
Bachelor’s thesis

Algorithm to Complete
the First Lap for

Autonomous Student Formula

Dmytro Khursenko

Supervisor: Ing. Jan Čech, Ph.D.

Faculty of electrical engineering

Department of cybernetics

May 26, 2023

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498996 Personal ID number: Khursenko Dmytro Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Algorithm to Complete the First Lap for Autonomous Student Formula

Bachelor’s thesis title in Czech:

Algoritmus pro průjezd prvním kolem závodu autonomní studentské formule

Guidelines:

One of the disciplines of the autonomous student formula race is to drive, as quickly as possible, through a multi-lap course
laid out by traffic cones. The first lap is the hardest in the sense that the track is not known. Design an algorithm to determine
the immediate trajectory in the vehicle coordinate system and find the optimal velocity along that trajectory, taking into
account the physical limits of vehicle dynamics.
Assume a detector providing cone detections in the vehicle coordinate system. Since the track is usually very narrow,
assume the path of the vehicle to follow a centerline between the cones.
Compare the algorithm to the conservative baseline approach, where the formula drives at a small constant speed in which
it always stays on track. Perform either simulations, or optionally experiments on a real vehicle.

Bibliography / sources:

[1] Nitin R. Kapania. Trajectory planning and control of an autonomous race vehicle. PhD Thesis. Stanford University,
2016.
[2] Alexander Liniger. Path Planning and Control for Autonomous Racing. PhD Thesis. ETH Zurich, 2018.
[3] Adam Slomoi. Path Planning and Control in an Autonomous Formula Student Vehicle. Technical Report. Monash
University, 2018.
[4] Michal Horacek, Finding the Fastest Trajectory for Autonomous Student Formula. Bachelor's Thesis, Czech Technical
University, FEE, 2022.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Čech, Ph.D. Visual Recognition Group FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 06.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Čech, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Declaration
I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

Prague, May 26, 2023
Dmytro Khursenko

Signature

I

Acknowledgement
I would like to thank my supervisor Ing. Jan Čech, Ph.D for his invaluable guidance,
support, and expertise throughout the duration of this thesis. His insightful feed-
back, unwavering encouragement, and dedication have been instrumental in shaping
and refining my work. I am truly grateful for his patience, mentorship, and com-
mitment to my academic and personal growth.

I would also like to thank all members of eForce FEE Prague Formula, who have
been instrumental in the successful completion of this thesis. Their collective efforts,
collaboration, and support have been invaluable throughout this research endeavor.
Especially, I want to thank Michal Horáček for his help whenever I needed it, Roman
Šip for developing eForce simulator, Ondřej Kuban for implementing physics in the
simulator, and other members of the driverless section.

Lastly, I would like to express my sincere gratitude to Czech Technical University
in Prague for providing me with an exceptional resources throughout my educational
journey. The quality of education, the dedicated faculty members, and the wide
range of opportunities offered by the university have played a crucial role in shaping
my knowledge and skills. I extend my heartfelt thanks to CTU in Prague for helping
Ukrainian refugees and students, including my close people and me, during the war
in Ukraine.

In conclusion, I would like to thank my parents for giving me a chance to study
and live in the Czech Republic, for their constant love, encouragement, and unwaver-
ing belief in my abilities. Their support throughout my studies has been invaluable,
and I am truly grateful for their guidance and sacrifices. Their unwavering faith in
me has been a source of inspiration and motivation, and I am forever grateful for
their unwavering support.

II

Abstract
The thesis focuses on local planning algorithms that allow an autonomous formula to
complete the first lap of the Formula Student Driverless competition. Local planning
includes local path planning and speed profile generation algorithms. The primary
objective of local planning is to efficiently complete the first lap of an unknown
track, aiming for the fastest possible time. The path planning produces a smooth
path based on real-time sensor inputs and uses a center-line approach that prioritizes
reliability over path optimality. The algorithm was tested with different levels of
perception accuracy, showing its robustness against potential inaccuracies. The
local speed planning generates a speed profile taking into account path curvature
and vehicle dynamics. Speed planning ensures that the vehicle drives within its
maximum safe speed limits, eventually leading to faster completion of the lap. The
proposed algorithms were evaluated through experiments in a simulator, considering
various scenarios and tracks. The results demonstrate the successful navigation of
the vehicle in the first lap, achieving competitive lap times.

Keywords: Local planning, Path planning, Speed profile, Autonomous driving,
Formula Student Driverless

Abstrakt
Tato práce se zaměřuje na algoritmy pro lokálńı plánováńı, které umožňuj́ı au-
tonomńı formuli dokončit prvńı kolo soutěže Formula Student Driverless. Lokálńı
plánováńı zahrnuje algoritmy lokálńıho plánováńı trasy a generováńı rychlostńıho
profilu. Hlavńım ćılem lokálńıho plánováńı je efektivně dokončit prvńı kolo na neznámé
trati za co nejkratš́ı čas. Plánováńı trasy produkuje hladkou trasu na základě vstup̊u
z senzor̊u v reálném čase a využ́ıvá př́ıstupu založeného na středové linii, který klade
d̊uraz na spolehlivost před optimálnost́ı trasy. Algoritmus byl testován s r̊uznými
úrovněmi přesnosti detektoru, což ukazuje jeho odolnost v̊uči potenciálńım nepřesnostem.
Lokálńı plánovač rychlost́ı generuje rychlostńı profil s ohledem na křivost trasy a
dynamiku vozidla. Plánovač rychlośı zajǐst’uje, že vozidlo jezd́ı v rámci svých ma-
ximálńıch bezpečných rychlostńıch limit̊u, což v konečném d̊usledku vede k rych-
leǰśımu dokončeńı kola. Navrhované algoritmy byly vyhodnoceny prostřednictv́ım
experiment̊u v simulátoru, přičemž byly zohledněny r̊uzné scénáře a r̊uzné trati.
Výsledky demonstruj́ı úspěšnou navigaci vozidla v prvńım kole a dosažeńı konku-
renčńıch čas̊u na kolo.

Kĺıčová slova: Lokálńı plánovańı, Plánováńı trasy, Rychlostńı profil, Autonomńı
ř́ızeńı, Formula Student Driverless

III

TABLE OF CONTENTS

Table of Contents

1 Introduction 1
1.1 Thesis Structure . 1
1.2 Formula Student . 2
1.3 Autocross Event . 3
1.4 Related Work . 4
1.5 DV.01 . 6
1.6 Thesis Contribution . 7

2 Algorithm for the first lap 9
2.1 Overview . 9
2.2 Local Path Planning . 11

2.2.1 Path Planning . 12
2.2.2 Additional Cones . 14
2.2.3 Sort and Filter Cones . 17
2.2.4 Next Center Point . 19
2.2.5 Cones in Front of the Car . 19
2.2.6 Path Smoothing . 21

2.3 Local Speed Planning . 22
2.3.1 Circle of Forces . 22
2.3.2 Path Curvature . 24
2.3.3 Safe Speed . 24
2.3.4 Speed Profile . 25

3 Experiments 30
3.1 Data . 30
3.2 Simulator . 32
3.3 Path Planning Tests . 34
3.4 Speed Planning Tests . 38

4 Conclusion 41
4.1 Achieved Results . 42
4.2 Future Work . 42

A Contents of the Attachment 43

5 References 44

IV

Chapter 1

Introduction
Many automotive and tech companies are investing in research and development
in autonomous cars because these cars have the potential to improve safety on
the roads by reducing the risk of human error. Autonomous cars are capable of
driving without human intervention using advanced technologies, machine learning
algorithms, cameras, radars, and other sensors. The development of autonomous
vehicles has led to a new field - autonomous car races. Especially in the context
of formula student competition where it becomes an exciting field for innovation
and learning. The objective of these competitions is to design and build a fully
autonomous race car capable of completing a lap on a given track as quickly as
possible while adhering to specific rules and constraints. These races help to push the
boundaries of autonomous systems in vehicles. The most well-known autonomous
car competitions are the DARPA Grand Challenge, the Roborace, the F1Tenth and
Formula Student Driverless.

The thesis presents an algorithm that allows a driverless formula to complete
the first lap of the Formula Student Driverless competition. The main challenge for
a formula in the first lap is to drive on an unknown track. Based on this challenge,
we need to have the robust and reliable algorithms. The algorithm for the first lap
involves perception, local planning and control nodes. This thesis mainly focuses on
local planning and propose local path planning and speed profile algorithms. The
first goal is to develop the robust path planning algorithm that does not result in
going off the track. The second goal is to design a speed profile algorithm that
plans a speed taking into account the physical limits of vehicle dynamics. Then the
developed algorithms are tested in a simulator.

Section 1.1

Thesis Structure
The structure of this thesis is organized as follows. Section 1 is an introduction that
provides a motivation and overview of the research topic. In Section 1.2 we introduce
the Formula Student competition. Section 1.3 presents the autocross event which is
a dynamic discipline in the Formula Student competition that focuses on completing
one lap. Then in Section 1.4 we provide a related work about local planning that
includes a path planning and speed profile. Section 1.5 introduces the concept of
DV.01, an autonomous student formula developed by eForce FEE Prague Formula
which is a student team from the Czech Republic. The proposed algorithms in this
thesis are designed for DV.01. In Section 1.6 we outline the thesis contribution.

Section 2 is the the core of the thesis, focusing on the developed algorithms to
complete the first lap. Section 2.1 gives an overview of the first lap algorithms,
providing a high-level explanation of its functionality and objectives. Then we in-
troduce the local planning algorithms, such as local path planning in Section 2.2
and local speed profile in Section 2.3. The proposed algorithms are developed for
DV.01. Both algorithms are described and explained in details, including auxiliary
methods. The main algorithms – path planning and speed profile – are presented in
Section 2.2.1 and Section 2.3.4 respectively.

1

1.2 Formula Student

Section 3 is a validation section where we test the proposed local algorithms
on real-world and synthetic tracks. Section 3.1 describes the data for testing and
analysis of developed algorithms. The dataset includes tracks from previous formula
student competitions, tracks from real testing conducted by eForce and synthetically
generated tracks. Then in Section 3.2 the eForce simulator is introduced to conduct
the path planning and speed profile experiments. Evaluation of the robustness of the
developed path planning algorithm is presented in Section 3.3. Section 3.4 demon-
strates the results of the speed profile tests, evaluating the proposed algorithm’s
ability to plan suitable speeds during the first lap.

The thesis conclusion is presented in Section 4 and provides a summary of the
thesis, highlighting the achieved results and their significance. It discusses the ef-
fectiveness of the developed algorithm in successfully completing the first lap of
the autocross or trackdrive event. The conclusion also discusses potential areas for
future work and improvements.

Section A presents the content of attachment. The attachment contains the
videos of the conducted experiments in a simulator.

Section 1.2

Formula Student
Formula Student is an international student engineering competition. The competi-
tion challenges students to design, build and race electric or combustion single-seat
race cars. One of the most prestigious competitions is Formula Student Germany
see Figure 1.1. In 2017, Formula Student Germany introduced a Driverless class
where the teams compete with their autonomous vehicles.

Figure 1.1: Photo of all teams at Formula Student Germany 2022. The photo is
taken from FSG web page [1].

2

1.3 Autocross Event

The first team from the Czech Republic that successfully built an autonomous
electric formula is eForce FEE Prague Formula. The team under the Faculty of
Electrical Engineering of the Czech Technical University in Prague. In 2019 the
team introduced the first driverless formula in the Czech Republic — DV.01 see
Figure 1.4. The author of the thesis joined the team in 2021. So far, the best overall
achievements for DV.01 are 3rd places at FS Czech in 2021 and 2022.

The Formula Student Driverless competition includes both static and dynamic
events. The static events typically involve the car’s design and business aspects
of the team, while the dynamic events evaluate the car’s racing and autonomous
performance. During the dynamic events, the car drives on a track marked by
traffic cones of different colors see Figure 1.2. The big orange cones with two white
stripes denote the start and end of the track. Exit and entry lanes are marked with
a small orange cone with a single white stripe. The small blue and yellow cones
indicate the track’s left and right sides.

Figure 1.2: The traffic cones used in dynamic events. The picture is taken from [2].

There are four dynamic events: acceleration, skidpad, autocross, and trackdrive.
The acceleration event evaluates the formula’s acceleration performance on a straight
track of 75 meters long. The skidpad event tests the formula’s ability to navigate a
figure-eight-shaped track while maintaining a high speed. The last two events are
quite similar: the objective for both is to complete the event as quickly as possible
without knocking over any cones or going off the track. The main difference is that
the autocross has only one lap, while the trackdrive has 10 laps. The track for both
events is the same. In the thesis, we will develop the algorithm for autocross and
for the first lap of trackdrive. After completion of the first lap of trackdrive, the
car computes the optimal path and optimal speed profile for the last nine laps using
algorithms described in [3].

Section 1.3

Autocross Event
The autocross layout is a closed loop circuit built according to the following guide-
lines from [4]:

• Straights: No longer than 80 m.

• Constant Turns: up to 50 m diameter.

• Hairpin Turns: Minimum of 9 m outside diameter (of the turn).

3

1.4 Related Work

• Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc.

• The lap length is approximately 200 m to 500 m.

In autocross event, the track is unknown for the formula before it starts driving.
The constraints for the track layout for autocross are defined in FSG rules [4] and
FSG handbook [2]. The track must have a minimum width of 3 m, with blue cones
placed on the right side of the car and yellow cones on the left side. The distance
between the cones of the same color must not exceed 5 m. The start position is 6 m in
front of the start line. After the successful completion of one lap, the car is required
to come to a full stop within 30 m behind the finish line. Figure 1.3 outlines certain
limitations on the cone placement for the autocross event. The distance between
yellow or blue cones must not exceed 5 m. The width of the track must not be
less than 3 m at any point. Four big orange cones with two white stripes indicate
the start and finish line. The start position is 6 m before the start line. After the
run, the vehicle must come to a complete stop within 30 m behind the finish line.
Additionally, there are some dynamic events penalties: 2 seconds penalty is applied
if the cone has been knocked over, and 10 seconds penalty is applied if the vehicle
had all four wheels outside the track boundary as indicated by edge marking.

Figure 1.3: Limitations on the location of the cones in autocross event. The picture
is taken from [2] and was modified for autocross specifications.

Section 1.4

Related Work
The problem of planning is fundamental and essential in robotics. It refers to the
process of generating a sequence of actions to achieve a desired goal. Planning plays
a critical role in enabling robots to perform complex tasks and navigate the robot
in dynamic environments.

Planning can be divided into two parts: local and global planning. Global plan-
ning focuses on long-term decision-making and determining the overall trajectory
from the starting point to the goal. On the other hand, local planning deals with
short-term decision-making and handling immediate dynamic changes in the envi-
ronment.

4

1.4 Related Work

Global planning typically considers a global map or model of the entire envi-
ronment with obstacles. Global planning algorithms aim to generate an optimal
path while ensuring collision avoidance. Several algorithms have been developed
for global path planning in robotics. A* is a widely used algorithm for finding
the shortest path in a graph or grid-based environment [5]. Dijkstra’s algorithm is
another popular algorithm for finding the shortest path between nodes in a graph
[6]. Probabilistic Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT)
are sampling-based algorithms that construct road maps or trees to plan a path [7]
[8]. These global planning algorithms provide efficient and optimized paths while
considering obstacles and other constraints.

Local planning is responsible for navigating in the dynamic environment. The
local planning algorithms ensure safe navigation in dynamic environments by con-
sidering real-time sensor information. The Dynamic Window Approach (DWA) is
a local planning algorithm that searches through the robot’s velocity and steering
space to find a feasible and collision-free trajectory [9]. Another algorithm is an
artificial potential field approach (APF) based on the concept of representing the
robot’s environment as a potential field [10]. The attractive forces guide the robot
towards the goal and repulsive forces repel it from obstacles. The resulting path is
planned through the regions of the least resistance in the potential field.

The thesis also focuses on speed planning for an autonomous car. Speed planning
is responsible for finding the most suitable speed plan ensuring smooth and efficient
motion while considering the road conditions, traffic, and vehicle dynamics. One
research proposes a speed profile generation taking into account track curvature,
and vehicle dynamics [11]. Another approach is using reinforcement learning (RL)
techniques to generate a speed profile for autonomous vehicles [12]. The RL-based
approaches mainly use the ability of RL algorithms to learn optimal policies through
trial and error. The RL agent interacts with a racing simulator, receiving observa-
tions of the current state (position, speed, track geometry) and selecting actions
(speed commands) to minimize the lap time.

In formula student driverless competition the teams use different approaches
for local path planning: graph search algorithm with Delaunay triangulation [13],
artificial potential fields [14], rapidly-exploring random trees [15] and others.

Horáček’s research [3] on the optimal trajectory for autonomous student formula
shows that the advantages of the optimal race line are not significant compared to
the center line approach for before known track. The narrowness of the track results
in a small difference between the optimal path and the center line approach. In
some sections of the track, the optimal race line is planned very close to the track
boundaries. Consequently, inaccuracies in other algorithms may result in knocking
down the cones, applying a 2 seconds penalty per cone to the lap time. These
inaccuracies can occur from miscalculations of cone positions in the perception node
or in the path-tracking algorithm in the control node.

Considering the local planning, it is better to plan a reliable rather than optimal
path to prevent knocking down the cones. As a result from Horáček’s study [3], in
this thesis we introduce the local path planning algorithm described in Section 2.2
based on the center line approach, minimizing the possibility of knocking down the
cones.

The local speed profile proposed in Section 2.3 is based on the algorithm from
[11]. The algorithm from [11] is responsible for global speed planning, but we adjust
this algorithm for local speed planning.

5

1.5 DV.01

Section 1.5

DV.01
The DV.01 is the first autonomous electric student formula in the Czech Republic.
It was developed in 2019 and is based on the mechanical design of the FSE.07 mono-
post. The electrical system was completely reworked to allow autonomous driving.
An autonomous system is the main feature of DV.01 that is responsible for observing
the environment using sensors, planning a path, and sending the proper commands
to the car’s actuators to follow a planned path and maintain a planned speed. The
DV.01 uses various sensors, including the Ouster OS1 LiDAR, a Stereolabs ZED
camera, and an SBG Systems Ellipse2-D inertial navigation system (INS), to ob-
serve environment and collect data. Figure 1.4 shows the DV.01 with the sensors.

Stereo Camera

LiDAR

INS Antennas

Figure 1.4: Photo of the DV.01 with the sensors.

The autonomous system includes the algorithms that are responsible for the
driverless abilities of DV.01. The autonomous pipeline consists of separate modules.
For communication between the modules, eForce members implemented in Python
programming language the system based on the Robot Operating System (ROS). A
diagram of the autonomous pipeline with modules and their connections is shown
in Figure 1.5.

The autonomous pipeline 1.5 starts with the data input provided by the sensors.
RGB images from the camera are processed by the convolutional neural network
YOLOv3 introduced in [16]. The neural network detects the traffic cones shown in
an image. When the cones are detected, the cone pixels are subsequently projected
into the car coordinate system via a homography mapping between the image and
the car. This image cone detector algorithm is described in [17]. Another option
to detect the cones is using a LiDAR detector presented in [18]. Nevertheless, for
now the LiDAR is only used for camera calibration. The inertial navigation system

6

1.6 Thesis Contribution

Stereolabs ZED
Camera

Ouster OS1 LiDAR

Ellipse2-D INS

Image Cone
Detector

LiDAR Cone
Detector

Local
Path Planning

Optimal Path
Planning

SLAM

Point
 clouds

Images

Sensors Perception Planning Control

Motion Control

Steering
angle

Motor
torqueOptimal Speed

Profile

Local
 Speed Profile

Local
cone

positions

GPS
coordinates

Velocity

Global
cone

positions

Optimal
Path

Path
Speed
profile

Speed
profile

Figure 1.5: Diagram of the autonomous pipeline. Delimited area by a rad dashed
line is responsible for the first lap. The highlighted orange modules in planning are
introduced in this thesis. Local path planning and local speed profile are presented
in Section 2.2 and Section 2.3.

(INS) provides the formula’s position, orientation, and speed.
For the first lap, we use an image cone detector introduced in [17] that generates

the cones positions in the vehicle coordinate system. The vehicle coordinate system is
a two-dimensional space, where the x-axis is a forward/backward direction and the y-
axis is a left/right direction in which both axes are measured in meters. After, we use
these cone positions for the local path planning introduced in Section 2.2 to generate
a center line trajectory between the blue and yellow cones. The planned trajectory
is sent to the speed profile described in Section 2.3 and the motion control algorithm
presented in [19]. Based on the planned trajectory, the speed profile provides a speed
plan to motion controller. In motion controller, we have a nonlinear lateral regulator
based on Stanley algorithm from [20] to transform the planned path into a sequence
of steering angles, and a longitudinal regulator to calculate motor torque based on
the planned speed profile.

For optimal lap planning, we use simultaneous localization and mapping algo-
rithm (SLAM) from [21]. The output of SLAM is, the absolute cone positions in the
world coordinates, used for optimal path planning introduced in [3]. The optimal
path is sent to the optimal speed profile and motion control. The optimal speed
profile generates an optimal speed plan and sends it to motion control. The final
step in a pipeline shown in Figure 1.5 is to send the steering angle and motor torque
commands via the controller area network (CAN) bus to the appropriate electronic
control units that execute the commands.

Section 1.6

Thesis Contribution
The thesis describes an algorithm for an autonomous student formula to successfully
complete the first lap of a Formula Student Driverless competition. The algorithm
involves perception from [17], local planning, and control algorithms from [19] to

7

1.6 Thesis Contribution

navigate the car on the unknown track.
The thesis makes the following contributions to the field of autonomous racing.

It focuses on the planning for the first lap, also known as a local planing. The local
planing consist of two algorithms: local path planning introduced in Section 2.2 and
speed profile generation presented in Section 2.3. A local path planning algorithm is
designed to generate a smooth and feasible path for the autonomous vehicle during
the first lap. A local speed profile algorithm calculates the optimal speed for the
planned path to maximize the car’s performance, taking into account the vehicle’s
dynamics, path curvature, and maximum acceleration and deceleration limits of the
car. The proposed algorithms were tested and validated using a simulator. The re-
sults achieved in this research can further drive improvements in autonomous vehicle
performance and contribute to the future development of autonomous systems.

8

Chapter 2

Algorithm for the first lap
This chapter describes the algorithm to complete the first lap for the autonomous
student formula. In Section 2.1 we give an overview of the algorithm for the first lap
that involves perception, local planning and control nodes. The primary objective
of this thesis is to present local planning that consists of two developed algorithms
– local path planning described in Section 2.2 and local speed profile proposed in
Section 2.3. Both methods have the main algorithms presented in Section 2.2.1,
Section 2.3.4, and auxiliary algorithms presented in the remaining sections.

Section 2.1

Overview
The algorithm for the first lap is designed for autocross event, discussed in Sec-
tion 1.3, and for the first lap of trackdrive event. It involves processing an image
from the camera in the perception node, calculating a path and speed profile in the
planning node, and generating steering, acceleration, or braking commands in the
control node. The algorithm is responsible for driving on the unknown track and
successfully completing a lap with the goal of minimizing the lap time.

The area marked by a red dashed line in Figure 1.5 is a part of the autonomous
pipeline responsible for the first lap. The autonomous car uses a stereo camera as
the main sensor for the first lap. The RGB images from the camera are sent to the
image cone detector proposed in [17]. It has three steps: cone detection, cone center
estimation, and cone localization. Consequently, the image cone detector detects the
cones on the image, then the cone centers are estimated from its bounding boxes,
and finally, the homography matrix is used to compute the positions of the cones
relative to the vehicle coordinate system. The perception process using an image
cone detector from [17] is shown in Figure 2.1. It is necessary to mention that the
image cone detector was fully developed by Š́ıp [17]. Thus, it is not the author’s
work, and the included figures are taken from [17] for better problem understand-
ing, because the output of the image cone detector is used for local path planning
presented in Section 2.2.

The next step in the autonomous pipeline is local planning. The thesis focuses on
planning for the first lap, also known as local planning. In this thesis for autonomous
student formula, we refer to local planning as the process of path planning and
speed profile generation In Section 2.2 we introduce local path planning. Local path
planning takes the cone positions in the vehicle coordinate system from the image
cone detector and produces a smooth center-line path between blue and yellow cones.
Then, the local speed planning introduced in Section 2.3 plans a speed profile for a
given path. A speed profile is calculated taking into account vehicle dynamics and
limits of the car.

The last part of the pipeline is the control algorithm. We use the motion control
algorithm that was introduced in [20]. It calculates the appropriate steering angle
and motor torque based on the path and speed profile generated by the planning
node. The control algorithm is not the author’s work and was implemented by a
former eForce member – Hynek Zamazal. Finally, the resulting output of the control
algorithm is transmitted to the electronic control units through the CAN bus.

9

2.1 Overview

(a) Cone detection process

(b) Cone center estimation process

(c) Cone localization process

Figure 2.1: Perception process using image cone detector proposed in [17]. Firstly,
the image is split into several sub–crops, on each sub–crop the cones are detected
using YOLOv3 detection model. The next step is to merge back the detections
into the original image. Then, the cone centers are estimated from its bounding
boxes. Finally, the cone centers are projected into the car coordinate system using
the homography matrix, creating a local map of the scene. All pictures are taken
from [17].

10

2.2 Local Path Planning

Section 2.2

Local Path Planning
In this section, we introduce a local path planning algorithm. Local path planning,
also known as reactive path planning, is a type of path planning algorithm that
focuses on short-term planning and plans a path in a dynamic environment. In our
case, the environment is the unknown track for the autocross event discussed in
Section 1.3. Local path planning produces a path for a given frame. A frame refers
to an individual image. It represents a snapshot of the visual information captured
by a camera at a specific point in time. The cone detector algorithm processes each
frame to detect the cones. As a result, the local path planning needs to generate
a path for each frame in order to enable the car to navigate through the dynamic
environment. An example of a frame is shown in Figure 2.2.

(a) The camera image with detected cones. De-
tected cones are enclosed within bounding boxes
of their corresponding colors.

151296303691215
0
3
6
9

12
15
18

(b) The plot with the positions of de-
tected cones in the car coordinate sys-
tem. It is a visual representation of input
for local path planning. Blue and yellow
cones are visualized as a point with the
corresponding color. The black dot rep-
resents the car position.

Figure 2.2: A frame visualization at FS Germany 2021 with detected cones and
their positions in the car coordinate system. In Figure 2.2b the axes of the car
coordinate systems were swapped for better cone visualization, aligning them with
the corresponding camera image. Figure 2.3 is an example showing the path planning
with the original axes.

According to research conducted by Horáček [3] on the optimal trajectory for
autonomous student formula, the benefits of following the optimal race line are
not significant compared to the center line approach. The narrowness of the track
contributes to a small difference between the optimal global path and the center-line
approach. In certain sections of the track, the optimal race line may be planned very
close to the track boundaries. Hence, inaccuracies in cone positions in perception
or inaccuracies in the path-tracking algorithm can lead to knocking down the cones.
As a consequence, each knocked-down cone results in a 2 seconds penalty added to
the lap time. Taking into account this factor, we prioritize reliability rather than
path optimality for local path planning. As a result, in the next section, we propose
a local path planning algorithm based on the center-line approach that aims to
minimize the chance to knock down the cones.

11

2.2 Local Path Planning

Subsection 2.2.1

Path Planning

In this section, we introduce a path planning algorithm described in Algorithm 1
that generates a smooth center-line path between blue and yellow cones. This path
planning is an improved version of the old algorithm developed by eForce alumni
Matěj Zorek. The old algorithm was the first version of path planning and was used
for local and global planning. But it had problems with local path planning and the
author of the thesis reworked the algorithm by adding more functionality such as
using big orange cones see Section 2.2.2, filtering the cones see Section 2.2.3, checking
the center placement see Section 2.2.4, and smoothing the path see Section 2.2.6. As
discussed earlier in Section 2.2, the main objective of path planning is to produce a
reliable path in the first lap. The planned path is not optimal, but the primary goal
is to plan a path that does not lead to going off the track.

The algorithm is iterative and plans a smooth path for the given frame. An
example of a frame is shown in Figure 2.2. Assume the track that satisfies the
constraints for the autocross event described in Section 1.3. The input is the cone
positions from the image cone detector. The positions of the cones are in the vehicle
coordinate system, a two-dimensional space. The output of the algorithm is a smooth
path. The path (pi)

P
i=0 of length P is a sequence of path points pi = (xi, yi) in the

vehicle coordinate system. A path point is a center point between blue and yellow
cones.

Suppose the cone detector correctly detected at least two cones, without counting
big orange cones. Let Blue, Y ellow, and BigOrange be the positions of detected
blue, yellow, and big orange cones. Let Path (pi)

P
i=0 be the center line or original

path and SmoothPath (si)
P
i=0 be a smooth path. Suppose the origin of the vehicle

coordinate system is the initial position of the car p0 = (0, 0). The positions of the
cones are fixed and the future position of the car changes and is represented as a
path point pi at iteration i. In the first iteration set i to 0 and append (0, 0) to
Path. Then if it is possible, extend Blue and Y ellow cones with additional cones see
Section 2.2.2. In the case when Blue or Y ellow cones do not contain any cone, fill
in missing cones using Algorithm 2. If BigOrange cones were detected, assign them
to Blue or Y ellow cones using Algorithm 3. The next step is to sort and filter Blue
and Y ellow cones. The sorting and filtering process is described in Section 2.2.3.
After sorting and filtering Blue and Y ellow cones, assign them to B̂ and Ŷ . Repeat
the next block of procedures until B̂ or Ŷ is not empty: calculate the next center
point see Section 2.2.4, compute the cones in front of the last added path point
see Section 2.2.5 and assign them to B̂, Ŷ , increment i. The final procedure is
smoothing the Path described in Section 2.2.6. The output of the path planning
algorithm is a smooth path that is provided to the local speed profile described in
Section 2.3 and the control algorithm. The example of the planned path for the
start position is shown in Figure 2.3 and Figure 2.4 shows a planned path for the
frame from Figure 2.2. In Section 3.3 we test and evaluate the robustness of the
proposed algorithm – Algorithm 1.

12

2.2 Local Path Planning

Algorithm 1 Local path planning algorithm

Input: Blue, yellow and big orange cone positions
Output: SmoothPath
1: Add (0, 0) to Path
2: If there are no Blue or Yellow cones, fill missing Blue or Yellow cones
3: Assign BigOrange cones to Blue or Yellow according to the closest cone
4: Sort Blue and Yellow cones
5: Filter Blue and Yellow cones
6: B̂ ← Blue, Ŷ ← Yellow
7: while B̂ is not empty and Ŷ is not empty do
8: Find the closest b, y cones from B̂, Ŷ to the last point of Path
9: Calculate center between b and y

10: Check correctness of the center placement
11: Add center to Path
12: B̂ ← Compute Blue cones in front of the last added path point
13: Ŷ ← Compute Yellow cones in front of the last added path point
14: end while

15: Compute SmoothPath using Path
return SmoothPath

0 2 4 6 8 10 12 14 16 18
x

4

3

2

1

0

1

2

3

4

y

Blue cones
Yellow cones
Big orange cones
Path
Position of the car

Figure 2.3: Illustration of the planned path using Algorithm 1 for the start position
at autocross event see Figure 1.3. The start position is 6 meters before the start
line. The start line locates between the big orange cones.

13

2.2 Local Path Planning

(a) Camera image with detected cones and the
planned path shown as a red line. The path was
firstly planned in the car coordinate system and
after projected to the camera image using homog-
raphy [17].

151296303691215
0
3
6
9

12
15
18

Path

(b) Plot of blue and yellow cone positions
with the planned path in the car coordi-
nate system. It is a visual representation
of the output of local path planning.

Figure 2.4: Visualization of the planned path for the frame from Figure 2.2. The
frame was captured on FS Germany 2021 track.

Subsection 2.2.2

Additional Cones

In this section, we discuss the situation when the camera angle is not wide enough to
capture inner cones, and how to use the big orange cones for path planning, because
the path planning algorithm uses only blue and yellow cones to calculate a center
between cones.

0 2 4 6 8 10 12
x [m]

1

0

1

2

3

4

y
[m

]

0 2 4 6 8 10 12
x [m]

1

0

1

2

3

4

5

y
[m

]

Figure 2.5: The situation with missing inner cones. On the left subfigure, the blue
cones are missing. The right subfigure shows filled blue cones using Algorithm 2.

It is common that the track has at least one sharp turn and at some moment the
camera does not capture the inner cones see Figure 2.5. To deal with situation we
propose Algorithm 2 that describes how to fill missing cones. The objective of the
algorithm is to fill in missing cones based on knowing the positions of cones with the
opposite color. Fill missing cone function takes blue, yellow cones and track width.
The first step is to detect what cones we have and what cones we need to fill. Then
we sort available cones using Algorithm 4. Let Full be the sorted cones and ToFill

14

2.2 Local Path Planning

be the missing cones. After we iterate through Full cones. Take the current cone
point v⃗0 and the next sorted cone point v⃗1. We get v⃗ by computing a vector v⃗0− v⃗1
and normalizing it. Only for the last iteration, v⃗0 is the previous sorted cone point
and v⃗1 is the current cone point. To compute w⃗ use the following instructions: if we
need to fill in blue cones, rotate v⃗ by 90◦; to fill in yellow cones, rotate v⃗ by 270◦.
Then, add the current cone point and w⃗ multiplied by track width to get a new
cone point. Append the new point to ToFill. Increment the iteration step. Finally,
return the missing cones. Figure 2.6 shows the steps of Algorithm 2.

Algorithm 2 Fill missing cones

Input: Blue, yellow cones and filling cone distance
Output: Filled blue and yellow cones

1: function FillMissingCones(B, Y , TrackWidth)
2: if B is empty then
3: FullYellow=true
4: else
5: FullYellow=false
6: end if
7: if FullYellow is true then
8: Full← SortCones(Y), ToFill ← Blue
9: else

10: Full← SortCones(B), ToFill ← Y ellow
11: end if
12: N ← size of Full
13: for i← 0 to N do
14: if i = N − 1 then
15: FromIdx← N − 2, ToIdx← N − 1
16: else
17: FromIdx← idx, ToIdx← idx+ 1
18: end if
19: v⃗0 ← Full[FromIdx], v⃗1 ← Full[ToIdx]

20: v⃗ ← v⃗1 − v⃗0
∥v⃗1 − v⃗0∥

21: if FullYellow is true then

22: w⃗ ←
[
0 −1
1 0

]
· v⃗ ▷ 90◦ rotation

23: else

24: w⃗ ←
[
0 1
−1 0

]
· v⃗ ▷ 270◦ rotation

25: end if
26: NewCone← Full[i] + TrackWidth · w⃗
27: Add NewCone to ToFill
28: end for
29: if FullYellow is true then
30: return ToFill, Full
31: else:
32: return Full, ToFill
33: end if
34: end function

15

2.2 Local Path Planning

0 2 4 6 8 10 12
x [m]

2

1

0

1

2

3

4

y
[m

]

0 2 4 6 8 10 12
x [m]

1

0

1

2

3

4

y
[m

]

0 2 4 6 8 10 12
x [m]

1

0

1

2

3

4

y
[m

]

0 2 4 6 8 10 12
x [m]

1

0

1

2

3

4

5

y
[m

]

Figure 2.6: Process of filling missed inner cones. The first, second, pre-final, and
final steps are illustrated in the subfigures. The angle between v⃗ and w⃗ is 90◦.

The next situation we focus on is the start or the end positions for autocross.
The start/finish line is determined by big orange cones see Figure 1.3. Based on
team experience from the previous races, there is a possibility that the car can knock
down some of the big orange cones because the old version of path planning did not
count with them see Figure 2.8. Also, for better center-line planning at the start see
Figure 2.3, it is good to take into account big orange cones. We propose Algorithm 3
for planning center points between big orange cones. The idea is to assign big orange
cones to blue or yellow cones for the next steps in path planning computation, where
the big orange cones are used as blue or yellow cones.

16

2.2 Local Path Planning

Algorithm 3 Assign big orange cones

Input: Blue, yellow and big orange cones
Output: Extended blue and yellow cones

1: function AssignOrangeCones(Blue, Y ellow, BigOrange)
2: for all o ∈ BigOrange do
3: if Any b ∈ Blue is closer to o than any y ∈ Y ellow then
4: Add o to Blue
5: else
6: Add o to Y ellow
7: end if
8: end for
9: return Blue, Y ellow

10: end function

0 2 4 6 8 10 12 14
x [m]

2

1

0

1

2

3

4

5

y
[m

]

(a) Planned path without taking into account
big orange cones. The path results in knock-
ing down one big orange cone.

0 2 4 6 8 10 12 14
x [m]

2

1

0

1

2

3

4

5
y

[m
]

(b) Planned path with considering big orange
cones.

Figure 2.7: An example of the importance to take into account the big orange cones
for the path planning.

Subsection 2.2.3

Sort and Filter Cones

The sorting process is important for correctly determining track boundaries. We
sort separately blue and yellow cones identifying the next closest cone of each color
iteratively see Algorithm 4. The closest cone to the initial position of the car is
always the first cone in the sorted list.

17

2.2 Local Path Planning

Algorithm 4 Sort cones

Input: Cones
Output: Sorted Cones

1: function SortCones(Cones)
2: SortedCones is empty
3: cone ← the closest cone from Cones to the car’s initial position (0,0)
4: Add cone to SortedCones and delete cone from Cones
5: while Cones is not empty do
6: Find the closest cone from Cones to the last cone from SortedCones
7: Add cone to SortedCones and delete cone from Cones
8: end while
9: return SortedCones

10: end function

The next important procedure is to filter the cones. There are some parts of
the track when a car can observe another section of the track and it can lead to the
wrongly planned path and as a result, the car can go off the track. To prevent this
situation we propose Algorithm 5 that solves this problem by filtering or deleting
the redundant cones from another section of the track.

Algorithm 5 Filter cones

Input: Sorted cones
Output: Filtered cones

1: function FilterCones(Cones)
2: Distances← Compute distances among Cones
3: FilteredCones is empty
4: MaxDistBetweenCones← 5 ▷ the max distance is defined in the rules [4]
5: N ← size of Cones
6: for i← 0 to N do
7: if Distances[i] > MaxDistBetweenCones then
8: break
9: end if

10: Add Cones[i] to FilteredCones
11: end for
12: return FilteredCones
13: end function

18

2.2 Local Path Planning

0 5 10 15 20 25
x [m]

10

5

0

5

10

15

y
[m

]

(a) The wrongly planned path because the
cones were not filtered.

0 5 10 15 20 25
x [m]

10

5

0

5

10

15

y
[m

]

(b) Correctly planned path with the cone fil-
tering.

Figure 2.8: Illustration of the case when it is necessary to filter the cones, otherwise
the path is planned out of track boundaries.

Subsection 2.2.4

Next Center Point

For computing the next center point we need to find the closest blue and yellow
cone from B̂, Ŷ – the cones that are in front of the car see Section 2.2.5. Then we
compute the center between the blue and yellow cones. The next step is to check
the center placement. If the next center point is out of the car’s steering range, this
center is ignored and the path-planning process is stopped. And if the center point
is reachable by the car’s steering, it is appended to the path.

Subsection 2.2.5

Cones in Front of the Car

After the center was appended, we need to identify the cones that are behind and
in front of the car at a current point. As mentioned earlier, the center or path point
is a future position of the car at specific path planning step. Algorithm 6 calculates
the normal line (with line equation y = kx+ c) to the vector of the last two points
from path at the last path point. Then, based on the car’s direction B̂ and Ŷ are
computed. When B̂ or Ŷ is empty, the path planning is ended.

Algorithm 6 Compute cones in front of the car

Input: Blue, yellow cones and path
Output: Blue and yellow cones in front of the car

1: function ConesAheadOfTheCar(Blue, Y ellow, Path)
2: Find parameters k, c of normal line to pi − pi−1 at point pi ∈ Path.

3: B̂ = {⃗b = (x, y) ∈ Blue : sign(y − k · x− c) = sign(−k)}
4: Ŷ = {y⃗ = (x, y) ∈ Y ellow : sign(y − k · x− c) = sign(−k)}
5: return B̂, Ŷ
6: end function

19

2.2 Local Path Planning

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(a) Track ahead of the car.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(b) First step of path planning.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(c) Third step of path planning.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(d) Fifth step of path planning.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(e) Seventh step of path planning.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x [m]

4

2

0

2

4

y
[m

]

(f) Ninth and final step of path planning.
Path planning is ended because Ŷ is empty,
meaning there are no yellow cones in the front
of the last center point.

Figure 2.9: Example of path planning process.

The path planning process is shown in Figure 2.9. At this moment we obtained
the center-line path for the car. Then, we use a smoothing function to find a more
continuous line for the speed profile stage. The speed profile algorithm benefits from
lower angles between the adjacent segments of the path as it allows a more gradual
speed response. We formulate this problem in Section 2.3.4 as optimization of a
scalar function with respect to the initial center-line estimate.

20

2.2 Local Path Planning

Subsection 2.2.6

Path Smoothing

For the speed profile described in Section 2.3, it is better to have a smooth path,
meaning to have a small path curvature or lower angles between the adjacent seg-
ments of the path. Equation (1) ensures the smooth path by minimizing the function,
where ∥pi−xi∥ is the distance between the waypoint xi and corresponding path point
pi. This ensures that the new path stays close to the original path - a center line.
The next term represents the curvature and serves to minimize the angle between
two consecutive line segments in the path. This is accomplished by minimizing the
dot product of the vectors representing the segments. The smaller angles mean a
smoother path. The scalar β is a parameter that trades off these two terms.

argmin
x1,...,xN

∑
i

∥pi − xi∥ − β ·
∑
N

(xn+1 − xn) · (xn − xn−1)

|(xn+1 − xn)| · |(xn − xn−1)|
(1)

0 2 4 6 8 10 12 14
x [m]

4

2

0

2

4

y
[m

]

0 2 4 6 8 10 12 14
x [m]

4

2

0

2

4
y

[m
]

0 2 4 6 8 10 12 14
x [m]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Cu
rv

at
ur

e
[1

/m
]

Original path curvature
Smooth path curvature

Figure 2.10: Path smoothing application on the planned path from Figure 2.9 and
comparison of the original and smooth path curvatures at the planned path points.

Figure 2.10 shows the result of smoothing a path. Path smoothing is the last
step in the local path planning described in Section 2.2. Finally, the smooth path
is sent to the speed profile and control algorithms.

21

2.3 Local Speed Planning

Section 2.3

Local Speed Planning
To win the autocross event it is not enough to drive only without knocking down any
cones. The car should complete the first lap in the shortest possible time. Always
driving at a constant high is a wrong approach because the car does go off the track
in the turn due to the centrifugal force during turning. Therefore, it is important
to adjust the speed based on the section of the track, in other words, based on the
planned path curvature. Our motivation for the speed profile is the following: the
car should speed up and go fast on the straights, and slow down before the turns to
avoid going off the track or knocking down any cones.

In Section 2.3.4, we introduce an algorithm that computes a speed profile taking
into account physical laws and the car’s limits. Physical laws and the car’s limits
are discussed in Section 2.3.1 and Section 2.3.3. The speed profile computes a plan
of target speed based on the path that is generated by the path planning algorithm
described in Section 2.2.1. To determine if the path is smooth or contains a turn,
we need to compute a path curvature, explained in Section 2.3.2.

Subsection 2.3.1

Circle of Forces

Vehicle motion is a complex process and nonlinear physical laws are applied in the
real world that are hard to model. In this thesis, the model of the car is simplified.
The car is represented as a single tire. The effect of the track bank angle and the
track quality is neglected. The only part of the car that interacts with the track
surface are tires. To stay on the track while maintaining a high speed, we need
to consider that tires have a finite grip on the road surface. Excessive lateral and
longitudinal forces cause the tires to lose traction with the surface and potentially
result in skidding or sliding and in the worst case the car goes off the track.

The circle of forces, known as the traction circle or friction circle, describes the
dynamic interaction between a vehicle’s tire and the road surface. Equation (2) is
a mathematical representation of the circle of forces, and Figure 2.11 is a visual
representation. The friction circle points that the vector sum of the longitudinal
force and lateral force of the tire is less than or equal to the product of the normal
force and the friction coefficient.

F 2
x + F 2

y ≤ (µFz)
2, (2)

where

Fx = longitudinal force,
Fy = lateral force,
µ = friction coefficient,
Fz = normal force.

Basically Equation (2) describes the driving limits of a car. A car is in contact
with the road surface due to a normal force Fz, and the maximum force that the
tires can transfer to the road surface is µFz. The friction coefficient µ characterizes
a tire-road interaction that is affected by several factors, including road conditions,
environmental factors like temperature, wetness, and tire-related factors such as

22

2.3 Local Speed Planning

the type of tire, its tread pattern, material, size, inflation pressure, temperature.
Nevertheless, for our purpose, it is convenient to consider a constant value for µ
that corresponds to driving on dry asphalt. Previous studies [22] suggest that se-
lecting µ = 0.75 is a reasonable and practical option. The longitudinal force Fx is
responsible for acceleration or braking, while the lateral force Fy is responsible for
left or right turning. In order for the car to perform stable driving, the lateral and
longitudinal forces should remain within the limits defined by the friction circle see
Equation (2).

Figure 2.11: Circle of forces, also known as friction circle. The figure is taken from
[23]

The available normal force Fz is primarily composed of the gravitational term
that remains constant. However, when the vehicle is in motion, the normal force
increases due to the aerodynamic downforce generated by the aerodynamic pack-
age. Our formula DV.01, see Figure 1.4, has an aerodynamic package designed to
generate 977 N of downforce when the vehicle reaches its designated target speed
of 16m/s [24]. However, the target speed of 16m/s is not always achievable by our
autonomous formula. Horáček analyzed the importance of downforce for our for-
mula [3] and shows that under average conditions for our formula, driving at a small
constant speed, the aerodynamic downforce is approximately 313 N. This value
corresponds to around one-third of the originally planned downforce provided by
the aerodynamic package and roughly one-seventh of the gravitational term. Nev-
ertheless, the aerodynamic package has the additional consequence of presenting
aerodynamic drag in longitudinal force Fx [25], which acts as a resistance that slows
down the vehicle. As a result, the advantages gained from the increased downforce
are relatively reduced by aerodynamic drag. We decided to neglect aerodynamic
effects, but we consider any aerodynamic improvements in the car’s driving capabil-
ities as a safety margin for stable driving.

23

2.3 Local Speed Planning

Subsection 2.3.2

Path Curvature

For the first step of the speed profile, it is required to compute path curvature.
Curvature is the scalar value by which a curve deviates from a straight line. We use
a historical definition of curvature, where the curvature of a differentiable curve was
defined through the osculating circle, which is the circle that best approximates the
curve at a point. The curvature is the inverse of the radius of the osculating circle.

The path produced by Algorithm 1 is a sequence of points (pi)
P
i=0 in the car’s

coordinate system. Thus, we use an algorithm to compute a curvature based on the
osculating circle. Algorithm 7 from [3] computes a curvature of a circle inscribed to
three points. Meaning the curvature is zero when the three points lie on the same
segment, otherwise, the curvature is positive.

Algorithm 7 Curvature of a circle inscribed to three points. The algorithm is taken
from [3]

Input: Points p1,p2,p3

Output: Curvature k of the inscribed circle

1: function ComputeCurvature(p1,p2,p3)
2: a = ||p2 − p1||
3: b = ||p3 − p2||
4: c = ||p1 − p3||
5: q = a2+b2−c2

2ab

6: k =
2
√

1−q2

c
7: return k
8: end function

Subsection 2.3.3

Safe Speed

A speed profile is used to determine the most efficient way to complete a lap in
the shortest lap time. In Section 2.3.4 we introduce a speed profile that is based
on algorithm from [11]. The algorithm in [11] is used given a known track, and for
DV.01 Horáček implemented this algorithm [3]. For local planning, the car does not
known the entire track, but observes the track using sensors approximately up to
15–20 meters. Because of this constraint, we do some modifications to speed profile
described in [11].

The first change is adding initial speed vinit. The speed profile proposed in
Section 2.3.4 computes the speed in each frame. The initial speed refers to the
speed at which the car is driving at a specific moment.

The next modification is the safe speed. Because in local environment, the car
observes only a section of the track. Thus, when calculating the speed profile we
need to take into account that the car does not know the next section of the track.
We assume the worst case where the next section of the track is a sharp turn, also
known as a hairpin turn. According to FSG rules [4] the outside diameter of hairpin
turn is minimum 9 m. Thus, radius of the turn is minimum 4.5 m. We need to
compute the safe speed for the turn, because the car must stay on the track while

24

2.3 Local Speed Planning

turning. We refer the safe speed to a maximum cornering speed. To compute the
maximum cornering speed, we start with the equation for centrifugal force Fc and
equate it to the maximum lateral force Fmax that the tires can generate.

Equation (3) is used to compute the centrifugal force, where m is a mass of the
car, v is the maximum cornering speed and r is a radius of the turn.

Fc =
mv2

r
(3)

To find the maximum lateral force that the tires can generate, we use Equa-
tion (4), where µ is the coefficient of friction and N is the normal force that is
applied on the tires. Discussing earlier we neglect the aerodynamic downforce, there-
fore the normal force is equal to the weight of the vehicle see Equation (5), where
g is the gravity acceleration. Substituting the expression for Fz from Equation (5)
into Equation (4) we get Equation (6).

Fmax = µFz (4)

Fz = mg (5)

Fmax = µmg (6)

By equating the maximum lateral force Fmax and the centrifugal force Fc see
Equation (7), we get Equation (8)

Fc = Fmax (7)

mv2

r
= µmg (8)

Equation (9) is derived from rearranging and simplifying Equation (8) to solve
for the maximum cornering speed v.

v2 = µgr (9)

Finally, the formula for the maximum cornering speed is expressed in Equa-
tion (10):

v =
√
µgr (10)

To compute the safe speed for DV.01 we use the values from Table 1: µ = 0.75,
g = 9.8m/s2 and r = 4.5 m. Substituting to Equation (10), we get the safe speed
vsafe equals to 5.75m/s. The safe speed is always on the last index of the final speed
profile.

Subsection 2.3.4

Speed Profile

In this section, we introduce the speed profile algorithm. The implementation is
based on the description in [11]. Input for the algorithm is a path (pi)

P
i=0 of length P ,

a sequence of path points in the car’s coordinate system, produced by Algorithm 1.
The speed planning algorithm consists of three passes, where a speed profile Ux is
a plan of target speed. The first pass guarantees that the formula drives within the
lateral and longitudinal limits, meaning the tire grip does always stay in the friction
circle, also known as circle of forces, described in Section 2.3.1. The second pass

25

2.3 Local Speed Planning

Parameter Symbol Value Unit

Friction coefficient µ 0.75 —
Formula mass m 212 kg

Coefficient of lift CL -3.82 —
Coefficient of drag CD 1.49 —

Reference aerodynamic area Aref 1.19 m2

Maximum acceleration amax 2 m/s2

Maximum deceleration amin -4 m/s2

Table 1: Physical parameters of DV.01 for the speed profile. Properties of the
aerodynamic package come from an unpublished engineering design document [24].

adjusts the speed profile after the first pass to acceleration limits. The third pass is
responsible for achievable breaking and as an input takes the speed profile after the
second pass. The output of the speed profile, the sequence of speeds, is the result
of the third pass.

The first pass of the speed profile is described in Algorithm 8. It determines the
maximum allowable speed based on the constraints of the friction circle see Equa-
tion (2) with zero longitudinal force, and after simplification we get Equation (11).
In circular motion, an object experiences an centrifugal force ensuring its continued
movement along a curved trajectory. In our case, the lateral force Fy experienced by
the car is equal to the centrifugal force expressed in Equation (3). The normal force
Fz can be replaced with mg, because we neglect the downforce. Thus, we can rewrite
Equation (11) to derive Equation (12). Since the radius of circle is the inverse value
of the curvature, meaning r = 1

k , we can substitute it into the Equation (12) and
simplifying it we get Equation (13). Then in Equation (13) we express the speed V
and obtain Equation (14) to calculate the speed in the first pass.

Fy = µFz (11)

mv2

r
= µmg (12)

v2k = µg (13)

v =

√
µg

k
(14)

Algorithm 8 First pass (maximum speed limited by friction circle)

Input: Path (pi)
P
i=0, initial speed vinit and safe speed vsafe

Output: Speed profile U ′
x limited by initial speed, safe speed and friction ellipse

U ′
x[0]← vinit

for s = 1 to P -1 do
k = ComputeCurvature(ps−1,ps,ps+1) ▷ use Algorithm 7

U ′
x[s] =

√
µg
k ▷ use Equation (14)

end for
U ′
x[P − 1]← vsafe

26

2.3 Local Speed Planning

To determine the speed for the second pass, we use the equations of motion with
constant acceleration: Equation (15) and Equation (16), where v is a final speed, v0
is an initial speed, a is an acceleration and s is a displacement.

v = v0 + at (15)

s = v0t+
1

2
at2 (16)

Express t in Equation (15):

t =
v − v0

a
(17)

Substituting Equation (17) into Equation (16), we get:

s = v0

(
v − v0

a

)
+

1

2
a

(
v − v0

a

)2

=
v0(v − v0)

a
+

1

2

(v − v0)
2

a

Eliminating the denominators in the equation above, we obtain:

2as = 2v0(v − v0) + (v − v0)
2 (18)

After simplification of Equation (18), Equation (19) is derived:

2as = v2 − v20 (19)

The final step is to express the final speed v in Equation (19) and get Equa-
tion (20) for the second pass computation:

v =
√

v20 + 2as (20)

Algorithm 9 provides the description of the second pass. In the second pass the
speed of a given point is determined by the speed of the previous point and the speed
reached with the maximum acceleration amax from the previous point. An important
part of the second pass is that at every point, the value of Ux[s] is compared to the
corresponding value from the first pass and the lowest value is taken. After the
second pass, the speed profile is achievable in terms of friction circle constraints and
acceleration feasibility.

Algorithm 9 Second pass (acceleration)

Input: Speed profile after the first pass Ux, path (pi)
P
i=0

Output: Speed profile U ′
x limited by acceleration capabilities

for s = 1 to P do
c = 2amax||ps − ps−1||
U ′
x[s] = min (Ux[s],

√
Ux[s− 1]2 + c) ▷ use Equation (20)

end for

Algorithm 10 or the third pass ensures the feasibility of the braking. It is similar
to the second pass, but in the third pass, we use a little bit different equation of mo-
tion - Equation (21), where a is the deceleration. Expressing v from Equation (21),
we get Equation (22). During the third pass, we start from the last point on the

27

2.3 Local Speed Planning

path and proceed in reverse, adjusting the speed at each point. The adjusted speed
is determined by selecting the lower value between the speed from the second pass
at the current point and the speed adjusted to the maximum deceleration at the
following point, resulting in the final speed profile.

v2 = v20 − 2as (21)

v =
√

v20 − 2as (22)

Algorithm 10 Third pass (braking)

Input: Speed profile Ux, path (pi)
P
i=0

Output: Speed profile U ′
x limited by braking capabilities

for s = P − 1 to 1 do
c = 2amin||ps − ps−1||
U ′
x[s− 1] = min (Ux[s− 1],

√
Ux[s]2 − c)

end for

Figure 2.12 shows a speed profile computation for the computed path in Fig-
ure 2.12a. The path is a sequence of path point, where a path point was computed
as a center between some blue and yellow cone. Figure 2.12b illustrates the computed
path curvature. The curvature was computed in each path point using Algorithm 7.
The curvature line shown in Figure 2.12b is not monotonic, because to compute a
curvature at given point we use only three path points that is placed quite close to
each other.

Figure 2.12c shows three speed profile passes, starting with an initial speed of 0
m/s. The speed gradually increases until reaching the penultimate point, as the last
point is set to the safe speed vsafe computed in Section 2.3.3. Consequently, at the
penultimate point, the car must drive at a slower speed compared to the computed
speed during the second pass.

Figure 2.12d also shows three speed profile passes, but starting with an initial
speed of 15 m/s. It can be observed that from the starting point to the path point
where x is around 9 m, the speed is monotonically decreasing, because the car is
driving through a turn, thus it should decrease the speed. From the path point
where x is around 9 m until the path point with x equals around 15 m, the speed
monotonically increases as the turn ends and the track enters a straight section. The
speed continues to increase until the penultimate point, after which it decreases to
maintain the safe speed discussed earlier.

28

2.3 Local Speed Planning

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

10

8

6

4

2

0

2

y
[m

]

Blue cone
Yellow cone
Path point
Path

(a) The path points on a given path are used to calculate the speed profile.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0.02

0.04

0.06

0.08

0.10

Cu
rv

at
ur

e
[1

/m
]

Path point
Curvature

(b) Path curvature of the given path from Figure 2.12a.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0

5

10

15

20

25

Sp
ee

d
[m

/s
]

First pass Second pass Third pass Path point

(c) Speed profile with vinit = 0 m/s.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0

5

10

15

20

25

Sp
ee

d
[m

/s
]

First pass Second pass Third pass Path point

(d) Speed profile with vinit = 15 m/s.

Figure 2.12: Computation of the speed profile described in Section 2.3.4 with 0 m/s
and 15 m/s using parameters from Table 1. The third pass is a final speed profile.

29

Chapter 3

Experiments
In this section we validate the proposed path and speed planning algorithms from
Section 2.2 and Section 2.3. Firstly, in Section 3.1 we discuss the dataset of tracks
that we use for experiments. Then in Section 3.2 we describe a testing environment
– eForce simulator. After we conduct path planning test in Section 3.3, where we
mainly test a path planning robustness on different tracks. Section 3.4 presents
the speed planning tests. We compare three different speed profiles: the constant
5 m/s profile (a conservative baseline approach), local speed profile introduced in
Section 2.3 and optimal speed profile presented in [3]. The proposed algorithms were
implemented in Python programming language.

Section 3.1

Data
The only data we need for path planning and speed profile experiments are the cone
positions, in the car’s coordinate system, received from the cone detector described
in [17]. To ensure that the proposed algorithms, local path planning and speed
profile, are robust and reliable, we use different sources for the tracks.

The first track source is the tracks from real Formula Student competitions.
Specifically, FS Germany 2021, FS Italy 2022, and FS Czech 2022 tracks. We logged
data from these competitions to be able to reproduce these runs in the future, and
we use them in Section 3.3 to test the proposed path planning algorithm described
in Section 2.2.1. We apply the algorithms for each frame by replaying the entire run.
Then, we display the results in the camera image and the plot of cone positions in the
car’s coordinate system. An illustration of this visualization is shown in Figure 2.2,
where on the left side there is a camera image with detected blue and yellow cones.
The detected cones have bounding boxes of the corresponding cone color. On the
right side, we can see the plot with detected cone positions in the car’s coordinate
system.

The next track source is real tracks from the team testing conducted in real-
world conditions. One of the tracks from the team testing is Autocross 1. We have
a log of the entire run, but we do not have the global map of the track. Thus, to
test algorithms on this track we use the same method as for Formula Student tracks
described earlier. Another track from team testing is shown in Figure 3.1 and we
will refer to this track as Autocross 2. The track was reconstructed using SLAM
[21] after completion of the first lap. We evaluate the path planning on this track
in a simulator environment 3.2.

30

3.1 Data

20 10 0 10 20 30 40 50
4

0

4

8

12

16

20

24

28

32 Blue cone
Yellow cone
Big orange cone

Figure 3.1: Visualization of Autocross 2 track. The track map was generated using
SLAM [21]. The starting position is located in front of a group of big orange cones.
The run direction is counterclockwise.

40 30 20 10 0 10 20 30 404

0

4

8

12

16

20

24

28
Blue cone
Yellow cone
Big orange cone

Figure 3.2: The layout of Autocross 3 track. The track layout was generated artifi-
cially using the graphic track editor described in Section 3.1. The direction of the
run is counterclockwise.

The final source of tracks is synthetic or artificially created tracks. There are
two ways how to generate them: eForce track generator or graphic track editor.
The track generator assigns a predetermined number of points on a circle with a
parametrizable radius and then changes their position using several Gaussian func-
tions. The graphic track editor is used to generate a new track or to modify an
existing track by adding or removing cones with a simple mouse click. These tools
were developed by former eForce members – Tomáš Roun and Michal Horáček. An
example of an artificial track called Autocross 3 is shown in Figure 3.2. This track

31

3.2 Simulator

we mainly use to test the speed profile algorithm described in Section 2.3 in the
simulator environment 3.2.

Section 3.2

Simulator

Figure 3.3: Screenshot of eForce Formula Student Simulator.

A simulator is an important tool for testing, validating, and improving the algo-
rithms for DV.01 1.4. For team testing conducted in real-world conditions, it is
required the participation of at least five team members. Because of organizational
and time limitations, it is not possible to have more than a few testing events per
racing season. Thus, the team members developed eForce Formula Student Simu-
lator to test the developing algorithms. The simulator was started to develop at
the end of 2022 and is still in the process of development. The simulator is not an
author’s work, the main contributor of simulator is Roman Š́ıp.

It simulates the outside world and the whole functionality of DV.01, including
autonomous pipeline 1.5 see Figure 3.4. The simulator is end-to-end, meaning it
provides a complete simulation of the car’s controller area network (CAN), enabling
seamless communication with the autonomous system (AS). Hence, during the sim-
ulation, the autonomous system is unable to distinguish whether it is operating in
the car or in the simulator. The camera image is the only component that is not
simulated in the simulator. Simulating realistic vision is challenging and computa-
tionally intensive. Instead, the simulator provides the AS with the relative positions
of traffic cones to the car which are the output of the vision node in real life. By em-
ulating vision in this manner, it becomes feasible to run the simulator on a personal
laptop, making testing and development more convenient.

32

3.2 Simulator

Figure 3.4: Simulator schema

The simulator consists of two distinct processes: the simulation process and
the 3D engine visualization process. The schema of the simulator is shown in Fig-
ure 3.4. The simulation process manages the simulation state and performs all the
necessary calculations, while the 3D engine visualization process receives the state
of the simulation such as the car’s coordinates, heading, wheels angle, and renders
them accordingly. This design allows the main simulation loop to be very fast and
the graphical engine runs at 60 FPS.

The simulator is developed using Python3 programming language, and the graph-
ical user interface (GUI) uses a game library Ursina. Communication between the
different processes of the simulator is implemented using ZeroMQ. To simulate CAN
buses, we create virtual CAN ports and send and receive messages using the pycan
library.

Advanced physics has not been implemented yet, but the simulator uses a kine-
matic model and a single track model [19] to mathematically represent the dynamics
of the vehicle. The kinematic model is a simplified representation of a vehicle that
considers only its position and orientation in space. The single-track model is a
more advanced vehicle model that takes into account additional factors such as tire
dynamics, lateral forces, and vehicle parameters. When the car is driving slowly, the
speed is lower than 0.5 m/s, the kinematic model is used. Otherwise, the single-track
model is used. While the existing physics implementation may not be fully realistic,
it is sufficient for our purpose of testing and validation.

33

3.3 Path Planning Tests

Section 3.3

Path Planning Tests
As mentioned in Section 3.1 to test path planning we use real Formula Student
tracks 2.2 and the tracks obtained from team testing see Figure 3.1. For the Formula
Student tracks and Autocross 1 we do not use the global map of a track, but instead,
we apply path planning on the local environment for each frame by replaying the
entire run. To test path planning on Autocross 2 track, we use a simulator described
in Section 3.2. The algorithm is applied to each frame during the whole simulation.

Figure 2.4 and Figure 3.5 illustrate the visual representations of the path plan-
ning tests performed on the Formula Student track and in the simulator. Addi-
tionally, Figure 3.6 shows the path followed during the first lap in the simulator
test.

Figure 3.5: Illustration of the path planning test performed in the simulator 3.2 on
Autocross 2 track 3.1. The car is situated at the starting position and begins its
motion. Detected cones are visually represented by 3D bounding boxes, and the
planned path is shown as a dark red line.

Firstly, we tested path planning accuracy on Formula student and real testing
tracks. The results can be found in Table 2. Measuring the accuracy of path planning
is significant for analyzing the robustness of the algorithm. For path planning tests
we refer to path planning accuracy as an evaluation metric that measures the number
of frames where the path was correctly planned in relation to the total number of
frames. In the case of a wrongly planned path, it may lead to going off the track
and ending the run. We consider a path that is planned to go beyond the track
boundaries as a wrongly planned path.

34

3.3 Path Planning Tests

20 10 0 10 20 30 40 50
4

0

4

8

12

16

20

24

28

32 Blue cone
Yellow cone
Big orange cone
First lap path

Figure 3.6: The global map of Autocross 2 track with the cone positions and the
path followed during the first lap in the simulator.

Track name Accuracy Path length [m] Min dist to failed point [m]

FS Germany 2021 0.99 13.4 7.4
FS Italy 2022 0.99 10.6 6.5
FS Czech 2022 0.98 7.3 4.4
Autocross 1 0.99 9.9 5.3
Autocross 2 0.99 11.3 5.1

Autocross 2 with noise 0.96 10.2 4.0

Average 0.98 10.4 5.5

Table 2: Evaluation of path planning accuracy on Formula Student tracks and real
test tracks. The path length refers to the average length of the planned paths across
all frames. The minimum distance to the failed point is the distance from the car
to the closest point when the path was wrongly planned, meaning the planned path
was outside of track boundaries.

Inaccurate cone detection is one of the factors contributing to a wrongly planned
path. It can occur due to either the absence of cone detection or the false positive
(FP) cone detection. False positive detection refers to the situation when a cone is
mistakenly identified by cone detector as a cone of a different color than its actual
color. The illustration of false positive detection that resulted in a wrongly planned
path is shown in Figure 3.7. In the next frame, the cone detections are correct and
the path is recalculated. The replanned path remains within the track boundaries
see Figure 3.8. In Table 2 there is also included the minimum distance to the failed
point. This metric provides an understanding of potential situations when the car
might go off the track. The path tracking algorithm [20] uses a look-ahead distance
of two meters. In other words, the car is driving to the point on the path that is
three meters away from the car’s position. From the Table 2 we can conclude that
for these tracks the car always remains on the track. To the real tracks in Table 2 we
tested Autocross 2 track with cone detector inaccuracies in simulator. This means
that the cone detector wrongly detected or didn’t detect some cones. The wrong

35

3.3 Path Planning Tests

detection was based on the distance to the cone using a linear perturbation function,
meaning the probability of wrongly detected cone that was placed 5 meters away
was 0.05, for a cone placed 10 meters away the probability was 0.1.

FP detection

(a) The camera image illustrates a case of false
positive detection. The car was facing towards
the sun and a strong sunlight led to the cone de-
tection of the opposite color, which resulted in a
wrongly planned path.

151296303691215
0
3
6
9

12
15
18

Path

FP detection

(b) Plot of positions of the cones includ-
ing false positive detected cone that led
to wrongly calculated path in car’s coor-
dinate system.

Figure 3.7: Example of false positive cone detection that led to a wrongly planed
path at FS Italy 2022 competiton.

(a) The next taken camera image after the image
with false positive detection.

151296303691215
0
3
6
9

12
15
18

Path

(b) Plot with the positions of correctly
detected cones and recalculated path af-
ter the frame with false positive detec-
tion.

Figure 3.8: The next captured frame after the frame with false positive detection
see Figure 3.7 at FS Italy 2022. At this frame the cone detection is correct and the
path is recalculated and stays within track boundaries.

The next experiment was to test path planning accuracy for different cone de-
tector accuracy. The cone detector accuracy represents the ratio of correct frames,
where all cones were correctly predicted, to the total number of frames. We test
it on Autocross 2 track see Figure 3.1 in simulator described in Section 3.2. The
outcomes of this experiment are presented in Table 3. Furthermore, we illustrate
the accuracy of path planning and cone detection and the number of fallen cones
see Figure 3.9.

36

3.3 Path Planning Tests

Cone detector accuracy Path planning accuracy Fallen cones Finished lap

1.0 0.99 0 Yes
0.9 0.98 0 Yes
0.8 0.92 0 Yes
0.7 0.84 0 Yes
0.6 0.76 1 Yes
0.5 0.70 2 Yes
0.4 0.60 7 Yes
0.3 0.55 10 Yes
0.2 0.0 - No
0.1 0.0 - No
0.0 0.0 - No

Table 3: Evaluation of path planning accuracy vs cone detector accuracy in the
simulator.

0.0 0.2 0.4 0.6 0.8 1.0
Cone detector accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pa
th

 p
la

nn
in

g
ac

cu
ra

cy

(a) Relation between the accuracy of path
planning and cone detection. When the ac-
curacy of cone detection is less than 0.2, the
car went off the track and failed to complete
the run.

0.0 0.2 0.4 0.6 0.8 1.0
Cone detector accuracy

0

2

4

6

8

10

12

14

16
Am

ou
nt

 o
f f

al
le

n
co

ne
s

(b) Comparison of the number of fallen cones
and cone detector accuracy. When the accu-
racy of cone detection was below 0.2, the car
went off the track.

Figure 3.9: The figure shows the correlation among of path planning accuracy, cone
detector accuracy and amount of fallen cones in the presence of noise added to the
cone detector during the Autocross 2 track test. When the cone detector accuracy
was higher than 0.7, the car successfully completed the first lap and did not knock
over any cones.

Summarizing the results discussed earlier, the proposed path planning algorithm
in Section 2.2.1 demonstrates robustness against cone detector inaccuracies. Al-
though the path was wrongly planned in some frames, it was recalculated correctly
in the next frames, preventing the car from going off the track. Based on the results,
we can conclude that the algorithm was capable of completing the first lap every run
for cone detector accuracy higher than 0.2. Moreover, for cone detector accuracy
above 0.7, the car was able to complete the first lap without fallen cones.

37

3.4 Speed Planning Tests

Section 3.4

Speed Planning Tests
In this section, we test the local speed profile described in Section 2.3 in the simulator
from Section 3.2. Speed profile tests are designed to evaluate the proposed local
speed profile algorithm against two baselines: (1) conservative 5 m/s constant speed
profile and (2) globally optimal speed profile presented in [3]. The constant 5 m/s
speed profile means the formula drives during the entire run at a constant speed of
5 m/s and always stays on track. The local speed profile generates a speed plan for
the given path that was produced by a local path planning described in Section 2.2.
The local speed profile is used to compute a speed plan for the first lap, which means
that the entire track is unknown to the car. In contrast, the optimal or global speed
profile generates a speed plan for a track that is already known. Typically, the
optimal speed profile is computed after the completion of the first lap.

Speed profile Lap time[s] Fallen cones Time imp.[s] Relative imp.

Constant 5 m/s 84.26 0 0 1
Local 48.97 0 35.29 1.72

Optimal (global) 42.29 0 41.97 1.99

Table 4: Results of different speed profiles.

All three profiles were tested in eForce simulator discussed in Section 3.2 on
Autocross 2 track see Figure 3.1. The results are presented in Table 4.

The first approach examined was the constant speed profile set at 5 m/s. This
served as the baseline reference for comparison. The lap time achieved with this
constant speed was 84.26 seconds, without fallen cones. The 5 m/s constant speed
ensures the formula always stay within the handling limits and does not go off the
track, but resulted in a big lap time.

The second approach involved local speed planning, which aimed to dynamically
adjust the speed profile based on the given track section. The lap time significantly
improved to 48.97 seconds, with no fallen cones. This resulted in a considerable time
improvement of 35.29 seconds compared to the constant speed profile. The relative
improvement factor, calculated as the ratio of the local speed profile lap time to the
constant speed profile lap time, is 1.72. These results demonstrate the effectiveness
of local planning in optimizing the speed profile and reducing a lap time for the first
lap on unknown track.

The third approach explored optimal (global) planning, which considered a
broader scope of information and factors to determine the speed profile. This ap-
proach further enhanced the lap time to 42.29 seconds, with no fallen cones. The
time improvement achieved was 41.97 seconds compared to the constant speed pro-
file, yielding a relative improvement factor of 1.99. The globally optimal speed profile
algorithm knows the entire track a priori and thus it achieved the lowest time.

Figure 3.10 illustrates more detailed speed planning for the run. Figure 3.10a
shows the followed path by the car for the first lap. Based on a path curvature
see Figure 3.10b, the local and optimal speed profiles generated the speed plans in
Figure 3.10c. The constant speed approach of 5 m/s did not take into account the
path curvature. In Figure 3.10c we can see that the optimal speed plan is smooth,
while the local speed plan is rocky, because the speed profile was planned for every

38

3.4 Speed Planning Tests

frame, thus the speed in the next frame was always recalculated.
Figure 3.11 shows the executed speed plan for track in Figure 3.10a. It can be

observed that on the straight sections, the path appears more yellowish, indicating
higher speeds, while in the turns, the path color appears more bluish, indicating
lower speeds were reached.

40 20 0 20 40

0
5

10
15
20
25

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

d
[m

/s
]

Figure 3.11: Simulation of driving on Autocross 2 track using speed profile described
in Section 2.3.

Summing up the speed profile tests, the proposed local algorithm significantly
outperforms the conservative 5 m/s constant speed baseline. Moreover, the time
achieved by our local algorithm is not much higher than the time of the globally
optimal algorithm despite the track was not known. We further locally performed
tests on a curved track, evaluating both the local and globally optimal speed pro-
files. The time achieved by our local algorithm closely matched the globally optimal
algorithm time.

39

3.4 Speed Planning Tests

40 20 0 20 40

0

5

10

15

20

25

(a) Illustration of the used track for speed profile test and the followed path
during the run.

0 25 50 75 100 125 150 175
Distance from the start [m]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Cu
rv

at
ur

e
[1

/m
]

(b) Figure shows the curvature of the followed path. We can observe that the
higher curvatures corresponds to the turning section on the track.

0 25 50 75 100 125 150 175
Distance from the start [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

d
[m

/s
]

Optimal speed profile Constant 5 m/s speed profile Local speed profile

(c) Illustration of the different speed profiles.

Figure 3.10: Comparison of optimal, constant and local speed profiles tested in the
simulator. The optimal speed profile is taken from [3]. The local speed profile is
described in Section 2.3. The optimal algorithm knows the track before the run,
while the local algorithm does not know the whole track and plans the speed for the
section of the track that is in front of the car.

40

Chapter 4

Conclusion
This thesis proposed a local planning algorithm, which is a part of the algorithm
to complete the first lap for autonomous student formula. The presented algorithm
focuses on local path planning and speed profile generation, aiming to navigate the
autonomous formula efficiently on the unknown track. Both of path and speed
planning algorithms have been developed and evaluated in this study.

In Section 1 we introduced the problem of local planning for autonomous stu-
dent formula. We described the Formula Student competition, its rules and dynamic
events. The proposed local planning algorithm was designed for autocross event and
for the first lap of trackdrive. Then we reviewed the related work in planning for
autonomous vehicles and student formulas, it was found that various approaches
have been proposed, including global and local planning algorithms. The local plan-
ning algorithms, play a crucial role in determining the path and speed profile for
the car in dynamic environments. The proposed local planning was mainly designed
for DV.01 – the first autonomous electric student formula in the Czech Republic,
developed by eForce FEE Prague Formula, the team under the Faculty of Electrical
Engineering of the Czech Technical University in Prague.

Section 2 presented the algorithm for the first lap. It consist of perception,
planning and control nodes. We focused on the planning node and introduced the
local path planning in Section 2.2 and the speed planning in Section 2.3. The
designed path planning produces a path based on real-time sensor inputs. It uses a
center-line approach that prioritizes reliability over path optimality. This decision
was made on the understanding that the narrowness of the track and the potential
inaccuracies in perception and control algorithms can result in knocking down the
cones, leading to applying penalties to the lap time. After the generation of a center
line, we smooth it to find a more continuous line for the speed profile that benefits
from lower path curvature. The introduced local speed planning takes into account
track geometry, vehicle dynamics, its acceleration and deceleration limitations, but
neglect aerodynamic downforce and tire modeling. By adhering to these constraints,
the algorithm ensures that the car drives within its maximum safe speed limits
resulting in faster completion of the lap.

The proposed algorithms were validated in Section 3. The algorithms were eval-
uated through experiments and simulations in eForce simulator, considering various
scenarios and different tracks. The results demonstrated the successful navigation
of the car in the first lap. The local path planning algorithm showed the robust-
ness against cone detector inaccuracies, while the local speed profile demonstrated
a significant improvement compared to the conservative baseline approach, when
the formula drives with a constant speed of 5 m/s. Read Section 4.1 to know more
about the achieved results.

In conclusion, the thesis offers a valuable solution for local path planning and
speed profile generation in autonomous racing. It contributes to the local planning
algorithms designed for autonomous student formulas, and contributes to the ad-
vancement of autonomous vehicle technology. Further research can be conducted to
explore additional optimizations and improvements to the proposed algorithms.

41

4.1 Achieved Results

Section 4.1

Achieved Results
The validation process involved extensive testing in a simulator developed by Force
team see Section 3.2.

The path planning tests show that the proposed algorithm in Section 2.2 is ro-
bust. The average robustness of the local path planning is 0.98 on different tracks,
including Formula Student tracks, real tracks from the team testing and synthetically
generated tracks, see Table 2. The proposed algorithm is robust against cone detec-
tor inaccuracies: with a cone detector accuracy of 0.3 or higher, the car successfully
completed the first lap, even though some cones have been knocked down. However,
when the cone detector accuracy reached 0.7 or higher, the formula completed the
first lap without knocking down any cones see Table 3.

The speed planning tests demonstrate that the local speed planning presented
in Section 2.3 has better results than the conservative baseline approach of driving
constantly 5 m/s that was used by eForce for previous competitions. The results
indicate that the local speed profile outperforms the baseline approach by reducing
the lap time by 35 seconds, resulting in a relative improvement of 1.72 see Table 4.
This improvement is visually presented in Figure 3.10, which provides a detailed
illustration of the conducted test and includes a comparison with the optimal speed
profile.

The achieved results shows a significant step forward in the development of
DV.01 and hold promising prospects for achieving top positions in upcoming Formula
Student competitions.

Section 4.2

Future Work
In the future, there are several potential directions for further development and
improvement of the proposed algorithms.

As a result of mechanical issues encountered with DV.01, all proposed algorithms
were evaluated and tested in a simulated environment. Consequently, a critical
aspect of future work involves testing the algorithms on the real car in real-world
conditions to assess.

The future work for speed profile involves complex vehicle and tire modeling,
taking into account the aerodynamic downforce.

The subsequent area of future work concentrate around the upcoming 2023 race
season, where the eForce team is introducing the FSE.12, a new electric formula
that integrates both piloted and driverless capabilities. After conducting real-world
testing of the proposed algorithms on DV.01, the focus will shift towards integrating
and adapting these algorithms specifically for the FSE.12 formula. The eForce FEE
Prague Formula team is going to compete in four Formula Student competitions
during the 2023 race season, namely FS Switzerland, FS Italy, FS Czech, and FS
Germany. These events will provide valuable opportunities to showcase and further
refine the algorithms in the context of competitive racing scenarios.

42

Chapter A

Contents of the Attachment
After the consultations and discussions with the supervisor and eForce team mem-
bers, it has been decided that the thesis code will not be included in the attachment.
This decision is driven by the competitive nature of Formula Student. Sharing the
code openly gives other Formula Student teams access to it, thereby compromising
our competitiveness in the upcoming race season.

The attachment contains the videos with different tests see Figure A.1.

Tests for Table 2

Autocross 1.mp4

Autocross 2 with noise.mp4

Autocross 2.mp4

FS Czech 2022.mp4

FS Germany 2021.mp4

FS Italy 2022.mp4

Tests for Table 3

Autocross 2 with noise detect acc = 0.3.mp4

Autocross 2 with noise detect acc = 0.4.mp4

Autocross 2 with noise detect acc = 0.5.mp4

Autocross 2 with noise detect acc = 0.6.mp4

Autocross 2 with noise detect acc = 0.7.mp4

Autocross 2 with noise detect acc = 0.8.mp4

Autocross 2 with noise detect acc = 0.9.mp4

Autocross 2 with noise detect acc = 1.0.mp4

Tests for Table 4

Constant 5 ms speed profile.mp4

Local speed profile.mp4

Optimal speed profile.mp4

Figure A.1: Structure of attachment.

43

Chapter 5

References
[1] Formula student germany web page. https://www.formulastudent.de/pr/

pictures/. Accessed: 2023-05-24.

[2] Formula Student Germany. Fsg competition handbook 2023. https:

//www.formulastudent.de/fileadmin/user_upload/all/2023/important_

docs/FSG23_Competition_Handbook_v1.0.pdf, 2023.

[3] Michal Horáček. Finding the fastest trajectory for autonomous student formula.
Bachelor’s thesis, Czech Technical University in Prague, 2022.

[4] Formula Student Germany. Formula student rules 2023. https:

//www.formulastudent.de/fileadmin/user_upload/all/2023/rules/

FS-Rules_2023_v1.1.pdf, 2023.

[5] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[6] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

[7] Lydia E Kavraki, Pavel Svestka, Jean-Claude Latombe, and Mark H Over-
mars. Probabilistic roadmaps for path planning in high-dimensional configura-
tion spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[8] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical report, Computer Science Department, Iowa State University,
1998.

[9] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics Automation Magazine, 4(1):23–
33, 1997.

[10] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[11] Nitin R. Kapania. Trajectory planning and control of an autonomous race
vehicle. PhD thesis, Stanford University, 2016.

[12] Dhruv Shah, Kyle Stachowicz, Arjun Bhorkar, Ilya Kostrikov, and Sergey
Levine. FastRLAP: A system for learning high-speed driving via deep RL and
autonomous practicing. In ICRA2023 Workshop on Pretraining for Robotics
(PT4R), 2023.

[13] Juraj Kabzan, Miguel de la Iglesia Valls, Victor Reijgwart, Hubertus Fran-
ciscus Cornelis Hendrikx, Claas Ehmke, Manish Prajapat, Andreas Bühler,
Nikhil Bharadwaj Gosala, Mehak Gupta, Ramya Sivanesan, Ankit Dhall, Eu-
genio Chisari, Napat Karnchanachari, Sonja Brits, Manuel Dangel, Inkyu Sa,
Renaud Dubé, Abel Gawel, Mark Pfeiffer, Alexander Liniger, John Lygeros,

44

https://www.formulastudent.de/pr/pictures/
https://www.formulastudent.de/pr/pictures/
https://www.formulastudent.de/fileadmin/user_upload/all/2023/important_docs/FSG23_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/important_docs/FSG23_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/important_docs/FSG23_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf

and Roland Siegwart. AMZ driverless: The full autonomous racing system.
CoRR, abs/1905.05150, 2019.

[14] Solange D. R. Santos, José Raul Azinheira, Miguel Ayala Botto, and Duarte
Valério. Path planning and guidance laws of a formula student driverless car.
World Electric Vehicle Journal, 13(6), 2022.

[15] Jacob Olausson and Jacob Larsson. Optimal control and race line planning
for an autonomous race car. Master’s thesis, Linköping University, Vehicular
Systems, 2021.

[16] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[17] Roman Š́ıp. Visual detection of traffic cones for autonomous student formula.
Bachelor’s thesis, Czech Technical University in Prague, 2022.

[18] Daniel Štorc. Detection of traffic cones from lidar point clouds. Bachelor’s
thesis, Czech Technical University in Prague, 2022.

[19] Ondřej Kuban. Vývoj algoritmu vedeńı po trati pro autonomńı studentskou
formuli. Bachelor’s thesis, Czech Technical University in Prague, 2024. To be
defended.

[20] Sebastian Thrun, Michael Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pas-
cal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian
Koelen, and Pamela Mahoney. Stanley: The robot that won the darpa grand
challenge. Journal of Field Robotics, 23:661–692, 1 2006.

[21] Tomáš Roun. Navigation system for autonomous student formula. Master’s
thesis, Czech Technical University in Prague, 2021.

[22] Bo Persson, U. Tartaglino, O. Albohr, and Erio Tosatti. Rubber friction on wet
and dry road surfaces: The sealing effect. Physical Review B, 71, 03 2005.

[23] Jinhyun Park, In Gyu Jang, and Sung-Ho Hwang. Torque distribution algo-
rithm for an independently driven electric vehicle using a fuzzy control method:
Driving stability and efficiency. Energies, 11(12), 2018.

[24] eForce FEE Prague Formula. Engineering design report: Aerodynamic devices.
2018.

[25] Jan Filip. Trajectory tracking for autonomous vehicles. Master’s thesis, Czech
Technical University in Prague, 2018.

45

	Introduction
	Thesis Structure
	Formula Student
	Autocross Event
	Related Work
	DV.01
	Thesis Contribution

	Algorithm for the first lap
	Overview
	Local Path Planning
	Path Planning
	Additional Cones
	Sort and Filter Cones
	Next Center Point
	Cones in Front of the Car
	Path Smoothing

	Local Speed Planning
	Circle of Forces
	Path Curvature
	Safe Speed
	Speed Profile

	Experiments
	Data
	Simulator
	Path Planning Tests
	Speed Planning Tests

	Conclusion
	Achieved Results
	Future Work

	Contents of the Attachment
	References

