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Abstract

This master thesis focuses on computer
vision applications, specifically anomaly
detection in semantic segmentation mod-
els. In some cases, such as visual inspec-
tion tasks or autonomous driving, in ad-
dition to the correct classification of each
input pixel, the spatial distribution of the
incorrectly classified pixels plays an im-
portant role. This work consists of two
contributions to this problem. First, an
evaluation metric is proposed that takes
into account the spatial distribution of the
error. The metric is complementary to
standard metrics and provides a different
view of model performance. Second, a loss
function regularization that forces the se-
mantic segmentation model to make fewer
distant errors is proposed. The semantic
segmentation model retrained with the
distant-aware regularization loss retained
the performance of standard metrics and
improved the distance-aware evaluation
metric. The retrained model performs bet-
ter at the boundaries of the anomaly and
classifies them with higher confidence.

Keywords: semantic segmentation,
anomaly detection, distance-aware
evaluation metric, distance-aware
regularization loss

Supervisor: Ing. Tomáš Vojíř, Ph.D.

Abstrakt

Táto záverečná práca sa zaoberá aplikáci-
ami počítačového videnia, konkrétne de-
tekciou anomálií v modeloch sémantic-
kej segmentácie. V niektorých prípadoch,
ako napríklad vo vizuálnych inšpekčných
úlohách alebo v autonómnom riadení, je
okrem správnej klasifikácie každého pi-
xelu dôležitá aj priestorová distribúcia ne-
správne klasifikovaných pixelov. V tejto
práci je navrhnutá metrika na vyhodno-
tenie modelu, ktorá berie v úvahu pries-
torovú distribúciu chýb. Metrika je kom-
plementárna ku štandardným metrikám
a poskytuje iný pohľad na výkonnosť mo-
delu. Taktiež je navrhnutá stratová funk-
cia, ktorá núti model robiť menej vzdia-
lených chýb. Pôvodný model určený na
sémantickú segmentáciu pretrénovaný s
navrhnutou stratovou funkciou nezhoršil
štandardné metriky ale zlepšil metriku,
ktorá model hodnotí podľa vzdialenosti
chýb. Pretrénovaný model presnejšie klasi-
fikuje hranice anomálneho objektu a ano-
málie klasifikuje s väčšou istotou.

Kľúčové slová: sémantická segmentácia,
detekcia anomálií, vyhodnocovacia
metrika v závislosti na vzdialenosti,
stratová funkcia v závislosti na
vzdialenosti

Preklad názvu: Vyhodnocení chyb v
závislosti na jejich prostorových pozicích
v sémantické segmentaci
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Chapter 1

Introduction

Artificial intelligence has made tremendous progress in recent years and has
become a common part of our daily lives. One of the good applications
of machine learning is in the computer vision field. Convolutional neural
networks used in computer vision consistently increased their performance
in the past years, and several network architectures have become defacto
standards. Two main tasks of computer vision are image classification and
semantic segmentation. Image classification assigns a category to an entire
image, e.g., categorizing images based on the type of scene they depict,
such as landscapes, cityscapes, indoor scenes, or nature scenes. Semantic
segmentation assigns a category to each pixel of the image and therefore is
more complex than image classification. For example, in a street scene, the
semantic segmentation model could label pixels as road, pedestrian, car, etc.
Semantic segmentation is widely used in numerous applications, including
autonomous driving, medical image analysis, and robotics. It plays a crucial
role in enabling machines to perceive and understand visual information.

The application of semantic segmentation algorithms is increasingly impor-
tant in industrial applications, such as visual inspection, or in the automotive
industry to make it easier for drivers to drive, increase safety and possibly
replace drivers in the future. For this purpose, it is important that the neural
networks are able to recognize objects that were not encountered during
training. This thesis is focused on anomaly detection semantic segmentation
models and proposes a novel distance-aware evaluation metric. Moreover,
the distance-aware regularization loss is incorporated into the state-of-the-art
semantic segmentation model to force the model to make less distant errors.

Motivation. There exist real-world applications where in addition to the
correct classification, the distance of the error from the real object is also
important. For example, in inspection tasks, when the machine guided by a
vision system has to cut out a defective part from an object, and the object

1



1. Introduction .....................................
is over-segmented, an unnecessarily large part can be cut out, which may
be expensive. Similarly, if the model over-segments the part of the car body
that needs to be painted, there is unnecessary spending on painting the part
that does not need it. On the other hand, undetected object poses a problem
as well. The spatial distribution of the error is also important in classifying
anomalies in traffic scenes, which is the main focus of this thesis. Nevertheless,
the results can also be applied to other segmentation tasks where the spatial
distribution of the errors may be of importance.

1.1 Structure of the thesis

The structure of the thesis is split into five main blocks:

. Chapter 2 presents a review of recent state-of-the-art methods for se-
mantic segmentation, anomaly detection, evaluation methodologies, and
available datasets.. Chapter 3 describes the novel distance-aware evaluation metric and
discusses the design choices.. Chapter 4 proposes a loss regularization for training of semantic segmentation-
based models that takes the distance of the error into account.. Chapter 5 compares the model trained with and without the distance-
aware loss using standard and the proposed distance-aware metrics.. Chapter 6 concludes the thesis.

2



Chapter 2

Review of recent methods for semantic
segmentation, datasets, and evaluation
metrics.

2.1 Introduction

Semantic segmentation is a widely used technique in processing a digital
image. It partitions an image into multiple parts or regions based on the
characteristics of the pixels in the image. Labels are used to annotate the
data and provide meaningful information about the content of the image.
In autonomous driving, labels could be a car, a road, a pedestrian, traffic
lights, etc. The goal of the semantic segmentation algorithms is to predict the
correct label for each pixel of an input image. It is generally a more complex
task than image classification, which predicts a single label for the whole
image. In autonomous driving, semantic segmentation is used to help the
system identify and locate vehicles and other objects on the road. Semantic
segmentation is also widely used in medical image analysis. The illustration
of the semantic segmentation is shown in the Figure 2.1.
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2. Review of recent methods for semantic segmentation, datasets, and evaluation metrics. ....

Figure 2.1: Illustration of the semantic segmentation. The image is courtesy of
[1].

In this section, I will provide an overview of recent state-of-the-art methods
for semantic segmentation, anomaly detection, evaluation methodologies and
available datasets. Similar grouping as in [13, 14] is used.

2.2 Deep learning networks used for semantic
segmentation

In this section, I will describe some of the most popular deep neural network
architectures that are part of the semantic segmentation models.

.VGG [15] is a deep convolutional neural network proposed by Zisserman
and Simonyan from Oxford University designed for image classification.
There are multiple versions of VGG depending on the number of layers,
such as VGG-13, VGG-16, and VGG-19. VGG is a backbone of several
semantic segmentation models [2, 3, 4, 5, 6, 16, 17, 18] .. ResNet - a residual neural network [19] is a very deep neural network used
in various computer vision tasks. It overcomes the difficulty of vanishing
gradient in backpropagation for very deep networks by introducing
residual blocks. ResNet is the backbone of several semantic segmentation
models [16, 17, 18, 20].. DenseNet [21] is a neural network that has all layers connected with each
other. This approach brings advantages such as alleviating the vanishing-
gradient problem, strengthening feature propagation, and reducing the
number of parameters. DenseNet inspired [6] and is used in [20].

4



................................. 2.3. Segmentation models

.Vision Transformer (ViT) [22] is a deep-learning model architecture
inspired by the success of transformers in Natural Language Processing
(NLP). The input image of the ViT model is divided into a sequence
of smaller non-overlapping patches that are treated as tokens (words)
in NLP. Each patch is then flattened into a vector and processed by a
transformer encoder. ViT architechture is used in [23], [24].

2.3 Segmentation models

Besides deep learning segmentation methods mentioned in the previous Section
2.2, many other segmentation methods were proposed, such as statistics-based
[25] or geometry-based [26]. In this section, I will focus on deep learning-based
segmentation methods. They showed significant improvement in effectiveness
compared to traditional segmentation methods. There is a vast number of
deep learning techniques. In [13, 14], they analyzed more than a hundred of
them and grouped them into categories.

2.3.1 Fully convolutional networks

In one of the first works in the field of deep learning segmentation models, Long
et al. [2] proposed a fully convolutional network. It significantly improved the
accuracy of previous models. Although the accuracy of fully convolutional
networks has been overpassed, it inspired many subsequent works.

The model proposed in [2] adapted classification networks AlexNet [27],
VGG net [15], and GoogleLeNet [28] into fully convolutional networks and
transferred their learned representations by fine-tuning to the segmentation
task. A fully convolutional network outputs a spatial segmentation map
(Figure 2.2) instead of a classification score returned by AlexNet, VGG net,
or GoogleLeNet .
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2. Review of recent methods for semantic segmentation, datasets, and evaluation metrics. ....

Figure 2.2: Transformation of fully connected layers into convolution layers
enables a classification net to output a heatmap. The image is courtesy of [2].

The final classifier layer in each net was decapitated, and all fully connected
layers were converted to convolutions. 1 × 1 convolution was appended to
predict scores for each of the PASCAL classes, followed by a deconvolution
layer. They defined a novel network architecture, a direct acyclic graph
(DAG) with skip connections (Figure 2.3).

Figure 2.3: DAG networks combining coarse, high layer information with fine,
low layer information. The image is courtesy of [2].

Thanks to the skip connections in the graph, the model combines semantic
information from coarse layers and appearance information from fine layers
in order to produce accurate segmentation. These modifications enabled
the network to accept an image of arbitrary size instead of a fixed-size one
accepted by classification networks [27, 15, 28]. This work showed that deep
learning networks can also be trained for semantic segmentation tasks. This
network also has limitations [3] because of using the fixed-size receptive field.
It can handle only a single scale semantics within an image, and objects

6



................................. 2.3. Segmentation models

significantly larger or smaller than the receptive field may be fragmented
or mislabeled. It also has problems with the correct classification of small
objects.

2.3.2 Deconvolution-based models

Traditional neural networks use subsampling operators to reduce the feature
map size and increase the receptive field for the final prediction. This
approach is not appropriate for semantic image segmentation because it
leads to a resolution loss in the output prediction. DeconvNet was the first
deconvolution-based segmentation method proposed by Noh et al. [3]. It uses
convolutional encoder-decoder architecture, which is very popular among DL-
based semantic segmentation models. They used the deep network VGG-16
[15], with the last classification layer removed, using its 13 convolutional layers.
On top of that, they learned a multi-layer deconvolution network composed
of deconvolution, unpooling, and rectified linear unit (RELU) layers. The
input of the deconvolution network is an output of the convolution network,
feature vector, and the output is a map of pixel-wise class probabilities. The
architecture of the DeconvNet is depicted in Figure 2.4. The deconvolution is
a mirrored version of the convolution network.

Figure 2.4: Convolution network is followed by a multi-layer deconvolution
network to generate the accurate segmentation map. The image is courtesy of
[3].

Deconvolution network, as opposed to convolution, enlarges the activations
with unpooling and deconvolution operations (Figure 2.5).
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2. Review of recent methods for semantic segmentation, datasets, and evaluation metrics. ....

Figure 2.5: Detail of convolution, deconvolution, pooling, and unpooling opera-
tions. The image is courtesy of [3].

This algorithm is able to handle object scale variations by eliminating the
fixed-size receptive field used by the fully convolutional network (Section
2.3.1). DeconvNet obtained the best accuracy on the PASCAL VOC 2012
dataset in 2015.

Another model based on encoder-decoder architecture is SegNet, proposed
by Badrinarayanan et al. [4], which was primarily motivated by road scene
understanding applications. SegNet has an encoder network and a corre-
sponding decoder network, followed by a final pixel-wise classification layer
(Figure 2.6). Similar to DeconvNet, the encoder part of SegNet also consists
of 13 convolutional layers corresponding to the first 13 convolutional layers
of the VGG-16 network. Removing the last 3 layers of VGG-16 significantly
reduces encoder network parameters. The main contribution of SegNet is the
decoder part, which upsamples its lower-resolution input feature maps using
the memorized max-pooling indices from the corresponding encoder feature
maps. This eliminates the need for learning to upsample. In order to produce
dense feature maps, the upsampled maps are convolved with trainable filters.

8



................................. 2.3. Segmentation models

Figure 2.6: SegNet architecture does not consist of fully connected layers; hence,
it is only convolutional. The image is courtesy of [4].

The same authors extended the SegNet and proposed a Bayesian SegNet
[29]. This model outputs pixel-wise class labels with a measure of model
uncertainty for each class.

There are numerous networks based on encoder-decoder architecture.
Stacked Deconvolutional Network (SDN) [30] is a deep network consisting
of multiple shallow deconvolutional networks that are stacked one by one.
U-Net [31] focuses on the segmentation of biomedical images. GridNet [32]
has a two-dimensional grid structure that combines accurate prediction and
context information.

2.3.3 Recurrent neural networks based models

The recurrent neural network achieved promising results in processing se-
quential signals, such as speech and text. However, they are helpful in
segmentation tasks as well. ReSeg [5] is a segmentation method based on
the ReNet [33] network. The architecture of the ReSeg model is shown in
the Figure 2.7. ReNet was developed for classification as an alternative
to traditional convolution networks. It did not outperform them, but the
idea of recurrent neural networks that sweep horizontally and vertically in
both directions across the image was altered in [5] for semantic segmentation
purposes. Visin et al. [5] extended the ReNet architecture and stacked the
four ReNet layers on top of pre-trained VGG-16 that extracts generic local
features. ReNet layers are followed by up-sampling layers to recover the
original image’s resolution for the final prediction.
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2. Review of recent methods for semantic segmentation, datasets, and evaluation metrics. ....

Figure 2.7: The ReSeg model. The pre-trained VGG-16 feature extractor
network is not shown. Stacked ReNet layers are followed by by an upsampling
and softmax layers. The image is courtesy of [5].

Shuai et al. [34] introduced directed acyclic graph RNNs (DAG-RNNs). The
proposed network processes DAG-structured images (Figure 2.8b), enabling
the network to model long-range semantic dependencies between image units.
Local features in an image are considered in a graphical structure. In order
to perform segmentation, DAG-RNNs are integrated with convolution and
deconvolution layers. In a single feed-forward network pass, the network
accepts images of varying sizes and produces the corresponding dense label
prediction maps.

Inspired by DenseNet [21], which connects each convolutional layer to every
other layer in a feed-forward fashion, Fan et al. [6] proposed a dense RNN
(Figure 2.9) to capture richer contextual dependencies between image units,
which are densely connected with each other (Figure 2.8d). Into dense RNNs,
an attention model was introduced in order to assign more importance to
helpful dependencies.
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Figure 2.8: A common way to represent the dependencies among image units is
to represent an image as an undirected graph. Due to the cycles in an undirected
graph, it is difficult to apply RNNs to model dependencies in images directly. The
undirected graph is approximated with several directed acyclic graphs (DAGs)
to tackle this issue. The image is courtesy of [6].

Figure 2.9: The architecture of the model. DAG-structured dense RNNs (DD-
RNNs) are placed on top of the 5th layer of VGG-16. DD-RNNs are followed by
deconvolution layers to upsample the prediction. The model uses skip strategy
to combine low-level and high-level features. The image is courtesy of [6].
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Beyon et al. [35] worked on recurrent neural networks using Long Short

Term Memory (LSTM), mainly composed of the 2D LSTM layer and feed-
forward layers. This model addresses the problem of long-range dependencies
and takes into account both local and global dependencies in a single process
of scene labeling.

2.3.4 Generative adversarial network based models

Generative adversarial networks (GAN) [36] is a type of network frequently
used in computer vision. It gained popularity in applications such as style
transfer [37], image painting [38], or text-to-image synthesis [39]. Luc et al.
[7] proposed ANet, the first application of adversarial training to semantic
segmentation. It consists of two networks: adversarial and segmentation
(Figure 2.10). The segmentation network (generator) partitions the input
image into non-overlapping regions. The adversarial network (discriminator)
encourages the segmentation model to produce label maps that it could not
recognize from the ground-truth labels. The discriminator is trained to binary
classify the input image as real or fake.

Figure 2.10: The segmentation network (generator) produces per-pixel classi-
fication. Labeled image from the segmentation network or ground truth is an
input of the adversarial network, which produces class label (1=ground truth,
0=synthetic). The image is courtesy of [7].

Semi-supervised framework based on Generative Adversarial Networks
(GANs) was proposed by Souly et al. [8]. This model, shown in Figure 2.11,
consists of the generative network providing extra training examples and the
discriminator network, which labels a training example from K possible classes

12
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or labels it as a fake sample (additional class) instead of binary classification
of the training example as a real or fake one.

Figure 2.11: Semi-supervised convolutional GAN architecture. The Discrim-
inator creates confidence maps for each class and a label for false data using
produced, unlabeled, and labeled data. The image is courtesy of [8].

Hung et al. [40] designed a discriminator to distinguish the ground truth
from the predicted probability maps. Additionally, semi-supervised learning
is enabled by the discriminator that discovers trustworthy regions in predicted
results of unlabeled images. SegAN is another example of GAN proposed by
Xue et al. [41]. As a generator, a fully convolutional encoder-decoder neural
network is proposed to generate segmentation label maps. The discrimina-
tor has a similar structure to a generator’s decoder with a multi-scale loss
function. Both parts learn global and local features to capture long-range
and short-range dependencies between pixels. SegAN was developed for the
segmentation of medical images. There are more GAN architectures for
medical purposes, [42] for brain MRI segmentation, [43] for brain tumor seg-
mentation, or [44], which proposes a GAN architecture to mitigate imbalance
data problem in medical image semantic segmentation.

Conditional generative adversarial nets (cGAN) [45] is an extension of
GAN [36], conditioned on extra information. This extra information, such
as class labels, is during training fed to the generator and discriminator as
an additional input layer. This way, cGAN is, for example, able to generate
images based on class labels.

13
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2.3.5 DeepLab family models

A very famous group of semantic segmentation methods is the DeepLab family
[46, 16, 17, 18]. Chen et al. [16] re-purposed neural networks designed for
classification (VGG-16 [15] and ResNet-101 [19]) by transforming all fully
connected layers to fully convolutional layers and by using atrous (dilated)
convolution, allowing the computation of the response of any layer at arbitrary
resolution. This tackles the problem of low-resolution images outputted
by deep neural networks. Atrous convolution can enlarge the size of the
receptive field while keeping the number of parameters unchanged. Chen et
al. experimented with this technique to find the best trade-off between precise
localization (small receptive field) and context assimilation (large receptive
field). Chen et al. [17] upgraded the previous model DeepLabv2 to DeepLabv3.
Atrous convolution with different rates is in this model employed in cascade
or in parallel to segment various-sized objects. DeepLabv3+ [18] has an
encoder-decoder structure with DeepLabv3 as an encoder. The difference
between these two models is in the added decoder, which objective is to
recover the object boundaries.

2.4 Methods for semantic segmentation anomaly
detection

State-of-the-art methods for semantic segmentation are usually trained on
the closed set of classes. This is a problem for the classification of previously
unseen data, i.e., anomalies or out-of-distribution data. Anomalous objects
are usually not from classes available during training (in-distribution) and are
usually not visually similar to non-anomalous objects. Detecting these objects
is essential for the safety of deployed models in, e.g., automated driving or
medical applications.

2.4.1 Methods based on image classification

The first approaches to anomaly detection were developed on deep neural
networks proposed for image classification. Lee et al. [47] proposed a method
for detecting abnormal test samples which can be applied to any pre-trained
softmax neural classifier. Noise perturbation was added to the input image
and the resulting confidence score is based on Mahalanobis distance. The
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ODIN method [48] also does not require any retraining or changes of the
pre-trained neural network. Liang et al. [49] realized that temperature scaling
and adding small perturbations to the input image could increase the softmax
score gap between in and out-of-distribution samples. Hendrycks et al. [50]
demonstrated that predictions produced by softmaxes tend to be higher for
correct examples and lower for out-of-distribution samples.

2.4.2 Methods based on learning to detect anomalies

DeVries et al. [51] augmented a neural network with a confidence estimation
branch and trained the network classifiers that output confidence intervals.
These intervals are used to differentiate between in and out-of-distribution
samples. By thresholding on the learned confidence intervals, they obtained
better results than by thresholding in the softmax prediction probabilities for
almost all tested network architectures.

Hendrycks et al. [52] proposed an approach called Outlier Exposure.
Network heuristics is learned to recognize out-of-distribution examples by
seeing them in the training phase.

Bevandic´ et al. [20] proposed a multi-task convolutional model with two
heads for semantic segmentation and outlier detection. The final output is a
combination of these two dense prediction maps. DenseNet [21] or ResNet
[19] is used as a convolutional backbone, and both tasks are performed in a
single forward pass.

Entropy maximization and meta classification for out-of-distribution detec-
tion in semantic segmentation proposed by Chan et al. [53] is a method that
detects out-of-distribution samples. Chan et al. refer to out-of-distribution
(OoD) samples as samples not included in the model’s semantic space. This
approach combines two steps, entropy maximization, and meta classifica-
tion. In the entropy maximization part, a semantic segmentation network
(DeepLabv3+ [18] or DualGCNNet [54]) is re-trained to predict class labels
with low confidence scores on OoD samples. Softmax entropy is computed to
quantify the level of uncertainty. The loss function is adjusted for OoD sam-
ples, producing a negative log-likelihood averaged over all classes. Because of
the increased sensitivity in predicting OoD objects, false positive predictions
are removed in the meta classification part, where the logistic regression
is employed. Removing false positive OoD is based on geometry features
(connected components of pixels) and aggregated dispersion measures without
access to the ground-truth labels. This model was trained on Cityscapes
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data, and as a proxy for OoD samples, images from the COCO dataset were
randomly picked. As test sets LostAndFound and Fishyscapes datasets were
used.

2.4.3 Methods based on image reconstruction

Vojir et al. [55] proposed a method called DaCUP (Detection of anomalies as
Consistent Unpredictable Patches). The DaCUP method employs an auto-
encoder-like architecture with a novel embedding bottleneck. This embedding
bottleneck enables the model to capture diverse and multi-modal appearances
of known classes, such as the road, and the model can better differentiate
between anomalous and non-anomalous objects. Image-conditioned distance-
to-class score is used as an additional feature that helps the model to identify
anomalies on previously unseen surfaces and to decrease the false positive
predictions. An inpainting mechanism is also used to reduce the false positive
prediction implementing the principle that anomalies cannot be predicted
from their neighborhood and are not similar to anything in the image except
themselves. The proposed method achieves state-of-the-art performance.

Generative models can generate high-dimensional feature space from low-
dimensional one. Xia et al. [9] proposed SynthCP, a framework consisting of
two modules, an image synthesize module, and a comparison module to detect
anomalies. Conditional GAN (cGAN) [45] in synthesize module generates a
reconstructed image from the segmentation result. The comparison module
detects anomalies by comparing reconstructed and input images (Figure 2.12).

Figure 2.12: Detail of the SynthCP framework. The image is courtesy of [9].
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Munawar et al. [56] limited a generative model by introducing negative
learning. The generative model is trained to encode non-anomalous objects
into latent representation, then decode it back to the original space, and fail
to do the same on anomalous objects. Anomaly is determined based on the
similarity between the input and the reconstructed signal. The following
works focus on detecting anomalies, specifically on the road.

Creusot and Munawar [57] use a compressive Restricted Boltzman Machine
neural network to reconstruct the road and create a deep feature representa-
tion. The anomaly detection is performed by comparing the observed and
reconstructed road patches.

Lis et al. [10] first find image patches and inpaint them with the surround-
ing road texture. In the second step, they compare the original image and the
inpainted one through the discrepancy network to check if they are similar
enough (Figure 2.13).

Figure 2.13: Detail of the discrepancy network’s architecture. The image is
courtesy of [10].

SynBoost proposed by Di Biase et al. [58], is a robust framework combining
segmentation uncertainty and re-synthesizing the image from the semantic
label map. It contains a segmentation module to obtain semantic labeling
with the uncertainty of the prediction and synthesis module (cGAN [45])
generating an image from the given semantic map. The dissimilarity module
predicts the anomaly segmentation map out of original and generated images
and semantic map with uncertainties.
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2.5 Datasets

In the following paragraphs, popular datasets used for the training of semantic
segmentation neural networks are presented.

2.5.1 Datasets mainly used in semantic segmentation tasks

PASCAL Visual Object Classes (VOC) 2012 [59] is a very popular
dataset in the field of computer vision containing well-annotated images. This
dataset became a benchmark for object detection; however, it can also be
used for classification, segmentation, action recognition, and person layout.
The dataset consists of 1464 images for training, 1449 for validation, and
1456 for testing purposes. It includes 20 object classes and one class for
background. Most of the segmentation methods described in this section
have been evaluated on the PASCAL VOC 2012 dataset. The augmented
version of PASCAL VOC 2012 [60] with more than ten thousand images in
the training set is more frequently used.

Pascal Context [61] is an extension of the PASCAL VOC 2010 segmenta-
tion task containing 10 103 images for training and validation and 9637 for
testing. There are 59 semantic classes frequently used in this dataset.

Microsoft COCO: Common Objects in Context [62] is a dataset
containing 328 thousand images of complex everyday scenes with 91 object
types in their natural context.

ADE20K [63] is a densely annotated dataset with images of complex
everyday scenes. The training set comprises more than 20 thousand images,
the validation set contains 2 thousand images, and the test set has 3 thousand
images. This dataset involves 150 semantic categories.

Kitti [64] is a dataset captured from a moving car. Geiger et al. recorded
6 hours of traffic scenarios capturing real-world traffic situations. The original
dataset does not contain ground-truth labels.

CamVid [65] is a video-based database with per-pixel ground-truth hand-
labeled 32 classes. It contains video sequences of driving scenes. The original
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dataset is split by Sturgess et al. [66] into the train, validation, and test set,
and the number of classes is reduced to 11.

2.5.2 Datasets mainly used in anomaly segmentation tasks

Cityscapes [67] is a large-scale dataset comprising diverse video sequences
recorded in 50 European cities. It contains 5 thousand well-annotated images
and 20 thousand additional coarse-annotated images. Objects are annotated
into 30 classes grouped in 8 categories.

LostAndFound [11] contains anomalous objects and obstacles in street
scenes in Germany in more than 2000 images. Only anomalies and roads are
labeled. Images show limited diversity because they are usually frames of
videos captured in single scenes.

Fishysapes [68] is a public validation dataset for anomaly detection in
semantic segmentation for urban driving containing 100 images from the
original LostAndFound data with refined labels. Anomalous objects can
appear everywhere in the image, not only on the road. The issue of low
diversity is overcomed by adding synthetic data to the real images.

RoadAnomaly21 [69] is a general anomaly segmentation benchmark in
the full street scenes. It is an extension of [70] with corrected labels, removed
low-quality images, and added newly collected images. Each image contains
at least one anomaly, which can appear anywhere in the image. Added images
were collected from the internet and therefore depict various environments.
Pixel-level annotations include three classes: anomaly / obstacle, not anomaly
/ not obstacle, and void.

RoadObstacle21 [69] contains pixel-level annotated images. Obstacles
that appear on the road in front of the car can be understood as anomalies.
They are at different distances from the car and are surrounded by road
pixels. The diversity of the scenes is ensured by different road surfaces,
weather, and lighting conditions. Pixel-level annotations are the same as in
RoadAnomaly21.

StreetHazards [71] is a synthetic dataset designed for anomaly detection.
Diverse foreign objects are re-rendered into the driving streets to ensure the
background context and a wide variety of anomalous objects. The dataset
contains 7 thousand images with 18 classes.
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BDD100K [72] is a large driving video dataset consisting of 100 thousand

videos, each about 40 seconds long. They were recorded in different weather
conditions and at different times of the day. The dataset contains, for
example, the annotations for scene tagging, drivable area, semantic and
instance segmentation (22 classes), lane marking, and object bounding boxes.

StreetScenes [73] is a huge dataset video anomaly detection. It consists
of more than 56 thousand frames for training and more than 146 thousand
frames for testing, which are extracted from the original videos (46 training
and 35 testing high-resolution video sequences). Ground-truth annotations
for 17 different anomaly types are provided for the test set as bounding boxes
around anomalous events.

2.6 Evaluation metrics

In the below section, I will summarize the most popular metrics for semantic
and anomaly segmentation. For anomaly segmentation, the class imbalance
is typical because anomaly usually covers only a small part of an image. The
notation used is as follows: pij denotes a pixel of class i predicted as a pixel
of class j. In other words, pii denotes True Positive (TP), pji False Positive
(FP), pij False Negative (FN), pjj True Negative (TN). There are total of K
classes.

2.6.1 Pixel-level evaluation

Pixel Accuracy (PA) is defined as the proportion of correctly classified
pixels over the total number of pixels.

PA =
∑K

i=0 pii∑K
i=0

∑K
j=0 pij

(2.1)

Mean Pixel Accuracy (MPA) is an extension of PA, where per-class
Pixel Accuracy is averaged. It is defined as:

MPA = 1
K

∑K
i=0 pii∑K

i=0
∑K

j=0 pij

(2.2)
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Precision / Recall are popular metrics for evaluating classical image
segmentation algorithms. Precision (also known as Positive Predictive Value
(PPV)) measures the ratio between true positive predictions and all positive
predictions. It is a likelihood that a positive example is truly positive. Recall
is a likelihood that positive example was correctly classified as positive.

Precision = TP
TP + FP, Recall = TP

TP + FN (2.3)

TPR / FPR True Positive Rate (TPR) reflects the model’s ability to
identify positive instances correctly, while False Positive Rate (FPR) rep-
resents the rate of incorrect classifications of negative instances as positive.
These metrics are often used together to assess the performance of binary
classification models, with the goal of achieving high TPR and low FPR
values. TPR is also known as Recall.

TPR = TP
TP + FN , FPR = FP

FP + TN (2.4)

FPR95 metric measures how many false positive predictions are made to
obtain a 95% True Positive Rate.

F1-Score combines precision and recall and is useful for evaluating models
where the classes are imbalanced.

F1 = 2TP
2TP + FP + FN = 2 precision · recall

precision + recall (2.5)

Area Under the Receiver Operating Characteristic curve (AuROC
is calulated by measuring the area under the ROC curve. The x-axis of the
ROC curve is the False Positive Rate, and the y-axis is the True Positive Rate.
TPR and FPR for the ROC curve are obtained by varying the classification
threshold. The ROC curve is not suitable for highly imbalanced data.

Area under the precision-recall curve (AuPRC) is useful for clas-
sification with imbalanced classes because it emphasizes detecting minority
class. The x-axis of a Precision-Recall (PR) curve is the recall, and the y-axis
is the precision. The score given by AuPRC is an area under the PR curve
obtained by varying thresholds for Precision and Recall computation.
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2.6.2 Region-level evaluation

Intersection over Union (IoU) is a widespread metric for semantic
segmentation tasks. It is defined as the area of intersection between the
ground truth map and the predicted segmentation map divided by the union
of those maps.

IoU =
∑K

i=0 pii∑K
i=0 pii + ∑K

i=0
∑K

j=0 pij + ∑K
i=0

∑K
j=0 pji

(2.6)

Mean-IoU is a widely used metric for reporting the performance of
segmentation algorithms. It denotes the average of the per-class IoU.

MIoU = 1
K

∑K
i=0 pii∑K

i=0 pii + ∑K
i=0

∑K
j=0 pij + ∑K

i=0
∑K

j=0 pji

(2.7)

sIoU is an adjusted version of the component-wise intersection over union
(IoU) for ground-truth components proposed by Chan et al. [69]. The
component of pixels is defined as pixels, where a pixel and its 8 surrounding
pixels have the same label. Chan et al. denote Zc as set of pixels labeled
as anomaly, K ⊆ P(Zc) with P(S) as the power set of a set S, the set of
anomaly components according to the ground-truth. K̂ ⊆ P(Zc) is the set of
components that are predicted as anomalous. The sIoU is defined as:

sIoU(k) = | k ∩ K̂(k) |
| (k ∪ K̂(k)) \ A(k) |

with K̂(k) =
⋃

k̂∈K̂,k̂∩k ̸=∅

k̂ (2.8)

k ∈ K and A(k) = {z ∈ k′ : k′ ∈ K \ {k}}. In other words, if the pre-
dicted component covers multiple ground-truth components, those pixels are
excluded from the union.

The metrics mentioned above do not consider the spatial distribution of
the error. This is the reason for proposing a distance-based evaluation metric.
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Chapter 3

Distance-aware evaluation metric

As mentioned in Section 2.6, commonly used metrics do not take into account
the spatial distribution of the error. In this chapter, I propose a generic
distant-aware evaluation metric for semantic segmentation tasks that we
apply later on for the evaluation of road anomaly detection methods. The
distance-based error score (Section 3.2) is inspired by standard metrics using
False Positive and False Negative predictions. False predictions are weighted
by the distance maps (Section 3.1), which assign a value to each pixel in an
image representing the shortest distance between that pixel and a specific
reference point(s). To address the problem of class imbalance, normalization
is proposed in Section 3.3.

3.1 Distance maps

To represent a tentative error of each pixel used for the computation of the
metric, we first compute distance maps. Distance map assigns a value to
each pixel in an image, indicating the shortest distance between that pixel
and a specific reference point or a set of reference points. Distance maps are
later used to calculate the distance-based error score of the prediction. In the
proposed distance-aware evaluation metric, one distance map is generated for
a positive class and one for a negative class(es). In the special case of road
anomaly detection, one distance map is computed for anomaly pixels and
one for road pixels. The distance map of anomaly pixels holds for each pixel
the value representing the distance between the road pixel and the closest
anomalous pixel. Analogously, it also applies to the distance map of road
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pixels. Formally, it can written as:

DMk′(px) = min
GT(px’)∈k′

||px − px’||2 (3.1)

where k’ denotes the selected class from the set of available classes k, GT
is a ground-truth matrix:

GT; (gtij) ∈ {k}h×w,

and px is the pixel for which the distance score is computed.

In the case of the proposed distance-aware (D-A) regularization metric, the
distance map used for the calculation of the D-A error score has the form:

DMk′
ln(px) = ln(DMk′ + 1) = ln( min

GT(px’)∈k′
||px − px’||2 + 1). (3.2)

Having two classes: R for the road pixel and A for the anomaly pixel,
k ∈ {R, A}. Distance maps generated for the case of two classes, k ∈ {R, A},
are shown in Figure 3.2. Anomalous object visualized in distance maps
(Figure 3.2) is highlighted in Figure 3.1.

L2 distance is a natural choice in measuring distances; it gives a straight
line distance between two points. It is smooth and differentiable compared to
the L1 distance. The logarithm function is used in order to limit the effect
of the distant errors. Because the logarithm is not defined for zero, one is
added to the L2 distance to overcome this issue.

Figure 3.1: Image from the LostAndFound dataset [11]. The region of interest
is highlighted in white, with the anomalous object highlighted in red.
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(a) : The distance map of anomaly pixels
blended over the original image.

(b) : The distance map of road pixels
blended over the original image.

Figure 3.2: Visualization of the distance maps using a jet colormap [12] with
the detail on the anomaly.

3.2 Distance-based error score

Distance maps (Equation 3.2) are used for the computation of the distance-
based error score. Distance-based error score is inspired by standard metrics
that use False Positive (FP) and False Negative (FN) predictions. The
proposed metric weighs FP and FN by the distance maps. If the false
prediction is distant from the true class, it increases the proposed metric
more than if the false prediction is made closer to the true class. I propose
to decompose the error score into weighted false positive - wfp and weighted
false negative - wfn. For some applications, one type of error may be of more
importance, and by the decomposition, one may control the impact of each
type of error. The formulas are the following:

wfp =
∑

{pxi:GT(pxi)∈kn|∀i}
DMkp

ln (pxi)·[[PIθ(pxi) = kp]], (3.3)

wfn =
∑

{pxi:GT(pxi)=kp|∀i}
DMkn

ln (pxi)·[[PIθ(pxi) ∈ kn]], (3.4)

where kp denotes the positive class, and kn denotes the negative class.
There could be more semantic classes belonging to the negative class. The
distance map DMkn

ln (pxi) assigns to the pixel pxi the closest distance to the
pixel belonging to the negative class. In the case of two classes, Road and
Anomaly, kp = A and kn = R.

Matrix PIθ holds the class predicted by some particular method:

PIθ; (piθij) ∈ {kp, kn}h×w,
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and double box brackets mean

[[true]] = 1,

[[false]] = 0.

Distance-based error score s is

s = α · wfp + (1 − α) · wfn. (3.5)

The parameter α can be set based on the purpose of the classification task
to penalize one type of error more than another. For the sake of simplicity,
in the proposed metric, α = 1

2 .

3.3 Distance-based error score with normalization

An apparent drawback of the distance-based error score is that a tiny object
does not have a significant distance from its boundary and therefore does not
appropriately increase the error score s while misclassified. A natural way of
addressing such imbalance is to introduce some form of normalization. The
approach with normalization of wfp and wfn on two classes, R for road and
A for the anomaly, in the following equations was tried.

wfp = 1∑
px DMA(px)

∑
{pxi:GT(pxi)=R|∀i}

DMA(pxi)·[[PIθ(pxi) = A]] (3.6)

wfn = 1∑
px DMR(px)

∑
{pxi:GT(pxi)=A|∀i}

DMR(pxi)·[[PIθ(pxi) = R]] (3.7)

However, the normalization caused the wfn score to be much more important
than the wfp score, and the false positive pixels, even far from the anomaly,
did not add a considerable score to the final error score, which is the weighted
sum of the wfp and wfn. As a result normalization from equations 3.6 and
3.7 was dropped. Without normalization, the wfn score is determined only
by the size of the anomaly. If some small anomaly is not detected at all,
it does not increase the error score adequately. This was addressed by the
normalization of the distance map described in the following section.
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3.3.1 Normalization for each anomaly

To eliminate the problem described in the previous section, the distance map
of road pixels, used for the computation of the wfn score, was computed as
follows: first, connected components were found for each anomaly. Then the
distance map from the road and ignore pixels to anomaly pixels was calculated.
Each component was normalized (divided by the maximum distance within
the component) to have the highest error in its center. In order to have the
distance maps on the same scale, the distance map of road pixels is divided by
its maximum value too. Figure 3.3 shows that each anomaly has the highest
error in the center regardless of its size.

Figure 3.3: The distance map of road pixels. With normalization, each anomaly
has the highest error in its center.
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Chapter 4

Loss function

4.1 Loss functions used for semantic segmentation

Deep learning algorithms most often use stochastic gradient descent to opti-
mize the objective. In the case of semantic segmentation, the objective is a
loss function, which measures the difference between the current output of the
algorithm and ground-truth labels. This measurement is sent as a feedback
signal to improve the model performance. This way, the model learns. The
most common loss functions for semantic segmentation, Cross-entropy loss
(Section 4.1.1), and Dice loss (Section 4.1.2) are described in the following
paragraphs. However, they do not take the spatial distribution of the error
into account.

4.1.1 Cross-entropy

Cross entropy loss measures the model’s performance, which outputs a proba-
bility value between 0 and 1. The cross-entropy loss increases as the predicted
probability diverges from the true label. Cross-entropy loss for M classes is
defined as:

LCE = − 1
N

N∑
n=1

M∑
i=1

yn
i log(ŷn

i ), (4.1)

where N is the number of pixels and yn
i is a ground-truth label and ŷn

i is the
predicted probability of the model for the nth pixel and ith class. In case of
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binary classification, binary cross-entropy is used:

LBCE(yn, ŷn) = − 1
N

N∑
n=1

yn log(ŷn) + (1 − yn) log(1 − ŷn), (4.2)

4.1.2 Dice loss

Dice loss is based on the dice coefficient, which measures the overlap of two
samples. Dice coefficient for 2 classes is calculated as:

Dcoef = 2yp + ϵ

y + p + ϵ
, (4.3)

where y is a ground-truth label and p is a predicted label. ϵ is a constant that
ensures that the denominator is not a zero. Dice loss is then calculated as:

Dloss = 1 − Dcoef (4.4)

4.2 Distance-aware regularization loss

Distance-aware regularization loss penalizes mistakes made by the model
which are far from the true class more than the ones that are closer to the
true class.

4.2.1 Proposed distance-aware regularization loss

Distance maps are used to account for distance in the loss function. Distance
map DMk(n) for class k is computed for each pixel n of an input image
according to the Equation 3.1. The proposed distance-aware loss function
has the form:

Ldistance = 1
d

K∑
k

N∑
n/∈k

ŷn
k · DMk(n), (4.5)

where
ŷn

k = σk(n)
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is a softmax output of the model for class k and pixel n, N is the total number
of pixels in the input image, and d is the diagonal of the input image. The
proposed loss function penalizes high softmax probabilities that are distant
from the true class. In the case of two classes, road and anomaly, k ∈ {R, A}.

4.3 Implementation of the distance-aware
regularization loss into the Dacup model

The distance-aware loss function was implemented into the state-of-the-art
model Dacup (version without the inpainting module, which is trained faster),
proposed by Vojíř et al. [55], described in the Section 2.4.2. For the first
five epochs, the Dacup model is trained using only triplet loss Lfinal = Ltri.
Between epochs six and ten, the loss function is Lfinal = Ltri + LR. After
ten epochs, the loss has a form:

Lfinal = λxentLxent + λtriLtri + λRLR, (4.6)

where λxent = 0.6, λtri = 0.2, λR = 0.2 are the weights, Ltri and LR are
regularizations, for details please see [55], and Lxent is the binary negative
log likelihood loss (Equation 4.2).

The distance-aware loss (Equation 4.5) was incorporated into the final loss
(Equation 4.6) as follows:

Lfinal = λxent(Lxent + Ldistance) + λtriLtri + λRLR. (4.7)

Dacup is trained using the binary negative log likelihood, which penalizes
the low confidence of the correct class predicted by the model. Ldistance

penalizes high predicted confidence of the incorrect class proportionally to its
distance to the nearest correct class. The aim is to make fewer distant errors.

4.3.1 Retraining the model with the proposed distance-aware
loss function

The model was retrained with the same parameters as the original Dacup
model. The version without the inpainting module was chosen due to faster
training. It was trained on the LostAndFound dataset and evaluated on
the test split of LostAndFound (LaF) [11], RoadAnomaly (RA) [69], and
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RoadObstacles (RO) [69]. In order to evaluate the distance-aware metric,
threshold θ had to be picked. Pixels with softmax score for anomaly class
ŷn

k=A higher than the threshold θ are classified as anomalous. The threshold
θ was selected based on the LostAndFound validation split as a value, where
the True Positive Rate (Sensitivity) was 95%.

TPR = TP
TP + FN = 0.95

Based on this condition, thresholds for original Dacup and retrained Dacup
were selected as follows:

θoriginal = 0.95,

θretrained = 0.96.

To quickly check if the model is minimizing the distance, the error was
computed similarly to the Ldistance (Equation 4.5):

error = 1
d

K∑
k

N∑
n/∈k

DMk(n) · [[PI(n) = k]]. (4.8)

The error (Equation 4.8) masks out the distance of the incorrectly classified
pixels n. PI(n) denotes the prediction of the model for pixel n, d is the
diagonal of the input image, double box brackets mean 1 if the expression
inside the brackets is true, 0 otherwise, and k ∈ {R, A}.

The figure below shows a comparison of the original Dacup model and
the retrained Dacup model with the distance-aware (D-A) loss. Pixels are
labeled as anomalous if the softmax output for anomaly class is greater than
a selected threshold (θoriginal for original Dacup and θretrained for retrained
Dacup with D-A loss). The figure shows that the number of images with an
error greater than 10 dropped with the retrained model, and the number of
images with a lower error increased.
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Figure 4.1: Histogram of distance-aware (D-A) errors (Equation 4.8) per Lo-
stAndFound test split. Images with error greater than a selected value (in this
case, 10) are displayed as their error was 10 due to visualization clarity.
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Chapter 5

Results

5.1 Quantitative evaluation

Both models, Dacup and Dacup with D-A loss, were trained for 100 epochs.
Standard metrics on which models were evaluated are the False Positive Rate
at 95% of True Positive Rate and average precision (AP - area under the
Prescision-Recall curve). After the training with the D-A loss, the standard
metric did not get significantly worse, as can be observed in the Table 5.1.

Models LostAndFound RoadObstacles RoadAnomaly
AP ↑ FPR95 AP ↑ FPR95 AP ↑ FPR95

DACUP 85.24 2.17 86.39 0.17 94.45 6.45
DACUP w/ D-A loss 85.06 3.09 88.31 0.22 94.82 7.16

Table 5.1: Comparison of the DACUP model without the inpainting module
and the DACUP model without the inpainting module trained with the distance-
aware (D-A) loss on the standard metrics - Average Precision and False Positive
Rate at 95% True Positive Rate.

Both models were also evaluated using the proposed distance-aware metric
(Equation 3.5), with the normalization described in Section 3.3.1. At selected
thresholds, the proposed metric is better at retrained model on all observed
datasets. The proposed loss forced the Dacup model to make less distant
mistakes.
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Models LostAndFound RoadObstacles RoadAnomaly

s ↓ s ↓ s ↓

DACUP 364.97 362.63 7829.31
DACUP with D-A loss 310.72 249.26 6814.47

Table 5.2: Comparison of the DACUP model without the inpainting module
and the DACUP model without the inpainting module trained with the distance-
aware (D-A) loss on the proposed distance-aware (D-A) metric. D-A metric s is
computed for each image and averaged over the dataset.

The following graphs show the dependence of the proposed D-A metric on
the threshold for the datasets used. We can observe that for lower thresholds,
the original Dacup has better scores of the proposed metric. For higher
thresholds, the model trained with the D-A loss outperforms the one not
trained with the D-A loss. The retrained model detects anomalies with higher
confidence than the original Dacup. On the contrary, it sometimes labels
non-anomalous objects as anomalies with low certainty, producing a higher
D-A error at lower thresholds. For the selected thresholds, the retrained
model is better in all cases.

(a) : Change of the error
depending on the thresh-
old for LostAndFound
test split.

(b) : Change of the
error depending on the
threshold for RoadObsta-
cles dataset.

(c) : Change of the error
depending on the thresh-
old for RoadAnomaly
dataset.

Figure 5.1: Change of the error depending on the evaluated dataset.
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5.2 Visualization of the results

In this section, images from each of the evaluated datasets demonstrating
the difference between the Dacup model trained with the D-A loss and the
original Dacup model are presented. The model retrained with the D-A loss
detects anomalies with higher certainty and gives a higher anomaly score even
to the borders of the anomaly object compared to the original model. The
original and also the model retrained with D-A loss have problems detecting
small and distant anomalies. The colormap used in these visualizations is jet
[12].

In the figures 5.2, 5.3, and 5.8 is shown that the anomalous objects de-
tected by the original model with low confidence are detected with higher
confidence by the model retrained with the D-A loss regularization. Even the
previously undetected anomalies are detected by the retrained model. The
retrained model penalizes highly confident predictions of the incorrect class
proportionally to the distance from the correct class.

Figures 5.4, 5.5, and 5.9 show that the retrained model refined the bound-
aries of anomalous objects compared to the original model. Boundaries are
recognized with higher confidence. The retrained model minimizes the dis-
tance between the pixels with a high softmax road score and the true road
pixels.

Figures 5.6, and 5.7 demonstrate that distant false positive predictions
made by the original model were decreased or totally removed by the model
retrained with the D-A loss.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.2: The retrained model detects rocks on the road with higher certainty.
It also detects rocks undetected by the original model. On the other hand, edges
of the road have higher anomaly score but still lower than the selected threshold.
The image is from RA dataset.
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(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.3: The retrained model better detects the entire cone area. The image
is from RA dataset.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.4: Boundaries of the anomaly are refined by the retrained model, and
the model is more confident in them. The image is from RA dataset.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.5: The retrained model better detects the boundaries of the anomalous
object. The image is from RO dataset.
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(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.6: Anomaly is in the right part of an image. The original model detects
a false positive anomaly in the left part of an image, which is not falsely detected
by the retrained model. The image is from RO dataset.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.7: The distant anomaly is not detected very well by either of the
models. The sewer is falsely detected as an anomaly by the original model, and
the retrained model falsely detects a smaller part of the sewer, which is far from
the true anomaly. The image is from LaF dataset.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.8: Three distant anomalous objects are detected with higher confidence
by the retrained model. The image is from LaF dataset.
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(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.9: The retrained model detects the boundaries of the anomalous object
with higher confidence. The image is from LaF dataset.

5.2.1 Failure cases

In the following figures 5.10, and 5.11, failure cases of the model retrained
with the D-A loss are presented. In both cases, the retrained model makes
more false positive predictions than the original model. In the figure 5.10,
the legs of the fox are detected more precisely. The increased number of
pixels with incorrectly high anomaly score may be caused by the untypical
road surface. In the figure 5.11, the legs of the horse are also detected more
precisely. However, the number of false positive predictions has increased.
The retrained model mistakenly classifies shadows on the road as anomalies.

(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.10: The retrained model detects the legs of the fox more precisely. On
the other hand, more false positive predictions are made. The image is from RA
dataset.
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(a) : Prediction by the original model. (b) : Prediction by the retrained model.

Figure 5.11: The retrained model detects the legs of the horse more precisely.
The number of false positive predictions has increased. The image is from RA
dataset.
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Chapter 6

Conclusion

In industrial applications such as visual inspection or autonomous driving, the
spatial distribution of the error plays a key role. The goal of this thesis was
to propose the distance-aware evaluation metric for semantic segmentation
and to propose the distance-aware regularization loss function for training the
semantic segmentation model so the errors of the model were more compact
around the anomalous object, making fewer distant errors.

The distance-aware regularization metric, inspired by the standard metrics,
which takes into account the spatial distribution of the error, was proposed.
Based on the purpose of the application, it can penalize certain type of error
more than another. The proposed metric is complementary to standard
metrics and provides a different view of the performance of the semantic
segmentation model.

In order to retrain the segmentation model to make less distant errors, the
distance-aware loss function was proposed. The loss was incorporated into the
state-of-the-art model Dacup, which uses the negative log-likelihood loss. The
Dacup model retrained with the distant-aware regularization loss retained
the performance of the standard metrics and improved the distance-aware
evaluation metric. The retrained model performs better at the boundaries of
the anomaly and classifies them with higher confidence.
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Appendix A

List of Notation

Symbol Meaning

D-A Distance-aware
DAG Direct Acyclic Graph
RA RoadAnomaly dataset
RO RoadObstacles dataset
LaF LostAndFound dataset
AP Average Precision
TPR True Positive Rate
FPR False Positive Rate
AI Artifical Intelligence
DL Deep Learning
OoD Out-of-Distribution
GAN Generative Adversarial Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
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