
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Tree Detection for UAV Localization

Tereza Zmeškalová

Supervisor: RNDr. Petr Štěpán, Ph.D.
Study program: Open informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023

ctuthesis t1606152353 ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499134 Personal ID number: Zmeškalová Tereza Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Tree Detection for UAV Localization

Bachelor’s thesis title in Czech:

Detekce stromů pro lokalizaci UAV

Guidelines:

1) Become familiar with the dataset https://github.com/ctu-mrs/slam_datasets/tree/master/forest and how ouster lidar
works.
2) Learn about existing lidar data clustering and segmentation methods.
3) Propose a method that detects trees in lidar data and test this method on the above dataset.
4) Create a data structure that contains the location of significant trees from lidar data. Test whether this structure is
suitable for drone localization.
5) Compare the localization results with the stored drone locations.

Bibliography / sources:

[1] B. Douillard et al., "On the segmentation of 3D LIDAR point clouds," 2011 IEEE International Conference on Robotics
and Automation, Shanghai, China, 2011, pp. 2798-2805, doi: 10.1109/ICRA.2011.5979818.
[2] V. Bartek, „Improving Detection by Exploiting Dynamics in the Lidar Data“, Bakalářská práce FEL, ČVUT, 2022,
https://dspace.cvut.cz/handle/10467/101260.
[3] D. Zermas, I. Izzat and N. Papanikolopoulos, "Fast segmentation of 3D point clouds: A paradigm on LiDAR data for
autonomous vehicle applications," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
2017, pp. 5067-5073, doi: 10.1109/ICRA.2017.7989591.
[4] S. W. Chen et al., "SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory," in IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 612-619, April 2020, doi: 10.1109/LRA.2019.2963823.
[5] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley and C. Stachniss, "SuMa++: Efficient LiDAR-based Semantic
SLAM," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp.
4530-4537, doi: 10.1109/IROS40897.2019.8967704.

Name and workplace of bachelor’s thesis supervisor:

RNDr. Petr Štěpán, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 23.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
RNDr. Petr Štěpán, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to express my utmost grati-
tude to my thesis supervisor RNDr. Petr
Štěpán, Ph.D. for his great guidance, ad-
vice, endless patience and support while
writing my thesis.

I would like to express my immense
gratitude to my family, who supported
me throughout my studies and allowed me
to concentrate fully on my studies. Last
but not least, I would like to thank my
classmates and friends who have been sup-
portive and helpful throughout my studies
and have not allowed me to doubt myself.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 22. May 2023

v ctuthesis t1606152353

Abstract

Tree detection from Point cloud (PCL)
is crucial for the autonomous movement
of drones in the forest as well as for de-
termining its location in a known forest
or for approximate localization relative
to a takeoff point in an unknown forest.
Correct classification and recognition of
trees, as well as a suitable algorithm for
subsequent localization, is necessary for
proper localization. At the same time, us-
ing information about all individual trees
leads to fewer inaccuracies in long-term
localization and the ability to recognize
places where the drone has already flown
compared to the occupancy grid.

Keywords: point cloud, LiDAR, ground
detection, tree detection, RANSAC,
localization

Supervisor: RNDr. Petr Štěpán, Ph.D.
room: E-116,
Karlovo náměstí 293/13,
Praha 2

Abstrakt

Detekce stromů z mračna bodů je zásadní
pro autonomní pohybování dronů v lese,
stejně tak jako pro určení jeho polohy ve
známém lese, nebo pro přibližnou lokali-
zaci vůči místu vzletu v neznámem lese.
Pro správnou lokalizaci je nutná správná
klasifikace a rozpoznání stromů stejně tak
jako vhodný algoritmus pro následné lo-
kalizování. Zároveň použití informace o
všech jednotlivých stromech vede ve srov-
nání s mřížkou obsazenosti k méně ne-
přesnostem při dlouhodobé lokalizaci a v
možnosti rozpoznání míst, kde již dron
letěl.

Klíčová slova: mračna bodů, LiDAR,
rozpoznání země, detekce stromů,
RANSAC, lokalizace

Překlad názvu: Detekce stromů pro
lokalizaci UAV

ctuthesis t1606152353 vi

Abbreviations

PCL Point Cloud
LiDAR Light Detection and Ranging
DBSCAN Density-based spatial cluste-
ring of applications with noise
IMU Inertial measurement unit
RANSAC Random sample consensus
ICP Iterative Closest Point

vii ctuthesis t1606152353

Contents

1 Introduction 1

1.1 Related work 2

2 Ground Removal 5

2.1 Introduction 5

2.2 Dron points removal 6

2.3 Pillars . 6

3 Clustering 9

3.1 DBSCAN . 9

3.1.1 2D approach 11

3.2 Other clustering methods 12

3.2.1 K-Means 12

3.2.2 Meanshift 17

4 Tree classification 19

4.1 Introduction 19

4.2 Bare trunk classification 19

4.2.1 Cylinder fitting 19

4.2.2 Classification 21

4.3 Full tree classification 22

4.3.1 Classification 22

5 Localization 25

5.1 Introduction 25

5.2 Data structure 25

5.3 Tree intersection with the ground 26

5.4 Inertial measurement unit (IMU) 28

5.5 Rotation matrix from IMU 28

5.6 Rotation matrix using classified
trees . 29

5.7 Naive transformations using
similarity . 31

5.8 Transformations using RANSAC 33

5.9 Iterative Closest Point Algorithm 35

6 Results analysis 39

7 Conclusions 43

A Bibliography 45

ctuthesis t1606152353 viii

B Repository structure 47

ix ctuthesis t1606152353

Figures

1.1 Forest dataset 2

2.1 Dron removal 6

2.2 Detected ground 7

2.3 Ground removed 7

3.1 Clustering ϵ = 0.45 10

3.2 Clustering tree with crown
ϵ = 0.45 . 11

3.3 Clustering tree with crown
ϵ = 0.18 . 11

3.4 DBSCAN with 2D projection
ϵ = 0.12 . 12

3.5 The Elbow method: k = 18 13

3.6 KMeans clustering k = 18 13

3.7 The Silhouette method: k = 2 . . 15

3.8 KMeans clustering k = 2 15

3.9 Kmeans with 2D projection, the
elbow method k = 15 15

3.10 Kmeans with 2D projection, the
silhouette method, k = 125 16

3.11 Meanshift clustering Bandwith =
10 . 17

4.1 Tree classification; blue: bare trunk
red: contain less than k points; green:
satisfies maxz − minz < threshold
and minz < 0; yellow: classified as
not tree . 21

4.2 Tree classification; blue: tree green:
satisfies maxz − minz < threshold
and minz < 0; yellow: classified as
not tree . 23

4.3 Tree classification; blue: tree green:
satisfies maxz − minz < threshold
and minz < 0; yellow: classified as
not tree . 23

5.1 Tree intersection with the ground 27

5.2 Naive transformation on short . . 32

5.3 Naive transformation on short
distance ICP 33

5.4 Naive transformation on long
distance . 33

5.5 Localization with 12s time
difference with drone position
highlighted: The original position is
marked in red, transformed in yellow 36

5.6 Localization with 5s time difference
with drone position highlighted: The
original position is marked in red,
transformed in yellow 36

ctuthesis t1606152353 x

5.7 Before ICP 37

5.8 After ICP. 37

5.9 Large discrepancy in rotations
about the x and y axes before ICP 38

5.10 Large discrepancy in rotations
about the x and y axes after ICP . 38

6.1 Dataset part A 40

6.2 Dataset part B 41

6.3 Dataset part C 41

6.4 Visually correct transforms with a
larger error . 41

6.5 Dataset part A 42

6.6 Dataset part C 42

xi ctuthesis t1606152353

ctuthesis t1606152353

Chapter 1

Introduction

Computer vision is essential nowadays because it allows us to process data
from cameras and sensors. In most industrial applications with autonomous
decision-making, the computer must understand its environment and work
with it correctly. The Light Detection and Ranging sensor LiDAR, which
has become popular in recent years, helps to do this. Lidar has achieved
widespread use over other sensors due to its accuracy in measuring distance
quickly over large angular ranges.

In this report, we will work with Forest dataset 1.1 from [BP22], which
has ground truth odometry for the majority of data but does not include
tree detection data. Therefore, providing an exact percentage success rate
for detecting individual trees will not be possible. The tree detection results
were evaluated on the selected data by examining the point cloud and are
documented in detail in the figures. The success of the tree decision method
is further evaluated in terms of its use for locating UAVs while moving in the
forest. It would be possible to annotate the data manually, but that would
be very time-consuming, and it is not the focus of this work.

Localization without GPS is necessary because some places cannot be
covered by reliable GPS signal, for example, in the forest. Therefore, the
drone must recognize its approximate location compared to the place from
which it took off, based only on the data it has measured. In this way, it can
be achieved that even if the GPS signal is lost, the UAV can complete the
task and return to the starting point. At the same time, if it is an already
mapped location, the collected data can be mapped onto already known data,
thus achieving even more accurate localization.

1 ctuthesis t1606152353

1. Introduction

Figure 1.1: Forest dataset

Localization is an important ability that is beneficial to explore and find
suitable and robust solutions, especially nowadays when there is a boom in
the autonomous activity of drones and other robots.

1.1 Related work

The topic of object segmentation from LIDAR [DUK+11] and localization
has already been treated several times in the past with different approaches
and on different data.

In this thesis, we are concerned with the detection of trees in the forest.
Most of the tree detection works deal with tree detection while flying over
a tree canopy. Tusa E. et al. [TMB+21] propose using Mean Shift and
crown shape model for segmenting trees that form different types of crowns
shows very good results, but in a forest where bare trees without crowns are
intermingled it does not achieve such good results.

Another approach for tree segmentation was presented by Qin H. et al.
[QFMI15], which focused on segmenting leafy trees from a bird’s eye view
using LIDAR, ultra-high-resolution RGB data and the watershed algorithm.
They achieved perfect results in this direction, but they also focused primarily
on deciduous trees and from a different perspective than our intention.

Locating drones in the forest using LIDAR is not addressed in many works.
Exciting is the work of Chen Steven W. et al. [CNL+19], which deals with
tree and ground detection in forests. They used segmentation and, among
other things, Deep Learning to map the forest, which allows them to achieve
very good results in this direction.

ctuthesis t1606152353 2

.....................................1.1. Related work

This work aims not to create an accurate forest map that records all trees
accurately but to test the possibilities of robust localization in the forest. For
this reason, data segmentation methods for localization in urban environments
are relevant to this work [ZIP17, SK19].

Very inspiring is also the bachelor thesis of Vojtěch Bartek [Bar22], which
dealt with detecting moving objects in urban environments from Lidar data on
a car. In this thesis, we have transferred the ground detection in Lidar data,
which has been slightly modified because the ground in a forest environment
is not as flat as in an urban environment.

The paper also uses methods based on Density-based spatial clustering of
applications with noise (DBSCAN) [EKSX96, Lin72], which provides good
results on our dataset. As an alternative approach, K-Means Clustering
[LW12] was tested. It is an Unsupervised Learning algorithm which groups
the unlabeled dataset into different clusters. In this work, two methods to find
the optimal k were tested, The elbow method [SWW+21] and The silhouette
method [WFPK+17]].

3 ctuthesis t1606152353

ctuthesis t1606152353 4

Chapter 2

Ground Removal

2.1 Introduction

Lidar provides a lot of data; for fast processing, it is necessary to limit the
data to relevant points only. To have clean data of trees, we need to remove
points that do not belong to the classification, such as ground and drone. It
is advantageous to remove them right at the beginning of processing, rapidly
reducing the number of points and speeding up the subsequent classification.

Before removing the ground itself, we will start the process by removing
the points that belonged to the drone and were also captured during the scan.

Ground point removal is a fairly broad topic with lots of possible approaches.
After a more extensive exploration of ground removal methods, we will follow
up on Chapter 3 from [Bar22], where V. Bartek compares possible methods
of ground removal and will be primarily interested in the Pillars method,
which for our purposes, achieves the best results.

5 ctuthesis t1606152353

2. Ground Removal
2.2 Dron points removal

The drone forms the origin of the coordinate system, i.e. the point (0,0,0).
To remove points that belong to the drone, we can work with the distance of
the points from the origin of the drone. Our data contains a large amount of
directly duplicated points of origin of the drone. Therefore, we first remove
all these duplicates located inside the drone diameter and then remove all
the points for which apply p2

x + p2
y + p2

z ≤ threshold2. For the forest dataset,
we set the threshold to 0.35

Figure 2.1: Dron removal

2.3 Pillars

The idea of the method of Pillars, proposed by V. Bartek [Bar22], is to divide
points into thin pillars and label the lowest point in each pillar as ground.
For this purpose, we first neglected the z-coordinate of points and made a 2D
grid with a specific pillar size. Then we find a minimum on the z-coordinate
in each pillar. Unlike the work of [Bar22], where the LiDAR moves fixed
on a car, the LiDAR on the UAV involves tilts. However the Pillar method
is resistant to tilting the drone, so there is no need to consider tilting the
LiDAR.

ctuthesis t1606152353 6

..2.3. Pillars

In our case, we choose a 1.8m by 1.8m square pillar size for the grid. Then
we use threshold 0.45m and label in each pillar all points for which hold
|pz − lowestz| ≤ threshold, where the pz is a z-coordinate of the point to
label, and the lowestz is z-coordinate of the lowest point in the pillar.

To improve the results, we add one more stage. Since we have a drone
moving in the air at the origin of the coordinate system, i.e. point (0,0,0), we
know that the ground will definitely be in negative z-coordinate. Therefore
we can select from the remaining points in each pillar only those with a
negative z-coordinate, and if at least for n points, the following applies
pz − lowestz ≤ threshold, we will label them as ground points.

Figure 2.2: Detected ground

Figure 2.3: Ground removed

7 ctuthesis t1606152353

ctuthesis t1606152353 8

Chapter 3

Clustering

After removing the ground points and the drone points, the dataset contains
only points that belong to trees and some noise points. Before the actual
classification, we need to sort the points into clusters so that we can decide
which clusters correspond to trees and which do not.

3.1 DBSCAN

Our data contains noise points that may have been created by the recording
itself or by removing the ground. We, therefore, choose Density-based spatial
clustering of applications with noise (DBSCAN)[EKSX96, Lin72], which
provides the best results on our dataset. DBSCAN takes two hyperparameters:

. eps: specifies how close points should be to each other to be considered
a part of a cluster. If the distance between two points is lower or equal
to this value, these points are considered neighbours..minPoints: the minimum number of points to form a dense region.

For our data, we chose eps = 0.3m and minPoints = 2. This setting
will generate quite a large number of clusters but mark virtually nothing as
non-tree noise points. However, for this setup, we must merge some clusters
to have one object in one cluster.

9 ctuthesis t1606152353

3. Clustering
The first step to improving clusters is to check for small clusters. If a

cluster containing fewer than k points and is at most a dist away from another
cluster, we will connect that small cluster to the other one. The distance
between two clusters is defined as min|pi − pj | ∀pi ∈ C1, ∀pj ∈ C2, where C1
is the first cluster, and C2 is second cluster and pi,j are points from those
clusters. For this step, we set the k equal to 50 and the dist to 1m.

The second step will be the eventual merger of two larger clusters. Given
the relatively small eps and minPoints parameters, the DBSCAN algorithm
may split one tree into multiple parts. So we will check the distance of the
two clusters from each other, and if this distance is less than the threshold
we set to 0.45 in this step, we will merge the clusters into one.

Figure 3.1: Clustering ϵ = 0.45

This setup has proven ideal for classifying bare tree trunks 3.1 but not so
ideal for classifying trees with crowns and more branches 3.2. Therefore, after
performing this clustering, we evaluate the classification of bare trunks and
then perform a modified clustering for the remaining points that were not
classified as bare trunks.

For clustering full-size trees, the parameter eps = 0.18 is most beneficial.
Again, we will have to apply to cluster, but we will have to modify the
parameters. We will apply the first step without changes. However, the
merging of large clusters will occur if the distance condition from the second
step is satisfied and one of the following conditions is also satisfied 3.3:

. |meanx1−meanx2 | < thresholdmean and |meany1−meany2 | < thresholdmean. heightc1 < thresholdheight

ctuthesis t1606152353 10

...................................... 3.1. DBSCAN

Figure 3.2: Clustering tree with crown ϵ = 0.45

.meanz1 < meanz2 and |max(x1) − min(x1)| < thresholdclusterSize. |heightc1 − heightc2 | < thresholdheightDifference

Where c1, c2 are cluster1 resp. cluster2, meanx are means of x coordinates
from cluster1 resp. cluster2, meany are means of y coordinates from cluster1
resp. cluster2, meanz are means of z coordinates from cluster1 resp. cluster2,
for heights, the following applies |max(zd)−min(zd)| for d=1,2 and thresholds
are set thresholdmean, thresholdheight = 1, thresholdclusterSize = 2.5 and
thresholdheightDifference = 1.5

Figure 3.3: Clustering tree with crown ϵ = 0.18

3.1.1 2D approach

In this work, we also tried a new approach of projecting the points into
2D space by omitting the z-coordinate. With this procedure, we achieved a

11 ctuthesis t1606152353

3. Clustering
significant improvement in speed, efficiency and even correctness of DBSCAN
clustering.

In this case, we can omit the cluster joining algorithms because they are no
longer needed. The only problem is merging some full trees whose branches
intersect into a single cluster.

Figure 3.4: DBSCAN with 2D projection ϵ = 0.12

3.2 Other clustering methods

3.2.1 K-Means

K-Means Clustering [LW12] is an Unsupervised Learning algorithm which
groups the unlabeled dataset into different clusters. It takes k as a parameter
and divides the dataset into k clusters. The disadvantage of this method
is the need to know the number of clusters into which we want to divide
the points. In our case, it is not possible to know in advance. However, at
least two methods exist to find the optimal k. These are The elbow method
[SWW+21] and The silhouette method [WFPK+17].

The elbow method

This method is probably one of the best-known and most popular, but its
approach is slightly naive.

The idea of this method is straightforward, for a sequence of k = 1..n, it

ctuthesis t1606152353 12

............................... 3.2. Other clustering methods

executes the K-Means algorithm and continuously calculates the sum of the
distances of a point from the cluster centre. As k increases, the individual
distances will be smaller. The ideal k is the one where the most significant
break occurs, i.e. where for the previous k, the given sum was much larger,
and for the next k, it is only slightly smaller 3.5. However, this method failed

Figure 3.5: The Elbow method: k = 18

to find a good fit for our data such that K-Means clustering performed well,
as seen in figure 3.6.

Figure 3.6: KMeans clustering k = 18

13 ctuthesis t1606152353

3. Clustering
The silhouette method

This method is a bit more complex than The elbow method. It uses the
silhouette coefficient S. Defined as

S(xi) = bxi − axi

max axi , bxi

Where xi is a point from the dataset, bxi is the average distance from xi

to all clusters to which xi does not belong and axi is the average distance
between xi and all the other data points in the cluster to which xi belongs.

bxi = mini ̸=j
1

|Xj |
∑

j∈Xj
dist(xi, xj) where dist is euclidian distance and

Xj is cluster j.

axi = 1
1 − |Xi|

∑
j∈Xi,j ̸=i dist(xi, xj) where dist is euclidian distance and

Xi is cluster i.

The silhouette coefficient measures how similar a data point is within-cluster
compared to other clusters.

As for The elbow method for the sequence k = 1..n, the K-Means algorithm
evaluates and computes the average of the silhouette coefficient for all points
in the dataset. The k with the highest average coefficient is then chosen as
the optimal k.

However, this method did not generate suitable k for adequate clustering
on our dataset, as seen in figure 3.8.

2D approach

As for DBSCAN, we achieved better results for kmeans after 2D projection
than in the original 3D space. While the elbow method did not give us
acceptable results, as seen in figure 3.9, the silhouette method gave us very
satisfactory results, as seen in figure 3.10. Still, it significantly increased the
program’s running time compared to DBSCAN.

ctuthesis t1606152353 14

............................... 3.2. Other clustering methods

Figure 3.7: The Silhouette method: k = 2

Figure 3.8: KMeans clustering k = 2

Figure 3.9: Kmeans with 2D projection, the elbow method k = 15

15 ctuthesis t1606152353

3. Clustering

Figure 3.10: Kmeans with 2D projection, the silhouette method, k = 125

ctuthesis t1606152353 16

............................... 3.2. Other clustering methods

3.2.2 Meanshift

Meanshift[Cha22] is a centroid-based algorithm that helps in various use cases
of unsupervised learning. It implements mass-centre drift using Gaussian
kernel functions. Unlike K-means, it does not require specifying the number
of clusters but takes bandwidth as a parameter, i.e. the radius of the centre
of the mass circle.

This algorithm calculates for each point a weighted mean Mw within the
radius from the tested point, and if Mw is not within the ϵ − distance from
the tested point, mean shifting occurs. The whole process is repeated with a
new point, Mw until the distance between the point and its weighted mean is
less than ϵ, i.e. it no longer converges.

Mw =
∑n

i=1 wixi∑n
i=1 wi

where w(d) = e
−

d

2σ2

Although this algorithm does not need to know the number of clusters
in advance, the bandwidth dramatically affects the final result and is not
entirely easy to choose this parameter correctly. Fortunately, some libraries
have functions to calculate the optimal bandwidth value. Still, even for the
optimal bandwidth found, which for our data was set to 10, this algorithm
did not provide satisfactory enough results to be used on our dataset, as seen
in Figure 3.11.

Figure 3.11: Meanshift clustering Bandwith = 10

17 ctuthesis t1606152353

ctuthesis t1606152353 18

Chapter 4

Tree classification

4.1 Introduction

As with clustering, there is a significant difference in classification between
a bare trunk and a full tree with crowns and branches. While a bare tree
has a cylindrical shape, which is great for classification, the classification of a
full-sized tree cannot be approached so straightforwardly.

4.2 Bare trunk classification

As already mentioned, the classification of bare trunks differs from that of
full-sized trees and is more straightforward and simpler. Since the bare trunk
is cylindrical, to classify it, We will use cylinder fitting[Pan17].

4.2.1 Cylinder fitting

Since a bare trunk is essentially a cylinder for most trees in the dataset, we
can try to fit a cylinder to the cluster data, and if the error of this fit is less
than our defined threshold, we can label the cluster as a bare trunk. The

19 ctuthesis t1606152353

4. Tree classification...................................
algorithm[Pan17] is described below. First, let’s shift the data’s centre of
mass to the coordinate system’s origin. Then we choose some initial angles
and define the G function as:

∑
i (⟨Yi, Yi⟩ − u − 2 ∗ ⟨Yi, v⟩2)

Y = ⟨P, Xi⟩ where P is the projection matrix of direction w, and X is our
data points,

u =
∑

i

⟨Yi, Yi⟩
n

where n is a number of data points

v = ⟨Â,
∑

⟨Yi, Yi⟩ · Yi⟩∑k
i=0 di

where d is the main diagonal of ⟨Â, A⟩

A =
∑

i ⟨Y ′
i , Yi⟩

Â = ⟨S, ⟨A, S′⟩⟩

S =

 0 −w[2] w[1]
w[2] 0 −w[0]

−w[1] w[0] 0

We try to minimize this G function by using our data as parameters and
our predefined initial angles as direction w. As a result, we take the direction
with the minimum value of the G function and calculate the other parameters
of the ideal cylinder for our data. The centre of the cylinder is calculated as

c = ⟨Â,
∑

⟨Yi, Yi⟩ · Yi⟩∑k
i=0 di

+ t, where t is the initial shift of the centre of mass.

Finally, the radius is calculated as

r =

√∑
i

⟨c − Xi, ⟨P, c − Xi⟩⟩
n

ctuthesis t1606152353 20

................................4.2. Bare trunk classification

4.2.2 Classification

With the ability to calculate the cylinder parameters, including the fit error,
we can move on to decision-making. We will not consider clusters that contain
less than limitk points; in our case, limitk is set to 15. Such clusters cannot
be a tree because the number of points is too small, and we can skip them.
Furthermore, we can also neglect the clusters for which the condition specified
below applies because they are too low clusters, and therefore, it is likely that
it is not a tree but rather a bush or a person.

maxz − minz < thresholdlimitHeight and minz < 0

After pruning out the unnecessary clusters, we attempt to fit a cylinder to
each remaining cluster using the algorithm described above. If the fit error
does not exceed the thresholdlimitHeight, we label the cluster as a tree.

However, as mentioned, this method only classifies bare trunks, so for the
rest of the clusters, where some still contain full trees, it is advisable to run a
modified clustering and use other methods to classify them.

Figure 4.1: Tree classification; blue: bare trunk red: contain less than k points;
green: satisfies maxz − minz < threshold and minz < 0; yellow: classified as
not tree

21 ctuthesis t1606152353

4. Tree classification...................................
4.3 Full tree classification

The classification of full-size trees is a bit more complicated since the tree has
many branches and thus does not form a clear pattern that could be used for
identification. Moreover, a similar situation often occurs when we join several
nearby tree clusters together. However, even though this problem can be
solved by cylinder fitting described in Section 4.2.1, the decision conditions
will have to be more complex.

4.3.1 Classification

As mentioned above, we also use cylinder fitting to classify the full-size trees.
In the first stage, we marked all those clusters with a fit error less than the
threshold and labelled them as bare-trunk trees. These classified trees will
no longer be subjected to further classification. Therefore, we are left with
clusters containing full trees and other objects that are not trees at all for
this stage of classification.

With the parameters we receive after applying the cylinder fitting, we
can reconstruct the fitted cylinder and look at the points that satisfy the
following:

dx < r + thresholdcylinderCutout and dx > r − thresholdcylinderCutout,

where dx is the distance of the point x from the centre line, r is the radius
of the cylinder and the thresholdcylinderCutout we set to 0,5 according to the
results of the experiments.

Suppose the number of points that fell into the above-specified cylinder
cutout is within our specified percentage of original points. In that case, we
label the cluster as a tree because a tree trunk fit has probably occurred.

As can be seen in the figures 4.2 and 4.3, this method is quite efficient
except for clusters where multiple trees have been merged, and thus the fit of
the cylinder cannot be correct.

ctuthesis t1606152353 22

.................................4.3. Full tree classification

Figure 4.2: Tree classification; blue: tree green: satisfies maxz − minz <
threshold and minz < 0; yellow: classified as not tree

Figure 4.3: Tree classification; blue: tree green: satisfies maxz − minz <
threshold and minz < 0; yellow: classified as not tree

23 ctuthesis t1606152353

ctuthesis t1606152353 24

Chapter 5

Localization

5.1 Introduction

Classified trees can be used for accurate and robust drone localization. When
the trees are classified, it is possible to start processing the localization of
the drone. For localization, we need to have a data structure to store the
forest and individual trees with data that characterize the trees or the forest.
Then we can get rotation matrices and translation matrices that characterize
the new position of the drone based on the tree position information from
previous LiDAR data.

Some transformations can be computed using an inertial measurement unit
(IMU), but these do not provide complete accuracy, so the data itself and the
classification must be used.

5.2 Data structure

For convenient localization, we first need to create a suitable data structure.
Since this work is written in Python, Forest and Tree classes were created to
store all information about the drone’s environment.

25 ctuthesis t1606152353

5. Localization
Each tree consists of the index that uniquely characterizes it within the

forest, the array of points that form it, the classification accuracy, the pro-
portion of points falling within the cutout of the fitted cylinder, the distance
from the drone, the distance to the k nearest trees and the approximate point
of intersection with the ground.

1 class Tree:
2 def __init__(self,points,index, number_of_closest, accuracy

= np.inf, ratio = np.inf, distance = np.inf):↪→

3 self.index = index
4 self.points = points
5 self.accuracy = accuracy
6 self.ratio = ratio
7 self.distance = distance
8 self.closest = np.zeros(number_of_closest)
9 self.intersection = [0,0,0]

The forest consists of an array of individual trees, an array of lines that
represent the axes of the fitted cylinders and an array of planes defining the
ground around the trees, an array of individual intersections of these lines
and planes for each tree, a matrix of attributes (The i-th row represents the
distances from the k nearest trees to the i-th tree of the forest), and a matrix
of reciprocal attribute values.

1 class Forest:
2 def __init__(self):
3 self.trees = []
4 self.lines = []
5 self.planes = []
6 self.intersections = []
7 self.sim_matrix = np.matrix([])
8 self.sim_matrix_rec =np.matrix([])

5.3 Tree intersection with the ground

For some calculations it is worth having only one point that exactly defines the
given tree instead of all the points in the tree or instead a vector representation
of the tree. The ideal point turned out to be the intersection of the tree with
the ground, specifically, the intersection of the cylinder’s axis fitted to the
tree.

The cylinder’s axis is easily obtained by a cylinder fit that returns the
centre of the cylinder and the direction vector of the axis, which are sufficient
data to get a line representing this axis.

ctuthesis t1606152353 26

............................5.3. Tree intersection with the ground

At least three points are needed to represent the plane that represents
the ground. However, these points should not be ground points only from
the pillar where the tree is located because they would not respect possible
changes in the terrain.

We recorded two points for each pillar that best represented the ground
surface during the grid creation. These two points are the initial two points
that will define the plane. To these, we add one point from each of the four
pillars adjacent to the pillar with the given tree. The pillars further away
from the drone sometimes contain no ground points or even no points overall,
therefore, the final set of points does not always have to contain six points.
The problem arises when the tree is surrounded only by these empty pillars;
thus, only the original pair of points remains. In that case, outside of our
points, we use the tree vector as a perpendicular to the search plane. We
can afford to do this because we have no more specific information about the
terrain in the vicinity.

When we find these points characterizing the ground, in most cases, they
do not lie in the same plane. Therefore, it is necessary to fit the plane through
them with the method of least squares distances of points from the plane.

The plane representing the ground and a straight line representing the tree
is enough to find their intersection, and thus we get the intersection of the
tree and the ground. These intersections are shown in figure 5.1, with a red
dot.

Figure 5.1: Tree intersection with the ground

27 ctuthesis t1606152353

5. Localization
5.4 Inertial measurement unit (IMU)

An IMU is a device that can measure and report motion data in a time-series
format of an object to which it is attached. It contains an accelerometer,
gyroscope, and, optionally, a magnetometer or barometer. The accelerome-
ters are responsible for acceleration measurements, and the gyroscopes are
responsible for angular velocity measurements. Each one of the measures is
represented in a three-axis coordinate system, so generally speaking, they
both together yield a 6-dimension measurement time series stream. [BO21]

In addition to the linear acceleration and angular acceleration, our IMU
data contain the drone orientation expressed in terms of quaternions, i.e., x, y,
z, and w coordinates. There are algorithms to create a rotation matrix directly
from the quaternion without transforming them into Eulerian coordinates.
Still, for our further calculations, we need to know the rotations with respect to
each of the x,y and z axes, so we must first convert quaternion representation
to the Eulerian angles. This relatively straightforward transformation was
provided in the article "How To Convert a Quaternion Into Euler Angles in
Python" [aut20]. It transforms quaternions into angles rotated around the
x(roll) , y(pitch), z(yaw) axes in radians:

roll0 = 2.0 · (w · x + y · z)
roll1 = 1.0 − 2.0 · (x · x + y · y)

rollx = atan2(roll0, roll1)

pitch = 2.0 · (w · y − z · x)
if pitch ∈ < −1; 1 >, than pitch stays the same

else if pitch < −1, than pitch = −1
else if pitch > 1, than pitch = 1

pitchy = asin(pitch)

yaw0 = 2.0 · (w · z + x · y)
yaw1 = 1.0 − 2.0 · (y · y + z · z)

yawz = atan2(yaw0, yaw1)

5.5 Rotation matrix from IMU

Since the data from IMU unit are available in the dataset, the initial rotation
can be precomputed, which makes the translation matrix and the final

ctuthesis t1606152353 28

.......................... 5.6. Rotation matrix using classified trees

rotation better searched. The primary problem with this approach is the
time difference in the recording because the LIDAR scan records roughly half
the number of recordings compared to the IMU. It is, therefore, necessary to
select the record from the IMU unit that was taken at the closest moment in
time to the acquisition of the record from the LIDAR.

After resolving the time discrepancy, we can use the above-mentioned
algorithm to convert the obtained quaternions into an Eulerian representation,
thereby obtaining the rotation states for each point cloud along individual
axes. From this information, we obtain the difference in angles, and these
angles give us the rotations along individual axes. It is enough to construct
the overall rotation matrix as R, where the order of the individual rotations
is according to x(γ),y(β) and finally, z(α)

R =

cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ

− sin β cos β sin γ cos β cos γ

Due to minor discrepancies in time and due to integration of noisy data
from the IMU unit, even the rotation calculated from the IMU can not be
completely accurate. In the time between the acquisition of the IMU and the
LIDAR recording, a more significant rotation could have occurred, which was
not recorded or, on the contrary, was recorded and did not correspond to the
orientation at the moment when LIDAR data was captured. Therefore, these
rotations are rather approximate, especially for the z-axis.

5.6 Rotation matrix using classified trees

As mentioned in the previous chapter, the rotation from the IMU unit may
not always be correct. Therefore, it is necessary to calculate the own rotation
matrix using the obtained LIDAR data.

The most important is the rotation around the z-axis; it is usually impossible
to correctly calculate this from the IMU unit. Rotations around the x- and
y-axis are not so significant, and we are usually able to calculate them
correctly from the IMU unit, and if there is a more substantial deviation, we
can calculate these rotations correctly, assuming the correct displacement is
found, using the ICP algorithm mentioned in a later chapter 5.9.

29 ctuthesis t1606152353

5. Localization
The final rotation matrix R corresponds to the multiplication of the rotation

matrices around individual axes. R = Rz(α)Ry(β)Rx(γ), where α is angle
around z-axis, β angle around y-axis and γ around x-axis.

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

For the rotation matrix around the z-axis, we will use the projection into 2D
and calculate the rotation matrix between the two corresponding vectors in 2D.
Having 4 points forming these two vectors (A1x, A1y), (A2x, A2y), (B1x, B1y)
and (B2x, B2y), where A1 correspond to B1 and A2 to B2. We can calculate
values of ax, ay, bx and by that are components of unit vectors for A2A1 resp.
B2B1. The required rotation matrix Rz2D can be expressed from these values
according to formulas 5.1 and 5.2.

cos(θ) = a⃗ · b⃗

∥a⃗∥∥⃗b∥
(5.1)

sin(θ) = ∥a⃗ × b⃗∥
∥a⃗∥∥⃗b∥

(5.2)

ax = (A2x−A1x)√
(A2x−A1x)2+(A2y−A1y)2

ay = (A2y−A1y)√
(A2x−A1x)2+(A2y−A1y)2

bx = (B2x−B1x)√
(B2x−B1x)2+(B2y−B1y)2

by = (B2y−B1y)√
(B2x−B1x)2+(B2y−B1y)2

ctuthesis t1606152353 30

.......................... 5.7. Naive transformations using similarity

Rz2D =
(

ax · bx + ay · by by · ax − bx · ay

bx · ay − by · ax ax · bx + ay · by

)

The last step is to extend this rotation matrix for the 3D dimension.

Rz =
(

Rz2D 0
0 1

)

5.7 Naive transformations using similarity

This method aims to find two pairs of matching trees in two LiDAR data.
These pairs will already provide us with the computation of the translation
and rotation of the drone between the data. The trees are selected based
on the attributes assigned to each tree. The attributes are the distance to k
nearest trees.

In Chapter 5.2, we stated that for each forest, we have a matrix of individual
attributes and a matrix with reciprocal values of those attributes. With these
matrices available, we can multiply the matrix with the standard values of one
forest and the matrix with the reciprocal values of the other forest. In this
way, for each tree from the first forest, we will find out which tree from the
second forest has the most similar attributes because the closer the attribute
values of trees ti and tj are (when ti is a tree from the first forest and tj

is a tree from the second), the value at indices i,j in the resulting matrix
approaching the value of k (corresponding to k closest trees defined in the
chapter about data structure 5.2). For our testing, we choose k = 3.

With the matrix prepared in this way, we can find two trees from the
first forest to which we could assign trees from the second forest with the
smallest possible difference in attributes. After selecting these trees, we find
the vectors between the two trees in the respective forests and calculate the
rotation matrix around the z-axis. Since the rotation around the x and y axes
tends to be minor, the angles calculated from the IMU can be used, and only
the z-axis angle of rotation can be replaced with the newly calculated one.

Before the translation matrix is calculated, the points of the second forest
must be rotated with the obtained rotation matrix because the rotation affects
the direction and size of the translation, especially for trees that are close
to the drone. After rotation, we need to take the means of each pair of the

31 ctuthesis t1606152353

5. Localization
trees represented by their intersection with the ground (the intersection of the
trees from the second forest must also be rotated), express the vector between
these points, which will define the translation, and create the translation
matrix T, where Tx, Ty and Tz correspond to the individual components of
the obtained vector.

T =

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

This approach usually only works for a limited distance when the drone
can still see similar trees and is able to find a pair of trees in both old and
new data. As you can see in the figure 5.2, the transformations are not 100%
correct for all trees, but the ICP algorithm will solve this, as you can see in
the figure 5.3.

Since we select only two pairs of trees with the closest match without
further examination, discovering a new occluded tree can easily result in
complete failure, as the new tree may cause a closer match in symptoms at
a non-matching location. At that moment, when we choose trees that do
not match, the entire rotation and displacement do not correspond to reality.
Therefore, this method is unsuitable for longer distances and rapidly changing
environments, as shown in figure 5.4.

Figure 5.2: Naive transformation on short

ctuthesis t1606152353 32

............................ 5.8. Transformations using RANSAC

Figure 5.3: Naive transformation on short distance ICP

Figure 5.4: Naive transformation on long distance

5.8 Transformations using RANSAC

In this chapter, we will focus on a more complex localization method that
already works with more conditions and does not rely only on the best
similarity.

As in the previous chapter 5.7, we will count how similar the trees from
the first forest are to those in the second forest. This time, for each tree from
the first forest, we select three trees from the second forest with which it
has the most similar attributes. This will expand the choice, and if a tree
that was not visible was revealed to us in the record of the second forest, and
thanks to it, a better match in attributes was created, the right pair will also
be available for selection.

33 ctuthesis t1606152353

5. Localization
Using RANSAC, we always randomly select two from this set of pairs.

The problem, however, was choosing whether the new pair was better than
the old one. It was necessary to add control conditions that would be able
to decide on quality. The first factor that contributes to the decision is
the similarity in attributes. However, as seen in the previous chapter 5.7,
attribute similarity alone is insufficient. Therefore, another factor will be the
difference in the distance between the trees. For a pair of trees within their
forest, we will calculate the distance between them and then compare these
distances, and they will serve as another decision criterion. Despite rotation
and displacement, this distance should remain as similar as possible.

However, even the combination of these two conditions is insufficient
because a situation may arise when the attributes are almost identical, and the
distances correspond. Still, each pair applies an entirely different translation.
Therefore, it is also necessary to arrange the match in this attribute. This
can be achieved using cosine similarity.

"Cosine similarity measures the similarity between two vectors of an inner
product space. It is measured by the cosine of the angle between two vectors
and determines whether two vectors are pointing in roughly the same direction.
It is often used to measure document similarity in text analysis."[HKP12]

The vectors used to verify the cosine similarity will be created as translation
vectors between individual pairs of trees. And then, we calculate the similarity
using the formula 5.3 where a⃗ is the translation vector between the first pair
of trees and b⃗ between the second pair.

sim = a⃗ · b⃗

∥a⃗∥∥⃗b∥
(5.3)

These three values proved almost sufficient to distinguish which pairs are
more suitable. We create one score from the similarity in attributes (more
precisely, difference in attributes) and difference in distance between the trees
within their forests by multiplying them so that both values participate in the
main decision criterion. Since we combine the value by multiplication, both
will contribute equally to the score. As both represent the difference that we
want to minimize, the smaller both values are, the smaller the resulting score
will be.

The new pair will be considered better if their score is better (lower) than
the original one. At the same time, the distance difference is not bigger

ctuthesis t1606152353 34

............................ 5.9. Iterative Closest Point Algorithm

than 1,5m (this condition is necessary because sometimes the difference in
attributes is so slight that it overcomes a larger distance difference), and also,
the cosine similarity is greater than 0.97.

We also allow a new pair to be selected as better if the score is at most
0.005 less than the current best pairs but only if the distance difference is at
most 0.2m and the cosine similarity is greater than 0.99. In this way, we will
make it possible to enforce a pair that has almost the same score as the best
but probably a better cosine similarity, which plays a significant role in the
result because the larger the angle between the individual vectors, the worse
the final translation.

All these calculations were performed on the data rotated by the rotation
matrix obtained from the IMU, but as already mentioned, this rotation may
not always be very accurate, so it is necessary to verify that the cosine
similarity remains greater than 0.97.

Having selected two pairs of trees, the procedure for finding the rotation and
translation matrix is identical to that of the naive approach in the previous
chapter 5.7.

After finding suitable conditions for selecting the best pairs, this approach
turned out to be very good, thanks to the random selection of individual pairs
from a larger number than in the naive approach and a sufficient number of
repetitions of these selections.

On data, when the drone flies more and not too many new trees appear
around the drone, it can locate itself even after 12 seconds of drone flight
5.5. In situations where more new trees appear or if the drone flies faster, it
can locate itself after about 5 seconds of flight 5.6. These achieved results,
given the complexity of data processing, give the assumption applicability for
real-time localization.

5.9 Iterative Closest Point Algorithm

Although the results achieved by our transformations are very good, there
is still a little room for improvement that the Iterative Closest Point (ICP)
algorithm1 can provide us.

1https://github.com/pglira/simpleICP/tree/master

35 ctuthesis t1606152353

5. Localization

Figure 5.5: Localization with 12s time difference with drone position highlighted:
The original position is marked in red, transformed in yellow

Figure 5.6: Localization with 5s time difference with drone position highlighted:
The original position is marked in red, transformed in yellow

"ICP algorithm principle: Given a reference point set P and a data point set
Q (at a provided initial estimate R, T), the algorithm finds the corresponding
nearest point in P for each point in Q to form a matching point pair. Then,
it uses the sum of the Euclidean distances of all matching point pairs as the
value of the error objective function error"[ZSY+22]

This algorithm provides good results if there are not too many differences
between two clusters of points and if they do not contain too many noise
points. Therefore, using the ICP algorithm from the beginning was not
advisable because when the point clouds are far from each other and overlap
only partially, ICP cannot find suitable transformations. But at the moment,
when we already have the points rotated and shifted by our transformations,
the parts that overlap are already very close to each other. At that moment,
ICP can beautifully match minor discrepancies even though the point clouds

ctuthesis t1606152353 36

............................ 5.9. Iterative Closest Point Algorithm

do not fully overlap. As shown in the figures below, where figure 5.7 show
transformations before ICP and figure 5.8 after ICP.

Figure 5.7: Before ICP

Figure 5.8: After ICP

At the same time, ICP handles the situation well when the overall transla-
tion and rotation around the z-axis are adequate, but the rotations around
the x and y axes calculated from IMU must be fine-tuned. ICP manages this
alignment even in the case of the need to align larger rotations around these
axes, as shown in figures 5.9 and 5.10. This confirms that we can use the
rotations around the x and y axes from the IMU unit, and any discrepancies
can be aligned by the ICP algorithm.

37 ctuthesis t1606152353

5. Localization

Figure 5.9: Large discrepancy in rotations about the x and y axes before ICP

Figure 5.10: Large discrepancy in rotations about the x and y axes after ICP

ctuthesis t1606152353 38

Chapter 6

Results analysis

In this chapter, we will evaluate the achieved results and compare the proposed
methods. We will use data from the drone’s RTK (Real Time Kinematic)
unit to evaluate the results. Because the dataset is huge and difficult to work
with, testing was done on three sections, representing different types of forest,
hereinafter referred to as Parts A, B and C. Since we do not have the necessary
rotation matrices to be able to calculate the correct flight direction relative
to the initial take-off point and the fact that the drone can move to the right
and left without the need for rotation, to evaluate the localization method
we will compare only the distance that the drone flew (i.e. the magnitude of
the shift).

The direction of the shift can then be evaluated based only on the figures
by humans; if the direction is incorrect, it would be visible in the figures that
the shift was incorrect even in the case of identical shift sizes. The accuracy
can be evaluated according to how the distance that the drone flew according
to RTK and the distance calculated by our method differ. Of course, it should
be considered that since the drone is moving in the forest, even the RTK data
can be inaccurate in some cases.

In Figures 6.1 to 6.3 you can see the result of localization of the data
measured at different distances from the original data. Localization is always
performed only on the first data to determine how often localization needs to
be performed. As seen in Figures 6.1 to 6.3, using the method with RANSAC
achieves perfect results on average up to a distance of 8m, and the average
distance difference is about 0.2m. It is not possible to determine from the
data whether this error is an RTK error or an error in out algorithm. As seen

39 ctuthesis t1606152353

6. Results analysis....................................
on the individual graphs, the estimated accuracy of the ICP algorithm copies
the curve of the difference in distances quite reliably and thus agrees with
the achieved results.

The only problem can be seen in Figure 6.2, where there was a fluctuation
in error at a distance of about 2m. One of the possible reasons why this
happened is inaccurate data from RTK. This is when the drone performs
many greater rotations simultaneously, and inaccuracies could therefore occur
from this point of view. Indeed, if we look at figure 6.4, we can see that the
transformations were successful; an error of almost 1 m in the shift would
undoubtedly have a significant effect, which doesn’t occur.

To be more sure whether this situation is really an error on the side of the
RTK or on the side of the algorithm, we tested all possible transformations
that correspond to the translation obtained from the RTK with a difference in
distance of at most 0.3m and none of these results were satisfactory, indicating
that the error occurred with more likely on the RTK side. However, even if
this error was caused by an insufficient condition in the algorithm, it can be
seen that the algorithm managed to recover from this problem, subsequently
reduce its error, and worked without a problem on the remaining tested parts
of the dataset.

Figure 6.1: Dataset part A

ctuthesis t1606152353 40

.................................... 6. Results analysis

Figure 6.2: Dataset part B

Figure 6.3: Dataset part C

Figure 6.4: Visually correct transforms with a larger error

On the other hand, we also tested a naive approach that only selects two
pairs of trees with the slightest difference in symptoms. Excellent results
were achieved here, in some cases even a few centimetres better than with
the RANSAC method, but only at shorter distances, where there are no
significant changes in the number of trees. For longer distances with more

41 ctuthesis t1606152353

6. Results analysis....................................
significant changes, the method started to provide quite random results, as
can be seen in Figures 6.5 and 6.6, where the graphs of both methods are
shown for comparison. It can be seen that the technique works quite well for
short distances, but for longer distances or rapidly changing environments, it
is unsuitable. On the other hand, it is suitable using RANSAC method.

Figure 6.5: Dataset part A

Figure 6.6: Dataset part C

ctuthesis t1606152353 42

Chapter 7

Conclusions

In the first part of the work, we tested removing the ground using the pillar
method. Although this approach was designed for an urban environment
with flat terrain, this approach proved to be the most appropriate for our
data, where we must work with more uneven terrain.

The bigger problem was clustering, which is necessary for the whole classi-
fication. As we have shown, much more accurate results can be achieved by
clustering on data with 2D projection. There is also a significant speedup
compared to the original 3D clustering, where it was necessary to perform sub-
sequent cluster merging to achieve the desired results. In 3D space, only the
DBSCAN method was applicable; however, after 2D projection, the Kmeans
method also achieved very decent results using the Silhouette method to find
the optimal k. However, finding the optimal k is very time-consuming, so it
is not entirely suitable for this problem.

Even in this way, absolutely accurate clustering does not occur, which
subsequently affects the result of the classifier because sometimes we merge
multiple trees into one cluster.

For classification, fitting the cylinder to the data achieves very good results.
We divide the whole classification into two phases. First, we classify the bare
trunks, where we need the fit of a cylinder and decide whether the error of
this fit is small enough to say that it is a tree. The second phase is then the
classification of full trees, where we cut points satisfying dx < r + threshold
and dx > r−threshold from the fit cylinder. If the number of points remaining
is at least, in our case, 50% of the original points, we classify the cluster as a

43 ctuthesis t1606152353

7. Conclusions
tree.

However, this classification fails in clusters with multiple trees in one cluster
because it is impossible to fit corectly the trunk of one tree when there are
multiple trees.

In terms of localisation, we managed to achieve respectable results. We
have presented two methods where; one of them works with excellent accuracy
at short distances, and a little-changing environment, and the other is capable
of localization at distances up to about 8m with very good precision.

Still, there is room for improvement here as well. It is possible that a better
criterion could be found for the RANSAC method such that there would be
no need for possible fine-tuning using the ICP algorithm.

The most considerable improvement for this work would be to improve
the classification for multiple trees in a single cluster, as this shortcoming
subsequently affects the localization negatively, as from a different position,
these trees may be divided into various clusters and thus figure differently in
the localization.

In summary, we get very good results, especially in terms of ground removal
and localization. This work can be improved in the areas of clustering. A
new algorithm can be designed to detect multiple trees in a single cluster and
an even better criterion could be found for selecting suitable pairs of trees in
the RANSAC method for localization.

ctuthesis t1606152353 44

Appendix A

Bibliography

[aut20] automaticaddison, How To Convert a Quaternion Into
Euler Angles in Python, https://automaticaddison.com/
how-to-convert-a-quaternion-into-euler-angles-in-python/,
2020.

[Bar22] V. Bartek, Improving detection by exploiting dynamics in the
lidar data, 1–38.

[BO21] PhD Barak Or, What is imu?, Towards Data Science (2021).

[BP22] Tomáš Báča and Pavel Petráček, Slam dataset, https://
github.com/ctu-mrs/slam_datasets, 2022.

[Cha22] Amit Chauhan, Understanding mean shift clustering and imple-
mentation with python, Towards Data Science (2022).

[CNL+19] Steven W. Chen, Guilherme V. Nardari, Elijah S. Lee, Chao Qu,
Xu Liu, Roseli A. F. Romero, and Vijay Kumar, SLOAM: se-
mantic lidar odometry and mapping for forest inventory, CoRR
abs/1912.12726 (2019).

[DUK+11] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, On the segmentation of 3d lidar
point clouds, 2011 IEEE International Conference on Robotics
and Automation, 2011, pp. 2798–2805.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jiirg Sander, and Xiaowei
Xu, A density-based algorithm for discovering clusters in large
spatial databases with noise, KDD-96 Proceedings (1996).

45 ctuthesis t1606152353

https://automaticaddison.com/how-to-convert-a-quaternion-into-euler-angles-in-python/
https://automaticaddison.com/how-to-convert-a-quaternion-into-euler-angles-in-python/
https://github.com/ctu-mrs/slam_datasets
https://github.com/ctu-mrs/slam_datasets

A. Bibliography.....................................
[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei, Data mining

concepts and techniques, third edition, 2012, pp. 77–78.

[Lin72] R. F. Ling, On the theory and construction of k-clusters, The
Computer Journal 2 (1972), 326–332.

[LW12] Youguo Li and Haiyan Wu, A clustering method based on k-
means algorithm, Physics Procedia 25 (2012), 1104–1109.

[Pan17] Xingjie Pan, cylinder fitting, https://github.com/
xingjiepan/cylinder_fitting, 2017.

[QFMI15] Y. Qin, António Ferraz, Clément Mallet, and Corina Iovan,
Individual tree segmentation over large areas using airborne
lidar point cloud and very high resolution optical imagery.

[SK19] Muhammad Sualeh and Gon-Woo Kim, Dynamic multi-lidar
based multiple object detection and tracking, Sensors 19 (2019),
no. 6.

[SWW+21] Congming Shi, Bingtao Wei, Shoulin Wei, Wen Wang, Hai Liu,
and Jialei Liu, A quantitative discriminant method of elbow
point for the optimal number of clusters in clustering algorithm,
EURASIP Journal on Wireless Communications and Networking
31 (2021), 1–16.

[TMB+21] Eduardo Tusa, Jean-Matthieu Monnet, Jean-Baptiste Barré,
Mauro Dalla Mura, Michele Dalponte, and Jocelyn Chanussot,
Individual tree segmentation based on mean shift and crown
shape model for temperate forest, IEEE Geoscience and Remote
Sensing Letters 18 (2021), no. 12, 2052–2056.

[WFPK+17] Fei Wang, Hector-Hugo Franco-Penya, John Kelleher, John
Pugh, and Robert Ross, An analysis of the application of sim-
plified silhouette to the evaluation of k-means clustering validity,
07 2017.

[ZIP17] Dimitris Zermas, Izzat Izzat, and Nikolaos Papanikolopoulos,
Fast segmentation of 3d point clouds: A paradigm on lidar data
for autonomous vehicle applications, 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 5067–
5073.

[ZSY+22] Qingguo Zhou, Zebang Shen, Binbin Yong, Rui Zhao, and Peng
Zhiand, Theories and practices of self-driving vehicles, Elsevier,
2022.

ctuthesis t1606152353 46

https://github.com/xingjiepan/cylinder_fitting
https://github.com/xingjiepan/cylinder_fitting

Appendix B

Repository structure

zmeskter_bp_repository.zip
Origin PDCs

1651738565.019267170.pcd
1651738569.626969595.pcd

PCDs
afterICP.pcd
class1.pcd
class2.pcd
clustering1.pcd
clustering2.pcd

classify.py
clustering.py
examples.ipybn
pcdIO.py
ploting.py
README.md
remove_ground_and_dron.py
runs.py
transformations.py

47 ctuthesis t1606152353

	Introduction
	Related work

	Ground Removal
	Introduction
	Dron points removal
	Pillars

	Clustering
	DBSCAN
	2D approach

	Other clustering methods
	K-Means
	Meanshift

	Tree classification
	Introduction
	Bare trunk classification
	Cylinder fitting
	Classification

	Full tree classification
	Classification

	Localization
	Introduction
	Data structure
	Tree intersection with the ground
	Inertial measurement unit (IMU)
	Rotation matrix from IMU
	Rotation matrix using classified trees
	Naive transformations using similarity
	Transformations using RANSAC
	Iterative Closest Point Algorithm

	Results analysis
	Conclusions
	Bibliography
	Repository structure

