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Abstract
Zephyr is a new, free and open source

real-time operating system that intends
to provide a secure, feature-rich appli-
cation platform on a wide range of sup-
ported boards. This work describes the
process of porting the system to Avnet
MicroZed board and adding support for
remote debugging using GDB. Our board
port builds upon and expands the con-
figuration of another officially supported
device. Additionally, we develop an exten-
sion to the existing GDB stub implementa-
tion for the 32-bit ARM architecture. The
performance of Zephyr on the MicroZed
board is currently much worse than Linux,
as the CPU caches need to be disabled
for proper functionality. When combined
with the limited troubleshooting capabili-
ties, we conclude that a lot of work is still
required to replace established operating
systems, such as Linux or VxWorks, with
Zephyr.

Keywords: systems programming,
RTOS, embedded systems, Zephyr, GDB,
MicroZed

Supervisor: Ing. Michal Sojka, Ph.D.
CIIRC,
Jugoslávských partyzánů 1580/3,
Praha 6

Abstrakt
Zephyr je nový, svobodný operační sys-

tém reálného času, který slibuje poskyto-
vat bezpečnou platformu pro vývoj apli-
kací na širokém spektru podporovaných
desek. Tato práce popisuje proces por-
tování tohoto systému na desku Avnet
MicroZed a přidání podpory vzdáleného
ladění pomocí GDB. Náš port je založen
na a rozšiřuje konfiguraci jiné, oficiálně
podporované desky. Dále je vytvořeno roz-
šíření stávající implementace GDB stub
pro 32 bitovou architekturu ARM. Vý-
kon systému Zephyr na desce MicroZed je
zatím výrazně horší, než Linux, protože
pro správnou funkcionalitu musí být CPU
cache vypnuta. Pokud toto spojíme s ome-
zenou možností ladění, tak usuzujeme, že
je stále potřeba velké množství práce, aby
mohl Zephyr nahradit zavedené operační
systémy jako VxWorks nebo Linux.

Klíčová slova: systémové programování,
RTOS, vestavěné systémy, Zephyr, GDB,
MicroZed

Překlad názvu: RTOS Zephyr
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Chapter 1
Introduction

Embedded devices have become increasingly popular in recent years as a result of
surging demand for smart home devices, gadgets or self driving vehicles. With these
technologies also rises the demand for real-time operating systems as platforms for
reliable and responsive applications. Zephyr OS aims to be a feature-rich, free and
open source real-time system targeted for a wide variety of microcontrollers and
architectures. This work aims to port the system to Avnet MicroZed, a development
board based on Xilinx Zynq-7000 SoC. Additionally, we add support for debugging
without the use of a hardware debugger by extending the current implementation of
GDB stub to ARM.
Furthermore, the thesis evaluates the potential of using Zephyr for school pro-

gramming courses. Some subjects at FEE, CTU have been using the proprietary
VxWorks RTOS on the MicroZed boards for assignments. The main disadvantage
of this approach is the licensing and distribution of VxWorks. The board has to
be connected to a laboratory LAN with a TFTP server to download and boot the
image. It is also necessary to develop on computers with the Wind River IDE. Using
Zephyr would allow students to tinker with the OS on their own hardware at home,
to inspect the source code and to use any development environment they prefer.
The thesis begins in chapter 2 by outlining the fundamental features and applica-

tion development on Zephyr. The following chapters describe the process and the
challenges of adapting Zephyr to MicroZed and enabling key peripherals. Addition-
ally, we document the expansion of GDB stub for ARM and the issues with our
implementation. Finally, we assess whether the system is suitable as a platform for
practical assignments.
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Chapter 2
Background

This chapter describes the main terms and technologies used throughout this work.

2.1 Embedded systems

An embedded system is generally a computer system integrated in the technology
it controls. These systems tend to sacrifice universal applicability, a feature of
traditional consumer-oriented operating systems, for dedicated aspects such as power
consumption, physical size or performance in specific tasks. Embedded computer
systems therefore usually run bare-metal software or real-time operating systems.
However, resource-heavier operating systems with established API, such as Linux,
are commonly used too.
Embedded systems are heavily used today. Such computers may be found in smart

home appliances, gadgets, IoT sensors as well as vehicles, industrial robots and deep
space probes.

2.2 Real-time OS

Real-time operating system (RTOS) is an operating system, which is generally
designed to react within precise time constraints to its requests. Such systems are
expected to provide deterministic behaviour even in the worst case scenario and
to run continuously without human intervention. A failure of this system could be
inconvenient for its users (in case of a soft-deadline task) or it may have catastrophic
consequences (hard-deadline task).
Compared to conventional, consumer-oriented operating systems, real-time systems

are not designed to provide a fair computing environment for its tasks, or even a
graphical interface. Instead, the resources are reserved for tasks with the highest
priority.
Real-time operating systems are heavily used for a wide variety of applications,

including:.Automotive control systems.Avionics and space computers
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2. Background .......................................
.Medical instruments.Video game engines and multimedia applications. Industrial automation. Nuclear power plant control

There are dozens of real-time operating systems used in production today. Some
examples of the main ones with a brief description are the following:.VxWorks – A proprietary, Unix-based OS developed by Wind River. It has

many safety certifications and conforms to the POSIX standard. The system
comes with its set of development tools, such as an IDE, debugger and a
simulator..RTLinux – One of the first real-time variations of Linux kernel. A modified
Linux kernel is treated as a low priority, preemptable thread with a real-time
scheduler. The applications run at higher priority and are meant to be separated
from the kernel as much as possible. It is distributed as open-source version or
a commercial Wind River Real-Time Core for Linux [1].. Linux + PREEMPT_RT – An optimizing patch to the Linux kernel. It
makes the majority of the kernel preemptable mostly by replacing spinlocks
with mutextes.. FreeRTOS – A free and open source RTOS distributed under the MIT license.
The system can be thought of a thread execution environment with focus on
small memory and simplicity. It supports a wide range of architectures and
embedded boards, from AVR 8-bit microcontrollers to Cortex-A ARM chips.
Two commercial derivatives, OpenRTOS and SafeRTOS, are available, which
provide warranty or safety certification [2].

Real-time operating systems often run on embedded, application specific devices,
such as a small IoT microprocessors, wearable devices or aircraft computers.

2.3 Devicetree

Devicetree specification [3] defines a structure to describe hardware components of a
computer system. This structure is loaded at boot time to system memory and the
bootloader passes a pointer to the structure to the operating system. Device drivers
then access these properties and configure the devices accordingly.
The fundamental part of a devicetree is a tree data structure, devicetree source

(DTS), which defines nodes. Each node describes a hardware device, such as a CPU
core or LED diode, or an abstraction of other components, like pin control blocks
or a group of FPGA registers. Each node may have multiple properties, which are
key-value pairs specifying parameters of the device. The tree can also represent
interrupt routing, where some components represent interrupt controllers and others
point at them, which forms a logical interrupt tree. Listing 2.1 shows a simple
example of a DTS file.

4



........................................2.3. Devicetree

Listing 2.1: Part of DTS file for Raspberry Pi Pico
/ {
cpus {

#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {

compatible = "arm,cortex-m0+";
reg = <0>;

};
cpu1: cpu@1 {

compatible = "arm,cortex-m0+";
reg = <1>;

};
};
soc {

sram0: memory@20000000 {
compatible = "mmio-sram";
reg = <0x20000000 DT_SIZE_K(264)>;

};
flash0: flash@10000000 {

compatible = "soc-nv-flash";
write-block-size = <1>;

};
gpio0: gpio@40014000 {

compatible = "raspberrypi,pico-gpio";
reg = <0x40014000 DT_SIZE_K(4)>;
interrupts = <13 RPI_PICO_DEFAULT_IRQ_PRIORITY>;
gpio-controller;
#gpio-cells = <2>;
status = "disabled";
ngpios = <30>;

};
};
};

All nodes in the DTS are checked with corresponding devicetree bindings, or a
collection of rules that describe required properties, values or value data types for a
device.

Finally, the devicetree is compiled into a devicetree blob (DTB), which represents
the structure in a linear, binary file. This file is copied to RAM by the bootloader.

Devicetree is used mostly on microcontrollers and embedded systems. Platforms
such as x86 much more often use interfaces like ACPI, which allows the OS kernel
to dynamically configure connected devices.

5



2. Background .......................................
2.4 Avnet MicroZed

The MicroZed is a system on module (SoM) developed by Avnet and based on the
AMD Xilinx Zynq-7000 SoC. In this work, we use the revision F of the SoM, which
has the following main features [4]:. Dual-core Cortex-A9 CPU, version 7Z020. 123 programmable MIO pins, FPGA. 1 GB DDR3 memory, 128 MB QSPI flash. 10/100/1000 Ethernet.Two 100-Pin Microheader pins. USB-UART bridge via USB 2.0 port. 33.333 MHz on-board oscillator.MicroSD card slot. User LED and push button

Figure 2.1: Avnet MicroZed

The board has been used for teaching at FEE with an additional shield designed
by Ing. Petr Porazil [5]. The shield connects to the MicroZed board using the two
Microheader pins and provides many additional peripherals, such as a display, input
knobs, PMOD connectors or an audio jack. This kit, shown on picture 2.2, is often
referred to as MZAPO. See the section 6.2 for more details about the kit.
In chapter 5, we work with the standalone board, whereas chapter 6 utilizes the

shield.
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..................................... 2.4. Avnet MicroZed

Figure 2.2: MZAPO kit
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Chapter 3
Zephyr OS

This chapter describes the integral subsystems and properties of the Zephyr RTOS.

3.1 Overview

Zephyr is a free and open source real-time operating system licensed using the
Apache 2.0 license. It is designed primarily as a small-footprint runtime environment
for applications on microcontrollers and embedded systems. Key features of Zephyr
include [6]:. Support for many architectures, such as x86, RISC-V or ARM.Modularity and flexible configuration.Various on-line scheduling algorithms. Hardware configuration with devicetree. User mode threads and basic memory protection. Limited support for POSIX API

This section describes a couple of the main features of the system that I experimented
with. Refer to the official documentation for more details.

3.2 Kernel

Kernel is essentially a collection of code libraries, which provide fundamental functions
to the operating system and its applications, such as scheduling, virtual memory
management and hardware abstraction. This section describes the key aspects and
properties of the Zephyr kernel.

3.2.1 Threads

Thread provides a single execution context for a program. Each thread has its own
stack and registers, meaning that different threads can run asynchronously at the

9



3. Zephyr OS........................................
same time on a multi-core processor. Threads can also communicate and share data
in parallel applications using shared memory.
Contrary to general-purpose operating systems, Zephyr does not support processes.

A process is a distinctive program in execution, which has its own virtual memory
and encompasses the threads created by that process. Zephyr system therefore can
be thought of as one process.
Zephyr supports theoretically unlimited number of threads and is limited only by

the amount of RAM. Each is given a priority, a positive or negative integer value,
during its creation. The OS can define arbitrary bounds of the priority value. Based
on the value of priority, Zephyr distinguishes three thread classes — preemptive,
cooperative and meta-IRQ [7]. Zephyr also defines six runlevels, which are groups of
functions that are called different stages of the boot process. From earliest execution
to the latest, the groups are EARLY, PRE_KERNEL__1, PRE_KERNEL__2, POST_KERNEL,
APPLICATION and SMP (if SMP is enabled). Function is assigned with a particular
priority to a given group at compile time using a macro.
Zephyr also defines two system threads, main and idle, which are started

automatically during boot. The main thread initializes the OS kernel and calls the
main function, assuming that it is defined. If the user application does not include
this function, it can either assign a function to a runlevel or define a new thread
with a given entry function. The idle is executed if there is no pending thread and
the system has simply nothing else to do. This thread may activate various power
saving features of the processor or wait in a loop.
Zephyr provides multiple kernel objects, which implement commonly used syn-

chronization tools, such as mutexes, condition variables, semaphores and atomic
services. Zephyr can be also configured to run without threads [8]. In that case,
all synchronization objects and the thread scheduler will be removed entirely from
the system executable. Core functionality such as interrupt handling, timers and
memory management are expected to work. On the other hand, Zephyr subsystems
other than UART, GPIO and Flash are not supported in this configuration.

3.2.2 Scheduling

A scheduler is an algorithm in operating system kernel that decides to which thread
to assign the CPU. The scheduler may be called periodically or when a running
thread changes its state, for example when running thread goes to sleep (these points
are sometimes called reschedule points).
Zephyr supports the following on-line scheduling algorithms:. Static priority scheduler — This is the default algorithm. The scheduler

simply executes the thread with the highest static priority. In case two threads
with the same priority are ready, the one that has been waiting longer is chosen.. Earliest deadline scheduler (EDF) — This scheduler may be optionally
selected. In case two threads have the same static priority, the scheduler executes
the thread with the earliest deadline — the priority does not depend solely on
the deadline and the static priority is still the primary indicator! A thread with
a higher static priority and later deadline would be executed before a thread
with lower priority and early deadline.

10



......................................... 3.2. Kernel
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image

Figure 3.1: Zephyr memory model on Zynq-7000

Zephyr also supports different data structures, which implement the ready queue,
such as a red-black tree or a linked-list. Each structure has different performance
and memory overhead [9]. In case a running thread preempts itself, it is placed at
the back of the ready queue of its priority.

3.2.3 Memory management

According to the documentation, the memory protection design of Zephyr has been
developed for processors with an MPU (Memory Protection Unit). Even though
the system supports architectures, which support a fully-featured MMU (Memory
Management Unit), the system treats it as an identity page MPU [10]. However,
this is not entirely accurate. The memory management library for Cortex-A series
SoC does indeed support MMU with multi-level page tables, access permissions and
TLB (Translation Lookaside Buffer). While the kernel image and some memory
mapped registers are mapped identically (one-to-one), Zephyr supports dynamic
memory allocation, which many device drivers and the heap API use at runtime.
Diagram 3.1 shows a high level overview of the Zephyr memory model.
The Zephyr image is generally composed of the program instructions, static variables

and other data structures. The section bss (Block Starting Symbol) contains static
variables, which have been declared in the code, but have not been assigned a value
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3. Zephyr OS........................................
yet. The sections text and rodata are the program instructions and the initialized
variables (constants and literals) respectively. I should again emphasize that the
diagram is a significant simplification of the real memory map. All of the sections
and the instructions may be inspected by disassembling the output ELF file. The
three sections mentioned take up the vast majority of the final Zephyr image size.
The system maps these sections at boot, along with a few other memory areas,
such as the interrupt vector table. The SoC also defines some memory mapped
registers, which are mapped one-to-one and at boot time.
The constant Z_VIRT_RAM_START defines the start of the kernel address space. By

default, this is the same as the base of the memory region assigned to zephyr,sram
property in the chosen node — 0 for us. The value Z_FREE_VM_START defines the
end address of the mapped Zephyr image. In case the system maps all physical
RAM pages at boot, which Zephyr on ARM does not, this value equals the RAM
size. In our case, it is set at build time to the end address of the image and that of
course depends on the final size of the compiled system. The macro Z_VIRT_RAM_END
is defined as Z_VIRT_RAM_START + Z_VIRT_RAM_SIZE, where the latter constant is
configurable — by default to 0x800000 [11] or roughly 8.3 MB. Since this address
represents the upper bound of the kernel address space, the remaining virtual memory
region is typically used for identity mapping of some memory mapped registers.
The region between Z_VIRT_RAM_SIZE and Z_FREE_VM_START is used for runtime

memory mappings, which are used by dynamic memory allocation or by drivers
for memory mapped IO. The virtual pages are allocated from the highest address
downward, as visualized in the diagram. It is important to note that if the Zephyr
image is larger than the Z_VIRT_RAM_SIZE constant, there is no space for dynamic
memory mapping and the system crashes at boot.
The L1 PT block is the level 1 page table, which, simply put, contains address

locations of all level 2 page tables (visualized by arrows) and some translation
properties. These tables in turn have entries pointing to the desired memory page.
More specifically, Zephyr uses the following memory configuration:.The page size is 4 kB by default. Although the size is configurable, Zephyr

recommends using the smallest possible value [12]. In our case, Cortex-A9
additionally supports 64 kB large pages, 1 MB sections and 16 MB supersections
[13]..The L1 page table has 4096 entries (first-level descriptors). Although this is
configurable when initializing the MMU, the length is fixed in Zephyr..The L2 page table has 256 entries (second-level descriptors) — the first 12 bits
of the 20 bit memory page indexes the L1 PT, as 212 = 4096, and the remaining
8 bits index the L2 table. This length is therefore hard-coded in Zephyr as well.
By default, the system uses 64 of these tables, but the number is adjustable
[14].

3.2.4 User mode

Zephyr allows to use an optional, non-privileged CPU state called User mode,
which implements many additional safety features. The system aims to protect

12



....................................... 3.3. Subsystems

mainly against the following errors [15]:. User-level thread memory access — Non-privileged threads have by default
access only to their stacks and read-only program data.. Stack overflow attack. Incorrect kernel API parameters — The system checks argument types, nonsen-
sical values or access rights to passed objects.. Unauthorized re-entry to supervisor mode

These properties may be overridden during initialization of user level threads.
Zephyr does not protect against any of these errors during supervisor mode or
against other types of attacks, such as CPU starvation.
It can be also argued that compile time memory allocation is a form of prevention

against run time errors. Zephyr defines many C macros for allocating kernel objects
during compilation, such as threads, synchronization objects or atomic variables.
It is also possible to define a fixed-size memory pools for dynamic allocation at
runtime.

3.3 Subsystems

3.3.1 Shell

Zephyr provides API to implement a Unix-like shell and functions for both compile-
time and run-time command definition [16]. The shell supports features such as
wildcard expansion, CLI option parsing (getopt), multiple instances or command
completion. Zephyr also allows minimal shell configuration to reduce memory
footprint or to hand-pick additional features.
The system support multiple IO subsystems for the shell, including UART, Telnet,

USB or Segger RTT. The particular device used for the shell is specified in the board
devicetree.

3.3.2 Console

Console in Zephyr is a high-level wrapper for serial communication over UART and
provides IO functions such as getchar or putchar. These methods use lower-level
TTY (serial port object) interface, which provides API for buffered, unbuffered,
interrupt-driven and polling serial communication. Some of these functions support
adjustable receive and transmit timeouts, which are infinite by default. UART
drivers are called from the TTY object. Zephyr provides a wide range of formatted
output APIs. The console subsystem is intended primarily to simplify porting of
software that uses the fully-featured C standard library.
It is important to note that some functions of this subsystem are not com-

patible with each other [17]! For example, the function console\_getchar()
and console_getline() may be used only after a console_init() function or
console_getline_init() have been called - each of these sets up a different Zephyr
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3. Zephyr OS........................................
subsystem to interact with the UART driver. The getchar and putchar functions
(and also POSIX-like functions console_read() or console_write()) serve simply
as wrappers around the TTY interface. The console_getline function uses a more
complex console handler subsystem, which provides other functionality on top of
the UART driver, such as cursor handling or pluggable transport for MCUmgr.
MCUmgr defines an open and portable1 system for remote OS management [18]. If
we wanted to use both of these subsystems at once, we would have to use different
UART modules and define this mapping in the devicetree.
Similarly, the shell subsystem uses its own utilities on top of the UART driver and is

not compatible with either console_getchar() or console_getline() functions.

1At the time of writing, MCUmgr is implemented only by Zephyr and Apache Mynewt
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Chapter 4
Zephyr application examples

Zephyr OS provides official support for many development boards and IoT sensors.
This section briefly documents the process of developing, building and running
applications on Zephyr.
I tested the applications on a Raspberry Pi Pico board and QEMU x86 emulator,

both of which are officially supported [19].

4.1 System configuration

Zephyr uses the Kconfig configuration system to manage and set-up the system
properties [20]. As a matter of fact, Kconfig is also used by Linux.
Briefly speaking, Kconfig in Zephyr mainly consists of configuration files named

Kconfig scattered throughout the source tree. These files define Kconfig options,
which are properties corresponding to a certain subsystem or functionality of the
system. Some examples of Kconfig options may include CONFIG_CONSOLE, which
includes console drivers to Zephyr, or CONFIG_NO_OPTIMIZATIONS, which instruct
the compiler to not perform any optimizations. Each option may be one of two
types:.Visible — These may be configured directly by the user. Zephyr includes

the menuconfig and guiconfig programs, which manage these options with a
graphical interface. Each board may also define board-specific assignments of
these options in its [board]_defconfig (MicroZed does too) and applications
often override global options in prj.conf files. See the documentation for more
information about how the final configuration is derived [21].. Invisible — Invisible symbols are set automatically based on the configuration
of other symbols. Many symbols thus form a dependency tree. The files
Kconfig.defconfig are used to configure the board-specific, invisible symbols
with certain conditions.

Additionally, the build system, CMake, needs to define which source files corre-
spond to which symbols. For example, the following entry in drivers/ethernet/CMakeLists.txt
adds the Ethernet driver code for a Xilinx SoC to Zephyr in case the CONFIG_ETH_XLNX_GEM
option is set:
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4. Zephyr application examples ................................
Listing 4.1: CMake command for Xilinx Ethernet driver

zephyr_library_sources_ifdef(CONFIG_ETH_XLNX_GEM
eth_xlnx_gem.c
phy_xlnx_gem.c
)

It is also important to note that each symbol has a certain type, such as a bool
(with values y or n), string or int.

4.2 Building

To build Zephyr applications, it is necessary to install the Zephyr SDK and a number
of other packages, such as a devicetree compiler or the CMake build system. Code
building is done in Python virtual environments, so a working installation of Python
3 is required as well. All steps to set up the development environment are in the
getting started guide [22].
The SDK also includes a few tools for running and building Zephyr, chief among

which is west. West is a command-line tool developed for Zephyr, which mainly
provides convenient access to build, flash or run applications. It is also able to track
multiple git repositories and cryptographically sign the system images. By default,
west uses ninja to build the project files generated by CMake, but GNU Make may
be used too [23].
The following example shows the process of building sample Zephyr application for

QEMU x86 emulator:

Listing 4.2: Building a sample application using west
~/zephyrproject/.venv/bin/activate
west build -p always -b qemu_x86 zephyr/samples/hello_world

The first command is of course not necessary if west is not installed in a Python
virtual environment.
Executable output files of the build process are ELF binaries and other formats

depending on the target platform. For example, west generates UF2 firmware image
for Raspberry Pi.

4.3 Raspberry Pi Pico

Raspberry Pi Pico is a small microcontroller board designed by Raspberry Pi
Foundation. It uses their ARM-based RP2040 chip and has the following key
features [24]:. Dual Cortex-M0+ running at 133MHz. 264kB on-chip SRAM. 2MB QSPI flash
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Figure 4.1: Raspberry Pi Pico on a breadboard

. 26 multipurpose GPIO pins. 2 UART controllers, 16 PWM channels. USB 1.1 controller with on-chip programmer

As mentioned in the previous section, west also generates the UF2 image when
building for this board. The microcontroller is then flashed by simply moving this
image onto the board if it is connected as a mass storage device.
I have developed and run several simple Zephyr applications on the board to test

various subsystems and capabilities, such as the console, shell or interaction with
physical peripherals.
The console and many buffered IO functions can connect to a computer with serial

connection over UART. The RX and TX pins of either UART controller can be
simply wired to a USB-to-serial converter and connected to a workstation.
Zephyr provides a simple API to directly control physical GPIO pins or generally

any device defined in the board devicetree. I have added several devicetree nodes
representing LED diodes and push buttons at their respective pins. The API then
allows to interact with these nodes in the application code. For example, configuring
a device as output allows to set the assigned pin to logical high or low value. Input
pins may be connected to a callback function (an ISR) for a particular logical level
or a level change, such as a rising edge.

4.4 QEMU

QEMU (Quick Emulator) is a widely used, free-and-open-source emulator. It is
included in the Zephyr SDK for various architectures, such as x86, ARM (Cortex
M0, M3 or R5), RISC-V and others. Each of these supported architectures is
represented in Zephyr as another board with its devicetree and default kernel
configuration options. These QEMU builds use system emulation (as opposed to
QEMU user-mode).
Once an application is compiled for the emulator (shown in listing 4.2), the following

command opens QEMU on the host computer and runs the system binary:
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4. Zephyr application examples ................................
Listing 4.3: Running an application on QEMU

west build -t run

Behind the scenes, it expands to this command:

Listing 4.4: QEMU call options
/bin/sh -c "cd /home/user/zephyrproject/applications/QEMUTest/\
build && /home/user/zephyr-sdk-0.15.0/sysroots/x86_64-pokysdk-\
linux/usr/bin/qemu-system-x86_64 -m 4 -cpu qemu32,+nx,+pae \
-device isa-debug-exit,iobase=0xf4,iosize=0x04 -no-reboot \
-nographic -no-acpi -net none -pidfile qemu.pid \
-chardev stdio,id=con,mux=on -serial chardev:con \
-mon chardev=con,mode=readline -icount shift=5,align=off,\
sleep=off -rtc clock=vm -kernel/home/user/zephyrproject \
/applications/QEMUTest/build/zephyr/zephyr.elf"

We tried running some example applications on the included QEMU-x86 emulator,
from simple character IO applications to more complex multi-threading applications.
While many Zephyr API functions worked as expected, there seems to be an issue
with hardware timer emulation in QEMU that in turn causes some methods to
misbehave. More specifically, we have tested both HPET and APIC timers, both
are supported in Zephyr and neither worked correctly.
HPET (High Precision Event Timer) is a modern hardware timer specification for

x86. It is commonly used for real-time multimedia streaming, scheduling or general
time sampling. One such chip may provide up to 32 comparators and one main
counter. The timer is programmed using memory-mapped registers at predefined
offsets. The Main Counter Value Register is a 32 or 64-bit read-write register that
stores the current counter value and increments the value at a specified frequency
[25]. On Zephyr, HPET is 64-bit long and is incremented every 10 ns (100 MHz) by
default.
Once initialized and started during Zephyr boot, this counter would often increase

its value by huge amount. This meant that system timer interrupts, which are set
to 100Hz on Zephyr, would be generated significantly more often, at nearly 90000
interrupts per second. The system was therefore flooded with timer interrupts and
spent all CPU resources on handling the HPET ISR and rescheduling the comparator
registers. This resulted mainly in the following issues:.The OS had no resources to handle other ISRs with. For example, callback

routine for getchar function would not execute and character input over UART
therefore does not work..Time perceived by the system would speed up dramatically. As a result, waiting
functions such as k_msleep return immediately. On the other hand, methods
for busy-waiting, like k_busy_wait would work correctly.

My thesis supervisor, Dr. Michal Sojka, has submitted an issue to Zephyr GitHub
repository regarding these problems on QEMU. We have tested the same application
on different QEMU versions as well as with older releases of Zephyr. We also tried
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using a standard QEMU releases instead of the emulator that comes with Zephyr
SDK. However, none of these attempts have solved the issue and at the time of
writing, there seems to be no result on the GitHub issue either.
APIC (Advanced programmable interrupt controller) is a modern specification

for interrupt controllers on x86 processors. Among other functionalities, it defines
a per-CPU-core local interrupt controllers (LOAPIC), which manage local vector
tables (LVT) and handle incoming interrupts. The LVT is also able to handle events
such as internal clock and can therefore define a timer bound to the specific CPU
core.
Zephyr may be configured to use APIC instead of HPET. I tested the same

applications as I did with HPET and there appears to be a similar issue. I have not
tested this configuration nearly as much as HPET, but character input over serial
console worked correctly. However, neither busy waiting or classic delay functions
worked.
Finally, we have also tested a simple application on an desktop computer with

an Intel Core i5 Ivy Bridge CPU. The program printed a couple of "Hello world"
messages in a loop with a delay of 1s. The application worked as expected, indicating
that there is likely no HPET issue in Zephyr, but in the QEMU emulator.

4.5 Debugging

Zephyr supports various ways to debug the application or the system itself. This
section describes two of these approaches using GDB (GNU Debugger), which I
tested and are universally applicable. The system also supports and recommends
different commercial hardware debuggers, none of which I tested or have access to.

4.5.1 QEMU hardware debugging

Hardware debugging refers to program debugging using the host CPU resources.
For example, setting dedicated registers to an address may act as a breakpoint and
stop execution when program counter of the CPU reaches that address.
I have tested this lower-level approach with QEMU x86 on a few applications. This

may not classify as "hardware" debugging, but the GDB client communicates directly
with QEMU instead of the OS that is running on the emulator. Once QEMU is
started with this option, it waits for a remote connection from GDB on a predefined
port. GDB can then connect to this remote target.
To enable hardware debugging in QEMU, you can add the following code to

CMakeLists.txt file in your project:

Listing 4.5: Modification of CMakeList.txt
if(BOARD MATCHES "qemu_x86")

list(APPEND QEMU_EXTRA_FLAGS -s -S)
endif()

These commands append the options -s -S to the command shown in listing 4.4.
After starting the simulator, open a new terminal window and enter:
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4. Zephyr application examples ................................
Listing 4.6: Connecting GDB to QEMU

gdb build/zephyr/zephyr.elf
target remote localhost:1234

The first command loads GDB with symbol table of the Zephyr system executable.
The second, entered to GDB shell, attaches the debugger to QEMU.
I have not found any problems with this configuration. When used with QEMU

monitor, this is a very convenient and powerful debugging tool.

4.5.2 GDB stub

GDB stub is an implementation of the GDB Remote Serial Protocol (RSP). It defines
a communication protocol between a server, a system or application that implements
RSP, and a client, which is the GNU Debugger. Zephyr provides the GDB stub,
which, at the time of writing, supports only the serial backend and two architectures
— x86 and Xtensa. It should be noted, that starting Zephyr on QEMU with west
sets up several communication interfaces and the serial connection used for the stub
is redirected to a networking port (5678 by default).
I have tested GDB stub with a couple of applications only on the QEMU emulator,

as it does not appear to be supported on the Raspberry Pi Pico yet.
The debugger works well for simple applications, but sometimes gets stuck and

unresponsive. For example, when stepping deep inside the system through nested
function calls or calling a synchronization method in a multithreaded application,
the system freezes. I tried debugging the GDB stub code with QEMU hardware
debugging, but have not found any bugs. The issue could be related to the HPET
problem mentioned before.
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Chapter 5
Adding support for MicroZed board

This chapter describes the process of porting Zephyr to the MicroZed board. As
mentioned in the introduction, this board is not officially supported by the OS, but
the Zynq-7000 SoC is.
The documentation recommends to base a new board on one that is already

supported and has the same SoC. At the time of writing, Zephyr officially supports
one board with the Zynq chip, Digilent Zybo [26]. Our port thus derives from its
configuration, modifies it and adds new functionality.

5.1 Zynq-7000 clocks

To configure some subsystems on the SoC, we need to manually specify various
frequency-related values in the devicetree. Drivers parse these values at boot and
adjust clock dividers to run the devices at a particular frequency. This section
describes basic properties of the Zynq-7000 clock subsystem and the frequencies that
our system is going to run with.
The clock subsystem in the SoC is driven by an external clock source connected

to the PS_CLK pin, in our case a 33.333 MHz oscillator. This clock signal
drives three programmable Phase locked loops (PLL), electrical circuits, which
are used to multiply the frequency of the source clock. Each PLL has multiple
parameters adjustable by a memory-mapped register. One of these parameters is
feedback divisor, which specifies the clock multiplier. The table 5.1 shows the PLL
configuration on our board, along with their divisor values and output frequencies:

PLL Feedback divider Output frequency [MHz]
ARM PLL 40 1333
DDR PLL 32 1067

IO PLL 30 1000

Table 5.1: PLL configuration on MicroZed

It is important to note that Zephyr does not adjust any of these PLL registers or
other core clock divisors. The values above are either the default register values or
values that were later in the boot process adjusted by a second stage bootloader,
such as U-Boot. Although Zephyr does provide a clock control API [27], no driver is
implemented for the Zynq-7000 SoC yet.
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5. Adding support for MicroZed board .............................
All clocks in the SoC are derived from one of the PLLs by dividing their frequency.

One of the most important clock clock domain on the SoC is the CPU clock
domain. It is driven by one of the PLLs. The module divides the input frequency
by an even number before dividing the frequency further to four outputs frequencies
in a given ratio, either 6:3:2:1 or 4:2:2:1 (abbreviated 6:2:1 and 4:2:1 respectively).
Layout of the CPU clock generator is shown in figure 5.1:

Figure 5.1: CPU clock divisor

In our case, the clock is routed from ARM PLL, the divisor in register ARM_CLK_CTRL
is set to 2 and the clock ratio is 6:2:1. All four outputs are enabled, table 5.2
outlines their frequencies.

CPU Clock Ratio Output frequency [MHz]
CPU_6x4x 6 666
CPU_3x2x 3 333
CPU_2x 2 222
CPU_1x 1 111

Table 5.2: CPU domain clock frequencies

The CPU clock handles the ARM processor and many subsystems, such as timers,
on-chip memory controllers or interconnect busses [28].

5.2 The board directory

At this point, we can start to add various files that describe the MicroZed board to the
Zephyr kernel tree. Here, I follow the board porting guide in Zephyr documentation
[29]. The Zynq-7000 SoC is already supported in the OS and we can therefore start
adding the files straight away.
Firstly, it is necessary to create a directory in the tree, which represents the board

and make it available for west, the Zephyr build tool. As mentioned in the beginning
of this chapter, the system officially supports one board with the Zynq-7000 SoC.
We can thus start by copying its directory to zephyr/boards/arm/ and renaming
to microzed.
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There are a couple of mandatory files in each board directory:. [board].dts — Devicetree of the board. It usually includes devicetree of the
SoC and defines interfaces and peripherals specific to the board..Kconfig.board — This file defines the Kconfig entry of our board. Listing
below shows the contents for MicroZed.

Listing 5.1: Kconfig.board file contents
config BOARD_MICROZED

bool "MicroZed board"
depends on SOC_XILINX_XC7Z010 || SOC_XILINX_XC7Z020

The board depends on two Zynq-7000 SoC variants, on which we are going to
test Zephyr and which are specified in the MicroZed TRM [4]..Kconfig.defconfig — This file contains board-specific settings, which may
depend on other configuration options. MicroZed defines the following options:

Listing 5.2: Kconfig.defconfig setting for MicroZed
if BOARD_MICROZED

config BOARD
default "microzed"

endif # BOARD_MICROZED

The BOARD Kconfig option must be specified in this file.. [board]_defconfig — These assignments are copied as is to the final Kconfig
file during build:

Listing 5.3: Contents of microzed_defconfig
CONFIG_SOC_SERIES_XILINX_XC7ZXXX=y
CONFIG_SOC_XILINX_XC7Z020=y
CONFIG_BOARD_MICROZED=y

# Clock settings
CONFIG_ARM_ARCH_TIMER=y
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=333333333
# do not use the TTC as a kernel timer
CONFIG_XLNX_PSTTC_TIMER=n

CONFIG_PINCTRL=y
CONFIG_SERIAL=y
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y
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5. Adding support for MicroZed board .............................
The file defines some essential configuration options. The general recommenda-
tions in the board porting guide suggest, among others, enabling serial output,
console or pinmux (pin control) drivers. Although it also advises us to en-
able networking subsystems if supported, I did not include it in this primary
configuration, as it considerably increases the size of the final Zephyr binary.

Other optional files usually include:. doc/index.rst — A directory in a ReStructuredText file format, which de-
scribes the board and makes the page of the board in documentation.. doc/[board].png — A picture of the board..CMakeLists.txt — A file for the CMake build tool that may specify additional
code to the build. We do not use this file in the microzed directory.

5.3 Devicetree modification

We are going to modify the devicetree of the Digilent Zybo board in several ways.
The board does not support some peripherals and subsystems that we are going to
use, such as Ethernet or TTC. Other peripherals may be routed to different MIO
pins of the SoC. The board also has a smaller RAM capacity and might have various
clock settings.
The first task is to change some basic properties of the root node — the model

name and the compatible property. The compatible property generally specifies
the name and type of the device that the node represents. Device drivers usually
parse this property to get the node they represent. The build system also uses
it to find devicetree bindings at build time to check that the node specifies all
required properties. The recommended value of the property is a string in the form
"vendor,device" [30]. The modification of these two properties is shown in the listing
below:

Listing 5.4: Basic devicetree properties
/ {

model = "Avnet MicroZed board";
compatible = "avnet,zynq-microzed","xlnx,zynq-microzed",
"xlnx,zynq-7000";

}

The slash simply indicates that we modify properties of the root node. Secondly,
we should adjust the RAM capacity. Our MicroZed board has got 1 GB DDR3 (1024
MB or 230 B) memory, twice the size of memory on the Zybo board. The modified
memory node is shown in the following code snippet:

Listing 5.5: Devicetree memory node
/ {

sram0: memory@0 {
compatible = "mmio-sram";
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.................................. 5.3. Devicetree modification

reg = <0x0 DT_SIZE_M(1024)>;
};

}

Here, sram0: is a label of the node. Labels are commonly used in devicetree to
simplify references of one node to another. The property reg has a value of type
array with values of type (address, length). The addresses are generally relative
to the parent node address space, in this case to the root node. The fist address in
the array has to match the unit address @0. The DT_SZIE_M specifier is a bit shift
macro defined by Zephyr.

5.3.1 UART and Pin Control

UART (Universal Asynchronous Receiver Transmitter) is a device, usually part of an
SoC, which provides an interface to serial communication. The Zynq-7000 provides
two, programmable UART controllers with various features, such as interrupts,
parity and error detection, or variable baud rate.
The MicroZed board provides an USB-to-UART bridge, which appears as a COM

port when connected to a computer. The bridge uses two MIO pins, specifically pins
48 and 49 [4], on the SoC for Tx and Rx (transmit and receive) signals. These pins
correspond to UART 1 controller on the SoC.
It is important to note, that the two UART controllers may be assigned to many

different MIO pins. As a result, there is a devicetree binding rule in Zephyr requiring
a pin control node reference in the UART node. Pin control node generally
specifies pins used by a given device and some electrical characteristics of hardware
pin controllers, such as pull-up, voltage level or slew rate [31]. High-level diagram
of a pin controller is shown in figure 5.2.

Figure 5.2: Zynq Pin Controller

As we can see, each of these controllers is able to multiplex many inputs, or serve
as an input. On Zynq-7000, each pin controller has its own memory mapped register,
a SLCR (System Level Control Register). The pin control driver parses the node
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5. Adding support for MicroZed board .............................
in devicetree and sets appropriate parameters in the SLCR for each pin, that needs
to be configured.
The pin control node is already implemented with the correct pin assignment in

the Zybo board directory. There is also an example of such node in the binding file
for pin control nodes. To finish the UART devicetree node, we have to specify the
UART reference clock. This value is used by the UART driver to set the correct
divisor constant and get the correct baud rate. We can observe from U-Boot and
the value of the slcr.UART_CLK_CTRL register that:.The clock source is IO PLL.. Frequency divisor in UART is set to 20.

As outlined in table 5.1, frequency of IO PLL is 1000 MHz in our configuration
and the UART reference clock is therefore 50 MHz. The listing below shows the
final configuration of the UART node.

Listing 5.6: UART devicetree node
&uart1 {

status = "okay";
current-speed = <115200>;
clock-frequency = <50000000>;
pinctrl-0 = <&pinctrl_uart1_default>;
pinctrl-names = "default";

};

The expression &uart1 is a phandle and references a node with label uart1, which
is defined in the SoC devicetree. By setting value "okay" to the property status,
we are overriding its default value "disabled". This is a very common trick, which
lets us easily enable and disable various subsystems or peripherals. A node may
also have more pin control nodes assigned (numbered from 0), each with different
name and different configuration. For example, the node could have a "normal" and
"power save" pin configuration.

5.3.2 LED and push button

LED and button nodes are already implemented in devicetree of the Zybo board.
Pin numbers of these peripherals have to be changed though, as they are wired
differently on MicroZed.
According to the MicroZed TRM, the LED and button are connected to pins 47

and 51 respectively [4]. However, the pin numbers in devicetree have to be relative
to the GPIO bank that controls them. The GPIO subsystem in Zynq-7000 is
divided into four banks, each controls a portion of the MIO or EMIO (routed to
FPGA) pins. The 54 MIO pins are assigned to the first two banks — pins [0, 31] to
bank 1 and [32, 53] to bank 2. Our peripherals are therefore connected to pins 15
and 19 of GPIO Bank 1. The modified nodes are listed below:

Listing 5.7: LED and button nodes
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/ {
aliases {

led0 = &ld_mio;
sw0 = &btn0;

};
leds {

compatible = "gpio-leds";
ld_mio: led_mio {

gpios = <&psgpio_bank1 15 GPIO_ACTIVE_HIGH>;
label = "LD_MIO";

};
};
gpio_keys {

compatible = "gpio-keys";
btn0: btn0 {

gpios = <&psgpio_bank1 19 GPIO_ACTIVE_LOW>;
label = "BTN0";

};
};

};
&psgpio {

status = "okay";
};

The node psgpio_bank1 is already implemented in devicetree of our SoC, along
with its parent node psgpio. The node alias assigns additional name tags to nodes,
which makes it easier to reuse programs and refer to the nodes from code. For
example, the alias led0 is used in many Zephyr sample programs that use the LED.
The value "okay" again overrides the default value "disabled" of status property
in node psgpio.

5.3.3 Triple Timer Counters

TTC (Triple Timer Counters) is a timer module, which contains three independent,
programmable timers. The Zynq-7000 SoC has two TTC modules. The timers are
able to generate interrupts as well as route the output signal to a MIO or EMIO pin.
Neither the devicetree of the Zybo board or devicetree of the SoC have a node for

the TTC. Although Zephyr does provide a driver for Xilinx TTC, it implements the
system timer driver API [32], which offers relatively limited functionality. Addition-
ally, Zephyr uses the ARM CPU private timer by default, even if TTC is available.
I have added two nodes to the MicroZed devicetree, one for each module — TTC 0
is going to be used by user applications and TTC 1 is available for the optional
TTC system timer. The following listing shows a node for TTC 1:

Listing 5.8: TTC 1 node
/ {

soc {
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ttc0@f8001000 {

compatible = "user,ttcps";
status = "okay";
reg = <0xf8001000 0x1000>;
clock-frequency = <111111111>;
interrupt-names = "irq_0", "irq_1", "irq_2";
interrupts = <GIC_SPI 10 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>,
<GIC_SPI 11 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>,
<GIC_SPI 12 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;

};
};

};

We are going to use an internal clock source for the timer, which is CPU_1x for
both TTC. The property clock-frequency is therefore set to 111.111111 MHz, see
table 5.1. According to the Zynq TRM, the TTC 0 timers correspond to interrupts
44, 43 and 42. However, similarly to the interrupt ID of the button and LED, the
numbers have to be relative to the corresponding SPI (Shared Peripheral Interrupt)
register. The 60 SPI interrupt numbers [32, 92] are split between two 32-bit registers,
thus the relative IDs of our timers are 10, 11 and 12.
The value "user,ttcps" in the TTC 0 node may be arbitrary, since we are making

a simple driver for it. The compatible property in the TTC 1 node has a value
"xlnx,ttcps", as defined by the system driver. Once these nodes are defined in the
devicetree, it is necessary to map the memory mapped registers to virtual address
space in order to program the timer.

Listing 5.9: TTC driver initialization
// the matching compatible property
#define DT_DRV_COMPAT user_ttcps
DEVICE_MMIO_TOPLEVEL_STATIC(my_driver,DT_DRV_INST(0));
// virtual address of the mapped registers
#define BASE_ADDR DEVICE_MMIO_TOPLEVEL_GET(my_driver)

static int ttc_driver_init()
{

DEVICE_MMIO_TOPLEVEL_MAP(my_driver,K_MEM_CACHE_NONE);
// TTC initialization...

}

The listing above shows a part of our driver to map the registers of TTC 0 at
runtime. The macro DT_DRV_COMPAT specifies the compatible property that the
device or devicetree related macros use. It is commonly used throughout Zephyr,
as it is more convenient than specifying the value in each subsequent macro. The
set of macros DEVICE_MMIO_TOPLEVEL do not use the Zephyr device model [33],
which offers a fully-featured but more complex interface. However, since we only
need to map the registers and call the ttc_driver_init function, these macros are
sufficient. The BASE_ADDR macro stores the virtual address of the TTC 0 register
block.
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5.3.4 Ethernet

Ethernet is a standardized family of network protocols and technologies, which
operate at the physical and link layer of OSI model. The Zynq-7000 SoC provides
two programmable Gigabit Ethernet Controllers (GEM). On MicroZed, the controller
GEM 0 is routed to ten MIO pins, which are wired to an external PHY (Physical
layer device) chip. This chip connects directly to the RJ-45 port.
Zephyr supports a a wide range of Ethernet features, such as half/full duplex,

MAC address filtering, 10/100/1000 Mbit link speeds or checksum offloading [34].
Drivers for the Zynq-7000 GEM controllers are implemented as well. The Zybo
devicetree does not include any Ethernet configuration, although the board does
support networking. The Zynq-7000 devicetree configures many, but not all required
GEM properties. According to a devicetree binding for the Xilinx GEM, we must
specify the following properties:. clock-frequency — Frequency of the PLL supplying TX clock of the GEM.

By default, this is the IO PLL and applies to our configuration too. The driver
parses this value at run-time and adjusts two clock dividers inside GEM. The
resulting frequency is configured to match the link speed that the PHY device
negotiated.. mdc-divider — The MDIO (Management data input output) interface clock
divider. This interface is used to program the PHY and is accessed through
a PHY maintenance register of the specified GEM. It consists of two signals

— MDIO data and MDIO clock (MDC). On MicroZed, these lines are part of
RGMII (Reduced Gigabit Media Independent Interface), which has additional
12 wires, 6 for transmit and receive signals, and connects the external PHY to
the SoC. On Zynq-7000, the MDC is generated by dividing the CPU_1x clock
and must not exceed 2.5 MHz [28]. However, the divisor supports only values
{8, 16, 32, 48, 64, 96, 128, 224}. In our case, CPU_1x runs at 111 MHz and the
value 48 divides the frequency to 2.31.. local-mac-address - Although this property is not required by the binding,
the driver depends on a macro derived from it. If this is not defined in the
devicetree, the macro is not declared and the kernel does not compile.

The snippet below shows the GEM 0 node in microzed.dts:

Listing 5.10: Ethernet controller node
&gem0 {

status = "okay";
clock-frequency = <1000000000>;
mdc-divider = <XLNX_GEM_MDC_DIVIDER_48>;
init-mdio-phy;
local-mac-address = [ c6 8c 2b 3d 18 1e ];

};

The property init-mdio-phy is not specified either in the SoC devicetree and is
set to true this way. It instructs the driver to not only configure the GEM, but
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to also initialize the PHY using a designated driver. Zephyr includes drivers for a
couple of PHY models that run alongside a Xilinx SoC. One of the supported PHY
devices is Marvell Alaska 88E1512, which is used on MicroZed.
It is important to note that in the Zephyr 3.3.0 release, which is the most recent at

the time of writing, PHY device initialization on MicroZed does not work. U-Boot
initializes the PHY device correctly, since we are able to load the Zephyr binary
over TFTP. Once Zephyr boots, the driver identifies the PHY device and starts the
initialization. However, it does not respond to a polling function, which waits for
the PHY to negotiate the link speed — this ultimately prevents any higher-level
networking application from functioning. Furthermore, if the board is reset using the
designated button, the bootloader cannot initialize the PHY anymore. Eventually,
the board had to be physically disconnected from a power source and turned on
again. U-Boot then configured the PHY device correctly and the whole process
would start again. These issues turned out to be caused by the following two bugs:.The reset button does not trigger a hardware reset in the PHY device. According

to errata for MicroZed revision G [35], the resistor and capacitor values on the
board do not reset the chip for 10 ms as required, but merely for 4.7 ms..The Xilinx PHY driver in Zephyr had a wrong value in a predefined macro.
One of the steps when setting up the PHY device is to choose an operating
mode — in our case, this is RGMII to copper. This mode is set using the
MDIO interface in a register field in the PHY device, specifically bits 2:0 in
register 20 of page 18 (General Control Register 1) [36]. The hardware reset
value of this field is 111 for our PHY model and the value that corresponds to
our required mode is 000. Therefore, the driver simply cleared the bit field (set
to the negation of the bit mask) in the register. However, instead of 111, the
bit mask was, likely by mistake, defined as 011. This meant that the register
field was set to 100, which corresponds to mode RGMII to SGMII. This
way, the PHY device did not negotiate the link speed and never reported it to
the driver callback function. Additionally, the device was not affected by the
button reset and would keep this setting after the SoC reset.

With the help of my supervisor, we created a pull request that fixes this macro 1.
As of 28. April 2023, it has been merged into the main branch of Zephyr kernel.

5.4 U-Boot and Zephyr booting

U-Boot (or Das U-Boot) is a free and open source bootloader (first and second
stage) commonly used in embedded systems [37]. It supports many architectures,
SoC and standalone development boards, MicroZed and Zynq-7000 SoC included.
Generally speaking, a processor starts executing code in an on-chip read-only

memory (often called BootROM) once power is applied. This program probes
other memory devices, such as a NAND flash or an SD card, for a boot image,
which may be a first stage bootloader like U-boot.

1https://github.com/zephyrproject-rtos/zephyr/pull/56361
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Once U-Boot starts up, it offers a shell over a serial connection. The bootloader
comes with many predefined utilities, which are accessible through the shell. These
include programs for memory access, device control, network file transfer or, most
importantly, booting higher-level OS images. The process of replacing a running
program by a new one is sometimes called chain loading. U-Boot may be also
configured using persistent storage of the device and various environment variables
to execute commands automatically at boot.
We cross compiled U-Boot for the MicroZed board from a Xilinx fork [38] of the

official U-Boot GitHub repository. We used version 2022.2, which is the most recent
at the time of writing. Two of the compiled files, u-boot.img and spl/boot.bin,
have to be copied to a microSD card, which we use as a boot device.

Once the card is inserted in the board, connect it to a computer via the MicroUSB
port. Since MicroZed uses this port also for primary power delivery (and for the
USB-UART converter), the board starts the boot process. Now we can open up a
serial port terminal and attach to the corresponding interface (a character special
file in Linux /dev directory). We use the open source program GTKTerm [39].
To transfer a Zephyr image (file zephyr.bin in an application build directory) to

the board, we may use one of the following approaches:. Copy the file to the microSD card — The image may be copied to the card
alongside the bootloader files and then accessed from U-Boot. After U-Boot
initializes, type the following command in its shell to load the binary to memory:

Listing 5.11: Loading Zephyr image from SD card
Zynq> fatload mmc 0 0x0 zephyr.bin

.Transfer the file with TFTP — U-Boot supports TFTP (Trivial File Transfer
Protocol) to load images of operating systems to memory from a remote TFTP
server. This server has to be therefore available on the network MicroZed is
connected to. I have set up a simple TFTP server on my computer to share
contents of directory /srv/tftp. After a compiled Zephyr binary is copied
there, it may be loaded over LAN as:

Listing 5.12: Loading Zephyr image over TFTP
Zynq> tftpboot 0x0 ${serverip}:/srv/tftp/zephyr.bin

Here, serverip is a predefined environment variable that I use to store the
IP address of my computer. This process is clearly more flexible than the
previous, as the microSD card does not have to be exchanged each time Zephyr
is re-compiled.

The binary file loaded in RAM may be now executed and the system should boot.
The listing below shows startup for the Hello World sample application:

Listing 5.13: Starting Zephyr from U-Boot
Zynq> icache off; icache flush; dcache off; dcache flush; go 0x0
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## Starting application at 0x00000000 ...
*** Booting Zephyr OS zephyr-v3.3.0-1994-g177434ef845f ***
Hello World! microzed

The commands icache and dcache are used to disable and clear the instruction
cache and data cache respectively. Zephyr needs to be started up with caches
disabled when chain loading, otherwise it crashes during boot due to various
peculiar errors. This is perhaps the most significant drawback of the current version
of Zephyr - when running on 32-bit ARM processor, the system does not re-enable
the caches, as it does not yet have a suitable driver. As a result, Zephyr performs
much worse that what the Zynq-7000 SoC is capable of.
It is important to note that the Zephyr documentation does not appear to summarize

any of the information regarding caches or chain loading from U-Boot. I had to
contact a couple of contributors to the system (one of which ported the Zybo board)
for clarification.

5.5 Performance and latency benchmarks

This section describes a couple of benchmarks to evaluate the key aspects of our
Zephyr port. To compare the results, we ran Debian Jessie with a modified Linux
4.9.9 kernel on the MicroZed board and executed the same tests.

5.5.1 Ethernet bandwith

Zephyr includes a sample program zperf [40], which is implemented as an optional
utility in the Zephyr shell. The program is compatible with Iperf 2.0.5 [41], a
cross platform application to measure the maximum bandwith and reliability of IP
networks using UDP or TCP protocols. In a simple case, the program runs on two
computers connected over a network, where one acts as a server and the other one
as a client. The client sends data packets to the server and chooses parameters such
as the protocol, server address, packets size and test duration. The server listens for
packets of the specified protocol and a given port.
I have tested the bandwith between the Microzed board and my workstation

computer on a LAN network. The computer and the board were connected with
a UTP cable and a gigabit switch. Both UDP and TCP protocols were tested,
each with the board acting as a server and as client. Table 5.3 shows the four test
configurations and their results.

Protocol MicroZed mode Bandwith [Mbit/s] Data transfer [MB]
UDP Client 12.5 29
UDP Server 10.7 26.3
TCP Client 8.54 19.9
TCP Server 10.3 24.7

Table 5.3: Ethernet bandwith of Zephyr on MicroZed

The duration of all benchmarks was to 20 seconds and the datagram size was
1024 bytes, the default value. It is important to note that the second benchmark,
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MicroZed acting as server and receiving UDP packets, had to be limited to 11
Mbits/s. Higher speeds resulted in receive buffer overruns, because the CPU could
apparently not keep up with the incoming data stream. However, this caused several
other errors related to the receive buffer, most likely due to a bug in the Ethernet
driver. Although the shell was responsive, the network subsystem did not answer to
UDP, TCP or ICMP packets anymore.
To measure the bandwith on Linux, we installed Iperf 2.0.5. The table 5.4 shows

the results.

Protocol MicroZed mode Bandwith [Mbit/s] Data transfer [MB]
UDP Client 1.05 2.5
UDP Server 1.05 2.5
TCP Client 150 357
TCP Server 564 1310

Table 5.4: Ethernet bandwith on MicroZed running Linux

As we can see, the bandwith over a TCP connection is significantly higher than we
measured on Zephyr. On the other hand, the UDP performance turned out to be a
lot worse than I expected. The bandwith appears to be limited to 1.05 MBit/s, but
I could not figure out why.

5.5.2 Ethernet latency

We used the ping program to measure the round-trip time (RTT) of packets on the
same network configuration, as outlined in the bandwith test. It was configured to
send 105 packets in an interval of 2 ms (more than twice as long as a typical delay).
This test allows us to see if the lower levels of Zephyr network stacks efficiently
handle the incoming packets and whether it adequately performs under load. Table
5.5 shows the measured latency statistics.

RTT values Time [ms]
Min 0.472

Average 0.657
Max 1.308

Standard deviation 0.043

Table 5.5: Round-trip time statistics measured with ping

The chart 5.3 also displays a round-trip time histogram of all packets.

5.5.3 Single thread performance

As a rough indication of single-threaded performance on Zephyr, I created a small
program that implements Sieve of Eratosthenes, a simple algorithm for finding
prime numbers up to a given limit. We set this bound to 107. The listing below
shows the function that implements this algorithm:

Listing 5.14: Implementation of Sieve of Eratosthenes
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Figure 5.3: Histogram of packet latency

void sieve(int num) {
memset(isPrime, 1, NUM + 1);
for (int i = 2; i * i <= NUM; i++) {

if (isPrime[i]) {
for (int j = i * i; j < NUM; j += i) {

isPrime[j] = 0;
}

}
}

}

The program measures the time (using hardware clock timestamps) to run this
function and to count the number of prime numbers found afterwards (664579 primes
from 2 to 107). It is important to note that the size of the Zephyr kernel address
space had to be manually increased. Otherwise, the system image, containing the
long, statically allocated isPrime array, would be larger than the default address
space and it would crash during boot, see the section 3.2.3. The time to run the
function sieve() and to count the primes was 1.436 seconds.
Similarly to the section 5.5.1, we statically compiled and ran this program with

minimal changes on Linux. According to the time command, the program took
1.008 seconds to complete. However, this time may also include other tasks, such
as loading the file to memory, than the sieve function and counting the primes.
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Chapter 6
GDB stub porting

This chapter outlines the development of a basic GDB stub utility in Zephyr for
the 32-bit ARM architecture. As mentioned in the section 4.5.2, Zephyr currently
implements GDB stub only for the 32-bit x86 and Xtensa architectures.

6.1 GDB remote serial protocol

As mentioned in section 4.5.2, GDB Remote serial protocol (RSP) defines how the
host, a computer that GDB runs on, and target, the device we are trying to debug,
communicate. All data is exchanged in packets, a finite sequence of characters,
which has the form $packet-data#checksum. The packet data field generally begins
with one or more characters specifying the command and may be followed by
data that the command uses. Any binary data is encoded as two hexadecimal
characters per byte. The packet is ended with a checksum, which is the sum of all
characters inside the data field modulo 256 — this byte is again encoded as two
hexadecimal characters [42].
The user commands accepted by the shell on GDB host are translated to one or

more RSP packets with commands for the target (from now on, command refers to
the character inside a packet). GDB defines dozens of these commands, but only
requires the target stub to implement at least the following five commands [43]:. g and G — Commands to read and write general purpose registers. See the

section 6.3.2 for details and the implementation in Zephyr..m and M — Read and write bytes from the memory.. ? — Send the code of the last exception, which caused the program to enter
the stub.

The stub implementation in Zephyr also supports a couple of additional commands:. p and P — Read and write individual registers.. c — Continue execution.. s — Step one machine instruction. The section 6.3.4 describes this feature for
32-bit ARM architecture.
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. z and Z — Remove and insert a breakpoint of a particular type. The imple-

mentation of breakpoints is again outlined in section 6.3.3.

The protocol can use many underlying technologies for communication, such as
Ethernet or serial. As mentioned in section 4.5.2, Zephyr only supports serial backend
as of release 3.3.0 [44].

6.2 MZ_APO Kit

Since Zephyr does not yet support Ethernet backend for GDB stub, we have to
use a dedicated UART port for the RSP. However, our standalone MicroZed board
connects only the UART 1 module, which we already use for system console. We
are therefore using the MZ_APO board throughout this chapter, which has an
additional port available.
To enable the UART 0 port in Zephyr, we need to modify the devicetree of the

MicroZed board and the pin control settings. The peripheral board contains a USB
to UART converter, which is wired up through the Microheader expansion ports to
MIO pins 10 and 11 for RX and TX signals respectively [5]. Thus we can duplicate
the UART 1 pin control node uart1-default in the microzed-pinctrl.dtsi file
and change the pin numbers accordingly. The UART node in the microzed.dts file
needs to be copied and renamed as well, with the only modification being a different
reference to the new pin control node. Additionally, it is necessary to enable clocks
for this module. We have added the following code snippet to the initialization
function of UART driver:

Listing 6.1: Enabling UART 0 clock
// turn on the AMBA clock for both UART controllers
reg_val = sys_read32(0xF800012C);
reg_val |= 0x300000;
sys_write32(reg_val, 0xF800012C);
// set the ref clock - turn on UART 0 reference clock
reg_val = sys_read32(0xF8000154);
reg_val |= 0x1;
sys_write32(reg_val, 0xF8000154);

The first three statements enable the AMBA (Advanced Microcontroller Bus
Architecture) clock for UART 0 by modifying a peripheral clock control register (one
of SLCR registers). Otherwise, any access to memory-mapped registers of UART
0 would not actually adjust them. Afterwards we turn on reference clock for the
module itself. It appears that the driver expects these clocks to be set up by a
bootloader, but I could not manage to configure U-Boot to enable the UART 0 port.
Since this educational shield is assembled in an enclosure of acrylic, each kit comes

with a MicroZed board. However, these boards are a cheaper version with 7Z010
SoC, as opposed to the 7Z020 SoC that has been used in the previous chapter. As
a result, the option CONFIG_SOC_XILINX_XC7Z020 in the microzed_defconfig file
needs to be replaced with CONFIG_SOC_XILINX_XC7Z010.
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6.3 Stub functionality

This section describes the development of ARM-specific GDB stub functionality in
Zephyr, as well as some issues that are yet to be resolved. We follow the main steps
for GDB stub in the Zephyr architecture porting guide [45].
Zephyr already contains the core utilities of GDB stub, which are common for all

architectures. The fundamental part of this module is the loop, which listens for
packets, calls the appropriate functions and replies the host. The loop is typically
entered upon generating an exception, as we want to be notified by the target in such
case. An exception might be also generated by hitting a breakpoint or a watchpoint.
Although the target system appears to be stopped to the host (and the thread
that generated the exception is indeed halted), the system is running this loop and
executes the commands. In case the exception was not fatal, the system can resume
the program by simply returning from the loop.
The stub module also contains functions for reading and writing memory. These

functions are called from the stub loop in response to the m and M packets. As
mentioned previously, binary data is transmitted in the packets as a sequence of
hexadecimal characters. The functions therefore convert this string to and from
binary data. It is important to note that the stub does not change the endiannes -
the GDB host sends all data in the target byte order. The Zynq-7000 supports only
little-endian ordering for memory and instructions [28].
The following subsections describe the implementation of several architecture-

dependent functions, which are called from the loop and that our stub must define.

6.3.1 Entering and exiting the loop

The most important architecture-dependent function to implement is arch_gdb_init().
The function has to stop the calling thread and allow the GDB stub to connect to
the host. It also needs to initialize any functionality the system needs for debugging.
The function is called from a wrapper function gdb_init(), which is defined in

the core stub module. This function is attached to one of the Zephyr runlevels, level
PRE_KERNEL_2 by default. It initializes the serial backend for GDB and, if successful,
calls the arch_gdb_init() function.
To stop the running thread and initialize debugging, the function calls a BKPT

instruction using inline assembly. This instruction, sometimes called a software
breakpoint, causes the processor to generate a software debug event. These
kinds of debug events (as opposed to halting debug events) may be also generated
by other conditions, such as hardware breakpoints or hardware watchpoints. How
the CPU reacts to debug events generally depends on the setting of debug mode.
Briefly speaking, the CPU may ignore such event, enter a special state (debug state,
which is used to halt the processor completely) or generate an exception. The
instruction BKPT generates a Prefetch Abort exception regardless of the debug
mode.
An exception causes the processor to stop the process, which generated the exception

in the first place, and call a corresponding exception handler. This function, most
importantly, saves the general purpose registers of this process to stack. Zephyr
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defines higher level exception handlers (written in C as opposed to the primary
handlers in assembly) for 32-bit ARM, which take an argument of type stuct esf.
This is a C structure defined in Zephyr whose variables are the registers saved on
the stack. See the next subsection about register details.
In the most recent version of Zephyr, these high-level handlers do nothing more

than log the exception or print a core dump. In other words, each exception is
fatal and the process does not resume. Our stub implementation uses some of these
handlers to finally call a function z_gdb_entry() defined by the stub. This function
prepares some variables before entering the loop, like specifying the cause for the
exception (the stub loop requires such variable). Likewise, z_gdb_entry() restores,
potentially modified, set of registers to stuct esf and returns to the handler.
After this function returns, the handler function returns a non-fatal return value.

The primary, lower level handler then loads the registers from stack and returns
control to the process. Entering and exiting the stub loop is outlined in the diagram
6.1.

BKPT
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Figure 6.1: Function hierarchy of entering GDB stub

6.3.2 Register access

The stub implementation must also define four functions for register access - two
functions to read and write all registers at once (g and G commands) and two
for individual register modification (p and P respectively). This section does not
describe our implementation of these functions, but summarizes the registers, which
GDB stub uses.
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The GDB host may accept or ask for up to 26 registers on 32-bit ARM. GDB
defines the following array in its source code file arm-tdep.c:

Listing 6.2: ARM registers used in GDB
static const char *const arm_register_names[] =

{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
"r4", "r5", "r6", "r7", /* 4 5 6 7 */
"r8", "r9", "r10", "r11", /* 8 9 10 11 */
"r12", "sp", "lr", "pc", /* 12 13 14 15 */
"f0", "f1", "f2", "f3", /* 16 17 18 19 */
"f4", "f5", "f6", "f7", /* 20 21 22 23 */
"fps", "cpsr" }; /* 24 25 */

Firstly, I have not been able to find the positions or sizes of some of these registers
anywhere else. The official documentation refers to internal GDB functions and
variables [43]. This array specifies position of each register in the g and G packets.
The registers r0 to r15 are referred to as ARM core registers [13]. These may

be further subdivided into general purpose registers, r0 to r12, and special
purpose, which include sp, lr and pc (abbreviations for stack pointer, link register
and program counter). The CPSR (Current program status register) stores various
processor condition and control information. All of the registers mentioned in this
paragraph are 4 bytes long.
The remaining registers, f0 to fps, used to be a part of FPA (Floating Point

Accelerator), a coprocessor with an instruction set. It was allegedly used only in a
few processors released around the year 2000 and has not been implemented since
then [46]. The ARMv7 manual does not mention these registers either and GDB
labels it as obsolete in other source code files. Hence, our stub implementation
ignores these registers. Unlike the other registers, each of them, except fps, is 12
bytes long.
Our stub implementation therefore handles 17 registers in total. It is important

to note that the primary exception handlers in Zephyr save and restore only 8
registers by default - r0 to r3, r12, lr, pc and cpsr. The rest may be included
with the Kconfig option CONFIG_EXTRA_EXCEPTION_INFO. However, these additional
registers behave as read only for higher-level handlers, as they are not restored by
the handler at exception return.

6.3.3 Breakpoints

The stub porting guide mentions, but does not require, the implementation of func-
tions arch_gdb_add_breakpoint() and arch_gdb_remove_breakpoint(). These
functions set and remove hardware breakpoints in response to Z and z commands.
By default, these functions are defined in the core stub file, but only return a
negative value (meaning not implemented error), as GDB uses software breakpoints
by default.
Our stub does not override these functions and GDB relies solely on software

breakpoints. The primary reason is the limited amount of hardware breakpoint
registers - 6 registers on Cortex-A9 processors [47]. However, the code segment in
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the Zephyr image is read only by default and software breakpoints, which inherently
have to modify the code instructions, would generate a permission fault. Thus, the
write permission flag has been added to the ARM MMU code that describes this
segment. Nonetheless, we are using hardware breakpoint for single stepping, see
the next section 6.3.4 for details.
If the user tries to set a breakpoint (breakpoint refers to software breakpoint

in this section) at a particular instruction, GDB replaces this instruction with
another one and saves the original instruction. In our case, GDB uses the TRAP
instruction (encoding 0xe7ffdefe). It is important to note, that neither the ARMv7
reference documentation or the vast majority of online manuals do not specify
this instruction! It is perhaps an old, unsupported instruction, which is still used by
GDB. The target processor thus generates an undefined instruction exception
once it reaches the breakpoint address. As soon as the GDB loop starts and sends
this exception to the host, the host orders the stub to replace TRAP back to the
original instruction. However, the process still has to execute this instruction and
the TRAP instruction has to be written again, because hitting a breakpoint does not
delete it by default. Once user commands the debugger to continue, the stub steps
a single machine instruction - the original instruction is executed, but a prefetch
abort is generated on the next one. The GDB is notified and swaps the former
instruction back to TRAP. It then continues the execution without opening a shell
for the user. The result is that the instruction we set the breakpoint on has been
executed, but the TRAP instruction is still written on its place.
The GDB consequently relies only on memory access commands in case of software

breakpoints.

6.3.4 Single stepping

Single-stepping generally refers to execution of one instruction at a time, before
halting the process (or an entire CPU) and handling the control to a debugger.
Zephyr requires the stub to implement function arch_gdb_step(), which is called
from the loop after receiving the s packet. It must set up the system to execute the
next instruction and return control to the loop.
Firstly, the section 6.3.1 mentions that the current debug mode of the processor de-

termines the implication of a debug event. By default, debug mode is disabled and all
debug events, except BKPT, are ignored. Hence, the function arch_gdb_init()
changes this mode to Monitor, privilege level PL0 or PL1. This is the only
debug mode, which does not ignore breakpoints or causes them to enter debug state
(normally caused by halting debug events). In this mode, hardware breakpoints
cause a Prefetch Abort.
We have implemented single stepping as described in section ’Use of instruction ad-

dress mismatch breakpoints for single-stepping’ in the ARMv7 reference manual [13].
Each hardware breakpoint in ARMv7 consists of two 4-byte registers, DBGBCR
(Debug Breakpoint Control Register) and DBGBVR (Debug Breakpoint Value
Register). One of the fields in BCR specifies the type of the breakpoint, which
determines what these registers actually define for debug event generation. For ex-
ample, in an unlinked instruction address match mode, BVR holds the address
of the instruction that is supposed to generate the debug event. Linked breakpoints
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are paired with others to define more complex conditions, but unlinked breakpoints
are sufficient for this application. Our stub uses unlinked instruction address
mismatch type, which triggers an event if the address of current instruction does
not match the address in BVR. The BVR is thus set to address of the instruction,
which caused the current exception. As soon as the process returns and program
counter is incremented, the breakpoint throws Prefetch Abort.
The mismatch breakpoint also has to be limited to certain processor modes or

address ranges, otherwise it would halt the CPU right after enabling the breakpoint
in the arch_gdb_step() function. By default, the BCR is configured for PL0,
Supervisor and System modes only, which is suitable for our debugger. Zephyr
normally runs in Supervisor mode (Privilege Level 1), but switches to Abort mode
(also PL1) upon taking a prefetch exception. By setting the BVR to the instruction,
which caused the process to enter the stub in the first place, the process returns
from the stub and breaks on the next instruction.
This breakpoint configuration works as intended when stepping through the early

boot phase of Zephyr. However, there are still some issues with debugging the
application code, see the section 6.5 for details.

6.4 Debugging

This section briefly describes the process of remotely debugging the MicroZed board
running Zephyr.
Firstly, the system must be compiled with the kernel option CONFIG_GDBSTUB

enabled. The MicroZed board also has to be connected with both UART ports to
the host computer - UART 1 used for serial output and UART 0 used solely for
GDB RSP.
The boot process is the same as described in section 5.4. Unlike normal startup, the

kernel halts at boot and waits for the GDB connection. As mentioned previously, the
Zephyr SDK includes a fair number of GNU binutils, such as a GCC, LD, objdump
and GDB. We can therefore start the debugger and load symbols from the Zephyr
image:

Listing 6.3: Starting GDB
/home/user/zephyr-sdk-0.15.0/arm-zephyr-eabi/bin/arm-zephyr-eabi-gdb \

build/zephyr/zephyr.elf

The GDB should start and offer us a shell. Before we can start debugging, it is
necessary to configure the serial line. Then we may simply attach the debugger to
the corresponding interface:

Listing 6.4: Connecting GDB to MicroZed over serial
Reading symbols from build/zephyr/zephyr.elf...
(gdb) set serial baud 115200
(gdb) target remote /dev/ttyUSB0
Remote debugging using /dev/ttyUSB0
arch_gdb_init () at /home/user/zephyrproject/zephyr/arch/arm/
core/aarch32/gdbstub.c:140
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140 __asm__ volatile("BKPT");
(gdb)

I recommend using a .gdbinit file with these first two commands to automate the
connection process. We can see that the system stopped at this BKPT instruction in
our stub, entered the loop and was listening for a connection from host. GDB now
accepts the commands and we can start debugging, see the user documentation for
any tutorials or command reference [48].

6.5 Issues

This section describes the bugs related to our GDB stub and discusses potential
solutions.

6.5.1 Mismatch breakpoints interfere with interrupt handlers

We have described the use of instruction mismatch breakpoints for single stepping in
section 6.3.4. It was acknowledged, that the range of addresses, where the breakpoint
triggers a debug event, would be ideally limited to the addresses of the program we
want to debug (or to other conditions, such as the processor mode). In our case, the
BCR (Breakpoint Control Register) is programmed to allow debug events only in
PL0, Supervisor and System modes only.
Although this restriction works for debugging the application (running in system

mode), the breakpoint also affects some interrupt handlers, which run parallel to
the main thread and execute in supervisor mode. Instead of stepping to a next
instruction of the user application, the breakpoint may therefore halt an interrupt
handler. The ARM timer handler is a primary example, since the kernel always
needs an internal timer.
We have also mentioned that debugging initial sections of the Zephyr kernel,

after the stub is started, works as expected. This is because the interrupts are
not enabled yet - once the initial process switches to the main thread (function
z_swap_unlocked()) and enables interrupts, single stepping may be obstructed
by the handlers.
We have tested the debugger on a simple, single-threaded application. When

stepping through the main function, the process would sometimes step to a handler
of the system timer. Although Zephyr runs a tickless kernel by default, it still
generates an interrupt every 6 to 8 seconds.
Unfortunately, the BCR does not support a restriction for system mode only. I

have discussed this issue with my supervisor and we do not know about any elegant
solution to this problem.
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Chapter 7
Conclusion

In this work, we have successfully ported Zephyr to the MicroZed board and
implemented GDB stub for the 32-bit ARM architecture. We have submitted the
following three contributions (pull requests) to the Zephyr code base:. Bug fix in the Xilinx Ethernet driver, as described at the end of chapter 5.3.4.

It was accepted and merged with the main branch..Adding support for the MicroZed board 1. This pull request is currently blocked,
because we also modify the mapping of SLCR MMIO registers for the Zynq-
7000 SoC in order to enable Ethernet. The developers are still working on
a standalone clock driver for this SoC, which would allow us to use its API
instead of this temporary fix.. Extension of the GDB stub for ARM 2. This contribution still needs needs a
large amount of feedback from other developers and testing on more ARM-based
boards before being merged to the kernel.

Although the Zephyr project is promising, there is still a significant room for
improvement, notably on less resource-constrained devices with high performance
SoCs. Courses at FEE, CTU will therefore keep using conventional operating systems
on MicroZed boards for the time being.

1https://github.com/zephyrproject-rtos/zephyr/pull/58066
2https://github.com/zephyrproject-rtos/zephyr/pull/58067
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