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Abstract
With the tremendous amount of data
people have at their disposal, automatic
topic recognition can make analyzing it
exceedingly faster. Much effort has been
put into developing topic detection tools
in past years, but most of those solutions
have been constructed with the English
language in mind. Using two Czech cor-
pora, one scraped from Twitter and the
other consisting of annotated news arti-
cles, this thesis delves into topic detec-
tion with Latent Dirichlet Allocation and
a combination of K-Means and keyword
extraction and generation. Over 219K
tweets are clustered, and while the La-
tent Dirichlet Allocation results in a list
of topics directly, I experiment with var-
ious statistical and graph-based methods
to extract keywords from the K-Means
clusters and use the annotated data set
to train a model in generating keyphrases
not present in the text. Keyword ex-
traction produced valuable results regard-
less of the approach, and generating
keyphrases with a trained model com-
bined with diverse beam search showed
great potential as well. These findings
have a broad spectrum of applications,
from automatic text tagging to document
summarization.

Keywords: Topic Detection, Textual
Clustering, Keyword Extraction,
Keyphrase Generation

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt
Vzhledem k nepřebernému množství dat,
které mají lidé k dispozici, může au-
tomatické rozpoznávání témat nesmírně
zrychlit jejich analýzu. V uplynulých le-
tech bylo vynaloženo velké úsilí na vý-
voj nástrojů pro detekci témat ale většina
těchto řešení byla konstruována pouze
pro angličtinu. V této práci byly použity
dva české datasety, jeden extrahován z
Twitteru a druhý sestávající se z anoto-
vaných novinových článků. Tato práce se
zabývá detekcí témat pomocí Latentní Di-
richletovy alokace a kombinací K-Means
s metodami extrakce a generování klíčo-
vých slov. Více než 219 tisíc tweetů bylo
seskupeno podle témat a zatímco při pou-
žití Latentní Dirichletovy alokace byl vrá-
cen rovnou seznam témat, tak při použití
K-means bylo nutné klíčová slova získat
jiným způsobem. Experimentovala jsem s
různými statistickými a grafovými meto-
dami pro extrakci klíčových slov a také
jsem pomocí anotovaných dat natréno-
vala model pro generování klíčových frází,
která nemusí být přítomná v textu. Ex-
trakce klíčových slov přinesla cenné vý-
sledky bez ohledu na zvolený přístup a
generování klíčových frází pomocí natré-
novaného modelu v kombinaci s paprs-
kovým prohledáváním také ukázalo velký
potenciál. Tato zjištění mají široké spek-
trum aplikací od automatického označo-
vání textu po sumarizace.

Klíčová slova: detekce témat,
shlukování textů, extrakce klíčových
slov, generování klíčových frází
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Chapter 1
Introduction

Since one of the predominant humanly comprehensible forms of communication is textual,
a large part of the available information is generated and stored in this manner. Domo’s
annual Data Never Sleeps1 report notes that the colossal 97 zettabytes of data were circu-
lating in 2022 alone. As stated in the article, every minute of the day 231.4 million emails
are sent, 347 200 tweets (Twitter posts) are shared on Twitter, and 510 000 comments are
posted on Facebook.

With that in mind, this bachelor thesis explores various techniques to make the process
of sifting through massive collections of written documents as easy and efficient as possible.
The main focus is handling compilations of tweets - Twitter’s nature allows conveying
information at a rapid speed via short text-based and semantically rich posts. Furthermore,
the methods analyzed and tested on Twitter data can also apply to articles’ titles, captions,
or scientific abstracts.

One way of enabling easy text filtering is categorizing by topic - an often lengthy and
complex process for humans can turn into a swift operation. The problem has two major
components, first grouping the tweets that belong together and then detecting the shared
topic because not all clustering approaches present the common theme. Since no annotated
Twitter training set was available in Czech, the topic modeling, in this case, relies primarily
on unsupervised methods such as Latent Dirichlet Allocation (LDA) and K-Means.

When determining the subject of the related tweets, identifying the keywords and
keyphrases best representing the text proves to be an adequate and effective concept.
However, the problem certainly has its challenges, which stem from the following facts -
natural languages, especially the Czech language, are highly complex to analyze, and the
input documents (clusters of tweets) are not homogenous either.

The task can be tackled in two ways: extracting keywords already contained in the
cluster or generating keyphrases not necessarily present in the text. Whereas statistical
and graph-based tools can handle extraction without supervision, generation requires su-
pervised learning. For that part of the experiments, the Czech News Center (produces
titles like Reflex, E15, iSport, Živě, and Blesk) supplied a proprietary dataset of already
annotated articles.

1https://www.domo.com/data-never-sleeps
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1. Introduction ..........................................
1.1 Motivation

The advance of machine learning algorithms and techniques in recent years has significantly
boosted natural language processing (NLP) problem-solving. Nevertheless, the majority
of the proposed and tested tools are suitable for English corpora, and topic modeling and
keyword extraction are no exception. Therefore, the primary goals of this work are clear:
ascertain whether methods applicable to English texts are fitting for Czech documents
and identify the best approach when processing Czech tweets. Comparing and evaluating
the most widespread methods can bring their advantages and limitations to light and help
determine the most appropriate domain of application.

1.2 Thesis Outline

This work is structured in the following way:. Chapter 2 provides a theoretical basis and state of the art overview. Chapter 3 describes the datasets used and the preprocessing performed on them. Chapter 4 is dedicated to text and topic clustering experiments. Chapter 5 contains all keyword extraction and generation experiments. Chapter 6 concludes this thesis

2



Chapter 2
Theoretical Basis and State of The Art Overview

2.1 Feature Extraction

Since most machine learning (ML) and NLP models do not accept language units as input,
numerical representation is instrumental. Mere scalars are insufficient conveyors of the
linguistic and semantic information born by words and sentences, so their vectors, often
with a specified number of dimensions, are used instead. The vectors are then mapped
to a vector space in such a way that semantically similar words or sentences hold close
positions. The process of transition from language to vector space is described below.

2.1.1 Tokenization

In the first step of preprocessing, the textual stream of data is broken into discrete elements
- characters, words, or sentences. Many tools are available for this task, and its nature
makes it mostly language-independent1 in the Indo-European languages, where English
and Czech belong.

An alternative to character, word, or sentence tokenization is subword tokenization. As
Tunstall et al. (2022) state, subword tokenization splits rare words into smaller units to
allow the model to deal with complex words and misspellings and to keep frequent words
as unique entities while the length of the inputs is manageable.

Let’s examine the differences between word and subword tokenization on an example
text: “Inteligence je schopnost přizpůsobit se změně.”. Whereas word tokenization de-
scribed above produces a list containg all the words from the sentece, subword tokenization
returns the tokens with some added information.

Figure 2.1: Word (upper list) and subword tokenization. Some special tokens are added to
the subword token list to distinguish the language and the end of the sequence. The _ prefix
in _schopnost means that the preceding string is whitespace. Tokenization tool is a part of
the gensim.utils module.

For instance, Transformer (Vaswani et al., 2017) based models, the state-of-the-art deep
learning architectures in NLP, process the raw text at the token level and use subword

1Language independence stems from the fact that all these languages separate their words using spaces,
and punctuation marks define sentence boundaries. Many Asian languages (e.g., Hindi, Chinese, Korean,
Urdu), however, have different text construction, and this method is not applicable.

3



2. Theoretical Basis and State of The Art Overview ..........................
tokenization to take advantage of the benefits of word tokenization while keeping the
vocabulary2 size reasonable.

2.1.2 Vectorization

The tokens derived from the input text are characters, words, subwords, or sentences
depending on the chosen type of tokenization and need to be transformed into real-valued
vectors. There are multiple approaches to this task with varying complexity and robustness.
Shahmirzadi et al. (2019) suggest that vector representation techniques form two main
categories:. Count-based vector representations that rely on word frequency and treat words as

atomic units (word order is ignored). Methods that embed the vectors into an Rn space and consider semantic relations
and meaning (word order is taken into account)

Determining the correct approach depends on the purpose and the available dataset. It
has been observed that simple models trained on vast amounts of data tend to outperform
complex systems trained on fewer data (Mikolov; Chen, et al., 2013).

Count Vectorization

As its name suggests, count vectorization belongs to the group of methods which disregard
word order and sentence structure and concentrate solely on the number of appearances of
each word. It produces a matrix where each column represents a word from the vocabulary,
and the rows contain the words’ numbers of appearance in the input documents. The
following example demonstrates the result after vectorization of the documents [“Není z
Prahy, ale chodí do školy v Praze.”, “Do konce měsíce obdržíme fotky Měsíce”].

Figure 2.2: Count vectorization, each row of the count matrix represents one input sentence.
Library used: CountVectorizer by scikit-learn.

The vectorizer uses word-level tokenization by default, and some of its shortcomings
are apparent from Figure 2.2. While lemmatizing3 the input before vectorizing it will
eliminate the problem of diverse word forms (“Prahy”, “Praze”), the fact remains that
different meanings of the same word are overlooked (“měsíc”, “Měsíc”), and the final
matrix is of high dimension but sparsely populated.

Tf-Idf Vectorization

Term Frequency - Inverse Document Frequency (TF-IDF) is one of the most commonly
used algorithms for vectorizing textual data. The relevance of a word to a text from the
corpus increases proportionally with the increasing word frequency in the text. However,

2The set of unique tokens found within the corpus.
3Conversion of words into their headword (it is done in order to avoid treating inflected forms of the

same word as different words). The headword of “Praze”, “Prahy”, and “Praha” is “Praha”.

4



....................................... 2.1. Feature Extraction

its number of appearances throughout the dataset balances it out, which helps to counter-
act the fact that some words are generally used more frequently than others. According
to Shahmirzadi et al. (2019), the correlation between a term’s weight and its occurrence
in a document is positive, while its correlation with its overall occurrence in the corpus is
negative. The weight of a term depends on two quantities. Term Frequency (TF(t, d)): represents the proportion of the number of instances

of a term |t| in a document d to the document’s length |d|.

TF(t, d) = |t|
|d|

. Inverse Document Frequency (IDF(t)): document frequency can be obtained by
calculating the number of documents containing the term t (D(t)). Inverse document
frequency is the number of all documents in the corpus (D) divided by the document
frequency of t. For scaling purposes, a logarithm of the value is used.

IDF(t) = log D

D(t)

and is defined as their product:

TF-IDF(t, d) = TF(t, d) · IDF(t) = |t|
|d|

· log D

D(t)

The difference between count Vectorization and Tf-Idf Vectorization is thus evident -
CountVectorizer calculates frequency based on vocabulary alone, whereas Tf-Idf Vector-
ization regards words’ significance across the whole corpus.

Continuous Vector Representations

Perceiving words as discrete entities strips away a fundamental layer of semantics - context.
Let’s consider the following Czech sentence: “Na závodním kole objel jedno kolo a upadlo
mu kolo.”. Even though “kolo” has three distinct meanings in that particular sentence, the
vectorization methods described above will treat it as three occurrences of the same word
and hence lose a portion of the information. To rectify that, some vectorization techniques
examine surrounding words to reflect word relations, and Shahmirzadi et al. (2019) explain
the premise behind this approach: words with akin meanings tend to appear in similar
contexts.

The embeddings produced that way are considered a part of an inner product vector
space where the vectors of synonymous or related phrases are positioned close to each other.
This mathematical outlook not only drastically simplifies measuring word similarity but
also allows arithmetic operations to be performed on words. Let v(word) represent the
vectorization of the word word:

v(kralovna) ≈ v(kral) − v(muz) + v(zena)

In their paper on linguistic regularities, Mikolov; Yih, et al. (2013) discover that vector
representations capture semantic and grammatical likeness by adding constant vector off-
sets between pairs of words sharing a particular relationship. The authors assume that all
pairs of words with the same connection (e.g. singular and plural forms) also share the

5



2. Theoretical Basis and State of The Art Overview ..........................

Figure 2.3: Inspired by Mikolov; Yih, et al. (2013). Left scheme shows the gender relation,
right includes singular/plural relation. A high-dimensional space means multiple relations
embedded for a single word.

same constant offset (Figure 2.3). These findings have a significant impact on NLP tasks
that rely on the discovery of analogous words.

Both tasks of this thesis, clustering tweets by their topic and finding keywords, depend
on determining how similar two words, more precisely their vectors, are. One of the most
common measures of similarity is cosine similarity which calculates the cosine of the angle
θ between the vectors. For vectors u and v cosine similarity is defined as the their dot
product divided by the product of their lengths:

cos(θ) = u · v

||u|| · ||v||

It holds that smaller angles mean a higher degree of similarity; thus, the cosine value has
to be as close to 1 as possible. Table 2.1 shows the top five nearest neighbours of the
word “modrá” calculated via cosine similarity. The fact that the closest words are other
colours confirms that semantic meaning and context have been considered when training
the model.

Word Cosine Value

žlutá 0.8671872019767761
červená 0.8648878931999207

zelená 0.8549166321754456
oranžová 0.833976686000824

fialová 0.8107661604881287

Table 2.1: Nearest neighbours of the word “modrá” generated with the fastText library
introduced by Bojanowski et al. (2017). The top five words are sorted by the cosine value.

It is important to note that not only words are embedded in vector spaces: Reimers et al.
(2019) have introduced Sentence-BERT (SBERT), which generates sentence embeddings
whose distance in the vector space is determined by their semantic similarity. SBERT is a
modification of BERT, a language representation model, presented by Devlin et al. (2019).

6



....................................... 2.2. Clustering Methods

2.2 Clustering Methods

In essence, one of the main tasks of this thesis is to divide a large Twitter dataset into
subgroups based on a shared topic between the tweets to derive a maximal amount of
information about the data. Since the input is represented as vectors belonging to the Rn

vector space, the resulting clusters should be generated in such a way that only sufficiently
similar vectors belong to the same category. The available Twitter dataset is not labeled,
and for that reason, only unsupervised methods are applicable.

2.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation is an unsupervised ML technique which creates a probabilistic
model of the corpus. It detects topics within the dataset based on the assumption that
documents are “represented as random mixtures over latent topics, where a distribution
over words characterizes each topic” (Blei et al., 2003). In other words, when given a
dataset D containing M documents, the posterior probability is calculated, reflecting the
conditional distribution of topics over the corpus documents. Figure 2.4 illustrates LDA
schematically with its parameters:. M denotes the documents in the corpus D. N denotes the words in a specific document. w is a particular word in a document. z is the topic assigned to a particular word in a document. θ denotes the topic distribution per document. α is an initialization parameter; handles the initialization of θ with Dirichlet distri-

bution θ ∼ Dir(α). β denotes the word distribution per topic

Chipidza et al. (2022) summarize that the conditional distribution is a quotient of the
joint probability distribution of z, β, and θ across all w and the probability of observing
D across all topics.

Figure 2.4: LDA scheme adapted from Blei et al. (2003).

The parameters θ and β are randomly initialized, and each word is randomly assigned
a topic. Topic reassignment of a word happens on one of two conditions: i) appearances
of the word in the topic are infrequent, ii) the topic is rare for the examined document.

7



2. Theoretical Basis and State of The Art Overview ..........................
The algorithm converges if no new reassignments were performed in the last step or if a
predetermined number of iterations has been reached. The result is a collection of topics,
and each topic is represented as a cluster of top N words that best describe it.

A somewhat challenging aspect of the algorithm is that the number of topics, k, has
to be specified beforehand. Although no precise method exists and the results are data-
reliant, the number of topics can be chosen so the resulting sets of words representing
the detected topics are as coherent as possible. Röder et al. (2015) state that “a set of
statements or facts is said to be coherent, if they support each other. Thus, a coherent
fact set can be interpreted in a context that covers all or most of the facts.”. However,
it is unclear how exactly coherence is to be quantified. Many metrics work with word
co-occurrence, and the UMass coherence score is an example of that. Stevens et al.
(2012) define it as

CUMass(wi, wj) = log D(wi, wj) + ϵ

D(wi)
where D(wi) denotes the number of occurrences of the word wi in the input documents,
D(wi, wj) indicates how many times the words wi and wj appeared together, and ϵ4 ensures
that the score is a real number. The overall coherence of a specific topic is then computed
by averaging the pairwise coherence scores of its top N words. The optimal k produces
the lowest UMass score. Thus, a range of candidate values can be tested, and the one
minimizing the score should be set as the number of expected topics.

2.2.2 K-Means

K-Means is a classic unsupervised learning method operating on an unlabeled dataset.
The dataset containing n ∈ N input documents is divided into k ∈ N clusters based on
high similarity within the cluster and low similarity between clusters. Each cluster has a
centroid ci, i ∈ {1, . . . , k}, and all cluster points x are closer to that centroid than other
centroids. If viewed as an optimization problem, the objective is to assign each datapoint
a cluster so that the (squared) distance between the point and the cluster’s centroid is
minimal. Let T = {T1, . . . , Tk} denote the set of clusters:

min
T

k∑
i=1

∑
x∈Ti

||x − ci||2

Algorithmically, the process consists of the following steps (Ibrahim et al., 2018):..1. Initialize the centroids randomly..2. Repeat until convergence (all clusters have remained unchanged):..a. Assign each datapoint to the closest centroid..b. Update the centroids

Although the algorithm’s structure is set, there is much room for alterations to improve
the result. As described above, K-Means is not a guaranteed global minimizer and can
reach a local minimum. However, a clever initialization5 of the centroids in the first
step can at least aid it in finding better local minima. Other modifications of K-Means
substitute the Euclidean distance used to determine the closest cluster center for other

4Usually set to 1.
5Known as K-Means++.
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distance metrics or use diverse methods to update the centroids. Ibrahim et al. (2018)
provide detailed descriptions of many of the algorithm’s variations.

Just like LDA, K-Means relies on the predefined argument k - the number of expected
topics / clusters. Finding the optimal value of the parameter poses a considerable hardship,
especially without any foreknowledge about the dataset.

The Elbow method is an empirical technique for graphically determining the most
appropriate number of clusters. The concept is relatively straightforward – K-Means
clustering is run for a range of candidate values, and the sum6 of squared distances from
each point to its assigned centroid is calculated for each one (Schubert, 2022). When these
distortions are plotted, the curve’s inflection point, the “elbow”, is the optimal k.

An alternative approach is available for higher-dimensional data: the Silhouette method.
For a candidate value of k, so-called silhouette coefficients are estimated for all datapoints
to indicate how similar each point is to its cluster members7 compared to the rest of the
clusters8. Wang et al. (2017) formulate the silhouette coefficient sx of a point x as:

sx = bx − ax

max (ax, bx)

where ax denotes the average distance between the point x and all other points from the
same cluster, and bx is the average distance of x to the members of the closest cluster.
The averaged silhouette coefficients of all input points form the silhouette score ∈ [−1; 1],
and the goal is for it to be as close to 1 as possible because that implies that the samples
are far from neighbouring clusters. Apart from determining the optimal value of k, the
Silhouette method can also detect whether the cluster has any outliers.

Figure 2.5: According to the Elbow method (left), the optimal number of clusters for a sample
of 700 points is 4. The silhouette coefficient is also maximal for that number of clusters.

2.3 Keyword Extraction and Generation

Despite being a very practical unsupervised classification technique, K-Means undoubtedly
has its flaws. One of the main issues, selecting the right number of clusters, and its possible

6This sum is also known as inertia.
7Cluster cohesion.
8Separation between clusters.
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2. Theoretical Basis and State of The Art Overview ..........................
solutions are discussed in section 2.2.2. In the context of text clustering, however, another
problem arises: although the algorithm places relevant tweets in the same cluster, the
shared topic of the cluster remains concealed. Fortunately, there is a way around that
obstacle - treating a cluster of similarly themed tweets as text can help reveal the subject
by identifying its keywords.

When seeking keywords present in the text, two main viewpoints come into considera-
tion – keyword extraction can be treated as a classification problem, where each word is
labeled either “keyword” or “non-keyword”, or it can fall into the ranking problem cat-
egory, where all words receive scores, and subsequently the highest ranking are chosen.
The need for a comprehensive, already labeled training set is a significant drawback of
the classification approach since its preparation requires manual annotation. On the other
hand, unsupervised approaches like ranking evade the use of training data and are directly
applied to the test set.

State-of-the-art keyword extraction approaches are either supervised or unsupervised,
and Beliga (2014) proposes further dividing unsupervised methods into four categories:
Statistical, Graph-based, Linguistic, and Other (Figure 2.7). Linguistic approaches
focus predominantly on lexical and discourse analysis, and “other” methods rely on some
heuristic knowledge about the input data, e.g. the length and positions of the words
(Zhang et al., 2008). Out of the four, statistical and graph-based algorithms require no
insight into the dataset, and both are language-independent.

Figure 2.6: Keyword extraction methods classification inspired by Beliga et al. (2015).

2.3.1 Statistical Methods

Language and domain independence are notable reasons why many unsupervised methods
rely on statistical features when extracting the most important words from a text. One
of the most prominent statistical features widely used is TF-IDF (described in detail in
section 2.1.2) because it reflects the relevance of a word to a document in the corpus.
One of its many beneficial qualities is that it depends both on word occurrences in a
document and the number of documents containing the word. When extracting keywords
this way, the TF-IDF of each term in the document is calculated. The words and phrases
containing the term (the score of a phrase is the sum of the TF-IDF of its components) are
then ranked based on their TF-IDF value, and the most relevant are chosen as keywords.

Oftentimes statistical methods are paired with more complex tools to enhance the re-
sults. One such example would be KeyBERT, introduced by Grootendorst (2020). Key-

10
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BERT combines simple count vectorization (section 2.1.2) with BERT embeddings which
acknowledge word meaning. Its basic functionality consists of three steps:..1. A list of candidate keywords is generated from the input document (via count vector-

ization)..2. Both the document and the list of candidate keywords are embedded using BERT..3. The candidates most similar to the document are found by calculating the cosine
similarity between vectors

To obtain a more diverse set of keywords the Max Sum Similarity algorithm is applied:
it maximizes the candidate similarity to the document whilst minimizing the similarity
between candidates. In practice, the top n keywords are selected, and from them the m
that are the least similar to each other are picked to represent the document.

2.3.2 Graph-based Methods

Even though vector embeddings successfully capture semantic information, the structure
of the text as a whole is often neglected. Graph-based representation of the input docu-
ments, however, would facilitate efficient analysis of the relationships between terms. Let
a directed graph be defined as G = (V, E), where words constitute the set of vertices V
and their relations form the set of edges E. The edges can symbolize various relations:
co-occurrence9, syntax dependence, semantic relations and others (Beliga et al., 2015).

Most ranking algorithms are based on Google’s PageRank by Page et al. (1999) and aim
to determine a node’s significance within the graph. One of the current state-of-the-art
models, TextRank, uses co-occurrence windows10 to create edges and when “one vertex
links to another, it is basically casting a vote for that other vertex” (Mihalcea et al., 2004,
p. 1). In other words, a node’s importance is directly proportional to the number of
“recommendations” it has received from other nodes. Furthermore, the ranking model
takes into consideration the score of the vertex casting the vote: this way, votes from more
“prominent” vertices have more weight. Let In(Vi) denote the set of vertices pointing to
a given vertex Vi, and let Out(Vi) be the set of vertices that Vi points to. As established
by Brin et al. (1998), the ranking score of Vi would be:

S(Vi) = (1 − d) + d ·
∑

Vj∈In(Vi)

1
|Out(Vj)|

· S(Vj)

where d ∈ [0, 1] is a factor incorporating the probability of jumping from a given vertex
to another random vertex in the graph usually set to 0.85 (Mihalcea et al., 2004).

This algorithm is run until convergence and once each node has received its score, the
top N nodes are selected for post-processing. During the last phase, the N candidate
keywords are highlighted in the text, and sequences of adjacent keywords are collapsed into
a multi-word keyphrase. For example, suppose the input sentence is “Podle ministerstva
školství je matematická olympiáda velmi populární soutěž pro děti ve školním věku.” and
TextRank chooses the words “matematická” and “olympiáda” as potential keywords. In
that case, the words will be combined in the phrase “matematická olympiáda”, since they
are adjacent.

9In this context it means that neighbouring terms co-occurring within the window of a fixed size are
connected.

10Typically of size 2-10 words.
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Figure 2.7: Graph-based representation of the sentence “Podle ministerstva školství je matem-
atická olympiáda velmi populární soutěž pro děti ve školním věku.” generated with the libraries
NLTK and NetworkX.

2.3.3 Supervised Methods

As mentioned before, the most substantial disadvantage of supervised learning in general
is the required training dataset. In the case of keyword extraction, manual annotation
is not only tedious, but also inconsistent since determining what words best describe the
text is decidedly subjective. However, if a training dataset is at disposal, a classifier can
be trained to decide whether a word should be labeled as a keyword.

Witten et al. (1999) propose the Keyphrase Extraction Algorithm (KEA), which disre-
gards stop words11 and trains a Naive Bayes classifier utilizing the position of the first
occurrence of the word within the document and the word’s TF-IDF feature. Neverthe-
less, standard machine learning techniques such as support vector machine (SVM) and
multi-layer perceptron neural networks outperform KEA in word classification (Firoozeh
et al., 2020).

2.3.4 Keyphrase Generation

All of the approaches listed above tackle keyword extraction, yet it is hardly an inconceiv-
able notion that the terms best reflecting the topic of the document may not appear in it
at all. For example, the word “sport” would be a suitable keyword for a text reporting the
results of a basketball playoff but is not a necessary part of its content. Finding such key-
words is referred to as keyphrase generation, and as of now, no tools directly designed for
this task are available. Instead, Koloski et al. (2022) suggest viewing keyphrase generation
as a sequence-to-sequence12 (seq2seq) problem and employing transformer architectures
and supervised learning. Regarding seq2seq models, Meta AI’s (Lewis et al., 2019) denois-
ing autoencoder13 BART (combines Bidirectional and Auto-Regressive Transformers) is
a leading technology in the field. Pretraining consists of two steps: first, the text is cor-
rupted with an arbitrary noising function, and then a sequence-to-sequence model learns
to reconstruct the original text. Since the Twitter dataset is in Czech, MBART (Liu et
al., 2020), the multilingual version of BART pretrained on corpora in various languages,
including Czech, is the most fitting option.

11A set of commonly used words in a language. For example, the words ”od”, ”oni”, and ”a” are
considered stop words in the Czech language.

12Both the input and the output of the model are sequences of items (characters, words, etc.).
13A modified autoencoder that prevents the network simply learning the data.
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2.3.5 Diverse Beam Search

A technique often employed in the context of sequence generation, beam search presented
by Graves (2012) predicts the most likely sequence of words. An initial word is supplied
to the algorithm, and based on it, the language model generates a set of candidate words
for the next position in the sequence. Beam search does not focus solely on the most
likely word; it keeps track of a fixed number of top candidates, known as the beam width14.
The following word(s) are predicted based on each candidate word, resulting in multiple
potential sequence continuations. A probability score is kept for each sequence continu-
ation, and the candidates with the highest probability scores are retained while the rest
are pruned. The process is iterative (the retained candidates become the input for the
next iteration) and continues until a predefined end condition is met - e.g., reaching a
maximum sentence length or a specific end token.

Vijayakumar et al. (2016) propose diverse beam search, which aims to produce a more
varied set of outputs by discouraging similar or redundant sequences. Exploring different
potential continuations is encouraged by penalization and diversity metrics such as n-gram
overlap or Hamming distance. This technique promotes diversity and expands the range
of possible solutions.

14Determines how many candidates are considered at each step; a higher value generally leads to better
results but comes at a higher computational cost.
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Chapter 3
Datasets and Preprocessing

3.1 Twitter Dataset

In order to assess whether the selection of methods described in Chapter 2 performs
adequately and manages to form textual clusters and extract their keywords so the shared
topic is evident, a Twitter dataset consisting of 219 524 tweets was used. Scraped from
Twitter and provided by Jan Drchal, the dataset is stored as a pickle pandas file and
apart from tweets, various metadata such as date, time, user_id, language and others1

is included (Figure 3.1). According to it, 93 %2 of the tweets were posted in Czech, with
the oldest dating from 12/02/2009, while the newest was authored on 13/07/2022.

Figure 3.1: Twitter dataset structure, not all metadata fields are displayed.

3.1.1 Preprocessing

Preprocessing is a crucial stage of almost all NLP tasks, and before any technique can
be applied to the dataset, some adjustments are necessary. In this particular case, the
tweets needed text and format modifications, so I wrote a custom function dealing with
the following:. Stop word removal. The idea behind this step is to remove words that occur

frequently but bear little semantic information. This way, such “meaningless” words
will be excluded from the list of keywords and will not create additional noise. Though
prepositions, conjunctions, pronouns, and modal verbs are generally considered stop
words, each language has its own specific set. For Czech, I used a list available
online3 since no official compilation was to be found. The Czech language uses the

1The total number of metadata fields is 37, and they carry information about attached photos and
videos, the amount of likes and retweets, and the conversation thread.

2204 288 out of the 219 524 tweets are in Czech.
3https://github.com/stopwords-cs
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3. Datasets and Preprocessing ...................................
Latin script with three diacritic marks: acute accent “ ´ ”, caron “ ˇ ”, and overring
“ ° ” (Czech and Slovak, 2017). However, the accessible stop word list did not include
diacritic marks, because such characters are standardly encoded in Unicode, a system
supporting languages with special characters, and not ASCII. Therefore, the tweets
were temporarily converted to ASCII representation with the Unidecode library4, and
upon stop word removal, the original representation was restored.

Figure 3.2: Example of stopword removal on a Czech sentence. The words “z”, “ale”, “do”
are considered stop words.

. Lemmatization is a process which reduces words to their root form called a lemma.
The Czech language has seven grammatical cases, and nouns, pronouns, adjectives,
numerals, and determiners all inflect to indicate their case. Verbs are conjugated as
well, which means that the majority of Czech words can appear in numerous forms.
Regarding each form as a separate word is undesirable for the goal of this project to
provide a semantically diverse set of keywords, hence the need for lemmatization. For
the tweets’ lemmatization, I used spaCy’s UDPipe NLP pipeline5 mainly beacuse of
its pre-trained Czech language model.

Figure 3.3: Example of a Czech sentence lemmatization.

. Link, emoji, and special symbols removal. Due to their nature as short so-
cial media statements and comments, tweets often contain links, emojis, and other
symbols6. None of those special characters and strings can be treated as potential
keywords; thus, their removal reduces the noise of the dataset. To filter them out, I
created specific regular expressions and used Python’s re module.

Figure 3.4 shows an example of the final result of the preprocessing stage.

Figure 3.4: Preprocessing result example of a sentence with a typical tweet structure.

3.2 Czech News Center Dataset

While LDA, K-Means clustering, and all of the outlined keyword extraction methods,
do not require an annotated dataset, the keyphrase generation experiments can only be
performed with one. The dataset supplied by Jan Drchal for this part of the task is
proprietary and courtesy of the Czech News Center (CNC)7, a large media house in Central

4https://github.com/takluyver/Unidecode
5https://spacy.io/universe/project/spacy-udpipe
6For example, the symbols “@” and “#” often appear across social media, especially on Twitter.
7https://www.cncenter.cz/en
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................................... 3.2. Czech News Center Dataset

Europe. Their newsrooms produce popular titles such as Blesk, Sport, Reflex, and E15,
and a generous collection of articles with manually added tags was kindly provided to
experiment with.

All of the articles are written in Czech, and each title is stored in a separate XML
(Extensible Markup Language) file. Each of the three files contains the essential data
fields depicted below, the most important being <ChapterBody>, which holds the article
itself, and all of the <house> elements, since those represent the tags/keywords. There is
no set number of keywords per article; it typically ranges between four and twelve words.
Another potentially useful element is the <perex> - it carries the articles’ lead paragraphs,
which summarize their main ideas and can be utilized in NLP summarization tasks.

<article>
<date></date>
<title></title>
<perex></perex>
<ChapterBody></ChapterBody>
<url></url>
<ArtID></ArtID>
<house></house>
...
<house></house>

</article>

3.2.1 Preprocessing

The preprocessing of the CNC dataset had two primary objectives: extract the relevant
data from the XML file (articles and keywords) and remove invalid entries (wrong format,
encoding issues). A tailored function dealt with it and split the processed data into train
and test sets. All preprocessing functions can be found in the repository.

Since the keyphrase generation is to be handled as a summarization task, the dataset
structure had to be adapted to the training process. Initially, each article had an array of
keywords (<house> elements), but they could not be regarded as one summary. Therefore,
each keyphrase was considered a separate label. Adopting this perspective on the matter
meant that if an article had six keywords, the text would be added to the dataset six
times, and each entry would have one of the six keywords as its label (see Table 3.1).

Text Field Summary Field

“Síť O2 měla poslední den v roce rekord...” “T-Mobile”
“Síť O2 měla poslední den v roce rekord...” “mobilní operátor”
“Síť O2 měla poslední den v roce rekord...” “Vodafone”
“Síť O2 měla poslední den v roce rekord...” “Nový rok”
“Síť O2 měla poslední den v roce rekord...” “O2 Czech Republic”

Table 3.1: Each element of the training set had to consist of a “text” field containing the
article and a “summary” field containing a single keyphrase corresponding to the article. The
example article had five tags originally, so five copies of it were added to the training set, one
for each keyphrase.
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3. Datasets and Preprocessing ...................................
Table 3.2 shows the initial content of the dataset and its expanded structure after the

preprocessing. Ninety-two percent of it was used for training (48 848 out of 52 955 entries),
and the remaining data went towards a validation and a test set (evenly distributed).

Title Number of articles Expanded version

E15 3 063 24 535
Reflex 1 983 11 991

Živě 1 802 16 429

Total 6 848 52 955

Table 3.2: An overview of the provided dataset and its contents before and after expanding it
to accomodate the training requirements.

18



Chapter 4
Text Clustering

4.1 Clustering with Latent Dirichlet Allocation

As discussed in Section 2.2.1, LDA is a topic modeling algorithm which portrays corpora
as mixtures of latent topics. A cluster of its most relevant words defines each topic,
and detecting those clusters requires no annotated training sets. An undeniably valuable
feature of the LDA technique is that no prior knowledge of the topics is needed, and that
makes it exceptionally suitable for a dataset of 219 524 tweets spanning over thirteen
years.

4.1.1 Implementation

The first phase of the implementation, preprocessing, was done as proposed in Section 3.1.1
with my custom functions and the libraries Unidecode, spaCy’s UDPipe, and Python’s re
module.1 Each tweet was split into separate sentences before preprocessing, yet it had no
impact on the algorithm because LDA considers the vocabulary of the entire corpus and
disregards word order. Figure 4.1 shows an example of the input structure passed to the
subsequent stage.

Figure 4.1: An example of a tweet before and after preprocessing. The tweet belongs to Alena
Schillerová and was authored on 23/07/2021.

The LDA topic model expects a dictionary and a document-term matrix as its primary
arguments, so I had to generate those next (Figure 4.2). The dictionary holds information
about all unique tokens present in the input documents. To create it, I used Gensim’s
corpora.dictionary2 module, which performs a mapping between words and their integer
ids. Gensim’s doc2bow function helped produce the document matrix from the dictionary:
it is essentially the so-called bag of words (BOW) - a data structure reporting the number
of occurrences of every word in the documents.

Before running the LDA model, one more step had to be carried out: determining the
parameter k (the number of expected topics). For this procedure, I employed the UMass

1References to the libraries are enclosed in Chapter 3.
2https://radimrehurek.com/gensim/corpora/dictionary.html
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4. Text Clustering.........................................

Figure 4.2: The dictionary and document matrix generated for Alena Schillerová’s example
tweet from Fig 4.1.

coherence score method (Section 2.2.1). Since the total number of tweets to be processed
is around 219 thousand, I examined ten k candidates: 10 000, 11 000, ..., 20 000. The
experiments consisted of running the LDA algorithm for each particular k and calculating
the UMass coherence score of the result. The optimal number of topics was the one
minimizing the score; for the Twitter dataset, that turned out to be 13 000 (Figure 4.3).

Figure 4.3: UMass coherence score analysis fot the Twitter dataset. According to it, the
optimal number of topics for this particular dataset is 13 000.

Next in order was running the LDA model itself, and for that purpose, I utilized Gen-
sim’s ldamodel library3 optimized in Python. Apart from the dictionary of unique tokens,
the document-term matrix containing word occurrences, and the number of expected top-
ics, the number of documents to be used in each training chunk, and the number of passes
through the corpus during training had to be set as well (to 200 and 20 respectively - the
chunk size did not really influence the outcome, but for the number of passes it turned
out that 20 passes yield much better results than 10 passes while 30 passes only slowed
down the process without notably improving it).

The LDA model assumed k topics, iterated over all tweets and randomly assigned each
word to a topic. Then, for every word of every tweet, it computed:..1. the proportion of words in document di assigned to topic tk..2. the proportion of all documents assigned to topic tk for a given word wj

3https://radimrehurek.com/gensim/models/ldamodel.html
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Then the product of those two probabilities was calculated and, based on its value, the
word wj from document di was reassigned to a new topic tk. After the number of loops was
exhausted, the model returned the identified topics which were defined by their top words
and probabilities as Figure 4.4 shows. More examples of topics detected in the Twitter
dataset can be found in Appendix A.

Figure 4.4: An example of a Twitter topic identified by LDA.

4.1.2 Results

To gain a better insight into the recognized topics, I pulled the top thirty words for each of
them. Since one of the most effective ways to comprehend data is through visualization, I
took a batch of 4000 tweets (for the sake of better readability) and visualized their detected
topics4 with the aid of the pyLDAvis library5 which specializes in interactive topic model
visualization. At first glance, some topics seemed reasonably defined, especially the most
prominent ones (Figure 4.5).

Figure 4.5: LDA topic visualization over 4000 tweets with the pyLDAvis library. The most
prominent topic is marked and its top words are listed on the right.

The rest, however, had many semantically non-significant words appear in the top spots
as the most important terms (Figure 4.6). Those “insignificant” words are not considered
stop words, yet they provide no understanding of the topic. The topics of the entire dataset
suffered from the same problem: the most relevant terms were exceptionally noisy even

4Based on the UMass coherence score analysis, 19 topics were to be expected.
5https://github.com/bmabey/pyLDAvis
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though the data had been preprocessed. Thus, it was impossible to determine coherent
themes. This demonstrates that devising an objective metric to numerically assess the
quality of the detected topics and their definitions is not simple by any means. One
way to evaluate the results would be to measure the global UMass coherence score CUMass.
Generally, the closer CUMass is to 0, the better the coherence is, because it is calculated over
the logarithm of probabilities (Section 2.2.1). In this case, CUMass equalled -17.24 for the
optimal k. The issues with that are two: first, there is no way to judge whether that is an
acceptable score - no frame of reference can be built because the results largely depend on
the dataset. Secondly, although CUMass is well below zero, manual interpretation showed
that most detected topics are not coherent enough.

Figure 4.6: The top words defining topic number 5. Its theme cannot be reasonably concluded.

4.2 Clustering with K-Means

As it became evident in the previous section, experiments with LDA resulted in an overview
of the latent topics present in the Twitter dataset, but did not classify the tweets them-
selves. Therefore, I decided to apply K-Means (Section 2.2.2) on the dataset to acquire
clusters of tweets grouped together because of a shared topic. It is an unsupervised ML
technique that guarantees convergence and scales to sizable datasets like the Twitter one.

4.2.1 Implementation

The first step of the process was to transform the tweets into real-valued vectors to enable
K-Means classification. Tweets tend to be really short, often consisting of a single sentence
(if that), and for that reason, I created their embeddings with SBERT’s SentenceTrans-
formers framework, more specifically with the paraphrase-multilingual-mpnet-base-v2
model.6 It is pretrained on parallel data for over fifty languages, including Czech, and
maps sentences and paragraphs to a 768 dimensional dense vector space.

I would like to emphasize that the tweets were not preprocessed prior to creating the
embeddings, and there is a reason for that. As mentioned above, tweets have limited
length, and people often express themselves with more than words - emojis and hashtags,
in particular, carry much information. Flag emojis unite many political tweets, while
medal ones regularly appear in the context of sports events. Taking these social media
phenomena into account, I opted to vectorize the dataset as it is.

Next, the sought number of clusters k had to be specified. This aspect of K-Means,
having to set the number of clusters in advance, is one of its major drawbacks. I wanted

6https://www.sbert.net/docs/pretrained_models.html
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to examine all methods from Section 2.2.2 in practice, so I ran both the Elbow method and
the Silhouette method and tried to use them to discover the optimal k. The candidates
were the same as the ones tested for the LDA topic detection: 10 000, …, 20 000. The
graph in Figure 4.7 shows that the Elbow method failed for an extensive dataset and
large numbers of clusters. No “elbow” formed, so the optimal value of k is unclear. The
Silhouette method, on the other hand, revealed that 16 000 is the most suitable number
of clusters (maximizes the Silhouette score) and that is the parameter value I went with.

Figure 4.7: The left panel shows the result of the Elbow method, the right one contains the
graph of the Silhouette method. Both were applied on the Twitter dataset.

For the clustering7 I decided to put scikit-learn’s MiniBatchKMeans module8 to use.
As the library’s user guide9 states, “the MiniBatchKMeans is a variant of the K-Means
algorithm which uses mini-batches to reduce the computation time while still attempting to
optimize the same objective function. Mini-batches are subsets of the input data, randomly
sampled in each training iteration. These mini-batches drastically reduce the amount of
computation required to converge to a local solution. In contrast to other algorithms that
reduce the convergence time of K-Means, mini-batch K-Means produces results that are
generally only slightly worse than the standard algorithm.” (Pedregosa et al., 2011). The
batch size was set to 2048 to enable parallelism on eight cores.

4.2.2 Results

When determining the quality of the obtained clusters, the Silhouette score can be used,
for it is a metric revealing how similar an element is to its assigned cluster compared to
the rest of the clusters. The score s ranges between 1 and -1:. s ≈ 1 means that the samples are far from neighbouring clusters. s ≈ 0 means that the samples are on a decision boundary between two or more clusters. s ≈ −1 means that the samples are assigned to the wrong clusters

For the optimal number of clusters, 16 000, the Silhouette score equalled -0.076. It is
closest to zero, meaning that most tweets gravitated close to the decision boundaries

7Not only the final clustering of the tweets, but the clusterings needed for the Elbow and the Silhouette
methods.

8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
9https://scikit-learn.org/stable/modules/clustering.html
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4. Text Clustering.........................................
between clusters. Nevertheless, it is unsurprising that tweets pertain to more than one
topic - posts about politics and covid, finances and education, or culture and Prague are
hardly rare. Upon manual inspection10, most of the clusters were coherent, consistent,
and logically structured.

102000 clusters were inspected manually.
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Chapter 5
Keyword Extraction and Generation

After acquiring reasonably shaped clusters of related tweets, I wanted to gather their top-
ics automatically rather than reviewing them manually. Obtaining the keywords of each
cluster was a viable method since its most important words would indicate the common
topic of the group of tweets. There were two options on how to proceed: extract key-
words present in the cluster or generate new ones that are not explicitly mentioned. For
the extraction, I decided to compare the statistical (including the KeyBERT hybrid) and
graph-based methods because of their completely distinct approaches described in Chap-
ter 2.3. Every cluster was regarded as a separate input text and underwent the same
preprocessing from Section 3.1.1. Generating new keyphrases was a trickier task, and I
tried two different concepts: finding the nearest neighbours of already extracted keywords
and training a transformers model, which was the only supervised method.

It is imperative to preface the unsupervised experiments by pointing out that no sci-
entific metric can measure the quality of the results; no exact number can reflect the
“keyness” of the extracted keywords. Even when done manually, the set of keywords best
describing a text chosen by one annotator almost always differs from the set picked by
another. Despite the subjective nature of the task, 2 000 clusters1 were reviewed and
annotated manually. The selected keywords then served as a reference when determining
if the experimentally extracted ones were accurate enough.

5.1 Statistical Keyword Extraction

As stated in Section 2.3.1, when it comes to statistical keyword extraction methods,
TF-IDF is one of the most suitable features to be explored because it reveals the rela-
tive importance of words with regard to the whole corpus (see Section 2.1.2).

5.1.1 Implementation

The implementation of the TF-IDF keyword extraction method consists of three main
steps:..1. Calculate the term frequency of each document: divide the number of occurrences

of a word by the total number of words in the document...2. Calculate the inverse document frequency as the logarithm of the total number
of documents divided by the number of documents containing the word wi. Each

12 000 out of the 16 000 clusters produced with K-Means in the previous chapter.
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5. Keyword Extraction and Generation ................................
word’s TF-IDF weight is a product of the term frequency and the inverse document
frequency...3. Sort keyphrases by their TF-IDF weights and choose the top N as keywords

For steps 1 and 2, I decided to use scikit-learn’s feature_selection module and its
optimized TfidfVectorizer class2 to speed up the process. The documents are passed as
input, and based on the vocabulary, the document-term matrix of the corpus is returned.
In this context, the document-term matrix is a table whose rows represent each document
from the corpus, and every word from the corpus’ vocabulary has its designated column.
For example, position (i, j) holds the TF-IDF score of the j-th vocabulary word for the
i-th document (see Figure 5.1).

Figure 5.1: TF-IDF document-term matrix example for the cluster [”Není z Prahy, ale
chodil do školy v Praze. #studiumvpraze”, ”Školy v Praze zaznamenaly nárůst uchazečů
#studiumvpraze.”]. The illustrative cluster only contains two documents for the matrix to be
readable.

Defining what is considered the corpus and what is referred to as a document played a
significant role in this experiment. Since TF-IDF is a feature that takes into account the
entire corpus, there were two possible approaches:. The corpus could consist of all 16 000 clusters produced in the K-Means experiment.

In that case, the whole cluster would be considered one document from the corpus,
resulting in 16 000 documents overall. I will refer to this experiment as experiment A.. Each cluster could be considered a separate corpus where every tweet assigned to
it would be a document. The number of documents in the corpus would equal the
number of tweets in it. I will refer to this experiment as experiment B.

In order to compare the two techniques, I implemented them both. For experiment A,
I merged all tweets within every cluster into one text so that the clusters could be manip-
ulated as documents. The corpus consisted of 16 000 documents of various lengths. For
experiment B, I left the clusters as they were (lists of tweets) and ran the algorithm for
each cluster separately because they formed distinct corpora. Both experiments, A and
B, were run in three different modes. Firstly, I only considered single words (unigrams)
when calculating the TF-IDF weights and choosing the keywords. Next, I allowed only
two-word phrases (bigrams) to be considered. Lastly, a mix of two and three-word units
(bigrams and trigrams) was examined to analyze whether the keyphrases’ length improved
their quality.

5.1.2 Results

Regardless of the considerable differences between their corpora, both in size and vo-
cabulary, experiments A and B yielded decidedly similar results in all three tested modes.

2https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html
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Table 5.1 shows the keywords of a random cluster3 extracted in experiment A for the three
analyzed keyphrase lengths (unigrams, bigrams, bigrams and trigrams) and Table 5.2 con-
tains the keywords for the same cluster obtained in experiment B. Generally, the majority
of clusters exhibited the illustrated properties: in most cases, the main discrepancy came
from the ranking, not the chosen words. In fact, for 93%4 of the clusters, at least 10 of
the 15 extracted keywords/phrases were completely identical5 for experiments A and B,
save for their position. The difference between the two experiments was most noticeable in
their sets of extracted unigrams. The unigrams experiment B derived from the clusters fre-
quently contained more common words like “rok”, “díky”, “státní”, “kč”, and “miliarda”
(Table 5.2). Experiment A rarely came up with such words, and I believe that this is
a manifestation of the difference between their corpora: experiment B only considers a
singular cluster as its corpus, so words like “díky”, “státní”, and “kč” seem relevant. On
the other hand, experiment A has all 16 000 clusters at its disposal, and since such words
appear in many of them, their TF-IDF weight is negligible.

Rank Unigrams Bigrams Bigrams and Trigrams

1 iii program covid program covid
2 úvěr covid iii program covid iii
3 program záruční program covid iii
4 covid malý střední záruční program covid
5 záruka investiční úvěr záruční program
6 firma firma podnikatel malý střední
7 podnikatel státní záruka investiční úvěr
8 investiční čerpat půjčka firma podnikatel
9 záruční čerpání úvěr státní záruka
10 střední investice prodlužovat covid iii konec
11 investice iii konec podpořit investice firma
12 podpořit investice firma firma podnikatel investice
13 cmzrb likvidita firma likvidita firma podnikatel
14 prodloužení investiční účel podpořit likvidita firma
15 banka záruka investiční zčerpat půjčka

Table 5.1: The top 15 keywords extracted from a cluster with experiment A in all three modes.

When compared against the manually extracted keywords, the TF-IDF ones6 matched
at least a third of them precisely and had around two to four very similar phrases. All in
all, the topic of the cluster could be successfully deduced given the keywords.

The biggest flaw of the method, however, could not be avoided no matter the corpus
(experiment A versus B) or the length of the keyphrases (unigrams, bigrams, bigrams and
trigrams): some of the top keywords tended to be semantically analogous and brought no

3The contents of the cluster are attached in Appendix B, Figure B.1.
414 947 out of 16 000 clusters.
5In the respective mode.
6All three groups of extracted keywords in each experiment were compared against the manually

extracted ones.
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Rank Unigrams Bigrams Bigrams and Trigrams

1 program program covid program covid
2 úvěr covid iii covid iii
3 covid miliarda kč program covid iii
4 firma státní záruka miliarda kč
5 iii záruční program státní záruka
6 záruka investiční úvěr záruční program
7 podnikatel firma podnikatel záruční program covid
8 investice malý střední investiční úvěr
9 podpořit záruka investiční firma podnikatel
10 investiční výše miliarda malý střední
11 rok investice firma záruka investiční
12 díky podpořit investice výše miliarda
13 státní investiční účel výše miliarda kč
14 kč čerpat půjčka čerpat půjčka
15 miliarda čerpání úvěr investice firma

Table 5.2: The top 15 keywords extracted from a cluster with experiment B in all three modes.

new information about the topic of the cluster. That was especially the case for the sets
of bigrams and trigrams. As displayed in Table 5.1 and Table 5.2, the cluster’s top fifteen
most relevant words could be shrunk by half. One could argue that such issues would only
arise when working with smaller clusters, but even the most enormous clusters with more
than 900 tweets had the same problem. For most clusters, the sets of bigrams balanced
semantic diversity and usefulness of the keywords the best.

5.2 Keyword Extraction with KeyBERT

KeyBERT presented in Section 2.3.1 is a partially statistical method for keyword extrac-
tion which picks candidate keywords based on their number of occurrences, creates BERT
embeddings of both the potential keywords and the original document, and selects the
words closest7 to the input text as its most important ones. Grootendorst’s idea to com-
bine a basic statistical feature and transformers architecture certainly has merit: BERT
embeddings incorporate word meaning in the produced vectors, so the distance between
the text and the candidate words mirrors their semantic closeness.

5.2.1 Implementation

Grootendorst’s implementation of KeyBERT is available for installation8 and direct ap-
plication. Unlike the TF-IDF extraction method, KeyBERT operates on one text at a
time, disregarding the rest of the corpus. Because of that, I chose to view each cluster
as a separate input, merged its tweets into one body of text and passed its preprocessed

7Distance is measured via the cosine similarity.
8https://github.com/MaartenGr/KeyBERT
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version as the main argument. Once again, I explored what influence the length of the
sought keyphrases has on their quality by running the experiment for unigrams, bigrams
and bigrams and trigrams. Another intriguing option was to use Max Sum Distance
(Section 2.3.1) to attempt to diversify the results.

5.2.2 Results

The keywords KeyBERT extracted from the same cluster as in the previous experiment9

are shown in Table 5.3. All sets of keywords had the same defect as the TF-IDF ones:
semantically similar words and phrases were chosen as the most significant. Even the
unigrams often contained nouns and adjectives constructed from the same lemma, e.g.
“investice”, “investiční” (Table 5.3). The supposedly diverse Max Sum Unigrams indeed
tended to consist of more various words, yet some of them were hardly key for the cluster
and were regularly ranked higher.

Rank Unigrams Max Sum Unigrams Bigrams Bigrams and Trigrams

1 covidplus portfoliový covid investa covid investa umožnit
2 covid návrh covidplus možnost program covid investa
3 úvěr záruka program covidplus covid investa
4 financování schválený investiční covidplus možnost čerpat
5 investiční investa záruka úvěr firma potřebný úvěr
6 firma podnikatel úvěr podpořit program covidplus možnost
7 investice byznys komerční úvěr záruka investiční úvěr
8 půjčka český úvěr poskytovat přispět program covidplus
9 podnik banka záruka investiční covidplus možnost
10 banka půjčka využít úvěr úvěr program covid
11 český investiční zaručený úvěr investiční úvěr podpořit
12 byznys financování potřebný úvěr program covidplus
13 podnikatel úvěr dosáhnout úvěr investiční úvěr program
14 investa covid úvěr program český firma potřebný
15 záruční covidplus úvěr záruční žádat investiční úvěr

Table 5.3: KeyBERT: Extracted keywords of different lengths (unigrams, bigrams and bigrams
and trigrams). Max Sum Unigrams are supposed to be semantically diverse.

Comparison with the manually extracted keywords showed, however, that for 91% of the
clusters10, the words extracted by KeyBERT also matched at least a third of the manual
ones, and similar phrases were present as well. Due to that, the topic of each cluster was
easily recognizable in most cases. Another fascinating feature of KeyBERT was its ability
to recognize the importance of hashtags. While TF-IDF only recognized Twitter hashtags
when they appeared often, KeyBERT managed to pull them almost always. One such
example would be the keyword “covidplus”: originally, it was a hashtag (#CovidPlus)
included in a single tweet. KeyBERT considered it rare and significant enough to give

9The contents of the cluster are attached in Appendix B, Figure B.1.
1014 569 out of 16 000 clusters.
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5. Keyword Extraction and Generation ................................
it the highest rank. Similar things happened for many tweets, and it is essential to note
that while KeyBERT successfully detected rare words, the lemmatization done during
preprocessing the clusters saved it from deeming misspelled words unique.

5.3 Graph-based Keyword Extraction

The most substantial dissimilarity between statistical and graph-based methods lies in
the fact that when creating a graph-based representation of a document, the structure
of the text is taken into account as well, something statistical methods omit entirely. To
assess how graph-based approaches handle keyword extraction, I experimented with the
TextRank algorithm outlined in Section 2.3.2.

5.3.1 Implementation

Although TextRank has an available implementation in the form of a library called
PyTextRank, I had to make a multitude of adjustments to the open-source code11 for it
to accommodate the Czech language. While the statistical methods listed above operate
with language-independent statistical features such as number of occurrences or TF-IDF,
graph-based techniques work with linguistic properties like lexical classes and grammar.
PyTextRank’s original implementation uses spaCy’s English language model to prepare
the required linguistic features, but no such model is supported for the Czech language.
That is why I opted to substitute it with spaCy-udpipe, whose Czech model I had already
used for preprocessing (Section 3.1.1).

The first step of the process was to analyze the input document and perform part-of-speech
(POS) tagging where every word corresponds to a particular part of speech12. SpaCy’s ud-
pipe offers such a feature for its Czech language model, and an example of a POS analysis
can be seen in Figure 5.2.

Figure 5.2: Part-of-speech tagging performed for the preprocessed version of the example
“Není z Prahy, ale chodil do školy v Praze. #studiumvpraze”.

The issue, however, arose from the fact that the descriptive POS tags differ for English
and Czech. In graph-based keyword extraction, these tags are indispensable because not
only do they reflect text structure and word relations, but they are also needed to create
the so-called “noun chunks”. Noun chunks are phrases that always contain a noun and
some other words describing the noun (e.g. “nejvyšší budova na světě”13 is a noun chunk
revolving around the noun “budova”). Apart from indicating word co-occurrence, they
are later used to combine the extracted keywords into longer phrases. I had to implement
the noun chunk creation myself, and I did so by coming up with a grammar on what to
consider a noun chunk based on the Czech POS tags. I needed to take into account the
structure of the language and what typical phrases look like. Three types of phrases made
the most sense: adjectives and a noun with the possibility of a determiner or a possessive

11https://derwen.ai/docs/ptr/
12Example POS categories would be a noun, verb, adjective, and other.
13Czech for “the world’s highest building”.
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................................. 5.3. Graph-based Keyword Extraction

pronoun to precede them, a sequence of at least two nouns and a sequence of proper nouns
and nouns.

NP: {<DT|PP\$>?<ADJ>+<NOUN>} # determiner/possessive, adjects, noun
{<NOUN><NOUN>+} # a sequence of nouns
{<PROPN>+<NOUN>+} # a sequence of proper nouns and nouns

After modifying the rest of the code so that the Czech POS tags and noun chunks could
be applied, I passed each cluster as a separate document14 and its graph was created
according to the algorithm described in Section 2.3.2. During the last phase, the top
N candidate keywords (the nodes with the highest score) were marked in the text, and
sequences of adjacent keywords were collapsed into multi-word keyphrases.

5.3.2 Results

Albeit challenging to read at times, the graph representations of the clusters produced
by the modified PyTextRank accentuated nearly the same words marked as key during
the manual annotation of clusters. Not only that, but the “most popular” nodes often
contained terms also extracted by the statistical methods. Figure 5.3 shows the epicenter
of the graph representing the same cluster15 as in the previous experiments and confirms
the statement: the words with the most connections match a big part of the TF-IDF set
of keyword unigrams.
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Figure 5.3: The graph generated for the same Twitter cluster as in the previous experiments.
The nodes marked with the red boxes have the highest score (highest number of edges) and
are considered most relevant. Visualised with the NetworkX library.

14The cluster’s tweets were merged into one text.
15The contents of the cluster are attached in Appendix B, Figure B.1.
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In my opinion, combining the highest-scoring words into phrases produced mixed results

for most clusters. In some cases, the phrases truly provided more insight into the cluster
topic and facilitated comprehension of its key aspects. An example of that would be
“oživení ekonomika program covid investa” from Table 5.4, which conveys an essential
theme of the examined cluster. On the other hand, not all phrases necessarily made
sense, one such being “covid iii konec rok”. Probably the most significant advantage of the
method, however, was the fact that semantic repetition appeared to a much lesser extent
than with the statistical methods.

Rank Keyword/phrase

1 program covid iii záruka úvěr
2 záruka program covid iii
3 rámec program covid iii konec
4 investiční úvěr
5 záruční program
6 investice firma podnikatel výzkum inovace zvýšení efektivita výroba
7 vláda návrh prodloužení program
8 zelený program
9 čerpání úvěr
10 likvidita firma podnikatel investice
11 žádost úvěr
12 covid iii konec rok
13 oživení ekonomika program covid investa
14 prodloužení konec rok podmínka čerpání úvěr
15 potřebný úvěr

Table 5.4: Keywords and phrases extracted with the graph-based extraction method from the
same cluster as in the previous experiments.

5.4 Nearest Neighbours Keyword Generation

All the techniques tested so far extract keywords; they pick words from the text and
declare them most relevant. This next experiment is an attempt to generate keywords not
present in the input document. The idea is to take a set of extracted keywords, vectorize
them and seek their nearest neighbours in the vector space. As observed in Section 2.1.2,
a short distance between embeddings indicates close meaning of the encoded words.

5.4.1 Implementation

To realize this idea, I utilized the fastText16 library for handling text representations. It
distributes pre-trained word vectors for 157 languages, including Czech, trained on Com-
mon Crawl17 and Wikipedia. It automatically creates word embeddings with dimension

16https://fasttext.cc
17https://commoncrawl.org
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..................................5.5. Supervised Keyword Generation

300, and the built-in function get_nearest_neighbors returns the ten words nearest18

to the passed argument. I took the clusters’ sets of unigrams generated by the TF-IDF
method and used them as input.

5.4.2 Results

From a theoretical viewpoint, the concept seemed logically sound, practically though, sev-
eral hindrances sabotaged the experiment. The first obstacle was evident even in the
example with the nearest neighbours of the word “modrá” (Table 2.1) in chapter 2. The
words closest to the colour blue, “modrá”, were, at first glance, unsurprisingly, other
colours like yellow, red and green. Oddly, “barva”, the Czech word for colour, did not
appear on the list in any shape or form. This was problematic because the nearest neigh-
bours tended to be words on the same semantic level as the extracted keyword and failed
to bring diversity and generalisation into the set. After all, if for a cluster of World Cup
tweets the word “football” is extracted, I would like the word “sport” to be generated
instead of “basketball”, “volleyball” or “baseball”.

The second issue was of technical nature. The aforementioned get_nearest_neighbors
function worked well for common words (“modrá”, “fotbal”) but failed to produce reason-
able neighbours for more complex ones. In some cases, it simply returned the passed
keyword in different forms (e.g. “záruka”, Table 5.5), while in others, the returned strings
were straightforwardly unrelated to the passed argument. For those two reasons, the
Nearest Neighbours experiment was ultimately unsuccessful.

Rank Keyword záruka Keyword covid

1 záruka. 00024341
2 záruka- 8080000246
3 zárukaNa Geovid
4 .záruka ostrovid
5 Záruka Dovid
6 M-záruka 00024
7 záruka3 Peirsol
8 záruky Morazzone
9 záruka38 Mulenga
10 záruka52 EverNew

Table 5.5: The top ten nearest neighbours of the keywords “záruka” and “covid” produced
with the fastText library.

5.5 Supervised Keyword Generation

Coming up with words best describing the primary notions of a text essentially means
summarizing it, and viewing keyphrase generation as a sequence-to-sequence19 problem is

18Distance is measured via the cosine similarity.
19The input is a sequence of items (characters, numbers, etc.), and the output is also a sequence of

items.
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an alternative take on the task. The goal of this experiment was to train a seq2seq model,
which, when presented with a document, produces its keywords regardless of their presence
or absence from the text. Since the job required supervised learning, the annotated CNC
dataset presented in Section 3.2 served as a training set.

5.5.1 Implementation

The model I decided to employ is Meta AI’s state-of-the-art denoising autoencoder BART
(Section 2.3.4), more specifically, its multilingual version mBART20. Of the available
mBART modules, I combined the pretrained MBartForConditionalGeneration, the MBART
Model with a language modeling head, and MBart50Tokenizer. Apart from tokenizing
the data, the tokenizer includes language metadata and special tokens and can also take
care of padding, so the resulting tensors all have the same size.

The training process was set in the following way:. The training set consisted 48 848 of articles and their corresponding keywords. As
explained in Section 3.2, each article was assigned precisely one keyword; the articles
that were associated with several tags had multiple copies in the dataset - one for
each tag. The articles represented the input documents; their respective keywords
were the expected outputs/labels.. Input (articles) and output (keywords) are tokenized separately, and since some of
the articles were of considerable length, the maximal token length set accepted by the
model (1024) was exceeded. The graph in Figure 5.4 shows the token length distribu-
tion of the E15 articles21, and it is clear that a sizable part of the tokens surpassed the
1024 mark by a lot. I had two feasible courses of action: truncate sequences longer
than 1024 or try to cut off specific parts of the articles which may be redundant.
Since the articles had different structures and content, I went with truncation, even
if that meant a rather hefty loss for some of the longest ones. Auspiciously, news
articles tend to concentrate their paramount concepts in the opening paragraphs, so
the semantic loss should not be detrimental.

Figure 5.4: Token length distribution of the E15 articles.

. The training itself was mediated by the Seq2SeqTrainer - a feature-complete training
and evaluation loop for PyTorch, and ran on the RCI cluster.

20https://huggingface.co/docs/transformers/model_doc/mbart
21The token length distribution of the rest of the dataset can be found in Appendix C.
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5.5.2 Results

It turned out during training that after the third epoch overfitting ensues.22 The validation
dataset comprised 6 105 labeled articles, and the model’s performance was evaluated using
the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric. Defined by
Lin (2004), it is a set of metrics suitable for automatic evaluation of summarization and
translation tasks in NLP. The model’s summaries or translations are compared against
reference summaries and translations produced by humans. MBART’s results after three
epochs of training were the following:

Metric Value[%]

eval_rouge1 8.5375
eval_rouge2 2.7711
eval_rougeL 8.5507

eval_rougeLsum 8.5338

Table 5.6: Evaluation results of the MBART model after three epochs of training.

Fundamentally, ROUGE assesses how many n-grams23 in the generated summary match
the n-grams in the reference summaries. Thus, the reason behind the low percentages
shown in Table 5.6 is apparent: the model predicts a single keyphrase (a unigram, bigram
or a longer phrase) for every input text, but the reference keywords available per article
range between four and twelve, so even when the generated phrase matches exactly, it
cannot cover all references. Since the ROUGE scores are averaged for texts with multiple
references, the resulting values make sense for the CNC dataset.

Although the model had several reference labels per article at its disposal during training,
its predictions always consist of a single keyphrase. While the chosen keyword undeniably
reflects a noteworthy theme of the document, even when passed a K-Means cluster, one
phrase is largely insufficient. For example, the chosen keyword for the cluster examined in
the rest of the experiments is “úvěr”. The word belongs to the manually picked keywords
for the cluster and is also present in the sets extracted with the statistical and graph-based
methods. However, it is tough to deduce the full topic of the tweets based on it.

MBART generation Manual Annotation

Ukrajina Rusko, ropa, plyn, uhlí, suroviny, Komodity, válka na Ukrajině,
Evropa, Evropská unie, Čína, indie, plynovod

elektřina České dráhy, Brusel, Poplatek, Evropská komise, Martin Krupka,
ODS, elektřina, peníze

Twitter burza, jedovatá pilulka, Elon Musk, peníze, Twitter, Dolar, akcie,
Tesla Motors

New York ForMen, móda, hudba, rap, New York, Harlem, Bronx

Table 5.7: The keywords generated by MBART (left column) and the sets of human-produced
keywords/tags (right column).

22Conclusion based on the loss.
23rouge1 is a unigram (1-gram) based scoring, rouge2 is a bigram (2-gram) based scoring, rougeL is a

Longest common subsequence based scoring, and rougeLSum splits text using “\n”
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5. Keyword Extraction and Generation ................................
To remedy that, I tried generating predictions using diversity beam search explained in

Section 2.3.5. The beam width was set to five in the hopes of producing five keywords,
and the diversity metric used was Hamming distance. The resulting sequences were longer
than expected and shared a similar trait: the first couple of words were usually related to
the input documents, but the rest seemed random, if not nonsensical. In my opinion, it was
a sign that the MBART model was underfitted. Still, some keyphrases could be derived
from the sequences - due to beam search’s nature, the beginning of each sequence contains
the words with the highest probability of appearing. Relying on that fact, I removed
the stopwords from each sequence and picked the first three words of the preprocessed
sequences as keywords. A few example results of this foray can be seen in Table 5.8.

Diverse Beam Search Manual Annotation

válka, Ukrajina, Rusko Rusko, ropa, plyn, uhlí, suroviny, Komodity, válka
na Ukrajině, Evropa, Evropská unie, Čína, indie, ply-
novod

dohoda, ochrana, hospodářský České dráhy, Brusel, Poplatek, Evropská komise,
Martin Krupka, ODS, elektřina, peníze

Tesla, Motors, Dolar burza, jedovatá pilulka, Elon Musk, peníze, Twitter,
Dolar, akcie, Tesla Motors

New York, Industrial, Brooklyn ForMen, móda, hudba, rap, New York, Harlem,
Bronx

Table 5.8: The keywords generated with diverse beam search (left column) and the sets of
human-produced keywords/tags (right column).
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Chapter 6
Conclusion

The ultimate ambition of this thesis was to transform topic detection across large Czech
corpora into an agile and smooth operation. The first phase included extensive research
of state-of-the-art text clustering methods and keyword extraction techniques as a way
to provide succinct descriptions of texts. For me to practically test those theoretical
approaches, two distinct datasets were needed. The first one contained Czech tweets
scraped from Twitter and the second one provided by the Czech News Center enclosed
tagged articles of the titles “E15”, “Živě” and “Reflex”.

First, I employed Latent Dirichlet Allocation to discover the underlying topics of the
Twitter dataset. A good coherence score was measured, and the most prominent topics
seemed well-defined. Upon closer inspection, however, the rest of the detected topics were
not as coherent and straightforward to interpret. Next, I decided to experiment with
an alternative approach: instead of uncovering the hidden topics, I vectorized the tweets
and performed K-Means clustering on their embeddings. As a result, the Twitter posts
were grouped based on a shared theme, and the final clusters were consistent, logically
structured and of decent size. It has to be noted though that due to the nature of the
K-Means algorithm, each tweet is assigned to exactly one cluster, even though it may
pertain to more than one topic. This shortcoming aside, K-Means yielded way more
useful results than LDA.

After acquiring the clusters of related tweets, I wanted to reveal their topics automat-
ically and obtaining the keywords of each cluster was a feasible method to do so. The
first experiments I undertook relied on statistical features to extract keywords from the
clusters. The two variations, TF-IDF word ranking and KeyBERT extraction, proved to
be adequate strategies of comparable quality: the sets of keywords were semantically some-
what homogenous but informative enough for the topic to be inferred. Next, I tried my
hand at graph-based algorithms. The nodes with the highest degree definitely contained
the words most relevant to the text. Those words were then merged into longer phrases,
and while some questionable combinations were formed, many phrases did indeed enhance
the topic comprehension. Generating keywords not necessarily present in the documents
was an even more arduous task. Staying in the realm of unsupervised methods, I tried to
find the nearest neighbours of already extracted keywords. The results, however, consisted
either of different grammatical forms of the same word or synonyms, which failed to bring
diversity. Switching to supervised learning, I used the annotated CNC dataset to train a
transformers model, MBART, to generate keyphrases for Czech texts. From a semantic
point of view, the words selected by the model did, in fact, represent the clusters’ themes;
still, it has certain limitations - the model only predicts one keyword per document. To
overcome this issue, I integrated diversity beam search into the generation process and
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6. Conclusion...........................................
managed to produce longer sequences the beginnings of which turned out to be very useful.

Testing the limits further is what I plan to pursue in my future work. Assembling an
even more extensive training set of manually annotated documents can vastly improve
and develop the undeniable potential shown by the trained MBART model combined with
diversity beam search. Not experimenting with other models would be a massive oversight
on my part as well - Maarten Grootendorst’s BERTopic, for example, is certainly intriguing
and should be evaluated on Czech data.
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Appendix A
LDA Results

LDA Extracted Topics Example

Cluster ID Top Words

0 ’návrh’, ’schválit’, ’člověk’, ’místo’, ’hlásit’, ’očkovací’, ’volný’, ’zákon’
8 ’podpora’, ’změna’, ’platit’, ’trh’, ’obec’, ’stále’, ’pracovat’, ’kontrola’,

’žádný’
17 ’podnikatel’, ’město’, ’konec’, ’tunel’, ’iDNEScz’, ’policista’, ’solární’, ’Jan’,

’prostřednictví’
89 ’500’, ’navíc’, ’příští’, ’zpráva’, ’týden’, ’nízký’, ’platba’, ’přinést’, ’nadále’
154 ’svůj’, ’tisíc’, ’hodně’, ’velký’, ’kdy’, ’vycházet’, ’srovnání’, ’pan’, ’přilepšit’
672 ’stát’, ’začít’, ’evropský’, ’jednání’, ’spojený’, ’politický’, ’echo24’, ’pom-

sta’, ’dohromady’
1064 ’moci’, ’procento’, ’jednat’, ’hodina’, ’smlouva’, ’výsledek’, ’tisíc’, ’schůzka’,

’září’
1996 ’český’, ’dva’, ’dělat’, ’dráha’, ’poprvé’, ’ministerstvo’, ’mio’, ’investovat’,

’kdy’
2903 ’miliarda’, ’koruna’, ’program’, ’letos’, ’celkem’, ’přitom’, ’rada’, ’čerpat’,

’projednat’
4365 ’tenhle’, ’proti’, ’růst’, ’daňový’, ’chodit’, ’držet’, ’francouzský’, ’ukazovat’,

’příjem’
5528 ’díky’, ’2020’, ’dobrý’, ’situace’, ’velmi’, ’celkový’, ’dojít’, ’zdravotnictví’,

’navýšení’
7011 ’chtít’, ’všechen’, ’zástupce’, ’myslit’, ’2013’, ’potkat’, ’sestra’, ’Belgie’,

’dluh’
12087 ’psát’, ’říci’, ’rodina’, ’tvůj’, ’hned’, ’těšit’, ’sedět’, ’pozvat’
14863 ’teď’, ’nikdy’, ’úřad’, ’operátor’, ’výkup’, ’vyhrát’, ’vědět’, ’ktorý’, ’2002’

Table A.1: Examples of topics defined by the Latent Dirichlet Allocation.
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Appendix B
K-Means Cluster Example

Example of a Cluster Produced with K-Means

The following cluster was used to generate the exapmple sets of extracted keywords in the
experiments described in Chapeter 5.

Figure B.1: Cluster produced by K-means containing eleven tweets.
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Appendix C
MBART Token Length

Token Length Distribution of the CNC Dataset

Figure C.1: Token length distribution of the Reflex articles.

Figure C.2: Token length distribution of the Živě articles.
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Appendix D
Acronyms

BERT Bidirectional Encoder Representations from Transformers

BOW Bag Of Words

CNC Czech News Center

KEA Keyphrase Extraction Algorithm

LDA Latent Dirichlet Allocation

ML Machine Learning

NLP Natural Language Processing

POS Part Of Speech

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SBERT Sentence-BERT

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency
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Appendix E
Repository Structure

Description of Enclosed Repository

korladia_NLP_BP.zip.................................................repository file
preprocessing.py......................preprocessing script and utility functions
LDA ..................................... LDA implementation folder (Section 4.1)

lda.py............................................LDA implementation script
lda.ipynb......................................LDA notebook with examples

K-Means.............................K-Means implementation folder(Section 4.2)
kmeans.py....................................K-Means implementation script

Keyword_Extraction...................keyword extraction implementation folder
keyword_extraction_BERT.py...........KeyBERT keyword extraction script
(Section 5.2)
keyword_extraction_graph.py........graph-based keyword extraction script
(Section 5.3)
keyword_extraction_TFIDF.py............TF-IDF keyword extraction script
(Section 5.1)

Keyword_Generation..................keyword generation implementation folder
summarization_train.py ............... MBART training script (Section 5.5)
summary_run_args....command line arguments for running the training script

kmeans_keywords.ipynb ........ K-Means and keyword extraction notebook with
examples
czech_stopwords.txt ......................... contains a list of Czech stopwords
tweets_new.csv............................................Czech tweets dataset
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