
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Telecommunication enginnering

Tuya cloud-based IoT device control system

Martin Jordán

Supervisor: doc. Ing. Leoš Boháč, Ph.D.
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499248 Personal ID number: Jordán Martin Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Electronics and Communications Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Tuya Cloud-based IoT Device Control System

Bachelor’s thesis title in Czech:

Systém ovládání IoT zařízení přes cloud Tuya

Guidelines:

The aim of the bachelor's thesis is to practically verify the way of connecting originaly manufactured devices (sensors and
actuators) to the Tuya IoT cloud and also to enable their monitoring and control via a classic WEB browser and mobile
application. In the practical part, the student is required to design and implement a gateway that allows the connection of
APC 230 V power outlets that are controlled via a terminal interface.
The outcome of the work will be:
1) a detailed description of the implementation of a generic sensor and actuator connected to the Tuya cloud with detailed
instructions, both on the device side and on the Tuya cloud side. Primarily use Python as the programming tool.
2) IoT Tuya gateway for remote control of APC 230V power outlets. Select appropriate hardware for the gateway and write
appropriate software
3) Web interfaces to allow switching of the above outlets
4) Mobile apps enable switching of the above outlets.

Bibliography / sources:

[1] A. K. Gupta and R. Johari, 'IOT based Electrical Device Surveillance and Control System,' 2019 4th International
Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1-5, doi:
10.1109/IoT-SIU.2019.8777342.
[2] A. R. Biswas and R. Giaffreda, 'IoT and cloud convergence: Opportunities and challenges,' 2014 IEEE World Forum
on Internet of Things (WF-IoT), 2014, pp. 375-376, doi: 10.1109/WF-IoT.2014.6803194.
[3] SMART, Gary. Practical Python Programming for IoT: Build advanced IoT projects using a Raspberry Pi 4, MQTT,
RESTful APIs, WebSockets, and Python 3. Birmingham: Packt Publishing, 2020. ISBN 1838982469.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Leoš Boháč, Ph.D. Department of Telecommunications Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________ Date of bachelor’s thesis assignment: 17.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Leoš Boháč, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
In this part, I would like to thank my
supervisor doc. Ing. Leoš Boháč, Ph.D.
for his time and consultation.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 26, 2023

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 26. května 2023

v

Abstract
The aim of the thesis is to propose and
implement method for connecting of orig-
inally manufactured devices to Tuya IoT
cloud platform. These devices are mostly
controlled via non-standard interfaces and
don’t use control logic usual to home au-
tomation systems and smart homes. The
thesis will describe in detail the procedure
for setting up a generic device on the Tuya
cloud side as well as the implementation
of communication interface on the device
side. The interface for communication
between the Tuya cloud and the general
device will be implemented into Python
module.

In the practical part, an IoT gateway
will be implemented, which will enable
control and monitoring of 230V APC sock-
ets with a telnet communication interface
through the Tuya cloud platform. A con-
trol interface will be implemented into a
web application to control the connceted
device.

Keywords: MQTT, Internet of Things,
Tuya, cloud, IoT

Supervisor: doc. Ing. Leoš Boháč,
Ph.D.

Abstrakt
Cílem této práce je navrhnout a realizovat
připojení nestandardních zařízení k IoT
cloudové platformě Tuya. Tato zařízení
jsou většinou ovládána prostřednictvím
nestandardních rozhraní a obvykle nepo-
užívají řídicí logiku běžnou pro systémy
domácí automatizace a inteligentní do-
mácnosti. V práci bude detailně popsán
postup pro nastavení obecného zařízení
na straně cloudu Tuya i implementace ko-
munikačního rozhraní na straně zařízení.
Rozhraní pro komunikaci mezi cloudem
Tuya a obecným zařízením bude imple-
mentována do Python modulu.

V praktické části bude implementována
IoT brána, která umožní ovládání a moni-
torování 230V APC zásuvek s telnetovým
komunikačním rozhraním skrze cloudo-
vou platformu Tuya. K ovládání zařízení
bude implementováno ovládací rozhraní
do webové aplikace.

Klíčová slova: MQTT, Internet věcí,
Tuya, cloud, IoT

Překlad názvu: Systém ovládání IoT
zařízení přes cloud Tuya

vi

Contents
1 Introduction 1
2 Assignment analysis 3
2.1 Connection method 3
2.2 Hardware selection 3
2.3 Web and mobile application 4
3 MQTT protocol 5
3.1 MQTT protocol introduction 5
3.2 MQTT control packets 5
4 Device model 9
4.1 Properties . 9
4.2 Events . 9
4.3 Actions . 9
5 Tuya MQTT client
implementation 11
5.1 Introduction 11
5.2 DeviceID an DeviceSecretID . . . 11
5.3 Client implementation 11
5.4 Using the Tuya MQTT client

module . 15
6 Setting up a new device on the
Tuya cloud platform 17
6.1 Setting up a new device on Tuya

cloud . 17
6.1.1 Introduction 17
6.1.2 Creating a product 17

6.2 Product development menu 20
6.2.1 Function definition 21
6.2.2 Device development menu . . . 24
6.2.3 Device management 25
6.2.4 Online debugging 26
6.2.5 Application development 28
6.2.6 Product configuration 29
6.2.7 Finishing product

configuration 31
7 Developing a gateway for APC
Telnet power strip integration. 33
7.1 Introduction 33
7.2 Telnet interface of the power strip 33
7.3 Implementation 34
8 Cloud development 37
8.1 Introduction 37
8.2 Cloud project setup 37
8.3 Sections of the Cloud development

menu . 38

8.3.1 Overview 38
8.3.2 Authorization 38
8.3.3 Service API 39
8.3.4 Assets . 39
8.3.5 Devices 40

8.4 API explorer 42
9 API request structure and
authentication 45
9.1 Introduction 45
9.2 Request structure 45
9.3 Authentication method 45
10 Web control interface 47
10.1 Introduction 47
10.2 Project structure 47
10.3 Authentication mechanism 47
10.4 Tuya API calls implementation 49

10.4.1 Cross-Origin Resource Sharing
(CORS) . 49

10.4.2 Tuya API calls
implementation 49

10.5 User interface 53
11 Linking device to Tuya app 55
11.1 Introduction 55
11.2 Linking devices to Tuya Smart

Life application 55
12 Conclusion 57
Bibliography 59

vii

Figures
2.1 Diagram of communication

between devices. 4

3.1 QoS levels in MQTT
communication 7

6.1 Product development menu on
Tuya IoT platform 18

6.2 Device type selection screen 18
6.3 Development method selection

screen . 19
6.4 Product information configuration

screen . 20
6.5 Function definition 21
6.6 Standard functions pop-up menu 22
6.7 Creating a custom function 23
6.8 Adding parameter to the Event or

Action . 24
6.9 Choosing development method . 24
6.10 Device management menu 25
6.11 Registering a single device 26
6.12 Online debugging menu 27
6.13 Debugging Actions 28
6.14 Panel development tab of the

Application development menu . . . 29
6.15 Scenario connection settings . . . 30
6.16 Data parsing menu 31

8.1 Cloud development menu 38
8.2 Overview tab of the cloud

development menu 38
8.3 Asset setup menu 40
8.4 Linking Tuya Smart Life app

account to the cloud project 41
8.5 Linking devices from Tuya Smart

Life account . 42
8.6 API explorer 43

10.1 Authentication process with JWT
tokens . 48

10.2 User interface of the web
application . 53

11.1 Control interface of the APC
power strip in Tuya Smart Life app 56

11.2 Linking a device to the Tuya
Smart Life application 56

Tables
3.1 CONNACK return codes 6

viii

Chapter 1
Introduction

Tuya IoT Platform is a Platform as a Service IoT (Internet of Things) cloud
solution. Platform as a service model is a cloud computing model, where
cloud service provider provides hardware (cloud server) and software layer
on which can customer build their cloud application [2]. Tuya IoT platform
provides complete cloud, networking and smartphone app support for smart
devices, such as smart home appliances. Tuya can be used to control and
monitor smart devices through smartphone applications. There are many
devices being sold for the Tuya system (e.g. smart light bulbs, smart power
outlets, smart light switches), that can be used to set up a smart home. In
this thesis, I will discuss how to connect devices with non standard interfaces
to the Tuya IoT cloud platform. These devices originally do not have an
interface to communicate with Tuya.

In this thesis, I will be mainly focusing on connecting devices to the Tuya
cloud platform via MQTT protocol. MQTT protocol is one of the most
popular protocol for IoT applications, due to its ease of implementation and
ability to run on resource constrained devices and limited network bandwidth.
Tuya MQTT client will be implemented into Python module, which can be
imported into any Python code and which will provide easy implementation
of Tuya cloud connectivity on any device, that can run Python code and has
TCP/IP stack. A complete methodology for configuring a smart device on
the Tuya cloud will be described in this thesis.

To control devices, Tuya Smart Life mobile application from the Tuya
ecosystem will be used. Additionally, a control interface will be implemented
into a web application to control the connected device. The interface will use
API requests to communicate with Tuya cloud platform.

1

2

Chapter 2
Assignment analysis

In this chapter, I will analyse the assignment for this thesis and I will discuss
possible solutions to the tasks set in the assignment.

2.1 Connection method

Thera are two methods to connect devices to Tuya cloud: TuyaOS and
TuyaLink. TuyaOS is a operating system based on RTOS and Linux. The
downside of using TuyaOS is the necessity to use Tuya’s proprietary hardware
(microcontrollers and network modules). To allow wider selection of hardware
to be used, I will be using TuyaLink connection method, which uses MQTT
protocol with defined format of JSON message payload to communicate
between Tuya and the device.

2.2 Hardware selection

As for the hardware, I am using Raspberry Pi model 3B equipped with
Raspbian operating system. Raspberry Pi will be used to create the IoT
gateway for remote control of APC 230V power outlets. There are many
choices for a single-board computer to choose from. I chose Raspberry Pi,
because I had it readily available, but any other single-board computer, such
as many of Raspberry Pi clones (e.g. Orange Pi, Banana Pi) would work
just fine, as long as it does have Wi-Fi or Ethernet connectivity and enough
computing power to run Python. Another advantage of Raspberry Pi is the
abundance of interfaces, such as Bluetooth, Wi-Fi, USB, SPI, I2C and digital
I/O pins. Due to this, it is possible to integrate many types of devices to the
Tuya system, such as USB thermometers, many types of sensors, that use
SPI or I2C bus (e.g. temperature, humidity sensors) or BLE (Bluetooth Low
Energy) sensors. It is also possible to use CC2531 Zigbee coordinator and
use the Raspberry Pi as a gateway for Zigbee devices.

Interesting opportunity for future work would be to rewrite the imple-
mented Tuya client Python module to MicroPython language, which would
allow it to run on smaller microcontrollers such as Raspberry Pi Pico or
Pyboard for less resource heavy applications. MicroPython is an efficient

3

2. Assignment analysis..................................
implementation of Python designed to run on resource constrained micro-
controllers. Python is generally not designed to run on smaller devices than
single-board computers, as it is quite inefficient in its implementation. To
port the module to MicroPython, I would have to rewrite the Tuya client
module with different MQTT library, such as umqtt library.

2.3 Web and mobile application

The web interface will be based on the Express framework. The web interface
will use API calls to the API endpoints of the Tuya cloud to switch on/off
the power outlets

As for the mobile application the Tuya Smart life application will be used for
switching of the power outlets. Another option would be to develop my mobile
application from ground up and implement API calls for communication
between the cloud and the mobile application, but it is much easier to use
application, which is already integrated into the ecosystem of Tuya and just
load my configuration for the APC power outlets into it.

The goal of this thesis will be to implement the communication between
the devices and interfaces, as shown on [Fig. 2.1].

Figure 2.1: Diagram of communication between devices.

4

Chapter 3
MQTT protocol

3.1 MQTT protocol introduction

MQTT (Message Queue Telemetry Transport) is a lightweight communication
protocol run over TCP/IP. MQTT is based on publish-subscribe model, with
the MQTT broker as a central point for handling the message exchange.
MQTT messages are sorted into topics. Client devices can either publish
messages to the topic, which means they send a message to the broker, or they
can subscribe to the topic, which means the broker sends them every message
it receives in the same topic. MQTT protocol has become a popular choice
for IoT applications or Machine to Machine (M2M) communication due to
its ease of implementation and ability to run on resource constrained devices.
MQTT protocol is payload agnostic, and has small transport overhead, which
makes it suitable for applications, where network bandwidth is a valuable
resource [11]. Client usually connects to the broker via TCP on port 1883,
via WebSockets on ports 8080/8081, or via TLS on port 8883.

MQTT topics are hierarchical, hierarchy levels are separated in the name
of the topic with a slash symbol "/" [10], topic name can be for example:
home/living_room/lights/light_1. If the client publishes or subscribes to a
topic, that isn’t already registered at the broker, the broker must create a
new topic with that name.

3.2 MQTT control packets

MQTT communication consists of exchange of MQTT control packets. Each
control packet has a fixed header and some types of control packets also have
a variable header and a payload (packets used for acknowledgment of message
delivery usually don’t have a payload). First four bits of the fixed header
are MQTT control packet type identifier, which identifies the type of control
packet being sent [12].

Client requests connection to the broker with a CONNECT control packet.
CONNECT packet header contains name of the protocol, connect flags speci-
fying the communication behaviour and for indicating presence of optional
fields in payload, keep alive time and protocol level [13]. Protocol level speci-

5

3. MQTT protocol
fies the version of MQTT protocol being used, this parameter must match the
version, that broker is using in order to connect, most commonly used version
is MQTT v3.1.1. Keep alive specifies the time period after which is the client
disconnected from the broker, if the broker doesn’t receive any message in
this period. If the broker doesn’t receive any packet during 1.5 times the keep
alive time period, it must disconnect the client. Payload of the CONNECT
packet must contain ClientId (client identifier) as the first field. ClientId is
an UTF-8 encoded string, that must be unique to each client connected to
the broker and identifies client to the broker. Other optional parts of the
payload, which must be indicated in the header of the CONNECT packet
by connect flags, are username, password, WILL topic and WILL message.
Username and password are used to further authenticate the client device to
the broker, these parameters must match the username and password, that
is set for the client at the broker, otherwise the client will be disconnected.
WILL message is a message that gets stored at the broker and gets published
into the WILL topic upon disconnection of the client that created it.

Successful connection is confirmed from broker by CONACK (connection
acknowledge) control packet. In the CONACK packet’s variable header is
stored return code [14], which is used to indicate, whether the connection
was successful [Table 3.1].

Value Return Code Response Description
0 0x00 Connection Accepted Connection accepted
1 0x01 Connection Refused,

unacceptable protocol version
The Server does not support the
level of the MQTT protocol re-
quested by the Client

2 0x02 Connection Refused,
identifier rejected

The Client identifier is correct
UTF-8 but not allowed by the
Server

3 0x03 Connection Refused,
Server unavailable

The Network Connection has
been made but the MQTT
service is unavailable

4 0x04 Connection Refused, bad
user name or password

The data in the user name or
password is malformed

5 0x05 Connection Refused, not
authorized

The Client is not authorized to
connect

Table 3.1: CONNACK return codes

If the client doesn’t have any control packet to send during the keep alive
period, it can send PINGREQ (ping request) packet. PINGREQ can be also
used to verify whether the connection between the client and the broker is
working. Broker responds to PINGREQ packet with a PINGRESP (ping
response) packet.

To publish a message, client must send PUBLISH control packet. PUB-
LISH packet’s header contains QoS level, retain flag and DUP flag [15].

6

................................ 3.2. MQTT control packets

Retain flag = 1 indicates to the broker, that it should store the PUBLISH
message it receives and resend it to the other clients, that will subscribe
to the same topic in the future, retain flag = 0 means, that broker should
discard the message after sending it to all currently subscribed clients. DUP
flag is used to indicate, whether this is the first delivery of the packet (DUP
= 0), or this is redilevery of an earlier attempt to send the packet. PUBLISH
packet’s payload contains the published message in any format. PUBLISH
packet is acknowledged by the broker according to the selected QoS level, as
shown in [Figure 3.1].

To subscribe to the topic, client sends SUBSCRIBE control packet. The
payload of the SUBSCRIBE packet contains the list of the topics, to which
client wants to subscribe. Subscription to the topic is confirmed by the broker
by SUBACK (subscribe acknowledgement) control packet.

QoS (Quality of Service) in MQTT defines what measures are taken on
the client side and the broker side to guarantee the delivery of the message.
In MQTT protocol there are defined 3 QoS levels [16]. QoS level 0 doesn’t
guarantee delivery of the message, sender sends PUBLISH packet exactly
once, receiver doesn’t send PUBACK acknowledgement packet, which means
PUBLISH packet is delivered either exactly once or not at all. QoS level 1
guarantees, that message is delivered at least once. With QoS level 1 receiver
sends PUBACK (publish acknowledgement) packet to sender after receiving
PUBLISH packet. QoS level 2 guarantees, that message is delivered exactly
once, it is the strictest QoS level. It has the largest transport overhead of
all three QoS levels. After receiving the PUBLISH control packet message,
receiving side will send PUBREC (publish receive) packet, sending side will
discard PUBLISH packet and send PUBREL (publish release) packet, on
which the receiving side responds with PUBCOMP (publish complete) packet
to end the communication.

Figure 3.1: QoS levels in MQTT communication

The session is ended with a DISCONNECT control packet sent from the

7

3. MQTT protocol
client to the broker.

8

Chapter 4
Device model

Device model is an abstraction of physical device. For purposes of interfacing
and connecting a device to the Tuya cloud, device model is defined as a set
of properties, actions and events.

4.1 Properties

Device properties describe the state of a device and can be of various data
types, such as numerical value, float, string, bool, date, array and others.
Property can be used to update the cloud about the state of a device, or to
control a function of the device from the cloud, for example a smart light
bulb can have properties like brightness, colour and on/off state. Each device
property can be configured as send-only (property values can be only sent
from the cloud to the device), report-only (property values can be only sent
from the device to the cloud), or send and report (property values can be
sent both ways).

4.2 Events

Events are report-only notifications to the cloud from the device. They are
especially useful for reporting alerts and faults in the device, for example they
could be triggered by overheat or overcurrent protection in the device. Every
event can be accompanied by any number of output parameters. Output
parameters can be of same data types as properties (bool, value, float, string
and others) and can be used to further specify the parameters of the reported
event.

4.3 Actions

Actions are instruction messages from the cloud to a device to perform more
complex task. Actions work on request-response model of communication,
target devices should return the result of the action performed to the cloud
in action response message. Actions are not intended for changing device
properties. When using actions, it is important to configure devices to

9

4. Device model.....................................
properly send action response message to each to action message the device
receives. Outcoming action messages from the cloud can be accompanied by
any number of input parameters, which can be used to further specify the
action to be performed. Action response messages can be accompanied by
any number of output parameters. Output and input parameters of actions
can be defined with same data types as properties, or output parameters of
events (bool, value, float, string and others).

10

Chapter 5
Tuya MQTT client implementation

5.1 Introduction

In this chapter, I will describe the process of implementation of Tuya MQTT
client module, which will be used to handle the communication between
Tuya cloud and the gateway device (Raspberry Pi). This software will be
implemented into Python module, so the Tuya cloud connectivity can be
added to any device, that can run Python, by simply importing the module

Tuya cloud server, which acts as a MQTT broker in the context of MQTT
communication, uses MQTT protocol to communicate with client devices.
Eclipse Paho MQTT Python library will be used to manage MQTT commu-
nication and Tuya client will be built on its basis. Paho MQTT library is
one of the most popular Python libraries for MQTT protocol. Paho provides
all functions, that are needed to handle MQTT communication, such as con-
necting to the broker, publishing and subscribing to the topics, or callbacks
for handling incoming messages.

Tuya uses JSON as a format of the payload of the MQTT messages. JSON
(JavaScript Object Notation) [8] is a lightweight data-interchange format
made of key:value pairs, that is both easy to read for humans and parse and
generate for computers.

5.2 DeviceID an DeviceSecretID

After registering the device at Tuya IoT platform, two unique identifiers are
assigned to each device from the Tuya cloud: DeviceID (device identifier) and
DeviceSecret (device secret identifier). These are used for the authentication
process at the start of the MQTT communication. How to configure and
register a device on the Tuya cloud and obtain DeviceID and DeviceSecretID
identifiers is described in detail in chapter 6.

5.3 Client implementation

Tuya MQTT client will be implemented in TuyaClient class within the Python
module. At first, I created a constructor to initialize TuyaClient class with

11

5. Tuya MQTT client implementation
DeviceID, DeviceSecretID, which will be obtained upon registration of the
device at the Tuya developer platform, and path to TLS certificate, which
can be downloaded from Tuya IoT Developer Platform [20].

1 class TuyaClient :
2 def __init__ (self , device_ID , device_secret_ID , cert_path):
3 self. device_ID = device_ID
4 self. device_secret_ID = device_secret_ID
5 self. cert_path = cert_path

Listing 5.1: Class constructor

The client_init(self, func=None, *args) method of the TuyaClient class is
used to connect and authenticate the client to the MQTT server and connect
callback functions for handling incoming messages. The client_init function
takes 2 input arguments (beside self): func and *args. These allow to pass a
function, which will be triggered upon receiving a device property update, this
function can be placed outside of the Tuya client module. *args parameter
represents any number of parameters of said function. This will be used later
when implementing gateway on the Raspberry Pi for APC power strip to
send a command to the interface of the Telnet interface of the power strip
after receiving a device property update from the cloud.

MQTT client instance is created with mqtt.Client(ClientID) function of
the Paho library on line 2.

As a next step, username and password are set. These will be used upon con-
nection to authenticate the device to the cloud. Username is simply concate-
nated string [5] from deviceID, signature method 10-digit current, timestamp
with following syntax: "deviceID"|signMethod=hmacSha256,timestamp="10-
digit current timestamp",secureMode=1,accessType=1.

Password is set as a signature created using the HMAC-SHA256 crypto-
graphic method, where hashed content is content_string, which is defined
by Tuya with following format: deviceId="deviceID",timestamp="10-digit
current timestamp",secureMode=1,accessType=1, and the key is the DeviceS-
ecretID obtained after registration of a device on Tuya developer platform
[5]. Password and username is set with function from Paho MQTT library:
client.username_pw_set(username, password) in line 17. TLS security [20]
is set with Paho library’s function: client.tls_set(path_to_tls_certificate,
tls_version) on line 20.

Client connects to the broker on line 23 with function client.connect(hostname,
port, keepalive). This function sends CONNECT packet to the cloud server
with appropriate headers, such as ClientID, username and password. The
cloud uses these headers to identify and authorize the connected device.
Keepalive is set to 60 seconds, this interval can be set to longer, but it is
not recommended to set the interval shorter. If the cloud doesn’t receive any
message in 2.5x time keepalive period, it will terminate the connection with
the device. To prevent this from happening, the device will send PINGREQ
control packets each keepalive period, if it doesn’t have any other information
to send.

Callbacks functions are connected to the client instance on line 26. Callback

12

.................................5.3. Client implementation

functions are triggered when specific event happens, such as when connection
is established (on_connect callback) or when new message arrives from the
cloud (on_message callback).

1 def client_init (self , , func=None , *args):
2 self. client = mqtt. Client (client_id =" tuyalink_ "+self.

device_ID)
3 self. timestamp = int(time.time ())
4

5 self.func = func
6 self. my_args = args
7

8 # content string - deviceId =${ DeviceID }, timestamp =${10- digit
current timestamp }, secureMode =1, accessType =1

9 content_string = " deviceId ="+self. device_ID +",timestamp ="+
str(self. timestamp)+",secureMode =1, accessType =1"

10

11 # sha256 hash from content_string with device_secret_ID as a
key

12 digest = hmac.new(self. device_secret_ID . encode (’UTF -8’),
content_string . encode (’UTF -8’), hashlib . sha256)

13 signature = digest . hexdigest ()
14

15 #setup username and password
16 # username string - ${ DeviceID }| signMethod =hmacSha256 ,

timestamp =${10- digit current timestamp }, secureMode =1,
accessType =1;

17 self. client . username_pw_set (self. device_ID +"| signMethod =
hmacSha256 , timestamp ="+str(self. timestamp)+",secureMode =1,
accessType =1", password = signature)

18

19 # enable TLS , set certificate
20 self. client . tls_set (ca_certs =self.cert_path , tls_version =ssl

. PROTOCOL_TLSv1_2)
21

22 # connect client to tuya server
23 self. client . connect (’m1. tuyacn .com ’, port =8883 , keepalive

=60)
24

25 # connect callbacks
26 self. client . on_connect = self. on_connect
27 self. client . on_message = self. on_message
28 self. client . on_log = self. on_log

Listing 5.2: MQTT client initialization and authorization and connection

In on_connect callback, which is triggered during connection of the client
to the broker, client subscribes to properties delivery topics, so the client
resubscribes these topics in case of reconnection after being disconnected
from the cloud.

1 def on_connect (self , client , userdata , flags , rc):
2 client . subscribe (" tylink /"+self. device_ID +"/thing/model/

get_response ", qos =1)
3 client . subscribe (" tylink /"+self. device_ID +"/thing/ property /

set", qos =1)

Listing 5.3: MQTT client initialization and authorization and connection

13

5. Tuya MQTT client implementation
To handle incoming messages, on_message callback is called, which loads

the JSON content of the payload. This also triggers the func function,
which is set during initialization of the client and is used for to perform any
additional operations with the payload data. func function is used later when
implementing gateway on the Raspberry Pi for APC power strip to send
a command to the interface of the Telnet interface of the power strip after
receiving a device property update from the cloud.

1 def on_message (self , client , userdata , msg):
2 self. incoming_message_payload = json.loads(msg. payload)
3 self.func(incoming_message_payload , *self. my_args)
4

Listing 5.4: Callback for loading message payload from incoming messages

report_properties(self, msgId, data) function is used to report device prop-
erties to the cloud. report_properties function takes Python dictionary
data as its input argument, which consists of pairs: "property_name": prop-
erty_value. properties Python dictionary is the message body of the published
message. It is constructed from unique to each message messageId (msgId),
current timestamp and data dictionary. properties dictionary is converted to
JSON payload of the message on line 9.

Properties sre published into report properties topic on line 11, recom-
mended level of QoS by Tuya is 1, QoS levels of MQTT protocol are described
in chapter 3.2.

1 def report_properties (self , msgId , data):
2 # encapsulate data dictionary into properties dictionary
3 properties = {
4 "msgId":str(msgId),
5 "time":self.timestamp ,
6 "data": data
7 }
8 # convert properties dictionary to json payload
9 payload = json.dumps(properties)

10 # publish payload
11 ret_pub = self. client . publish (str(’tylink /’+self. device_ID +’

/thing/ property / report ’),payload = payload , qos = 1)

Listing 5.5: Report properties

There are two functions to start a network loop [17]. When new MQTT
message is received, it is stored in the receive buffer. Loop function periodically
checks the receive buffer and triggers the appropriate callback function, where
the data is processed. Outcoming messages are stored in the send buffer.
Loop function checks the send buffer and sends all messages it finds. Without
calling the loop function, no messages can be received or sent.

loop_start function is non-blocking function, which starts network loop in
another thread. The network loop is running until the client is disconnected
or until the loop_stop function is called. loop_forever functions is a blocking
function for starting network loop, which runs indefinitely until the client
is disconnected. As the loop_forever function blocks the current thread, no
other commands can be executed at the time the function runs, including
sending messages.

14

.......................... 5.4. Using the Tuya MQTT client module

5.4 Using the Tuya MQTT client module

In this section, I will explain, how to use the Tuya MQTT client module in a
Python code integrate the device into Tuya ecosystem. This will be shown
on a simple example of a device, that has two properties: on_off_state of
boolean data type and brightness of integer data type.

The module tuya_mqtt_client is imported on line 1. The instance of the
TuyaClient class is created and initialized with DeviceID, DeviceSecretID
and path to TLS certificate on line 7. client_init(func) function is called to
connect and authenticate the client to the Tuya cloud on line 8. print_property
function is passed in the client_init function, which will process the payload
of any incoming messages (in this example print the payload).

To report status of the device to the cloud, report_properties("messageID",
data_dictionary) is called, where data_dictionary is Python dictionary con-
taining names and values of properties to be reported, as seen on line 15.

To start loop for handling incoming messages, loop_forever() function
is called as seen on line 17. Alternatively, loop_start() and loop_stop()
functions can be used to create a finite loop and keep the current thread free
for other operations.

1 import tuya_mqtt_client
2

3 def print_property_update (payload):
4 print(payload)
5

6 if __name__ == ’__main__ ’:
7 client = tuya_mqtt_client . TuyaClient (" DeviceID ", "

DeviceSecretID ", " path_to_TLS_certificate ")
8 client . client_init (print_property_update)
9

10 data_dict = {
11 " on_off_state ": True ,
12 " brightness ": 11
13 }
14

15 client . report_properties ("123", data_dict)
16

17 client . loop_forever ()

Listing 5.6: Example code for using the Tuya MQTT client module

15

16

Chapter 6
Setting up a new device on the Tuya cloud
platform

6.1 Setting up a new device on Tuya cloud

6.1.1 Introduction

In this chapter, I will describe how to configure a new device on the Tuya
cloud and various settings on the cloud side of the device integration.

Product represents a group of physical devices with same properties and
capabilities. Grouping devices of same types to products makes management
and configuration of devices on Tuya cloud scalable for manufacturers, who
produce larger series of devices of the same type.

Tuya’s monetization model is based on paying for licenses for larger series of
devices for the same product. Every device that connects to Tuya cloud must
be issued a license, which contains unique identifier such as DeviceID and
DeviceSecretID, which are necessary to authenticate the device to Tuya cloud.
For every product, Tuya issues a limited number of free licenses for debugging
purposes for data center in China, developers outside chinese region must
pay for the licenses. Manufacturers of smart Tuya devices buy and manage
those licenses in bulk.

6.1.2 Creating a product

Configuration of a device on Tuya cloud is done through Tuya IoT Devel-
opment platform (https://iot.tuya.com/). Upon entering this page, you
will be asked to login or register to your Tuya account. To access product
development menu, click on "Product", then on "Product Development" on
left side of the screen as shown on [Figure 6.1]. To create a new product,
click on the "Create" button on the right side of the screen. In the centre of
the screen is a list of all products on this account. To change configuration of
a product, click on the "Develop" button on the right side of the screen.

17

https://iot.tuya.com/

6. Setting up a new device on the Tuya cloud platform....................

Figure 6.1: Product development menu on Tuya IoT platform

Device type

After clicking on the "Create" button, the device type needs to be selected as
shown on [Figure 6.2]. There are many types of devices to select from, such
as power strips, sockets, switches, various types of sensors, lights, cameras
and others. If desired device category cannot be found, or if you want to
configure device from scratch, option "Cant find the category?" can be chosen,
located at the bottom left of the menu [Figure 6.2]. It is not critical to choose
device category, as device must be configured the same way in later steps
regardless.

Figure 6.2: Device type selection screen

18

......................... 6.1. Setting up a new device on Tuya cloud

TuyaOS and TuyaLink development methods

Next step in configuring product on Tuya is choosing between TuyaOS and
TuyaLink development methods, as shown in [Figure 6.3].

TuyaOS is an operating system based on RTOS, Linux and Non-OS [22].
Tuya sells various microcontroller boards, network modules, or sandwich
modules (which can be stacked on popular types of microcontrollers, such as
Arduino, or Nucleo to give these microcontrollers connectivity with Tuya),
that can be flashed with TuyaOS firmware. Development for TuyaOS is done
through Wind IDE, which handles compilation and flashing of firmware to
the board.

Second method of development is TuyaLink, which uses MQTT protocol
to connect devices to Tuya cloud. TuyaLink method defines MQTT topics,
authentication with DeviceID and DeviceSecretID identifiers and defined
format of message payload to allow any device, that supports MQTT protocol
and has network connectivity to be able to connect to Tuya cloud. In this
thesis, the main focus will be on TuyaLink method of connectivity.

Figure 6.3: Development method selection screen

Product information

After choosing a development method, product information must be filled
out and communication protocol, data protocol, device type must be selected,
setup screen is shown on [Figure 6.4].

Device type checkbox is used to select the role of device in the topology,
when connecting the device to the Tuya cloud. Common device option means,
that device is directly connected to the Tuya cloud via router. Gateway
device manages topological relationships with sub-devices and aggregates
messages from subdevices and sends them to the cloud. Gateway device can

19

6. Setting up a new device on the Tuya cloud platform....................
report data from multiple sub-devices in bulk in one message. Sub-device
must be connected to the cloud through gateway device.

Data protocol checkbox is used to select the format of the payload of
MQTT messages. Tuya Standard protocol option means, that format of the
payload of the MQTT messages will be JSON, structured as specified by
Tuya.

When using Standard protocol option, device must properly structure the
message payload into JSON format. When using Custom option, raw byte
data are received by the cloud, and data parsing script must be implemented
by the developer and uploaded to the cloud.

Protocol checkbox is used to select the communication protocol for the
northbound interface of the device, the most popular protocols are present
(Wi-Fi, Bluetooth, Ethernet).

Figure 6.4: Product information configuration screen

After finishing the configuration in the Product information menu, click
the "create" button on the bottom part of the screen to create the product.

6.2 Product development menu

After clicking on the create button on the previous step, product development
menu will show up. Product development menu is used to set up the model
of a product, get licenses and identifiers for devices, use online debugging to
verify cloud to device connectivity, manage devices, set up application panels
for devices and bind devices to mobile applications. In the following sections,
I will describe the sections of the product development menu and how to use
it to set up a new device.

20

.............................. 6.2. Product development menu

6.2.1 Function definition

Function definition menu is used to configure a device model (chapter 4) on
Tuya cloud. Properties, actions and events are together called functions of
the device model. Properties, actions and events are used to model the device
and are exchanged during communication between the Tuya cloud and a
device. To access function definition menu click on the "Function Definition"
on the top bar, as shown in [Figure 6.5].

Figure 6.5: Function definition

In the middle of the function definition screen, there are two lists of
functions: Standard functions and Custom functions. Standard functions
refer to a library of predefined functions, that are preconfigured by Tuya for
various functions of many types of devices. Custom functions are created by
developer from scratch.

To add a Standard function, click on the blue "Add" button on the right side
of the standard function list, then choose any number of Standard functions
from the left side of the pop-up menu [Figure 6.6], selected functions will be
shown on the right side of the pop-up menu, click blue "OK" button to add
all selected Standard functions.

To add a Custom function, click on the blue "Add" button on the right side
of the Custom function list. Alternatively, Custom function definitions can
be imported in bulk from .xlsx Excel spreadsheet file by clicking the "Import
custom function button". After clicking the "Add" button, Create custom
function menu will appear on the right side of the screen [Figure 6.7].

Every function must have unique DP ID (Data point id), which must be
numerical value between 101 and 499. In the "Function name" box, fill out
the name of the function, this can be any string.

Identifier is as string used in JSON payload of MQTT messages, which are
being sent between the cloud and a device, to identify properties, actions and
events (described in chapter 4). Identifier must be string made of uppercase
and lowercase letters, numbers and underscores (for example: Switch_1).
When constructing JSON payload on the device side, it is important to use

21

6. Setting up a new device on the Tuya cloud platform....................

Figure 6.6: Standard functions pop-up menu

the same identifiers, as are configured on the cloud side, otherwise the cloud
cannot recognize the reported data.

In the "Function Type" checkbox, select the desired type of function. There
are three types of functions: properties, actions and events. These are used to
model physical device and are being sent during communication between the
Tuya cloud and a device. Device model and properties, actions and events
are described in more detail in chapter 4.

When property is selected as a function type, next step is to select the
data type of the property. Properties can have various data types, such as
numerical value, float, string, structure, array and others.

Next step when configuring a property is to select data transfer type in
the last checkbox of this menu. There are three data transfer types available:
send-only (property values can be only sent from the cloud to the device),
report-only (property values can be only sent from the device to the cloud),
or send and report (property values can be sent both ways).

When configuring an event, configure the DP ID, the function name and
the identifier the same way as when configuring a Property and choose Event
in the function type checkbox. Events are report-only notifications to the
cloud from the device. As an option, output parameters can be added to the
event, by clicking the "Add parameter button", then fill out the parameter
name, identifier and select the data type [Figure 6.8]. Output parameters

22

.............................. 6.2. Product development menu

Figure 6.7: Creating a custom function

can be used to provide additional information (variable value) to be sent
alongside the event message to the cloud.

Actions are request-response 2-way messages, which instruct the device
to perform a specific task. For actions, both input and output parameters
can be configured. The configuration process for parameters of actions is the
same as for parameters of events, as described in the previous paragraph.

To finish configuration of a function, and add the function to the product,
click on the "Ok" button on the bottom right of the Create custom function
menu.

23

6. Setting up a new device on the Tuya cloud platform....................

Figure 6.8: Adding parameter to the Event or Action

6.2.2 Device development menu

Second section of the product development menu is the device development
menu. Here we can select development method.

There are three development methods available: Open protocol, Cloud-to-
Cloud integration and Edge gateway sub-device [Figure 6.9]. Open protocol
is the option I will be focusing on.

Open protocol option uses MQTT protocol to connect directly connected
devices, gateway devices and gateway sub-devices to the MQTT gateway on
the cloud side, as shown on diagram in [Figure 6.9].

Cloud-to-Cloud integration option uses APIs to connect to devices indirectly
through third-party clouds.

Edge gateway sub-device means the cloud uses edge gateway to offload part
of the workload from the cloud and communicate with sub-devices connected
to the edge gateway. Edge gateway run on the hardware in standard container
[23]. All services are installed on edge gateway from docker images.

Figure 6.9: Choosing development method

24

.............................. 6.2. Product development menu

6.2.3 Device management

Device management section is used to manage licenses for devices. After
assigning a license to the device, DeviceID and DeviceSecretID identifiers are
obtained, which are used during authentication process of the device to the
cloud at the start of the MQTT communication. At the center of the screen
all devices, that are registered under the product at the same data center, can
be seen [Figure 6.10]. Data center can be selected from the drop-down list
at the upper left part of the screen. Correct data center for the region must
be selected, otherwise Tuya won’t respond to the MQTT messages. Tuya
provides 6 free licenses for devices for chinese data center, however these
unfortunately cannot be used outside China. To connect devices to Tuya
outside China, licenses for the correct region must be purchased, they did
cost me 20$ for 10 device licenses.

Figure 6.10: Device management menu

To register a new device click on the "Register device" button on the right
side of the screen. After registering a device a pop-up menu will appear
[Figure 6.11]. At the top of the menu is shown which product and data center
device belongs to and number of unused licenses. If there are no remaining
licenses left, it is possible to reassign a license from other device by clicking
on the "Assign licenses" text next to the number of remaining licenses.

There are three registration methods available: Single registration, Batch
import and Auto-registration. To register a single device, choose Single regis-
tration at the registartion method checkbox and fill out the RegistrationID.
RegistrationID is a string made from numbers and letters, which must be
unique to each device registered under the same product. Click "OK" button
to confirm registration.

To import multiple devices at the same time from .xlsx Microsoft Excel
spreadsheet, select Batch Import. Up to 1000 devices can be registered at
once. In the second column of the Excel spreadsheet. After filling out the
spreadsheet, upload it by clicking on the "Upload attachment".

To register multiple devices at once automatically, Auto-registration can
be used. In the "Device Quantity" field, fill out the number of devices to be
added, this number must not exceed the number of available licenses. When

25

6. Setting up a new device on the Tuya cloud platform....................
using Auto-registration, Tuya automatically registers, assigns licenses and
generates and assigns RegistrationID’s to the selected number of devices.
Click "OK" button to confirm registration.

Figure 6.11: Registering a single device

6.2.4 Online debugging

This section of the product development menu is used to debugging and
veryfying connectivity between devices and the cloud. We can view message
logs, debug reporting and received messages with property updates or response
messages to actions [Figure 6.12]. In the upper left part of the Online
debugging menu, we can select data center, select device to be debugged,
which will be listed by its DeviceID, and we can see the status of the device
(device is online or offline). In the left part of the Online debugging menu,
properties and actions can be debugged. In the right part of the Online
debugging menu, we can see real-time log of all messages being sent between
the debugged device and the cloud.

To debug properties, select "Property debugging" in the left part of the
screen. List of all properties of the device will show up. Clicking on "Get"
will write out the last value of the property received by the cloud to the
"Parameter value" box. If no property value was reported, this will write out
the default value of the property. Clicking on "Set" will generate and send
MQTT message to the debugged device with property value filled out in the
"Parameter value".

To debug actions, select "Action control" in the left part of the screen.
Then select one of the actions from drop-down list, as seen on [Figure 6.13].
List of all input parameters of the selected action will be displayed, along
with their data types. In the "Parameter value", fill out the value of the input
parameters. To send the instruction message to the target device, click on

26

.............................. 6.2. Product development menu

Figure 6.12: Online debugging menu

the "Send instructions" button.
As events are report-only notifications from the device to the cloud, there

is no debugging menu for the events, but all incoming event messages should
be shown on the real-time log.

The real-time log on the right side of the screen shows every incoming and
outcoming message, that cloud receives from the debugged device or sends
to the debugged device. The log lists timestamp and the log type on the
left side and content of the message on the right side. Incoming messages
from the device to the cloud are marked with "report" keyword in log type
(device property reporting, device action report and device event report log
types). Outcoming messages from the cloud to the device are marked with
"delivery" keyword in log type (device property delivery and device action
delivery log types). Content field of each log shows JSON formatted payload
of the MQTT messages being sent between the cloud and the device. Device
online and Device offline logs are used to indicate the status of connection
between the device and the cloud.

27

6. Setting up a new device on the Tuya cloud platform....................

Figure 6.13: Debugging Actions

6.2.5 Application development

In application development, section, interfaces for monitoring and controlling
the devices can be configured. In application development section there are
two tabs: Cloud development and Panel development.

When creating web applications for controlling and monitoring a device,
cloud development is used to configure cloud services, in order for the web
application to connect to the APIs of the Tuya cloud. Cloud development
tab of the Application development menu provides a brief overview of steps
of the cloud development process along with links to the menus, where the
configuration is done. Cloud development is mainly done through cloud
development menu, which will be described in detail in chapter8.

In Panel development tab, we can select control panel to be used for this
device in the Tuya Smart Life App. To select a panel, click on the All-in-One
panel tab on the left [Figure 6.14]. Here you should see a list of available
panels. By default, there will be one default panel available, named as
"Tuyalink general panel". This panel is automatically generated from the set
of properties, actions and events, that we have configured for the device and
provides basic functionality, such as displaying and changing Property values.

To create our own panel, click on the Self-Developed panel tab on the left.
Here we can create our custom panel by clicking on "Create Smart Mini App
Panel" button, which will redirect us to Smart MiniApp developer platform,
which is environment for developing panels for Tuya Smart Life App. This
feature is sadly locked behind paid subscription.

28

.............................. 6.2. Product development menu

Figure 6.14: Panel development tab of the Application development menu

6.2.6 Product configuration

Last section of the Product development menu contains a few additional
settings for binding devices to the mobile applications, multi language support,
enabling scenarios and setting up the data parsing script for custom data
protocol of the payload of the MQTT messages.

Device binding configuration

In Device binding configuration settings we can select which accounts will
have permission to bind the smart devices to the mobile application and
the cloud project. Cloud project is a unit of data storage on the Tuya IoT
Development platform and is used to manage and configure the associated
device permissions, API permissions and data assets [7]. Cloud projects
are configured through cloud development menu. To change device binding
permission scope, click on settings button in the binding configuration box.
In default, option "Current account" is selected, which grants permission to
bind devices to the cloud project only to the currently logged in account. To
grant this permission to all IoT Platform accounts and all Tuya App accounts,
select "All IoT Platform accounts" option.

Multi-language management

In Multi-language management settings, we can add translations of names
of products, functions and other terms to ensure proper localization of the
Tuya Smart Life app in the desired language.

29

6. Setting up a new device on the Tuya cloud platform....................
Scenario connection settings

In scenario connection settings, we can configure which properties are con-
figurable by user in the Tuya Smart Life application for the automation
scenarios [19]. After clicking on the settings button, the settings menu will
show up, which is shown on [Figure 6.15]. The properties that are configured
in the Function definition menu will be listed under two categories: Scenario
trigger condition settings and Scenario implementation task settings, some of
them might be listed under both.

Scenario trigger conditions are properties that are used to trigger automa-
tion scenarios. Scenario implementation tasks are properties changed on
reaction to trigger conditions. Automation scenarios are used to let one
device act based on input from other device. For example user could have a
smart thermometer and a smart air conditioner. User than could configure
in his Tuya Smart application an automation scenario like this: when the
temperature sensed by the thermometer rises above a certain value, the air
conditioner turns on. All properties are in default enabled for users to use
for automation scenarios. If we want to prevent user to use a property of our
device in automation scenario, untick the checkbox next to the Property.

Figure 6.15: Scenario connection settings

Remote configuration

In remote configuration settings JSON configuration file can be prepared,
which can be requested by the device. Device can use the configuration file
for any kind of configuration, parsing must be implemented on the side of
the device. Device can request a configuration file by sending a configuration
request MQTT message to the tylink/${deviceId}/ext/config/get topic [18].

30

.............................. 6.2. Product development menu

Data parsing

This section of the product development menu is shown only, if custom
protocol was chosen as a data protocol when creating a product, as described
in chapter 6.1.2. If a device cannot structure the payload of the MQTT
messages to the JSON format, it can send raw data to the cloud. Developer
than must implement script that will handle the conversion between raw data
and Tuyalink JSON format [4].

To create the script for data conversion, click on the "Data parsing" tab on
the upper bar of the Product development menu, then click on the "Script
debugging" button. In the centre of the screen, there is a prepared prototype
for the conversion script [Figure 6.16]. Two functions must be implemented in
the data conversion script: function rawDataToTyLink(rawData) {}, which
converts incoming raw data to the TuyaLink standard JSON format, so the
cloud can understand them, and function tyLinkToRawData(tylinkData) {},
which converts outcoming JSON formatted data to raw data. Currently, only
supported language for this conversion script is JavaScript. At the bottom
of the screen, there is an option to simulate the communication to verify
the proper parsing. After the script is done, click on the "Release as official
version" button to make the script active for this project.

Figure 6.16: Data parsing menu

6.2.7 Finishing product configuration

After all the previously described configuration has been done, and the
connectivity between the cloud and the device was verified with the Online
Debugging tool, as described in chapter 6.2.4, it is time to release the Product
by clicking on the blue "Release Product" button in the top right corner of

31

6. Setting up a new device on the Tuya cloud platform....................
the screen. This will exit the development phase for the product and lock
all the Product configuration options. To go back to the development phase,
click on the "Back to develop" in the top right corner of the screen.

32

Chapter 7
Developing a gateway for APC Telnet
power strip integration.

7.1 Introduction

In this chapter, I will be describing how I implemented gateway for controlling
the AP7920 rack PDU (power distribution unit), using Telnet protocol for
communication between the power strip and the gateway device and MQTT
protocol for communication between the gateway device and Tuya cloud.
PDU used is manufactured by APC, has 8 power outlets and supports Telnet
protocol for remote switching and management of power outlets. Raspberry
Pi 3 model B will be used as the hardware for the gateway. Raspberry Pi is
a small single board computer (SBC). Raspberry Pi is popular platform for
IoT project, because it is compact, has Ethernet port and Wi-Fi connectivity
and has many interfaces, such as USB, I2C, SPI or digital I/O pins, so
non-standard peripherals can be connected.

7.2 Telnet interface of the power strip

Telnet is an application layer protocol for that provides remote access to
virtual terminals of remote systems [26]. Basically that means, that we are
able to remotely access command line of a computer. Telnet is used to connect
to TCP port 23, on which the server (in this case the PDU) is listening.

The Telnet interface is protected by username and password. The Telnet
interface has tree structure numbered options on each level, example is shown
on listing 7.1. To select an option, number of the option is typed and confirmed
with Enter key. To move back up one level, Escape character is used. To
send commands via the Telnet interface, I must emulate navigating through
the tree menu and selecting options with key presses.

1 American Power Conversion Network Management Card AOS v2 .6.4
2 (c) Copyright 2004 All Rights Reserved Rack PDU APP v2 .6.5
3 --
4 Name : RackPDU Date : 05/17/2023
5 Contact : Unknown Time : 21:29:11
6 Location : Unknown User : Administrator

33

7. Developing a gateway for APC Telnet power strip integration.
7 Up Time : 194 Days 4 Hours 0 Minutes Stat : P+ N+ A+
8

9 Switched Rack PDU: Communication Established
10

11 ------- Control Console --------------------------------------
12

13 1- Device Manager
14 2- Network
15 3- System
16 4- Logout
17

18 <ESC >- Main Menu , <ENTER >- Refresh , <CTRL -L>- Event Log
19

20 >

Listing 7.1: Top level of tree structure menu of the Telnet interface

7.3 Implementation

For implementation of the Telnet communication between the Raspberry
Pi and the PDU, Python telnetlib3 library is used. The implementation of
the MQTT communication between the Raspberry Pi and the Tuya cloud is
based on the Tuya client module, which in implemented in chapter 5.

Tuya client for MQTT communication between Raspberry Pi and Tuya is
set up in the main function using the imported tuya_mqtt_client module,
as seen in listing 7.2. It is initialized with the property_handler function for
handling incoming messages. The client is started in another thread with
client.loop_start() function. Infinite loop is started to keep the client running.

1 if __name__ == ’__main__ ’:
2 HOST = " IP_address_of_telnet_server "
3

4 client = tuya_mqtt_client . TuyaClient (" DeviceID ", "
DeviceSecret ", " path_to_TLS_certificate ")

5 client . client_init (property_handler)
6 client . loop_start ()
7 try:
8 while True:
9 pass

10 except KeyboardInterrupt :
11 client . loop_stop ()
12 except :
13 client . loop_stop ()
14 raise

Listing 7.2: Main function

property_handler function is used to handle incoming MQTT messages
from the Tuya cloud and process the payload of the incoming MQTT message.
It starts telnetlib3 event loop and runs coroutines, which are used to send
commands to the Telnet interface of the PDU. Different coroutines are started,
depending on whether the outlet is being turned on or off, which depends on
the device property values in the received message.

34

................................... 7.3. Implementation

1 def property_handler (payload):
2 try:
3 loop = asyncio . get_event_loop ()
4 except RuntimeError as e:
5 if str(e). startswith (’There is no current event loop in

thread ’):
6 loop = asyncio . new_event_loop ()
7 asyncio . set_event_loop (loop)
8 else:
9 raise

10

11 global outlet_number
12

13 for key in payload ["data"]:
14 outlet_code = key
15

16

17 switch = {
18 "sw1":"1",
19 "sw2":"2",
20 "sw3":"3",
21 "sw4":"4",
22 "sw5":"5",
23 "sw6":"6",
24 "sw7":"7",
25 "sw8":"8"
26 }
27

28 #print(switch [outlet_code])
29 outlet_number = switch [outlet_code]
30

31 if (payload ["data"][outlet_code] == True):
32 sw8 = True
33 coro = telnetlib3 . open_connection (HOST , 23, shell=

shell_ON)
34 elif (payload ["data"][outlet_code] == False):
35 sw8 = False
36 coro = telnetlib3 . open_connection (HOST , 23, shell=

shell_OFF)
37 reader , writer = loop. run_until_complete (coro)
38 loop. run_until_complete (writer . protocol . waiter_closed)

Listing 7.3: property_handler function

Coroutines for sending commands to the telnet interface call number of
other functions, which are used to move up and down through the tree
structure of the menu and select the options to change. For convenience, I
have written several functions, which are used for login, logout, getting to
the outlet management level of the tree menu, switching the power outlet
on/off or logout. They all essentially only use three simple methods of the
telnetlib3 library.

reader.readuntil method is used to parse the text output until user’s input
is expected. writer.write method is used to send characters to the telnet
interface of the PDU, which is used for moving up and down the levels of the
tree structured menu and selecting options. writer.drain method is used to

35

7. Developing a gateway for APC Telnet power strip integration.
flush the writer’s buffer.

To get the status of a device, report_status function is used, which parses
the output from the Telnet interface of the power outlet, extracts the status of
the device using regex (regular expressions) and stores it into reported_data
variable.

1 async def get_status (reader , writer):
2 await tn_login (reader , writer)
3 await tn_device_manager (reader , writer)
4 header_data = await tn_device_control (reader , writer)
5

6 status_list = re. findall ("ON|OFF", header_data)
7

8 global reported_data
9 switch = {

10 "ON":True ,
11 "OFF":False
12 }
13 reported_data = {
14 "sw1": switch [status_list [0]] ,
15 "sw2": switch [status_list [1]] ,
16 "sw3": switch [status_list [2]] ,
17 "sw4": switch [status_list [3]] ,
18 "sw5": switch [status_list [4]] ,
19 "sw6": switch [status_list [5]] ,
20 "sw7": switch [status_list [6]] ,
21 "sw8": switch [status_list [7]] ,
22 }
23

24 await tn_escape (reader , writer)
25 await tn_escape (reader , writer)
26 await tn_escape (reader , writer)
27 await tn_escape (reader , writer)
28

29 await tn_logout (reader , writer)

Listing 7.4: report_status function

36

Chapter 8
Cloud development

8.1 Introduction

Cloud development menu of the Tuya development platform is used for
management and authorization of API services, API debugging, third-party
cloud integration setup and granting permissions to users. Authorization keys
for the API can be found here. To use Tuya’s APIs to get status of devices
and control devices, API services must be enabled in the Cloud development
menu. The only way to control and monitor devices without changing any
settings in the Cloud development menu is through Tuya Smart Life app,
which can be paired to the device in the Product development menu through
QR code. In the following chapters, I will describe the sections of the Cloud
development and how to set them up to receive and respond to API calls.
This will be later used to create a web interface for controlling and monitoring
of telnet power strip.

8.2 Cloud project setup

To access Cloud development menu, click on the "Cloud" button on the
vertical bar on the left side of the screen and then click on the "Development"
button on the vertical bar, that will appear right next to it [Figure 8.1]. As
a next step, cloud project needs to be created. Cloud project is collection
of resources on Tuya cloud. Various device permissions, API permissions
and data assets are configured and managed based on the cloud projects [7].
Resources deployed for each project are isolated from those for other projects.

To create a new cloud project, click on the blue "Create Cloud Project"
button on the upper right part of the screen [Fig. 8.1]. Pop-up menu
will appear where you fill out name of the project, description, industry,
development method and data center. It is very important to select the
correct data center for your region, as Tuya does not support cross-region
connectivity between the devices, the cloud and the apps.

37

8. Cloud development

Figure 8.1: Cloud development menu

8.3 Sections of the Cloud development menu

8.3.1 Overview

In "Overview" tab, we can find two important things: authorization keys and
cloud authorization IP allowlist toggle switch. Authorization keys (Client ID
and Client secret) are used during the process of generating the signature for
the API requests.

Toggling on the Cloud authorization IP allowlist allows you to set an IP
whitelist of IP addresses allowed to access this cloud project’s resources (such
as linked devices) through APIs. All requests from IP addresses, that are not
on the whitelist will be rejected. This is purely optional security feature.

Figure 8.2: Overview tab of the cloud development menu

8.3.2 Authorization

Authorization tab of the Cloud development menu allows you to view and
manage various authorization keys used for accessing cloud project’s data
and resources.

Under the "Cloud authorization" tab are by default displayed authorization
keys used during the process of generating the signature for the API requests.

38

........................ 8.3. Sections of the Cloud development menu

It is important to keep them safe, as anyone with knowledge of the authoriza-
tion keys (Client ID and Client secret) could potentially access your cloud’s
project resources (such as devices linked to this cloud project).

Under the "App authorization" tab, authorization for custom mobile ap-
plications (other than standard Tuya Smart Life application) can be added.
These applications can be based on Tuya App SDK for iOS or Android,
or completely custom. Bundle identifier (unique ID for each app iOS or
Android) must be filled in when creating a new App authorization, new set
of authorization keys is generated for each application.

Under "WeChat Mini Program" tab, authorization for Mini Program (sub-
application in chinese WeChat messaging application) can be added.

In "Third-party authorization" tab, authorization for another cloud project
to access resources of this cloud project can be granted. Use project number,
which can be found on the "Overview" tab of each cloud project to select
which project grant the authorization and select the specific APIs to be
authorized.

8.3.3 Service API

In service API section of the Cloud development menu, we can select, which
API to authorize for this cloud project. Only authorized APIs will respond
to API requests. There are many APIs, that can be authorized to add
functionality to the cloud project, I will briefly cover a few, that are the most
useful. Full list of all APIs can be found in documentation [3]. To authorize
an API, click on the "Go to Authorize" and select the API from the list.

IoT core API can be used for device management (such as deleting devices,
modifying the names of devices and getting properties of devices) and control-
ling devices (getting the status of a device or sending a command to a device).
Device control through IoT core API is possible only for devices based on
TuyaOS (Tuya operating system). To control devices based on TuyaLink
solution (MQTT gateway), which is the method used throughout this paper,
Device Northbound Service API must be used. This issue will be described
in detail in chapter 9.

Authorization token management API is used to get access tokens, which
are used in authorization process in each API request. More on this process
will be described in chapter 9.

Device northbound service is an API used for controlling TuyaLink based
devices. The northbound interface of a device is extracted into a set of
capabilities. Mainly 2 types of API calls are used for communication with the
device through this API: Query device capability to get status of the device
from the cloud and Execute device capability to send commands to a device.

8.3.4 Assets

Assets are used to group devices in the cloud project. Asset is a topological
tree structure with multiple layers. Assets can be used to grant permissions
to user accounts to add, delete and transfer devices under an asset. Assets

39

8. Cloud development
are useful for larger cloud projects with larger number of devices, for example
an asset could group devices in one part of the building, and we could grant
management permission to this group of devices to specific user accounts. It
is not necessary to group devices in assets for smaller projects.

To create an asset, click on the "Add asset" button on the left side on
the screen, as shown on [Fig. 8.3]. Devices can be added to the asset in
the "Devices" tab with blue "Add device" button. Authorization for an
user account to manage devices in the selected asset can be added in the
"Authorized users" tab with blue "Add authorization" button.

Figure 8.3: Asset setup menu

8.3.5 Devices

Devices can be added to the cloud project in the "Devices" tab. It is necessary
to link devices to cloud project to be able to access their control interface
through authorized APIs.

In the "All devices" tab is displayed a list of all devices currently linked
to the this cloud project. New devices can be added by clicking on the blue
"Add device" button. This way we can add virtual devices, which can be used
for testing API calls. Physical devices can be added via Smart Industry App
mobile application, however, I wasn’t able to find this application in any app
store, maybe it is not available in my region.

The other way to add physical devices to a cloud project, which worked
out for me, is through Tuya Smart Life mobile application. To add devices
to the cloud project, add them first to Tuya Smart Life app via QR code, as
is described in chapter 11. Then go back to the "Devices" tab of the cloud
development menu and select "Link Tuya App account" tab. To link a new
Tuya app account, click on the blue "Add app account" button on the right
[Fig. 8.4]. QR code will appear, scan it with a Tuya Smart Life app to link
the app account to the current cloud project.

To link devices to the current cloud project from the linked app account,
click on the "Manage devices" text on the right. New menu titled "Manage
devices" will appear, as shown on [Fig. 8.5]. All devices currently linked
to the Smart Life app will be displayed there. To link devices, check the

40

........................ 8.3. Sections of the Cloud development menu

Figure 8.4: Linking Tuya Smart Life app account to the cloud project

checkbox next to the name of the device and click on the "Link device" button,
to unlink the device, click on the "Unlink" button.

41

8. Cloud development

Figure 8.5: Linking devices from Tuya Smart Life account

8.4 API explorer

Tuya provides very useful useful tool for debugging API requests, which is
called API explorer. API explorer can be accessed from the Cloud development
menu. API explorer is used for making API requests from the web browser.
To make an API call, select the API endpoint on the left [Fig. 8.6]. Fill
out the parameters of the request and submit the request with the "Submit
request" button. Request URL and response to the request can be viewed on
the right. Documentation for each API endpoint can be viewed in the "View
Docs" tab.

42

..................................... 8.4. API explorer

Figure 8.6: API explorer

43

44

Chapter 9
API request structure and authentication

9.1 Introduction

There are a few ways to control devices connected to Tuya cloud. Tuya’s own
Smart Life mobile application can be used or the API of the Tuya cloud can be
used. API Requests are HTTP requests sent to an Application Programming
Interface (API) of the Tuya cloud in order to retrieve the state of a device or
control a device connected to the Tuya cloud. In this chapter, I will describe
how to form an API request to the Tuya cloud, how to get access token and
how to create signature for the API requests.

9.2 Request structure

There are 4 HTTP request methods supported by the Tuya API: GET, PUT,
POST and DELETE, although GET and POST method are used in most
API requests to Tuya cloud. GET method is used to request data from the
cloud, the query strings with additional information about the request are
stored in the URL of the request. POST request is used to send data to the
cloud, these data are stored in the body of the request.

Each API request consists of a target URL of API endpoint, a request
header and POST requests also have a message body. Request header is used
to pass aditional information to the server. Informations in header are stored
as key:value pairs.

9.3 Authentication method

Each API request must be signed to verify its authenticity and data integrity.
Signature is a string that is placed in the header of the API request and is
created from a hash of concatenated string, which is made of ClientID, access
token, current timestamp, request method (e.g. GET, POST), SHA-256 hash
of a message body and the target URL of the API endpoint. The method
used for creating the signature is HMAC-SHA256, the key used to hash the
concatenated string is the Client secret string, which can be found in Cloud
development menu, as described in 8.3.2.

45

9. API request structure and authentication.........................
ClientID is obtained from cloud development menu, as is described in 8.3.2

and is specific to each cloud project. Access token is used to authorize each
API request, it is a string granted by the Tuya cloud with an API call to
the Token management API with the correct credentials used (ClientID and
Client secret). Access token expires after 2 hours, after this time, it must be
renewed with a new API request.

46

Chapter 10
Web control interface

10.1 Introduction

In this section, I will describe the implementation of web interface used
for controlling the APC telnet power strip through Tuya cloud. The web
interface is based on the Express backend web application framework, which
is one of the most popular backend framework for Node.js. Node.js is a
backend runtime environment, which executes JavaScript code outside of a
web browser.

10.2 Project structure

In this section, I will describe the structure of files in the project directory of
the web interface project.

server.js is the main file, in which the Express server is initialized and
run. The Views directory contains views, which are rendered by ejs template
engine. Routes directory contain code, that is executed in reaction to the
front end code making request to an endpoint with specific URL. There
are 2 files in the routes directory: tuya_api.js, which is used for forming
API requests to Tuya cloud, and login.js, which handles user login. Public
directory contains static public files, such as index.html file for the login
page, styles directory with .css style sheets and scripts directory with front
end JavaScript scripts. Middleware directory contains middleware functions,
such as cookieJwtAuth.js file, which is middleware function for verifying the
validity of JWT tokens, which are used to ensure that only logged in users
can access the website.

10.3 Authentication mechanism

To ensure that no unauthorized user could access the website and control
devices through the website, authentication mechanism is implemented. Au-
thentication process is shown on [Fig. 10.1].

Firstly, user must log in at the login page with valid credentials (username
and password). Login page is made from a simple HTML form. Server verifies,

47

10. Web control interface.................................
that the credentials are valid and creates a signed JSON web token (JWT),
which is sent to the client browser. JWT has 3 parts: header, payload and
signature. Header is in JSON format and identifies the type of algorithm used
to generate the signature (usually HMAC or RSA signature). Payload is also
in JSON format and can contain various information, such as username and
expiration time. The signature is created using the cryptographic method
specified in the header using the secret key stored on the server. Client
browser stores the JWT locally and includes it with every request to the
server. After receiving a request, the server verifies the JWT signature and
pulls the username and other information from the payload of the JWT.

Figure 10.1: Authentication process with JWT tokens

Verification of JWT tokens is implemented in middleware function, which
is shown in 10.1. Middleware is a piece of software, that runs between the
time server receives the request and the time it sends the response. The
function loads the JWT token from the cookie file, verifies the validity of the
received JWT token on line 5. If the verification fails (typically when JWT
token expires), cookie file, where the token is stored, is cleared and user is
redirected to the login page.

1 const jwt = require (" jsonwebtoken ");
2 exports . cookieJwtAuth = (req , res , next) => {
3 const token = req. cookies .token;
4 try {
5 const user = jwt. verify (token , " secret_key ");
6 req.user = user;
7 next ();
8 } catch (err) {
9 res. clearCookie ("token");

10 return res. redirect ("/");}};

Listing 10.1: JWT middleware function

48

............................ 10.4. Tuya API calls implementation

After inputting the correct credentials at the login page, JWT token is
generated using the secret key stored at the server, expiration time of the
token is set to 10 minutes, the token is saved in the cookie file in client’s
browser and user is redirected to the homepage, as shown in 10.2.

1 const token = jwt.sign(user , " secret_key ", { expiresIn : "10m"});
2 res. cookie ("token", token);
3 return res. redirect ("/home");

Listing 10.2: Setting up the JWT token at the login page

10.4 Tuya API calls implementation

In this chapter I will describe how I implemented API calls to the Tuya cloud
from the web control interface. I will also mention some issues I encountered
along the way and how to solve them.

10.4.1 Cross-Origin Resource Sharing (CORS)

API requests to the Tuya cloud must be done from the backend part of the
web application. There are mainly 2 reasons for this: sharing an access
key with front end part of the application is generally not considered a safe
practice and CORS policy of the Tuya cloud blocks this.

Cross-Origin Resource Sharing (CORS) is an mechanism, that allows web
browser scripts to access resources from different domain than the one the
application is running on [24]. By default, web browsers use same-origin
policy for security reasons, which means they don’t allow web browser scripts
to access resources from a different domain. When attempting cross-origin
request, extra Origin HTTP header is added with domain name of the source
website. The server sends Access-Control-Allow-Origin (ACAO) header in
the response, which contains either list of permitted origin domains, wildcard
symbol indicating, that all domains are permitted for cross-origin request, or
error message if the server doesn’t allow cross-origin request.

It is not possible to call Tuya’s API from the front end part of the web
application, because the CORS policy set at the Tuya’s cloud allows cross-
origin requests only from IoT developer platform (https://iot.tuya.com/),
which allows the use of debugging tool (API explorer) during the development.

10.4.2 Tuya API calls implementation

Introduction

The implementation of the API request will be described on the example of
the Execute Device Capability API request, which is used to send a command
to the device. This request uses POST method, which means that the request
has a message body, as opposed to GET request, which is commonly used to
get the access token and get the status of a device. API call is implemented
into asynchronous function called execute_device_capability.

49

10. Web control interface.................................
API selection issue

There are many API endpoints aviable on the Tuya cloud and sometimes it
can be very confusing to select the correct one for the project. There are
2 APIs used for getting status and controlling devices: IoT Core API and
Device Northbound Service API. I was trying to use the IoT Core API for my
project, but it didn’t work as expected. When getting the status of the device,
the cloud returns response successfully, but the result field where the status
of the device was always empty, as shown on listing 10.3. When trying to
send command to a device, it would throw "Command or value not support"
error. After communication with support of Tuya, I found out that IoT core
API works only with TuyaOS based projects, which use TuyaOS operating
system and proprietary network modules to handle communication.

1 {
2 " result ": [],
3 " success ": true ,
4 "t": 1684328800785,
5 "tid": " aa0832eff4b311edb8e6f637b158923e "
6 }

Listing 10.3: Incorrect response from IoT Core API

When using TuyaLink based project (using MQTT gateway), Device North-
bound Service API must be used to get the correct behavior. Correct response
is shown on listing 10.4, it can be seen that cloud returns the status of the
device as opposd to the response from IoT Core API, which returned empty
result field. This information is hidden in different part of the documentation
[1] than the main Cloud development documentation, so ti can be quite
confusing to select the correct API endpoint for the project.

1 {
2 " result ": [
3 {
4 "value": false
5 }
6],
7 " success ": true ,
8 "t": 1684330553283,
9 "tid": " be99f6bef4b711edb8e6f637b158923e "

10 }

Listing 10.4: Correct response from Device Northbound Service API

Input parameters

This function takes 3 input parameters: access token, capability and value.
Access token is obtained by separate API call to Token management API,
which is implemented in the getToken function [6]. Capability is extracted
from the model of a device, which is described in chapter 4 and specifies the
id of the command that is send to the device (e.g. change a property value,
or perform an action). Value is the new value of the capability that is passed
to the cloud in the message body. To control the power strip, id of the outlet

50

............................ 10.4. Tuya API calls implementation

on the power strip is passed in the capability variable (sw1, sw2, ...) and
True/False value is passed in the value parameter to turn on/off the power
outlet.

Creating a signature

Message body is constructed and turned into JSON string on line 4. It is
important to construct the message body properly, as failing to do so will
result in confusing "Unknown error" in the response.

URL of the API endpoint is specified on the line 2, id of the device and
capability name must be inserted into the URL path. Content of the message
body is hashed using SHA-256 algorithm on line 5.

On the line 6 is created a new string named stringToSign, which is created
by concatenation of HTTP request method, hashed content of the message
body and URL of the API endpoint, as instructed in the documentation
[21]. New string called signatureBase, which will be used for generating the
signature is created on the line 11. signatureBase is created by concatenation
of ClientID, access token, current 13-digit timestamp, nonce and stringToSign
string. Nonce is an unique number, that can be used only once during secured
communication, it improves the security, but for API requests to Tuya is
optional and can be left blank.

Signature is created on the line 13 using the HMAC-SHA256 cryptographic
method with previously mentioned string as the message body and Client
secret as the key. How to find out ClientID and client secret is described in
chapter 8.3.2. The hash is enconded in Base64 and capitalized, creating the
final signature.

Making a request

The request is formed on line 16 using the fetch function. Fetch is one of
the most used functions in JavaScript for HTTP requests. It is necessary to
include the ClientID, signature, signature method (HMAC-SHA256), current
timestamp, access token in the header of the request. For requests using
POST method, it is also necessary to set content-type in the header to
application/json to indicate the format of the message body. For POST type
request, it is also necessary to send the message body in the request.

Handling expired access token

The response is received on line 31, if the error code of the response is 1010,
the token is expired, getToken() function is called to request a new token and
the function for making the API request is run again.

1 async function execute_device_capability (access_token ,
capability , value) {

2 const endpoint = new URL(‘https:// openapi . tuyaeu .com/v1 .0/
iot -03/ devices /${ config . deviceID }/ capabilities /${ capability
}‘);

3

51

10. Web control interface.................................
4 let body = JSON. stringify ({"value":value });
5 let content_SHA256 = createHash (’sha256 ’). update (body).

digest (’hex ’);
6 const stringToSign = ‘POST\n${ content_SHA256 }\n\n/v1 .0/ iot

-03/ devices /${ config . deviceID }/ capabilities /${ capability }‘;
7

8 const nonce = "";
9 const t = Date.now ();

10

11 const str = ‘${ config . client_id }${ access_token }${t}${nonce}$
{ stringToSign }‘;

12

13 var hash = CryptoJS . HmacSHA256 (str , config . client_secret);
14 var hashInBase64 = hash. toString (). toUpperCase ();
15

16 const response = await fetch(endpoint , {
17 method : ’POST ’,
18 mode: ’cors ’,
19 headers : {
20 " client_id ": config .client_id ,
21 "sign": hashInBase64 ,
22 " sign_method ": "HMAC - SHA256 ",
23 "t": t,
24 ’content -type ’: ’application /json ’,
25 " access_token ": access_token
26 },
27 body: body
28 });
29

30 const data = await response .json ();
31 if (data.code === 1010) {
32 access_token = await getToken ()
33 await execute_device_capability (access_token)
34 }
35 }

Listing 10.5: Implementation of API call

GET requests

Requests using GET method (used for getting access token, or state of the
device) are formed very similarly, but there are a few key differences. Since
GET requests don’t have message body, the body is left as an empty string,
which means that the SHA256 hash generated from it is always the same.

Access token requests

Requests for a new access token are generated the same way, but since a new
access token is being requested, access token field is omitted from the request
header and is omitted from the string used for creating a signature.

52

....................................10.5. User interface

10.5 User interface

User interface consists of 8 simple toggle switches to turn on/off the power
outlets, as shown on [Fig. 10.2].

Figure 10.2: User interface of the web application

53

54

Chapter 11
Linking device to Tuya app

11.1 Introduction

In this chapter, I will discuss a few possible ways to control devices connected
to the Tuya cloud via smartphone applications.

The simplest way is to link a device with Tuya’s official application, which
is called Tuya Smart Life. This application is available both for Android and
iOS systems. Devices are linked by scanning an QR code, which is unique to
each device.

For developers, who want to create a custom application, Tuya provides
IoT App SDK (software development kit) to aid in the development of the
application [9]. SDK is a collection of software development tools in one
installable package [25].

Other way to implement an application for controlling Tuya devices would
be to implement a new application from the ground up and use API calls to
control and monitor devices.

11.2 Linking devices to Tuya Smart Life application

Tuya Smart Life application is the default mobile application used for inter-
action with smart devices connected to Tuya cloud.

User interface for each device is generated from the set of functions assigned
to the device (function assignment described in chapter 6.2.1). Custom user
interface panels are unfortunately locked behind a subscription plan, but the
default interface works just fine, although it looks quite plain.

The user interface of the consists of 8 toggle switches used to turn on/off
each of the power outlet [Fig. 11.1]

55

11. Linking device to Tuya app

Figure 11.1: Control interface of the APC power strip in Tuya Smart Life app

To link a device with Tuya Smart Life application, go to the Device
management tab of the Product development menu, as is described in chapter
6.2.3. Choose a device from the list of devices and click on the blue "QR code
binding text" on the right side of the screen, next to the selected device to be
linked, the QR code will show up.

To add the device to the Tuya Smart Life application, scan the QR code
with the Smart Life application on the phone, as is shown on [Fig. 11.2].

Figure 11.2: Linking a device to the Tuya Smart Life application

56

Chapter 12
Conclusion

The aim of this thesis was to propose and implement a solution for integration
of devices with non-standard interfaces into the Tuya IoT cloud platform.

The first part of the assignment was to provide detailed description of the
implementation of a generic device connected to Tuya cloud platform with
instructions both on the device side and on the Tuya cloud side.

MQTT client for Tuya IoT cloud platform was implemented using the
Paho MQTT library into Python module. This module can be very easily
incorporated into any Python code, making for very easy implementation
of Tuya cloud connectivity into any device, that can run Python code and
supports TCP/IP stack. Detailed description of the implementation of a
generic device connected to the Tuya cloud platform was provided in chapter
5.

Detailed instructions on how to set up a new device on the Tuya cloud
platform were provided in chapter 6.

The second part of the assignment was to implement IoT Tuya gateway
for remote control of APC 230V power outlets with Telnet interface. IoT
gateway was implemented on the Raspberry Pi hardware, which was used to
connect the power outlets to the Tuya cloud platform. The implementation
was described in chapter 7.

Third part of the assignment was to implement a web interface to allow
remote switching of the APC 230V power outlets. Control interface for remote
switching of APC 230V power outlets with Telnet interface was implemented
into a web application in chapter 10.

The fourth part of the assignment was to use smartphone application to
allow switching of the above outlets. For remote switching of power outlets
from a smartphone application, Tuya Smart Life application was used. How
to link a device defined on the Tuya cloud platform with the Tuya Smart Life
application is described in chapter 11.

All goals set in the assignment were accompolished.

57

58

Bibliography

[1] Application Development (TuyaLink). url: https://developer.tuya.
com/en/docs/iot/application-dev?id=Kbf53a58zz6t1 (visited on
05/17/2023).

[2] Wesley Chai, Kate Brush, and Stephen J. Bigelow. What is PaaS? Plat-
form as a service definition and guide. url: https://www.techtarget.
com/searchcloudcomputing/definition/Platform-as-a-Service-
PaaS (visited on 12/09/2022).

[3] Cloud Services API Reference. url: https://developer.tuya.com/
en/docs/cloud (visited on 05/03/2023).

[4] Data parsing. url: https://developer.tuya.com/en/docs/iot/
Data-Parsing?id=Kb4qgsj9g1duj%5C#title-1-Data%5C%20parsing
(visited on 02/15/2023).

[5] Directly-connected device authentication. url: https://developer.
tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#
title-10-Directly-connected%5C%20device%5C%20authentication
(visited on 12/09/2022).

[6] Get a Token. url: https://developer.tuya.com/en/docs/cloud/
6c1636a9bd?id=Ka7kjumkoa53v (visited on 05/16/2023).

[7] Glossary - Cloud development. url: https://developer.tuya.com/
en/docs/iot/terms?id=K914joq6tegj4 (visited on 02/14/2023).

[8] Introducing JSON. url: https://www.json.org/json-en.html.
[9] IoT App SDK. url: https://developer.tuya.com/en/docs/iot/

app-sdk-instruction?id=K9kjstc7t376p (visited on 05/21/2023).
[10] Martin Malý. “Protokol MQTT: komunikační standard pro IoT”. In: ().

url: https://www.root.cz/clanky/protokol-mqtt-komunikacni-
standard-pro-iot/ (visited on 12/06/2022).

[11] MQTT Version 3.1.1 OASIS Standard. url: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (visited on
12/07/2022).

59

https://developer.tuya.com/en/docs/iot/application-dev?id=Kbf53a58zz6t1
https://developer.tuya.com/en/docs/iot/application-dev?id=Kbf53a58zz6t1
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://developer.tuya.com/en/docs/cloud
https://developer.tuya.com/en/docs/cloud
https://developer.tuya.com/en/docs/iot/Data-Parsing?id=Kb4qgsj9g1duj%5C#title-1-Data%5C%20parsing
https://developer.tuya.com/en/docs/iot/Data-Parsing?id=Kb4qgsj9g1duj%5C#title-1-Data%5C%20parsing
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-10-Directly-connected%5C%20device%5C%20authentication
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-10-Directly-connected%5C%20device%5C%20authentication
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-10-Directly-connected%5C%20device%5C%20authentication
https://developer.tuya.com/en/docs/cloud/6c1636a9bd?id=Ka7kjumkoa53v
https://developer.tuya.com/en/docs/cloud/6c1636a9bd?id=Ka7kjumkoa53v
https://developer.tuya.com/en/docs/iot/terms?id=K914joq6tegj4
https://developer.tuya.com/en/docs/iot/terms?id=K914joq6tegj4
https://www.json.org/json-en.html
https://developer.tuya.com/en/docs/iot/app-sdk-instruction?id=K9kjstc7t376p
https://developer.tuya.com/en/docs/iot/app-sdk-instruction?id=K9kjstc7t376p
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

12. Conclusion
[12] MQTT Version 3.1.1 OASIS Standard - 2.1 Structure of an MQTT

Control Packet. url: http://docs.oasis- open.org/mqtt/mqtt/
v3.1.1/os/mqtt- v3.1.1- os.html#_Toc398718019 (visited on
12/07/2022).

[13] MQTT Version 3.1.1 OASIS Standard - 3.1 CONNECT – Client re-
quests a connection to a Server. url: http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/os/mqtt- v3.1.1- os.html#_Toc398718028
(visited on 12/07/2022).

[14] MQTT Version 3.1.1 OASIS Standard - 3.2 CONNACK – Acknowledge
connection request. url: http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt- v3.1.1- os.html#_Toc398718033 (visited on
12/07/2022).

[15] MQTT Version 3.1.1 OASIS Standard - 3.3 PUBLISH – Publish mes-
sage. url: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.html#_Toc398718037 (visited on 12/07/2022).

[16] MQTT Version 3.1.1 OASIS Standard - 4.3 Quality of Service levels
and protocol flows. url: http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt- v3.1.1- os.html#_Toc398718099 (visited on
12/07/2022).

[17] Paho Python MQTT Client-Understanding The Loop. url: http://www.
steves-internet-guide.com/loop-python-mqtt-client/ (visited
on 05/19/2023).

[18] Remote configuration. url: https://developer.tuya.com/en/docs/
iot/remote_config?id=Kbrxvzug63axu (visited on 02/14/2023).

[19] Scene Linkage. url: https : / / developer . tuya . com / en / docs /
iot/Scenario- connection- settings?id=Kbr989qepvih9 (visited
on 02/14/2023).

[20] Secure connection. url: https://developer.tuya.com/en/docs/
iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-13-Secure%5C%
20connection (visited on 12/09/2022).

[21] Sign Requests. url: https://developer.tuya.com/en/docs/iot/
new-singnature?id=Kbw0q34cs2e5g (visited on 05/16/2023).

[22] TuyaOS development. url: https://developer.tuya.com/en/docs/
iot/embedded-software-development?id=Ka5nw43r0lsmp (visited
on 12/09/2022).

[23] What is Tuya IoT Edge Gateway? url: https://developer.tuya.
com/en/docs/iot/overview?id=Kag6f93nyhhcq (visited on 02/02/2023).

[24] Wikipedia contributors. Cross-origin resource sharing — Wikipedia,
The Free Encyclopedia. [Online; accessed 16-May-2023]. 2023. url:
https://en.wikipedia.org/w/index.php?title=Cross-origin_
resource_sharing&oldid=1138566357.

60

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718019
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718019
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718033
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718033
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718037
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718037
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718099
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718099
http://www.steves-internet-guide.com/loop-python-mqtt-client/
http://www.steves-internet-guide.com/loop-python-mqtt-client/
https://developer.tuya.com/en/docs/iot/remote_config?id=Kbrxvzug63axu
https://developer.tuya.com/en/docs/iot/remote_config?id=Kbrxvzug63axu
https://developer.tuya.com/en/docs/iot/Scenario-connection-settings?id=Kbr989qepvih9
https://developer.tuya.com/en/docs/iot/Scenario-connection-settings?id=Kbr989qepvih9
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-13-Secure%5C%20connection
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-13-Secure%5C%20connection
https://developer.tuya.com/en/docs/iot/MQTT-protocol?id=Kb65nphxrj8f1%5C#title-13-Secure%5C%20connection
https://developer.tuya.com/en/docs/iot/new-singnature?id=Kbw0q34cs2e5g
https://developer.tuya.com/en/docs/iot/new-singnature?id=Kbw0q34cs2e5g
https://developer.tuya.com/en/docs/iot/embedded-software-development?id=Ka5nw43r0lsmp
https://developer.tuya.com/en/docs/iot/embedded-software-development?id=Ka5nw43r0lsmp
https://developer.tuya.com/en/docs/iot/overview?id=Kag6f93nyhhcq
https://developer.tuya.com/en/docs/iot/overview?id=Kag6f93nyhhcq
https://en.wikipedia.org/w/index.php?title=Cross-origin_resource_sharing&oldid=1138566357
https://en.wikipedia.org/w/index.php?title=Cross-origin_resource_sharing&oldid=1138566357

...................................... 12. Conclusion

[25] Wikipedia contributors. Software development kit — Wikipedia, The
Free Encyclopedia. [Online; accessed 21-May-2023]. 2023. url: https:
//en.wikipedia.org/w/index.php?title=Software_development_
kit&oldid=1148272226.

[26] Wikipedia contributors. Telnet — Wikipedia, The Free Encyclopedia.
[Online; accessed 17-May-2023]. 2023. url: https://en.wikipedia.
org/w/index.php?title=Telnet&oldid=1154644574.

61

https://en.wikipedia.org/w/index.php?title=Software_development_kit&oldid=1148272226
https://en.wikipedia.org/w/index.php?title=Software_development_kit&oldid=1148272226
https://en.wikipedia.org/w/index.php?title=Software_development_kit&oldid=1148272226
https://en.wikipedia.org/w/index.php?title=Telnet&oldid=1154644574
https://en.wikipedia.org/w/index.php?title=Telnet&oldid=1154644574

	Introduction
	Assignment analysis
	Connection method
	Hardware selection
	Web and mobile application

	MQTT protocol
	MQTT protocol introduction
	MQTT control packets

	Device model
	Properties
	Events
	Actions

	Tuya MQTT client implementation
	Introduction
	DeviceID an DeviceSecretID
	Client implementation
	Using the Tuya MQTT client module

	Setting up a new device on the Tuya cloud platform
	Setting up a new device on Tuya cloud
	Introduction
	Creating a product

	Product development menu
	Function definition
	Device development menu
	Device management
	Online debugging
	Application development
	Product configuration
	Finishing product configuration

	Developing a gateway for APC Telnet power strip integration.
	Introduction
	Telnet interface of the power strip
	Implementation

	Cloud development
	Introduction
	Cloud project setup
	Sections of the Cloud development menu
	Overview
	Authorization
	Service API
	Assets
	Devices

	API explorer

	API request structure and authentication
	Introduction
	Request structure
	Authentication method

	Web control interface
	Introduction
	Project structure
	Authentication mechanism
	Tuya API calls implementation
	Cross-Origin Resource Sharing (CORS)
	Tuya API calls implementation

	User interface

	Linking device to Tuya app
	Introduction
	Linking devices to Tuya Smart Life application

	Conclusion
	Bibliography

