage of negative samples in training set 0 % or keep all

40

..................................... 6.2. Fine-tuning

6.2.2 Training and prediction parameters

These results were reached with YOLOv5 v7.0.11[15], SAHI v0.11.13[1],
Python 3.9.6 with torch-1.12.1+cu116. Parameters used while training:. Batch: 32.Weights: random initialized. Cache: RAM. Epochs: 1 000. Patience: 100. Config file: yolov5m.yaml

and parameter ’--rect’ is used to enable the training model on images with
different width and height. Predictions were made with the same parameters
as training and with 30% overlap, and the confidence threshold is chosen
as a maximum of the F1 curve unless otherwise mentioned. The DC (Detected
Count) metric is evaluated at the IoU threshold of 0.5.

6.2.3 Baseline model using no technique

As the first measurement is made training and prediction on unchanged
data, images with resolution 1 600 × 256 pixels. The training was run with
parameters from Section 6.2.2. It is the same model with the same result
metrics as compared to U-net in Subsection 6.1.2.

Figure 6.5: Prediction example for each defect type.

The top left example shows that not all defects are detected, which are
quite small. The top right example shows that the underrepresented defect
type scratch is not detected at all. In the left bottom example is visible
correct detection of all defects. According to the ground truth, the left
defect is small at only the top of the image, but we can see that defect same
as the prediction is made, so maybe not all ground truth annotations must
be completely accurate. In the right bottom example is shown one prediction
of the blister defect over 2 ground truth annotations, and the third is mostly
out of the predicted area, so it is not detected.

41

6. Severstal dataset
6.2.4 Slicing to 256 pixels sized slices

The first technique is slicing source images into squared slices with a 256 × 256
pixels resolution. Slices are without overlap, and all negative samples are kept
in the training set. The training was run with parameters from Section 6.2.2.

This technique should improve the prediction of small defects, which are
especially annotations belonging to the dimple defect type.

Figure 6.6: Prediction example while using slicing to 256-pixel sized slices.

In the top left example, an increased number of detections of dimple
annotations can be seen. Almost all of them are detected, although not
exactly. In the right top example, the scratch defect type is again not
detected, but one dimple prediction has appeared. According to the ground
truth, no defect is there. But after zooming that image, we noticed some defect
is there. In the example at the bottom left, two false positive predictions
have occurred there, and one defect is detected twice, which is not desirable.
The place on the product where the false positive abrasion prediction is has
a darker line there if is that unannotated defect, we can not say. The last
example in the right bottom is almost without changes compared to using
no techniques. The only difference is the higher confidence of prediction, and
its bounding box is slightly larger.

Metric DC P R TP FP
baseline 505 50.8 % 35.2 % 507 490
slice 256 694 36.1 % 48.4 % 697 1 235

Metric DC-B P-B R-B TP-B FP-B
baseline 930 81.7 % 64.9 % 815 182
slice 256 1 081 68.3 % 75.4 % 1 320 612

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

baseline 0.098 0.21 0.076 0.03 0.215 0.365
slice 256 0.133 0.257 0.12 0.11 0.21 0.402

Table 6.2: Tables show the number of detected defects, TP, and FP for slicing
to 256-pixel-sized slices in the first two tables. The table below shows the results
of mAP.

This technique is great for increasing the number of detected small defects
but causes a very high number of false positives, even when some of them
can be only unannotated defects.

42

..................................... 6.2. Fine-tuning

6.2.5 Minimal area ratio of defect

This subsection finds the differences between training sets, where one contains
slices with annotations greater than 20 % of the whole defect area and the
second with annotations greater than 5 %. The rest of the dataset parameters
is the same. The training was run for 200 epochs with the patience of 40,
batch 32, randomly initialized weights, and with yolov5m.yaml config file for
both.

Figure 6.7: Prediction examples where the left side displays prediction with the
model trained on slices with 20 % minimal area of defect and on the right side
are predictions made with the model trained on slices with 5 % minimal area of
defect.

In the case of the dimple defect type, which shows images in the first row,
a minimal difference is there. The only difference is one less false positive
using 5 %. For the images in the second row, showing the scratch defect type
on the left side for the 20 % defect is detected but not in the case of 5 %.
For the row below where is abrasion defect type are no significant differences.
And in the last row for the blister defect type, there is one more false positive
in the case of 5 % of minimal area.

Metric DC P R TP FP
20 % 755 29.6 % 52.6 % 766 1 826
5 % 739 31.8 % 51.5 % 742 1 588

Metric DC-B P-B R-B TP-B FP-B
20 % 1 198 42.6 % 83.5 % 1 104 1 488
5 % 1 171 46.1 % 81.7 % 1 075 1 255

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

20 % 0.097 0.234 0.071 0.162 0.281 0.229
5 % 0.112 0.251 0.095 0.245 0.316 0.189

Table 6.3: The first two tables shows the number of detected defects, TP, and
FP for different minimal area ratios of a defect. The last table shows the results
of mAP.

43

6. Severstal dataset
This experiment shows that 5 % has higher mAP and precision but a little

lower recall against the 20 % for minimal area ratio. For the following
experiments is used 5 % of the minimal defect area. The reason is that the
number of detected defects for 20 % is not that much higher than for 5 %.
To increase the true positives, I’ll try to find a more appropriate technique,
and this technique will help to improve the precision of predictions.

6.2.6 Dataset with/without negative samples

This subsection determines the effect of the negative samples in the training
set. Almost half of the training set are negative samples. The training was run
for 200 epochs with the patience of 40, batch 32, randomly initialized weights,
and with yolov5m.yaml config file for both. The first difference is already
during training when the training time for the dataset, which consists only of
positive samples, is very shorter. The training time for the dataset containing
negative samples is 10 hours and 37 minutes, against the dataset from only
positive samples, which took only 2 hours and 56 minutes.

Figure 6.8: Left side displays the prediction performed by the model trained on
data containing only positive samples, and the right side shows the prediction
made by the model trained on data with negative samples.

The first row with dimple defect type on the right side shows the prediction
of more bounding boxes, which fit better the ground truth. In the case of only
positive samples, there are fewer bigger predictions that include more ground
truth annotations. The only difference for the scratch defect type is lower
confidence in the case of using negative samples. The abrasion prediction
on the row below has confused with different colors a defect on the left.
The prediction of blister defect type affected the confidence of predictions,
and false positive prediction has expanded and included one small ground
truth annotation in the case of training with negative samples. The last row
illustrates a sample that is according to the ground truth without defects.
And there is a big difference. There are many false positives while using only
positive samples. There is no false positive prediction if the negative samples
are used while training.

Training with all negative samples helps increase the precision by 72 %

44

..................................... 6.2. Fine-tuning

Metric DC P R TP FP
negative 809 54.9 % 56.4 % 814 668
positive 739 31.8 % 51.5 % 742 1 588

Metric DC-B P-B R-B TP-B FP-B
negative 1 145 74.6 % 79.8 % 1 105 377
positive 1 171 46.1 % 81.7 % 1 075 1 255

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

negative 0.171 0.378 0.143 0.198 0.376 0.419
positive 0.112 0.251 0.095 0.245 0.316 0.189

Table 6.4: The number of detected defects, TP, and FP for the model trained
with only positive samples in the row named ’positive’ and with negative samples
in the row named ’negative’ are shown in the first two tables. The last table
shows the results of mAP.

with higher mAP for stricter metrics using IoU. The disadvantage of using
negative samples is lower confidence of predictions, but it can be minimized
by training for more epochs. In conclusion, using negative samples in training
is very helpful to get better results.

6.2.7 Slicing to 400 pixels width slices

The next technique is slicing into bigger slices with a resolution of 400 × 256
pixels. Slices are without overlap, and all negative samples are kept in the
dataset. The train ran with parameters from Section 6.2.2.

This technique should help increase the accuracy of predicting small defects,
but compared to slicing into 256-pixel-sized slices, this technique will create
fewer slices and thus reduce the number of problems at their edges.

Figure 6.9: The prediction examples while using slicing to 400-pixel width slices.

At the top left image is shown dimple prediction, which predicted all defects
with a few false positives according to the ground truth. if we take a closer
look, is possible to see that the false positive predictions are at the places
where something is different from the normal surface. In the case of scratch
again, no significant changes. But for abrasion defect type there is shown
how predictions are made in each slice. According to stricter metrics, only
one of the predictions is a true positive. The rest of them are false positives
because they are below IoU 0.5. But for the softer metrics, all of them are
true positives, and that’s why we use this metric because we think so too.

45

6. Severstal dataset
The last example of blister defect shows slightly good accuracy, but one false
positive blister and one abrasion annotation exist. Both false positives look
like they were confused by the color of the surface.

Metric DC P R TP FP
slice 256 694 36.1 % 48.4 % 697 1 235
slice 400 842 40.6 % 58.7 % 907 1 328

Metric DC-B P-B R-B TP-B FP-B
slice 256 1 081 68.3 % 75.4 % 1 320 612
slice 400 1 213 68.2 % 84.6 % 1 525 710

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

slice 256 0.133 0.257 0.12 0.11 0.21 0.402
slice 400 0.166 0.38 0.113 0.358 0.355 0.339

Table 6.5: The first two tables show the number of detected defects, TP, and
FP for the model trained with 256-pixel-sized slices and 400-pixel width slices.
The last table shows the results of mAP.

Slicing to 400-pixel width slices improved predictions of small defects and
helped to detect more defects. The mAP50s column shows that mAP for
small objects is significantly better. But the number of false positives has
slightly increased too. And the detection accuracy for large defects is not
ideal, as shown in the abrasion example.

6.2.8 Slicing to 800 pixels width slices

This technique tries slicing images into only two slices with a resolution
of 800 × 256 pixels to keep better results for the detection of small defects
but reduce problems with large ones. In the training set are, all negative
samples kept. This subsection also describes the difference in using an overlap
in prediction, which should help detect defects at the edge of the slices with
higher accuracy. The training was run with parameters from Section 6.2.2

Figure 6.10: The prediction example shows the difference between using slicing
to 400-pixel width slices on the right side and 800-pixel width slices on the left
side for large defects.

Using slicing to larger slices eliminated the multiple predictions of the same
ground truth annotation but with lower confidence.

46

..................................... 6.2. Fine-tuning

Figure 6.11: This Figure compares predictions made with slicing to 800 width
slices, but on the left are predictions made without an overlap, and on the right
side are predictions made with an overlap of 0.3.

The first row in Figure 6.11 illustrates the difference on the dimple defect
type, which helped increase the prediction confidence. The second row
displays the scratch defect, but this defect type is in the testing set, never
in the middle of the image, which is the only place where this technique can
make some changes for slicing to 800-pixel width slices. So all annotations
of all defect types, which are not at the edge of the slices, can not be affected
by this technique. The third row displays the case when using an overlap
in prediction can help to detect defects that are not detected without overlap.
Unfortunately, this annotation is evaluated here as a false positive because
its IoU is lower than 0.5, but it is a true positive for softer metrics. The next
row shows the blister defect, which is not detected at all using prediction
without prediction, but with an overlap, it predicted one blister annotation,
which is taken as one true positive. And at the last row can be seen in the
case of not using an overlap duplication of prediction at the edge of the slices,
but while using an overlap only one, a slightly larger prediction is performed.

Metric DC P R TP FP
slice 400 842 40.6 % 58.7 % 907 1 328
slice 800 788 63.1 % 55 % 790 462

Metric DC-B P-B R-B TP-B FP-B
slice 400 1 213 68.2 % 84.6 % 1 525 710
slice 800 1 105 83.1 % 77.1 % 1 041 211

Table 6.6: Tables demonstrating the number of detected defects, TP, and FP
for the model trained with 400-pixel width slices and 800-pixel width slices.

47

6. Severstal dataset
Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

slice 400 0.166 0.38 0.113 0.358 0.355 0.339
slice 800 0.182 0.395 0.137 0.272 0.421 0.403

Table 6.7: The table displays the results of mAP.

Metric DC P R TP FP
no overlap 775 63.6 % 54 % 778 446

overlap 788 63.1 % 55 % 790 462

Metric DC-B P-B R-B TP-B FP-B
no overlap 1 083 84 % 75.5 % 1 028 196

overlap 1 105 83.1 % 77.1 % 1 041 211

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

no overlap 0.179 0.386 0.135 0.269 0.401 0.393
overlap 0.182 0.395 0.137 0.272 0.421 0.403

Table 6.8: The first two tables show the number of detected defects, TP, and
FP for the model trained with 800-pixel width slices where one row is the case
of prediction without overlap and the second one is with overlap. The third table
shows the results of mAP.

Using slicing to 800-pixel width slices versus 400-pixel width slices helps
to reduce multiple predictions for large defects and slightly decreases the recall
but with significantly higher precision. And still helps to detect small defects
against not using any slicing. Deciding which of these techniques is better
depends on what is more important in the current task. If maximizing the
recall, slicing to 400-pixel width slices is better for sure. But if we are worried
about a significantly higher number of false positives, slicing to 800-pixel
width slices is the right technique.

Has been confirmed that performing predictions with overlap solves many
detection problems at the edges of the slices.

48

..................................... 6.2. Fine-tuning

6.2.9 Using a pre-trained model or random initialization

This subsection compared the training without any techniques, with only
different, which is using randomly initialized weights of a model or using
an already pre-trained YOLO model. Pre-trained models from YOLO are
pre-trained on the COCO dataset, which contains 80 classes, and most of the
images have a small count of annotations, which mostly have medium to large
areas.

Figure 6.12: Prediction example of using random initialization on the left side
and using pre-trained model yolov5m.pt on the right side.

The first row of Figure 6.12 has almost no difference, only slightly narrower
predicted bounding boxes. But the second row shows the case when the
pre-trained model predicted defects more exactly.

Using a pre-trained model should be better if this dataset’s data has
similar features. Otherwise, it may have a bad effect on the accuracy of the
model. The pre-trained model might be more appropriate since the COCO
dataset, and this one has low data resolution and mostly fewer annotations
per image.

Metric DC P R TP FP
random init 505 50.9 % 35.2 % 507 490
yolov5m.pt 540 66.3 % 37.7 % 540 274

Metric DC-B P-B R-B TP-B FP-B
random init 930 81.7 % 64.9 % 815 182
yolov5m.pt 831 89.7 % 58 % 730 84

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

random init 0.098 0.21 0.076 0.03 0.215 0.365
yolov5m.pt 0.116 0.256 0.088 0.032 0.261 0.408

Table 6.9: The first two tables show the number of detected defects, TP, and FP
for a model trained from random initialization or from pre-trained yolov5m.pt
model. The table below shows the results of mAP.

Using a pre-trained model increased the precision of predictions and help
to detect more defects while evaluating by stricter metrics. The next im-
provement reached by the pre-trained model is decreased number of false
positives. In conclusion, using the pre-trained model really helped to get
more satisfactory results.

49

6. Severstal dataset
6.2.10 Pre-trained model size

This subsection compares the metrics between individual pre-trained models.
The main difference between the pre-trained models is in the complexity of the
models. The yolov5m.pt model is approximately 2 times more complex than
yolov5n.pt, and yolov5x.pt is approximately almost 5 times more complex
than yolov5n.pt. The higher complexity of the model can help to increase
precision when the data have a higher resolution, or the specific features
of defects are very difficult.

Metric DC P R TP FP
yolov5n 566 58.2 % 39.5 % 567 407
yolov5m 540 66.3 % 37.7 % 540 274
yolov5x 519 67 % 36.2 % 519 256

Metric DC-B P-B R-B TP-B FP-B
yolov5n 906 83.2 % 63.2 % 810 164
yolov5m 831 89.7 % 58 % 730 84
yolov5x 776 90.2 % 54.1 % 699 76

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

yolov5n 0.115 0.252 0.09 0.053 0.268 0.389
yolov5m 0.116 0.256 0.088 0.032 0.261 0.408
yolov5x 0.117 0.23 0.101 0.049 0.23 0.389

Table 6.10: The first two tables show the number of detected defects, TP, and
FP for three different-sized pre-trained yolov5 models. The table below shows
the results of mAP.

All 3 models were trained with parameters from Section 6.2.2. Training
times were 7 hours and 52 minutes for the nano model, 7 hours and 59 minutes
for the medium, and 21 hours and 46 minutes for the extra large model.
Trained on origin data, same as in Section 6.2.3.

From the results can be seen that the smaller model has better performance
on the Severstal dataset. A possible explanation for this observation is that
this dataset contains only 4 classes, and the number of annotations on the
images is typically less than 5 Plus, these annotations are very often of the
same class. Additionally, the features of the defects in this dataset are
quite obvious and not very complicated, combined with the lower resolution
are these probable reasons. In summary, the complexity of the model has
a minimal effect on its performance.

6.2.11 Using various confidence threshold

This subsection uses the model from Subsection 6.2.8, which is trained on 800-
pixel width slices. But predictions are performed with different confidence
thresholds. Decreasing confidence thresholds cause using predictions with

50

..................................... 6.2. Fine-tuning

lower confidence in results. That will increase the number of false positives.
The number of true positives should get higher too. Using a lower confidence
threshold is useful if the number of true positives increases. Hopefully, the
precision remains the same or is reduced as little as possible.

Figure 6.13: Prediction example of using confidence threshold corresponding
to F1 max on the left side and using 0.15 as confidence threshold on the right
side.

The first row in Figure 6.13 shows that a lower confidence threshold
produces more false positives. The remaining two rows show when a lower
confidence threshold helps detect more defects.

Metric 0.311 0.3 0.25 0.2 0.15 0.1
DC 788 791 808 824 827 833
P 63.1 % 62.4 % 58.8 % 55.1 % 50.1 % 53.8 %
R 55 % 55.2 % 56.3 % 57.5 % 57.7 % 58.1 %

TP 790 793 810 826 831 977
FP 462 478 567 672 799 839

DC-B 1 105 1 120 1 162 1 205 1 244 1 290
P-B 83.1 % 82.7 % 80.1 % 77.6 % 73.6 % 69.3 %
R-B 77.1 % 78.1 % 81 % 84 % 86.8 % 90 %

TP-B 1 041 1 051 1 103 1 162 1 200 1 258
FP-B 211 220 274 336 430 558
mAP 0.182 0.181 0.18 0.185 0.186 0.173

mAP.50 0.395 0.394 0.4 0.422 0.426 0.413

Table 6.11: Table with differences between results predicted with various
confidence thresholds. In the columns header are values of confidence thresholds
that were used, where the first one is the F1 max.

According to these results, the best confidence threshold for this dataset
is 0.2 if the goal is to achieve the highest possible mAP and precision. If even
a slightly lower precision and mAP do not matter, the 0.1 confidence threshold
is the best choice.

51

6. Severstal dataset
6.2.12 Comparison of fine-tuning measurements

This section shows the differences in results between the most relevant mea-
surements.

Metric M1 M2 M3 M4
DC 505 694 842 833
P 50.8 % 36.1 % 40.6 % 53.8 %
R 35.2 % 48.4 % 58.7 % 58.1 %

TP 507 697 907 977
FP 490 1 235 1 328 839

DC-B 930 1 081 1 213 1 290
P-B 81.7 % 68.3 % 68.2 % 69.3 %
R-B 64.9 % 75.4 % 84.6 % 90 %

TP-B 815 1 320 1 525 1 258
FP-B 182 612 710 558
mAP 0.098 0.133 0.166 0.173

mAP.50 0.21 0.257 0.38 0.413

Table 6.12: Table with result metrics for the public dataset, where measurements
labeled from M1 to M4 are described below.

M1 - prediction made and model trained without any technique
M2 - model trained on sliced samples with a width and height of 256 pixels,
5 % minimal area ratio, and all negative samples.
M3 - model trained on sliced samples with a width of 400 pixels, 5 % minimal
area ratio, and containing all negative samples.
M4 - model trained on sliced samples with a width of 800 pixels, 5 % minimal
area ratio, and containing all negative samples and prediction performed with
a confidence threshold of 0.1

From Table 6.12 can be seen that slicing to 400-pixel or 800-pixel width
slices combined with negative samples in the training set, 5 % minimal defect
area ratio, and decreased confidence threshold performed much better results.
Deciding which of these is better depends on the importance of detecting
more defects with respect to precision.

52

..................................... 6.2. Fine-tuning

6.2.13 Evaluation of results

From the measurements above, the following conclusions were reached. Slicing
source images is important because data contains many small defects. Slic-
ing to slices with a width of 800 pixels and height of 256 pixels improved the
DC-B from 930 to 1244, which is a 33.8 % improvement. The technique met
expectations by improving the detection of small defects and not just them.
Performing prediction with overlap has proven to be an effective way how
to deal with problems at the edges of slices, like creating more annotations
for one defect or recognizing the defect at the edge of the slices. In this
dataset, a lower minimal defect area ratio helps to increase the precision
of predictions. Specifically, it has improved the mAP by 15.5 % and precision
by 8.2 %. Negative samples are necessary while training to reduce false posi-
tive predictions. Using negative samples increased the precision from 46.1 %
to 74.6 %, which is a 61.8 % improvement. The dataset contains almost half
of the negative samples. Increasing the number of negative samples may
help to achieve even better results. Using a nano-pre-trained YOLO model
reaches the best performance among pre-trained models. It has detected
63.2 % of ground truth defects instead of medium-sized, which has 58 %.
But in summary, differences between individual sizes are minimal. So our
decision to use randomly initialized weights of a medium-sized model was not
appropriate for this dataset.

In conclusion, our improvements of the YOLO model increased the mAP
by 76.5 % (from 0.098 to 0.173). The recall grew from 35.2 % to 58.7 % for
the metric using IoU 0.5 threshold. In the case of the benevolent metric,
it increased from 64.9 % to 90 %. With this result, such a model could
be applicable in manufacturing because not all defects are correctly labeled.
Which could be further inspected in the next work.

53

54

Chapter 7
DNAI dataset

This chapter provides the results of measurements on the DNAI dataset.
Experiments using various techniques are described in Section 7.1, where
subsections contain results for relevant techniques. The obtained results are
described in Subsection 7.1.13. YOLO with U-net is compared while using
slicing to 640-pixel-sized slices of source images for this dataset in Section 7.2.
All figures with example predictions in this chapter are consistent, with green
annotations indicating ground truth and red-colored annotations representing
predictions.

7.1 Fine-tuning

This section describes experiments on the private dataset. That dataset
is divided into 3 datasets, each containing only annotations of one defect
type. Material remains jagged edge, and material on edge are the defect
types for which datasets are created. For each dataset, measurements are
made to determine which techniques help improve precision for that defect
type. The testing set for material remains has 2 151 annotations, the material
on edge 267 and jagged edge 61.

The experiments are performed with the following techniques. Slicing
source images into smaller samples with the goal of improving the detection
of small defects. While slicing, find out the influence of an overlap of the
slices. If the annotation is divided into multiple samples, find out how much
of the defect area needs to be on the sample to keep the annotation there.
And determine the effect of the negative samples in the training set on its
detection capabilities. Also, investigate whether using a pre-trained model
is more suitable than randomly initialized weights. See the effect of a more
complex model on model performance.

These techniques are described in full detail for material remains defect,
and for the other two defect types are measurements compared in summary
Subsection 7.1.12.

55

7. DNAI dataset
7.1.1 Data preparation

Creation of various datasets with different parameters such as slice size, overlap
ratio, minimal object area, or percentage of negative samples in the dataset.
These datasets need to be converted to yolov5 format as mentioned in the
Chapter 5. Datasets for measurements were generated with the following
parameters:. Slice size 640 or 1280 pixels.Overlaps of sliced images 0 %, 10 %, or 25 %.Minimal area of defect in sliced image 5 % or 20 %. Percentage of negative samples in dataset 0 %, 30 %, or keep all

7.1.2 Training and prediction parameters

Following results were reached with YOLOv5 v6.2.3[15], SAHI v.0.11.6[1],
Python-3.9.6 with torch-1.12.1+cu116. Training parameters used:. Batch: -1 for automatically computing batch size for an assigned GPU

by Metacentrum [20]..Weights: yolov5m.pt pre-trained model. Cache: RAM. Epochs: 1000. Patience: 300, to stop training if the better result is not reached in the last
300 epochs

Unless otherwise mentioned, the confidence threshold is chosen as a maxi-
mum of the F1 curve. The DC (Detected Count) metric is evaluated at the
IoU threshold of 0.35 for a jagged edge, 0.33 for material on edge, and 0.5 for
the material remains defect type.

56

..................................... 7.1. Fine-tuning

7.1.3 Baseline model

Firstly training is run on origin data down-scaled to 2560 pixels. YOLO
pre-train models are trained on images with a size of 640 pixels. The material
remains defect has a very small area, and down-scale origin images to 640-
pixel-sized samples would cause all small defects to disappear. So keeping
a higher training resolution ensure that all annotated defects are kept. The
disadvantage of training at higher resolution is longer training and prediction
time. For this dataset containing only 113 images, it is not too big a problem.

Figure 7.1: Prediction example of baseline model on the private dataset.

The example predictions in Figure 7.1 illustrate a problem with an extremely
small area of this defect type, which causes no detection of most of the defects.

Metric DC P R TP FP
baseline 15 20.3 % 0.7 % 15 59

Metric DC-B P-B R-B TP-B FP-B
baseline 50 68.9 % 2.3 % 51 23

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

baseline 0.003 0.005 0.0 0.01 0.028 0.026

Table 7.1: The first two tables show the number of detected defects, TP, and FP
for the baseline model. The table below shows the results of mAP. The metrics
in columns are described in Section 2.3.

Numeric results confirm the observation that almost all of the defects are
not detected. Using any technique to improve the ability to detect small
defects is necessary.

57

7. DNAI dataset
7.1.4 Slicing to 1280 pixels

The first technique used is slicing source images to 1 280 pixel-sized samples
without overlap for training with parameters from Subsection 7.1.2. It should
help to recognize these small defects because then small defects take up more
space in ratio to the size of the product surface in one sample.

Figure 7.2: Prediction example of the model using slicing to 1 280 pixel-sized
slices.

Figure 7.2 shows an increased number of predictions, most of which are
true positives. But many ground truth defects are still not detected.

Metric DC P R TP FP
baseline 15 20.3 % 0.7 % 15 59

slice 1 280 1 048 76.6 % 48.7 % 1 048 321

Metric DC-B P-B R-B TP-B FP-B
baseline 50 68.9 % 2.3 % 51 23

slice 1 280 1 129 82.4 % 52.5 % 1 128 241

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

baseline 0.003 0.005 0.0 0.01 0.028 0.026
slice 1 280 0.171 0.415 0.1 0.433 0.471 0.298

Table 7.2: The first two tables show the number of detected defects, TP, and
FP for the baseline model compared to using 1 280-pixel-sized slices. The table
below shows the results of mAP.

All metrics are consistent with achieving more true positive predictions
with high precision, but recall is still low.

58

..................................... 7.1. Fine-tuning

7.1.5 Slicing to 640 without overlap

This subsection uses smaller slices with a resolution of 640 × 640 pixels.
Smaller slices should further improve the detection of more small defects.
Slices are without overlap, and only positive samples are used for training
with parameters from Subsection 7.1.2.

Figure 7.3: Comparison of predictions for slicing to 1 280 on the left side and
640 pixel-sized slices on the right side.

Figure 7.3 shows that slicing to 640 pixel-sized slices helped detect more
defects but with more false positive predictions. And the problem with
detecting dirt on the camera as a defect is shown in the example at the
bottom right corner.

Metric DC P R TP FP
slice 1 280 1 048 76.6 % 48.7 % 1 048 321
slice 640 1 504 68.5 % 69.9 % 1 504 692

Metric DC-B P-B R-B TP-B FP-B
slice 1 280 1 129 82.4 % 52.5 % 1 128 241
slice 640 1 569 71.6 % 72.9 % 1 573 623

Table 7.3: Tables demonstrating the number of detected defects, TP, and FP
for the model using slicing into 1 280 pixel-sized and 640 pixel-sized slices.

59

7. DNAI dataset
Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

slice 1 280 0.171 0.415 0.1 0.433 0.471 0.298
slice 640 0.261 0.573 0.185 0.61 0.423 0.122

Table 7.4: The table displays the results of mAP.

Slicing to 640 pixel-sized slices helps increase the number of detected defects
with slightly lower precision. The worse result is only with large defects,
which make up only about 0.5 % of all remaining material annotations.

7.1.6 Slicing to 640 with overlap

Using the same slicing to 640 pixel-sized slices but with an overlap of 25 %.
For overlapping slices should be easier to recognize the defects which are
at the edge of the slice.

Figure 7.4: Comparison of predictions for 640 pixel-sized slices without overlap
on the left and with an overlap of 25 % on the right side.

Figure 7.3 shows that slicing help detects a defect that is not detected with-
out overlap. Using overlap even increased the confidence of some predictions
on the edges of slices.

60

..................................... 7.1. Fine-tuning

Metric DC P R TP FP
no overlap 1 504 68.5 % 69.9 % 1 504 692

with overlap 1 598 68.6 % 74.3 % 1 600 731

Metric DC-B P-B R-B TP-B FP-B
no overlap 1 569 71.6 % 72.9 % 1 573 623

with overlap 1 639 70.3 % 76.2 % 1 639 692

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

no overlap 0.261 0.573 0.185 0.61 0.423 0.122
with overlap 0.296 0.627 0.222 0.647 0.471 0.224

Table 7.5: The first two tables show the number of detected defects, TP, and
FP for the model using slicing with an overlap of 0.25 and for the model without
an overlap. The table below shows the results of mAP.

From tables with results and observations can be seen that using overlap
help to increase recall and keep the same or slightly decrease the precision.

7.1.7 Dataset with negative samples

This subsection determines the effect of the negative samples in the training
set. The private dataset does not contain any negative samples. As negative
samples, we consider samples after slicing which are without defects. Three
variants of negative samples in the training set are used. Firstly training
set with no negative samples, then the training set consists of 30 % negative
samples and lastly training set which keeps all available negative samples.

In Figure 7.5 are shown 2 examples. The one on the left demonstrates
elimination predicting the dirt on the camera as defects. Interestingly while
30 % of the training set are negative samples, it misclassified even more. The
example on the right illustrates examples of predictions that are not detected
while using negative samples. On the other hand, larger defects are at least
partially detected in this case which without negative samples were not.

61

7. DNAI dataset

Figure 7.5: Comparison of predictions for the training set with 30 % in the first
row and keeping all available negative samples in the last row.

Metric DC P R TP FP
0 % 1 598 68.6 % 74.3 % 1 600 731
30 % 1 627 68.5 % 75.6 % 1 628 747
all 1 625 68.6 % 75.5 % 1 626 744

Metric DC-B P-B R-B TP-B FP-B
0 % 1 639 70.3 % 76.2 % 1 639 692
30 % 1 664 70.2 % 77.4 % 1 668 707
all 1 684 70.8 % 78.3 % 1 678 692

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

0 % 0.296 0.627 0.222 0.647 0.471 0.224
30 % 0.301 0.631 0.225 0.671 0.474 0.083
all 0.307 0.631 0.241 0.669 0.421 0.367

Table 7.6: The first two tables show the number of detected defects, TP, and
FP for the training set with 0 %, 30 %, or keeping all available negative samples.
The table below shows the results of mAP.

In summary, using negative samples has a positive effect on results. It be-
liminates false positives, which can be even better if more images of these
products without defects were available. And predict defects or at least part
of them which were not detected.

62

..................................... 7.1. Fine-tuning

7.1.8 Minimal area ratio of defect

A comparison of keeping defect annotations on slices when at least 5 % of the
area is in the slice or up to 20 % is enough is determined in this subsection.
Slices with the size of 640 pixels are used with an overlap of 25 % and trained
with parameters from Subsection 7.1.2. A higher minimal ratio of defect area
may cause unannotated parts of some defects. Due to the reason that they
are below this ratio. A model trained on such slices may not predict these
parts of the defects. This parameter should help with defects on the edges of
the slices similarly, like using overlapping slices.

Figure 7.6: Comparison of predictions for 20 % minimal area ratio on the left
and 5 % on the right side.

Example prediction in Figure 7.6 shows that using a 5 % minimal area
ratio help to detect more material remains defects. Because the bounding
boxes fit the real defect well for the material remains. Keeping even a small
5 % of the annotation area can help to detect more defects.

Metric DC P R TP FP
20 % 1 497 72.6 % 69.6 % 1 498 564
5 % 1 680 68 % 78.1 % 1 681 792

Metric DC-B P-B R-B TP-B FP-B
20 % 1 559 75.9 % 72.5 % 1 566 496
5 % 1 702 68.7 % 79.1 % 1 699 774

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

20 % 0.287 0.595 0.225 0.632 0.4 0.304
5 % 0.303 0.642 0.241 0.68 0.472 0.044

Table 7.7: The first two tables show the number of detected defects, TP, and
FP for the model trained on data using 20 % or 5% of minimal area ratio. The
table below shows the results of mAP.

In conclusion, for the remaining material, 5 % of the minimal ratio provides
significantly more detected ground truth annotations.

63

7. DNAI dataset
7.1.9 Pre-train model size

This subsection checks whether using a more complex pre-trained model
positively affects its performance. Compared are models yolov5m.pt (medium-
sized) a yolov5x.pt (extra large sized). The more complex model should help
with learning specific features, which are very diverse or with high-resolution
input.

Metric DC P R TP FP
yolov5m 1 498 70.6 % 69.6 % 1 499 625
yolov5x 1 446 69.4 % 67.2 % 1 446 638

Metric DC-B P-B R-B TP-B FP-B
yolov5m 1 537 72.6 % 71.5 % 1 543 581
yolov5x 1 504 72.5 % 69.9 % 1 510 574

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

yolov5m 0.27 0.588 0.202 0.621 0.479 0.107
yolov5x 0.256 0.569 0.18 0.598 0.475 0.149

Table 7.8: The first two tables show the number of detected defects, TP, and
FP for medium-sized and extra-large pre-trained models. The table below shows
the results of mAP.

Using the extra-large model has barely improved the prediction of large
defects but has degraded the accuracy of most of the remaining material
annotations. Mostly there are extremely small differences in the predictions
of both models. Because the extra-large model is more consuming of comput-
ing resources and its results are moderately worse, the medium-sized model
provides better performance for material remains defect type in this dataset.

7.1.10 Using random initialization or pre-trained model

Here are compared models where one is trained from randomly initialized
weights and the other from a pre-trained model yolov5m. YOLO pre-trained
models are trained on the COCO dataset, which contains images with
80 classes and only a few objects per image.

64

..................................... 7.1. Fine-tuning

Metric DC P R TP FP
pre-trained 1 498 70.6 % 69.6 % 1 499 625
random init 1 583 70.8 % 73.6 % 1 584 654

Metric DC-B P-B R-B TP-B FP-B
pre-trained 1 537 72.6 % 71.5 % 1 543 581
random init 1 613 71.9 % 75 % 1 609 629

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

pre-trained 0.27 0.588 0.202 0.621 0.479 0.107
random init 0.284 0.615 0.205 0.651 0.49 0.144

Table 7.9: The first two tables show the number of detected defects, TP, and
FP for the model trained from random initialization or from pre-trained yolov5m
weights. The table below shows the results of mAP.

Differences in predictions between these two models are minimal. Over-
all, the model trained from randomly initialized weights provides slightly
better performance in the number of detected defects, even in the accuracy
of predictions.

7.1.11 Using various confidence thresholds

Testing the effect of prediction at different confidence thresholds is described
here. Predictions below confidence thresholds are ignored, which causes de-
creasing number of false positives and may reduce the number of true positives
in case of a higher confidence threshold. On the other hand, decreasing the
confidence threshold increases the overall number of predictions which can
increase true positives but false positives too.

Figure 7.7: Comparison of predictions using F1 max as confidence threshold on
the left and confidence threshold 0.1 on the right side.

Figure 7.7 shows the correct detection of more defects using a lower confi-
dence threshold and false positive detections. Dirt on the camera is detected
as a defect too.

65

7. DNAI dataset
Metric 0.313 0.25 0.20 0.15 0.10

DC 1 680 1 754 1 816 1 846 1 902
P 68 % 63.4 % 59.8 % 54.8 % 48.9 %
R 78.1 % 81.5 % 84.4 % 85.8 % 88.4 %

TP 1 681 1 755 1 817 1 847 1 903
FP 792 1 011 1 223 1 522 1 987

DC-B 1 702 1 776 1 842 1 884 1 946
P-B 68.7 % 64.1 % 60.5 % 55.8 % 50 %
R-B 79.1 % 82.6 % 85.6 % 87.6 % 90.5 %

TP-B 1 699 1 773 1 839 1 881 1 944
FP-B 774 993 1 201 1 488 1 946
mAP 0.303 0.308 0.309 0.302 0.3

mAP.50 0.642 0.653 0.66 0.655 0.654

Table 7.10: Table with differences between results predicted with various
confidence thresholds. Metrics in rows are explained in section 2.3. In the
columns header are values of confidence thresholds that were used, where the
first one is the F1 max.

From Table 7.10 with the results can be seen that decreasing the confidence
threshold can help to detect up to 90 % of the defects but with many false
positives, which cause a reduction of precision. If the goal is to detect
as many defects as possible, using the 0.1 threshold is acceptable. But
in the case precision should be greater, the 0.2 threshold is a suitable option,
in my opinion.

66

..................................... 7.1. Fine-tuning

7.1.12 Comparison and summary of measurements

This subsection shows the summary results of measurements for all 3 defect
types. There is only a summary Table 7.11 for material remains. In the
case of jagged edge and material on edge, Tables 7.12 and 7.13 contain their
results. Several prediction examples of material on the edge and jagged edge
are provided here.

Metric M1 M2 M3 M4 M5 M6 M7
DC 15 1 048 1 504 1 598 1 627 1 625 1 680
P 20.3 % 76.6 % 68.5 % 68.6 % 68.5 % 68.6 % 68 %
R 0.7 % 48.7 % 69.9 % 74.3 % 75.6 % 75.5 % 78.1 %

TP 15 1 048 1 504 1 600 1 628 1 626 1 681
FP 59 321 692 731 747 744 792

DC-B 50 1 129 1 569 1 639 1 664 1 684 1 702
P-B 68.9 % 82.4 % 71.6 % 70.3 % 70.2 % 70.8 % 68.7 %
R-B 2.3 % 52.5 % 72.9 % 76.2 % 77.4 % 78.3 % 79.1 %

TP-B 51 1 128 1 573 1 639 1 668 1 678 1 699
FP-B 23 241 623 692 707 692 774
mAP 0.003 0.171 0.261 0.296 0.301 0.307 0.303

mAP.50 0.05 0.415 0.573 0.627 0.631 0.631 0.642

Table 7.11: Table with result metrics for material remains measurements labeled
from M1 to M7, which are described at the end of this section.

In Table 7.11, the results show that using slicing with an overlap of source
images, including all negative samples combined with 5 % of minimal defect
area ratio, improved the model’s performance the most.

Figure 7.8: Prediction example of material on edge on the left side baseline
method without any improvement and on the right side using slicing to 640-
pixel-sized slices with overlap.

Example prediction in Figure 7.8 on the left side where baseline model
predicted only part of the defect. The dirt on the camera confused model and
another false positive prediction occurs there. The improved model on the
right side performed much more predictions. The problem with dirt persists,
but a larger part of the ground truth defect is detected correctly. Overall,
many of the predictions are false positives according to stricter metrics.

67

7. DNAI dataset
Metric M1 M2 M3 M4 M5 M6 M7

DC 4 49 78 101 94 87 83
P 7.3 % 23 % 25.3 % 17.8 % 19.8 % 20.9 % 25.3 %
R 1.5 % 18.4 % 29.2 % 37.8 % 35.2 % 32.6 % 31.1 %

TP 4 50 78 105 96 88 83
FP 51 168 230 484 389 334 245

DC-B 24 87 123 199 178 179 160
P-B 51 % 55 % 41.2 % 36.2 % 37.5 % 41.5 % 47.9 %
R-B 9 % 32.6 % 46.1 % 74.5 % 66.7 % 67 % 60 %

TP-B 28 120 127 213 182 175 157
FP-B 27 98 181 376 303 247 171
mAP 0.0 0.011 0.021 0.011 0.015 0.011 0.016

mAP.50 0.0 0.029 0.056 0.039 0.05 0.038 0.05

Table 7.12: Table with result metrics for material on edge measurements labeled
from M1 to M7, which are described at the end of this section.

Table 7.12 reflects observations that slicing to 640-pixel-sized with overlap
helps detect more annotations of material on edge. Using negative samples
helps decrease the number. The minimal area ratio needs to be greater
because the area of bounding boxes is much larger than the actual size of the
defect hence the 20 % minimal area ratio is a little better. Overall, very poor
precision of predictions with slightly better recall.

Figure 7.9: Prediction example of jagged edge on the left side baseline method
without any improvement and on the right side using slicing to 640-pixel-sized
slices with overlap.

Predictions of the baseline model on the left side in Figure 7.9 show that
using no technique causes no predictions to be performed. In the case of the
improved model, slicing to 640-pixel-sized slices with overlap and keeping all
available negative samples performs much more predictions. These predictions
detect almost all ground truth defects but with many false positives. Some
false positives are not even at the edges of the product. If we take a closer
look at some false positive predictions, they are where some defects really
are, but according to the ground truth, it is unannotated. In this dataset are
more source images with unannotated defects.

68

..................................... 7.1. Fine-tuning

Metric M1 M2 M3 M4 M5 M6 M7
DC 5 23 29 38 40 31 19
P 75 % 46.9 % 14.1 % 18.7 % 22.8 % 37.1 % 40.4 %
R 8.2 % 37.7 % 47.5 % 62.3 % 65.6 % 50.8 % 31.2 %

TP 6 23 29 39 42 33 19
FP 2 26 176 170 142 56 28

DC-B 5 30 43 48 48 36 23
P-B 75 % 63.3 % 23.4 % 24.4 % 28.8 % 43.8 % 51.1 %
R-B 8.2 % 49.2 % 70.5 % 78.7 % 78.7 % 59 % 37.7 %

TP-B 6 31 48 51 53 39 24
FP-B 2 18 157 158 131 50 23
mAP 0.016 0.1 0.066 0.124 0.214 0.174 0.116

mAP.50 0.059 0.166 0.137 0.261 0.414 0.321 0.196

Table 7.13: Table with result metrics for jagged edge measurements labeled
from M1 to M7, which are described at the end of this section.

From Table 7.13 can be seen that slicing to 640-pixel-sized slices helps
get more acceptable results. The highest recall for the jagged edge defect
is reached when 30 % of the training set are negative samples, but the number
of false positives is extremely high. Using all available negative samples helps
reduce it, but recall is also reduced. Same as material on edge, bounding
boxes have a much larger area than the area of the actual defect. For that
reason, using 20 % as the minimal area ratio is much better for the jagged
edge defect type.

Explanation of the labels for measurements:.M1 - baseline model.M2 - mode using slicing into 1280-pixel-sized slices without overlap and
minimal object area ratio is 20 %.M3 - the same as M2, but with slicing into 640-pixel-sized slices.M4 - using slicing into 640-pixel-sized slices with overlap and 0 % negative
samples.M5 - using slicing into 640-pixel-sized slices with 30 % negative samples.M6 - using slicing into 640-pixel-sized slices with all negative samples
kept, and minimum object area ratio is 20 %.M7 - the same as M6, but with 5 % minimum object area ratio

69

7. DNAI dataset
7.1.13 Evaluation of results

The following conclusions were made from all the previous measurements and
observations. Using slicing is necessary to get acceptable results. Slicing source
images into 640-pixel-sized slices reached the best results. It has improved
the recall for material remains defects from 2.3 % to 90.5 % in softer metrics.
The use of this technique met expectations with improved detection of small
defects and not just them. Add overlap to slicing solved some problems with
defects on the edges, especially with the larger defects. It resulted in the
minimum area ratio should be smaller for small defects and larger for medium
and large defects. Specifically, 5 % for remaining material and 20 % for
jagged edge and material on edge. Using negative samples increased recall
by 2.8 % and barely precision, but the private dataset contains no images
with a larger area without defects. This dataset should ideally include images
with each product type completely without defects. Additionally, this dataset
containing only 113 images with underrepresented jagged edge defect type
annotations is not ideal. Another problem is unannotated defects, mostly
very small areas which are probably material remains defect type. Further
findings are that the size of the pre-train model has minimal effect on results,
while using slicing and randomly initialized weights has a slightly better
performance.

In conclusion, the YOLO model for material remains reached 79.1 % recall
with 68.7 %. precision from 2.3 %. The recall was improved for material
on edge from 9 % to 60 %, with 47.9 % precision. In the case of the jagged
edge, we improved recall from 8.2 % to 59 % with 43.8% precision. The
mAP.50 has significantly increased in the case of material remains and from
0.05 to 0.642.

A significant improvement in the model’s detection performance was
achieved for all defect types. These results are not so poor, but the re-
sults still have imperfections, especially in the case of material on the edge
and jagged edge for application in manufacturing. This showed me that real
data from manufacturing are significantly more challenging.

70

................................ 7.2. Comparison of methods

7.2 Comparison of methods

This section describes the comparison of the YOLO and U-net models on the
private dataset. From the experiments in Section 7.1, we found out which
techniques help with detecting each defect type, so they are used in the
comparison. The training was run on 640-pixel-sized samples, all negative
samples were kept in the training set. The samples were with an overlap
of 25 % and 5 % of minimal area ratio. Subsections 7.2.1 and 7.2.2 provide
typical predictions of the relevant method. In Subsection 7.2.3 are compared
the differences between predictions made by U-net and YOLO.

7.2.1 U-net

Predictions performed using U-net mode from the Kaggle notebook on the
private dataset are described here. It is focused on usual predictions with
their advantages and disadvantages. The training was run for 70 epochs with
200 steps per epoch on 640-pixel-sized slices with overlap, keeping all negative
samples and 5 % of the minimal object area.

Figure 7.10: Example predictions performed by U-net.

Figure 7.10 shows on the left detection of almost all of the ground truth
defects for the softer metric. For the stricter metric using IoU, there is only
one detected defect. On the right can be seen the detection of a large jagged
edge, which is detected in several smaller bounding boxes.

Prediction of medium-sized or large defects is quite accurate. But small
defects are not detected so well, which is described in Subsection 7.2.3 with
comparison.

71

7. DNAI dataset
7.2.2 YOLO

Results of common predictions reached with the YOLOv5 model trained
on the private dataset are provided in this subsection. Example predictions
demonstrate here the most common problems. The training was run on the
same sliced images as U-net for 500 epochs with patience 100 from randomly
initialized weights using yolov5m.yaml config file.

Figure 7.11: Example predictions performed by YOLOv5.

The first example in Figure 7.11 shows that the prediction of the jagged
edge is quite accurate or not predicted at all. It is also possible to see here
the prediction of the unannotated defect of the remaining material, which
makes up a few percent of the false positives. The second one shows this
situation again. Additionally, it is visible that most of the small defects are
detected.

In summary, medium-sized or large defects are detected accurately but
only if recognized at all, mainly related to jagged edge and material on edge.
Small annotations of material remains are detected acceptably well.

72

................................ 7.2. Comparison of methods

7.2.3 Summary comparison

Here are provided the significant differences between the results of YOLO and
U-net. Firstly compare differences in performed predictions followed by com-
paring the resulting metrics to see if they are consistent with observations.

Figure 7.12: Comparison of predictions performed by U-net on the left side and
YOLO on the right side.

The first row in Figure 7.12 shows a better detection ability for large
defects in the case of U-net. The example in the following row shows again
not detecting a large jagged edge defect. In the case of YOLO predictions,
close to all material remains are detected. U-net detected barely half of them.

73

7. DNAI dataset

Figure 7.13: Comparison of predictions performed by U-net on the left side and
YOLO on the right side.

In Figure 7.13, the first row demonstrates very good predictions whose
bounding boxes fit the ground truth more accurately in the case of YOLO.
Both methods detected dirt on the camera as the remaining material defect.
The last example shows the damaged edge of the product, which is not
annotated as a defect. U-net predicted it as a defect which, according
to my opinion correct, but according to the ground truth not. Also, there
is only one ground truth remaining material annotation, but more very small
white areas. we believe these areas should be annotated as remaining material.
U-net recognized one of them but YOLO has results corresponding better
with ground truth.

74

................................ 7.2. Comparison of methods

Metric DC P R TP FP
U-net 1 294 27 % 33.1 % 1 294 3 491
YOLO 2 685 67.4 % 68.7 % 2 685 1 301

Metric DC-B P-B R-B TP-B FP-B
U-net 2 428 54.4 % 62.1 % 2 604 2 181
YOLO 2 824 70.5 % 72.2 % 2 812 1 174

Metric mAP mAP.50 mAP.75 mAP50s mAP50m mAP50l

U-net 0.013 0.051 0.002 0.046 0.049 0.076
YOLO 0.215 0.441 0.188 0.295 0.434 0.404

Table 7.14: The first two tables are the number of detected defects, TP, and
FP for the YOLO and U-net models in the first table. The mAP results are
described in the last table.

The tables above are consistent with the observations made. YOLO has
detected much more defects with significantly fewer false positives. Both
methods must deal with unannotated defects, U-net these defects predicted,
but even if they are included, YOLO still has significantly better precision
and recall. Because U-net performs mostly multiple smaller predictions for
one defect, that results in lower mAP.

75

76

Chapter 8
Conclusion

The thesis aimed to analyze the types of manufacturing defects and find
suitable methods to detect them. After researching the types of manufacturing
defects from both datasets, we decided to use YOLO and U-net from the
range of computer vision methods. In order to use these methods, it was
necessary to convert the given datasets into the required format.

First, a comparison of YOLO and U-net was performed. This comparison
on the Severstal dataset shows that YOLO provides 1.9 % more detected
defects with 81.7 % precision against U-net with 20.1 % precision. For the
DNAI dataset, the comparison shows that YOLO achieves much better results
according to ground truth. YOLO reached 72.2 % recall, which is 10.1 % more
than U-net. But the more significant difference is that YOLO provided 70.5 %
precision against the 54.4 % precision of U-net while using the benevolent
metric.

To improve the results of both methods, we fine-tuned the following pa-
rameters. It is slicing the source images into slices of different sizes with
or without overlap, a minimum area ratio of the defect annotation in the slice
to keep it, including the negative samples in the training set, and training
from the randomly initialized weights or from a pre-trained model.

The most suitable for the Severstal dataset is slicing source images into
800-pixel-width slices, keeping annotations with at least 5 % area in the
slice, keeping all negative samples in the training set, and starting training
weights from the pre-trained model. Using these techniques, the YOLO model
improves by 76.5 % in the mAP, from 0.098 to 0.173. The recall reaches 90 %
with 69.3 % precision for the benevolent metric.

We then attempted to identify techniques that would improve the perfor-
mance of the DNAI dataset. We evaluated performance on three defect types:
material remains, material on the edge, and jagged edge. For the material
remains, defect type proved to be the most suitable for slicing into 640-pixel-
sized slices with an overlap of 25 % combined with 5 % minimum object area
in the slice, keeping all available negative slices and starting training from the
randomly initialized weights and using the yolov5m config file. This helped
to achieve 90.5 % recall with 50 % precision. For the material on the edge,
the same techniques helped with the difference of 20 % minimum object area
in a slice instead of 5 %. So the model for material on edge reached recall

77

8. Conclusion......................................
67 % with a precision of 41.5 %. In the case of the jagged edge, the most
suitable techniques are the same as for material on edge. These techniques
improved jagged edge recall to 59 % with 43.8 % precision. Slicing of source
images is the most significant improvement for all defect types.

In conclusion, we showed that YOLO outperforms the U-net on both
datasets. With improvements, the YOLO reached 72.2 % recall and 70.5 %
precision on the whole DNAI dataset. On the Severstal dataset it achieved
up to 90 % recall with 50 % precision according to benevolent metric. We found
that real data from manufacturing are significantly more challenging.

78

Appendix A
Bibliography

[1] Fatih Cagatay Akyon, Cemil Cengiz, Sinan Onur Altinuc, Devrim Cavu-
soglu, Kadir Sahin, and Ogulcan Eryuksel. SAHI: A lightweight vision
library for performing large scale object detection and instance segmen-
tation, November 2021.

[2] Fatih Cagatay Akyon and Burak Maden. Cli commands
from https://github.com/obss/sahi/blob/main/docs/cli.md#
predict-command-usage.

[3] Alexey Grishin, BorisV, iBardintsev, inversion, Oleg. Sever-
stal: Steel defect detection from https://kaggle.com/competitions/
severstal-steel-defect-detectio, 2019.

[4] K. Amano. Solution on kaggle competition from https://www.kaggle.
com/code/amanooo/defect-detection-starter-u-net.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection, 2020.

[6] COCO Consortium. Data format from https://cocodataset.org/
#format-data.

[7] Vijay Dubey. Evaluation metrics for object detection algo-
rithms from https://medium.com/@vijayshankerdubey550/
evaluation-metrics-for-object-detection-algorithms-b0d6489879f3,
2020.

[8] Dwyer, B., Nelson, J.(2022), Solawetz, J., et. al. Roboflow (version 1.0)
[software] available from https://roboflow.com. computer vision.

[9] Chris Eijgenstein. Convert segmentation rgb mask images
to coco json format from https://github.com/chrise96/
image-to-coco-json-converter.

[10] Raducu Gavrilescu, Cristian Zet, Cristian Fos,alău, Marcin Skoczylas,
and David Cotovanu. Faster r-cnn:an approach to real-time object
detection. In 2018 International Conference and Exposition on Electrical
And Power Engineering (EPE), pages 0165–0168, 2018.

79

https://github.com/obss/sahi/blob/main/docs/cli.md#predict-command-usage
https://github.com/obss/sahi/blob/main/docs/cli.md#predict-command-usage
https://kaggle.com/competitions/severstal-steel-defect-detectio
https://kaggle.com/competitions/severstal-steel-defect-detectio
https://www.kaggle.com/code/amanooo/defect-detection-starter-u-net
https://www.kaggle.com/code/amanooo/defect-detection-starter-u-net
https://cocodataset.org/#format-data
https://cocodataset.org/#format-data
https://medium.com/@vijayshankerdubey550/evaluation-metrics-for-object-detection-algorithms-b0d6489879f3
https://medium.com/@vijayshankerdubey550/evaluation-metrics-for-object-detection-algorithms-b0d6489879f3
https://roboflow.com
https://github.com/chrise96/image-to-coco-json-converter
https://github.com/chrise96/image-to-coco-json-converter

A. Bibliography.....................................
[11] Eric Hofesmann. Iou a better detection evalua-

tion metric from https://towardsdatascience.com/
iou-a-better-detection-evaluation-metric-45a511185be1,
2020.

[12] Jonathan Hui. Ssd object detection: Single shot multibox detector for
real-time processing, 2018.

[13] Computer vision techniques from https://www.javatpoint.com/
computer-vision-techniques.

[14] Glenn Jocher. Yolov5 git repository from https://github.com/
ultralytics/yolov5, 2022.

[15] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, TaoXie, Kalen Michael, Jiacong Fang,
imyhxy, Lorna, Colin Wong, Zeng Yifu, Abhiram V, Diego Montes,
Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe,
tkianai, yxNONG, Piotr Skalski, Adam Hogan, Max Strobel, Mrinal Jain,
Lorenzo Mammana, and xylieong. ultralytics/yolov5: v6.2 - YOLOv5
Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai
integrations, August 2022.

[16] Gilberto Titericz Junior. Building and visualizing
masks from https://www.kaggle.com/code/titericz/
building-and-visualizing-masks/notebook, 2019.

[17] Ph.D. Jędrzej Świeżewski. Yolo algorithm and yolo object detection from
https://appsilon.com/object-detection-yolo-algorithm/, 2020.

[18] Jeong-ah Kim, Ju-Yeong Sung, and Se-ho Park. Comparison of faster-
rcnn, yolo, and ssd for real-time vehicle type recognition. In 2020 IEEE
International Conference on Consumer Electronics - Asia (ICCE-Asia),
pages 1–4, 2020.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot MultiBox
detector. In Computer Vision – ECCV 2016, pages 21–37. Springer
International Publishing, 2016.

[20] Computational resources were supplied by the project "e-infrastruktura
cz" (e-infra cz lm2018140) supported by the ministry of education, youth
and sports of the czech republic.

[21] B. E. Moore and J. J. Corso. Fiftyone. GitHub. Note:
https://github.com/voxel51/fiftyone, 2020.

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks, 2015.

80

https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-45a511185be1
https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-45a511185be1
https://www.javatpoint.com/computer-vision-techniques
https://www.javatpoint.com/computer-vision-techniques
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://www.kaggle.com/code/titericz/building-and-visualizing-masks/notebook
https://www.kaggle.com/code/titericz/building-and-visualizing-masks/notebook
https://appsilon.com/object-detection-yolo-algorithm/

..................................... A. Bibliography

[23] Gai Rongli, Chen Na, and Yuan Hai. A detection algorithm for cherry
fruits based on the improved yolo-v4 model. Neural Computing and
Applications, 7, 2021.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[25] Aditya Sharma. Mean average precision (map) using the
coco evaluator from https://pyimagesearch.com/2022/05/02/
mean-average-precision-map-using-the-coco-evaluator/, 2022.

[26] Jacob Solawetz. What is yolov5? from https://blog.roboflow.com/
yolov5-improvements-and-evaluation/#what-is-yolov5, 2020.

[27] Ultralytics. Yolov8 from https://github.com/ultralytics/
ultralytics.

[28] Chia-Chin Wang, Hooman Samani, and Chan-Yun Yang. Object de-
tection with deep learning for underwater environment. In 2019 4th
International Conference on Information Technology Research (ICITR),
pages 1–6, 2019.

[29] Jeremy Zhang. Unet — line by line expla-
nation from https://towardsdatascience.com/
unet-line-by-line-explanation-9b191c76baf5, 2019.

[30] Longfei Zhou, Lin Zhang, and Nicholas Konz. Computer vision techniques
in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 53(1):105–117, 2023.

81

https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://pyimagesearch.com/2022/05/02/mean-average-precision-map-using-the-coco-evaluator/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/#what-is-yolov5
https://blog.roboflow.com/yolov5-improvements-and-evaluation/#what-is-yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5

82

Appendix B
Abbreviations

.AP - Average Precision.COCO - Common Objects in Context.CSV - Comma-separated values.DC - Detected Count.DC-B - Detected Count for benevolent metric. FP - False Positive. FP-B - False Positive for benevolent metric. IoU - Intersection over Union. JSON - JavaScript Object Notation.mAP - Mean Average Precision.P - Precision.P-B - Precision for benevolent metric.R - Recall.R-B - Recall for benevolent metric.RLE - Run Length Encoding.TP - True Positive.TP-B - True Positive for benevolent metric.YOLO - You Only Look Once

83

84

Appendix C
User guide

C.1 Code

In this work, some helper functions are needed for data preparation or evalu-
ation of results. Some git repositories were used with my edits. All of that
can be found in the git repository https://gitlab.fel.cvut.cz/lososjos/
bachelorthesis.The project is using Python 3.9.6 and Torch 1.12.1+cu116.
The git structure is described here:

The code for the project can be divided into three parts. The first one
provides Jupyter Notebooks with code for converting, training, viewing
and evaluating datasets in the main folder. The second part is used git
repositories, ’cocosplit’, for splitting datasets into a train, valid, and test sets.
The ’image-to-coco-json-converter’ was used for converting masks into COCO
annotations. The last part contains scripts for data analysis, conversions,
evaluation of results according to IoU or benevolent metric, and an example
script to run training of YOLO on MetaCentrum.

85

https://gitlab.fel.cvut.cz/lososjos/bachelorthesis
https://gitlab.fel.cvut.cz/lososjos/bachelorthesis

C. User guide......................................
C.2 Datasets

C.2.1 Severstal

The Severstal dataset was used from the Kaggle competition
https://www.kaggle.com/c/severstal-steel-defect-detection. The dataset
is described in Section 3.2. Data are available at https://www.kaggle.com/
competitions/severstal-steel-defect-detection/data. The dataset in
COCO format is provided athttps://www.kaggle.com/datasets/joseflosos/
severstal-coco.

C.2.2 DNAI

DNAI dataset is a dataset from a client of the DNAI, s.r.o. firm. The
description of the dataset is provided in Section 3.1. Data is available upon
request.

86

https://www.kaggle.com/c/severstal-steel-defect-detection
https://www.kaggle.com/competitions/severstal-steel-defect-detection/data
https://www.kaggle.com/competitions/severstal-steel-defect-detection/data
https://www.kaggle.com/datasets/joseflosos/severstal-coco
https://www.kaggle.com/datasets/joseflosos/severstal-coco

	Introduction
	Theoretical background
	Computer Vision techniques
	Image Classification
	Object Detection
	Segmentation

	Annotation formats
	COCO format
	YOLOv5 format
	Severstal format

	Evaluation metrics for object detection
	IoU
	Precision (P) and Recall (R)
	Average Precision (AP)
	Mean Average Precision (mAP)
	F1 score
	Benevolent metric
	Number of detected defects

	Defect types in manufacturing
	DNAI dataset
	Jagged edge
	Material Remains
	Material on the edge
	Crack
	Extra material glued
	Shipping defects

	Severstal dataset
	Dimple
	Scratch
	Abrasion
	Blister

	Object detection methods
	YOLO
	YOLOv1
	YOLOv2
	YOLOv3
	YOLOv4
	YOLOv5
	YOLOv8

	Faster R-CNN
	SSD
	U-net

	Necessary prerequisites
	Selection of methods used
	Conversion of the CSV annotations to RGB mask
	Conversion of the annotations from the RGB mask to the COCO
	Conversion of the annotations from the COCO to the YOLOv5 format
	Conversion of the annotations from the COCO to the CSV format
	How to train and predict with YOLOv5 model
	How to train
	How to run inference

	Viewing the dataset using FiftyOne

	Severstal dataset
	Comparison of methods
	U-net
	YOLO
	Summary comparison

	Fine-tuning
	Data preparation
	Training and prediction parameters
	Baseline model using no technique
	Slicing to 256 pixels sized slices
	Minimal area ratio of defect
	Dataset with/without negative samples
	Slicing to 400 pixels width slices
	Slicing to 800 pixels width slices
	Using a pre-trained model or random initialization
	Pre-trained model size
	Using various confidence threshold
	Comparison of fine-tuning measurements
	Evaluation of results

	DNAI dataset
	Fine-tuning
	Data preparation
	Training and prediction parameters
	Baseline model
	Slicing to 1280 pixels
	Slicing to 640 without overlap
	Slicing to 640 with overlap
	Dataset with negative samples
	Minimal area ratio of defect
	Pre-train model size
	Using random initialization or pre-trained model
	Using various confidence thresholds
	Comparison and summary of measurements
	Evaluation of results

	Comparison of methods
	U-net
	YOLO
	Summary comparison

	Conclusion
	Bibliography
	Abbreviations
	User guide
	Code
	Datasets
	Severstal
	DNAI

