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Abstract
Modern vehicles often use various elec-
tronic devices to detect objects and ob-
serve the surroundings around the car.
Presently, a widely used device employed
for such purposes is the camera, which
provides visual assistance to the driver
and can also serve as a tool for object de-
tection by the vehicle itself. In addition,
LiDAR technology, which employs laser
light to measure distances and reflectivity
in 3D space, is also utilized.

This thesis aims to propose, implement
and evaluate an algorithm to detect speed
bumps on roads under various weather
conditions. Deploying such functionality
to the vehicle could enhance driver safety
and comfort when crossing over speed
bumps. The proposed solution combines
the utilization of LiDAR and a camera, al-
lowing the system to detect speed bumps
earlier and with greater accuracy. The
first method employed in this algorithm
fits a plane to the collected points from
LiDAR and subsequently determines the
detection based on the distances of the
points from the computed plane. The sec-
ond method uses a convolutional neural
network trained on custom data contain-
ing classes describing a speed bump and
its respective traffic signs. This neural net-
work identifies and classifies speed bumps
within the captured images from a cam-
era.

The algorithm was tested and tuned
on recordings from the test vehicle. Its
functionality was demonstrated by the au-
tomatic deceleration of the test vehicle
when approaching a speed bump with ac-
tivated cruise control. The vehicle can
slow to 18 kilometers per hour in time
and thus ensure a comfortable crossing
over a speed bump.

Keywords: object detection, RANSAC,
LiDAR, camera, speed bump, point
cloud, convolutional neural network,
YOLOv8

Abstrakt
Moderní vozidla často využívají různá
elektronická zařízení k detekci objektů
a pozorování okolí kolem vozu. V součas-
nosti je pro tyto účely hojně používaným
zařízením kamera, která poskytuje vizu-
ální asistenci řidiči a může sloužit i jako
nástroj pro detekci objektů samotným vo-
zidlem. Kromě ní se používá také techno-
logie LiDAR, využívající laserové světlo
k měření vzdáleností a odrazivosti ve 3D
prostoru.

Cílem této práce je navrhnout, imple-
mentovat a vyhodnotit algoritmus pro de-
tekci zpomalovacích prahů na silnicích za
různých povětrnostních podmínek. Inte-
grování takové funkce do vozidla by umož-
nilo zvýšení bezpečnosti a pohodlí řidiče
při přejíždění zpomalovacích prahů. Na-
vržené řešení kombinuje použití LiDAR
a kamery, zajišťující dřívější a přesnější
detekci zpomalovacích prahů. První me-
toda použitá v tomto algoritmu prokládá
body nasbírané pomocí LiDAR rovinou
a následně rozhoduje detekci na základě
vzdáleností bodů od vypočítané roviny.
Druhá metoda využívá konvoluční neuro-
novou síť natrénovánou na vlastních da-
tech obsahujících třídy popisující zpoma-
lovací práh a jeho příslušné dopravní zna-
čení. Tato neuronová síť identifikuje a kla-
sifikuje zpomalovací prahy v pořízených
snímcích z kamery.

Algoritmus byl testován a laděn na zá-
znamech pořízených z testovacího vozidla.
Jeho funkčnost byla demonstrována auto-
matickým zpomalováním testovacího vozu
s aktivovaným tempomatem při přiblížení
se k retardéru. Vozidlo dokáže včasně zpo-
malit na rychlost 18 kilometrů za hodinu
a zajistit tak pohodlné přejetí přes zpo-
malovací práh.

Klíčová slova: detekce objektů,
RANSAC, LiDAR, kamera, zpomalovací
práh, point cloud, konvoluční neuronová
síť, YOLOv8
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Chapter 1
Introduction

1.1 Motivation

In recent years, there has been a vast development of electronic devices in
vehicles. Modern cars are equipped with sensors, cameras and radars that
help monitor the area around the vehicle and provide the driver with much
information.

One type of sensor is LiDAR (Light Distance and Ranging) which uses
a laser beam to calculate the distances of objects in 3D space [1]. LiDAR data
are collected in the point cloud, containing 3-dimensional points and other
attributes such as reflectance. Furthermore, LiDAR provides precise length
perception, allowing vehicles to accurately measure distances to objects and
obstacles. This enhanced perception capability can improve the safety and
reliability of vehicles in traffic.

The thesis discusses the topic of speed bump detection using a combination
of LiDAR and a camera. The motivation came from the automotive industry,
which would like to install LiDAR technology more frequently and combine
its functionality with other sensors.

Figure 1.1: The test vehicle approaching a speed bump.
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1. Introduction .....................................
The addition of a new sensor may help with the elimination of the defi-

ciency of current detection systems. Unlike the camera, LiDAR can operate
effectively in low light conditions, including fog, cloudy weather, and even
a night. On the other hand, in certain weather conditions, such as rain,
LiDAR may encounter difficulties due to poor reflection of the laser beam
from the road. A more robust and accurate understanding of the surrounding
environment can be achieved by fusing the data from multiple sensors, en-
abling advanced features such as adaptive cruise control, lane-keeping assist
and other detection systems.

1.2 Project objective

This thesis aims to design an algorithm that will run on the computer
inside the vehicle and detect speed bumps on roads under various ambient
conditions. Successful speed bump detection could be used to adjust the
chassis or decelerate when driving with activated cruise control. Besides,
information about speed bumps could be used to improve maps or navigation.

The solution of the thesis assignment has to reckon with the enormous
differences between the appearance of various speed bumps. Some of them are
colorfully highlighted or even contain drawn arrows. A few examples of speed
bumps with drawn arrows are shown in Figures [1.2c, 1.2e, 1.2f, 1.2h, 1.2i].
Furthermore, some speed bumps are across the entire road, while others
cover only some parts. A few examples of split speed bumps are in Figures
[1.2a, 1.2c, 1.2d, 1.2f]. Some are made of different materials, such as interlock-
ing pavement, as in Figures [1.2b 1.2g, 1.2i, 1.2j]. Moreover, some are barely
visible even to humans, such as speed bumps shown in Figures [1.2b, 1.2j].
Some types of speed bumps, examples are shown in Figures [1.2a, 1.2k], are
more easily visually damaged by crossing vehicles. All these mentioned types
are shown in examples collected around Prague 6 in Figure 1.2.

(a) : Type 1. (b) : Type 2.

(c) : Type 3. (d) : Type 4.

Figure 1.2: Different types of speed bumps.
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................................... 1.2. Project objective

(e) : Type 5. (f) : Type 6.

(g) : Type 7. (h) : Type 8.

(i) : Type 9. (j) : Type 10.

(k) : Type 11.

Figure 1.2: Different types of speed bumps.

The test vehicle is an upgraded Porsche Cayenne equipped with ZED 2
stereo camera, two Livox Horizons LiDAR front and rear and a powerful
computer in the car’s trunk.

Figure 1.3: Livox Horizon LiDAR and ZED 2 stereo camera in the front of the
test vehicle.

3



1. Introduction .....................................

Figure 1.4: Computer in the trunk of the test vehicle.

The algorithm is deployed inside ROS1 (Robot Operating System) environ-
ment [2] and combines two distinct approaches. The first evaluates multiple
consecutive scans acquired by LiDAR. The evaluation is based on a computa-
tion of a plane from the points in front of the vehicle and applying a robust
fit of a computed plane to the points with subsequent calculation of their
distance from it. The fitting itself is done using the RANSAC algorithm [3]
implemented in PCL [4]. The second method uses a pre-trained convolutional
neural network (CNN) to recognize prepared classes from the camera’s image.
Both approaches are independent of each other, and the provided combination
secures functionality even when one of them malfunctions.

1.2.1 Outline

Other works dealing with detecting objects and speed bumps in the sur-
roundings are presented and described in Chapter 2. The algorithm solution
with all its components and improvements is explained more deeply in Chap-
ter 3. An evaluation of the proposed solution can be found in Chapter 4.
Furthermore, the summary of the thesis results can be found in Chapter 5.

4



Chapter 2
Related work

2.1 Object detection in images

Object detection is one of the most advanced computer vision tasks, re-
cently achieving enormous popularity. The newly arriving object detection
techniques are rapidly improving, leaving the traditional ones far behind.

One of the classic detection methods combines Haar-like features or His-
togram of Oriented Gradients (HOG) [5] with classifiers like Support Vector
Machine (SVM) [6]. The Haar-like features form by comparison of the sum
of pixel intensities within adjoining rectangular regions in an image. The
HOG feature descriptor creates a histogram representation of the image by
extracting regional image gradient orientations and magnitudes. Then the
SVM classifier is trained on these data to classify objects. In some cases,
such as pedestrian detection, this combination achieves excellent results, but
detecting more complex objects could be difficult based on the dependence of
the features.

Another widely adopted object detection method utilizes a convolutional
neural network (CNN). This technique can be divided into two groups, the
two-stage detectors and the single-stage detectors. The development made
vast progress after introducing the Regions with CNN (RCNN) [7] in 2014. It
is one of the most famous two-stage detectors, which generates the Regions of
Interest (ROI) by selective search [8] and then applies object classification for
each ROI. The RCNN has significant drawbacks by the redundant computing
of features, leading to an extremely slow detection speed. In 2015, R. Girshick,
the author of the RCNN, introduced the Fast RCNN detector [9], integrating
the advantages of RCNN and Spatial Pyramid Pooling Networks (SPPN) [10],
which avoids the redundant computation of the convolutional features. The
Fast RCNN increased the mean Average Precision (mAP) from 58.5% to
70.0% on VOC2007 [11] (PASCAL Visual Object Classes Challenge) dataset
in comparison to RCNN, while the detection speed was 200 times faster.
In the same year, the Faster RCNN [12], as the first near-realtime deep
learning detector, was introduced. It presents the Region Proposal Network
(RPN), enabling nearly cost-free region proposals. The Faster RCNN still
contains some computation redundancy, and its improvements, such as Region-
based Fully Convolutional Networks (RFCN) [13], have been later proposed.

5



2. Related work.....................................
Although the two-stage detectors made vast progress compared to their first
proposals, the recently introduced single-stage detectors outperform them in
real-time object detection.

The first single-stage detector, introduced by R. Joseph in 2015, was the
You Only Look Once (YOLO) detector [14]. It was extremely fast compared
to the two-stage detectors, and its enhanced version had only a slightly worse
mAP result. As the concept of a single-stage detector indicates, it uses only
a single neural network that predicts each bounding box based on the features
from the entire image. Moreover, it simultaneously predicts all bounding boxes
across all classes with their computed probabilities. The model’s training
is done on a loss function directly corresponding to detection performance.
Despite the excellent results in detection speed, it had some drawbacks in
localization accuracy compared with two-stage detectors. Further proposed
versions of the YOLO detector pay more attention to solving this issue and
push the state-of-the-art in real-time object detection.

2.2 Methods for speed bump detection using
LiDAR

One of the generally used sensors in the computer vision industry, especially
in robotics, is LiDAR. It scans a 3D space as a point cloud containing points
with X, Y, and Z coordinates and additional attributes. Further process of
the points representing the 3D space can lead to a robust object detector that
detects objects such as cars, people and other obstacles. This section discusses
the methods which can be applied to a point cloud to achieve a usable speed
bump detector.

One of the possible methods to detect objects from point clouds is model
fitting. It takes a set of points and tries to fit into them a defined mathematical
model such as a line, plane, cylinder or sphere. In the case of object detection,
the combination of planes and the SAmple Consensus (SAC) methods like
Random Sample Consensus (RANSAC) algorithm [3] are usually chosen. The
RANSAC algorithm is an iterative method for estimating the parameters of
a mathematical model from provided points without the influence of outliers,
first published in 1981 by M. Fischler and R. Bolles. However, it is a non-
deterministic algorithm that produces a reasonable result only with a certain
probability that can be increased with more iterations. This algorithm can
be used for speed bump detection by fitting a plane representing a road to
the obtained points and evaluating the outlier points considering properties
such as a change in road pitch.

Another method that can be used for speed bump detection is the com-
bination of the scan unfolding technique and the vision object detection
architecture. It is used in publication [15] presenting an experimental study
on projection-based semantic segmentation of LiDAR point clouds. The scan
unfolding method projects the LiDAR scan into an image with reduced mutual
point occlusions, minimizing the loss of information. Since the LiDAR scan

6



....................2.3. Speed bump detection as an automotive application

includes the point coordinates, the transformation to an image is correctly
computed related to the view angle. Afterward, an object detection technique
is applied to the image, resulting in a possible detection.

Another technique enabling the detection of objects from LiDAR scans is the
direct processing of point clouds using convolutional neural networks. Methods
using this technique must deal with the difficulty of the high computational
cost of 3D CNNs since the computational complexity of 3D CNN grows
cubically with the voxel resolution. Therefore, using a 2D detector with
a bird’s eye view (BEV) or front-view representations for object detection is
significantly faster. Publication [16] takes advantage of this approach. Before
downsampling the 3D LiDAR scan to 2D image data, it uses the sparse
convolutional network, which is extremely fast because the convolution is
computed only for nonzero elements, to extract information from the Z-axis
of the 3D scan and then applies 2D CNN. This solution outperformed other
state-of-art approaches since it can run in real-time and has accuracy almost
like processing the original point cloud.

2.3 Speed bump detection as an automotive
application

There are existing research studies proposing solutions for the speed bump
detection task. Some use a stereo camera, others a combination of LiDAR
and a camera.

Study [17] uses LiDAR and a camera and proposes the following detection
method. First, the camera image is extracted into candidate areas through
binarisation. At the same time, noise is removed using Gaussian and median
filters. Then, the candidates are verified with a fusion of LiDAR and the
camera. This verification is based on a histogram of oriented gradient (HOG)
feature and support vector machine (SVM) classifier. The algorithm was
compared with a solution using only one camera for detection. The com-
parison shows an increase in the algorithm’s accuracy from approximately
78% to 85.4% at the cost of higher computation time, which increased from
approximately 20 ms to 30 ms.

Another research study [18] uses deep learning techniques and a ZED stereo
camera with two horizontally placed lenses that mimic dual human vision.
The trained model was tested on marked and unmarked speed bumps with
partially faded paintings. The detection accuracy was 97.44% with a false
positive rate of 0.0427 for marked speed bumps and 93.83% with a false
positive rate of 0.0909 for unmarked speed bumps. The distance towards
speed bumps was estimated with an accuracy of ±20 cm in the 2-10 meters
range. The limitation of this approach is that "the detection of a bump is
poor at very low-light environments" [18].

The publication [19] uses a pre-trained convolutional neural network (CNN)
and stereo vision for supervised automatic classification. It describes the
proposed methodology to detect speed bumps using CNN without needing

7



2. Related work.....................................
their good marking. It can estimate a reconstruction of a 3D space from
images of two cameras and make it an input for the supervised classifier to
detect speed bumps by analyzing surface elevations.

Speed bumps are hugely different in terms of dimensions and shapes. Thus,
more robust methods using CNN should perform better for visual speed bump
detection than classifiers such as SVM. The proposed algorithms in discussed
research studies were unsuitable for this assignment because of the need for
a longer detection distance in every possible ambient condition. Furthermore,
the methods applying neural networks directly to the obtained point clouds
from LiDAR were considered unnecessarily complex, causing complicated
fine-tuning and a need for labeled training data. Moreover, the research
studies show that using only one sensor can be complicated and limited
to a specific environment. This thesis proposes a solution combining an
algorithm processing scans from LiDAR and a convolutional neural network
classifying images taken from a camera.

8



Chapter 3
Proposed solution

This chapter will discuss the proposed solution, consisting of a fusion of two
distinct approaches. The first mentioned method uses LiDAR, and a detailed
explanation is in Section 3.1. The second approach uses a camera and pre-
trained object detection classifier and is deeply explained in Section 3.2.
Section 3.3 focuses on the fusion of these two assessments and discusses the
advantages achieved by their combination.

3.1 LiDAR detector

This section will discuss an algorithm for speed bump detection using LiDAR.
The baseline of the proposed solution is explained in Section 3.1.1, and its im-
provements made throughout the development are described in Section 3.1.2.

3.1.1 Baseline solution

The algorithm can be divided into several parts. First, the scanned points
from LiDAR, which are more than 16 meters from the front of the vehicle, are
removed due to their sparsity, which poses a problem for subsequent plane
creation. Then a plane is fit to the points using the RANSAC (Random
Sample Consensus) algorithm [3], leading to obtaining its coefficients. Further,
points are assigned to 10 cm wide bins based on the distance from the vehicle.
The following calculation of bin values is divided into three cases. For better
clarity, notations are introduced in Table 3.1.

9



3. Proposed solution...................................
P The set of all points obtained from LiDAR.

pointi = (xi, yi, zi) ∈ R3, where pointi ∈ P, ∀i ∈ {1, ..., |P |}.

f : P → ax + by + cz + d = 0, where a, b, c, d ∈ R are the coefficients of the
plane, x, y, z ∈ pointi, ∀pointi lying in the
plane. (RANSAC function)

dist : (pointi, a, b, c, d)→ R The distance of pointi from a plane with
coefficients a, b, c, d.

g : (pointi, a, b, c, d)→ {0, 1}.

g(pointi, a, b, c, d) =
{

1, if pointi lies in a plane with coefficients a, b, c, d,

0, otherwise.

number_of_outliers = |{pointi | g(pointi, a, b, c, d) = 0, ∀pointi ∈ P}|.

number_of_inliers = |{pointi | g(pointi, a, b, c, d) = 1, ∀pointi ∈ P}|.

Table 3.1: Notations for LiDAR detector.

First, if no outliers are assigned to the bin, the value of the bin is zero.
Second, if the number of inliers assigned to the bin is zero:

bin_val = 20×
∑

i zi

number_of_outliers
. (1)

In the last case, the calculation is as follows:

bin_val = 30×
∑

i zi

number_of_outliers + number_of_inliers
. (2)

A bin is marked as possible speed bump detection if its value is greater
than or equal to 1. After this calculation, the detection itself is performed by
a state machine shown in Figure 3.1. The states (values) are: No detection
(0) - initial state, Unknown (1), Probable (2) and Detected (3). When a speed
bump is detected in the bin, the corresponding state machine updates its
value (state) by increasing it by two (the maximum is 3). Otherwise, the value
is decremented by one (minimum is 0). Then, after each frame, a value (state)
of 2 is propagated from the farthest bin from the vehicle with a successful
speed bump detection to the following closer bins with a value (state) less
than 2. The algorithm detects the speed bump in bins that are in state
Detected. Moreover, the algorithm can be described in Algorithm 1.
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No detection

Unknown

Probable

Detected

Propagation Detection

Unconfirmed

Unconfirmed

Unconfirmed

Detection, Propagation

Detection

Detection

Unconfirmed

Figure 3.1: Non-deterministic Finite Automata (NFA) diagram of the detection
state machine.

Algorithm 1 Pseudocode of the baseline of the algorithm.
1: for each frame captured by LiDAR do
2: points← all points from the frame which are closer than 16m
3: indices_of_inliers, coefficients ← RANSAC(points)
4: bins← [0]× number_of_bins
5: for each bin in bins do
6: if number_of_outliers in bin is 0 then
7: continue
8: else if number_of_inliers in bin is 0 then
9: bin← 20×

∑
i zi

number_of_outliers
10: else
11: bin← 30×

∑
i zi

number_of_outliers + number_of_inliers
12: end if
13: end for
14: STATE_MACHINE.update(bins) → possible DETECTION
15: end for
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3. Proposed solution...................................
The proposed detection method has issues reporting false positive detection

of sidewalks or diagonal roads with slightly different heights. Thus, the
points cut out before the vehicle are narrowed into a cone form which slightly
suppresses the false positive detection when the car turns on a narrow road.
However, this false positive detection is not trouble from an application
perspective. Since it occurs when the vehicle speed is low, when the vehicle
is turning or entering an intersection, and the entire algorithm is stopped.

Three examples of detecting various speed bumps are visualized in Figures
3.2–3.4. All points scanned by LiDAR are colored in black, and if they lie in
the space from which the plane is computed, they also contain blue, yellow,
or red. The points in the calculated plane are colored blue, and the ones
representing speed bump detection are highlighted in red. Otherwise, they
are colored yellow.

Figure 3.2: The first example of LiDAR detection.
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................................... 3.1. LiDAR detector

Figure 3.3: The second example of LiDAR detection.

Figure 3.4: The third example of LiDAR detection.
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3. Proposed solution...................................
3.1.2 Solution improvements

This section describes all improvements made to the algorithm during de-
velopment, leading to a usable detector for speed bump detection. Some
were done based on the thoughts from testing on recordings, and others were
initiated after testing in the test vehicle.

3.1.2.1 Filtering - enhanced

During development, it was found that the result of the algorithm was
inaccurate while calculating the plane for points distant more than 13 meters
from the front of the vehicle. For this reason, the deletion of points at the
beginning of the algorithm was adjusted.

Another problem with the first version of the algorithm was detecting
objects such as vehicles or people in front of the car. The key to a more
robust algorithm was the addition of a filter based on calculating the distances
of the points from the plane using the obtained plane coefficients. The distance
is calculated as:

dist(pointi, a, b, c, d) = |a× xi + b× yi + c× zi + d|√
a2 + b2 + c2

. (3)

This filter is used before assigning the calculated value to the bin, and the
algorithm is described in Algorithm 2.

Algorithm 2 Pseudocode of the improved version of the algorithm.
1: for each frame captured by LiDAR do
2: points← all points from the frame which are closer than 13m
3: indices_of_inliers, coefficients ← RANSAC(points)
4: bins← [0]× number_of_bins
5: for each bin in bins do
6: if number_of_outliers in bin is 0 then
7: continue
8: else if number_of_inliers in bin is 0 then
9: bin← 20×

∑
i dist(pointi, a, b, c, d)

number_of_outliers
10: else
11: value← 30×

∑
i dist(pointsi, a, b, c, d)

number_of_outliers + number_of_inliers
12: bin← FILTER(value)
13: end if
14: end for
15: STATE_MACHINE.update(bins) → possible DETECTION
16: end for

14
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3.1.2.2 Combining multiple scans

The proposed approach’s most significant limitation was the far points’ low
density which can be considered a property of Livox Horizon LiDAR. This
constraint was bypassed by combining multiple scans with relevant trans-
formations of points. The stacking of scans consists of computation of the
required LiDAR-Inertial odometry with FasterLIO [20] and the subsequent
join of scans using ROS 1 package laser_assembler. The areas with high
point density in the final scan are subsampled with the VoxelGrid filter. This
particular improvement was not a part of the thesis assignment, and the work
advisor provided the solution for the computation implemented in C++.

An example of a scan acquired from 50 ms lasting exposition from Livox
Horizon LiDAR with colorful information about intensity is in Figure 3.5.

Figure 3.5: A single scan acquired from Livox Horizon LiDAR.

For the comparison, the combination of 10 subsequent LiDAR scans is
shown in Figure 3.6. The color represents the intensity of the collected points.

Figure 3.6: A combination of 10 scans acquired from Livox Horizon LiDAR with
the application of a VoxelGrid filter.
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3. Proposed solution...................................
This point cloud modification allowed the extension of the computed plane

to 18 meters from the front of the vehicle. On the other hand, this adjustment
of the plane’s length caused a false positive detection in case of a change
in road height. Therefore, the computation of the whole plane was divided
into three parts. The same algorithm using the RANSAC function with
many parameters is used in each but on a different overlapping section of
the plane. Parameters such as a distance threshold, the maximum number of
iterations or the model type of plane, where the parallel plane with a defined
maximum angle of 15 degrees from a horizontal plane was selected, were set.
The sections of the plane are as follows, starting with a range of 3 to 10
meters, then a range of 7 to 14 meters and 11 to 18 meters from the front of
the vehicle.

After this adjustment, the algorithm was able to detect a speed bump at
a distance longer than 17 meters. However, during testing, it was found that
immediately after a significant change in acceleration in z axis occurred after
crossing over a speed bump, the combination of LiDAR scans was inaccurate,
and the algorithm reported a false positive detection. Thus it was necessary
to filter scans with a low percentage representation of points lying in the
computed plane, which decreased the distance of speed bump detection to
a range of 12 to 17 meters, depending on the type of speed bump.

Figures 3.7–3.9 show the visualizations of speed bump detection on different
speed bumps using the proposed algorithm applied to the combination of
ten subsequent scans acquired by LiDAR. All collected points are colored
in black, and the computed plane is colorfully highlighted. Points in the
computed plane are blue, and the plane’s outliers are colored yellow or red,
where the red color denotes the speed bump.

Figure 3.7: The first example of detection from a combination of LiDAR scans.
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Figure 3.8: The second example of detection from a combination of LiDAR scans.

Figure 3.9: The third example of detection from a combination of LiDAR scans.

3.1.2.3 Algorithm speed up

During the first testing in the vehicle, the low speed of the algorithm was found,
and the slowest part, the state machine, was removed. The functionality was
replaced with a different algorithm implemented in the ROS node, deciding
whether detection occurred. The algorithm’s running time varies from 10
to 70 ms, depending on the convergence speed of the RANSAC algorithm.
The LiDAR frequency is set to 20 Hz. Due to that, it is necessary to process
scans every 50 ms and hence, the algorithm was remade to the multiprocess
application where each scan is processed in a different thread. The time
synchronization of scan processing is handled in the previously mentioned
ROS node, discussed in Section 3.3.1.
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3. Proposed solution...................................
3.1.2.4 Accuracy adjustment

The proposed algorithm reported false positive detection of cars despite using
a filter on the distance of points. Specifically, the algorithm detected the
car’s back wheels, which appeared as an obstacle or possible speed bump.
Therefore, another check on the distance from the plane was added, which
removed the false positive detection. When an object is higher than 20
centimeters, other more distant points from the front of the vehicle are not
considered for detection.

Another adjustment was in the distance calculation from the computed
plane, where the absolute value was deleted. Only objects in the same half-
plane as a vehicle are considered for detection, and this half-plane is found
according to the signum value after the insertion of point [0, 0, 10] to the
plane. The distance without absolute value is calculated as:

dist_raw(pointi, a, b, c, d) = a× xi + b× yi + c× zi + d√
a2 + b2 + c2

. (4)

And then, the final distance from the plane is calculated as:

dist(pointi, a, b, c, d) = sgn(10× c + d)× dist_raw(pointi, a, b, c, d). (5)

3.2 Camera detector

A camera was the second sensor used to create a more robust speed bump
detector and complement the LiDAR. The ZED 2 stereo camera was installed
in the test vehicle for these and similar purposes, and its left lens was utilized
for training and detection.

During the collection and preparation of the data from the test vehicle,
it was decided to collect not only speed bumps but also traffic signs, which
are much earlier visible. Some speed bumps are hard to recognize from the
cockpit of a moving vehicle, even for humans. Usually, they are highlighted
with a speed bump sign next to them or even a speed bump warning sign far
ahead. Furthermore, detecting the speed bump sign placed before the speed
bump provides a more fluent and comfortable slow down and crossing of the
speed bump. If the speed bump sign is missing, the driver is usually forced
to slow down based on the road’s surroundings, or the speed bump is visible
enough. The speed bump sign and the speed bump warning sign are shown
in Figure 3.10.
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................................... 3.2. Camera detector

Figure 3.10: The speed bump sign and the speed bump warning sign.

3.2.1 Data preparation

The research for an available public dataset among datasets for semantic seg-
mentation such as SemanticKITTI [21], KITTI-360 [22] or SemanticPOSS [23]
was done. There was not found any suitable dataset for training purposes
for the speed bump classifier since none contained the speed bump class.
Therefore, collecting data with the test vehicle and making a new dataset
was necessary. The collection was done multiple times in different weather
and various light conditions. After each, the images were extracted from
recorded rosbags and uploaded to a CVAT annotation tool server [24]. For
annotation, three classes were prepared: speed bump, speed bump sign and
speed bump warning sign. Then the images were manually annotated, and it
was possible to train an object classifier from them. An example of annotation
is in Figure 3.11.

Figure 3.11: An example of annotation in CVAT environment.

After several collections and improvements of the trained classifier model,
the auto-annotation feature was used four times to speed up the labeling
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3. Proposed solution...................................
process by letting the pre-trained model auto-annotate the new images.
The annotation was fast and efficient since the CVAT server had access to
a graphics processing unit (GPU).

The camera in the test vehicle used for image collection was set to record at
10hz. It collected more than 50 000 relevant images over the several hours of
driving, including people, cars, speed bumps, signs and other traffic elements.
Only the meaningful ones for the speed bump detection assignment were
selected for annotation. Together it was annotated more than 37 000 images,
and the collections took place in Prague and its surroundings, at Dejvice,
Nové Butovice, Prague-Suchdol and many others.

3.2.2 Baseline solution via SVM and HOG

One of the mentioned techniques in [25] and used method in [17] combines
the histogram of oriented gradient (HOG) feature [5] with a support vector
machine (SVM) classifier [6].

Before a dataset of speed bumps was created, the method mentioned above
was tried on the dataset of cars. The classifier was trained and employed using
the dlib library [26], and the training was performed on the Cars Dataset [27].
An example of car detection with an SVM classifier is in Figure 3.12.

Figure 3.12: An example of car detection using an SVM classifier.

The SVM classifier was performing well in the case of car detection. How-
ever, the annotated labels on the training images had to have the same shape,
which would cause trouble when applying to a speed bump dataset with
a considerable difference between individual speed bumps. Therefore, for
speed bump detection, the mentioned solution was abandoned and replaced
with the convolutional neural network discussed in Section 3.2.3.
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.................................. 3.3. Fusion of detectors

3.2.3 Solution using convolutional neural network

Another mentioned technique for object detection in [25] is the You Only Look
Once (YOLO) detector. It is a fast single-stage detector that applies a single
neural network to the full image. The first versions of these detectors had
difficulties with incorrect localization accuracy, especially for small objects
[14]. The most recent releases of these detectors have paid more attention
to these issues, resulting in outperforming a significant majority of existing
object detectors concerning speed and accuracy.

For the case of speed bump detection, the YOLOv8 [28] was used, released
in January 2023 by Ultralytics. The YOLOv8 has five versions with different
numbers of parameters. The two smallest are YOLOv8n, with 3.2 million
parameters, and YOLOv8s, with 11.2 million parameters. Due to the need
for fast detection, the smaller YOLOv8n with the best inference time from all
versions was selected. This model is also the most manageable to fine-tune
based on the number of parameters.

It was fine-tuned entirely on custom object classes and camera parameters
to detect speed bumps and signs mentioned in Section 3.2.1. The training
was done several times, each time with a different dataset with the addition of
newly collected data. Moreover, the model’s training in the prepared pipeline
contains additional data augmentation. The last version of the custom YOLO
model was deployed and used in the test vehicle.

3.3 Fusion of detectors

The proposed solution of the fusion of LiDAR and the camera secures inde-
pendence between sensors, thus improving the functionality of detection in
all ambient conditions. Due to an overexposed or too-dark image from the
camera, the camera detector may not work correctly, and the detection must
be substituted fully by the LiDAR detector. On the other hand, in the case
of a low number of points scanned by a LiDAR, sometimes occurring in the
rain, the LiDAR detector can compute fewer planes or none of them. This
behavior is probably caused by a high layer of water on the road causing poor
reflection of the laser beam back to the LiDAR. For such cases, the detectors
could have assigned confidence influencing how they impact the detection.
For example, when the rain-light sensor reports rain, the confidence of the
LiDAR detector can be reduced, and the detection will depend more on the
camera detectors. A few examples of LiDAR scans taken from the test vehicle
in rainy weather are shown in Figures 3.13 and 3.14.
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3. Proposed solution...................................

Figure 3.13: An example of visualization of a LiDAR scan with a missing road
plane in rainy weather.

Figure 3.14: An example of visualization of a LiDAR scan with very few points
in front of the vehicle.

Another possible solution is a direct fusion of points from LiDAR to
the coordinate system of a camera or vice versa. However, for automotive
applications, it has a disadvantage with the calibration of this transformation
caused by car shaking and movement. The calibration would have to be
automatic and monitored to be usable. Moreover, the independence between
detectors brings an advantage for the manufacturer in the possibility of having
more independent vendors and thus being less dependent on only one supplier.

The suggested fusion of LiDAR and the camera is achieved using four ROS
nodes. One deal with LiDAR detection, two with camera detection of speed
bumps and speed bump signs, and the last with a final combination of these
nodes. The diagram representing the fusion of the sensors is in Figure 3.15,
and the functionality is demonstrated by slowing the test vehicle based on
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the sent target speed, discussed in Chapter 4.

The vehicle’s surroundings.
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Figure 3.15: The diagram of the fusion of detectors.

3.3.1 LiDAR detection

The ROS node securing a detection using LiDAR decides based on ROS
messages sent by an algorithm processing scans. These messages contain
the timestamp and possibly the distance of the detected speed bump. The
computation also takes into account a possible scattering of messages based
on their timestamps caused by a different processing time of scans.

The detection timestamp is stored after receiving a message with the speed
bump information. Saved timestamps older than 1.5 seconds from the last
received timestamp are removed. Furthermore, the detection is decided based
on the computed value from the division of 80% quantile, calculated from
the subtraction of the current timestamp and saved timestamps, and the
number of stored timestamps. This whole computation executes if the number
of saved timestamps is at least three. If a successful detection occurs, the
algorithm pauses for two seconds and waits on timeout.

When changing from the state without detection to a state with it, the
ROS node sends the ROS message containing a target speed value set to
18 to the master decision node. This value was chosen after several tests
and is considered sufficiently comfortable for crossing over a speed bump. In
the case of detection termination, the target speed value in the message is
replaced with the value -1.

23



3. Proposed solution...................................
3.3.2 Camera classification

The camera detector performs detection on three classes with the confidence
threshold set, based on the performance of the object detection model and
testing in the test vehicle, to 0.5 for each. According to the reliability of
these classes, the handling ROS node was divided into two nodes. The first
providing the speed bump signs detection is less strict and is similar for
both speed bump signs and speed bump warning signs, only with different
parameters. The second ensuring detection of speed bumps includes additional
verification.

The detection of signs is accepted if the expected sign is recognized in two
consecutive frames. The parameters for both signs were tuned after testing
in the test vehicle and regarding their usual position on the road. The speed
bump sign is commonly placed next to the speed bump, and the warning sign
is typically between 50 to 100 meters before the speed bump.

The target speed of the warning sign detection is 30 kilometers per hour,
and the detection timeout is set to 6 seconds. In the case of a speed bump
sign, the speed is established to 23 kilometers per hour and the timeout to 4
seconds.

Since the reliability of speed bump detection is worse than at speed bump
signs, the detection is accepted when the speed bump is recognized in four
consecutive frames. Other properties as the target speed and the timeout,
are the same as for the speed bump sign. All classes’ values and parameters
were selected after testing in the test vehicle to ensure the most comfortable
deceleration and crossing over a speed bump.

3.3.3 Master decision node

The master decision node provides a combination of all independent detectors.
It chooses the minimum value from all requested target speeds. The value -1
is considered an infinity value in the comparison.

The functionality of the speed bump detection is demonstrated by slowing
the approaching test vehicle based on the reprogrammed cruise control. In
the case of a change in the minimum requested target speeds of detectors, the
ROS node publishes the new value to the ROS topic from which the cruise
control reads. The whole algorithm is started with the activation of cruise
control, which maintains the vehicle’s speed and slows down on request. If the
detection of all detectors terminates, the master decision node publishes -1,
and the cruise control accelerates the vehicle back to the previous set speed.

The individual target speeds of each detector were set according to the
expected braking process. The relation between velocity and traveled distance
when decelerating using the cruise control was calculated for this estimation
by the advisor of this work. The calculation reckons with delays of all
computations, including delay of the signal from cruise control to brakes, and
are shown in Figures 3.16 and 3.17. System delay was lower than expected
when tested in a test vehicle, so the estimated deceleration curves are slightly
pessimistic.
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Figure 3.16: The calculated relationship between velocity and traveled distance
when decelerating from 50 kilometers per hour.

Figure 3.17: The calculated relationship between velocity and traveled distance
when decelerating from 30 kilometers per hour.

The expected braking process of the vehicle will start with detecting
a warning sign far before the speed bump and begin decelerating to 30
kilometers per hour. At this velocity, the detectors can detect a speed bump
at enough distance for the vehicle to decelerate to 18 kilometers per hour in
front of the speed bump. Which was found to be a comfortable speed for
crossing over a speed bump, and it was set as the target speed for the LiDAR
detector. The target speed of the camera speed bump detector and the speed
bump sign detector was set to 23 kilometers per hour based on their worse
reliability than the LiDAR detector.

Furthermore, the vehicle’s driver is provided with the image output of
a pre-trained detection model and processed points collected with LiDAR
with the addition of computed planes with colorfully highlighted detection.
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3. Proposed solution...................................
The image output from the YOLOv8 model contains detection labels with

class descriptions and the detection’s confidence. Moreover, the visualization
includes the target speed of all detectors and the more noticeable requested
speed chosen by the master decision node. An example of detection visual-
ization is shown in Figure 3.18, where the camera detectors detect a speed
bump sign with a confidence of 75.3% and a speed bump with a confidence
of 63.9%. The LiDAR detector also successfully detects a speed bump in
the visualization highlighted with red points. The camera detectors request
a speed of 23 kilometers per hour, and the LiDAR detector requests a speed
of 18 kilometers per hour which is also the minimum speed selected by the
master decision node.

Figure 3.18: The visualization of the detection.
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Chapter 4
Evaluation

This chapter discusses the functionality and processing quality of the proposed
solution. Section 4.1 describes the LiDAR detector’s functionality based on
the test vehicle recordings and the camera detector’s performance evaluated
on the validation dataset. The evaluation of quality, reliability and earliness
of the proposed fusion of detectors is described in Section 4.2.

4.1 Detectors performance

Before deploying the LiDAR detector into the test vehicle, it was tested
and tuned on captured recordings. The test vehicle collected dozens of
recordings containing many speed bumps of various types. Based on the tests,
the distance in which the LiDAR detector detects a speed bump is around
12 to 17 meters. The exact distance depends on the type of speed bump,
especially on its height and width. The performance of the improved version
of the algorithm, which uses a combination of 10 scans, was compared to the
previous single-scan version. The comparison of algorithms was evaluated on
the recordings containing different types of speed bumps. It is presented in
Table 4.1 and shows that the multi-scan algorithm performed better regarding
the detection distance in all tests. The presented speed bump types refer to
the types introduced in Figure 1.2. Moreover, it was found that the improved
version of the algorithm is much more robust to a change in road slope or
potholes than the single-scan algorithm.

Type of speed
bump

Single-scan
detector [m]

Multi-scan
detector [m]

Type 1 12.5 17.1
Type 3 11.1 16.8
Type 5 10.9 14.3
Type 6 12.6 14.4
Type 7 11.5 12.7
Type 9 11.4 13.1

Table 4.1: The comparison of detection distance of the single-scan algorithm
and the algorithm combining 10 scans.
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During the testing, one disadvantage of the proposed method of the LiDAR

detector was found. The detector reports a false positive detection of sidewalks,
misinterpreting them as speed bumps. However, this attribute of the algorithm
does not matter from the application’s point of view since it is reported when
the vehicle has low speed and the whole algorithm is stopped.

The custom YOLOv8 model was evaluated on the validation dataset to
get its performance. The validation dataset was built from images collected
by the test vehicle. The collected data were divided into the training and
validation datasets so that sets are distinct and contain different places and
road situations. The images in the validation dataset were manually annotated
regardless of the detector capabilities, which caused slight inaccuracy in the
computed results. It was measured in the test vehicle that the tuned custom
model can detect speed bumps and signs at a distance of fewer than 18.5
meters. However, the validation dataset contains images with labeled classes
even from a longer distance than that, which worsens the numerical results
and makes the entire performance estimation pessimistic.

The performance of the object detection model is computed based on the
concept of Intersection over Union (IoU) of two bounding boxes, the annotated
ground truth and the prediction. The IoU threshold value of the computation
was set to 0.5, the default value. The prediction is marked as True Positive
(TP) if the value of IoU is higher than its threshold. Otherwise, it is taken
as False Positive (FP). If there is no prediction on the ground truth of the
image containing searched object, it is marked as False Negative (FN). The
Precision of the detection model is computed as TP

TP + FP
and the Recall

as TP

TP + FN
. The Precision-Confidence Curve is shown in Figure 4.1 and

the Recall-Confidence Curve in Figure 4.2. The unsuitably chosen validation
dataset significantly affects the result of the Recall-Confidence Curve.

Figure 4.1: Precision-Confidence curve of the custom YOLOv8 model.
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Figure 4.2: Recall-Confidence curve of the custom YOLOv8 model.

Based on the estimated performance and conducted testing in the test
vehicle, the confidence threshold of detections was set to 0.5 for each class.
The main focus of tuning was to increase the detection distance at the cost of
worse accuracy, which is further handled in the ROS nodes. The performance
of the custom YOLOv8 model was compared to the mentioned studies in
2.3. The third of these works only presented the methodological proposal
for speed bump automatic detection without evaluating the functionality.
Thus only the first two works [17], [18] were compared regarding Precision,
Recall and the maximum detection range. All values used for the comparison
are average values achieved by individual solutions. The performance of the
custom YOLOv8 model was calculated for each class, and the comparison
is shown in Table 4.2. The Recall values of the custom YOLOv8 model are
highly affected by the unsuitably chosen validation dataset.

Detection performance
Precision [%] Recall [%] Distance [m]

Yun H.-S. et al., (2019) 85.4 92.6 < 8
Varma V.S.K.P. et al.,
(2018)

96 98 < 14

Custom YOLOv8 model
(speed bump)

70 27 < 18.2

Custom YOLOv8 model
(speed bump sign)

99 67 < 18.5

Custom YOLOv8 model
(warning sign)

96 89 < 18.5

Table 4.2: The comparison of the YOLOv8 model performance with related
research solutions.
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The comparison shows that the related studies focus more and are better in

the detection accuracy but have fewer detection capabilities regarding distance.
In addition, the proposed solution also uses the LiDAR detector that can
detect speed bumps at around 12 to 17 meters and is much more reliable than
the camera detectors. Moreover, the Recall value of the custom YOLOv8
model is far higher when capturing the objects from a closer distance, and
the Precision is improved by adding a filter for more subsequent detections,
reckoning with the difference in reliability between traffic sign detections and
speed bump detections.

4.2 Experimental evaluation

The testing and the evaluation of the proposed algorithm were performed in
the traffic under various weather conditions using the test vehicle. During
testing, a few complications that made the tuning and the evaluation of the
proposed solution more difficult were encountered. For example, the battery
in the test vehicle broke down, and the vehicle was disabled to run for a few
days. Furthermore, there was an issue with the computer in the vehicle,
which started to restart based on a broken connection between the graphics
card and a motherboard, damaged by car vibrations and movement since
the components of the computer were not made to be in a car. However,
these issues were resolved, and the algorithm functionality was tested and
evaluated.

The algorithm’s functionality and earliness were demonstrated by decelerat-
ing the test vehicle using the reprogrammed cruise control set by the requests
of the algorithm. The maximum distance from which the LiDAR detector can
detect the speed bump was measured at 12 to 17 meters, similar to the values
computed from the recordings. Furthermore, its property of false positive
detection of sidewalks found by testing on recordings was confirmed. Camera
detectors can detect speed bumps and speed bump signs from around 18
meters. The installed camera in the test vehicle highly limits them, as it
covers an improperly wide angle for detection tasks. Thus, every object in
the captured image appears further away and smaller than it is in reality.

Furthermore, some limitations of the proposed solution were found. In
rainy weather, the LiDAR sensor sometimes has difficulties scanning points
for the LiDAR detector caused by a high layer of water on the road. In these
situations, camera detectors fully cover detection, making the process less
reliable. Further, in the case of an overexposed or too-dark image captured
from the camera, the camera detector cannot work correctly, and only the
LiDAR detector can be used, resulting in lower earliness of the detection.

However, when the weather conditions allow the use of all detectors, the
proposed algorithm can slow the vehicle from the speed limit of the areas
where the speed bumps are located to a comfortable crossing speed before
reaching the speed bump. The comfortable speed for crossing over a speed
bump was determined after tests in a test vehicle to 18 kilometers per hour.
Four independent observers evaluated the functionality of the speed bump
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detection algorithm. They stated that the car slowed down nicely and
sufficiently before the speed bump and accelerated again after the crossing.

The vehicle’s deceleration consists of several parts depending on the type
of speed bump and traffic signs. It usually starts by detecting the warning
sign and deceleration to 30 kilometers per hour. This situation, when the
car starts slowing based on the request of the camera detector, is shown in
Figure 4.3.

Figure 4.3: Speed limited by detecting speed bump warning sign by the camera
detector.

Then the vehicle slows down or maintains a speed of 30 kilometers and
approaches closer to the speed bump. After a while, the speed bump is
detected with the camera detector and the vehicle’s speed is limited to 23
kilometers. The speed bump detection by the camera detector is shown in
Figure 4.4.

Figure 4.4: Speed limited by detecting speed bump by the camera detector.
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4. Evaluation ......................................
After that, the detection with the LiDAR detector occurs, and the vehicle’s

speed is restricted to 18 kilometers per hour. The vehicle slows down to this
velocity and maintains it until timeout. Afterward, it accelerates back to
the previously manually set speed on the cruise control. The speed bump
detection by the LiDAR detector is shown in Figure 4.5.

Figure 4.5: Speed limited by detecting speed bump by the LiDAR detector.

Compared to related studies, the proposed solution focuses on the earliness
of the detection and can detect speed bumps from a longer distance, as shown
in Table 4.2. In addition, it provides independence between all algorithm
components, thus securing reliable detection under different weather condi-
tions. Furthermore, it was designed as an automotive application, and the
functionality was demonstrated by decelerating the test vehicle.
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Chapter 5
Conclusion

Over the past few years, significant progress has been made in integrating
electronic devices into vehicles. Nowadays, cars are equipped with various
sensors, cameras and radars that assist the driver in providing safer and more
comfortable driving.

This thesis proposes an algorithm dealing with speed bump detection, which
can be utilized to decelerate a vehicle or adjust its chassis, providing a much
more comfortable crossing over a speed bump. The algorithm combines
two independent methods, securing a more robust solution operating under
various weather conditions. One method uses a technique that fits a plane
to the obtained points from LiDAR and subsequently decides the detection
based on the distances of points from the plane. The baseline solution and its
further improvements made during development are described in Chapter 3.1.
The second method uses the YOLOv8 neural network [28] applied to an image
from a camera. It was trained on custom data collected by the test vehicle.
The training data includes the speed bump class and extra classes of speed
bump signs, providing more reliable and earlier detection.

The algorithm was tested and tuned on the recordings from the test vehicle.
Furthermore, its functionality was demonstrated by the automatic deceleration
of the test vehicle driving with activated cruise control when approaching
a speed bump. The vehicle can decelerate fluently before going over the
speed bump to a comfortable crossing speed selected after multiple tests to
18 kilometers per hour.

In future work, the following improvements and modifications that would
increase the reliability and earliness of the algorithm could be included. The
first modification would be to extract and use only points from the LiDAR
scan in the wheels’ direction, which would suppress the false positive detection
of sidewalks. Another improvement could be to increase the density of more
distant points, which could be achieved by using a different LiDAR that
would scan farther or by trying a different LiDAR location, ideally somewhere
on the vehicle’s roof. Further modification could be using a different camera
covering a narrower angle, leading to earlier detection based on larger objects
in the image.
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Appendix A
Attachments

The following Python scripts are attached to the electronic version of the
thesis:. lidar_detection.py. lidar_node.py. camera_bumps.py. camera_signs.py.master_node.py
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