Bachelor Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of cybernetics

Semantic Segmentation for Autonomous
Student Formula Race Track Localization

Josef Capiirka

Supervisor: Ing. Jan Cech, Ph.D.

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science
May 2023



ii



U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Caplrka Josef Personal ID number: 499321
Faculty / Institute:  Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics
Study program: Open Informatics
L Specialisation: Artificial Intelligence and Computer Science
J
[l. Bachelor’s thesis details
~
Bachelor’s thesis title in English:
Semantic Segmentation for Autonomous Student Formula Race Track Localization
Bachelor’s thesis title in Czech:
Semanticka segmentace pro nalezeni trati zavodu autonomni studentské formule
Guidelines:
The race course of the autonomous student formula is delineated by traffic cones placed along the borders. The previous
approach consisted in two steps: (1) detecting cones in the image, and subsequently (2) heuristically finding the inner and
outer parts. In the case of a more complex track and potential detector failure, the segmentation into inner and outer parts
may be ambiguous. Design a method that formulates the problem as a model-based predictor that provides segmentation
into inner and outer parts of the race track in the image.
Evaluate the predictor quantitatively using the ground-truth annotated dataset. Compare the proposed predictor with the
baseline approach (cone detections + track localization).
Bibliography / sources:
[1] J. Redmon, S. Divvala, R. Girshick, A. Farhadi.You only look once: Unified, real-time object detection. In CVPR, 2016.
[2] Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation,
MICCAI, 2015.
[3] Swapnil Waykole, Nirajan Shiwakoti, Nirajan Shiwakoti, Peter Stasinopoulos. Review on Lane Detection and Tracking
Algorithms of Advanced Driver Assistance System. Sustainability 13(20):11417, 2021.
[4] Roman Sip. Visual Detection of Traffic Cones for Autonomous Student Formula. Bachelor's Thesis, Czech Technical
University, FEE, 2022.
Name and workplace of bachelor’s thesis supervisor:
Ing. Jan Cech, Ph.D. Visual Recognition Group FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 06.02.2023 Deadline for bachelor thesis submission: 26.05.2023
Assignment valid until: 22.09.2024
Ing. Jan Cech, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Péata, Ph.D.
k Supervisor’s signature Head of department’s signature Dean'’s signature )

[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



iv



Acknowledgements

I would like to thank my supervisor, Ing.
Jan Cech, Ph.D., for the valuable guid-
ance and advice he has given me through-
out the year. I would also like to express
my gratitude to all members of the eForce
Driverless team. Last but not least, I
want to thank my family for their support.
The access to the computational infras-
tructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Re-
search Center for Informatics” is also
gratefully acknowledged.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, May 26, 2023



Abstract

The thesis presents a race track visual
localization method for Autonomous Stu-
dent Formula. The track is delineated
by traffic cones. We propose three dif-
ferent approaches for track localization:
Segmenting the race track with a segmen-
tation mask, predicting the boundaries of
the race track with direct regression, and
predicting the boundaries with heatmap
regression. All of these approaches uti-
lize convolutional neural networks. The
annotated dataset used for training was
collected specially for this problem. We
quantitatively evaluated the accuracy of
the models and compared them to the
baseline approach. The baseline first de-
tects the traffic cones by YOLO detector
and then uses a heuristic algorithm to
find the track. We show that localizing
the race track with a segmentation mask
produced by the UNet model achieves ac-
curacy 0.93 IoU. The segmentation with
our UNet model often outperforms the
baseline in complicated tracks.

Keywords: Race track localisation,
Semantic segmentation, Formula Student
Driverless, UNet, ResNet
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Abstrakt

Tato prace se zabyva metodou pro loka-
lizaci vnittku trati pro autonomni stu-
dentskou formuli. Trat je ohrani¢ena do-
pravnimi kuzely. Navrzeny byly t¥i rtuzné
pristupy pro lokalizaci trati: Segmentace
trati se segmentacéni maskou, predikce hra-
nic trati s primou regresi a predikce hranic
trati pomoci heatmap. VSechny tyto me-
tody vyuzivaji konvolu¢nich neuronovych
siti. Pro trénovani siti byl pouzit nami se-
sbirany anotovany dataset. Kvantitativné
jsme vyhodnotili presnost modeli a po-
rovnali je se stévajicim pristupem. Sté-
vajici pristup nejprve detekuje dopravni
kuzely YOLO detektorem a nasledné po-
uziva heuristicky algoritmus pro nalezeni
trati. V praci ukazujeme, ze lokalizace
vnittku trati za pomoci segmentacnich
masek vytvorenych UNet modelem casto
prekonéava baseline metodu na kompliko-
vanych zavodnich tratich.

Klicova slova: Lokalizace zavodni trati,
Sémanticka segmentace, Formula Student
Driverless, UNet, ResNet

Preklad nazvu: Semantickd segmentace
pro nalezeni trati zavodu autonomni
studentské formule
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Chapter 1

Introduction

This bachelor thesis presents a visual predictor for the inner part of the race
track of the Formula Student Driverless competition. The author of this
thesis is eForce Driverless team member. In the competition, traffic cones
delineate the race track as can be seen in Figure [1.1. Unlike many teams that
use LiDAR or YOLO-based detectors to detect cones and then apply heuristic
algorithms for race track localization, our proposed methods segment the
inner part of the race track in a single processing step on the image. The
segmentation of the race track could be used to navigate the vehicle during
autonomous driving.

The structure of the thesis is as follows. In Chapter 1, we provide a brief
introduction of the Formula Student competition and the eForce Formula
Student team. Next, we discuss how the current autonomous pipeline works,
and since the current pipeline has its limitations, we discuss them and suggest
how we can improve them with the proposed localizer of the race track. In
Chapter 2, we provide a theoretical background that is needed to understand
the details of the implementation of the proposed methods used for the
localization of the track. The methods used to localize the race track are
described in Chapter 3. In Chapter 4 we describe the dataset used for training
the localizer. Next, the training process of the proposed methods is discussed
in Chapter 5. The results of the proposed methods are shown in Chapter
6. Finally, in Chapter 7, we discuss the advantages, limitations, and future
improvements of our proposed approach.



1. Introduction

Figure 1.1: eForce Driverless formula during racing [I]

. 1.1 Formula Student

First, we will briefly describe the Formula Student competition, since the
race track localizer is designed for this competition. Formula Student is
an international engineering competition that focuses on the design and
construction of student formulas. Teams from all over the world develop their
own formulas to participate in this challenging competition. In this section,
we will describe Formula Student Driverless competition disciplines and their
rules.

B 1.1.1 Static disciplines

The competition is not focused only on racing. It consists of static disciplines
and dynamic events. Static disciplines consist of 3 parts: an engineering design
event, a cost report, and a business plan. The purpose of the engineering
design event is to present the proposed design of the car, show knowledge
about the proposal and justify steps that led to the proposal. The cost report
provides a detailed description of the expenses involved in designing and
building the formula. The aim of the business plan presentation is to create
and present a business model into which potential investors could invest.



1.1. Formula Student

Figure 1.2: Photography of teams participating in the Formula Student Czech
Republic [2]

B 1.1.2 Dynamic events

The dynamic events take place on the race track. The boundaries of the track
are circumscribed by 4 types of traffic cones: Big orange cones, small orange
cones, blue cones, and yellow cones. Each type of cone has its specific purpose
shown in Figure|1.3] where we can see the race track of the acceleration event,
and in Figure [1.4, where we can see the race track of the skidpad event. The
dynamic events consist of

1. Acceleration event,
2. Skidpad event,
3. Trackdrive event,

4. Autocross event.

The shape of the race track in the Acceleration and the Skidpad discipline is
defined in the rules and so is known in advance, whereas in Autocross and
Trackdrive disciplines, the shape of the race track is previously unknown. The
tracks for these disciplines are more complex. The aim of the acceleration
event is to pass a 75-meter straight track and successfully stop the car in the
stop area as can be seen in Figure The distance calculated between the
left boundary and the right boundary of the race track is at least 3 meters.
In the Skidpad event, the car first passes twice through the right part of the

3



1. Introduction
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Figure 1.3: Acceleration event [3]

track, then twice through the left part of the track. Finally the car stops in
the stop area as can be seen in Figure 1.4
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Figure 1.4: Skidpad event [4]

As we said, even though the distances between the cones are specified, the
shape of the track in the Autocross and Trackdrive event is unknown prior
to the race. The Trackdrive event is an one lap race. Its purpose is to test

4



1.2. eForce Driverless

the reactive behavior of the driverless system, whereas Autocross consist of
10 laps which allows the use of the SLAM algorithm. The overall score of
dynamic disciplines is affected by the number of cones hit during the race
[11].

. 1.2 eForce Driverless

The first team in the Czech Republic to build an electrical student formula was
the eForce FEE CVUT. In 2020, eForce introduced the first driverless student
formula in the Czech Republic, eForce DV.01 and successfully participated in
many races. As there are new demands from the automotive industry, eForce
is currently building FSE.12, an electrical monopost that will have integrated
autonomous functionality. Since our localizer will be deployed in the eForce
driverless formula, we will now briefly explain the autonomous pipeline of the
formula DV.01 2022, mainly the perception and path-planning node, because
they are important in our thesis.

B 1.2.1 Perception

Unlike many teams that use LiDAR for cone detection, our pipeline consists
of a camera-based perception system. Information about the vehicles sur-
roundings is taken by a Stereolabs ZED 2 camera. The approach of most
teams that use a camera for vision is to detect bounding boxes of cones
or predict segmentation masks of cones. In our current system, a single
camera is used. The RGB images are forwarded to a cone detector node
that predicts the cone’s bounding boxes with a real-time object detection
YoloV3-based algorithm[12]. Then the estimated cone centers are computed
from the predicted bounding boxes. After estimating the cone center, the
center points are projected to the local vehicle coordinate system using known
homography mapping. The projection matrix used for this transformation is
obtained from the camera calibration process[12]. The cone detections can
be seen in Figure [1.5.



1. Introduction

Figure 1.5: Detected bounding boxes of cones

B YOLO

You Only Look Once (YOLO) is an object detection algorithm introduced in
2016. In a single forward pass, the network produces bounding boxes with
the corresponding class probabilities and labels of the bounding box. One
of its main advantages is its quick processing of image, so it can be used for
real-time object detection [13].

B 1.2.2 Path planning

The input to the path planning algorithm are the projected center points of
the detected cones. The heuristic algorithm iteratively connects the respective
blue and yellow cone centers that are closest in the scene. The algorithm
then reconstructs the path from those cones, which can be seen in Figure
where the boundaries of the race track are represented by blue and yellow
lines. The centerline is represented by a red line. In Figure we can see
the boundaries of the race track obtained from planning algorithm projected
into image by applying inverse homography mapping.

The planning algorithm has 2 modes. The reactive mode is activated
while the car drives in the first round and observes information about its
surroundings. After the completion of one lap, thus collecting data about car

6



1.2. eForce Driverless

surroundings, the car is able to switch to an optimal path-planning algorithm
with a speed profile as the map of the race track is known [I4]. This year, the
speed profile for the first lap was implemented by Dmytro Khursenko [15].

Figure 1.6: Projected center of cones and centerline points into local car coordi-
nates

Figure 1.7: Image from test day in Milovice

B 1.2.3 Limitations of the current approach and how to
overcome them

The reason why we decided to design a race track localizer is that the baseline
approach may fail in cases where the detector misses detecting some cones

7
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or the heuristic planning algorithm predicts the path incorrectly in case of
the tracks of greater complexity, as can be seen in Figure The objective
of this thesis is to design a reliable localizer that is trained end-to-end from
in-race images. Thus the localizer learns the prior distribution of the track
and does not rely on a fragile connection between the bounding box detector
and the heuristic estimator. Our proposed methods will utilize convolutional
neural networks because they have the capability to learn higher-level semantic
relations and thus are able to segment complex objects.

(a) : Baseline approach (cone detector + path-planning)

(b) : Our proposed method producing segmented inner part of the track

Figure 1.8: Comparison of baseline approach and our proposed method



1.2. eForce Driverless

B 1.2.4 Thesis contributions

In this thesis, we describe three end-to-end training methods for segmentation
of the inner part of the race track. All of these methods use CNNs. Since
the training dataset was not available for this problem, we collected and
annotated images for training the models. We then trained the models,
evaluated them on an independent test dataset and compared them with the
baseline method.
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Chapter 2

Theoretical background

This Chapter will cover the theoretical background that is needed for under-
standing the implementation part. First, we will describe the neural network
architectures that will later be used for the localization of the race track. We
will describe the architecture of UNet and ResNet neural network. Lastly, we
will explain what fine-tuning is since it was also utilized in our work.

B 2.1 Semantic segmentation

Semantic segmentation is a computer vision problem whose task is to divide
an image into segments where each segment corresponds to some predefined
class. It is used widely in medical imaging in organ segmentation or tumor
detection. It is also possible to deploy a semantic segmentation in the case
of autonomous driving for track prediction[I6]. The main purpose is to
semantically distinguish each pixel in an image and assign it a class as can
be seen in Figure [2.1

Nowadays, the common approach is based on deep learning architectures.
Semantic segmentation is often performed with fully convolutional neural
networks or transformer-based architectures[17].

11



2. Theoretical background

Figure 2.1: Example of semantic segmentation result [5]

B 2.1.1 U-Net architecture

U-Net is a fully convolutional neural network used for semantic segmentation
[18]. The architecture is shown in Figure UNet uses the encoder-decoder
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Figure 2.2: U-Net architecture [0]

approach. The left part of the U-shaped architecture is called the contracting
path (encoder) and the right part is called the expansive path (decoder). The
first four layers in the contracting path consist of two 3 x 3 convolutions
and after each convolution, the ReLu function is applied. As can be seen in
Figure the max pool operation is then performed which results in a loss of
spatial resolution. The output of the contracting path are low-level features

12



2.1. Semantic segmentation

that lack spatial resolution. Since we need to obtain a segmentation mask
in the original input resolution, we need to gain back the spatial resolution.
The expansive path creates a segmentation mask from low-level features.
One of the advantages that UNet use are skip connection. Skip connections
allow forwarding the output from the encoder layer to the decoder layer (the
grey lines in Figure . Each layer in the expansive path consists again of
3x3 convolutions, after them the ReLu function is called. The transposed
convolutions and forwarded data from skip connections help to increase spatial
resolution[18].

B 2.1.2 ResNet architecture

For predicting boundary points of the race track we used ResNet, so we will
also describe its architecture in more detail. ResNet is a very deep feedforward
neural network with different numbers of layers. [I9] There are many ResNet
variants that are distinguished by the number of layers: ResNet 18, ResNet34,
ResNet 50, ResNet 101, and many more. The image describes the architecture
of ResNet 34.

34-layer residual

image

3x3 conv, 256, /2

¥

7x7 conv, 64, /2

pool, /2

14

avg pool

Figure 2.3: ResNet architecture [7]
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2. Theoretical background

Before ResNet was introduced, deep neural networks suffered from bad
performance due to vanishing and exploding gradients. Since in deeper
networks after many layers the gradients were zero due to chain rule and
backpropagation, the weights were not efficiently updated. ResNet tackles
this problem and introduced Residual Blocks.

B Residual block

X

layer
F(x) ! identity

layer

x + F(x)

Figure 2.4: Residual block [§]

The residual block allows the information to be passed from the beginning of
the layer to the end. This forwarding tackles the vanishing gradient problem
so deeper networks do not suffer from vanishing or gradient problems anymore.
The residual block with identity mapping can be seen in Figure 2.4, however,
convolutional mapping and other types of mappings are implemented.

22 Fine-tuning

Since in our proposed method, we utilized fine-tuning to obtain better results,
we will briefly explain its underlying concepts. Fine-tuning is a commonly
used method for obtaining better performance in neural networks. As there
are cases when the dataset is not large enough, the idea is to pre-train the
model on a dataset of similar characters. Since the datasets are similar,

14



2.2. Fine-tuning

the network could learn features that could be useful for the target dataset.
Typically, when the pre-trained weights are used, most of the layers of the
network are set as untrainable, and only n last layers are set as trainable [20].

15
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Chapter 3

Proposed methods

In this Chapter, we will describe the methods that we designed and imple-
mented for the localization of the race track. We will explain three different
approaches.

B 3.1 Prediction of segmentation masks

One of the methods that can be used for the localization of the race track is
to classify each pixel in the image as either the outer part of the race track
or the inner part of the race track. The approach can be understood from
Figure [3.1, where Figure [3.1b| contains a segmentation mask for Figure
On the mask, the white pixels represent the inside of the track and the black
pixels represent the outside of the track.

B 3.2 Prediction of the race track boundary
coordinates

The alternative approach is to formulate the localization of the race track
as a regression problem. It is possible to predict points that correspond
to the boundaries of the race track, thus approximating the boundary as
a piecewise linear curve. In principle, this approach is an easier problem

17



3. Proposed methods

(a) : Image captured during autonomous driving

(b) : Corresponding mask

Figure 3.1: Illustration of segmentation approach

than the production of a segmentation mask since only 20 points for each
boundary of the race track need to be created. In contrast, the segmentation
mask evaluates every pixel in the image. We provide a illustration of which
points are predicted in this method for easier understanding. In Figure (3.2
the blue line represents the left boundary of the race track and the yellow
line represents the right boundary of the race track. The points that are
being predicted are formed by the intersections of the race track boundaries
with the horizontal grey lines. These points are highlighted with blue and
yellow points in the image. For further explanation, it is important to note
that the values on the y-axis of the blue and yellow points are defined by the
horizontal segments, so our method predicts only the values of the points on
the x-axis. If the horizontal gray line does not intersect with the blue line,
the x coordinates of the ground truth points are set to 0, i.e. the points lie on
the left edge of the image and, correspondingly, for the yellow line, the value
of x coordinates is set to width of image, so the points lie on the right edge of
the image. From the obtained predicted points, it is possible to reconstruct
the left boundary and the right boundary of the race track. It is also possible
to create a polygonal mask similar to the mask in Figure 3.1b.

There was a problem with the track localization via segmentation masks
that meant that the track was sometimes erroneously detected outside of
the delineated zone, splitting the track into two sections. This problem is
illustrated in Figure The prediction of track boundaries eliminates that

18



3.3. Prediction of the race track boundary via heatmap regression

Figure 3.2: Ground truth labeled image. The blue and yellow lines are ground
truth labels. The corresponding blue and yellow points are being predicted in
this method. The grey lines are added for illustration.

problem by ensuring that the track does not split, since for each grey line from
Figure [3.2, we can predict only one value on the x-axis for each boundary.

Figure 3.3: Segmented race track with mispredicted pixels in the left part

B 3.3 Prediction of the race track boundary via
heatmap regression

To clarify what heatmap regression is, let us briefly describe this method. In
heatmap regression problems such as facial landmark detections, instead of
predicting the exact coordinates of the landmark points, the heatmap for each
landmark is predicted, reflecting the probability of occurence of the point.

In Figure [3.4]in the leftmost image, we can see the annotated image with
facial landmarks. The other five images contain corresponding heatmaps for
each facial landmark. Typically, the heatmaps are generated from ground
truth annotated points by applying a Gaussian kernel, and the value of each
pixel in the image can be interpreted as a confidence that the landmark is
located at that position[21]. It has been shown that, in many cases, heatmap
regression methods outperform direct regression methods and achieve state-of-
the-art results [21]. Because of that, we will utilize this method to potentially

19



3. Proposed methods

improve the accuracy of the predictions.

S YW ¥ . ....

Figure 3.4: Ground truth annotated image with five heatmaps [9

Now we will explain how we predict the heatmaps in the problem of
predicting boundaries of the race track. For this, we will also use a visual
approach.

Instead of predicting 2n values on the x-axis as we presented in the pre-
vious section, in this approach, we predict n one-dimensional heatmaps for
each boundary of the race track. As in the previous method, we can ap-
proximate the race track boundaries with piecewise linear lines. The single
one-dimensional heatmap for the left boundary of the track can be seen in
Figure [3.5, where we rescaled the height of the image for clearer visibility.

Figure 3.5: One dimensional ground-truth heatmap for the left boundary of the
track representing the confidence of pixels being on the position of left boundary
of the race track

Each one-dimensional heatmap has a predefined value on the y-axis in the
image and these y values of the one-dimensional heatmaps are the same as
the y values of the grey lines in Figure 3.6, Figure [3.7| displays the unified
heatmaps in one image. The focal points of the heatmaps are at the same
positions in the image as predicted points from the method, where we predict
exact x-axis coordinates of the points in the image. For clarification, when
there is no intersection between the boundary of the race track and the grey
line, the heatmap corresponding to that grey line contains only zero values.
Overall, in this method, we predict a tensor of shape (20 x width of the image)
for each boundary of the race track.
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3.3. Prediction of the race track boundary via heatmap regression

Figure 3.6: Ground truth annotated image

Figure 3.7: Merged ground truth heatmaps into one image
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Chapter 4

Data preparation

In section 4.1, we describe the dataset we use for training the models. In
section 4.2 we describe the annotation process and how we utilized a semiau-
tomatic labeling tool to speed up the labeling process.

. 4.1 Dataset

There are two possible approaches how to detect the cones: one of them is
to detect the bounding boxes of the cones, and the other is to semantically
segment the cones. For these approaches, the publicly available FSOCO
dataset can be used, which contains a large dataset with corresponding
annotations [I0]. The author of this thesis conducted research and found no
papers that dealt with the segmentation of the race track of Formula Student
Driverless competition in a similar spirit. Also, there is no publicly available
annotated dataset for this problem. Due to the unavailability of the labeled
dataset, we needed to create our own dataset and annotate it. Now we will
describe the datasets that we collected.

B 4.1.1 eForceSeg dataset

The logging system of the eForce Driverless formula saves the RGB frames
from races, so it is possible to retrieve those frames from logs and annotate

23



4. Data preparation

those frames. The logger saves 9 frames per second during racing. For our
purposes, we included every fifth frame from the log files. It was mainly
because the frames collected at a similar time have very high similarity, hence
will not provide significant information for the training of the network. The
next reason is that labeling is a time-consuming process. Because we will
later on use other datasets for semantic segmentation, for the distinction
between these datasets, we will reference this dataset as the eForceSeg dataset.
Overall, the eForceSeg dataset contains over 900 RGB images in resolution
1280x720. All images were taken from the ZED 2 camera mounted on the
main hoop of the car.

Figure 4.1: image from the eForceSeg dataset captured during Formula Student
Auto Cross event in Italy

B 4.1.2 FSOCO dataset

FSOCO dataset (Formula Student Objects In Context) is a publicly available
dataset of images containing cones from the Formula Student Driverless
competition. Since annotating the images is a tedious task for newer teams,
multiple Formula Student teams provided their dataset to help other teams
to develop a perception system. The FSOCO dataset consists of 11 572
images with corresponding bounding boxes and 1517 images annotated with
segmentation masks of traffic cones [10]. The majority of the images in the
FSOCO dataset consists of images that do not contain a race track, so these
images are not important for our task as we need only the images that contain
the race track. The images are collected from different viewpoints. A typical
image representing the FSOCO dataset can be seen in Figure and In
these images, there are cones that do not represent the race track.
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4.1. Dataset

Figure 4.2: image from FSOCO dataset provided by Wisconsin team [10]

Figure 4.3: image from FSOCO dataset provided by Tallin team [10]
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4. Data preparation

Figure 4.4: image from FSOCO dataset provided by AMZ team that form the
race track [10]

After we filtered out useless images, we identified over 300 images that
represent the race track and hence could be used.

B 4.1.3 eForceSeg and FSOCO dataset distribution

The eForceSeg dataset comprises the images collected during the test days
at the airfields in Milovice and Panensky Tynec, as well as during the race
days that were held at the autodrome in Most and Varano de’ Melegari in
Italy. Since the dataset contains images from only four race tracks, ideally,
we would like to enlarge the dataset so that the dataset contains images
from many different places collected under different conditions. Based on
the visual analysis of eForceSeg dataset, we have observed that there are
not enough images capturing race turns. Also, the eForceSeg dataset does
not contain many images with cones that are not a part of the track. That
could potentially lead to mispredictions when we test our localizer on a more
complex race track that contains cones that are randomly distributed near
the track. More than 200 images from the eForceSeg dataset were gathered
from the Acceleration event. These images are not very diverse, hence useful,
since the race track is straight.

Despite the smaller size of the FSOCO dataset in comparison to our
collected eForceSeg dataset, the FSOCO images are more diverse, contain
images of various weather conditions and different mounting angles of the
camera. Also, the FSOCO dataset contains more images on which the race
track has randomly distributed cones nearby that are not part of the track.
These images are useful, because the model needs to learn to filter out cones
that are not part of the race track. Since the upper part of the images
contains only the sky, we crop these parts.
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4.1. Dataset

B 4.1.4 Increasing image diversity by manual collection

During the winter of 2022 and spring of 2023, we were unable to collect images
of the race track from the formula, because the car was not functional due to
an accumulator failure. Since the cardinality of the eForceSeq dataset and
the used part of the FSOCO dataset is still relatively small, to enhance the
diversity of the dataset, we gathered and annotated more than 400 images.
Those images were not taken from the camera mounted on the formula.
Instead, we took some photographs using a mobile phone camera from a
similar angle to the images captured by our formula. During the collection of
the images, we specially focused on building race tracks of greater difficulty
with randomly distributed cones of various colors near the race track. We
also collected the images that contain turns to improve the accuracy of the
model. Because the images we collected in this dataset contain race tracks
that could potentially be challenging for our model, we added them to the
training set. In Figure 4.5 we can see images collected in Strahov.

(a) : Image containing yellow and blue
cones that are not part of the race track
but are close to it

(b) : Image containing race turn delin-
eated by yellow cones. In the distant part,
there are small orange cones that are not
part of the race track

Figure 4.5: Images collected in Strahov
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B 4.1.5 Data augmentation

Data augmentation is a regularization tool used to reduce overfitting. It
consists of increasing the dataset size artificially by applying random trans-
formations [22]. Because our dataset is relatively small, data augmentation
could improve the accuracy of the model. Image transformations such as ran-
dom cropping, horizontal flipping, and luminant transformations were tried.
However, we did not use random cropping since there are cases when this
method produces semantically incorrect masks as can be seen in Figure |4.6b
where the image was created by random cropping of image Even though
image |4.6b| contains no cones in the distance, the race track is annotated
there, which is undesirable.

(a) : Image containing yellow and blue cones that are not part of the race track but
are close to it

(b) : Image containing race turn delineated by yellow cones. In the distant part, there
are small orange cones that are not part of the race track

Figure 4.6: Images collected in Strahov

To increase the number of images containing race turns, manual cropping of
images was performed. Since the color of the cone is an important feature in
the image for the segmentation of the race track, we did not apply horizontal
transformations. The luminance transformations that simulate the weather
changes were retained to obtain better results in different weather conditions.
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B 4.1.6 Synthetic dataset

In order to obtain better accuracy of the model, it has been proposed to
pre-train the network on a large synthesized dataset. As we stated before in
section 3.2 about fine-tuning, we argue that the network could learn important
features in initial layers such as cone shape and color of the cone that could
be transferred and reused to help improve the accuracy of our model. Also,
the pre-trained model could learn to filter out cones that do not form the
race track.

The dataset that we use for pre-training the model was collected from the
eForce Driverless simulator. The simulator was implemented by members
of the eForce Driverless group. However, the author of this thesis did not
contribute to it.

Figure 4.7: Screenshot taken from eForce driverless simulator

There are several advantages of having a driverless simulator.

1. Testing,
2. Safety,

3. Data generation.

The first advantage is the possibility to test the algorithms such as path
planning before deploying them on the actual formula. This allows us to
detect bugs efficiently, as the process is simulated. Effective testing of software
is related to safety. Finally, with the simulator, it is possible to collect a large
set of data that can then be used to train neural networks.
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B Collection of synthetic images

The simulator has two modes: a manual and an autonomous. Since we would
like to automate the process of collecting synthetic images, we utilized the
autonomous mode. We would like to have a diverse synthetic dataset where
we have full control over the generation of the images. To collect various
synthetic images, it is necessary to create various maps of the race track. For
race track generation, we used the implementation of procedural race track
generation available on GitHub, which is released under MIT license [23]. We
slightly modified the implementation so that the script generates cones that
form the race track and also generates the cones that are not related to the

race track, so that the model learns to ignore the cones that do not form the
race track.

e ® 9 o o000 @ 0 0
s o
® °
o o
®

°
°

o
* o
° [}
o o
o
® ® o o
[} ° o} ®
o ° s
.o. o .;

Figure 4.8: Generated race track

Then the image collection from eForce driverless simulator comes into play.
The frames from racing were randomly captured and information such as car
position and the position of visible cones are saved to be able to annotate

the collected images fully automatically. With this method, we captured over
20,000 images.
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4.2. Annotation process

B 4.2 Annotation process

This section is divided into two parts. First, we will describe the annotation
process of the real-world images. Then, we will show how we annotated the
synthetic images.

B 4.2.1 Annotation of real-world images

After we collected the images, the labeling process began. We started to
annotate the images with the segmentation masks representing the inner part
of the race track because first, we did not assume to use any other approach
than prediction of segmentation mask. Later, for localization of the race track
boundaries, the segmentation masks were manually converted into 2 labels:
left boundary and right boundary of the race track. These labels are shown in
Figure |3.2| with blue and yellow line. Here we will describe how we annotated
images with the segmentation masks. We tried various segmentation tools
such as Label Studio or the CVAT. Because of its user-friendly interface,
we have chosen to annotate more than 100 images manually in the CVAT
annotation cloud-based tool. We focused on parts of the race track in the
image that are near the formula so even though there was a track defined 30
meters away from the formula that could be segmented, we did not annotate
those parts for several reasons. First, the distant parts of the race track are
sometimes difficult to recognize, since the cones in distant parts of the images
are formed by only a few pixels. Secondly, there are some images in which
the distant part of the track is ambiguous. The third reason is that distant
parts of the race track are not important for a safe ride. Lastly, this approach
enabled us to annotate the images faster. However, this process of annotating
the images is slow, since we need to annotate the dataset manually. Ideally,
we would like to use some semiautomatic annotation tool for labeling the
images.

First, we utilized the implementation of the eForce cone detector and cone
center estimator to detect cones on the images and obtain the centers of the
cones. In our first version of the algorithm for semiautomatic annotations,
we estimated the inner part of the race track heuristically, by comparing the
distances of the cone centers that were obtained from cone detector directly
from the camera image, so no transformations were applied.

As the CVAT annotation tool is an open source project released under
the MIT license, we could implement this functionality into it. However,
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since CVAT is quite a large project and contains a lot of code, we searched
for a smaller project due to simplicity and clarity. After some research, we
found a Pangolin labeling tool written in PyQt5 [24]. It provides polygonal
segmentation and bounding box labeling. The labeled data in the Pangolin
tool can be exported in PNG, XML, and YoloV3 format. This graphical tool
is also released under an MIT license, so we can implement our semiautomatic
labeling functionality into it.

Pangolin x
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Figure 4.9: Pangolin annotation tool

However, sorting cones directly from bounding box positions does often
produce incorrect results. If the image contains cones that do not form the
race track, this approach will fail as this heuristic approach does not occlude
any bounding boxes that are not part of the track. The distance between
cones directly from the image is not a good metric for sorting since the task
of searching for the nearest cone in the image is not equivalent to the task of
searching the nearest cone from the bird’s eye.

The rest of the eForceSeg dataset, that is, the next 800 images, was
annotated with this approach and incorrectly annotated masks were manually
corrected. For annotation of the part of the FSOCO dataset were used
the ground-truth bounding boxes annotations. We heuristically created the
polygonal shape representing the race track from those annotations. Now, we
will describe our method to increase the efficiency of semiautomatic labeling.
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4.2. Annotation process

B Integrating the path planning algorithm in order to improve
semiautomatic labeling efficiency

The second version of the semiautomatic annotation tool enhances the labeling
the race track by utilizing a path-planning algorithm to obtain a polygonal
segmentation mask. In this approach instead of using distances of cone
centers taken directly from images, we projected the center of cones to local
car coordinates and used a path-planning algorithm from which we can
obtain the borders of the track by iteratively finding the closest cones in
the scene. It is important to point out that the path-planning algorithm
is not the author’s work. At this point, the semiautomatic labeling tool
utilizes the detections from the cone detector from which the cone centers are
estimated. The centers are then projected with homography mapping onto
local car coordinates. After obtaining the transformed centers of the cones,
the algorithm for planning the path can give us the boundaries of the track,
from which we can easily create a polygon.

This approach produces significantly better results as the planning algo-
rithm has the capability of filtering out cone centers that are not part of the
track most of the time. Still, some labels needed to be manually corrected,
when the path planning algorithm fails or the cone detector is unable to
detect some cones. However, with this approach, labeling is many times faster.
With this method, it is a lot easier to collect and get corresponding ground
truth labels from the images. We used this method later on for annotating
the test dataset. Now that this tool is available, it will be much easier for us
to annotate the data we collect in the future.

B 4.2.2 Annotation of synthetic images

As we previously mentioned in subsection 4.1.6 about the synthetic dataset,
the frames from racing were randomly collected during simulations, and
the information such as the position of the car in the simulator and the
position of the visible cones were saved into JSON. From those saved data is
then possible to annotate the images fully automatically with searching for
correspondence between ground truth race track map and position of visible
cones on the image. With this algorithm, we captured over 20,000 images
with corresponding annotations.
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Chapter 5

Implementation part

In this section, we will describe the training process, the search for hyperpa-
rameters, and the choice of appropriate loss function for each approach. We
trained three different models:

1. UNet model predicting segmentation mask,
2. ResNet model predicting coordinates of the race track boundaries,

3. ResNet model predicting heatmaps, from which we can obtain the race
track boundaries.

First, in section 5.1 we will describe the implementation parts that are
common for each training process.

B 51 Common part

The dataset for training and validation is split randomly into training (90%)
and validation (10%) subsets. Except for the transformations we described
in the data augmentation section, no other transformations were used. This
ensures that more attention is given to the closest parts of the track with
respect to the formula and the more distant track section is not so important.
In our code, we utilized Weights & Biases library for logging and visualization
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[25]. The main advantage of WandB is that it is possible to create new graphs
from logged values and interactively view them. One of many tools that
W&B provides and we utilized it is Sweeps. With this tool, it is possible to
automatically try different hyperparameter values which are chosen from a
predefined JSON configuration. The training was performed at the Research
Center for Informatics clusters at CTU Prague on the graphics card Tesla
V100-SXM2-32GB.

B 52 UNet training

For training, we modified an implementation of U-Net on GitHub that was
implemented for the Carvana car masking challenge [26] The code is using
the PyTorch framework and is provided under a GPL3.0 license. The dataset
used for training and validation consists of eForceSeg, FSOCO, and Strahov
datasets. The eForceSeg dataset, after cropping the part of the images that
contain the sky, has a resolution of 1280x720. However, the FSOCO and
Strahov dataset consists of many images of different resolutions (1920x 700,
1920% 1080, 1000x750). Since we would like to use a mini-batch size bigger
than one, after visual analysis, we decided to rescale all images to the resolution
512x 384 with bicubic interpolation, which preserves the shape of cones so it
is still easy to segment the track.

To speed up training, we scaled the image to 0.5 of the resolution so the
shape of matrix that is fed into the netTwork is (256, 192). With this shape,
the max batch size due to memory limits is 32.

The mispredictions are penalized by binary crossEntropy with logits. The
difference between BCE with logis and the BCE loss function is that BCE
with logits implicitly modifies the data with a sigmoid layer. The BCE loss
function penalizes the highly confident mispredictions and also less confident
correct predictions. The loss function is computed as follows:

L(Yij>8i5) = = Wi -108(Fi ) + (1 = i) -log(1 — §ij)]
The variable y; ; denotes the class of the true label for the pixel at coordinates

i,j. The variable g; ; denotes the predicted probability for the positive class
of pixel at coordinates i, [27].

However, we tried more loss functions like the Negative log-likelihood loss
function performed with similar accuracy and convergence rate. Also, the
Mean squared error was tried. It performed similarly in accuracy but had
slower convergence.
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For evaluating the validation accuracy of our model, the Validation dice
score is used, since it was already implemented in the template code. The
dice score is computed as follows, where A represents the predicted region
and B represents the true region [28]:

. 2|A- B
DICQ(A, B) = |‘,4‘_|—|—|_B|‘

Later for evaluating the test dataset, we used Intersection over Union metric.
Here, the A and B represent the same regions as in dice score [28].
|AN B

IoU(A, B) = AUB (5.1)

We did an experiment to compare Adam, Adagrad, Adadelta, RMSprop,
and Stochastic gradient descent optimizers. The default values of arguments
for optimizers were used. The batch size used in this experiment was 16 and
training was set to 40 epochs. From those optimizers, the SGD performed
the worst with a 0,37 validation dice score. The other optimizers had similar
validation dice scores - over 0,95 and since Adam had a dice score of 0, 96, we
chose to use he Adam optimizer in all of our experiments.

B 53 ResNet training

In this section, we will first describe how we trained the ResNet for predicting
the coordinates of the race track boundaries. Then, we will describe the
training of ResNet where we predicted heatmaps instead of the coordinates.

B 5.3.1 Prediction of coordinates

Initially only the eForceSeg dataset was used for training and evaluation, since
we needed to modify the labels from polygonal masks to labels representing
the left boundary of the race track and the right boundary of the race track.
Our dataset for this task contained 850 images and if the network performs
well enough, we would also label the rest of the images from FSOCO and
Strahov dataset. For training, we used ResNet 50 model imported directly
from PyTorch and at the end we modified the fully connected layer so the
output layer’s shape is 40 (predicting 20 points for the left boundary and
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20 points for the right boundary). First we tackled issues with training the
network, because it performed poorly and it was even difficult to overfit
on the training dataset. This changed significantly when we modified the
Adaptive average pool layer size. Initially, the adaptive average pool layer
produced 1x1 output size for each channel. We modified the architecture, so
the Adaptive average pool layer produce 7x7 output tensor for each channel.
With this modified architecture, the value of validation loss (MSE) for input
images of size 1280 x 420 was in average 1352.6 after 10 epochs. Before this
modification, the value of validation loss was in average 5431.8. We trained
the model for 70 epochs with a batch size of 16. The mean squared error
loss function was used for the penalization of incorrectly predicted points. In
the formula for MSE, the x; denotes the predicted value. The y; denotes the
ground truth value [27].

40
L= (i~ )’
=1

B 5.3.2 Heatmaps prediction

The architecture of ResNet was again slightly modified from the original
imported version. Since the output layer predicts a tensor of shape 40x (size
of one heatmap), the number of predicted points is bigger, thus the memory
requirements are higher so it is not possible to use ResNet 50. Instead, we
used ResNet 18 with an Adaptive Average Pooling layer that produces 5 x 5
tensor for each channel. The training process of ResNet Heatmaps is similar
to the training process of ResNet we described in the previous section, so we
will not describe them again.

We implemented scaling of the tensor so the output layer produces tensor
of shape (40, (1280 / scaling factor)) instead of predicting tensor of shape (40,
1280). The borders of the race track are then reconstructed from argmaz of
every one-dimensional heatmap.
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Results

In this Chapter, we present the results of models trained on UNet and ResNet
architectures. The evaluation is performed on real-world datasets and also
on a synthetic datasets collected from the eForce simulator.

. 6.1 Test dataset

The real-world test dataset was created from 3 races: Formula Student
Autocross event from the Czech Republic in Autodrom Most (208 images),
Autocross event from FSG (118 images), and from the testing day in the
airport in Milovice (21 images). The test dataset differs from the training and
validation datasets. The images from the test set contain different weather
conditions and the race tracks that were not included in the training and
validation set. The synthetic dataset (336 images) was collected from variously
generated race tracks in the eForce driverless simulator.

B 6.2 Measuring accuracy of predicted tracks

The output from our models is or can be modified into a segmented inner
part of the race track that has a polygonal shape. In Figure 6.1b, we can see
a raw segmented map produced by UNet model.
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(b) : Raw segmentation mask produced by UNet

(d) : Mask produced by baseline approach

Figure 6.1: Comparison of baseline approach and UNet segmentation

Since the path-planning algorithm starts forming a left boundary of the
track from the first blue cone and a right boundary from the first yellow
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cone, the comparison between the UNet mask and mask created from the
planning algorithm would lead to incorrectly classified pixels at the bottom
of the image. These pixels are marked with the red color in the bottom in
Figure 6.1c. So we decided to ignore those bottom pixels as they do not
matter when navigating through the race track. The ground truth annotated
masks were annotated with the semiautomatic labeling tool and inaccuracies
were manually fixed. In the following experiments, we want to focus on the
accuracy of the nearest parts of the race tracks, as these are most important
for navigating through the track, so not only the bottom pixels were excluded,
but also pixels representing more distant parts of track were occluded from
comparison.

In the synthetic dataset, we compare the path-planning algorithm without
vision, since we do not have an available cone detection model for the synthetic
dataset. Due to the fast fully automated annotation process, we will compare
the race track up to 40 meters.

For evaluation, we used IoU. Another approach would be to compare
the ground truth centerlines of the race track with the centerlines created
by our methods. It is possible to extract the centerlines for methods that
predict boundary of the race track by, however we did not find a reliable
method for extracting centerlines of the track from segmentation mask due to
complex shapes of the mask representing inner part of the race track, thus the
impossibility to clearly identify the left boundary and the right boundary of
the track. Also, it is difficult to annotate ground-truth centerline of the race
track accurately. Due to these reasons, we decided to measure the accuracy
with ToU.

. 6.3 Chosen models

As the final models we use for the evaluation of the test dataset, we have
chosen the models with the best validation score. To clarify, all fine-tuned
models were pre-trained on synthetic images from the simulator. For fine-
tuned UNet models, we experimentally tried to freeze different layers and
measured the validation accuracy.

The best accuracy have models that have no frozen layers and the worst
accuracy have models with the most frozen layers. The experiment was
performed also on fine-tuned ResNet model. The fine-tuned ResNet model
used in the following experiments has 9 frozen layers.
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Figure 6.2: Dependency of number of frozen layers on validation dice score -
UNet

. 6.4 Results

We will now present three tables showing the evaluation results. The metric
used for evaluation is IoU. Table shows a comparison of the methods on
the synthetic dataset.

Method IoU Accuracy (%)
Only planning 94.3
ResNet 87.7
UNet 90.4
ResNet - Heatmaps 75.8

Table 6.1: Comparison of baseline and our proposed methods on the synthetic
dataset

As can be seen, the planning algorithm performs the best in this experiment
[15]. We argue that the reason for this is that we measured the accuracy up to
40 meters, so generally it was more difficult for UNet and ResNet approaches
to recognize the race track in more distant parts since the cones from distant
parts are represented just by a few pixels. In contrast, the planning algorithm
did not need to recognize the cones, as the detections were simulated, and all
available cone positions were forwarded to the planning algorithm.

The next two tables show the evaluation accuracy of the real-world dataset.
We split the test dataset and measured the accuracy of frames taken from
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Formula Student Czech Autocross separately from the other frames since the
frames taken from the F'S Czech race were part of the training subset for
ResNet and Heatmap ResNet. Thus, Table 6.2/ shows the evaluation accuracy
only for the current approach and for UNet.

Method IoU Accuracy (%)
Cone detections + planning 91.2
ResNet 59.8
UNet 92.4
Fine-tuned ResNet 61.5
Fine-tuned UNet 92.3
Heatmaps ResNet 58.5

Table 6.2: Comparison of baseline and our proposed methods on the Real World
Test Dataset (FSG + Milovice)

The UNet shows promising results on the real-world dataset and is slightly
better than the current approach. The fine-tuned UNet shows similar results
to UNet without fine-tuning, so the fine-tuning did not enhance the accuracy
of the model which was expected from the results in Figure 6.2

Despite the ResNet model showing promising results on synthetic dataset,
the model performs poorly on the real-world dataset. In the future, we could
try another architecture for training instead of ResNet. In comparison the
fine-tuned ResNet shows marginal improvement upon the ResNet without
fine-tuning, so the fine-tuning had a small effect on the accuracy. The heatmap
approach performs the worst of all the compared methods.

Now we will discuss the accuracy of the FS Czech Autocross test dataset.

Method IoU Accuracy (%)
Cone detections + planning 75.8
UNet 93.6
Fine-tuned UNet 93.4

Table 6.3: Comparison of baseline and our proposed methods on the Real World
Test Dataset (FS Czech)

On this dataset, the UNet model outperforms the baseline approach sig-
nificantly. Again, fine-tuned UNet shows similar results to UNet without
prertaining. The reason for the poor performance the of the current approach
is that the cone detector did not predict some cones when the camera was
oriented towards the sun. Also, the camera was not properly calibrated and
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since there were cones on the image that did not represent the current race
track, the path planning algorithm could not correctly predict the race track.
Since only the UNet model performed accurately enough, we provide an FPS
benchmark only for UNet. The experiment consisted of processing of 1382
images again on RCI cluster on a graphics card Tesla V100-SXM2-32GB. The
Average processing time is 58.033 FPS.

B 6.4.1 Visual comparison UNet vs Current approach

(a) : Baseline approach

(b) : UNet segmentation

Figure 6.5: Comparison of baseline approach and UNet segmentation
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(a) : Baseline approach

(b) : UNet segmentation

Figure 6.6: Comparison of baseline approach and UNet segmentation
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(b) : UNet segmentation

Figure 6.7: Comparison of baseline approach and UNet segmentation
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b

(b) : UNet segmentation

Figure 6.8: Comparison of baseline approach and UNet segmentation
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(a) : Baseline approach

(b) : UNet segmentation

Figure 6.3: Comparison of baseline approach and UNet segmentation
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(a) : Baseline approach

(b) : UNet segmentation

Figure 6.4: Comparison of baseline approach and UNet segmentation
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Chapter 7

Conclusion

In this thesis, we presented the localizer of the race track that segments the
track into inner and outer parts. U-Net-based localizer accuracy outperforms
the method that is currently used in our formula. The UNet race track
localizer average IoU on test dataset is 0.93 and the model runs at 59 FPS. It
has been shown with illustrations that in cases where the baseline approach
fails to localize the race track, our localizer segments the track correctly.
Unfortunately, the localization of the race track via ResNet and ResNet
heatmap approach is not accurate enough to be used in future.

The future work will include adding labels for the left boundary of the
race track and the right boundary of the race track to the ground truth
segmentation masks so we could easily create a centerline for navigating the
formula as it is not possible accurately just with a polygon mask representing
the inner part of the track. Also, we would like to collect a bigger dataset in
the future to enhance the accuracy of predictions. It will be easier with our
semiautomatic labeling tool. Finally, we would like to deploy and test the
UNet model in our formula in the future.
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Appendix B
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LiDAR - Light Detection and Ranging
YOLO - You Only Look Once

SLAM - Simultaneous Localization and Mapping

FEE CVUT - Faculty of Electrical Engineering, Czech Techical Un-
verisity

RGB - Red Green Blue

DV.01 - eForce driverless 01

FSE.12 - eForce formula student electric 12
ZED - Stereolabs ZED (camera model)
YOLOV3 - You Only Look Once Version 3
CNNs - Convolutional Neural Networks
ReLU - Rectified Linear Unit

ResNet - Residual Network

FSOCO - Formula Student Objects in Context
CVAT - Computer Vision Annotation Tool
PNG - Portable Network Graphics

XML - Extensible Markup Language
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B. Abbreviations

® MIT - Massachusetts Institute of Technology
® JSON - JavaScript Object Notation

8 CTU - Czech Technical University

® WandB - Weights & Biases

# GPL3.0 - General Public License version 3.0
® BCE - Binary CrossEntropy

® MSE - Mean Squared Error

8 JToU - Intersection over Union

® SGD - Stochastic Gradient Descent

® Adagrad - Adaptive gradient

# RMSprop - Root Mean Square propagation
® FS - Formula Student

® RCI - Research Center for Informatics
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Appendix C

Code

The available code can be found in this Gitlab repository https://gitlab,
ifel.cvut.cz/capurjos/semantic_segmentation_of_race_track|
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