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Study Programme: Open Informatics

Field of Study: Bioinformatics

May 26, 2023



2



ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE 

483420 Osobní číslo:Alikhan Jméno:Anuarbekov Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav:    Katedra počítačů 

Otevřená informatika Studijní program:

Bioinformatika Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI 

Název diplomové práce:

Inference interakčních sítí z multi-omických dat pomocí bayesovských sítí  

Název diplomové práce anglicky:

Inference of interaction networks from multi-omics data using Bayesian networks  

Pokyny pro vypracování:
1. Familiarize yourself with the issue of multi-omic data integration.
2. Familiarize yourself with learning techniques suitable for learning and representing interaction networks, focusing on
Bayesian networks and the recently proposed IntOMICS algorithm.
3. Apply the IntOMICS algorithm to the MDS data supplied by the supervisor. The data contain a circRNA, miRNA, and
mRNA interaction network.
4. Evaluate the scalability and efficiency of the IntOMICS algorithm. Modify the algorithm to be applicable to the interaction
network mentioned above.
5. Verify the plausibility of the interactions found (by comparison with the literature, existing a priori knowledge, parallel
interaction search tools).
6. Evaluate the follow-up to the circGPA tool (what results will the application of circGPA in the MDS task lead to before
and after the application of modified IntOMICS).

Seznam doporučené literatury:
Pačínková, A., & Popovici, V. (2022). Using empirical biological knowledge to infer regulatory networks from multi-omics
data. BMC bioinformatics, 23(1), 1-23.
Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining
expression data with multiple sources of prior knowledge. Statistical applications in genetics and molecular biology, 6(1).
Ryšavý, P., Kléma, J., & Merkerová, M. D. (2022). circGPA: circRNA functional annotation based on probability-generating
functions. BMC bioinformatics, 23(1), 1-23.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Jiří Kléma, Ph.D.     Intelligent Data Analysis   FEL 

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

   

Termín odevzdání diplomové práce:   26.05.2023 Datum zadání diplomové práce:   06.02.2023 

Platnost zadání diplomové práce:   22.09.2024 

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Kléma, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1 



III. PŘEVZETÍ ZADÁNÍ 
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1 



Prohlášeńı
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informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u při př́ıpravě
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Abstract

A recent study has introduced the circGPA method for efficient GO term annotation from a given interaction
network. Circular RNAs without known functions are annotated with ontological terms based on the assumption
that interacting RNA molecules have similar functions and, therefore, similar annotations. However, the
interaction network used in the method was constructed solely from known database interactions, which may
be inactive under certain experimental setups. In this thesis, a potential solution to this problem is presented
by combining empirical data specific to the experimental setup with known database interactions using the
Bayesian network inference algorithm.
Initially, the IntOMICS algorithm was chosen as the model. However, it was found unsuitable for the experimental
data and the circRNA interaction network of the given size. Consequently, modifications of the algorithm were
necessary. These modifications resulted in partial improvements in the speed of upper-bound term computation
and memory requirements. Despite the improvements, the algorithm still has limitations and does not guarantee
convergence. Overall, IntOMICS was found unsuitable for the task. Therefore, an alternative algorithm
stemming from Prior-incorporated Skeleton-based Stochastic Search was implemented to address this problem
and the empirical interaction network was successfully generated.
Finally, the empirical interaction network was used for a selected subsample of circRNAs. Three different
versions of the circGPA algorithm were tested, confirming the significant influence of gene expression data and
experimental conditions on GO term annotation.

Keywords: bayesian network, circular RNA, interaction network, GO term annotation

Abstrakt

V nedávném článku byla představena metoda circGPA pro efektivńı anotaci cirkulárńıch RNA z jejich interakčńı
śıtě. Cirkulárńı RNA s dosud neznámou funkćı jsou anotovány ontologickými termy na základě předpokladu, že
interaguj́ıćı RNA se známou anotaćı maj́ı př́ıbuznou funkci a t́ım i anotaci. Jedńım z omezeńı navržené metody
bylo to, že interakčńı śı̌t byla konstruována pouze ze předem známých databazových interakćı. Ty nemusej́ı
být v konkretńıch experimentálńıch podminkách aktivńı. V této diplomové práci je představeno potenciálńı
řešeńı tohoto problému – kombinace empirických expresńıch, t.j. experimentálńıch dat, se znamými interakcemi
z databaźı pomoćı algoritmu učeńı bayesovských śıt́ı.
Jako prvńı model byl použit algoritmus IntOMICS. Bylo však zjǐstěno, že IntOMICS se pro naše experimentálńı
data a circRNA interakčńı śıtě dané velikosti nehod́ı a jsou potřeba jeho modifikace. Pomoćı těchto modifikaćı
bylo dosaženo d́ılč́ıch zlepšeńı výpočtu horńı meze pravděpodobnostńıho ohodnoceńı interakčńıch śıt́ı a byla
dosažena vyšš́ı výpočetńı rychlost algoritmu. I přesto algoritmus vykazoval několik omezeńı, neměl garanci
konvergence a celkově byl vyhodnocen jako nevhodný. Proto byl naimplementován alternativńı algoritmus
Prior-incorporated Skeleton-based Stochastic Search, který zásadńı problémy vyřešil a empirická interakčńı śı̌t
byla vygenerována.
Konečně, empirická interakčńı śı̌t byla použita k anotaci vybraných cirkulárńıch RNA pomoćı algoritmu circGPA.
Byly porovnány tři r̊uzné verze použit́ı circGPA algoritmu a bylo dokázáno, že data genové exprese a experimentálńı
podmı́nky maj́ı významný vliv na anotaci cirkulárńıch RNA.

Kĺıčová slova: bayesovské śıtě, cirkulárńı RNA, interakčńı śıtě, anotace GO termy.
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Introduction

Recently, a new type of RNA molecule has been discovered – the circular RNA (circRNA) [92][58]. However,
most of the currently known circRNA molecules have yet unknown functionality. While it is possible to
unveil their functionality through biological experiments, the cost of such experiments is expensive. As a
consequence, any in-silico method available that could hint a potential functionality beforehand is needed. This
gene-functionality mapping can be considered as part of the broader gene ontology (GO) annotation task, which
involves annotating diseases, processes, etc.
A recent study [105] has presented a circRNA generating-polynomial annotator (circGPA), an algorithm for
efficient gene ontology (GO) term annotation of circRNA molecule. The circGPA algorithm solves the problem
by assuming similar functions of interacting RNA molecules [89]. Since the circRNA is known to regulate micro
RNA (miRNA), therefore, it effects the functionality of other RNAs, particularly miRNA and mRNA. Thus, the
functionality of circRNA molecules could be derived by analyzing already studied RNA molecules that interact
with them [89]. However, in the original circGPA algorithm the interactions of molecules were constructed
entirely from data collected across multiple databases. This approach combines multiple databases, which differ
in the way of interaction acquisition and biological assumptions. Moreover, general experimental conditions
are not considered, which may result in misleading interactions that are inactive in the specific studied setup.
To overcome these limitations of the original algorithm, an empirical interaction network, which is a graph of
interactions utilizing both known database interactions and experimental data, is constructed.

As evident from the preceding paragraph, the main focus of this thesis is the analysis and construction of
empirical interaction networks and their subsequent application in gene ontology term annotation task [105].
The structure of a thesis is as follows.

First (chapter 1), a general theoretical background for such multi-discriplinary task is given. This chapter
fulfills multiple goals at once – it introduces all the basic knowledge necessary for more advanced algorithms
and concepts presented afterwards, and, at the same time, introduces the notation used in formulas and
algorithms. It covers the molecular biology, graph theory and the probability theory – all the parts required for
an introduction of interaction networks and algorithms associated with them.

Second (chapter 2), an experimental data and more details about the gene ontology term annotation task
are presented. After a small introduction into the multi-omics data problematic, the experimental setup of the
supplied data is presented. Particularly, a model of gene interaction network used in circGPA [105] is described
and the list of database sources of the known RNA interactions is shown. Furthermore, a gene expression data
collected from patients with Myelodysplastic syndrome (MDS) is analyzed. More precisely – 77 samples, e.g.,
patients diagnosed with MDS, and a set of 21952 RNA genes are measured on them. The set consists of –
17287 mRNAs, 1656 miRNAs and 3009 circRNAs. An initially given count table is normalized according to the
Transcript Per Million (TPM) [99] method.

Third (chapter 3), a definition of Bayesian networks and interaction networks, e.g., a particular use case of
Bayesian networks, is presented. A Bayesian network could be briefly described as the combination of Directed
Acyclic Graph (DAG) and a joint probability function encoded in it. Finally, at the end of the chapter it is
concluded that the only problematic part of the Bayesian network learning is the structure inference. More
precisely – the learning of a Bayesian network consists of two parts, e.g., learning of its structure and subsequent
parameter learning. In case of interaction networks, learned parameters, e.g., weights of each edge in Bayesian
network graph, are not utilized at all since the upcoming circGPA annotation uses the structure only. Although,
even without parameter learning, the structure inference remains the key problem and the reason for this is the
NP-hard nature [9] of the Bayesian structure learning in general. In other words, there exists no polynomial
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algorithm under the P ̸= NP assumption [32].

Fourth (chapter 4), a comprehensive analysis of the existing methods of Bayesian network structure inference is
given. The classification of existing approaches is divided into three categories: Score-and-Search, Constraint-based
and Hybrid.
Score-and-Search approach is the state-of-the-art method to return an optimal network under mild assumptions
[101][104], but it requires exponential memory and time complexity and, thus, restricts us from applying this
method straightforwardly on the gene expression data table of size 77 x 21952. Existing algorithms try to
overcome such problem by introducing the maximum in-degree limitation, e.g., to limit the maximum number
of parents that each node could have [101][30]. While such limitation may be useful in general, it critically
reduces the interaction network reliability. Despite all the limitation, the initial choice of an algorithm belongs
to this category – the IntOMICS [104] algorithm. The reason for this choice is the fact that the IntOMICS
algorithm is one of the first algorithms to introduce the empirical interaction network – a combination of
gene expression data and known (prior) database interactions. Consequently, the only known formula that
incorporates both of these methods is found here.
Constraint-based approach algorithms, on the other hand, have polynomial memory and time complexity, but
are computed under very strict assumption of faithfullness [28] that does not hold in practice. Nevertheless, the
core advantage of this type of methods is in their scalability that goes beyond thousands of variables thanks
to the polynomial complexity. Moreover, if compared, results of such methods are comparable to those of
early Score-and-Search methods [96][28]. Although, such methods use statistical testing instead of a previous
probability score and, thus, there are no known statistical tests to incorporate both known (prior) interactions
along with the gene expression data in it. Consequently – no empirical interaction network could be generated
from these methods.
Hybrid approach attempts to combine advantages of two previous approaches in order to achieve better
performance for a larger Bayesian network. To generalize this approach – the algorithm starts by constructing the
interaction network in polynomial time and then improves it by a limited search-and-score algorithm iteratively.

Fifth (chapter 5), a more detailed description of two key algorithms is given, e.g., IntOMICS and circGPA.
As mentioned above, initially, the goal is to modify the IntOMICS algorithm in order to generate an empirical
interaction network of a required size. The modification of IntOMICS targets the most demanding part of
the algorithm – a computation formula of super-exponential terms. Alternatively, if such modification will not
succeed, a different algorithm should be chosen from a list above and implemented.
After the generation of an empirical network for supplied data, a further GO term analysis would be performed
with a help of circGPA algorithm. A hypothesis tested in the analysis is whether the gene expression data
crucially influences the outcome of GO term annotation. To perform such testing, three version of circGPA
algorithm are presented – the original one and two modified versions that incorporate the gene expression data.

Sixth (chapter 6, an in-depth description of the chosen empirical network inference algorithm is given. Starting
from an attempt to modify and improve the IntOMICS algorithm, and then proceeding to the implementation
of the alternative algorithm, e.g., Prior-incorporated MMPC Skeleton-Based Stochastic Search (PiM-SK-SS).
A special accent is placed on the reasoning for the choice of this particular algorithm, but technical details are
also mentioned.

Lastly (chapter 7), a practical experimentation according to the above-mentioned scheme with three circGPA
versions is conducted and results are summarized in the Conclusion (chapter 8).
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Chapter 1

Theoretical background

This chapter discusses the biological, graph theory and statistical aspects of the thesis and the essential
background necessary to understand the topic at hand. The main purpose of this chapter is to define all the
basic terminology and concepts in order to reduce the large paragraphs in the complex algorithms definition.

1.1 Biological background

In this section we will focus on molecular biology, especially on its fundamental statements.

1.1.1 Deoxyribonucleic acid

Figure 1.1: DNA structure, taken from 1

Deoxyribonucleic acid (DNA) is a molecule consisting of two strands. Each strand is a chain of nucleotide
molecules connected by a phosphate group [2]. For more detailed chemical structure, see fig 1.1.
Two strands are held together by hydrogen bonds of corresponding pairs of nucleotides. These pairs are called
complementary pairs. All possible complementary pairs can be seen in fig 1.1.

It was proved in [1] that the DNA molecule carries the genetic information of an organism. We typically
denote the DNA by a sequence of its nucleotides. The four types of nucleotides define the coding of a sequence:
Adenine (A), Thymine (T), Guanine (G), and Cytosine (C) [2].
It is worth noting that complex organic molecules built from more primitive molecules are called biopolymers.

1https://www.ufrgs.br/imunovet/molecular immunology/DNAstructureanalysis.html
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1.1.2 Ribonucleic acid

Ribonucleic acid (RNA) is a biopolymer with a similar structure to the DNA molecule. There are two key
differences:

• RNA is a single coil molecule

• RNA uses Uracil (U) nucleotide instead of Thymine (T)

Moreover, the sequence of RNA defines the functionality of a molecule. Change in functionality is achieved by
interaction among the nucleotide pairs. For more details, see [40].

1.1.3 Protein

Protein is a chain of amino acid molecules that is called a polypeptide. Similarly, a protein is reprensented
based on its sequence of amino acids, and the interactions of amino acid molecules define its structure and
functionality. Twenty different types of amino acids determine the coding of a protein. Proteins are essential
components in primary functions of an organism [57].

1.1.4 Central dogma of molecular biology

The central dogma was published in 1958 and became the keystone of modern molecular biology. The core
idea of the central dogma is a transfer of information from one type of biopolymer to another. Consequently,
it implies that a sequence of one type allows a cell to synthesize a different kind of biopolymer. Furthermore,
the existence of coding alphabet mentioned in previous subsections was proposed in central dogma, and every
coding alphabet was derived experimentally afterward [3].

Figure 1.2: Central dogma diagram, taken from [3]

Fig. 1.2 shows us the information flow in an organism. The genetic information initially stored in DNA is
transcribed into RNA. Afterward, it is translated into protein polypeptide.
Dashed arrows represent exceptional cases. For example, viruses use RNA to create pathogenic DNA sequences
[67].

1.1.5 Regulatory mechanisms

The central dogma, as admitted by authors in [3], is a simplified overview of a complex biological system of a
cell. One of aspects not mentioned in the dogma are effects of biopolymer parts on each other.

Gene

Gene is a subsequence of a DNA sequence that encodes a functional RNA. Likewise, the information transfer
from DNA to RNA, e.g., transcription, is performed in segments. Each segment can contain one or more genes
[69], [114]. We distinguish two types of genes:

• coding genes – subsequences that encode an mRNA, which participates in a protein synthesis

• non-coding genes – subsequences that encode other types of RNA with a different functionality or a
subsequence that only regulates other RNA’s transcription
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Regulatory sequence

The regulatory sequence (site) of a DNA is a segment that does not encode RNA. Its purpose is to regulate
the amount of RNA produced from neighbor genes, and it is achieved by the molecular binding of specific
proteins to this site. Some regulatory sequences play an essential role in the transcription process, allowing
other proteins and RNAs to begin synthesizing or blocking it [98].

Transcription factor

Transcription factors (TFs) are specific proteins that bind to regulatory sequences, thus, regulating or
initiating the transcription process [98], [112].

Micro RNA

Another method of regulating a protein synthesis is the transcription of the micro RNA (miRNA) molecule.
The primary mechanism of this regulation is the complementarity of micro RNA and mRNA sequences. This
chemical bond leads to a double strand similar to the DNA and effectively prevents the mRNA from being
translated [74].

Circular RNA

While most known regulatory sequences affect protein synthesis, some regulatory mechanisms also target other
regulatory sequences. An example of such secondary regulation can be circular RNA.
The name – circular RNA (circRNA) suggests the unusual property of this RNA. After the transcription
step, its components interact and create a loop, while previously mentioned molecules remain in their linear
form.
The secondary regulation happens in a process called miRNA sponge when a miRNA molecule creates a bond
with a circular RNA. The bond prevents the microRNA from forming a bond with the mRNA, thus regulating
it [92].

DNA Methylation

DNA methylation is an epigenetic modification, e.g., a change in a DNA that does not affect the sequence but,
for instance, alters its chemical properties. DNA methylation adds a methyl group molecule to the nucleotide
base and modifies its chemical structure, leaving the nucleotide type unchanged for measurement. The main
effect of this change is the interaction with previously mentioned regulatory proteins, which makes them less
likely or completely unable to bind to the methylated segment [36].
For an illustration of a change, see fig 1.3.

Figure 1.3: DNA methylation example, taken from 1

1https://en.wikipedia.org/wiki/DNA methylation
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1.1.6 Gene expression

To summarize previously presented definitions, we will introduce a method to analyze gene interactions.
Gene expression (GE) is a process of synthesizing a functional gene product, e.g., proteins and functional
RNAs. In contrast with stable DNA, the amount of each functional gene product changes based on an
environment change or cell development. These quantities can be measured and used to perform a further
analysis.
This research method is becoming more available due to the increasing number of data samples and databases,
thus, it will be used as a primary method throughout the thesis [75].

1.2 Graph theory

In this section, we will focus on graph theory, especially on its statements needed for future use.

1.2.1 Graph

A graph is a set (V, E, ϵ), where V is a non-empty set of vertices, E is a set of edges, and ϵ is the incidence
function.
If a graph is said to be a directed graph, then ϵ is defined as:

ϵ : E→ V× V

or identically:
ϵ : E→ (v1, v2), where v1, v2 ∈ V

If a graph is said to be an undirected graph, then ϵ is defined as:

ϵ : E→ {v1, v2}, where v1, v2 ∈ V

1.2.2 Path and Cycle

A path is defined as an oriented sequence in the form of:

v1, e1, v2, e2, ...., ek−1, vk,

where vi ∈ V, ej ∈ E for i=1,2,...,k and also such that:

∀i = 1, 2, ..., k − 1 : (ei, {vi, vi+1}) ∈ ϵ

and
∀i = 1, 2, ..., k; j = 1, 2, ...., k; i ̸= j :

vi ̸= vj

with a possible exception of v1 = vk.

A cycle is defined as a path where v1 = vk, e.g., starts and ends in the same vertex [5].

1.2.3 Directed path and cycle

Paths and cycles are directed if the underlying graph is directed and:

∀i = 1, 2, ..., k − 1 : (ei, (vi, vi+1)) ∈ ϵ

1.2.4 Connectivity

A graph is connected if:
∀i = 1, 2, ..., k; j = 1, 2, ...., k; i ̸= j :

∃ path with v1 = vi and vk = vj
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1.2.5 Tree

A connected graph without undirected cycles is called a Tree.

1.2.6 Directed Acyclic Graph

A directed graph without directed cycles is called a Directed Acyclic Graph (DAG) [5].

Topological ordering

If the DAG is given, then there always exists a linear ordering of its vertices:

v1, v2, ..., vn

such that:
∀(ei, (vj , vk)) ∈ ϵ : j < k

This ordering is called a Topological ordering of a given DAG [5].

1.2.7 Skeleton of a graph

If given a directed graph G = (V, E, ϵ), we define its Skeleton graph as the undirected graph
GSK = (V, E′

, ϵ
′
) with the same, but undirected edges:

∀(ek, (vi, vj)) ∈ ϵ→ ∃(e
′
, {vi, vj}) ∈ ϵ

′

1.2.8 Partially directed graphs

A partially directed graph is a graph that contains both directed and undirected edges. It is possible to derive
the underlying partially directed graph of the directed graph by doing the same procedure as in the skeleton,
but only for a subset of edges.

1.3 Probability theory background

In this section, we will focus on probability theory, specifically its definitions needed for further applications.

1.3.1 σ-algebra

Given a set Ω, we define its family of sets A as σ-algebra if it satisfy these assumptions [97][48]:

• ∅ ∈ A

• (∀n ∈ N)(Mn ∈ A)⇒ (
⋃∞

i=1 Mi) ∈ A

• (∀M ∈ A)⇒ (Ω \M) ∈ A

1.3.2 Probability definition

Let us have a triplet (Ω,A,P) where:

• Ω is a set of all possible outcomes of a single sample

• A is a σ-algebra of Ω that represents events, e.g., all possible sets of samples

• P is a probability function:
P : A → ⟨0, 1⟩ such that:

– P(∅) = 0

– P(Ω) = 1

– P(
⋃n

i=1 Mi) =
∑n

i=1 P(Mi) for M1, ...,Mn ∈ A and ∀i ̸= j : Mi ∩Mj = ∅
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1.3.3 Random variable

The random event can also be replaced with the random variable:

X : Ω→ R

because a measurable quantity always represents abstract events. The most trivial case will be a 0/1 discrete
variable of whether the event happened.

1.3.4 Conditional Probability

We define a conditional probability of an event A given the knowledge that an event B has already occurred
as [111]:

P(A|B) =
P(A ∩B)

P(B)

1.3.5 Marginalization

From the previous definitions, we can derive the following formula [110][111]:

P(B) =
∑
Ai∈A

P(B|Ai)P(Ai) (1.1)

or, alternatively, if the variable is continuous:

P(B) =

∫
P(B|A)P(A)dA (1.2)

or in other form:
P(B) = P(B|A)P(A) + P(B|A)P(A) (1.3)

where A = A\A and Ai ∩Aj = ∅
We call this formula a marginalization of a variable A.

1.3.6 Bayes theorem

The Bayes theorem formula can be derived from the previous definitions [110]. It has the following form [107]:

P(A|B) =
P(A)

P(B)
P(B|A) (1.4)

This equation can then be broken down into the following probabilities [107]:

• Likelihood probability: P(B|A)

• Prior probability: P(A)

• Marginal probability: P(B) = P(B|A)P(A) + P(B|A)P(A)

• Posterior probability: P(A|B)

1.3.7 Independence and Joint probability

We define two events A and B to be independent if the following holds [97][48]:

P(A ∩B) = P(A)P(B)

Generally, the probability of two variables can be written as:

P(A ∪B) = P(A) + P(B)− P(A ∩B)

Furthermore, we denote the union of two or more events as the Joint probability:

P(A1 ∪A2 ∪ ... ∪An) = P(A1, A2, ..., An)
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1.4 Statistical background

The previous probability theory is needed to define a model of real-world events we observe. However, to verify
a proposed model’s correctness, we must introduce several terms in a statistical field.

1.4.1 Markov Chain

A Markov Chain is sequence of random variables: X0, X1, ..., Xm sampled in a following model [42]:

• Set of states: S = {S1, ..., Sn}, e.g., a set of possible values of random variables

• Initial state: X0 = Sinit

• Transition probability function P of changing a current state: P (Xnext|Xcurrent, Xprevious, ...)

• Markov Property: P (Xk+1 = i|Xk = j,Xk−1 = l, ...) = P (Xk+1 = i|Xk = j), e.g., the probability of
transition from the current state to another does not depend on anything except for the current state.

1.4.2 Statistical population

Statistical population is the real-world source of the events described in 1.3.2. It is a set of objects that
generate events represented in a probability model and can be characterized as a Ω from a probability definition.

1.4.3 Random sampling

In contrast with the abstract model, there exists a limitation of interaction with the statistical population. The
most significant limitation is that we usually cannot research the entire population due to its size and the limited
resources available. Therefore, only a subset of Ω is analyzed, and a certain amount of error and inaccuracy of
the measured data should also be considered. This subset is obtained by a method called random sampling.
The sampled data is used to analyze the entire population and the results are then extrapolated [85].

1.4.4 Hypothesis testing

Hypothesis

When analyzing the data, a researcher assumes a certain property of the data and tries to either prove or
disprove it. The assumed property is called the hypothesis and it formalizes as follows:

• H0 = Null hypothesis, the assumed property does not hold

• HA = Alternative hypothesis, the assumed property actually holds

Statistical test

In order to find the true hypothesis of these two, first – the error tolerance threshold should be stated beforehand.
As mentioned earlier, any sampling, e.g. measuring of some data from the population, is accompanied with a
certain error or a difference from the whole population. Thus, even if some property holds, the hypothesis may
show a small error that should be accepted [85].
A common way to define an error threshold is either the p-value or the α-significance level [85].

Test statistics

Finally, in order to convert the abstract hypotheses to a mathematical form, a certain value on the data is
computed. The particular choice of the value and its formula is called the Test statistics.
As an example, if the independence of two samples is tested, a possible choice of the test statistics is the χ2−test
(chi-squared test)2:

• Given two sample sets: (O1,1, ..., O1,c), (O2,1, ..., O2,c)

2https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/chi-square/
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• Calculate its expected value:

Eij =

c∑
k=1

Oik

2∑
k=1

Okj

N

• Calculate the Statistical test’s value:

χ2 =

2∑
i=0

c∑
j=0

(Oij − Eij)
2

Eij

• Compare the computed χ2 value to the known value from the χ2 table (which depends only on a number
of elements in samples sets) and derive the error. If it is larger than the threshold, H0 holds. Otherwise,
the HA is the true hypothesis.

1.4.5 Linear regression

Another method of further statistical analysis is a modeling of the random variables dependency. In other words,
while the previous probability theory established the general probability model definition, statistical analysis
introduces methods to estimate the concrete function form and, more importantly, the relationship between
individual variables in a complex model [71][11].
One of simplest methods is the modeling of the variables dependency based on a linear function. More formally,
given the set of so-called independent random variables X1, ..., XN and so-called dependent random variable Y ,
a linear dependency is defined as the following set of equations:

C0 + C1X1,1 + ...+ CNX1,N = Y1

C0 + C1X2,1 + ...+ CNX2,N = Y2

...

C0 + C1XK,1 + ...+ CNXK,N = YK

where indices denote individual samples. Or, equivalently, it is possible to write it in a matrix form:

1C0 +Xc⃗ = y⃗

The only unknown term in equations above are coefficients that are determined from the statistical analysis.
However, as mentioned above, the only possibility is to sample random variables from a population. Moreover,
an inevitable error or noise should be taken into account. By combining these assumptions, a minor change in
the definition of linear regression should be made.

1C0 +Xc⃗+ N(0, σ2) = y⃗

Where N is a famous Gaussian normal distribution function [7] that is used to approximate any function.
Last term represents some unknown and immeasurable error that is added to the data. Essentially, it could be
thought of as a noise in variables’ value.
Finally, a specific metric function must be introduced to determine coefficients from the equation above.
Typically, an Ordinary Least Squares minimization metric is used:

argmin
C

LSE = argmin
C

K∑
i=1

(Yi − C0 −
N∑
j=1

Xi,jCj)
2

Now it is sufficient to solve the minimization problem to get optimal coefficients. This procedure is called a
fitting of a model.
It should be mentioned that different metrics are being used in practice, but they will not be listed here.
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Chapter 2

Data

Lastly, with all the background knowledge presented, the following chapter will be devoted to the subject of a
thesis, the problem of multi-omics data. After the brief introduction into the multi-omics data problematic, a
detailed description of the studied data is given. Particularly, the MDS gene expression data and prior database
interactions are examined in context of an upcoming circGPA annotation task. Also, a tripartite interaction
graph is assumed as a biological model.

2.1 Multi-Omics data

As shown in section 1.1, the cell of an organism undergoes a variety of complex biological processes with the
presence of different biomolecules. Even though fundamental molecular interactions were discovered more than a
half-century ago, up until recently, the amount of empirical data remained insufficient for more complex analysis.
The situation changed with the advent of modern high-throughput methods that allowed the sequencing of an
enormous amount of genetic data efficiently. Collecting these data allows for modeling a more complex and
complete view of a molecular system of a cell [60][93][80].
The heterogeneous biological data raises a question of systematizing and grouping. Practically, the omics-based
classification of biological data sets is used, e.g., categorizing the data based on disciplines of molecular biology
that it originates from and, consequently, based on the part in the central dogma. Examples of omics groups
are:

• Genome – DNA, e.g., original biopolymers and products of their replication

• Transcriptome – RNA, e.g., products of transcription of a DNA

• Proteome – proteins, e.g., products of translation of an RNA

and et cetera.
Such categorization originates from the history of molecular biology and biology as a whole [91]. Previously,
simple abstract concepts and studies became too complex to be a part of more extensive genetics and gradually
diverged into their separate fields.
For example, the initial study of Watson and Crick on DNA structure and later introduced Central Dogma (see
section 1.1) was still considered part of genetics, e.g., a study of core mechanisms behind the heredity process.
However, with the revolutionary discovery of DNA structure and processes behind these interactions, the need
for a separate field which focuses on individual genes arose [91].
The previously mentioned techniques of massively parallel sequencing allowed the collection of an enormous
amount of data [78]. This data, consequently, allowed researchers to analyze particular biopolymers and their
interactions.
On top of that, a systematic view of a complex biological system is studied by a systems biology. While being the
core of interaction studies, previously mentioned omics groups must be combined into the dynamic interacting
network. As it follows from the text above, such comprehensive analysis results from sufficient empirical data
collection in recent years. This dynamic interacting network is called an interactome [35][39], and it is one of
the main subjects studied in this thesis.

11



2.2 Experimental data

The upcoming practical work is focused on a specific part of the multi-omics data domain. The studied subject
is the construction of interaction networks (see next chapter 3.3) from the raw statistical data containing RNA
gene expression data samples (see section 2.2.4). This empirical data is collected in order to derive interactions
that are differentially expressed, e.g., statistically significant, in these samples.

2.2.1 Tripartite biological network

While most frameworks consider the general interaction network without any limitations on gene interaction,
this thesis targets the tripartite biological model. It is based on the regulatory mechanisms observed in 3 types
of RNA molecules in section 1.1.
The model follows the straightforward approach – it allows only the previously mentioned interactions. More
precisely, the assumptions are that the only allowed interactions are circRNA - miRNA and miRNA - mRNA.
Moreover, interactions between the same type of RNA are also forbidden. This setup leads to a tripartite graph
in a form:

Figure 2.1: Graphical representation of tripartite biological model

However, it should be noted that circRNA has a broader spectrum of interactions with other biopolymers
[92], not only with the miRNA, as listed here. Moreover, mRNAs directly impact each other’s expression [91]
by regulating through their products, and thus, practically, they should be allowed to interact with each other.
The sole purpose of such a structure is the compatibility with the input of the circGPA (see 5.1) framework
used for further analysis.

2.2.2 Usage and motivation

The core motivation of a tripartite and partly misleading model is its application to the obtained experimental
data. As mentioned at the start of this chapter, the multi-omics comprehensive analysis is a recently arisen
method, and the algorithms used in it still need to be improved. This thesis mainly analyzes a newly discovered
circular RNA and its interactions with known biopolymers. Due to the relatively little data about the circRNA,
any potential interaction discovered may suggest the path in a laboratory research.
The further motivation is to apply inferred interactions to frameworks such as circGPA to perform additional
analysis. More details about the circGPA algorithm are covered in the later section 5.1. The tripartite model
mentioned previously was also introduced in a circGPA paper [105].

Gene ontology annotation

To further describe the motivation, a gene ontology task will be presented. Not only that it is the output of the
circGPA algorithm, but it also is the primary goal of the majority of presented frameworks and algorithms of
this thesis.
A gene ontology task is a comprehensive vocabulary with nearly all of known genes, proteins and their interactions.
On top of that, such vocabulary, compared to interaction networks, contains an information about the relationship
of molecular mechanisms to the cellular components and the underlying biological processes. It is meant to be
dynamic, applicable to any eukaryotic species, and, globally, tries to describe the current biological knowledge
entirely [76][16].
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Figure 2.2: The example of the GO annotation, taken from 1

2.2.3 Prior knowledge source

Since we are dealing with the statistical model of complex system, some prior knowledge should be used.
Moreover, most frameworks used in this thesis require prior knowledge as an input to obtain adequate results.
For such purposes, the following section will list most of databases with known gene interactions used afterwards.

circInteractome database

This database2 is based on the algorithm Targetscan [58], which computes the circRNA - miRNA interaction
based on features obtained empirically from different regression experiments. Since circRNA has only been
recently discovered, the amount and the quality of such interactions are yet to be fully verified.
CircInteractome is the only source of prior (known) interactions used to construct a circRNA - miRNA part of
the circGPA input.

Figure 2.3: An illustration of interactions of a hsa-circ-0000010 from circInteractome database

1http://geneontology.org/docs/ontology-documentation/
2https://circinteractome.nia.nih.gov/
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As it can be seen in an image above, an ID encoding of individual circ RNAs is as follows:
hsa (species, e.g., Homo Sapiens) – circ (type of RNA, e.g., circRNA) – 0000010 (ID, represents an ordering
based on discovery date).

An important note to mention here is the list of circRNA molecules that would be analyzed in a further
analysis:

• hsa-circ-0000227 – has 139 interactions with different miRNAs

• hsa-circ-0000228 – has 11 interactions with different miRNAs

• hsa-circ-0003793 – has 10 interactions with different miRNAs

The reason for such limited set is the time complexity of each GO term annotation [105], primarily due to the
tens of thousands of GO terms. Besides, circRNAs listed above have had no known functions at the time of
circGPA algorithm publishing and are still mostly undiscovered. It is important to note that all three circRNAs
are derived from the ZEB1 gene.

circBank

Another source of information about the circRNA is available from 3. However, this database is not used in
collection process of known interactions in upcoming algorithms. The reason for this is the fact that database
utilizes the same approach as in previous one, e.g., the TargetScan [58] algorithm, and, essentially, it is redundant
to mix multiple database formats.
On the other hand, this database has an advantage over the circInteractome – it lists known annotations derived
from existing statistical tools [83]. As an example, let us examine previously mentioned molecules:

Figure 2.4: More details about the hsa-circ-0000227 in circBank database

Figure 2.5: More details about the hsa-circ-0000228 in circBank database

As seen in two figures above, the circBank database provides an annotation list for a given circRNA. While
it may seem like a reason for a redundancy of a further analysis, it is quite the opposite.
First, the annotation given in the table above is referring to the paper [102], which analyses the entire group of
circRNAs associated with the ZEB1 gene. The regulation effect from those circRNAs is proven to be related
with tumor genesis. However, since ZEB1 -related circRNAs incorporate tens of circRNA molecules, the analysis

3http://www.circbank.cn/
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is too broad and must be specified for particular circRNA molecules in it. For instance, [109] conducted another
ZEB1 -related circRNAs analysis. It showed the regulation effect on thermogenesis process, but in case of lamb
as a testing subject. Such distinct annotation is yet another reason for a need of specification per circRNA
molecule.

Second, an approach used in [109] is based on the same Targetscan [58] algorithm, but has been applied
on animal gene expression data, in contrast with MDS human samples given in our case. Thus, it is an example
of a different experimental setup. Consequently, it can be seen as a prime example that will be used to further
prove the point of a critical influence of experimental setup.

MSigDB database

This is a database with annotated gene sets of humans and mice. It contains gene ontology annotations, different
signatures, and computational microarray data4.

miRTarBase database

Finally, the miRNA-mRNA interactions could be obtained from the MultiMIR database [81]. Individual
interactions here are marked with the verification reliability, as shown in figure 2.6.

Figure 2.6: Available sources of validated interactions from 5

Moreover, the multiMIR database was used in the circGPA paper through the R programming language library.
It must be noted that the MultiMIR is not the only database used to collect prior knowledge in circGPA.

2.2.4 MDS gene expression data

The data obtained for the experimentation purposes is a table of gene expression counts from 77 samples. Each
sample represents a certain patient diagnosed with Myelodysplastic syndrome (myelodysplasia, MDS) [100][13].
There is a total of 21952 genes of interest measured on each patient, that is:

• mRNA: 17287, miRNA: 1656, circRNA 3009

All of other RNAs were omitted due to the specifics of the task. The data could be thought of as a table of
positive integers with the size of 77 x 21952. Each positive integer then represents the number of occurrences
of a particular RNA.

Count normalization

Counts of individual RNA genes highly differ in their absolute values based on their RNA type, conditions and
properties such as gene length, copy-number variations (CNV), etc. Because of this, a certain normalization
procedure should be defined to convert them to the same scale. In the upcoming experimentation a Transcript
Per Million (TPM) [99] method is used. The exact procedure is described as follows:

1. Separate the table of all genes by the RNA type. The resulting tables are: mRNA, miRNA, circRNA

2. On each of the table run the following procedure:

4https://www.gsea-msigdb.org/gsea/msigdb/
5https://mirtarbase.cuhk.edu.cn/
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(a) For each gene, let it be the i-th row in the table, the input is given as the 77 count numbers, e.g.,
counts in each sample. The number of samples corresponds to the number of columns in the table:
(ni,1, ni,2, ..., ni,77)

(b) Normalize every count number for each sample. More precisely, normalize each column’s counts to
get an expected number of occurrences per 1 transcript in the sample:

pij =
nij

77∑
k=0

nik

(2.1)

(c) Normalize all of gene counts by the length of a corresponding gene. The longer the gene is, the less
number of genes will be transcribed in general if no copy-number variations, alternative splicing, etc.,
are considered [55]:

qij =
pij
li

, li = length of gene in terms of number of nucleotides (2.2)

(d) Convert the normalized count number to expected counts for a million transcriptions:

TPMi = qij · 106 (2.3)

This is the final value used in upcoming algorithms.

3. Concatenate the tables again into the final table

The per-type separation is crucial in the circRNA analysis due to the low number of occurrences of circRNA
molecules in comparison to more common RNA molecules such as mRNA,miRNA, etc. If not applied, circRNA
counts are effectively zeroed and the circRNA expression data is not utilized at all.
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Chapter 3

Interaction network

The upcoming chapter will be devoted to interaction networks, one of analysis methods of the interactome. In
order to introduce the interaction network, a definition of graphical networks and Bayesian networks is needed.
After that, a problem of interaction network learning from measured data is being discussed. Particularly, a
division into two sub-problems is analyzed – the parameter inference and the structure inference.

3.1 Graphical networks

The motivation for the graphical representation of probability arises from the increasing complexity of real-life
systems. Monolithic models are hard to interpret and analyze; thus, the decomposition methods are used
to show a probability model’s internal structure and properties [26][12]. There are several types of graphical
probability models, but they have following standard assumptions:

• Given a set of random variables A1, ..., AN

• We define a graph G with V = { v1 = A1, ..., vN = AN}

• The graph subsequently defines a decomposition of joint probability as multiplication:

P(A1, A2, ..., AN ) =
∏
k

Ψ(Ck) =
∏
k

Ψ({Ai ∈ Ck})

where Ck is some subset of variables and Ψ(Ck) is some general function on it

• Decomposition and its terms Ψ depend on the structure of a graph, e.g., on edges E. So, to define a
graphical probability model, it is necessary to define the terms Ψ(Ck) for every possible subset Ck.

As mentioned above, there exist multiple different kinds of graphical probability models. Below are listed two
of the most used ones [26]:

• Markov Random Fields – an undirected graph with a freedom to define different general functions Ψ.
They are typically used in, for example, physical simulation models.

• Bayesian Networks – a directed acyclic graph with Ψ defined as the conditional probability function.
They are typically used in the statistical analysis field. The reason behind this is the better interpretation
of a structure thanks to directed causality of an edge.

This thesis focuses only on the second type due to the subject of interest. Thus, a more detailed definition of
Bayesian networks will be given in the following subsection.

3.2 Bayesian Networks

The core idea behind the decomposition of the joint probability can be described using conditional probability
decomposition. When given a joint probability function with numerous random variables, it can be decomposed
as follows:

P(A1, A2, ..., An) = P(An|A1, ..., An−1)P(A1, ..., An−1) =
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Subsequently, apply the same decomposition on the last term recursively:

P(An|A1, ..., An−1)P(A1, ..., An−1) = P(An|A1, ..., An−1)P(An−1|A1, ..., An−2)P(A1, ..., An−2) =

= [

n∏
1

P(Ai+1|A1, ..., Ai)]P(A1)

Graphically, each term can be represented as a vertex in complete DAG. See figure 3.1:

Figure 3.1: Graphical representation of decomposition for n=4

However, the number of edges in a complete DAG increases polynomially with the number of random
variables, and usually, not all of the connections are needed [26][12] .

Conditional independence

The removal of an edge indicates the absence of a variable in a conditional probability term. The formal
definition of such property can be written as [26][12]:

P(Ak|A1, ., Am−1, Am, Am+1, .., Ak−1) = P(Ak|A1, ., Am−1, , Am+1, .., Ak−1) = P(Ak|Pa(Ak))

where Pa(Ak) denotes the parent variables of node Ak.
This property is called conditional independence and can be denoted as:

Ak ⊥⊥ Am| Pa(Ak)

As a visualization, see figure 3.2.

Figure 3.2: The same graph as 3.1, but with A1 ⊥⊥ A2| ∅ and A2 ⊥⊥ A3| ∅

It is worth mentioning that conditional independence goes beyond the introduced simple definition above.
As shown in [26][12], conditional independence could be determined for any two variables in a graph, and it
can also utilize our partial observations of some variables. This property leads to some algorithms, which this
thesis will not cover since they are not employed in frameworks analyzed in the following chapters.

Benefit

The essential advantage and practical benefit is the simplification of the probability function. Initially, the
probability function was a complicated joint probability function of N variables:

P(A1, A2, ..., An) (3.1)

Nevertheless, after the decomposition, it was broken into several conditional probabilities of lower parameter
dimensions. For a more detailed illustration, see [26].
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Definition

We can now fully define a Bayesian network by combining and formalizing statements mentioned above.

Bayesian Network

• Given an ordered set of random variables: A1, ..., AN

• Given that only possible edges are from the topological ordering of variables in DAG

• Given a set of conditional independencies: Ai ⊥⊥ Aj | Pa(Ai)

We define their joint probability as a decomposition into the multiplication of N different conditional
probabilities:

P(A1, ..., An) = [

n∏
i=1

P(Ai+1|Pa(Ai+1)]P(A1)

3.2.1 Equivalence classes and causality effect of the Bayesian networks

The important property of Bayesian networks is the fact that, even if structures of two networks differ, their
corresponding probability distributions could still be the same. Alternatively, one may consider the set of
networks with the same data fitting score, e.g. score-equivalent Bayesian networks. However, even if both
networks are equivalently good estimates, the important note to remember is the logical adequacy when choosing
between two networks.
As implied in [15], under natural assumptions, an edge that is present in the Bayesian network could be
interpreted as the causality of one variable to another. However, in some cases, the direction learned could be
misleading and illogical. This is when the prior knowledge about the variables should taken into consideration
in order to evaluate an inferred causal effect.

V-structures

The equivalence class of the Bayesian Networks could be defined more comprehensively using the v-structure
and the corresponding Partial DAG [96]. A v-structure in a DAG G is an ordered triple of nodes (i, j, k) such
that G contains the directed edges i→ j and k → j, and i and k are not adjacent in G [25].

Figure 3.3: An illustration of the v-structure that defines the equivalence class. Taken from [96]

As it is stated in [96], any two Bayesian networks have the same underlying joint probability if and only if
they have the equivalent v-structure for any appropriate triplet of variables. An equivalence could then be seen
as the choice of an orientation of individual undirected edges in the PDAG.
For more details and examples of equivalence classes see [20] or 1.

1https://www.ime.usp.br/∼ddm/courses/mac6916/equivalences/
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3.3 Interaction networks

As it was introduced earlier in section 2.1, the interactome is an interaction network of a biological system. It
can be seen as a graph network with biopolymers, e.g., macromolecules, as its nodes and their interactions as
edges. From here, it is evident that Bayesian network methods could be applied to interactome [18].
This section presents different methods of constructing a Bayesian network from gene expression data.
From the definition of Bayesian networks, we could deduce that:

• Each random variable corresponds to the biopolymer, e.g., each gene will be mapped as one-to-one to
some network node.

• The probability of each random variable represents the rate of regulation on a normalized scale. Even
though gene expression data is given in absolute counts, it is then converted to a zero-one scale based on
the model of choice. On top of normalization performed in section 2.2.4, a selected data fitting probability
function (see section 4.1.1) defines a further normalization to zero-one scale.

• The presence of an edge is a sign of a non-zero effect of another biopolymer. Also, if mild assumptions
are made [15], the direction implies causality, e.g., the causing gene and the affected gene. The existence
of an edge is a typical task that is needed to be accomplished from given expression data. Then, such
interactions are used as a set of factors further analyzed from the experimental point of view.

However, it is worth mentioning that each organism has a slightly different regulation rate due to its current
environment and organism condition. Additionally, it is possible to have equivalent networks with the same
joint distribution but different edge structures ([20] or see section 3.2.1). In this case, biological interpretation
is needed to choose the correct network.
To summarize the previously mentioned statements, the construction of the Bayesian interaction network could
be divided into two parts:

• Constructing an edge structure, e.g., specifying which nodes are connected by an edge and specify the
direction of an edge.

• Given the structure, compute all needed conditional probabilities of each node given its parents, as it is
specified by the Bayesian network definition (see section 3.2).

Upcoming learning methods are categorized according to these two criteria.

3.3.1 Learning with known structure

The first learning method set is based on the assumption that an edge structure is given. Thus, only unknown
variables are conditional probabilities of each node given its parents.

Exact methods

In such cases, the solution typically consists of solving a single equation by the Maximum likelihood estimation
[37][12]:

max L =
1

K

K∑
l=1

N∑
i=1

log P (Ai|Pa(Ai), Dl) (3.2)

where D = D1, ..., DK are the individual gene expression samples.

Alternatively, if it is assumed that non-observable variables exist or some information on counts is missing, then
an EM algorithm [12][6] could be used to learn such a network. However, EM-based approach is not naturally
used in a gene expression task. On the other hand, such techniques are utilized in Dynamical Bayesian networks
[29], which will not be covered in detail.
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Approximate methods

Previously mentioned explicit approaches could be computationally costly and sometimes cannot be used in
practice. In such cases, more convenient methods to use are so-called sampling approximation methods.
As the name suggests, approximation methods are based on the idea that precise computation of conditional
probabilities is impractical and infeasible. Thus, an alternative algorithmic approach is used to iteratively
converge to a local minimum that approximates the previously defined maximum likelihood estimate.

• Gibbs Sampling

One of the most used methods is the Monte Carlo sampling technique. It has many applications in different
statistical and machine-learning fields [113]. However, only the Gibbs sampling version of Monte-Carlo
applied for Bayesian networks is covered due to the subject of interest.
The Gibbs sampling Monte-Carlo has the following algorithm [17][115]:

1. Start with an initial state of each variable.

2. Iterate until convergence:

(a) Uniformly pick a random variable

(b) Choose randomly from samples that satisfy all of other fixed variables value.

(c) Fix a new value according to the picked sample

(d) Save a new visited state in memory

3. Construct a conditional probability function based on samples visited above

An assumption of known structure

The previously mentioned situation of computationally costly approach is typically related to the fact that an
arbitrary subset of joint distribution variables needs to be sampled from the network. This is not the case in
our research and, thus, the probabilities are only needed for parametrization of edges of a network, which is
polynomial in the number of nodes and is a solvable task. For an example of such algorithm see [23].

The problem, however, arises with the assumption of known structure. As mentioned earlier in section 2.2.1,
the primary source of such interactions is an expert knowledge, e.g., in our case – databases with experimentally
or algorithmically proved interactions. Although, as it was mentioned in the same chapter, recently discovered
biopolymers, such as circRNA, do not have sufficient known interactions in databases yet. Moreover, while being
proven algorithmically, several interactions could be misleading in our particular case, as such interactions could
be negligible or inactive in a particular experimental condition.

Finally, learning without a known structure is indeed a NP-hard task [9]. In other words, the inference of
a structure of a general Bayesian network cannot be polynomially solved under the assumption of P ̸= NP [9].
Thus, certain techniques and assumptions about the Bayesian network are needed for given enormous input
data. The research in this field is the primary interest for this thesis and, because of the vastness of approaches
used, the entire next chapter is devoted to the overview of such methods.
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Chapter 4

A global review of Bayesian network
structure learning

This chapter comprehensively reviews relevant Bayesian network structure learning approaches. The structure
of the chapter will be as follows. For each category of algorithms we will follow the same schematic; first – general
components of any underlying inference algorithm are presented, such as scoring metrics and optimization goals.
Next – several state-of-the-art algorithms are listed with a brief description of an algorithm. Finally, after all
three categories of existing Bayesian network structure learning approaches are presented – a table with their
properties comparison is shown, and, based on this table, the most suitable one for our MDS/circGPA task will
be chosen in the subsequent chapters.

4.1 Search-and-Score methods

The first category of Bayesian network structure learning algorithms is based on the heuristic search of the
space containing some representation of structures [96]. First, the definition of basic concepts is introduced –
scoring metric, optimization goal and search space representation.

4.1.1 Scoring metrics

As for any optimization task, structure learning is based on score maximization with a particular set of
parameters. Furthermore, the inference is conducted from samples; thus, the score must represent the underlying
probability distribution of the data. Consequently, the maximization task is the same as computing the
maximum likelihood estimate of the posterior:

score(G,D) ∝ P (G|D) = P (D|G)P (G)
P (D)

where G is a structure and D are the data given.
The typical choice for the score is the simplification of the Bayes theorem formulation as:

score(G,D) ∝ P (D|G)P (G)

where it is needed to define both parts of the score [70]:

• P (D|G) = data fitting score

• P (G) = structure learning score

The typical assumption used in all of state-of-the-art algorithms is the independence of individual variable
scores:

P (G|D) =
n∏

i=1

P (Ai|Pa(Ai),D) (4.1)

In the remain of this subsection, the most common formulations of these score components are presented.
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Data fitting score

When dealing with the data’s fitting score, the individual scoring functions differ depending on the type of values
stored in each bayesian network variable. To be more precise, the scoring functions could be formulated either
for the Bayesian network with all discrete variables or for the network with at least one continuous variable.

1. BDe, Bayesian Dirichlet metric
In the case of a fully discrete Bayesian network, the Bayesian Dirichlet metric is commonly used [70]. The
core idea behind this scoring function is that since every variable has a discrete, e.g., finite, set of states,
we can approximate its likelihood as Multinomial distribution [4]:

P (Xi|Pa(Xi)) ∼ Multinomial(Xi|Pa(Xi)) (4.2)

Furthermore, since all possible values are known beforehand and are finite, the underlying probability
could be reduced to a table in form:

P (Xi|Pa(Xi)) = P (Xi = ri|Pa(Xi) = qj) (4.3)

where ri is a possible value of the variable Xi and the qj is a tuple of the parent variables’ values. Such
multinomial distribution has a known formula based on the unknown parameter θ. However, instead of
trying to approximate the unknown parameter θ, the following approach is used instead:
Assume that:

• PD(θ|Pa(Xi) to be a conjugate prior [10] to the multinomial distribution, e.g., Dirichlet distribution

• Parameter independence, e.g., the parameter θi of the variable Xi is independent of any other θj

• No missing data is allowed

consequently, this unknown parameter could be removed if the continuous-variable Bayes theorem marginalization
is applied:

P (D|G) =
∫

P (D|G, θ)P (θ|G)dθ = (4.4)

=
∏

PD(Xi|Pa(Xi)) =
∏∫

PD(Xi|Pa(Xi, θ)PD(θ|Pa(Xi)dθ = (4.5)

then, the entire equation 4.5 can be solved in a closed form [70]:

=

N∏
i=1

q∏
j=1

Γ(αij)

Γ(αij + nij)

r∏
k=1

Γ(αijk + nijk)

Γ(αijk)
(4.6)

where Γ is the Gamma function [61], nijk are counts that could be derived from the data only, r is the
number of all possible values of ri and the q is the number of all possible tuple values of qj . And the αijk

is the parameter that defines the particular type of the BD score [70]:

• The most commonly used BD metric is the Bayesian Dirichlet equivalent uniform (BDeu):
αijk = α

(riqi)
, where α is some constant.

For more details see1 or [70].

2. BGe, Bayesian Gaussian equivalent metric
Key assumptions and the core idea is similar to the previous case. However, this scenario is if any
continuous, e.g., non-discrete, variable is present. Consequently, the approximation is made using the
Gaussian normal distribution. Discrete variables are then used as coefficients in a mixture of the corresponding
parent Gaussians [70].
Furthermore, the posterior is computed as a whole, not per variable, as in the BDe case:

P (D|G) ∼ N (D|µ,W)

1https://www.cs.helsinki.fi/u/bmmalone/probabilistic-models-spring-2014/ScoringFunctions.pdf
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Given that Gaussian normal distribution has two parameters, e.g., mean(µ) and covariance matrix(W),
let us define two distributions of these parameters:

PD(µ|G,W) ∼ N (ν, αµW)

PD(W|G) ∼ W(αw,T)

where W is the Wishart distribution. These distributions are then used to construct a conjugate prior
function. In order to derive the conjugate prior, let us apply the Bayes theorem:

PD(µ,W|G) = PD(µ|G,W)PD(W|G) ∼ N (ν, αµW)W(αw,T) = NW(ν, αµ,T, αw)

where NW(−) is the Normal-Wishart distribution2. This leads to an equation [66]:

P (D|G) =
∫

P (D|G, µ,W)P (µ,W|G)dµ dW = (4.7)

which can be solved in a closed form by using the information from samples only:

P (D|G) = (
αµ

N + αµ
)l/2

Γl((N + αw − n+ l)/2)

πlN/2Γl((αw − n+ l)/2)

|TYY|αw−n+l

|SYY|N+αw−n+l
(4.8)

where N is the number of samples, n is the number of nodes.
This thesis will not cover every variable, precise definition of the formula above nor the exact calculation
due to its complexity. For a more detailed approach, see original papers [95][50][56].

Structure learning score

The next component of the scoring metric is the structure learning score. As [22] points out, the structure score
term is not dependent on the data given, and at the early stages of Bayesian network research, it did not receive
enough attention. However, as [22] states, the later research has shown that with the data sample size being
significantly smaller than the number of variables, the structure score becomes dominant.

1. Uniform or complexity penalty
As mentioned above, the early-day Bayesian network research tended to eliminate the term by setting
it to the uniform constant. The reasons behind such assumptions were rather pragmatic – the lack of
computing power did not allow for a more complex approach [22]:

P (G) ∝ 1

Alternatively, if the prior is used as a complexity regularization, the term could be considered a penalty
for a more dense network [22]:

P (G) ∝
n∏

i=1

(
n− 1

|PaG(Xi)|

)−1

2. Prior knowledge function
Otherwise, there exists another approach for the structure score. Since a structure term is defined as a
prior distribution of network structures, prior knowledge about particular edges can be incorporated into
the score. Example of such score function form is [104][51]:

P (G) = e−βE(G)
Z(β)

(4.9)

where E(G) is so-called Energy function:

E(G) =

N∑
j=1

ε(Xj , Xpaj(G)) (4.10)

ε(Xj , Xpaj(G)) =
∑

i∈Xpaj

(1−Bij) +
∑

i/∈Xpaj

Bij (4.11)

2https://www.hellenicaworld.com/Science/Mathematics/en/NormalWishartdistribution.html
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where Bij is the incorporation of the priod knowledge in form of:

Bij =


⟨0, 0.5) , A prior knowledge about the absence of an edge i→ j

0.5, No prior knowledge is given for an edge i→ j

(0.5, 1⟩ , A prior knowledge about the presence of an edge i→ j

(4.12)

and the exact value in a given interval represents the power of the prior knowledge.

Information-theoretic scores

This is the class of score functions from the information theory that aims to prevent overfitting of the data by
penalizing the dense models. In comparison to previously defined scoring functions, e.g., Bayesian-decomposable
score functions, Information-theoretic functions are not defined in a multiplicative manner. Their general form
could be expressed as [96]:

S(G,D) = logp(D|G)−∆(D,G) (4.13)

And the particular choice of each of these two functions lead to the particular score [96]. For example:

• Log-likelihood score
Represents the data-only inference score, no network complexity penalty

log pLL(D|G) =
∑∑∑

Nijklog
Nijk

Nij
(4.14)

∆(D,G) = 0 (4.15)

where Nijk is the count of variable xi being in state j and having its kth parent set configuration.

• AIC score
Penalizes the complexity by computing a number of degrees of freedom of the discrete data. The data
fitting score remains the same as in the Log-likelihood score.

log p(D|G) = log pLL(D|G) (4.16)

∆(D,G) =

n∑
i=1

(ri − 1)qi (4.17)

where ri is the number of states of the node variable xi, qi is the number of all possible parents sets of
the variable xi.

The main benefit of the Information-theoretic score is the absence of parameters that are being estimated from
the data. Thus, a score could be used without any assumption placed on the data, but if certain assumption or
prior knowledge about the studied data could be placed, the previous scores are preferred [96].

4.1.2 Optimization goal

The algorithm output is the next component needed to establish the Score-and-Search learning. In other words,
given the scoring metric, the maximization can be performed in the following ways:

• Maximum A Posteriori
The most straightforward method is an attempt to compute a global score maximum, which can be
formalized as [70]:

argmax
G

score(G,D) = argmax
G

P (G|D) (4.18)

• Bayesian model averaging
The other possibility is the consideration of the bayesian approach for the estimation. The given data
samples could represent any possible Bayesian network, each with the probability given by the score.
Then, to calculate the optimal estimation, it is necessary to compute the expectation value of the network
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distribution. A possible way to average over all structures is to analyze each so-called structural feature,
e.g., each possible edge in a DAG [22]:

P (f |G) =
∑
G

f(G)P (G|D) (4.19)

where f(G) is 1 if the structural feature f is present in the network G and 0 otherwise. Moreover, it is
necessary to point out that since a Bayesian network is a directed graph, each direction of an edge is
considered to be a distinct structural feature f.

The last note on the optimization goal is that above-mentioned equations are both super-exponential and
impractical to be computed explicitly. Because of this property, nearly all of algorithms analyzed in this section
either use some property of the Bayesian network, for example, equivalence classes of multiple structures, or
simply approximate by the local optimum.

4.1.3 Search space

The space of structures must contain either all or a particular subset of the possible Bayesian network structures.
The main difference is how the algorithm interacts with structure space and how it determines the neighborhood
of the particular structure.

• Structures space
The most straightforward way to encode structures in space is to store them as a graph. Then, the
neighborhood could be considered an edge modification, where all adjacent structures have a difference of
single edge change, for example, edge addition, removal, or reversal [104].
The advantage of such representation is the simplicity of interacting with it, which allows using existing
graph traversal algorithms. There exist, however, several significant disadvantages.

– The representation does not enforce the DAG property of the Bayesian network and, thus, the
structure space contains structures not allowed by the task. Even though the search algorithm does
not fall into such unacceptable structures, the spatial neighborhood creates an asymmetry between
the structures, leading to a sharp and edgy surface with peaking local maxima. Consequently, the
search algorithm depends on a starting point and converges to the nearest local maximum [22].

– Due to the super-exponential growth of the number of structures, the traversal through such space
becomes much slower as the number of variables grows [22][64].

The possible solution for the problems above is a global connection via some Bayesian network property.
Examples of a global neighborhood are the Markov Blanket Resampling [41] and the reversible jump [33]
that change several graph edges simultaneously.

• Order space
In order to partially solve the previously mentioned problems, a different space of structures could be
defined. The key concept here is to utilize the DAG property of the Bayesian network, especially its
topological ordering property [22].
A particular topological ordering of variables is denoted as follows:

(U1, U2, ..., Un) = (U1 ≺ U2 ≺ ... ≺ Un) =≺ (A1, A2, ..., An), Ui ∈ V (4.20)

where ≺ is the notation for a particular topological ordering.
Therefore, given a particular ordering, we define a limited subspace of the whole structure space from
previous. This limitation effectively reduces the number of all possible structures to exponential complexity:

Pa(U1) = 20 possible parent combinations, Pa(U2) = 21 par.combinations, Pa(U3) = 22, ... (4.21)

Which effectively combines into the total number of structures for a given ordering [101]:

n∑
k=0

2k = 2n − 1 (4.22)
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which is orders of magnitude less than the total number of possible structures: 2(
n
2)

To summarize the above-mentioned representation, the entire space combines two components – the
ordering and the corresponding subspace. The neighborhood of a structure is now enriched with the
connection to structures far away in a structured space but connected via order similarity or equality. The
order neighborhood is a single move in an order space, such as a variable position swap [22][101]:

(U1, ..., Ui, ..., Uj , ..., Un)→ (U1, ..., Uj , ..., Ui, ..., Un) (4.23)

Such connectivity makes the space smoother, and the traversal is more likely to find the same optima,
even when starting from far starting points.

However, since the scoring metric mentioned previously is applied to a single structure only, the scoring
of a particular ordering needs to be introduced. In order to compute an ordering score, it is necessary to
apply the per-variable decomposition of the previous score function [101]:

P (≺ |D) =
∑

G∈G≺

P (G|D) =
∑

G∈G≺

∏
Ai∈V

P (Ai|Pa(Ai),D) =
n∏

i=1

∑
Pa(Ai)∈G≺

P (Ai|Pa(Ai),D) (4.24)

where G≺ is the subspace of structures that follow the ordering ≺.

Lastly, it is necessary to mention that the ordering could be enhanced even further with more subset
divisions, such as partial orderings [45].

4.1.4 Space traversal strategies

Given the search space, it is necessary to define an algorithm to find the best possible structure among them.
However, as mentioned earlier, the straightforward exhaustive search is intractable due to the super-exponential
number of structures. Moreover, it was shown that the optimal Bayesian structure inference is an NP-hard
problem, even when the limitation for the maximum number of parents is set [44]. Consequently, most algorithms
focus on approximating the optimal structure.

• Greedy hill climbing
This particular version of greedy hill climbing algorithm was taken from [28], but rewritten in the
algorithmic form. The idea is straightforward – proceed to do small local moves until the local maximum
is found:

Algorithm 1 Greedy hill climbing method

procedure GHC(G, G, S)
Input: Search space G, initial point G, scoring function S
Output: Best found point from G
Gr ← G
Sr ← S(G)
while Gr changed after iteration do

for every possible move in Search do
Gcand ← apply(G, move)
if S(Gcand) > Sr then

Sr ← S(Gcand)
Gr ← Gcand

end if
end for

end while
return highest-scoring DAG Gr

end procedure

• MCMC
Alternatively, it is possible to randomly sample individual elements from the search space to simulate the
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underlying posterior distribution. In other words, individual elements become states of the Markov chain,
and the probability of each move is calculated according to their scores [96]. The output of the algorithm
is the stationary, e.g., converged state at the end of a simulation.
However, the MCMC itself is not a particular algorithm, but a general approach for the search space
traversal.

– Metropolis-Hastings
One of the most used MCMC-based sampling variant [104][51] is the Metropolis-Hastings algorithm.
The algorithm can be described as applying the previously introduced Gibbs sampling algorithm
to a high-dimensional case. The high-dimensional elements that are being sampled are the search
space elements, e.g., edge structures, order spaces, etc. Then, the algorithm is applied as follows for
Bayesian network learning [64]:

1. Start with some initial search space element

2. Define a distribution Q of all possible subsequent states. It could be a single-edge move, e.g.,
edge addition, edge deletion, edge reversal [104], or a more significant transition, such as Markov
blanket resampling (MBR) [41][63] or ordering swap.

3. Iterate until convergence:

(a) Sample a new edge structure from distribution: ∼ Q

(b) Calculate an acceptance ratio:

α =
f(new structure)

f(old structure)
∝ P (new structure)

P (old structure)
(4.25)

where f = P (data|network) · P (network) ·Q(network|other network)
(c) Accept or reject based on the acceptance ratio as the probability of acceptance.

4. Return the converged edge structure

• Exact traversal methods
Finally, there exist certain methods that conduct the exhaustive search on the entire search space and
return the highest scoring Bayesian network globally.

– Dynamic Programming
Previously mentioned order/partial ordering space could be easily converted into a hierarchical
problem, where the solution of the global optimization problem is decomposed into the large set
of much smaller search spaces. Such approach is called the dynamical programming and there
exist several papers [22][44] that cover the possible algorithms. However, as the authors state, the
approach is typically further enhanced by some heuristic that tries to bound the solution and cut-off
unnecessary subspaces [96].
Generally, such approaches have an exponential time complexity [44] and typically have a super-exponential
memory requirement [22]. However, if certain assumptions are met, as for the certain scoring function
and existing ordering, there exist a much more effective methods such as [8].

– Integer Linear Programming (ILP)
Linear programming is defined as an optimization problem in form [72]:

min cTx (4.26)

s.t. Ax ≥ b

And the ILP could be defined as the LP problem with a restriction to the integer variables domain.
The flexibility of such formulation leads to a large class of problems that could be represented using
such notation. However, the key advantage is the existence of effective solvers that could solve almost
any ILP formulated problem. An example of such automatic solver is .
As a consequence, the problem solving is shifted from the search of an actual algorithm to a reduction
of the task to the ILP formulation. Due to the extensive size of the existing reductions, such
formulations won’t be covered here. For more details refer to the original papers [38][65].

2https://www.gurobi.com/
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– Other methods
Lastly, the global review did not cover the entirety of the existing hundreds of the search-and-bound
approaches and only gave a overall view for the directions that the research in this field is being
conducted. The reason for such short overview is the reality of the bioinformatics field where the
majority of the existing methods are limited.

4.1.5 List of representative algorithms and their properties

• IntOMICS [104]

– Score: BGe + Prior

– Optimization goal: MAP model

– Search method: structure space, Metropolis-Hastings(MCMC)

– Limitations: maximum in-degree parent limitation, maximum of 100s nodes

• Partial-Ordering MCMC [34][45]

– Score: K2

– Optimization goal: Bayesian model averaging

– Search method: (partial) order space, Metropolis-Hastings(MCMC)

– Limitations: maximum in-degree parent limitation, maximum of 100s nodes

• Greedy Equivalence Search [49]

– Score: BDeu/AIC

– Optimization goal: MAP model

– Search method: Greedy Hill climbing

– Limitations: maximum in-degree parent limitation, maximum of 100s nodes

• Parent set identification [62]

– Score: BIC only

– Optimization goal: MAP model

– Search method: Dynamic Programming

– Limitations: maximum of 1000 nodes

4.2 Constraint-based methods

An alternative approach to the Bayesian network inference is to determine the conditional independencies
locally by a statistical test. As the name suggests, the constraints represent the subset of parents with a direct
connection to the analyzed variable. The essential advantage of such methods is the scalability of the algorithms.
While the previous search and score methods are limited to hundreds of variables, often with maximum-in-degree
limitation, the local constraint methods are proven useful even with tens of thousands of variables [28][25].

4.2.1 Faithfulness assumption

However, the scalability comes with the cost of optimality. Theoretically, such algorithms return an optimal
solution, but with a strict and, in most cases, unsatisfied assumption.

Conceptually: All conditional independencies, e.g., entire distribution, can be inferred from the d-separation or
a graph. Formally:
For any subset s ⊂ V

Xi ⊥⊥ Xj | Xs ⇐⇒ Xi is d-separated from Xj given Xs

where Xs = {x ∈ s} [47][25]
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Super-set and its problems

As a consequence of faithfulness assumption, the output of any local search algorithm returns a super-set of
the truth graph, since no edge, e.g., conditional dependence of two variables, can be present and not show a
d-separation property in a statistical test.
The output of the algorithm often could not decide the orientation of the inferred causality and returns a
Partial DAG or a Skeleton. Such output is the representation of some equivalence class of Bayesian networks
(see 3.2.1). However, such assumption is considered to be restrictive and only the limited set of distributions
follow it [88][54].

Generalized model formulation

The abovementioned approach could be generalized as follows:

• Generalized metric
Let us define a general conditional dependence metric:

Assoc(X;T |Z) = strength of a conditional dependence (4.27)

X ⊥⊥ T | Z ⇐⇒ (Assoc(X;T |Z) = 0) (4.28)

• Generalized learning
Let us define a general learning procedure:

1. Learn a skeleton/PDAG of the Bayesian network (skeleton phase)

2. Convert the previously learned PDAG into the Bayesian network DAG (Orientation phase)

The choice of the particular statistical test and the particular learning procedure defines the algorithm. Moreover,
not every constraint-based algorithm performs step 2 and could potentially return the skeleton/PDAG as the
equivalence class to choose from.

4.2.2 Conditional independence statistical tests

• G2 test [28]

– If given two discrete variables A, B, and a set of discrete variables: C

– The alternative hypothesis: The A variable is independent of B given that C effect both of them

– Then, the test statistics is computed as follows:

G2 = 2
∑
a,b,c

SABC
abc log

SABC
abc SC

c

SAC
ac

(4.29)

where a,b,c are all of the possible discrete values of variables A, B, C. It should be noted that C
variable is indeed a vector of variables, thus, a value is also vectorized. Finally, SABC

abc is the number
of samples where A = a,B = b, C = c.

– Finally, the G2 is compared to the X 2 table value, but with the df = (|a| − 1)(|b| − 1)
∏
c∈C

(|c|). Here,

the |a| is the number of distinct values that the variable A has.

• Partial correlation, continuous data [34][90]
This statistical test is designed to compute the dependence between two variables, while, at the same
time, assuming the influence of all the other variables [90].

– If given two continuous variables A, B, and a set of continuous variables: C

– The alternative hypothesis: The A variable is independent of B given that C effect both of them

– Then, the test statistics is computed as follows:
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∗ Compute the correlation matrix:

R(x, y) =

∑
i(xi −mean(xi))(yi −mean(yi))

(xi −mean(xi))2(yi −mean(yi))2
(4.30)

∗ Compute each sub-matrix rMN by taking M variables on the rows and N variables on columns

∗ Compute the partial correlation as:

rABC =
rAB − rACrBC√
1− r2AC

√
1− r2BC

(4.31)

∗ Compare its value to the t-student distribution [31] table value with parameter df = n− 3. The
number n is then the total number of variables in samples.

4.2.3 Algorithms

• PC algorithm
This particular version of PC algorithm is taken from [87]. The core limitation is the maximum in-degree
parent limitation that is denoted as K in the subsequent code:

Algorithm 2 Peter and Clark (PC) algorithm

procedure PC-algorithm skeleton phase(V, D)
Form the complete undirected graph G on nodes V
k = 0
sepset = (∅ for every ordered pair Vi → Vj)
repeat

repeat
Select an ordered pair of variables Vi and Vj that are adjacent in G, such that |adj(G;Vi)/{Vj}| ≥ k
for every subset S with |adj(G;Vi)/{Vj}| = k do

if Vi ⊥⊥ Vj |S then
Delete directed edge Vi → Vj

Update sepset(Vi, Vj) = sepset(Vj , Vi) = S
end if

end for
until all ordered pairs of adjacent variables Vi and Vj with |adj(G;Vi)/{Vj}| ≥ k and all subsets S

with |adj(G;Vi)/{Vj}| = k havebeen tested for CI.
k = k + 1

until for each ordered pair of adjacent variables Vi and Vj , |adj(G;Vi)/{Vj}| ≤ k
return G, sepset

end procedure

There exist several other versions of PC-algorithm such as [25], [43], [46], etc. The reason for this
many modifications is the fact that PC-algorithm is considered to be one of state-of-the-art algorithms of
constraint-based type.
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Algorithm 3 Peter and Clark (PC) algorithm

procedure PC-algorithm orientation phase(V, G, sepset)
for every v-structure (vi, vj , vk) in G of variable such that vi ↔ vj and vj ↔ vk, but vi, vk is not do

if Vj /∈ sepset(Vi, Vk) then
Orient vi → vj , vk → vj

end if
end for
for Every unordered edge vj ↔ vk do

if There exists an directed edge vi → vj and there is no any edge between vi and vk then
Orient vj → vk

end if
end for
for Every unordered edge vi ↔ vk do

if There exists an directed path vi → vj → vk then
Orient vi → vk

end if
end for
for Every unordered edge vi ↔ vj do

if There exists two directed path vi → vk → vj and vi → vl → vj and there is no any edge between vl
and vk then

Orient vi → vj
end if

end for
end procedure

• MMPC algorithm
The next subalgorithm is presented in its short, undetailed form. For a complete overview see the original
paper [28]. This algorithm has no maximum in-degree parent limitation and, thus, is considered to be an
alternative state-of-the-art approach:

Algorithm 4 Max-Min Parents and Children (MMPC)

procedure per-node-MMPC(node, V, D)
CPC← ∅
repeat

for other variable v ∈ V , v /∈ CPC do
candv ← Assoc(node, v — CPC)

end for
maxCand← max v∈V,v/∈CPCcandv
vmax ← argmax v∈V,v/∈CPCcandv
if maxCand ¿ threshold then ▷ Threshold is defined as global constant, typically 0.05

CPC ← CPC ∪ vmax

end if
until no changes in CPC
return CPC

end procedure
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Algorithm 5 Max-Min Parents and Children (MMPC)

procedure MMPC(V, D)
for every variable X ∈ V do

CPCnode ← per-node-MMPC(node, V, D)
end for
for every variable X ∈ V do

if node /∈ per-node-MMPC(X, D) then
CPCnode ← CPCnode/{X} ▷ If any of two neightbours didn’t find an edge

end if ▷ This means that they are cond. independent
end for
return CPC

end procedure

• TLPDAG algorithm
Finally, there exist an approach that utilizes a similar technique as it was shown in the search-and-score
algorithms. The entire task is converted to the Convex programming [27] problem, which is a subclass of
the Linear programming mentioned above. Therefore, it again utilizes already existing solver algorithms
to solve the problem and the task is to formulate the problem effectively. Again, due to the extensive size
of the formulation, the exact formulation won’t be covered. For more detail refer to the original paper [88].

However, there is one significant difference in comparison to previously analyzed constrained-based algorithms.
That is – the assumptions are less strict now [88]:

– Equal variance assumption
As it was shown in subsection 4.1.1, when modelling a Bayesian network’s probability density, a
particular distribution function is assumed. If continuous data case is assumed, the distribution is
taken as the mix of Gaussian distributions, each having two parameters of mean µi and variance
σi. The equal variance assumption is then defined as the equality of all variance parameters of such
Gaussian distributions, e.g. σi = σ for some constant σ.

– Degree of reconstructability
Let us assume that the true Bayesian network has a adjacency matrix A0. Then, let us compute its
precision matrix Ω0 = (I−A0)T (I−A0) and E, the number of non-zero elements in adjacency matrix
A0. On top of that, let us denote the smallest eigenvalue [79] of the precision matrix as Cmin(Ω

0).
Then, the degree of reconstructability assumes the existance of a lower bound in form of:

Cmin(Ω
0) ≥ 4

C · n
max (log p,E) (4.32)

where n is the number of samples, p is the number of nodes and C is some positive constant.

Consequently, if the assumptions are held, the algorithm returns the global optimum in polynomial time.
If the assumptions are violated, which is often the case when log p ≫ n, the algorithm still has a better
consistency of results than the faithfulness assumption [88].

4.2.4 Limitations

The essential problem of all these scalable algorithms, if max in-degree of PC algorithm is not considered, is
the strict assumption of faithfulness. Again, such assumption typically does not hold and the output of these
algorithm, while being a comparable local optimum, are still far from the Score-and-Search method output
results.
The maximum number of nodes that are still computationally feasible are listed in the table 4.1 at the end of
this chapter. The numbers are presented according to their original paper confirmed experiments and, thus,
some of these maxima could be misleading, but not in orders-of-magnitude.
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4.3 Hybrid methods

The last approach is a combination of the previous two. As shown in [52], previously introduced local
constraint methods can compute and return the computationally effective MAP model comparable to the
entire search-and-score run for a tractable number of variables. However, when comparing the results with
the order-MCMC using the Bayesian model averaging, the order-MCMC outperforms it. Consequently, the
fine-tuning of the local search result is needed to approach precision levels of the state-of-the-art MCMC
approaches.

4.3.1 General approach

To generalize a previously mentioned approach, let us define a following pseudoalgorithm:

Algorithm 6 Hybrid Bayesian network learning

procedure HybridLearning(D)
for number of global iterations do

Apply the constraint-based algorithm
Perform a space traversal based on previous result

end for
end procedure

However, it must be noted that some algorithms may not perform more than one global iteration or slightly
differ in their algorithm structure. Otherwise, each step has been analyzed in detail in two previous approaches
and, therefore, only the concrete hybrid algorithms are listed below.

Algorithms

• Sparse Candidate algorithm
The algorithm is taken from [14]. The pairwise dependency is computed according to the metric [14][62]:

– Mutual Information:

I(x; y) =
∑
y

∑
x

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(4.33)

This metric is a part of the Information-theoretic scores class mentioned earlier 4.1.1.

Algorithm 7 Sparse Candidate algorithm

INPUT: D - data samples
V - variables/nodes
k - parameter
score - a score function that is decomposable per variable: Score(G|D) =

∏
Xi∈V

Score(Xi|Pa(Xi),D)

procedure Sparse Candidate(nodes, D, k, score)
Start with initial network G0

for n = 1,2,... until convergence do
Restrict:
for each variable Xi ∈ V do

Find all sets of parent variables, up to size K, and compute their pairwise dependency given Gn−1

edges
Define a set with maximum dependency score as Cn

i

end for
Maximize:

Define a search space restricted by parent set Cn
i

Perform a traversal and find maximum Gn

end for
end procedure
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• MMHC algorithm
The pseudo-code of an entire algorithm could be summarized as(taken from [28]):

Algorithm 8 Max-Min Hill Climbing (MMHC)

procedure MMHC(D, V)
Input: data D, nodes V
Output: MAP Bayesian network
CPC ←MMPC(V,D)
<Perform Greedy Hill-Climbing in space restricted by skeleton CPC to subset and orient

edges>

<Allowed local moves are: add edge, delete edge, reverse edge>

return highest-scoring DAG from Greedy Hill-Climbing

end procedure

• Skeleton-based (SK)
The paper [52] presented two versions of skeleton-based hybrid algorithms. As shown in the same paper,
the performance of both versions are comparable and both of them could be applied interchangeably.

– SK-MCMC
First, the straightforward combination of previous score-and-search and constrained-based approaches
could be performed as follows:

Algorithm 9 SK-MCMC

procedure SK-MCMC-iteration(S, G, D, V)
Input: data D

nodes V
current network G
search space S

repeat
Sample a number from [ 0, 1] interval
if number is in interval with probability β then

G
′ ← G with global move applied in space S, for example Markov Blanket Resampling ([41])

Define Metropolis-Hastings acceptance: α =
P (G

′
)P (D|G

′
)qglobal(G|G

′
)

P (G)P (D|G)qglobal(G
′ |G)

Accept G← G
′
with probability α after sampling

else if number is in interval with probability 1− β then
G

′ ← G with local move applied in space S, for example add edge, delete edge, reverse edge

Define Metropolis-Hastings acceptance: α = P (G
′
)P (D|G

′
)qlocal(G|G

′
)

P (G)P (D|G)qlocal(G
′ |G)

Accept G← G
′
with probability α after sampling

end if

until Convergence
return G

end procedure

Such algorithm ultimately converges to the posterior distribution and returns a global MAP network
given enough iteration time. Moreover, the initial traversal in skeleton-restricted space increases the
convergence rate [52]. Unfortunately, the MCMC part of the algorithm comes with all the limitations
of the score-and-search – maximum in-degree and only 100s of variable maximum.
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Algorithm 10 SK-MCMC

procedure SK-MCMC(D, V)
Input: data D, nodes V
Output: MAP Bayesian network

CPC ←MMPC(V,D)
Initialize some Bayesian network G
G← SK-MCMC-iteration(CPC space, G)
G← SK-MCMC-iteration(structure space, G)
return G

end procedure

– SK-Stochastic Search
Alternatively, the stochastic search [52] could be performed instead. The space traversal could be
understood as performing only the local move part of the above MCMC version. Since the search has
no convergence guarantee, the algorithm is essentially a extensive search space traversal, but from a
good initial point estimate – the skeleton space traversal.

Algorithm 11 SK-SS inner functions

procedure partial-SK-SS-iteration(D, V, score, CPC)
Initialize empty Bayesian network G
VG ← ∅
for every variable X ∈ V do

for every variable Y ∈ neighbour(X,CPC) do
Gcand ← G with X → Y edge addition
compute: score(Gcand), score(G)
G← sample from { Gcand, G} according to the scores
VG ← VG ∪G

end for
end for

for every variable X ∈ V do
for every variable Y ∈ neighbour(X,CPC) do

if edge (X → Y ) in G then
Gcand ← G with X → Y edge deletion

else
Gcand ← G with X → Y edge addition

end if
compute: score(Gcand), score(G)
G← sample from { Gcand, G} according to the scores
VG ← VG ∪G

end for
end for
return VG

end procedure
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Algorithm 12 SK-SS inner functions

procedure SK-SS-iteration(D, V, score, VG)
Initialize Bayesian network G by sampling from VG

Goptim ← G
for every variable X ∈ V do

for every variable Y ∈ V do
if edge (X → Y ) or edge (Y → X) in G then

skip
end if
Gcand ← G with X → Y edge addition
compute: score(Gcand), score(G)
G← sample from { Gcand, G} according to the scores
VG ← VG ∪G
if score(G) > score(Goptim) then

Goptim ← G
end if

end for
end for

end procedure

Algorithm 13 SK-SS

procedure SK-StochasticSearch(D, V, score)
Input: data D, nodes V
Output: MAP Bayesian network

CPC ←MMPC(V,D)
VG ← ∅
for i = 1...I global iterations do

Vcand ← partial-SK-SS-iteration(D, V, score)
VG ← VG ∪ Vcand

end for
Goptim ← empty network
for i = 1...I global iterations do

Gcand ← SK-SS-iteration(D, V, score, VG)
if score(Gcand) > score(Goptim) then

Goptim ← Gcand

end if
end for
return

end procedure

Such algorithm has no convergence guarantee, but it has of a property of:

∗ Anytime algorithm – The more iterations the algorithm runs, the better result it returns.
The reasons for such behaviour come from the nature of a stochastic search – it uses the
constrain-based algorithm as a better initial point and slowly explores the search space around.
In other words, it could be thought of as a local move only version of the previous MCMC
algorithm.
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4.4 Method comparison and summary

Name Type Limitation/Assumption Run time Max. variables
Greedy Equivalence Search Search-and-Score Max in-degree Polynomial 100s
Dynamic Programming Search-and-Score No Exponential 100s

Integer Linear Programming Search-and-Score Max in-degree Polynomial 100s
IntOMICS/Structure MCMC Search-and-Score Max in-degree Polynomial (1 iter) 100s
Order/Partial Order MCMC Search-and-Score Max in-degree Polynomial (1 iter) 100s
PC-algorithm (all versions) Constraint-based Max in-degree Polynomial 1000s

MMPC Constraint-based Faithfulness Polynomial 10000s
TLPDAG Constraint-based Degree-of-reconstructability Polynomial 1000s
MMHC Hybrid Faithfulness Polynomial 10000s
SK-SS Hybrid Anytime algorithm Polynomial (1 iter) 10000s

SK-MCMC Hybrid Max in-degree Polynomial 100s

Table 4.1: Comparison of all the algorithms mentioned

To summarize the table above – Search-and-Score methods, while returning a global optimum, require a global
move, such as Markov Blanket Resampling (MBR) [41], or some complex space definition, such as order space
[101]. Consequently, their memory complexity rises to exponential and, thus, is unsuitable for more than 100s
of nodes. On top of that, to achieve hundreds of nodes, the maximum in-degree limitation is being placed on a
network.

Constraint-based methods are scalable to 10000s of variables, but return local minima only. The reason for
locality are strict assumptions placed for the data.

The only solution left for large networks is to use a suitable hybrid approach for available computation time.
Consequently, a comparably good result is obtained for a given time limit.
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Chapter 5

Frameworks and Experimentation goals

In this chapter a more detailed description of two key algorithms, e.g. IntOMICS and circGPA, is presented, as
well as the intention of their usage in future experimentation. More precisely, the circGPA algorithm, as it was
mentioned in previous chapters, is a framework capable of efficient GO term annotation. In order to further
improve the algorithm, an effect of experimental setup is being analyzed by comparing three different circGPA
versions, two of which are being enchanced by the MDS data supplied. Finally, the IntOMICS algorithm is
a part of a pipeline in one of three versions and, thus, more details about its inner structure are given and a
problem of enormous input data, unsuitable for an original algorithm, is being discussed.

5.1 circGPA

5.1.1 Algorithm description

As presented earlier, the circGPA [105] framework is not the Bayesian network learning framework but a method
for further analysis. Even though the thesis follows the paper’s tripartite biological model (see 2.2.1) of three
RNA types, the approach could also be generalized for other biopolymers.
The entire algorithm’s pipeline consists of these 4 steps:

1. Construction of the interaction network.

2. Introducing a statistic based on the interaction network.

3. Converting the probability function of the introduced statistic into the generating function.

4. Solving the annotation task:

• Each miRNA and mRNA already has a set of GO terms annotated with it

• Compute number of paths from each circRNA to individual miRNA and mRNA, which leads to the
number of path to particular GO terms from a given circRNA.

• Summarize and order GO terms by the statistic’s p-value that is computed based on the number of
paths

• Output an ordered sequence of GO terms associated with a given circRNA

In step 1 the interaction network is constructed based on combined known interactions from different databases
(see 2.2.1).
However, as addressed in chapters 3 and 2, the known interactions, e.g., prior knowledge about the interactions,
are very limited in the general case when no assumption about the studied organism is given. This issue is
further amplified by the fact that little information is known about circRNA interactions. Also, several such
interactions are obtained from algorithmic frameworks similar to IntOMICS and are yet to be experimentally
confirmed.
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5.1.2 circGPA correlation (circGPA-corr)

In order to address such issues a novel modified circGPA approach is yet to be published. Essentially, the
following approach is used to modify the circGPA annotation pipeline:

1. Obtain gene expression data to get information about the particular organism with specific conditions,
e.g., certain disease-inflicted groups.

2. Extract previously known prior interactions from the different databases, such as miRTarBase, and
circInteractome (see 1.1), and use them as the second source of information.

3. For each prior interaction compute a weight that is based on the correlation of two RNA genes in the
expression data

4. Compute the weighted sum of paths from each circRNA to particular GO terms

5. Output a weighted ordered sequence of GO terms associated with a given circRNA

This version of circGPA algorithm is called circGPA corr.

5.1.3 Bayesian network with prior knowledge (circGPA-BN)

Alternatively, a circGPA could be applied to a more sophisticated network instead of a straightforward prior
knowledge usage. As it follows from the previous sections, the subject of interest of the thesis is the modification
of step 1.

1. Obtain gene expression data to get information about the particular organism with specific conditions,
e.g., certain disease-inflicted groups.

2. Extract previously known prior interactions from the different databases, such as miRTarBase, and
circInteractome (see 1.1), and use them as the second source of information.

3. Apply the IntOMICS algorithm or other Bayesian network inference algorithm to construct the empirical
interaction network, which results in the interaction network tuned for the studied case.

4. Solve the annotation task with the prior knowledge matrix replaced by empirical interaction network

5. Output an ordered sequence of GO terms associated with a given circRNA

5.1.4 Experimentation goal

In order to compare the three pipelines of circGPA annotation presented above, some test statistic should be
introduced to compare the ordered sequences of individual circRNAs:

Spearman’s rank order correlation

The formula is taken from [86]:

• Given two difference ordered sequences of the same set elements: (x1, x2, ..., xn), (y1, y2, ..., yn)

• Compute their ranks, e.g., ordering indices: (i1, ..., in), ik ∈ {1, ..., n} (j1, ..., jn), jk ∈ {1, ..., n}

• Compute the correlation coefficient r ∈ [ −1, 1] :

r = 1−
6

n∑
k=0

(ik − jk)
2

n(n2 − 1)
(5.1)

• Compare the correlation coefficient’s test statistic:

t = r

√
n− 2

1− r2
(5.2)

to a t-distribution [24] with df = n− 2
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Figure 5.1: The schematic of the circGPA version’s comparison

Pipeline comparison

Then, if our assumptions about the significance of gene expression data and experimental conditions are true,
the Spearman’s rank order correlation should output the following situation:

• SpearmanRankOrder (circGPA-BN, circGPA-corr) should output a high correlation p-value that is orders
of magnitude higher than:

• SpearmanRankOrder (circGPA, circGPA-corr), SpearmanRankOrder (circGPA, circGPA-BN)

For an illustration see figure 5.1.

However, as mentioned earlier, due to the enormous number of GO terms involved, the computation time
of single circRNA is demanding and only a subset of three circRNA is being studied. Theoretically, the
circGPA algorithm is modelled per-circRNA, e.g., each circRNA could be analyzed independently of others
and no problem. Nonetheless, an orders-of-magnitude difference between the circRNA and GO term numbers
may cause the Spearman’s rank order correlation test to be ineffective and highly erroneous [73].
To overcome such problems, several additional technique are performed on top of it:

• Each value of Spearman’s rank order correlation test is supplied with its standard deviation [19]. The
result is then presented in form of a confidence interval, e.g., value± stddev

• Furthermore, in order to test the ordering correlation even more, a Venn’s diagram of first 100 GO term
overlapping is presented. The reason for this is high number of non-correlated GO terms that have no
path from a given circRNA. Thus, a high overlapping of first, e.g., most significant, GO terms in rank
ordering proves the correlation more precisely.

• All the more, previous two tests have an important drawback. While the empirical data may change the
weight of individual interactions in case of circGPA-corr, the only allowed interactions are still the ones
given by the prior database knowledge. Thus, a space of allowed paths is still constrained, which may
result in stronger correlation between circGPA/circGPA-corr.
To overcome such issue, one may consider to compare the ordering of particular interactions that are related
with the experimental setup only, e.g., in our case with the Myelodysplastic syndrome (MDS). That way, if
experimental conditions actually influence the observed interactions, then the set of experimentally-related
interactions in both circGPA-corr/circGPA-BN would shift to the front. More precisely, the mean of their
position should be lower in circGPA-corr/circGPA-BN than in circGPA.
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5.2 IntOMICS

IntOMICS algorithm corresponds to the Empirical Interaction network inference box in the schematic shown
in figure 5.1.

5.2.1 Algorithm description

The primary idea of the algorithm is based on a combination of both empirical, e.g., studied case-specific data,
with the known general prior interactions.
As the initial point, the already mentioned probability functions and transition distribution from the Metropolis-Hastings
algorithm will be specified:

• Q(network), e.g., the edge structure transition function is defined as the random action chosen from the
single edge move, reverse edge move, and the Markov Blanket resampling [41].

• P (network) will be defined as the probability of prior knowledge satisfaction. E.g., the more the network
satisfies the prior interactions, the more probable this part of the posterior probability will be. Particularly
[104]:

P (edge structure) = P (G) =
e−βE(G)

Z(β)
(5.3)

where E(G) is the energy function that penalizes for not satisfying the prior and β is another parameter
to learn. The β is defined as the ”power” of the prior interaction versus the empirical interaction. The
range of β values is [0.5, 1].

• P (data|edge structure), on the other hand, forces the network to satisfy the gene expression data interactions
derived from the individual gene counts. It is defined based on the BGe score [50], which is the metric
that, at its core, computes the correlation but assumes the continuous variable domain with Gaussian
multivariate distribution [7]. Even though our counts could be thought of as discrete variables, the
IntOMICS algorithm generally allows the continuous features mixed with them, for example, Copy Number
Variations (CNV) and Methylation data [104].

As it is clear from the second term, the conventional Metropolis-Hastings algorithm should be modified to
include the additional β parameter.
The modification is straightforward. The additional parameter is sampled after the edge structure step with the
same Metropolis-Hastings algorithm. However, in order to sample it, we should define a transition distribution
and other probability terms:

• Q(β) is defined as the uniform probability with variance given by the change of acceptance rate, more
precisely – U(mean = βcurrent, var = σ).

• Acceptance is then defined as:

Aβ =
P (G|βnew)

P (G|βold)
(5.4)

Then, a simple version of an algorithm will look like:

1. Run Metropolis-Hastings step on edge structure G

2. Run Metropolis-Hastings step on β

3. Update β acceptance rate based on previous result. Update the σ as well.

However, due to the significant violations of the Markov chain assumptions, the convergence of this so-called
Adaptive MCMC simulation is not guaranteed under Markov Chain conditions. It involves several more complex
conditions in sampling that need to be done to converge [64].
Although, even with convergence guaranteed, the Adaptive Monte Carlo Markov Chain approximation methods
tend to run an impractically long time. This drawback leads to the problem of space complexity when the
algorithm runtime limits our input data size. Then, to solve such limitations, different techniques are applied
on top of the algorithm to increase the convergence speed. As one such technique, [64] introduces the adaptive
MCMC algorithm that first runs in an adaptive form and then runs a conventional MCMC algorithm with the
Markov Chain assumptions fulfilled. In details:
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1. 1st adaption phase – runs until the rate of acceptance in Metropolis-Hastings passes a certain threshold.

2. Transient phase – fine-tune the beta variance value σ.

3. 2nd adaption phase – runs until the rate of acceptance in Metropolis-Hastings passes a certain threshold
and a fixed beta value is found.

4. Sampling phase – conventional MCMC algorithm, e.g., previously introduced Metropolis-Hastings
without any changes but starting from the previous converged state.

5.2.2 Limitations of algorithm

The reason for the application of this particular algorithm is the empirical knowledge approach used in it.
Unfortunately, as mentioned earlier, the original paper [104] already stated the existence of problems with large
network inference.
To understand a source of such limitation, the MCMC approach from a previous chapter should be reviewed:

• MCMC approach, while being one of the state-of-the-art method of Bayesian network learning, is being
limited by the following facts:

– Initially, the computation of Metropolis-Hastings score changes are trivial and does not generate any
problem with scalability.

– However, the Metropolis-Hastings approach violates core Markov assumptions and, thus, the convergence
to a global optimum is not guaranteed. In practice, a local-only version of MCMC is highly dependent
on a choice of starting point in space traversal, which results in poor local minima.

– In order to solve this issue, a global move, such as Markov Blanket Resampling (MBR) [41] or more
complex space definition, such as Order Space [101], are introduced. The mechanism behind this
change is straightforward – either allowing an algorithm to jump and escape from the local minima,
or relaxing the search space to remove such problem at all.
Thus, as a drawback, the computation process of those methods involves an exponential complexity
in either space or time domain. Generally, while analyzing interaction networks, maximum in-degree
limitation is considered, effectively reducing the exponent to a polynomial with a pre-defined low
constant.
In case of tripartite graph presented earlier, this assumption is not possible, since it breaks the path
counter of the circGPA algorithm.

• On top of above-mentioned issues, it must be recalled that the sole reason of IntOMICS and Score-and-Search
methods choice is the empirical interaction network. Certainly, if an empirical interaction network is not
taken into account, more suitable approaches would be chosen in the early stages. However, the IntOMICS
and its counterparts in Score-and-Search domain are the only known algorithms to combine both database
(prior) knowledge along with the gene expression data.

5.2.3 Experimentation goal

Consequently – the core task to solve is either to modify and apply the IntOMICS algorithm to a high-dimensional
network or, if not possible, to implement an alternative algorithm that computes the MAP estimate of empirical
interaction network.
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Chapter 6

Empirical interaction network
inference algorithm

This chapter is devoted to the problematic of the empirical interaction network inference. As hinted in previous
chapters, the originally proposed IntOMICS [104] algorithm has several limitations that have not been resolved
yet. Therefore, the structure of this chapter follows the progression of an algorithm choice during the work on
this thesis. More precisely, the chapter starts from an attempt to improve the existing IntOMICS algorithm
and then proceeds to implement an alternative algorithm to solve the core problem of the MCMC approach.

6.1 Computation improvement of an IntOMICS algorithm

As admitted by the authors of the original paper [104], the algorithm suffers from two fundamental problems:

• Input feature size limitation – up to tens of features only

• The time complexity of an algorithm – superexponential if not limited by the maximum parent number

The possible solution for both of the problems is proposed in the following section.

An improved formula

The entire derivation of the term is excessively long and it was decided to move the derivation to the separate
appendix B. In the end the formula is modified as:

Z(β) =
∏
j

∏
TYPE

∑
K

(
N j

type

K

)
exp

(
−β
[
N j

typeCtype + (1− 2Ctype)K
])

Histogram addition

The further modification does not change the asymptotic complexity but improves the absolute speed of an
improved algorithm. The strategy is easy. If two nodes share an identical set of numbers N type

j , they have the
same value in the prior summation. In order to capture this, the histogram count variable is introduced:

H(N j) = H : (N j
absent, N

j
noPK, N

j
GE, N

j
TF, N

j
nonGE)→ N+

0

This histogram counts every set of prior edge types of a node. For more details, see the example in the following
subsections.

Final form

Lastly, another hidden modification is presented in IntOMICS1 with a motivation of numerical stability. The
entire term Z(b) is converted into its logarithm and further used with the logarithms of other terms.

1https://gitlab.ics.muni.cz/bias/intomics
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log Z(β) =
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 (6.1)

Improved algorithm

For each node J, the followings values should be computed:

• (N j
absent, N

j
noPK, N

j
GE, N

j
TF, N

j
nonGE)

Following that, a histogram of such values should be computed:

• H(N j) – count of nodes with (N j
absent, N

j
noPK, N

j
GE, N

j
TF, N

j
nonGE)

Finally, the log partition function for a particular β can be computed as:

log Z(β) =
∑
Nj :H

H(N j)log

∏
type

Nj
type∑

K=0

(
N j

type

K

)
e−β[Nj

typeCtype+(1−2Ctype)K]

 (6.2)

Additionally, for an illustration of the work of the improved algorithm, see the example in appendix C.

6.1.1 Practical implementation

All the mentioned modifications are available through GitLab 2.
The previously introduced improved version of the IntOMICS algorithm is available in the following folder on
the Gitlab page:

• ∼/IntOMICS orig/

The modified IntOMICS without the improved algorithm, but with several error fixes, is available on the:

• ∼/IntOMICS noimproved/

The original source code contains a few implementation errors that prevent the algorithm from running on a
sparse interaction network such as our tripartite biological model. The solution to this problem involves the
modification of a single file:

• pf UB est.R

6.1.2 IntOMICS algorithm evaluation

Transient phase convergence

Firstly, the problem with transient phase convergence was encountered. As a possible reason, the convergence
time of the IntOMICS algorithm is highly dependent on the number of absent edges, e.g., on the sparsity of
the graph. As a result, the IntOMICS algorithm runs an absurdly long amount of time for the tripartite model
with gene expression input.
For example, if comparing the original IntOMICS data with the tripartite model data:

• (IntOMICS, GSE127960 WT) – 16 input genes, 0 absent edges, 5 prior edges – 113 iterations at
the Transient phase

• (Tripartite model) – 18 input genes, 261 absent edges, 6 prior edges – 1746 iterations at the Transient
phase

Moreover, the multiple experiments revealed a high dependence on the start point, defined by the random
generator seed. For example:

• seed=5, (Tripartite model) – 1746 iterations at the Transient phase

2https://gitlab.fel.cvut.cz/anuarali/pim-sk-ss
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• seed=6, (Tripartite model) – not converged, more than 12000 iterations at the Transient phase

• seed=112, (IntOMICS, GSE127960 WT) – 146 iterations at the Transient phase

• seed=113, (IntOMICS, GSE127960 WT) – 456 iterations at the Transient phase

Consequently, the tripartite model converged for a specific random seed; thus, an algorithm could be used to
generate the empirical interaction network. Nonetheless, the proposed tripartite biological model is unsuitable
for the algorithm since convergence is not guaranteed. The convergence time is an order of magnitude higher
than the same size interactions network without the restrictions.

Key points of the implementation

• The improved algorithm requires less memory to be stored in the memory to compute the partition function
– only the histogram. To compare, the original IntOMICS stores up to 3 variables of an super-exponential
size for the entire lifespan of an algorithm:

1. all parents config – all possible parent combinations for every variable, needed for both of the terms
below

2. BGe score config – the BGe score computed for every parent combination, needed for a global Markov
Blanket Resampling (MBR) move

3. Energy score config – the partition function computed for every parent combination, needed for Upper
Bound computation

As shown above, the improved algorithm allows to compute the partition function in both polynomial
time and memory for the energy function defined in IntOMICS. Thus, only two of three terms is used,
effectively reducing the memory consumption by 33%.

• The improved algorithm requires fewer calculations to be performed for our research case. Since the
IntOMICS algorithm is performed on the empirical data, most interactions are either unknown, e.g., have
no prior, or are explicitly forbidden, e.g., absent prior, as is the case in the tripartite biological model
used in this thesis. In both cases, the complexity drops from super-exponential to polynomial for certain
parts of the algorithm.

• The only major problem of an improved algorithm is the problem with the maximum allowed node parent
number. As introduced in [104][64], the limitation of all nodes’ in-degree is performed with the motivation
of calculating Markov Blanket Resampling (MBR).

Conclusion on the algorithm effectiveness

Despite all the optimization performed, the IntOMICS algorithm has been proven to be incapable of learning
a tripartite model task for the required number of genes. The problem, however, lies in the MCMC approach
as a whole, not in this particular algorithm. As mentioned in the chapter 4, while the MCMC, judging by the
number of related algorithms and papers [96], has been the primary state-of-the-art approach for the theoretical
learning of the Bayesian networks up until recently. However, majority of these MCMC algorithms failed in
generalizing the approach for the large networks with thousands of continuous variables, which is the case for
the practical application.
Consequently, by considering all the theoretical obstacles, the IntOMICS algorithm was found to be unsuitable
for the further analysis and should be replaced with a more sophisticated one. As hinted previously, the solution
for this scalability problem could be found in hybrid approaches.

6.2 Prior-incorporated MMPC Skeleton-Based Stochastic Search
(PiM-SK-SS)

6.2.1 Theoretical overview

A recently published paper [52] presented an approach that combines scalable constraint-based methods with
the further search-and-score fine-tuning of the results. There are the following key factors for the choice of this
particular approach as an alternative for the IntOMICS:
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1. Universality – instead of providing a strict specific setup or assumptions, the algorithm is presented as
conceptual approach, where every part is straightforward to implement depending on the needs of a task.

2. Scoring metric – As a result of the previous property, the SK-SS allows the usage of any score function
that is compatible with the previous MCMC approaches. While such effect may sound like unnecessary,
in fact – it allows the incorporation of the same empirical-based approach as it is used in IntOMICS
algorithm [104].

3. No memory nor maximum parent limitation – As compared to other novel MCMC-based approaches
presented in the same paper [52], the SK-SS algorithm does not require any global moves such as the
Markov Blanket Resampling (MBR). Consequently, no super-exponential number of terms is needed to
be stored in memory and no need for a maximum parent limitation is needed, as it was the case in the
IntOMICS.

4. Anytime algorithm – The algorithm does not need to run the entire run time for a sophisticated output.
Due to the time limitations, the algorithm will run for the entirety of the time left and the best achieved
result will be presented.

Ultimately, with all of the arguments presented, a new approach could be summarized as follows:

1. Apply the constraint-based algorithm on the input gene expression data and construct an undirected
skeleton graph

2. Apply the SK-SS algorithm on the skeleton graph returned from step 1 with the scoring function that
utilizes the prior knowledge.

3. Iterate the SK-SS algorithm until either:

• The change of a highest score network is lower than a predefined threshold

• The number of iterations exceeded the predefined maximum

4. Return a visited directed Bayesian network with a highest score

6.2.2 Max-Min Parents-and-Children (MMPC)

For the task of inferring a network with thousands of variables the MMPC algorithm [28] is an obvious choice,
since it is considered to be one of the state-of-the-art algorithms in a constrained-based field. Particularly,
in paper [28] it was shown that the comparable-size network, e.g., tiled-ALARM network with approximately
10,000 variables, has successfully been learned in a trackable time, which was the largest learned Bayesian
network at the time [28].
There exists a publicly available implementation from BNlearn [34] library in R programming language. It was
used as a first step of the algorithm implemented afterwards.
However, several adjustments were required to effectively implement the tripartite graph model. The reason
for this is the generalized bnlearn interface that stores each blocked interaction as two number in a table.
Consequently, in order to block all the forbidden interactions, e.g., everything except circRNA-miRNA, miRNA-mRNA,
it requires:

21952 ∗ 21952(entire table size)− 17287 ∗ 1656(miRNA-mRNA)− 1656 ∗ 3009(circRNA-miRNA) = (6.3)

= 448280128 rows of two number

which is hundreds of GB RAM when the original implementation is used. In order to overcome this problem,
the tripartite structure was hard-coded into the original library’s code through library modification.

Practical implementation

Again, the implementation of adjusted algorithm is available through the same GitLab page 3https://gitlab.fel.
cvut.cz/anuarali/pim-sk-ss. More precisely in those files:

• ∼/source/mmpc optimized.R – contains modified code of the original bnlearn library

• ∼/workflow.Rmd – contains code block to access the original library’s code in order to overwrite it with
modified one from above. See MMPC application section in there
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Run time

• 16 CPU, 5 GB RAM, Metacentrum

• 2 hours 11 minute 32 seconds

6.2.3 SK-SS implementation

Scoring function

The first key point to define is the scoring metric. The original paper [52] used the following scoring function
for the presented example:

• BDeu score for P (D|G)

• Uniform complexity penalty for P (G)

Instead of this, since the algorithm allows for any suitable scoring function to be used, the slightly modified
scoring function from the IntOMICS algorithm is used:

• BGe score for P (D|G), but with a difference in computation compared to the original IntOMICS/BiDAG
[104]:

– Assume a simplified probability for circRNA nodes:

P (D|circRNA, ∅) = 1

This is due to the fact that since no input edges are allowed for this type of RNA, the score does
not change during the stochastic search. Moreover, since the BGe score assumes the decomposition
of the score per node:

P (D|G) =
∏
v

P (D|v, Pa(v))

Abovementioned simplification can be thought of as a multiplication by a constant given by the∏
w∈circRNA

1
P (D|w,∅) , but practically it allows us to reduce the final value to be more numerically

stable in the 64-bit double type’s format precision [59].

• Modified prior score:
The key difference is the fact that, unlike the original IntOMICS algorithm, the SK-SS algorithm has no
pre-defined procedure of inferring a true β value of the prior probability term. Thus, instead, a different
approach used in [51] could be applied. Instead of inferring the true β value, the marginalization across
all possible values is computed, which, consequently, leads to the uncertainty score rather than the point
estimate. This term is considered to be more robust [51].
However, first, let us simplify the formula to compute it for a single instance of a graph explicitly:

1

βH − βL

βH∫
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=
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1

E(G)

[
e−βLE(G) − e−βHE(G)

]
(6.4)

Now, it is necessary to choose both bounds adequately:

– IntOMICS sets a hardcoded limitation of β ≥ 0.5 [104], because of this we set βL = 0.5

– Bayesian Prior [51] computes the optimal range (based on the AUC curve) to be equal to ∆β = 10,
because of this we set βH = βL +∆β = 10.5

Such modification incorporates the prior knowledge, thus, allowing us to apply the SK-SS algorithm on larger
data than the IntOMICS did. On top of that, it still utilizes the prior knowledge in the same way as the
IntOMICS algorithm and essentially achieves the same result.
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Technical decisions

During the implementation a few technical problems have been encountered. The core problem of the algorithm
is the space complexity. Consider a line from the SK-SS algorithm:

VG ← VG ∪G

While looking like a straightforward simple operation, the problem is in the size of individual G subgraphs.
Even if the most efficient method of an adjacency matrix storage is used, that is 1 bit per 1 cell, the total size
of the adjacency matrix is in fact:

17287 ∗ 1656 (mRNA x miRNA) + 1656 ∗ 3009 (miRNA x circRNA) = 33610176 bit = 4, 2 megabytes (6.5)

Considering that the number of saved subgraphs is, in worst case, the same as the number of undirected edges
in skeleton, such straightforward approach is impractical.
To address such issue, a following data structure and an approach is introduced:

• One-action-per-subgraph
If the SK-SS algorithm is to be analyzed, the stochastic search nature gives us the hint about the more
effective method of the subgraph storage. Each subsequent subgraph G is being constructed from the
previous one by performing a single move. Thus, instead of saving the entire subgraph adjacency matrix,
the adjacency-local-action linked list could be used to store the chain of visited subgraphs:

Figure 6.1: The illustration of the adjacency-local-action linked list

• G-Trie subgraphs
However, the problem with the straightforward approach is the violation of the set property – that is, a
repeating item should be stored in the set only once despite the number of additions. A possible solution
that was implemented is the usage of G-Trie data structure from [53]. For an illustration see the figure
below:

The schematic above could be summarized as follows:

1. Sample a new move – addition or deletion of an edge on a certain coordinate

2. Take a coordinate and either add a new local move node or delete a previously inserted one. However,
the linked list should be held as sorted by some sorting rule

3. Use the sorted linked list as a certificate and insert it into the Trie data structure – a way to store a
strings efficiently and to determine if the certificate is already present in Trie

4. Sampling from VG

(a) Initialize an empty adjacency graph

(b) Sample an index from a range of 1 to the number of unique subgraphs

(c) use In-Order traversal in Trie graph and perform one local change at the time – based on the
node visited. When going down the graph – perform a move, when going up – perform an inverse
move.

(d) Count the number of leaf nodes encountered and continue up until the encountered index is equal
to the sampled index.

(e) Return the adjacency graph

However, during the implementation the following problem has been encountered:
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Figure 6.2: The schematic of the algorithm

– Problem: Too many nodes in comparison to the number of inserted subgraphs (Example: 2000
subgraphs vs 400k nodes)

∗ Possible solution: Convert 1-change-per-node Trie to multiple-changes-per-node Trie. For
more details see Compressed trie on https://www.geeksforgeeks.org/types-of-tries/

∗ Unsolvable part: Even with the Compressed trie usage, the memory overhead is impractical
– after half of the partial SK-SS loop the memory requirement is above 200 GB RAM.

Consequently, since the problem is persistent and unsolvable, the only solution left is the non-uniform
sampling from the set. That way – instead of storing the entire Trie, only the linked list mentioned above
is required to be held in memory.
On top of that, to compensate the violated uniformity an algorithm – instead of running multiple iterations,
the algorithm runs for 1 iteration only, but in multiple independent instances.

Practical implementation

The implementation of both algorithms is available through the same GitLab page 4. More precisely in those
files:

• ∼/source/skeleton.R – constains R language’s interface as well as the callable functions along with the
documentation are placed here

• ∼/source/skeleton.cpp – contains C++ implementation of the R functions from the file above

6.2.4 Run time and memory

The entire hard computation was performed entirely on Metacentrum resources 5.
Because of the shortage of the time, the algorithm run for ≈1 week of pure CPU time on 4 machines and the best
result of these three is taken as the output of the thesis. Ideally, the number of iterations should be computed
based on the number of new subgraphs after each upcoming iteration. Although, since it is not feasible to keep
track of the unique subgraphs due to the space complexity, the other possibility is to track the change of best
scoring graph after each N full instance runs of an algorithm.

4https://gitlab.fel.cvut.cz/anuarali/pim-sk-ss
5https://metavo.metacentrum.cz/
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Chapter 7

Experimentation

This chapter is devoted to the practical part of the thesis. The core problem that is being solved in this chapter
– is whether the experimental setup has a crucial influence in the gene ontology annotation task. Since the
empirical interaction network has already been generated in the previous chapter, the subsequent statistical
analysis on three circGPA versions is performed and the significance of an experimental setup is tested. Finally,
the biological analysis of the inferred GO annotations concludes the entire thesis.

7.1 A comparison of three circGPA version

The R language’s in-built implementation of Spearman rank correlation (Spearman RC) in combination with
SpearmanCI 1 library is used. SpearmanCI has an in-built computation of the standard deviation [19] and the
in-build library computes the p-value. The schematic of the code is:

• cor.test(x=sequence1, y=sequence2, method = ’spearman’)

• spearmanCI(x=sequence1, y=sequence2)

Next, due to the extensive time of computation of each circRNA’s ordered GO term sequence, only 3 pre-computed
circRNA are tested:

• hsa circ 0000227

• hsa circ 0000228

• hsa circ 0003793

On top of that, instead of comparing the ranking order straightforwardly, the p-value sequences are used as an
input to the Spearman’s rank-order test. This is an equivalent test and has no effect on the result.

7.1.1 Results

The triplet of circRNA genes from above is being tested on all three versions of an circGPA algorithm and the
results are summarized below. As mentioned in chapter 5, the reported values are: p-value, confidence interval
and the Venn’s diagram representing an overlap of first 100 GO terms:

circRNA Pipeline 1 Pipeline 2 p-value of Spearman RC r of Spearman RC
hsa circ 0000227 circGPA circGPA-corr < 2.2e-16 0.219± 0.02
hsa circ 0000227 circGPA circGPA-BN 2.515e-07 −0.051± 0.02
hsa circ 0000227 circGPA-corr circGPA-BN 0.002 0.030± 0.02

Table 7.1: Comparison of pipelines in hsa circ 0000227

1https://cran.r-project.org/web/packages/spearmanCI/index.html
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circRNA Pipeline 1 Pipeline 2 p-value of Spearman RC r of Spearman RC
hsa circ 0000228 circGPA circGPA-corr 2.313e-14 0.075± 0.02
hsa circ 0000228 circGPA circGPA-BN 0.001 0.033± 0.02
hsa circ 0000228 circGPA-corr circGPA-BN 0.2255 0.012± 0.02

Table 7.2: Comparison of pipelines in hsa circ 0000228

circRNA Pipeline 1 Pipeline 2 p-value of Spearman RC r of Spearman RC
hsa circ 0003793 circGPA circGPA-corr 3.318e-06 0.046± 0.02
hsa circ 0003793 circGPA circGPA-BN 7.218e-07 0.049± 0.02
hsa circ 0003793 circGPA-corr circGPA-BN 0.1973 0.013± 0.02

Table 7.3: Comparison of pipelines in hsa circ 0003793

To clarify the interpretation of the table – a null hypothesis is the absence of rank correlation between two
sequences, e.g., the independence of two sequences. A p-value then represents the probability of null hypothesis
acceptance, e.g., the more p-value is, the stronger a connection between two sequences’ rank-order is.

Figure 7.1: Overlapping of first 100 GO terms in
hsa circ 0000227

Figure 7.2: Overlapping of first 100 GO terms in
hsa circ 0000228

Figure 7.3: Overlapping of first 100 GO terms in
hsa circ 0003793
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Figure 7.4: Positions of MDS-related GO terms in
hsa circ 0000227

Figure 7.5: Positions of MDS-related GO terms in
hsa circ 0000228

Figure 7.6: Positions of MDS-related GO terms in
hsa circ 0003793

7.2 Discussion

7.2.1 Summarized results

Unfortunately, if only the Spearman’s rank-order test is taken into account, the results are essentially opposite
to the assumption from chapter 5. The possible cause of this paradox is the limitation of Spearman’s rank-order
test – an assumption of monotonic relationship between two p-value sequences 2. Even though such relationship
is being observed with significant p-value, as mentioned earlier in chapter 5, the correlation of two sequences may
be influenced by a large portion of GO terms that have a nearly zero score and, thus, make the results misleading.

Furthermore, the same result was observed on Venn’s diagrams, where the overlapping of circGPA/circGPAcorr
is significant and the overlapping of these two version with circGPA-BN is negligible. Although, result can be
interpreted as follows – the experimental setup has an influence, which can be observed in significant differences
in circGPA/circGPAcorr, e.g., nearly half of the analyzed GO terms differ just by adding experimental setup
weights. Thus, the initial hypothesis works only in case of circGPA/circGPAcorr comparison.
However, if the studied interaction network is not limited to prior knowledge interactions only, then general
biological processes interfere with a tripartite biological model. This statement will be proven in the upcoming
section, where few leading GO terms of each version are analysed. Particularly, all circGPA versions show us

2https://statistics.laerd.com/spss-tutorials/spearmans-rank-order-correlation-using-spss-statistics.php
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fundamental processes in a cell, where the ordering of these terms is of no use.

Fortunately, such scenario has been thought out in advance and the corresponding alternative testing method
is presented in boxplots in figures 7.4, 7.5, 7.6. The situation in all three cases follows the assumption – the
distribution of positions of experimentally-related GO terms is being shifted towards the start, making them
more significant in two empirical cases. For more information on the MDS-related gene ontology annotations
list see appendix D.

To summarize the above-mentioned result – the experimental condition influence is confirmed according to
two statistical tests. Nevertheless, it was shown that two of circGPA algorithm versions are limited by the prior
knowledge interactions and the straightforward interpretation of Spearman’s rank-order test results could be
misleading. Due to this ambiguity, the circGPA pipeline must be treated cautiously and, ideally, an additional
modification or follow-up algorithm is to be added in order to ensure the consistency.

Finally, at the end of this chapter, a biological analysis of the outputs of three versions of circGPA are compared
in order to suggest the possible GO annotation. Again, results could be misleading or redundant, but an effect
of the empirical data is out of question. Moreover, a difference in annotated terms may hint a possible path for
further in-vitro experimentations.

7.2.2 Biological analysis

Let us begin by looking at the first few leading GO terms of selected circRNAs. Then, a following information
could be obtained:

• As stated in chapter 2, a recent study [109] has annotated the entire circ-ZEB1 group. However, the
paper had experiments to be tested on lamb, which is a completely different experimental setup.

– The gene expression result demonstrated that circRNAs from circ-ZEB1 group regulate brown
adipocytes differentiation and thermogenesis, e.g., heat production process, through circZEB1/miR-326–3p
pathway.

• hsa circ 0000227 :

– circGPA output:

∗ GOBP REGULATION OF MRNA CATABOLIC PROCESS
Any process that modulates the rate, frequency, or extent of a mRNA catabolic process, e.g., for
example when you digest food and the molecules break down in the body for use as energy 3.

∗ GOBP REGULATION OF CELL CYCLE G1 S PHASE TRANSITION
Any signalling pathway that modulates the activity of a cell cycle’s G1-S transition phase 4.

– circGPAcorr output:

∗ GOBP POSITIVE REGULATION OF CATABOLIC PROCESS
Any process that activates or increases the frequency, rate or extent of the chemical reactions
and pathways resulting in the breakdown of substances 5.

∗ GOMF TRANSCRIPTION COREGULATOR ACTIVITY
A transcription regulator activity that modulates the transcription of specific gene 6

– circGPA-BN output:

∗ GOBP MAINTENANCE OF LOCATION
Any process in which a cell, substance or cellular entity, such as a protein complex or organelle,
is maintained in a location and prevented from moving elsewhere 7.

∗ GOBP TUBE FORMATION
Creation of the central hole of a tube in an anatomical structure through which gases and/or
liquids flow 8.

3https://www.ebi.ac.uk/QuickGO/term/GO:0061013
4https://www.ebi.ac.uk/QuickGO/term/GO:1902806
5https://www.ebi.ac.uk/QuickGO/term/GO:0009896
6https://www.ebi.ac.uk/QuickGO/term/GO:0003712
7https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/GOBP MAINTENANCE OF LOCATION.html
8https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/GOBP TUBE FORMATION.html
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– Summary:

∗ hsa-circ-0000227 is a part of circ-ZEB1 group, which has been proven to regulate a fundamental
process in mammals [109] – a heat production.

∗ Thermogenesis is a catabolic process and both of catabolic GO terms that have occurred in
circGPA versions further proving the relationship with thermogenesis [84].

∗ Moreover, the G1-S cell cycle phase annotation is exactly where the intracellular thermogenesis
takes place. Particularly, the G1 phase is a moment of a highest temperature [94].

∗ Other annotations do not provide any concrete information on circRNA annotation, since transcription,
location and tube formation are, basically, fundamental cell processes and could be a part of the
above-mentioned thermogenesis regulation effect.

• hsa circ 0000228 :

– circGPA output:

∗ GOMF MRNA BINDING
Binding to messenger RNA (mRNA), an intermediate molecule between DNA and protein.
mRNA includes UTR and coding sequences, but does not contain introns 9.

∗ GOCC RNAI EFFECTOR COMPLEX
Any protein complex that mediates the effects of small interfering RNAs on gene expression.
Most known examples contain one or more members of the Argonaute family of proteins 10.

– circGPAcorr output:

∗ GOCC RNAI EFFECTOR COMPLEX
Already mentioned above

∗ GOBP RESPONSE TO ARSENIC CONTAINING SUBSTANCE
Any process that results in a change in state or activity of a cell or an organism (in terms of
movement, secretion, enzyme production, gene expression, etc.) as a result of an arsenic stimulus
from compounds containing arsenic, including arsenates, arsenites, and arsenides 11.

– circGPA-BN output:

∗ GOMF PHOSPHATIDYLINOSITOL 3 KINASE BINDING
Binding to a phosphatidylinositol 3-kinase, any enzyme that catalyzes the addition of a phosphate
group to an inositol lipid at the 3’ position of the inositol ring 12.

∗ GOMF DEAMINASE ACTIVITY
Catalysis of the removal of an amino group from a substrate, producing a substituted or nonsubstituted
ammonia (NH3/NH2R) 13.

– Summary:

∗ A paper [77] shows that the application of an arsenic-containing compound is a possible treatment
for MDS.

∗ According to [68], the RNA interference (RNAi) is a biologic process by which RNA molecules
induce sequence-specific inhibition of target gene expression or translation. Nowadays, RNAi
is being used for targeted gene silencing, thus, possibly hinting experimental conditions of
MDS-diagnosed patients.

∗ Other annotations do not provide any concrete information on circRNA annotation, since 3-kinase
binding, aminase activity or mRNA binding are, basically, fundamental cell processes.

• hsa circ 0003793 :

– circGPA output, same as above:

∗ GOMF MRNA BINDING
Binding to messenger RNA (mRNA), an intermediate molecule between DNA and protein.
mRNA includes UTR and coding sequences, but does not contain introns 14.

9https://www.ebi.ac.uk/QuickGO/term/GO:0003729
10https://www.gsea-msigdb.org/gsea/msigdb/geneset page.jsp?geneSetName=GOCC RNAI EFFECTOR COMPLEX
11https://www.ebi.ac.uk/QuickGO/term/GO:0046685
12https://www.ebi.ac.uk/QuickGO/term/GO:0043548
13https://www.ebi.ac.uk/QuickGO/term/GO:0019239
14https://www.ebi.ac.uk/QuickGO/term/GO:0003729
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∗ GOBP MUSCLE CELL PROLIFERATION
The multiplication or reproduction of endothelial, e.g., muscle cells, resulting in the expansion
of a cell population 15.
It is important to point out that according to 16 this annotation is one of the MDS’ most
associated annotation.

– circGPAcorr output:

∗ GOBP MUSCLE CELL PROLIFERATION
Already mentioned above.

∗ GOCC TORC2 COMPLEX
A protein complex that contains at least TOR (target of rapamycin) and Rictor (rapamycin-insensitive
companion of TOR), or orthologs of, in complex with other signaling components 17.

– circGPA-BN output:

∗ GOMF DEAMINASE ACTIVITY
The enzyme catalyzes the deamination of dCTP to deoxyuridine triphosphate (dUTP) 18.

∗ GOBP POSITIVE REGULATION OF LEUKOCYTE CELL CELL ADHESION
Any process that modulates the frequency, rate or extent of leukocyte cell-cell adhesion 19.

– Summary:

∗ Two of circGPA versions show us the cell proliferation – one of the tumor’s associated annotation
[21].

∗ TORC2 complex and leukocyte cell-cell adhesion annotation hints the immunosuppressant effect
of a studied circRNA

∗ The tumor annotation could either be a hint of circRNA’s participation in cancer-related processes,
as it was shown in [102], or a consequence of the MDS experimental setup.

15https://www.ebi.ac.uk/QuickGO/term/GO:0001935
16http://ctdbase.org/detail.go?type=disease&acc=MESH%3AD009190&view=phenotype
17https://www.ebi.ac.uk/QuickGO/term/GO:0031932
18https://www.sciencedirect.com/topics/medicine-and-dentistry/deaminase
19https://www.ebi.ac.uk/QuickGO/term/GO:1903037
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Chapter 8

Conclusion

In this thesis, the IntOMICS algorithm was applied to the gene expression data with the tripartite biological
model. As experiments showed, the tripartite model is an exceptional case where the algorithm’s convergence
breaks for specific starting points. To be more precise, the convergence of IntOMICS has been achieved only for
specific starting points, while for the others, the convergence has yet to be achieved even after hours of running.
Moreover, the time complexity, e.g., the number of iterations needed to converge, is orders of magnitude larger
for the tripartite model than the same size input of the original IntOMICS. Ultimately, even if convergence is
to be solved, the core problem is super-exponential memory requirements.
On the other hand, the IntOMICS algorithm, as shown in chapter 6, can be improved, particularly in the
upper-bound computation term, which is one of three super-exponential problematic terms. The improved
version of the algorithm changes the memory and time complexity of this term into the polynomial domain.
However, even with such modification applied, other parts of the algorithm were found to be impossible to
change due to the fundamental limitation of the MCMC approach in Bayesian network learning.

In order to overcome such limitations, an alternative hybrid type algorithm, Prior-incorporated MMPC Skeleton
Based Stochastic Search (PiM-SK-SS), has been implemented.
The implementation preserved the scoring metric from the IntOMICS algorithm, essentially allowing the
combination of both prior knowledge and gene expression data. Although, while the algorithm has been
implemented, it differs from the original paper in the sampling phase. More precisely, the uniformity of visited
subgraphs has been violated due to the size of input network. Otherwise, the algorithm is identical to the
original one and the empirical interaction network has been successfully generated.

Next, the circGPA pipelines comparison have been carried out. Unfortunately, the originally intended straightforward
application of the Spearman’s rank-order correlation test has failed and showed an opposite result to the assumed
hypothetical scenario. Additionally, a further analysis via the Venn’s diagram representation of first 100 GO
terms confirmed the negative result. While there is a limitation of Spearman’s rank-order test – the monotonic
sequence relationship assumption, the initial hypothesis is rejected based on two tests.
Nevertheless, if another testing approach is to be introduced, e.g., the analysis of previously inferred MDS-related
annotations, then the situation changes. This analysis of MDS-related annotations has shown that the application
of the experimental data significantly changes the output of these annotations. Notably, their ordering shifted
towards the start, making them more significant in the overall ranking.
Theoretically, this selective behavior is due to constraints on the interaction network in the circGPA/circGPA-corr
case. In other words, two of the previously mentioned versions are strictly limited by the prior (database)
knowledge and could not consider an interaction outside of it. Thus, the correlation of orderings in such
restricted space could cause a high Spearman’s rank-order correlation that violates the previous statistical test.
On top of that, a significant impact of gene expression data is also observed in circGPA/circGPA-corr Venn’s
diagram.
Consequently, it is possible to conclude that experimental setup does have a crucial influence on the output.
However, the selected analysis method is imperfect and should be enhanced by a follow-up algorithm that has
yet to be discovered.

Finally, since the experimental setup has been proven to have a crucial influence on the studied interaction
network, a biological analysis of the GO term annotation result was performed.

57



For hsa-circ-0000227 it was confirmed that the result of a recent study [109] does indeed hold in our case for this
molecule. Several GO terms suggest that above-mentioned molecule participates in a fundamental mammalian
thermogenesis process, e.g., in a process of a heat generation.

For hsa-circ-0000228, two GO terms related with MDS treatment were found. It may hint the medication
taken by the patients during samples collection.

For hsa-circ-0003793, it shows the strong sign of cancer (tumor) genesis, since it yields a strong cell proliferation
tumor annotation in two versions. On top of that, it shows a immunosuppressant effect annotation combined
with leukocyte regulation.
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Appendix A

List of abbreviations used

DNA Deoxyribonucleic acid
RNA Ribonucleic acid
TF Transcription factor
mRNA Messenger RNA
miRNA Micro RNA
circRNA Circular RNA
CPD Conditional probability distribution
DAG Directed acyclic graph
MBR Markov Blanket Resampling
PDAG Partial Directed Acyclic Graph
LP Linear programming
ILP Integer Linear programming
GO Gene ontology
circGPA circRNA generating-polynomial annotator
MDS Myelodysplastic syndrome
BN Bayesian Network
DEGs Differentially Significant Genes
BDeu score Bayesian Dirichlet equivalent uniform score
BGe score Bayesian Gaussian equivalent score
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Appendix B

Derivation of an improved IntOMICS
algorithm

The [104][30] introduces the following prior distribution over all possible networks:

P (G|β) = e−βE(G)

Z(β)
=

e−βE(G)∑
G∈G

e−βE(G)
(B.1)

As well as the definition of a so-called Energy function:

E(G) =

N∑
j=1

ε(Xj , Xpaj(G)) (B.2)

ε(Xj , Xpaj(G)) =
∑

i∈Xpaj

(1−Bij) +
∑

i/∈Xpaj

Bij (B.3)

Notably, the IntOMICS algorithm [104] has a slightly modified definition of the prior matrix B than [30]:

Bij =



0 if prior about the absence of the directed edge i→ j is given

noPKbelief if no prior knowledge is given for the directed edge i→ j

1 if prior about the presence is given and i is a gene node

0.5 < nonGEbelief ≤ 1 if prior about the presence is given and i is a CNV/METH node

0.5 < TFbelief < 1 if prior about the presence is given and i is a TF node

(B.4)

where GEbelief, TFbelief and nonGEbelief are the constants with the default value [104]:

• noPKbelief = 0.5

• nonGEbelief = 0.5

• TFbelief = 0.75

Modification of partition function

Furthermore, [104][30] also suggests the following modification of an equation:

Z(β) =
∏
j

∑
Xpaj

e−βε(Xj ,Xpaj(G)) (B.5)
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Decomposition per edge prior type

Following the B prior matrix definition B.4, the following decomposition per prior edge type can be performed:

ε(Xj , Xpaj(G)) =
∑

i∈Xpaj

(1−Bij) +
∑

i/∈Xpaj

Bij =

=

 ∑
iabsent∈Xpaj

(1− 0) +
∑

iabsent /∈Xpaj

0

 +

+

 ∑
inoPK∈Xpaj

(1− noPKbelief) +
∑

inoPK /∈Xpaj

noPKbelief

 +

+

 ∑
iGE∈Xpaj

(1− 1) +
∑

iGE /∈Xpaj

1

 +

+

 ∑
inonGE∈Xpaj

(1− nonGEbelief) +
∑

inonGE /∈Xpaj

nonGEbelief

 +

+

 ∑
iTF∈Xpaj

(1− TFbelief) +
∑

iTF /∈Xpaj

TFbelief

 =

where the index iTYPE is the shorthand for a subset of a given type of prior edges of a node, e.g.:

iTYPE = {i : Bij = TYPEbelief} TYPE ∈ {absent,noPK,GE,nonGE,TF}

Let us further define the individual subset summations as Partial node energy :

εTYPE(Xj , Xpaj(G)) =

 ∑
iTYPE∈Xpaj

(1− TYPEbelief) +
∑

iTYPE /∈Xpaj

TYPEbelief


which effectively converts the original term into:

ε(Xj , Xpaj(G)) =
∑

TYPE

εTYPE(Xj , Xpaj(G))

Because of that, the partition function can be computed as follows:

Z(β) =
∏
j

∑
Xpaj

e−βε(Xj ,Xpaj(G)) =
∏
j

∑
Xpaj

e
−β

∑
TYPE

εTYPE(Xj ,Xpaj(G))
=

=
∏
j

∑
Xpaj

∏
TYPE

e−βεTYPE(Xj ,Xpaj(G))

The individual prior edge types are constant and are calculated based on an input. Thus, such decomposition
is performed once at the initial input analysis only. Moreover, it is possible to apply the same modification as
in B (Modification of partition function) due to the independence of individual terms.

Z(β) =
∏
j

∑
Xpaj

∏
TYPE

e−βεTYPE(Xj ,Xpaj(G)) =
∏
j

∏
TYPE

∑
Xpaj

e−βεTYPE(Xj ,Xpaj(G)) (B.6)
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General explicit form

The upcoming subsection lists necessary properties that lead to the explicit form of a partition function. Let
us consider the previously derived per prior edge type term:

εTYPE(Xj , Xpaj(G)) =

 ∑
iTYPE∈Xpaj

(1− TYPEbelief) +
∑

iTYPE /∈Xpaj

TYPEbelief


For simplicity, let us consider the following notation and index range:

iTYPE := ti, i ∈ ⟨1, N j
type⟩, Ctype = TYPEbelief N j

type = number of edges with (Bij = TYPE)

On top of that, let us introduce the more comprehensive definition of Xpaj
(G):

gj ∈ {0, 1}N
j
type , gtij =

{
0, if edge ti → j is not included in G

1, if edge ti → j is included in G
(B.7)

Consequently, the term is converted into the following form:

εTYPE(Xj , Xpaj(G)) = εTYPE(gj) =

Nj
type∑

ti=1

gtij (1− Ctype) +

Nj
type∑

ti=1

(1− gtij )Ctype =

Or, equivalently:

=

Nj
type∑

ti=1

[
(1− Ctype)g

ti
j + (1− gtij )Ctype

]
=

Nj
type∑

ti=1

[
gtij − gtij Ctype + Ctype − gtij Ctype

]
=

=

Nj
type∑

ti=1

Ctype + (1− 2Ctype)

Nj
type∑

ti=1

[
gtij
]
= N j

typeCtype + (1− 2Ctype)

Nj
type∑

ti=1

gtij

εTYPE(Xj , Xpaj(G)) = εTYPE(gj) = N j
typeCtype + (1− 2Ctype)

Nj
type∑

ti=1

gtij (B.8)

Consequently, the following properties hold for the derived term:

1. Sum of all numbers of prior edge types is N: ∑
type

N j
type = N

2. Total number of all possible gj for a given node and prior edge type is 2N
j
type

The proof is straightforward – since every edge is chosen independently, we can multiply all possible cases

of each gtij . Moreover, the following holds:
Ntype∑
k=0

= 2Ntype

3. For any two different parent sets gj,1 = (gt1j,1, ..., g
t
N

j
type

j,1 ) and gj,2 = (gt1j,2, ..., g
t
N

j
type

j,2 ), the following holds:

Nj
type∑

ti=1

gtij,1 =

Nj
type∑

ti=1

gtij,2 ⇒ εTYPE(gj,1) = εTYPE(gj,2)

The proof is again straightforward – since the only non-constant variable in the εTYPE(g) term is the
Nj

type∑
ti=1

gti , the equality holds.

Following the property, it is more convenient to characterize the term by the summation:

Denote: K =

Nj
type∑

ti=1

gti , K ∈ {0, ..., N j
type}

εTYPE(gj) = εTYPE(K) = N j
typeCtype − (1− 2Ctype)K
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4. The number of possible gj with the given K is
(Nj

type

K

)
The number of all possible gj is the same as the number of all possible solutions of:

K =

Nj
type∑

ti=1

gtij s.t. gtij ∈ {0, 1}

which is the number of unordered subsets of K elements that will be chosen to be ones, e.g.,
(Nj

type

K

)
.

Moreover, this leads to the transformation of the partition function:

∑
Xpaj(G)

e−βεTYPE(Xj ,Xpaj(G)) =
∑
g

e−βεTYPE(g) =

K=Nj
type∑

K=0

(
N j

type

K

)
e−βεTYPE(K)

Combining all the abovementioned properties allows us to formulate the final form of the partition function:

Z(β) =
∏
j

∏
TYPE

∑
Xpaj

e−βεTYPE(Xj ,Xpaj(G)) =
∏
j

∏
TYPE

∑
K

(
N j

type

K

)
e−βεTYPE(K) =

=
∏
j

∏
TYPE

∑
K

(
N j

type

K

)
exp

(
−β
[
N j

typeCtype + (1− 2Ctype)K
])

Rewrite for specific IntOMICS implementation and constants

The next step in algorithm improvement depends on the original implementation of IntOMICS in R code [104]1.
Mainly, the source code 1 contains modifications not mentioned in the original paper [104].

After the substitution of the default constant values, individual terms become:

• Absence prior
The first hidden modification is the explicit forbidding of any edge with prior knowledge of absence. This
corresponds to the term:

εabsent(Xpaj
) =

 ∑
iabsent∈Xpaj

(1− 0) +
∑

iabsent /∈Xpaj

0

 =

[ ∑
iabsent

0

]
= 0

which is effectively canceling the term.

• No prior knowledge and nonGE prior
Partial energy:

εnoPK(Xpaj
) =

 ∑
inoPK∈Xpaj

(1− noPKbelief) +
∑

inoPK /∈Xpaj

noPKbelief

 =

 ∑
inoPK∈Xpaj

(1− 0.5) +
∑

inoPK /∈Xpaj

0.5

 =

Since constants for noPK and nonGE prior edge types are the same, they have the same formula.

εnoPK(Xpaj ) = εnonGE(Xpaj ) =

[∑
inoPK

0.5

]
= 0.5 ·N j

noPK

Partial partition:

∑
Xpaj

e−βεnoPK(Xpaj
) =

∑
g

e−0.5βNj
noPK =

Nj
noPK∑
K=0

(
N j

noPK

K

)
e−0.5βNj

noPK =

= e−0.5βNj
noPK

Nj
noPK∑
K=0

(
N j

noPK

K

)
= 2N

j
noPKe−0.5βNj

noPK

1https://gitlab.ics.muni.cz/bias/intomics
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• Gene prior
Partial energy:

εGE(Xpaj ) =

 ∑
iGE∈Xpaj

(1− 1) +
∑

iGE /∈Xpaj

1

 =

 ∑
iGe /∈Xpaj

1

 = N j
GE −K

Partial partition:

∑
Xpaj

e−βεGE(Xpaj
) =

∑
g

e−β(Nj
GE−K) =

Nj
GE∑

K=0

(
N j

GE

K

)
e−β(Nj

GE−K)

• TF prior

εTF(Xpaj
) =

 ∑
iTF∈Xpaj

(1− 0.75) +
∑

iTF /∈Xpaj

0.75

 =

 ∑
iTF∈Xpaj

0.25 +
∑

iTF /∈Xpaj

0.75

 =

=

∑
iTF

0.25 +
∑

iTF /∈Xpaj

0.5

 = 0.25 ·N j
TF + 0.5 · (N j

TF −K) = 0.75N j
TF − 0.5 ·K

Partial partition:

∑
Xpaj

e−βεTF(Xpaj
) =

∑
g

e−β(Nj
TF−K) =

Nj
TF∑

K=0

(
N j

TF

K

)
e−β(0.75Nj

TF−0.5·K)

The derived noPK, nonGE, and TF prior terms in this form could be used only if the constant values match
the default ones presented in the IntOMICS paper [104].
This representation will not be used in the following implementation nor the final formula, but it will be used in
the following example computed by hand. The conducted simplification for given constants shows that if given
some more assumptions, for example, CnoPK = 0.5, the computation simplifies even more. However, since the
IntOMICS algorithm allows a change, the final formula is presented in a general explicit form.
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Appendix C

Example of improved algorithm usage

Manual computation of a partition function is performed on a simple example to demonstrate the superiority
of an improved algorithm.

Input data

Figure C.1: Input data example

As input data, the tripartite cellular model is used. A detailed
description of such a model is described in section 2.2.1.
In this particular case, the following numbers of each type of RNA are
used:

• circRNA = 1

• miRNA = 3

• mRNA = 3

and the total number of feature nodes N = 7.

As a prior knowledge, the entire MultiMIR database (see section 2.2.3)
is used. More precisely, all verified gene interactions are used as GE

priors and are shown in figure C.1. Next, the biologically forbidden interactions from the tripartite model are
marked as absent prior, which can be seen in the tripartite structure of a graph.

The individual gene names and IDs are not crucial since the example illustrates the algorithmic approach,
not the particular use case in a real-world instance. Nonetheless, it must be noted that this particular setup is
present in some concrete gene samples. These samples could be obtained in an upcoming R implementation of
an improved algorithm (see section 6.1.1).
Furthermore, the usage of Transcription Factors (TF), Methylation (METH), and Copy Number Variations
(CNV) are not shown here due to the absence of experimental data. However, the formula includes them and
can be used with them.

Classical IntOMICS

By the notation of the original IntOMICS algorithm, the partition function should be computed as:

log Z(β) =
∑
j

log

∑
Xpaj

e−βε(Xj ,Xpaj(G))

 (C.1)

This equation includes the previously stated hidden modification of the logarithmic scale. On top of that, it is
known that absent prior edges are canceled, so the entire prior becomes:

log Z(β) =
∑
j

log

∑
Xpaj

e−βε(Xj ,Xpaj(G))

 = (C.2)
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= log (0) + ( Since all edges going to circRNA(1) are absent priors, 1 calculation)

+log
[
e−β·0 + e−β·1]+ (miRNA(2) has only 2 possible choices, include or not the only GE prior edge)

+log
[
e−β·0 + e−β·1]+ (miRNA(3) has only 2 possible choices, 2 calculations )

+log
[
e−β·0 + e−β·1]+ (miRNA(4) has only 2 possible choices, 2 calculations )

+log

 {1,1,1}∑
g={0,0,0}

e
−β

3∑
i=1

gi

+
(
mRNA(5) has 23 possible choices, each with 3 calculations, 3 ∗ 23 = 24 calculations

)

+log

 {1,1,1}∑
g={0,0,0}

e
−β

3∑
i=1

gi

+ (mRNA(6) has the same 24 calculations)

+log
[
e−β(0.5+0.5+1) + ...+ e−β(0.5+0.5+0)

]
= (mRNA(7) has the same 24 calculations)

Let us calculate it for the β = 0.5.

log Z(0.5) = log (0) + 3 ∗ log (1 + e−0.5) + 3 ∗ log (4 ∗ e−2·0.5 + 4 ∗ e−0.5) ≈ 3.39

Improved algorithm

Now, the same calculation will be performed using the improved algorithm. Let us start by calculating the prior
type numbers for every node:

• circRNA(1) – no incoming edges, N1 = (0, 0, 0, 0, 0)

• miRNA(2-4) – 1 GE prior edge, N2 = N3 = N4 = (0, 0, 1, 0, 0)

• mRNA(5-7) – 1 GE prior edge, 2 no prior edges, N5 = N6 = N7 = (0, 2, 1, 0, 0)

Thus, a histogram will have the following mapping:

• H : (0, 0, 0, 0, 0) 7→ 1

• H : (0, 0, 1, 0, 0) 7→ 3

• H : (0, 2, 1, 0, 0) 7→ 3

and the final prior will look like:

log Z(β) = 1 · log [0]+

3 · log

[(
k=1∑
k=0

(
1

k

)
exp(−β [1−K])

)]
+

3 · log

[(
k=1∑
k=0

(
1

k

)
exp(−β [1−K])

)(
22exp(−0.5β · 2)

)]
=

for β = 0.5 it is equal to:

= log (0) + 3 ∗ log (1 + e−0.5) + 3 ∗ log ((1 + e−0.5) · (4 · e−2·0.5·0.5)) ≈ 3.39
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Appendix D

GO annotations related to
Myelodysplastic syndromes

The following appendix lists GO terms that have been observed with statistical significance in other experimental
conditions involving Myelodysplastic syndrome (MDS). However, it must be noted that in each particular
instance the inference method and the studied clinical case differ and, thus, their combination is not a perfect
subset:

• A paper [82] performs a Gene Ontology (GO) term enrichment analysis. More precisely, given a gene
expression data table, it looks for Differentially Significant Genes (DEGs). This paper is labeled as
biological classification of DEGs in table below.

• A paper [106] combined multiple databases – GSE4619, GSE19429, GSE30195, and GSE58831 microarray
datasets of CD34+cells for identifying the differentially expressed genes (DEGs) in the MDS. Consequently,
MDS transcriptomic profiles were identified. This paper is labeled as GO transcriptomic profile in table
below.

• A paper [103] tested various circRNA for azacitidine treatment of MDS and acute myeloid leukemia. As a
step of analysis, differentially expressed genes were used to find MDS-related GO annotations. The paper
is labeled as GO pathways.

• A paper [108] assumed that Osteoarthritis (OA) and Myelodysplastic syndrome (MDS) have a similar
mechanisms involved. Thus, the intersection of their differential genes was taken using KEGG Analysis
tool. The paper is labeled as GO/KEGG Analysis tool.

Last note: intersections are not considered, only the first appearance of GO term is listed. Moreover, several
GO terms couldn’t be identified by the ID given, therefore only found ones are listed.

Paper GO ID Description

biological classification of DEGs GO:0006955 Immune response

biological classification of DEGs GO:0001775 Cell activation

biological classification of DEGs GO:0040011 Locomotion

biological classification of DEGs GO:0005102 Receptor binding

biological classification of DEGs GO:0045595 Cell differentiation

biological classification of DEGs GO:0002684 Regulation of immune system

biological classification of DEGs GO:0022407 Cell-cell adhesion
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Paper GO ID Description

biological classification of DEGs GO:0098911 Regulation of cell action potential

biological classification of DEGs GO:0043565 Specific DNA binding

biological classification of DEGs GO:0050954 Sensory perception

biological classification of DEGs GO:0006955 Immune response

biological classification of DEGs GO:0045746 Notch signaling pathway

biological classification of DEGs GO:0007166 Cell surface receptor signaling pathway

biological classification of DEGs GO:0000982 Transcription factor activity

biological classification of DEGs GO:0009891 Biosynthetic process

biological classification of DEGs GO:0004871 Signal transducer activity

biological classification of DEGs GO:0008283 Cell proliferation

GO transcriptomic profile GO:0045814 Negative regulation of gene expression epigenetic

GO transcriptomic profile GO:0005677 Chromatin silencing complex

GO transcriptomic profile GO:0051103 DNA ligation involved in DNA repair

GO transcriptomic profile GO:0048024 Regulation of mrna splicing via spliceosome

GO pathways GO:0045944 Positive regulation of transcription by RNA polymerase II

GO pathways GO:0045944 Positive regulation of transcription by RNA polymerase II

GO pathways GO:0045595 Regulation of cell differentiation

GO pathways GO:0031984 Organelle subcompartment

GO/KEGG Analysis tool GO:0048738 Cardiac muscle tissue development

GO/KEGG Analysis tool GO:0002764 Immune response-regulating signaling pathway
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