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Abstrakt

Ćılem naš́ı práce bylo předpovědět hodnotu produkce elektrické energie pro
následuj́ıćı den vodńı elektrárny na ř́ıčńım toku. Analyzovali jsme možnosti
pro jednokrokové předpovědi pro denńı pr̊uměrná data a v́ıcekrokové předpovědi
pro hodinová pr̊uměrná data produkce elektrické energie, přičemž jsme jako
prediktory použili hydrometeorologická data. Poté jsme prozkoumali vztah
mezi daty o počaśı a produkćı elektrické energie. Navrhli jsme několik př́ıstup̊u,
konkrétně Exponenciálńı vyhlazováńı, ARIMA a Temporálńı konvolučńı śı̌t.
Zjistili jsme, že nejlépe funguj́ıćı model bylo jednoduché Exponenciálńı vyhla-
zováńı bez jakýchkoliv exogenńıch proměnných, a že tyto exogenńı proměnné
neposkytovaly žádné daľśı informace.

Kĺıčová slova Energy markets, prediction of hydropower plant’s electricity
production, temporal convolutional network, time series, renewable energy
sources

Abstract

The goal of our work was to predict the day-ahead value of electricity produc-
tion from a run-of-river hydropower plant. We analysed potential options for
single-step predictions for daily average data and multi-step predictions for

vii



hourly average data of electricity production, using hydrometeorological data
as predictors. Then, we investigated the relationship between the weather data
and electricity production. We proposed several approaches, namely Exponen-
tial Smoothing, ARIMA, and Temporal Convolutional Network. We found
that the best-performing model was simple Exponential Smoothing without
any exogenous variables, and that these exogenous variables did not provide
any additional information.

Keywords Energy markets, prediction of electric production of a hydropower
plant, temporal convolutional network, time series, renewable energy sources
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Introduction

The Earth’s natural resources such as wind, sunlight, and water, play a very
important role in achieving the European Union’s energy goals and climate
objectives. The amount of installed capacity from renewable energy sources,
especially wind and solar power, has increased in the past few years, following
the directive [46].

In 2020, the European Parliament adopted a resolution on the Green Deal,
proposing actions against climate change. This implies the necessity of transi-
tioning towards a decarbonized energy system in order to achieve an economy
with net-zero greenhouse gas emissions. The Renewable Energy Directive re-
quires the European Union to achieve a 32% share of renewable energy source
by 2030.

Increasing share of such sources, has a bad influence on electricity mar-
kets and transmission grids. Power plants based on traditional sources can
be planned and controlled. For instance, meeting the current energy demand
when needed. This is not the case for power plants based on renewable re-
sources. [10]

Energy production from renewable sources, especially from wind, solar,
and run-of-river power plants [30, 26, 27], depends on external factors such as
weather conditions, i.e wind speed, daylight, temperature. Hence, their output
cannot be predicted and planned as accurately as that of more traditional
energy sources that use fossil fuels. It means that volatile renewable energy
sources can only generate power when their environmental conditions meet
with their operational needs.

However, this condition does not apply to all run-of-river hydropower
plants. Some create a water drop and ensure a relatively steady flow of water,
with variations based on the water level 1. As less volatile renewable energy
sources, they produce more power per installed capacity.

The power plant under analysis is aiming to offer its daily energy contracts
for sale. In order to achieve this goal, it is necessary to determine the lowest
(lower limit) and highest (upper limit) energy production for the next day.
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Introduction

In the thesis, we will analyze the predictability of the day-ahead output of a
run-of-river hydropower plant based on meteorological conditions.

Thesis is divided as follows. In the first chapter 1, we discuss the mech-
anisms of energy production, concentrating specifically on the operations of
hydropower plants. In the second chapter 2, we summarize existing approaches
used in forecasting energy production from renewable sources and time series
forecasting in general. The third chapter 3, is focused on analyzing the hydro-
logical cycle in order to determine meteorological features used for the experi-
mental part. Chapter 4 discusses the theoretical background. Finally, chapter
5 summarizes our findings, and presents methods for single-step (daily) and
multi-step (hourly) day-ahead forecasting of energy production.

2



Chapter 1
Introduction to Energy

production

This chapter aims to describe the basic principles of electricity production,
with a focus on hydropower.

We will briefly mention energy sources as traditional fossil fuel-based ther-
mal power and nuclear energy to renewable sources such as hydroelectricity,
solar, wind, and geothermal power. Then we discuss the hydropower plants
and analyse the one from which we collected our dataset.

1.1 Fundamentals of Electricity Generation

Electricity can be generated either chemically or mechanically [19]. Chemical
methods involve the conversion of energy through reactions, such as in pho-
tovoltaic panels, while mechanical methods involve the rotary movement of a
generator, driven by different forces like steam expansion or flowing water.

Power production can be accomplished through various methods, each
more suited to specific conditions and circumstances and the output of a power
plant may vary according to many factors such as local weather conditions,
the availability of required resources, or electricity prices.

Existing solutions include thermal power based on fossil fuels such as coal,
oil, and gas, as well as thermal power generated by nuclear fission and energy
produced from natural resources, also known as renewable energy.

In the European Union, the term ’renewable energy’ refers to energy
from renewable non-fossil sources. These include wind, solar, geothermal, and
ambient energy, along with tidal, wave, and other ocean energies, hydropower,
biomass, landfill gas, sewage treatment plant gas, and biogas. Solar energy can
be divided into two additional categories: solar thermal and solar photovoltaic
[46].

3



1. Introduction to Energy production

For instance, geothermal power plants harness steam emitted from the
Earth to drive a steam turbine. Wind power plants use wind to spin copper
wires within a generator, creating electricity. Hydroelectric dams use the force
of falling or flowing water to rotate their generators. Finally, solar power uti-
lize from converting sunlight directly into electricity. However, the application
of such sources is limited to specific geographical regions.

In the following text, we describe the basic concepts in the domain of
electricity production, such as capacity, energy, and demand load curve. For
the following chapters, we need to understand the difference between the terms
capacity and energy.

1.1.1 Capacity

Capacity represents the electricity produced or consumed instantaneously [19],
measured in kilowatts (kW ). In other words, it is maximum output a power
plant can produce. Power plants often do not operate at their full capacity all
the time. In other words, they have a capacity to produce a certain amount
of power during a given time period but other factors such as maintenance or
refueling can take power plants offline.

1.1.2 Energy

Energy is the amount of electricity that is actually generated or consumed
over time, measured in watt-hours (kWh) [19]. To distinguish between the
concepts of capacity and energy, we will demonstrate two examples.

• A typical small hydropower plant has a capacity of between 1, 000 kW
and 10, 000 kW .

• The total amount of electricity generated in the Czech Republic was 84.9
TWh.

1.1.3 Demand Load Curve

The demand load curve represents the total electricity demand at a given
time by various consumers, such as residential, commercial, and industrial
[14]. This demand fluctuates throughout the day, an it is affected by the time
of day, weather conditions, and seasonal variations.

The load curve defines the electricity demand’s different aspects: base
load (load needed all year), peak load (load needed only a few hours a day),
and intermediate load for operating hours between base load and peak load,
see Figure 1.1.3.

For instance, consider a power plant with a capacity of 50, 000 MW . Ini-
tially, the regional power system seemed well-prepared to handle the estimated

4



1.2. Hydropower plants

summer peak demand of 35, 000 MW . However, a change in weather condi-
tions affected the plant’s actual performance, reducing energy output. Then,
there wasn’t enough energy produced to meet the demand.

Figure 1.1: Example of electricity demand load across agricultural, commer-
cial, and other sectors during the day. [33]

1.2 Hydropower plants

In this section, the principles of operation of hydropower plants are discussed.
We then describe how distinct power plants work and finally, we will analyze
the power plant for which our goal is to predict future output.

Hydropower is a renewable source of energy that harnesses the hydrological
cycle 3. Hydropower plants range in size from small installations with a power
output of a few kilowatts, to large dam-based power plants with a capacity of
thousands of megawatts.

1.2.1 Basic principle

Hydropower plants convert the kinetic and potential energy of water into
electricity. Water flowing towards the plant transfers its kinetic and potential
energy to a turbine, which spins a generator. The rotational energy in the
generator is converted into electrical energy through electromagnetic induc-
tion. The power output of the turbine depends on the size of the water fall,
the water flow through the turbine, and the efficiency of the turbine.

The operational nature of hydro storage power plants differs significantly.
Some produce baseload power and have comparably high capacity factors.
Others are peak-load power stations with much lower capacity factors and
operate only in times of high demand or high prices. The size of reservoir,
the water flow into the reservoir and the turbine capacity are factors that
determine how a hydro storage power plant operates.

5



1. Introduction to Energy production

1.2.2 Types of Hydropower Plants

The section focuses on the types of hydropower plants, specifically run-of-river,
hydro storage, and pumped storage plants. Primary interest of this thesis is
a small run-of-river plant, and the other two types are just briefly described.

1.2.2.1 Run-of-river

Run-of-river hydropower plants are a type of power station that uses the flow
of a river to generate electricity. Their capacities range from just few kW to
hundreds of MW . Unlike other types of hydropower plants, they have no water
storage or very limited one, known as pondage. Water is accumulated in the
pondage during periods of low demand, and can then be used for electricity
production when demand is high. Their limitations lie in the absence of a
large water reservoir, which affects their scalability, flexibility and make them
dependent on river flows.

For instance, run-of-river power plants situated near mountain rivers have
larger electricity production in the spring and summer months thanks to in-
creased water flow by melting snow. [19] Additionally, in South Asia, the river
flow increases during the rainy season. [2]

Hence, the amount of electricity a run-of-river hydropower plant can gen-
erate is determined by the following factors.

• The volume of the water flow in the river

• The change in elevation, often referred to as head

That means, the greater the water flow and the higher the head, the more
electricity a hydropower plant can produce. This is due to the fact that a
larger potential energy can be converted into electricity.

1.2.2.2 Hydro storage

Hydro storage power plants use a dam to store water in a reservoir. [19] They
are typically situated in mountainous regions due to the specific geographi-
cal and geological conditions they require. However, this does not necessarily
imply that these are the most optimal locations. Several factors must be
taken into account including the potential output and the water rights. Such
locations are chosen for the sharp drop in river elevation levels and the topo-
graphical suitability for a reservoir. The construction of these reservoirs often
leads to large expanses of what used to be dry land becoming submerged under
water.

An important distinction between run-of-river plants and hydro storage is
the control of water flow. In hydro storage plants, operators have the ability
to determine the quantity and timing of electricity production. This feature
is significant for our analysis.

6



1.2. Hydropower plants

1.2.2.3 Pumped storage

Pumped storage power plants serve as energy storage for other sources and
cover peak load demand. They utilize two differently elevated water reservoirs
and store energy in the form of potential energy of water. Surplus electrical
energy, primarily from high renewable energy production, is used to pump
water into the higher reservoir. Conversely, when energy is needed, water
flows through the turbine, and the generator supplies electricity to the grid
[16].

1.2.3 Small hydro power plant in Želiezovce

Our dataset, referred to in 5.2, was collected from a small run-of-river hy-
dropower plant in Želiezovce, geographically situated in the southern part of
Slovakia, in the lower Hron region. The location provides suitable conditions
for hydropower plant.

Figure 1.2: Location of the small power plant in Želiezovce [35]

The Power plant (see Figure 1.2.3) has maximum capacity is 2, 8 MW and
expected annual production is 13, 5 GWh.

It processes the flows of the Hron river, which, after converting kinetic
energy to electricity, flow back into the river. The necessary water drop did not
exceed the levels of major water flow, thereby not creating a reservoir. Another
factor affecting the power plant output is the restriction of the maximum
amount of water it can process, 62.0 m3s−1, due to fish migration from April
to June.

1.2.3.1 Summary

A potential problem for our prediction is the fact that the power plant can
react quickly to changes in the power system. This means that the power

7



1. Introduction to Energy production

Figure 1.3: Key features include an embankment dam, a movable weir, a bio-
corridor, the hydroelectric power plant itself, a bridge, a canoe slide, and flood
embankments. An integral part of the construction was the implementation
of a pumping station for an irrigation system that supplies water from the
Hron River to the surrounding fields. [36].

plant’s output can be controllable in some way, and fish migration can also
introduce variability.

Aspects that we did not analyze include the pumping station, which can
also decrease the amount of water going to the power plant, and the maximum
volume of water that the power plant can process.

8



Chapter 2
Hydropower Energy Forecasting

- Existing Approaches

In this chapter, we will discuss various existing approaches for time series
analysis and electricity production forecasting.

The Autoregressive Integrated Moving Average Model (ARIMA), which
has been in use for time series analysis since the 1970s, was introduced by
Box and Jenkins [5]. ARIMA is employed for predicting stationary data. The
performance of this model can be improved by applying various preprocessing
techniques to time series data.

Zhang et al.’s study [45] revealed that feedforward neural networks struggle
to effectively handle seasonality or trends in unprocessed raw data. According
to their research, preprocessing techniques such as detrending or deseason-
alization can substantially reduce forecasting errors. These neural networks
yield more robust forecasting performances compared to ARIMA [43]. Sev-
eral studies [39, 23] have found feedforward neural networks to be effective
for inflow forecasting. For instance, Kicsi [29] performed short-term daily
streamflow forecasting experiments using various ANN models.

Certain studies utilizing feedforward neural networks incorporated precip-
itation and temperature forecasts as feature variables [40]. These studies show
that forecast performance can be enhanced using recurrent neural networks.
For example, Yongsheng et al. [44] used RNN for short-term renewable energy
prediction, and Busseti et al. [7] employed RNN for energy load forecasting.
They tested several methods, including Kernelized Regression, Frequency NN,
Deep Feedforward NN, and Deep Recurrent NN. The Deep Recurrent NN
model demonstrated the best results.

A promising alternative is the Support Vector Machines (SVM). Case stud-
ies have indicated that SVM can outperform methods like feedforward neural
networks [28, 41]. The SVM model has demonstrated proficient capability for
short-term forecasting and predicting peaks in a time series process, outper-
forming neural network-based models [11].

9





Chapter 3
Weather elements and Riverflow

The following chapter of the thesis is dedicated to discussing the weather
elements that will be used later in our analysis. The basic characteristics of
the collected hydrometeorological data can be found in Chapter 5.2.

We investigate the Earth’s hydrological cycle to better understand how
hydrometeorological data can affect the river flow and in the end the perfor-
mance of a run-of-river hydropower plant. [32, 15]

Our assumption is that two weather elements should have the most influ-
ence on streamflow: precipitation and temperature [38, 13, 18].

For instance, when temperatures drop below 0 ◦C, water in the stream
may freeze, and any snowfall does not melt, thus reducing the water supply
to the stream. On the other hand, precipitation can increase the volume of
water in the stream, which can lead to an increase in power production.

In addition to precipation and temperature, we have chosen other param-
eters that are closely related to them.

3.1 The Earth’s hydrological cycle

The following text provides a brief overview of the hydrologic (water) cycle,
as depicted in Figure 3.1. Based on the processes outlined in the hydrologic
cycle, we selected specific hydrometeorological data for our analysis.

3.1.1 Precipitation

Hydropower generation is sensitive to changes in river flow, which are in-
fluenced by accumulated precipitation measured in mm. There is a strong
relationship between hydropower station generation and precipitation data,
according to many researches from our analys of existing approaches 2. The
lowest flows typically occur during the winter months due to snow storage,
while low flow events in the summer result from a deficit in precipitation

11



3. Weather elements and Riverflow

Figure 3.1: Diagram of the hydrological cycle [37].

and high evaporation. Liquid precipitation is less common during periods of
snowfall.

3.1.2 Air Temperature

Air temperature affects the physical state of water in the environment. For
instance, when temperatures drop below freezing, the water in the river may
turn into ice. This results in a decrease in the flow of liquid water in the river.
Snowfall that occurs during these low-temperature periods does not readily
melt, instead accumulating and later providing an additional source of water
to the river once temperatures rise.

High temperatures lead to liquid precipitation, which can flow directly into
the river.

Furthermore, studies such as the one cited in [24] show that air temper-
ature accelerates evaporation from the water surface. Consequently, we can
expect a lower water level in the river during hotter periods due to increased
rate of evaporation.

3.1.3 Atmospheric preassure

The rising of air in low-pressure leads to its cooling and condensation into
clouds and precipitation. Therefore, it is reasonable to expect a dependency
between atmospheric pressure and precipitation. A sudden drop in atmo-
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3.1. The Earth’s hydrological cycle

spheric pressure usually signifies a storm. If atmospheric pressure remains
steady, it suggests that weather changes are not very probable. It is measured
in hPa.

3.1.4 Evapotranspiration

Evapotranspiration, measured in mm, represents the combined process of
evaporation and plant transpiration to the atmosphere, converting liquid wa-
ter into water vapor.

During warmer periods, a higher rate of evapotranspiration could poten-
tially lead to lower water levels in the river due to increased water loss to
the atmosphere. This could impact the volume of water available for power
generation.

3.1.5 Soil moisture index

The soil moisture index indicates the wetness of the soil, i.e., the amount of
water present. Index is interpreted as the ratio between the volume of water
the soil is currently holding and the maximum volume it can hold.

Typically, the index ranges between values of [0, 1]. However, following
excessive precipitation, the index can exceed 1. This indicates that the ground
is saturated and cannot hold more water, potentially leading to water runoff
across the surface. For our purposes, this suggests a high water level in the
river and we can, therefore, anticipate electricity production to be close to
maximum output. In such cases, we expect a correlation between accumulated
precipitation and the soil moisture index.

The soil moisture index is largely dependent on the type of soil, as different
soils have distinct properties and can retain varying amounts of water. Top
layers tend to be drier due to the evaporation process, while lower layers often
contain more water.

We have chosen to gather data specific to the top layers of the soil. Al-
though we already possess information about precipitation up to the current
time, it could be beneficial to have an additional indicator to estimate the
potential volume of water in the river.

3.1.6 Soil water content

Soil water content provides additional information to the soil moisture index.
Soil water content refers to the volume of water contained within different soil
layers, measured in m3m3, and is therefore dependent on the same factors as
the soil moisture index, as well as on the level of the groundwater.

During periods of low precipitation, groundwater can be a consistent sup-
ply of water for rivers, as the soil releases water into them.

Soil type data was not collected because all the measurement stations are
located in close proximity to the location of hydro-power plant. Additionally,
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3. Weather elements and Riverflow

in Slovakia, soil types tend to be quite consistent within specific regions, in
this case it is mostly brown earth or chernozem, rendering the collection of
this particular data unnecessary for our purposes. [25]

Soil water content data was collected with the expectation that it could
provide insights about the water level in the river, especially during hotter
months.

3.1.7 Snow depth

The snow depth may not have an immediate effect on river flow. However, it
does indicate the potential for future water level increases in the river once
the snow starts melting due to higher temperatures. It is important to note
that the effects of increased snow depth on river flow can be delayed as well
as for other mentioned.
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Chapter 4
Theoretical Background

4.1 Time Series Analysis

In this introductory chapter, we will introduce the fundamentals of time series
analysis and outline the fundamental techniques for understanding, modeling,
and forecasting data.

4.2 Time Series

We can think of a time series as a list of measured values, accompanied by
information about when each value was recorded. They simply represent data
points over time. Let us introduce the formal definition of a time series.

Let (Ω, F , P ) is probability space. The time series is set {Yt, t ∈ T}, that
Yt ∈ (Ω, F , P ) and T is a set of time indices. If t ∈ Z, we are talking about
a discrete time time series. Otherwise, if t ∈ R, then a time series is said to
be continuous when observations are made continuously in time [8]. In this
thesis, we consider the case of discrete time for our analysis.

Examples of time series can be found across numerous domains, from fi-
nances to engineering. We will introduce some of them.

4.2.1 Time series patterns

Traditional methods of time-series analysis are mainly concerned with decom-
posing a series into several patterns: a trend (T ), a seasonal pattern (S),
and ’irregular’ fluctuations (E). The cyclical pattern (C) is usually combined
with the trend, creating a trend-cycle component [8]. For ease of understand-
ing in the upcoming chapters of this thesis, the trend-cycle component will be
referred to simply as the ’trend’.
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4. Theoretical Background

Time series typically include some of these patterns. To choose the most
suitable forecasting model, it is important to identify these time series patterns
in the dataset for futher analysis.

4.2.1.1 Trend

The trend is a long-term increase or decrease in the data [22]. Simply put, it
is the long-term direction of the time series. The trend is not always linear,
and a change in direction can occur when it shifts from an increasing trend to
a decreasing one. For instance, in the context of company sales, a trend that
was previously showing an increase might reverse its course, possibly due to
factors such as increased competition or changes in market conditions.

4.2.1.2 Seasonal pattern

The seasonal pattern of a time series is a pattern that repeats with a known
periodicity. This could manifest as a weekly pattern, repeating every 7 days,
or a monthly pattern repeating once a month. It can also display annual
patterns, repeating once a year. For instance, sales often increase before
Christmas Eve, demonstrating an annual seasonal trend. Seasonality can be
identified by regularly spaced peaks or periods of flatness in the data, with
the same magnitude recurring over the specified period.

4.2.1.3 Cycle

In a timeseries, cycle is a pattern that repeats with a certain regularity, but
with unknown and changing periodicity. In the field of economics, a prime
example of this pattern is the business cycle. The main difference between
seasonal and cyclical behavior lies in the frequency of fluctuations. If the
fluctuations do not occur at a fixed frequency, then they are considered cycli-
cal rather than seasonal. A seasonal pattern is characterized by a constant
frequency that corresponds with specific calendar-based intervals or events
[22].

4.2.1.4 Other irregular fluctuations

The irregular fluctuations represent the unpredictable pattern of the series.

4.2.2 Time series decomposition

The starting point for most time series decompositions is often a classical
decomposition method. However, due to several problems associated with this
method, it is not typically recommended. We will talk about this method first
so that it is easier to understand a more robust method, known as Seasonal
and Trend decomposition using Loess (STL), which will be used later in our
analysis.
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4.2. Time Series

4.2.2.1 Additive and Multiplicative models

Let us assume yt is the observed variable at time t, Tt is a trend value, St sea-
sonal component and Et is unpredictable component. Time series components
can be then combined into two following models.

• Additive model
yt = Tt + St + Et (4.1)

• Multiplicative model

yt = Tt × St × Et (4.2)

In order to continue with the text, it is necessary to define several terms
beforehand.

4.2.2.2 Seasonally adjusted data

The seasonal component is removed from the data. Then, seasonally adjusted
data, contains the trend and the remainder component, reffered to as unpre-
dictable component.

• Additive model
yt − St (4.3)

• Multiplicative model
yt

St
(4.4)

4.2.2.3 Mooving average

Moving avereage is used as a first step in a classical decomposition method.
[22]

Let us assume order of moving avere to be m, where m = 2k + 1. Then
moving average of order m can be computed as follows.

T̂t = 1
m

k∑
j=−k

yt+j (4.5)

It is an estimation of trend-cycle at a specific point in time t. Observations
that occur close together in time tend to have similar values, this averaging
process helps in smoothing out some of the random fluctuations in the data,
leaving behind a clearer view of the trend-cycle component.
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4. Theoretical Background

4.2.3 Additive decompostion

In additive decomposition, the moving average is calculated first, then the
detrended series i.e yt − T̂t. Next step is averaging the detrended values based
on the specified period. That means for daily data with weekly pattern, all
weeks are averaging. These seasonal component values are then adjusted to
ensure that they add to zero. The seasonal component is obtained by stringing
together these monthly values, and then replicating the sequence for each year
of data. After such computation we obtain the seasonal component Ŝt. And
finally, we will obtain the remainer component by substracting seasonal and
trend-cycle component from previous steps R̂t = yt − T̂t − Ŝt.

4.2.4 Multiplicative decomposition

A classical multiplicative decomposition operates in a similar way, but it uses
division instead of subtraction.

4.2.4.1 STL decomposition

We will briefly mention the Seasonal and Trend decomposition using Loess,
shortly STL, is a robost method which can handle any type of seasonality in
the data. Loess is a method for estimating non-linear relationships. [9]

4.3 White noise

A time series that has a mean equal to 0, a variance that is constant over
time, and we expect each autocorrelation to be close to 0 (as there is some
random variation in time series), is referred to as white noise. [22]

4.4 Stacionarity

Time series with trends or seasonality are not stationary because they depend
on the time at which they are observed. Trend or seasonality will affect the
value at differents points in time. Time series {Yt, t ∈ T} is stationary, then
for all s, the distribution of (yt, ..., yt+s) does not depend on t [22].

White noise is a stationary process. Time series without trend and season-
ality patterns, but with cycle is stationary. Cycles do not have fixed lenght
and we are not sure where the peaks of the cycles are.

Stationary time series do not have predictable patterns in the long term.

4.5 Pearson correlation coefficient

Let us assume two random variables X, Y positive variances σ2
x and σ2

y and
covariance cov(X, Y ). Mathematically, the Pearson correlation coefficient is
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4.5. Pearson correlation coefficient

defined as follows [4].

ρXY = E[(X − µx)(Y − µy)]
σxσy

= cov(X, Y )
σxσy

, ρ ∈ [−1, 1] (4.6)

Figure 4.1: Visualised plots illustrate the correlation between different pairs
of variables X and Y [12].

The Pearson correlation coefficient is a measure of the linear dependence
between two random variables X and Y . Specifically:

• Value ρXY = 0 means that there is no linear relationship between vari-
ables X and Y .

• Value ρXY = ±1 means that variables are lineary dependent.

• Value ρXY ∈ (−1, 1) indicates the degree of linear dependence between
the variables.

Given n samples {(x1, y1), (x2, y2), ..., (xn, yn)}, the sample correlation co-
efficient can be computed as follows.

r = rxy = 1
n − 1

n∑
i=1

(xi − x

sx
)(yi − y

sy
), (4.7)

where x, y are sample means, and sx, sy are sample deviations.
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4. Theoretical Background

4.6 Autocorrelation

Autocorrelation is one of the key features of the time series and it measures
the linear relationship between lagged values.

Let {Yt, t ∈ T} be a time series, µt is a mean value and σ2
t > 0 is a

variance for every t. Autocorrelation coeficient for times s and t is defined as
follows.

R(s, t) = E[(Xt − µt)(Xs − µs)]
σtσs

, R(s, t) ∈ [−1, 1] (4.8)

Given n samples {(x1, y1), (x2, y2), ..., (xn, yn)}, the sample autocorrelation
coefficient R̂(k) can be computed as follows.

R̂(k) = 1
(n − k)

n−k∑
t=1

(xt − µ)(xt+k − µ)
σ2 . (4.9)

The autocorrelation can be used to identify non-stationary time series. For
a stationary time series, the ACF will drop to zero relatively quickly, while
the ACF of non-stationary data decreases slowly.

4.7 Differencing

The approach for making non-stationary data stationary is called differenc-
ing. Differenced time series represents the change between consecutive obser-
vations. We can obtain differenced series y′

t as follows.

y′
t = yt − yt−1 (4.10)

Resulted timeseries will have T − 1 values. Using differencing we stabile
the mean value by reducing trend and seasonality components.

4.7.1 ARIMA models

ARIMA, which stands for AutoRegressive Integrated Moving Average, is a
combination of two main components: the autoregressive (AR) aspect and the
moving average (MA) parts. It’s a statistical model commonly used for ana-
lyzing and forecasting time series data. Together with Exponential Smoothing
they are the most widely known approaches for forecasting data.

4.7.2 AR(p) - Autoregressive model

Autoregresive models forecast the the prediction based on linear combination
of past values. That means, lagged values of the yt are predictors. The
parameter q is the order of moving average model.

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt, (4.11)
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4.8. Exponential smoothing

Order of the AR model is p, εt is a white noise and ϕ = (ϕ0, ..., ϕp) are
regression coeficients.

4.7.3 MA(q) - Moving average model

Mooving average model uses past forecast errors in a regression model.

yt = c + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q, (4.12)

where εt is a white noise.

4.7.4 ARIMA(p,d,q)

Based on models defined from previous sections we can formulate ARIMA
model.

y′
t = c + ϕ1y′

t−1 + · · · + ϕpy′
t−p + θ1εt−1 + · · · + θqεt−q + εt, (4.13)

where y′
t is differenced series. The parameter d is a degree of differencing.

4.7.5 SARIMA

The SARIMA is a seasonal ARIMA model, including seasonal term. It can
be written as follows.

ARIMA(p, d, q)(P, D, Q)m, (4.14)

where m is the seasonal period, first part is defined ARIMA model and second
part represents the seasonal part of the model.

SARIMA model is defined as follows.

(1 − ϕ1B)
(
1 − Φ1B4

)
(1−B)

(
1 − B4

)
yt = (1 + θ1B)

(
1 + Θ1B4

)
εt (4.15)

4.7.6 SARIMAX

The SARIMAX is an extension of defined SARIMA model and allows to in-
clude the exogenous regressors into the model.

4.8 Exponential smoothing

In the following text we will define the Exponential smoothing methods.
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4. Theoretical Background

4.8.1 Simple exponential smoothing

Simple exponential smoothing - SES, often reffered to as a Holt Linear method
is a method, which can be used when there is no clear trend or seasonal
pattern. All forecasts for the future are equal to the last observed value of the
series.

Let us asume time series {Yt, t ∈ T}. Forecasts are then computed using
weighted averages. The weights exponentially decrease as they come from
further in the past.

Component form is defined as follows.

Forecast : ŷt+h|t = lt, (4.16)

Smoothing : lt = αyt + (1 − α)lt−1, (4.17)
where lt is the level and α is the smoothing parameter and 0 ≤ α ≤ .1

4.8.2 Holt’s linear trend method

Simple exponential smoothing is suitable when there is no trend or season-
ality. To accommodate these elements, an extension to simple exponential
smoothing was introduced, known as Holt’s linear trend method [20].

Forecast : ŷt|h = lt + hbt, (4.18)
Level : lt = αyt + (1 − α)(lt−1 + bt−1), (4.19)
Trend : bt = β(yt − lt−1) + (1 − β)bt−1. (4.20)

4.8.3 Holt-Winters’s method

Method has two variants, additive and multiplicative. Let us first introduce
component form for the additive method.

Forecast : ŷt|h = lt + hbt + st+h−m(k + 1), (4.21)

Level : lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1), (4.22)
Trend : bt = β(yt − lt−1) + (1 − β)bt−1, (4.23)

Seasonal : st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m. (4.24)

Multiplicative model is computed as follows.

Forecast : ŷt|h = (lt + hbt)st+h−m(k + 1), (4.25)

Level : lt = α
yt

st−m
+ (1 − α)(lt−1 + bt−1), (4.26)

Trend : bt = β(lt − lt−1) + (1 − β)bt−1, (4.27)

Seasonal : st = γ
yt

lt−1 − bt−1
+ (1 − γ)st−m, (4.28)
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4.9. TCN - Temporal Convolutional Networks

4.9 TCN - Temporal Convolutional Networks

Convolutional Neural Networks (CNNs), are typically used in classification
tasks. However, demonstrated that they can be used to sequence modeling
and forecasting when suitably modified. In this section, we will describe how
Temporal Convolutional network works and the network architecture which
will be used for further analysis. In the study [3] was demonstrated that con-
volutional networks offer several advantages over recurrent models in various
tasks. Additionally, convolutional networks enable parallel computation of
outputs, which can result in performance enhancements.

4.9.1 Network Architecture

The TCN network 4.9.1 consists of dilated and 1D convolutional layers and
can take a sequence of any length and map it to an output sequence of the
same length, similar to Recurrent Neural Networks.

Figure 4.2: The following architecture visualise architecture of the TCN
model. [34].

4.9.1.1 Sequence modeling

Let us define the sequence modeling task. Asumme an input sequence x0, . . . , xT ,
and corresponding outputs y0, . . . , yT at each point of time. Formally, a se-
quence modeling network is any function f : X T +1 → YT +1 that produces the
following mapping:

ŷ0, . . . , ŷT = f (x0, . . . , xT ) , (4.29)
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4. Theoretical Background

if the causal constraint that yt depends only on x0, . . . , xt and not on inputs
xt+1, . . . , xT .

The goal is to find a network f that minimizes expected loss between the
actual outputs and the predictions.

L (y0, . . . , yT , f (x0, . . . , xT )) , (4.30)

where the sequences and outputs are drawn according to some distribution.

4.9.1.2 Causal Convolutions

The TCN model is designed based on following principles. First, it ensures
that the network generates an output sequence of the same length as the input
sequence. Second, it prevents any information leakage from the future to the
past.

The TCN architecture employs a 1D fully-convolutional network, where
each hidden layer has the same length as the input layer. Zero padding of
length (kernel size - 1) is applied to maintain consistent layer lengths through-
out subsequent layers. To satisfy the second principle, the TCN utilizes causal
convolutions, where each output at time ”t” is convolved exclusively with el-
ements from time ”t” or earlier in the preceding layer.

4.9.1.3 Dilated layer

A simple causal convolution can only consider a history of limited size, which
grows linearly with the depth of the network. To overcome this limitation, di-
lated convolutions are incorporated to enable an exponentially larger receptive
field.

Formally, for a 1D sequence input x of length n and a filter f : 0, . . . , k − 1 →
R, the dilated convolution operation F at position s in the sequence is defined
as follows:

F (s) = (x ∗ df) (s) =
∑

i = 0k−1f(i) · xs−d·i (4.31)
Here, d represents the dilation factor, k denotes the filter size, and s −

d · i accounts for the past direction. Dilation introduces a fixed step between
adjacent filter taps. When d = 1, a dilated convolution reduces to a regular
convolution. However, using larger dilation factors allows the output at each
level to capture a wider range of inputs, effectively expanding the receptive
field of the convolutional network [31].

4.9.1.4 Residual connection

A residual block contains a branch leading out to a series of transformations
F , whose outputs are added to the input x of the block:

o = Activation(x + F(x)) (4.32)
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Since a TCN’s receptive field depends on the network depth n as well as
filter size k and dilation factor d, stabilization of deeper and larger TCNs
becomes important.
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Chapter 5
Experiments

The chapter begins with task formulation, followed by a discussion on the
basic characteristics of the collected dataset, i.e electricity production and
weather data. Afterward, we will describe how the dataset was preprocessed.
Finally, we will present our experiments and next day forecasts using different
approaches.

5.1 Task formulation

The task is to forecast the load production for a next day. Mathematically,
the problem can be defined as follows.

5.1.1 Single-step prediction

The task for single step prediction is to forecast the load production at time
t + 1 as ŷ(t + 1) given the past observations.

5.1.2 Multi-step prediction

The definition is as follows. Assume the load production given the previous
values and the forecasted load production at time t as ŷ(t). Here, t is measured
in hours, so t ∈ {0, 1, 2, ..., 23} for a next day forecast using hourly data.

We will use the load production from previous times and possibly other
variables, meteorological data, to forecast the load production 24 hours into
the future.

The goal is to minimize the difference D(yt, ŷt) between the actual load
production and our forecasted load production over the course of a day.

Figure 5.1.2 illustrates the production load in kilowatts (kW ) for a specific
day. It can be observed that the majority of the hourly values throughout the
day cluster around the mean value, indicating relatively low daily variance.
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5. Experiments

Figure 5.1: The hourly values of electricity production (kW ).

We can expect the predictions to have less variation or deviation from the
mean value due to the observed low daily variance.

5.2 Dataset description

The production load dataset includes information collected over the period
’2020/01/01 00:00:00’ - ’2022/05/01 23:45:00’ i.e format (Y Y/MM/DD).
Measurements were collected every 15 minutes. More details about the power
plant are discussed in section 1.2.3.

Figure 5.2: Average daily power production (kW )
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5.3. Data preprocessing

The average daily power production of the power plant (Figure 5.2) over
the specified time period, measured in kW , represents power plant’s opera-
tional performance and output on a day-to-day basis. It should be noted that
any zero values in the graph signify periods of maintenance or times when the
power plant was shut down. The values of the load are lower from spring to
the end of summer compared to the rest of the year. This pattern can suggests
the presence of yearly seasonality and even with 2.32 years of data, it might
still be possible to identify some patterns in the data.

In addition to the production data of the power plant, meteorological data
used for prediction was sourced from six measuring stations around the power
plant and they are available at [1]. The meteorological data includes following
parameters, that were previously discussed in Chapter 3.

• Precipation (mm)
The mean amount of precipitation over the last hour.

• Snow depth (m)
The measurement of snow depth at a selected location.

• Temperature (◦C)
The mean temperature over the last hour.

• Atmospheric preassure (hPa)
Value of atmospheric pressure, available up to 10 km.

• Soil water content (m3m3)
We gathered data on the volume of water in each available soil layer i.e
from 0 to 289 cm..

• Soil moisture index
The index was collected for soil layer depths ranging from 0 to 100 cm.

• Evapotranspiration (mm)
This parameter, accumulates evapotranspiration over the previous hour.

5.3 Data preprocessing

The following section provides a description of the data preprocessing proce-
dures used for the collected dataset.

5.3.1 Electricity production

The collected dataset does not include any missing values. It was first resam-
pled into daily average values of production load. As mentioned in Section
5.2, zero values, which indicate periods of maintenance or shutdown of the
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power plant, present a potential issue. Including these values in our analysis
could negatively impact our results and reduce the predictive accuracy. The
reason is that these periods are subject to a range of other factors and, as
such, are not predictable.

First, we calculated the daily mean power production, which was found
to be 1404.144 kW and represents the typical daily performance of the plant.
Then, we set a threshold value for replacing the zero values; this was defined
as the minimum of the 7-day moving average. Any value below this threshold
is treated as noise.

This choice was made because the analyzed power plant typically has sim-
ilar output across consecutive days, and we do not expect any substantial
changes that could affect production within such a short time period. The
minimum value we observed from the 7-day moving average was 385.308 kW ,
so we set our threshold to be 400 kW for both hourly and daily data. Such
values are then replaced with the corresponding value after the moving average
computation.

Figure 5.3.1 presents a comparison of the daily mean power production,
the 7-day moving average, and the actual data. As can be seen, the 7-day
moving average effectively smooths out the data while maintaining a similar
production load and preserving the data patterns.

Figure 5.3: Mean and 7-day Moving Average for Daily Load Production
(kW )

Given that the task is to predict the production for the next day, we also
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5.3. Data preprocessing

resampled the dataset into hourly intervals by taking the mean of the 15-
minute intervals. Then, we replaced all zero values according to a threshold
value, as explained above for daily data.

Figure 5.4: Distribution plot of daily average load (kW ) after replacing zero
values

Figure 5.5: Distribution plot of hourly average load (kW ) after replacing
zero values

In the following text, we will evaluate some basic statistical properties.
The density plots are displayed in Figures 5.3.1 and 5.3.1. The mean value of
1437.212 kW shows the average hourly energy production. This is the central
value around which the individual hourly production values are distributed.
The standard deviation of 626.149 kW signifies higher variability in the data
over time period. The minimum value of 388.607 kW is the lowest hourly
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energy production recorded and the maximum value of 2772.000 kW is the
highest hourly energy production recorded.

count mean std min 25% 50% 75% max
hourly mean value 20448.000 1437.212 626.149 388.607 934.438 1381.625 1896.062 2772.000
daily mean value 852.000 1425.290 580.847 403.562 912.573 1359.125 1886.586 2707.198

Table 5.1: Hourly average energy production values statistics

The first quartile indicates that a quarter of the values are below 934.438 kW .
The median for our dataset is 1381.625 kW . This value can be a helpful mea-
sure of the ”typical” production, especially when the data is skewed. And it
seems that the majority of values are below 1896.062 kW . For daily data, the
values are similair.
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5.3.2 Hydrometeorological data

The following text will discuss the analysis and selection of individual features
that will be used as exogenous variables for further analysis. Features were
analyzed on the hourly data intervals, which were then resampled to daily
intervals for the daily data. Based on the findings in Section 3, it is evident
that the majority of the selected meteorological variables exhibit a delayed
effect on electricity production.

The relationship between the selected hydrometeorological features and
the production load is discussed in the next section 5.4 and only the most
significant findings will be presented.

We began with precipitation. The delayed effect can be explained by
various factors such as the time it takes for the water to infiltrate the soil,
contribute to the groundwater, and eventually enter the river.We calculated a
two-week cumulative sum for precipitation data from all locations. What was
found to be the most relevant for our target value. This time period was used
for other data as well.

A similar approach was applied to evapotranspiration, although we ex-
pected an inverse relationship in this case, that could indicate lower water
level in the river.

The mean temperature across all locations at a specific point in time was
not found to have impact on our present target value. However, we speculate
that there could be a relationship between the target value and the average
temperature over a certain time period, which might provide more useful
information. The same approach was applied to atmospheric pressure.
Atmospheric preassure values were found very similair for all locations.

Snow depth was calculated as a mean value over hourly time period and
cummulatively summed for all locations.

The soil moisture index was calculated as the mean value over a specified
time period, aggregating from data across all locations. This gave us addi-
tional insights about the soil wetness around the power plant over a larger
geographical range and extended time period.

We aggregated the data from all soil layers to calculate the volumet-
ric soil water content as a mean value over a specific time period. This
measurement informs us about the amount of water potentially available to
contribute to the river.

All missing values were removed in preparation for analyzing the relation-
ships between the features and our target value, the production load.

Figure 5.3.2 visualizes these features after the data preprocessing. The Soil
Moisture Index was first removed from the features because it was redundant,
given the availability of the volumetric soil water content.
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Figure 5.6: We can observe an obvious yearly pattern in all hydrometeoro-
logical features. (kW )
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Figure 5.7: Visualization of relationships based on correlation coefficients for
hourly data.
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5.3.3 Relationships between hydrometorological features

Based on the possible relationships 5.3.2 between the features we have identi-
fied the following variables to be used as exogenous variables.

The variable precipitation demonstrates strong positive correlations with
both temperature and evapotranspiration. Moreover, previous studies 2 have
indicated that models incorporating precipitation data over time show strong
performance.

Given the very strong positive correlation between the soil moisture in-
dex and volumetric soil water,indicating that they essentially measure the
same attribute, we have opted to use volumetric soil water content in our
model.

Temperature has strong relationship with evapotranspiration and mod-
erate positive correlation with precipitation.

While pressure appears to have relatively weak correlations with most of
the variables.

We have decided to exclude snow depth from our dataset, despite its
significant correlations with evapotranspiration and temperature. The strong
negative correlations may introduce unnecessary complexity into our model.

Similarly, we’ve chosen to omit evapotranspiration from our feature
set, despite its very strong positive correlation with temperature and strong
negative correlation with volumetric soil water content. This decision aligns
with our goal to avoid multicollinearity, as evapotranspiration appears to be
highly predictable from other selected variables, particularly temperature.

5.3.3.1 Summary

The features selected for the analysis of the relationship between power pro-
duction and meteorological data include precipitation, volumetric soil water
content, temperature, and atmospheric pressure.

5.4 Relationship between power production and
meteo data

Our analysis indicates a very small dependency, specifically 0.043, between
the production load and precipitation. This suggests that there is little to
no linear relationship between these two variables. However, the relationship
might be of a different form than linear. It is likely that a more comprehensive
dataset of precipitation measurements would be beneficial, considering more
locations and rivers flowing into the Hron River. Based on Figure 5.4, we
have come to the conclusion that we probably do not have a enough data.
these sources highlight approaches where models that use precipitation values
achieve high accuracy.
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Figure 5.8: Value and Precipation over time

Surprisingly, the correlation coefficient between value and volumetric soil
water content is higher than we expected, at 0.361. This suggests a degree of
linear relationship. As the volumetric soil water content increases, the value
tends to increase as well. Given this, we will consider including volumetric
soil water content as a feature in our model. Figure 5.4 validates our prior
assumptions regarding 5.3.3.

As expected, the production load tends to decrease as the temperature
increases. This might be due to the evaporation process, confirming our as-
sumptions from previous chapters. As can be seen in Figure 5.4, the pro-
duction tends to increase with lower temperature. However, numerous other
factors also influence production. The reason might also be the fact that some
of the water from the river is used for irrigating fields close the power plant.

Based on the very low correlation coefficient of −0.11, we’ve decided to
exclude pressure as a feature in our model.
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Figure 5.9: Value and Soil water content over time for daily data

Figure 5.10: Value and Temperature water content over time for daily data

38



5.5. Traditional statistical methods

5.5 Traditional statistical methods

We used two models Exponential smoothing (ETS), and SARIMAX for fore-
casting using Traditional statistical methods. In the following text we discuss
the models selection, training, computation of prediction intervals and selected
metric. Both models, Exponential Smoothing (ETS) and Seasonal Autore-
gressive Integrated Moving Average with Exogenous Regressors (SARIMAX),
were implemented using the Statsmodels library in Python.

5.5.1 Selection of the model

In study [6] was concluded that if we want to prevent underfitting a model, we
should use AIC as an criterion for model selection.One of the commonly used
metrics for model selection in forecasting is the Akaike Information Criterion.
It is computed as follows.

AIC = 2k − 2ln(θ) (5.1)

where k represents the number of parameters in the model and θ denotes
the likelihood of the model.

The proposed models were chosen based on the lowest AIC value.

5.5.2 Training and Test

The were trained using the walk-forward method [22]. Basic process is as
follows.

• The dataset is splitted into training test set.

• The model is fitted on the training data, then used to forecast the next
time step.

• The prediction is evaluated against the actual value.

• The next observation from the test set is included in the training set,
and the model is refitted.

• These steps are repeated until all observations in the test set have been
included in the training set and forecasted.

Following the approach, the dataset was divided into a training set and a
test set. To maintain consistency and ensure that the same test set was used
for other solutions.
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5.5.3 Validation metric

Root Mean Square Error (RMSE) is a commonly used metric in regression
analysis and forecasting to measure the amount of variance in the prediction
error.

RMSE is calculated by taking the square root of the average squared dif-
ference between the predicted and actual values. The formula for RMSE is as
follows.

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (5.2)

where yi is the actual value, ŷi is the predicted value, and n is the number
of observations. The lower the RMSE, the better the model’s performance.

5.5.4 Prediction Intervals

Prediction intervals are intervals within which we expect our predicted value
ŷt will lie, with a specified probability, or the uncertainty of our predictions.
Exponential smoothing can generate prediction intervals, and the calculation
differs depending on whether the model is additive or multiplicative [21]. De-
pending on the prediction intervals, we can evaluate the accuracy of the pre-
diction model.

Prediction interval is defined as follows

ŷT +h|T ± cσ̂h, (5.3)

where σ̂h is an estimation of the standard deviation of the h-step forecast dis-
tribution, and c is a confidence interval depending on the coverage probability.

Then we can evaluate accuracy of the prediction model based on such
intervals.

We used bootstrapping, assuming that residuals are uncorrelated, have
constant variance, and the true values are randomly distributed around the
predicted value.

The calculation for an additive model:

yt = ŷt|t−1 + et, et ∼ N
(
0, σ2

)
(5.4)

The calculation for a multiplicative model:

yt = ŷt|t−1 · (1 + et) , et ∼ N
(
0, σ2

)
(5.5)

Where et is sampled from the residuals.
For the case of multiple steps ahead, that means a larger error and wider

prediction intervals, as σ̂h will increase with the number of prediction steps.
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5.6 TCN solution

TCN model was implemented using Darts library [42], as proposed in the
section 5.6 for 50 epochs.

5.6.1 Data preprocessing

In the following section the preprocessing of dataset before feeding into the
network will be described.

5.6.1.1 Dataset splitting

A standard ratio of (70%, 20%, 10%) was followed for splitting the dataset into
the train, validation, and test sets, respectively. In the case of recurrent neural
networks, the order of the data points can matter due to their memory.

5.6.1.2 Data normalization

Based on prior research [31], we decided to prioritize normalization over stan-
dardization.

Normalization rescales the values to a range, typically (0, 1). Technique is
useful when the ranges of the features are significant for the model’s perfor-
mance and some algorithm do not perform good on different scales [17].

Standardization centers the values around zero by subtracting the mean
and then scales them by dividing with the standard deviation. This approach
ensures that the resulting distribution has a unit variance. Standardization
is less influenced by outliers, making it suitable for cases where robustness to
extreme values is important.

For Standardization first, the mean is subtracted each feature, resulting
in standardized values with a zero mean. Then, the values are divided by the
standard deviation to achieve a unit variance distribution. This procedure
allows the features to have comparable scales.

Standardization(x) = x − mean(x)
std(x) (5.6)

For normalization, we employed the Min-max scaler technique, which
rescales the values to a predefined range, typically between 0 and 1. To accom-
plish this, we subtracted the minimum value from each feature and divided
the result by the difference between the maximum and minimum values. The
Min-max scaler was fitted exclusively on the training set, ensuring that the
validation and test sets remain independent of the specific values used for nor-
malization. By applying the same transformation to the validation and test
sets, we maintain consistency while preserving the integrity of these datasets.

Min-max scaling(x) = x − min(x)
max(x) − min(x) . (5.7)

41



5. Experiments

5.6.1.3 Handling Time Series patterns

Time series models such as ARIMA and other traditional models often require
the removal of trend and seasonality components before modeling. In the case
of neural networks, this step is not necessary as the model has the capability
to learn and capture trend and seasonality patterns inherently [31].

However, incorporating trend and seasonality information as additional
inputs can potentially enhance the model’s performance.

We discussed in previous sections that our data might have yearly seasonal
pattern and we tranformed ’Date time’ index using sine and cosine transfor-
mations to get signal about time of the year and then feed them to the network
as exogenous variables.

Let t represent the timestamp in days, and year denote the length of one
year in days (approximately 365.2425). The transformation is then performed
as follows.

sin(t) = sin
( 2πt

year

)
(5.8)

cos(t) = cos
( 2πt

year

)
(5.9)

5.6.1.4 Data windowing

We created a window of consecutive samples from the data.

Figure 5.11: Demonstration example where given the past 24 values, the
model will predict next 24 values. [17]

During the experiments, we generated multiple windows with different
lengths for both the input and label sequences in order to predict the out-
put sequence. It was observed that longer sequences were computationally
too expensive to compute within a reasonable time frame. Therefore, the
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best performance was achieved using a daily input width. The label width,
representing the length of the output sequence, was set to 60 previous days.

5.6.2 Training and Validation

5.6.2.1 Loss function

We choosed the Mean Square Error (MSE) loss function because our goal is
to predict a continuous variable, i.e value of production load.

MSE is defined as a sum of squared differences between predicted and
actual values divided by number of samples.

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (5.10)

where n is number of our samples, yi is an actual value and ŷi is our prediction.

5.6.2.2 Validation metric

We used RMSE as validation metric, which we discribed in previous section.

5.6.2.3 Overfitting prevention

The early stopping strategy, as described in book [31], is a commonly used
technique to prevent neural networks from overfitting and ensure that the
model generalizes well to unseen data. The principle is as follows.

At the end of each epoch during training, the loss on the validation set
is evaluated. If the validation loss does not decrease compared to the previ-
ous epoch, the current model’s performance is compared to the best model
achieved so far.

The best model is determined based on having the lowest validation loss.
If the current model performs better, it replaces the previous best model. The
early stopping algorithm continues until a stopping criterion is met.

In our implementation, we have chosen to stop training if there is no
improvement in the validation loss for 10 epochs. The number of epochs to
wait before stopping training was chosen based monitoring the behavior of the
validation loss over multiple training iterations.

It was observed that significant improvements in the validation loss typi-
cally occurred within the first few epochs. Then, if the loss does not decrease
after 10 epochs, we consider it as a sign of potential overfitting. At this point,
we store a copy of the model’s parameters, representing the best performance
achieved so far.
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5.7 Results

In this section, we evaluate our results from experiments for single-step predic-
tion on daily average data and multi-step prediction on hourly average data.
More details and a discussion of the results can be found in the Conclusion of
this thesis (see Chapter 6).

The daily average dataset was too short for using neural networks, so we
included the TCN model into single-step forecasts only for comparison with
our best-performing model.

Tables 5.2 and 5.3 provide information about average RMSE errors and
present models which we used in our analysis. The ETS model is specified
by three components: error, trend, and seasonality, each of which can be
either additive (A) or multiplicative (M), or none (N). In this case, all are
set to None, indicating a simple exponential smoothing model without trend
or seasonality adjustments. The SARIMAX model is specified by two sets
of three parameters: one for the non-seasonal components of the model (p,
d, q), and one for the seasonal components (P, D, Q). In the case of our
SARIMAX(1,1,1)(0,0,0) model, this suggest an ARIMA(1,1,1) model with no
seasonal components.

5.7.1 Single-Step Forecast

The presented results suggest that the Simple Exponential Smoothing model
provided the most accurate single-step forecasts for daily average data. It
had the lowest Root Mean Square Error (RMSE) of 225.19 kW , making it
the best-performing model. It seems that the daily dataset was too short
for accurate forecasting using the Temporal Convolutional Network (TCN).
This is indicated by the higher RMSE of the TCN model at 318.34, which
is significantly higher than the RMSE of the Simple Exponential Smoothing
model.

Model Number Model Exogenous variables Test RMSE (kW )
1 ETS(N,N,N) None 225.19
2 SARIMAX(1,1,1)(0,0,0) None 227.2
3 SARIMAX(1,1,1)(0,0,0) Precipitation 229.3
4 SARIMAX(1,1,1)(0,0,0) Soil Water Content 233.8
5 SARIMAX(2,0,1)(0,0,0) Temperature, Precipitation 245.9
6 SARIMAX(1,1,1)(0,0,0) Temperature, Soil Water Content 246.4
7 TCN None 318.34

Table 5.2: Single-step forecast experiments results

Interestingly, the inclusion of exogenous variables, such as precipitation,
soil water content, and temperature, in the SARIMAX models did not improve
the forecasting accuracy. In fact, models that used these variables had higher
RMSE values than the SARIMAX model without any exogenous variables,
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indicating that these variables might have acted more as noise, reducing the
model’s performance.

Figure 5.7.1 provides a visualization of the predictions made by the Expo-
nential Smoothing method on the training dataset. The fact that the majority
of actual values lie within the determined confidence interval suggests that the
model’s predictions are reasonably accurate, and the estimated uncertainty is
appropriate.

Figure 5.12: Daily forecast for Exponential smoothing method with 95%
confidence interval.

The TCN model’s predictions are shown in the following figures 5.7.1 and
5.7.1. Despite the higher RMSE, the TCN’s forecasts remaind those from the
Exponential Smoothing model, which might suggest that even if our daily av-
erage dataset was short, the TCN model still managed to capture some mean-
ingful patterns for prediction. However, it’s clear that the Simple Exponential
Smoothing and SARIMAX models without exogenous variables outperformed
the TCN model.
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Figure 5.13: Daily forecast for Temporal Convolutional Network.

Figure 5.14: Predicted values for TCN with 95% interval.
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5.7.2 Multi-Step forecast

In the case of multi-step predictions, or forecasts made 24 hours in advance,
a similar pattern can be observed. The Simple Exponential Smoothing model
again demonstrated the highest performance, providing the most accurate
forecasts with an RMSE of 355.37 kW . As for the TCN model, despite uti-
lizing different combinations of exogenous variables, it performed significantly
worse than the Simple Exponential Smoothing model. The reason behind
such poor results could be that we did not give the model a sufficient amount
of history for predictions, or we did not set the parameters accurately, which
might have resulted in inadequate receptive fields.

Model Number Model Exogenous variables Test RMSE (kW )
1 ETS(N,N,N) None 355.37
2 SARIMAX(1,1,1)(0,0,0) None 359.2
3 SARIMAX(1,1,1)(0,0,0) Precipitation 362.1
4 SARIMAX(1,1,1)(0,0,0) Soil Water Content 367.2
5 SARIMAX(2,0,1)(0,0,0) Temperature, Precipitation 381.9
6 SARIMAX(1,1,1)(0,0,0) Temperature, Soil Water Content 383.4
7 TCN None 560.3
8 TCN Sin Yearly + Cos Yearly 551.2
9 TCN Precipation + Sin Yearly + Cos Yearly 611.4
10 TCN Precipation 618.6

Table 5.3: Multi-step forecast experiments results

The inclusion of exogenous variables did not improve the models’ perfor-
mance very much of the TCN models performance. This suggests that these
variables may not provide additional useful informatio. It may also suggest
that the models are struggling to appropriately incorporate this additional
information into their forecasts and we need to propose different solutions.

The figures 5.7.2 and 5.7.2 provide visual representations of the multi-step
predictions made by the Exponential Smoothing and TCN models, respec-
tively. Once again, most of the actual values lie within the 95% confidence in-
tervals, implying that the uncertainty estimation of these models is reasonable.
However, the width of the confidence intervals for the TCN model appears to
be larger than those for the Exponential Smoothing model, suggesting that
the TCN model has a higher level of uncertainty about its predictions.

These results suggest that for both single-step and multi-step forecast-
ing tasks, simpler models like Simple Exponential Smoothing and SARI-
MAX without exogenous variables outperform more complex models like TCN.
Moreover, the inclusion of exogenous variables appears not to improve, but
rather to impair, the models’ performance.
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Figure 5.15: Predicted values for Exponential smoothing with 95% interval.

Figure 5.16: Multi-step forecasts for TCN with sin yearly and cos yearly
exogenous variables with 95% interval.
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Chapter 6
Conclusion

The objective of this thesis was to develop predictive models for next-day
forecasts of hydroelectric power production. We initiated our work with an
analysis of the domain, including an understanding of the operational mech-
anisms of hydropower plants and the hydrological cycle.

Collecting the necessary data was a challenging task. Electricity produc-
tion data were gathered from a small hydro power plant in Želiezovce, and
hydrometeorological data were sourced from nearby locations. Our hydrom-
eteorological dataset consisted of features such as precipitation, atmospheric
pressure, temperature, snow depth, soil water content, and the soil moisture
index.

Next, we analysed the collected dataset, identifying potential relationships
between production and the features. We chose temperature, precipitation,
and soil water content as exogenous variables.

In the theoretical section of this thesis, we discussed the theoretical back-
ground and evaluated existing techniques for time series prediction and hydro
power prediction.

We proposed various predictive methods for single-step, for daily average
production, and multi-step forecasting, for hourly average production. We
selected two traditional forecasting methods, SARIMAX (as exogenous vari-
ables can be included) and Exponential Smoothing. After analyzing other
potential methods, we chose the Temporal Convolutional Network due to its
potential to outperform other neural networks such as LSTM.

Our findings revealed that the statistical exponential smoothing model,
without any exogenous variables, delivered the best performance for both
multi-step and single-step forecasts. This outcome is likely due to the fact
that the hydrometeorological data were gathered from locations near the power
plant, not directly from it, which may have impacted our results. For single-
step prediction, our most accurate model achieved an average RMSE of 225.19
kW. For multi-step prediction, the Exponential Smoothing model performed
best with an RMSE of 355.37 kW. The SARIMAX model performed similarly
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to the ETS model, outperforming the Temporal Convolutional Network. The
TCN model had an RMSE of 318.84 kW for single-step prediction and 551.2
kW for multi-step prediction, with the model using exogenous variables to
determine the time of the year.

Interestingly, the inclusion of exogenous variables such as precipitation and
temperature, which we initially thought would improve model performance,
seemed to act as noise and impair accuracy. Even the inclusion of soil water
content, which correlated more closely with electricity production, did not
enhance our results.

One of our goals was to determine whether our forecasts could assist the
hydropower plant in selling electricity contracts. These contracts are legal
agreements between an electricity generator (in our case, a hydro power plant)
and a buyer (such as an energy trader).They specify details like the amount
of electricity to be supplied. Accurate forecasts of hydroelectric power pro-
duction can be extremely valuable in this context. For the seller, accurate
forecasts can assist in planning and negotiating the amount of power they can
commit to delivering under the contract. It can also help manage risk and
price contracts more accurately. For the buyer, access to accurate forecasts
from the seller can provide confidence in the reliability of the power supply,
assist in planning their own power grid management and distribution, and
facilitate more informed decisions about which contracts to sign.

The ETS solution for forecasting hydroelectric power production can be
used in the process of selling contracts for a hydro power plant. Most of the
actual values fell within the 95% confidence interval, suggesting our model’s
uncertainty estimation accurately reflects potential outcomes. However, a
good fit within the confidence interval does not necessarily imply accurate
predictions. We considered other metrics, such as RMSE, to evaluate predic-
tion accuracy.

All of the goals of this thesis were fulfilled.

6.1 Future Work

The impact of exogenous variables worsens the model’s accuracy. Our initial
analysis suggested that including exogenous variables such as precipitation
and temperature could enhance the model’s performance. However, even the
inclusion of soil water content, which correlates more closely with electricity
production than precipitation and temperature, did not improve our results.
This finding shows the importance of collecting data from a larger number of
stations in the vicinity of the run-of-river power plant.

In terms of different forecasting model solutions, incorporating probabilis-
tic models like Gaussian processes or Bayesian networks could potentially yield
more accurate results. Additionally, it is important to investigate the reasons
behind the poor accuracy of our proposed TCN network.
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6.1. Future Work

We intend to refine our data collection process and expand the scope of our
analysis. Greater emphasis will be placed on the selection of relevant exoge-
nous variables and fine-tuning our models to better incorporate the hydrom-
eteorological features. Integrating advanced probabilistic and hybrid models
into our methodology will be a significant focus of our future work. Given
the potential of these models to handle complex patterns and uncertainties in
data, we think that they will bring us closer to achieving more accurate and
reliable predictions for hydroelectric power production.
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[35] Google Maps. MVE Želiezovce. [accessed April 18, 2023]. 2023. url:
https://www.google.com/maps/search/elektr%C3%A1re%C5%88+bl%
C3%ADzko+%C5%BDeliezovce,+Slovensko/@48.0677038,18.6669806,
17z/data=!3m1!4b.
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Appendix A
Implementation

In this section we present the implementation details and notes of concepts
that were discussed in the previous chapters.

The implementation was divided into two parts: tasks and reports. All
performed experiments can be found in the ’/reports’ file.
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