
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Operating-Room Scheduling Modeled as a
Non-Cooperative Game

Ondřej Tkadlec

Supervisor: Doc. Ing. Přemysl Šůcha, Ph.D.
May 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474419 Osobní číslo:Ondřej Jméno:Tkadlec Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Datové vědy Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Rozvrhování chirurgických operaci modelované jako nekooperativní hra

Název diplomové práce anglicky:

Operating-room scheduling modeled as a non-cooperative game

Pokyny pro vypracování:
Effective decision-making in the operating room department is hampered due to conflicting interests of stakeholders. The
aim of this thesis is to study a multi-agent scheduling problem to distribute the available operating room time between
surgeons, which is interrelated with the planning of surgical cases. The assignment defines the following tasks:
1) analyze the data on the performed surgical operations,
2) review the existing literature,
3) design and implement the scheduling algorithm,
4) benchmark the algorithm on synthetic and on real data and compare it with existing approaches using the price of
anarchy and price of stability

Seznam doporučené literatury:
[1] Šůcha, P., Agnetis, A., Šidlovský, M., and Briand, C. (2021). Nash equilibrium solutions in multi-agent project scheduling
with milestones. European Journal of Operational Research, 294(1):29–41.
[2] Milicka, P., Šůcha, P., Vanhoucke, M., and Maenhout, B. (2022). The bilevel optimisation of a multi-agent project
scheduling and staffing problem. European Journal on Operational Research, 1(296):72–86.
[3] Agnetis, A., Coppi, A., Corsini, M., Dellino, G., Meloni, C., and Pranzo, M. (2014). A decomposition approach for the
combined master surgical schedule and surgical case assignment problems. Health Care Management Science, 17(1):49–59.
[4] Savva, N. and Keskinocak, P. (2019). A review of the healthcare-management (modeling) literature published at
Manufacturing and Service Operations Management. Manufacturing and Service Operations Management, 22(1):59–72.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Přemysl Šůcha, Ph.D. katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 20.02.2023

Platnost zadání diplomové práce: 16.02.2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Přemysl Šůcha, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to express my sincere grati-
tude to my supervisor Doc. Ing. Přemysl
Šůcha, Ph.D. for his invaluable guidance,
encouragement and time spent during our
cooperation. His expertise and constant
feedback have been instrumental in shap-
ing my thesis.

I would also like to extend my heartfelt
thanks to my family for their unwavering
love and support. Their constant encour-
agement and belief in me have been a
source of strength and motivation.

Last but not least, I want to thank my
girlfriend for her patience, understanding
and encouragement during this challeng-
ing journey.

I am grateful for the support and en-
couragement of these individuals, without
whom this thesis would not have been
possible.

Declaration
I declare that I worked on this thesis

independently and that all sources of in-
formation used in this thesis have been
duly acknowledged.

Furthermore, I confirm that I have ad-
hered to the ethical principles governing
academic research.

In Prague, May 20, 2023

v

Abstract
This diploma thesis deals with problem
of multi-agent operating room schedul-
ing. The goal is to assign available
operating room blocks to surgeons and
simultaneously assign patients to these
blocks. Even though the head of surgeon
group and individual surgeons can be both
looked upon as stakeholders with conflict-
ing objectives, they are together responsi-
ble for surgery planning. The hierarchical
nature of the problem motivates the use
of bilevel optimization.

The problem can be grasped as a non-
cooperative zero-sum game, because no
surgeon can improve his objective without
worsening the objective of other surgeons
(removing the OR time). Two ways to
tackle this problem are proposed. Firstly,
the problem is formulated as an integer
linear program (ILP). In the second ap-
proach, a dedicated branch-and-price al-
gorithm is proposed. In addition, we per-
form a data analysis of a real-life dataset
provided by University Hospital of Hradec
Králové and an artificial (publicly avail-
able) dataset.

In the computational experiments, the
integer linear program and the branch-
and-price are validated under different
scenarios, parameters and with various
speed-up mechanisms. Finally, the algo-
rithm is tested on the artificial and the
real-life dataset.

Keywords: Operating room scheduling,
Bilevel optimazation, Integer linear
programming, Branch-and-price

Supervisor: Doc. Ing. Přemysl Šůcha,
Ph.D.
Technická 2
160 00 Praha 6

Abstrakt
Tato diplomová práce se zabývá problé-
mem rozvrhování chirurgických operací.
Cílem je přiřadit dostupné bloky operač-
ních sálů chirurgům a současně přiřadit
pacienty do těchto bloků. I když vedoucí
chirurgů a jednotliví chirurgové mohou
být považováni za zainteresované strany s
protichůdnými cíli, společně jsou zodpo-
vědní za plánování operací. Tahle hierar-
chická povaha problému motivuje použití
dvouúrovňové optimalizace.

Problém lze chápat jako nekooperativní
hru s nulovým součtem, protože žádný chi-
rurg nemůže zlepšit svoji výplatní funkci,
aniž by zhoršil výplatní funkci ostatních
chirurgů. Pro tento problém byly navrženy
dva algoritmy. V prvním je problém for-
mulován jako celočíselný lineární program.
Druhý algoritmus je dedikovaný branch-
and-price. Dále je provedena datová ana-
lýza z dat poskytnutých Fakultní nemoc-
nicí Hradec Králové a umělého (veřejně
dostupného) datasetu.

Ve výpočetních experimentech je porov-
nán celočíselný lineární program a branch-
and-price v různých scénářích, s různými
parametry a různými mechanismy zrych-
lení. Nakonec je algoritmus otestován na
reálných i umělých datech.

Klíčová slova: Rozvrhování operací,
Dvouúrovňová optimalizace, Celočíselné
lineární progrmování, Branch-and-price

Překlad názvu: Rozvrhování
chirurgických operaci modelované jako
nekooperativní hra

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Contribution 2
1.3 Outline . 2
2 Related work 5
2.1 Surgery Planning 5
2.2 Bilevel Optimization 6
3 Branch and Price 9
3.1 Overview and Motivation 9
3.2 Algorithm Description 10
4 Problem Statement 13
4.1 Characteristics and Parameters . 13
4.2 Assumptions 15
5 Integer Linear Programming
Model 17
5.1 Mathematical Formulation of ILP

Model . 17
5.1.1 Variables 17
5.1.2 Constraints 17
5.1.3 Leader’s Problem 18
5.1.4 Follower’s Problem 18

5.2 Lazy Constraints 19
5.2.1 Objective Value Based Lazy

Constraint . 20
5.2.2 Assigned Patients Based Lazy

Constraint . 20
6 Branch And Price Model 21
6.1 Dantzig-Wolfe Decomposition . . 21

6.1.1 Master Problem 22
6.1.2 Dual Master Problem 22
6.1.3 Subproblem 23

6.2 Lazy Constraints 25
6.2.1 Objective Value Based Lazy

Constraint . 25
6.2.2 Assigned Patients Based Lazy

Constraint . 25
6.3 Initial Columns 26

6.3.1 Initial Heuristics 26
6.4 Lazy Constraint Remembering . 29
6.5 Branching 29
6.6 Dummy Pattern 31
7 Data Analysis 33
7.1 CHOIR Dataset 33

7.2 Data from University Hospital of
Hradec Králové 34

8 Experimental Results 37
8.1 Implementation 37
8.2 Computational Results 38

8.2.1 Comparison of
Branch-and-Price and ILP Model 38

8.2.2 Impact of Speed-Up
Mechanisms 42

8.2.3 Game-Theoretical Approach . 43
9 Conclusion 47
Bibliography 49

vii

Figures
2.1 Three levels of OR scheduling.

Figure taken from (Abdelrasol et al.,
2013) . 5

3.1 Diagram of branch-and-price
algorithm. Adapted from (Ponboon
et al., 2016) . 11

4.1 All possible blocks in day d = 0 . 14

6.1 Search tree of a branch-and-price. 30

7.1 Comparison of TOP 5 distributions
for different specializations 36

8.1 Project’s folder structure 38
8.2 Gantt chart for schedule with one

operating room. 40
8.3 Gantt chart for schedule with four

operating rooms. 41

Tables
7.1 Instance characteristics averaged

per load . 34
7.2 Distributions’ p-values for different

specializations 35
7.3 Real-life data characteristics per

specialization 35

8.1 Benchmark comparison for small
instances . 39

8.2 Benchmark comparison for large
instances . 40

8.3 Comparison of speed-up
mechanisms on the CHOIR dataset. 42

8.4 Comparison of speed-up
mechanisms on the real-life dataset. 43

1 Benchmark comparison between
different solution approaches and lazy
constraints. 53

2 The efficiency of obtaining the
equilibrium solution. 54

viii

Chapter 1
Introduction

1.1 Motivation

Efficiency of operating room (OR) utilization has been of high interest in recent
decades. Operating rooms are the most costly out of all facilities in a hospital,
comprising of up to 33 % of a hospital’s expenditure (Macario et al., 1995).
However, OR scheduling is a complex task that involves multiple factors, such
as surgical priorities, surgeon availability and patient characteristics, making
it a challenging problem that requires careful consideration and planning.
The effective utilization of operating rooms leads to both increasing the
revenues by the number of treatments/surgeries carried out and decreasing
the costs by reducing idle time between patients. In real life environment,
schedules are created in ad hoc, often very ineffective manner, which may
lead to underutilization and discontent with the schedule from all parties
involved.

Additionally, the decision-making may be impeded due to conflicting inter-
ests of stakeholders. To tackle this problem, a bilevel approach is typically
used. Each level/stage has different objective and the corresponding solution
is passed to the next level as a constraint, creating a final solution. This solu-
tion can be understood as an agreement of both sides. In our case, the central
authority is a head of the surgical department, also referred to as the head of
surgeons or the leader, whose objective is to maximize the OR utilization and
the number of patients treated, possibly weighted by individual priorities of
each patient. These priorities take into consideration such aspects as waiting
time, duration or revenue of individual cases. Other stakeholders are the
individual surgeons, also referred to as the followers. Surgeon’s objective is to
assign such patients so that it complies with his objective, which is typically
different from the leader’s one. The surgeons are assumed to behave in a
selfish way, meaning that they do not care about the utilization from the
leader’s perspective.

All these factors motivate us to create a bilevel framework for OR scheduling,
which takes interests of all agents into consideration.

This thesis is a collateral work to the paper (Maenhout et al., 2023), of
whom the author of this thesis is part. The notation, models and experiments
are patterned after the paper.

1

1. Introduction
1.2 Contribution

In this thesis, we concentrate on multi-agent OR scheduling through block
assignment framework. The leader creates and distributes OR blocks, which
are defined by starting time and length. Within these OR blocks, individual
surgeons strive to stack patients. In the thesis, we focus on short-term
scheduling, which is typically a time horizon of one or two weeks. The leader
has access to a list of patients and their characteristics: what surgeon they
belong to and their duration. Another characteristics of a patient are his
priorities. In general, we assume two types of priorities per patient - leader’s
priority (sometimes called penalty for not performing operation of the patient)
and follower’s priority. If these are not provided, they can be consider equal
for all patients or for testing purposes, we can determine them randomly.

Below, the main contributions of the thesis are listed:.We formally define the problem of OR scheduling with respect to our
case..We introduce an integer linear programming (ILP) model that serves to
address our problem as a baseline solution..We design and implement a dedicated branch-and-price algorithm to
solve our problem and outperform ILP model in specific cases..We use lazy constraints to ensure bilevel optimality of our solution..We present several speed-up techniques in order to improve the perfor-
mance and computational time.. Experiments are run on a real dataset (artificial data are used as well).

1.3 Outline

The thesis is organized in the following way. In section 2, we discuss relevant
literature related to OR scheduling and bilevel optimization. The general
branch-and-price algorithm and his fundamentals (master problem, pricing
problem, column generation) are described in section 3. The problem is
formulated in section 4, where we present various attributes, parameters and
assumptions. Integer linear programming model is formulated in section 5.
We introduce variables and constraints used in ILP. First, a mathematical
model of the leader’s problem is presented followed by the follower’s problem.
The concept of callback functions is introduced together with two types of
lazy constraints. The main branch-and-price algorithm is presented in section
6. We first formulate the Dantzig-Wolfe decomposition including master
problem, dual master problem and subproblem along with variables and
constraints used within the model. Then, we alter the lazy constraints from
ILP to suit the branch-and-price definition. In this section, we also generate
initial patterns. We first show the empty patterns, then an initial heuristic is

2

....................................... 1.3. Outline

presented to generate more sophisticated initial columns. At the end of the
section, we discuss a speed-up technique called lazy constraint remembering
and finally, we emphasize the importance of dummy pattern generation. In
section 7, we analyse the data from University Hospital of Hradec Králové.
We verify that they satisfy some characteristics and assumptions stated in
the literature. Experimental results are presented in section 8.

3

4

Chapter 2
Related work

2.1 Surgery Planning

The topic of surgery planning (OR scheduling) has been widely studied over
the past years. The motivation is simple - OR facilities are the biggest source
of revenue and cost (Association et al., 2003). The problem became even
more popular during the COVID-19 pandemic (Momeni et al., 2022). Similar
problem of integrated recovery room planning and scheduling during the
pandemic was studied in (Chaieb et al., 2022).

Operating room scheduling is often approached on three levels: strategic
(long-term), tactical (medium-term) and operational (short-term) (Rahimi
and Gandomi, 2020). These three levels are more described in (Maenhout
et al., 2023).

Figure 2.1: Three levels of OR scheduling. Figure taken from (Abdelrasol et al.,
2013)

Authors in (Wullink et al., 2007) examined the best way to reserve OR time
for emergency surgery. They used two approaches of reserving capacity. First,
concentrating all reserved OR capacity in dedicated emergency operating

5

2. Related work.....................................
rooms, and second, evenly reserving capacity in all elective operating rooms.
In this thesis, the emergency surgeries are omitted.

Many papers study the problem of surgeon-block assignment and patient
scheduling separately. Some papers take into consideration the preferences
of surgeons or other staff (Meskens et al., 2013)(Ahmed and Ali, 2020).
OR scheduling and planning where blocks are assigned to surgeons and
patients/surgical cases are planned within each OR block during weekly time
horizon is discussed in (Mazloumian et al., 2022)(Huele and Vanhoucke, 2014).

Whereas this thesis assumes deterministic parameters such as duration
of the patient’s surgery, other papers approach the problem in stochastic
way through simulations (Persson and Persson, 2009)(Jebali and Diabat,
2015). As for the exact and heuristic methods, applications of mixed integer
linear programming are very common (Maaroufi et al., 2016)(Ma et al., 2022).
Column generation method has also been popular amongst authors in order
to efficiently find surgery schedules (Doulabi et al., 2016)(Kamran et al.,
2020). In (Ahmed and Ali, 2020), the authors propose a branch-and-price
algorithm with different speed-up techniques. Branch-and-price is also used
in (Cardoen et al., 2009), where authors compare their algorithm with mixed
integer linear programming solution and examine several branching strategies.
They also use speed-up techniques e.g. Lagrangian bound, initial heuristics
and column elimination.

As there are hundreds of papers regarding OR scheduling and planning
in different forms, we refer to some overview papers (Harris and Claudio,
2022)(Cardoen et al., 2010)(Zhu et al., 2018).

2.2 Bilevel Optimization

Bilevel optimization is a special type of optimization that models real-world
problems with two decision-makers (in game theory often called agents), who
have a hierarchical relationship and possibly conflicting interests. In this sense,
this framework can be look upon as a Stackelberg game (Von Stackelberg,
2010). The Stackelberg game includes two types of players - a leader and a
follower/followers. In our case, the head of surgeons (leader) is in the upper
level of hierarchy whereas the individual surgeons (followers) are in the lower
level. The leader makes a decision that is passed onto the followers. Then,
the followers react and send their responses back to the leader, who can
eventually adjust his decision. As for the complexity, bilevel optimization is
known to be strongly NP-hard (Hansen et al., 1992).

The applications of bilevel optimization are vast. In (Whittaker et al.,
2017), authors deal with an environmental issue. The leader is an agency
that has environmental objectives and the followers are producers who try
to maximize their profit. In another example, authors in (Sinha et al.,
2013) discuss the problem of designing a tax policy. The leader in this case
is the regulating authority, and it tries to maximize its total tax revenue
over multiple periods while trying to minimize the environmental damages
caused by a mining company. The follower is the mining company whose

6

................................. 2.2. Bilevel Optimization

sole objective is to maximize its total profit over multiple periods under
the limitations set by the leader. Other applications of bilevel optimization
regard e.g. toll setting problem (González Velarde et al., 2015), chemical
industry (Clark and Westerberg, 1990) and defense industry, where often a
attacker/defender (leader/follower) Stackelberg game is considered (Scaparra
and Church, 2008)(Brown et al., 2006).

There are several methodologies to solve bilevel optimalization problems. In
(Bard and Moore, 1992), authors claim that some fathoming rules of branch-
and-bound algorithm used in mixed integer linear programming cannot be
applied in the bilevel context, like fathoming when the relaxed subproblem
is worse than the value of the incumbent solution or fathoming when the
solution of the relaxed subproblem is feasible for the mixed integer linear
problem. Another method for solving bilevel problems with integer variables
in the upper level is via Benders decomposition (Saharidis and Ierapetritou,
2009). Recent paper (Milička et al., 2022) suggests solving bilevel problems
by combining mathematical programming and lazy constraint generation.
When an integer solution is found, the optimality of follower’s problem is
checked. Lazy constraints are added via callback functions.

7

8

Chapter 3
Branch and Price

3.1 Overview and Motivation

Branch and price (branch-and-price) is an algorithm of combinatorial op-
timization for solving integer linear programming and mixed integer linear
programming problems. It’s an extended version of the branch-and-bound
algorithm that is common for solving ILP problems. Branch-and-price is
suitable for problems that contain huge number of variables, typically a num-
ber that is exponential relative to the input needed to describe the original
problem.

As stated in (Easton et al., 2004), there are several reasons why an ILP
formulation with a high number of variables may be convenient in comparison
to the conventional compact formulation when the solution methodology is
LP-based branch-and-bound. First, branch-and-bound effectiveness is highly
dependent on the strength of the LP relaxation. Weak LP relaxations lead
to excessive branching and long computational times. By allowing a huge
number of variables, we can often create formulations that give stronger LP
bounds. Second, huge formulations can encapsulate difficult modeling issues
in the definition of the variables.

For instance, our basic ILP formulation of OR scheduling problem involves
two variables and high number of constraints. If a variable for every feasible
schedule is created, the final formulation of the master problem is much
simpler with only one variable and lower number of constraints.

On the other hand, the number of possible OR schedules is huge. Branch-
and-price doesn’t use all of these variables, but starts with only a small subset
of the feasible columns in order to reduce the computational and memory
requirements. Columns are generated and added to the model throughout the
search tree to find an optimal solution to the full integer program. That is why
branch-and-price is a hybrid of branch-and-bound and column generation.

9

3. Branch and Price
3.2 Algorithm Description

The original problem is typically reformulated (e.g. by using Dantzig-Wolfe
decomposition) into a master problem and a subproblem. Switching between
the master problem and the subproblem until no new column with negative
reduced cost is found is called column generation. After the column generation
is finished, the integrality of the solution is checked. If the solution is integral
and its objective value is better than the incumbent solution, then a new
incumbent solution is set. If the integrality condition is fullfilled, the node is
fathomed. Otherwise, the algorithm branches. When there are no more nodes
to visit, the algorithm terminates and the optimal solution is the incumbent
solution.

The branch-and-price does not specify how to deal with branching strategy.
In our case, we branch over the surgeon-block assignment. In general, the
branching strategy may be arbitrary, but must be chosen with regard to
efficiency and computational time.

The master problem uses variables corresponding to individual columns.
The restricted master problem (RMP) contains only a small subset of columns.
The initial subset can be typically generated via some heuristics, or empty
columns can be added (in case of OR scheduling, for every surgeon we assign
no blocks). In branch-and-price algorithm, a LP relaxation of RMP is always
solved. Value of a variable indicates “how much” the column has been
selected. When the master problem is solved, the dual variables are used
in the subproblem to determine the optimality of the solution. There are
usually very few constraints in the master problem as most the constraints
are built in the columns generated in the subproblem.

The subproblem (also pricing problem) serves to add columns to the master
problem or decide that no new columns can be added. If we can generate a
column with negative reduced cost (in case of minimization problem), such
column is appended to the basis and the master problem is reoptimized.
Multiple columns can be generated and added per iteration. In our problem,
the subproblem is solved for each surgeon s ∈ S independently, meaning that
up to |S| new columns can be added per iteration. In experiments 8, we
compare different speed-up mechanisms. One of them is adding single or
multiple patterns per iteration.

In each node of the search tree, we perform an algorithm called column
generation. As stated earlier, column generation takes an initial set of
columns and tries to generate new columns that would enter the basis for
RMP. In our case, if we fail to generate at least one new column for any of
the surgeons, the algorithm stops. The column generation is explained in the
pseudocode below.

10

.................................3.2. Algorithm Description

Algorithm 1 Column Generation function with initial columns K

function ColumnGeneration(K)
repeat

dualV alues← masterProblem(K)
columnsGenerated, newColumns← subproblem(dualV alues, K)
K ← K ∪ newColumns

until columnsGenerated is True
return K

In the next figure is a flowchart that represents a general branch-and-price
algorithm.

Figure 3.1: Diagram of branch-and-price algorithm. Adapted from (Ponboon
et al., 2016)

11

12

Chapter 4
Problem Statement

The problem is characterized as OR scheduling on an operational level,
meaning we seek to obtain an bilevel optimal solution by assigning blocks to
surgeons and patients to blocks. An OR block is defined by its start time,
end time and the day it is executed. The OR blocks can also be designed
with regard to the number of the operating room. It means that an OR block
is tied to a specific operating room.

The decision-making within the OR scheduling has a hierarchical struc-
ture, which can be thought of as a non-cooperative Stackelberg game. The
participants in this game are the head of surgeons, who is hierarchically
higher-ranked, and the individual surgeons, who are lower-ranked. The sur-
geon head is in charge of the scheduling and allocation of OR capacity to
the individual surgeons, whereas the individual surgeons are concerned with
creating their patient schedule given the allocated capacity.

4.1 Characteristics and Parameters

The head of surgeons considers a short-term surgery schedule, that is typically
planned for 1 week (5 working days) or 2 weeks (10 working days). The time
horizon contains a set of days D. We consider a specialized surgeon group
(certain discipline) that is composed of a set of surgeons S. Each surgeon
s ∈ S has a set of patients Ps in his waiting list that he wants to schedule in
the upcoming time horizon. The set of all the patients is denoted by P . It is
essential to set a time granularity for this problem. We set this parameter to
be a quarter of an hour, meaning all durations of a surgery must be a multiple
of 15 minutes. The surgeons can operate in a set of operation rooms R. Given
the scheduling time horizon, we can create a set of blocks B (index b), which
are defined by start time, end time and the day they are executed. The start
and end time determine the block’s length (also referred as duration) Db that
has to be a positive integer. For our problem, we consider all operating rooms
to be accessible for 8 hours a day. Given the time granularity of 15 minutes,
the length of a day is 32 time units. It is also the length of the longest block.
A block’s time granularity is 2 hours, so a block can start at times 0, 8, 16,
24 and it can terminate at times 8, 16, 24, 32 (note that block’s length must
be strictly positive). At any time t and day d, we can find overlapping blocks.

13

4. Problem Statement
This set is denoted as Odt. For further applications, we establish a set of all
blocks on day d as Bd.

Next figure is an illustration of all blocks on day d = 0. In other words,
it represents a set Bd=0. Only one room is considered in this example and
there are 10 blocks in total. To facilitate the demonstration of overlapping
blocks at d = 0 and t = 16, the vertical red dashed line has been added into
the figure. All blocks that either start or are in process on this day and time
belong to the Od=0,t=16 set. Whether block b is in process on day d and time
t is also defined by a binary parameter sbdt.

Figure 4.1: All possible blocks in day d = 0

Individual patients also have their parameters. Each patient’s p surgery is
expected to last δp. Both the head of surgeons and the surgeon of the patient
p perceive differently how important is to perform the patient’s surgery. From
the leader’s point of view, the priority can be looked upon as penalty for not
performing the surgery. We denote this priority as prLP

p ∈ R. The follower
receives a reward πp ∈ R for performing a surgery of the patient p.

Leader’s objective is composed of two terms. The first one tries to minimize
the idle time within the blocks allocated to the surgeon group, which corre-
sponds to maximizing the OR utilization. The second term is the priority
penalty associated with patients that are not assigned in the surgical case
planning. We can opt for prioritizing one of these terms over the other,
which is done by scaling the term by constants α and β. By default, these

14

.....................................4.2. Assumptions

constants are equal. We also introduce overall capacity of operating rooms
C = |R| × |W | × 32 (length of a day is 32). The leader can choose not to
assign any blocks to certain surgeons. This may be perceived as unfair from
the surgeon’s perspective. For this reason, there can be a common agreement
that a surgeon must be assigned at least m blocks. By default, this parameter
is set to zero. It is presupposed that the overall capacity of all patients
available for the schedule is higher than the capacity of operating rooms. The
ratio of the sum of duration of all patients and the overall capacity is referred
to as load.

load =
∑

p∈P δp

C

All parameters with their indexes are summarized in a table below.

Parameter Meaning

s ∈ S surgeons

p ∈ P patients

p ∈ Ps patients of surgeon s (P = ⋃
s∈S Ps)

d ∈W days in a week

t ∈ T possible start times of a block in a day

r ∈ R available operating rooms

b ∈ B blocks

b ∈ Bd available OR blocks in day d (B = ⋃
d∈W Bd)

l ∈ L set of all block durations

Odt ⊆ B set of blocks overlapping at time t on day d

Kl = |{b ∈ B : D(b) = l}| number of blocks having length l

δp > 0 surgery duration of patient p

πp ≥ 0 patient’s priority from surgeon’s perspective

prLP
p ≥ 0 patient’s priority from leader’s perspective

Db > 0 duration of block b

C overall capacity of operating rooms

α, β coefficients of the leader’s objective function

m minimum number of assigned block per surgeon

4.2 Assumptions

In this section, the general constraints and assumptions for the model are
formulated. These assumptions are later transformed into constraints in

15

4. Problem Statement
the ILP and branch-and-price model. The general assumptions are in the
following list...1. A block in certain room can only be assigned to at most one surgeon...2. Assignment of blocks can only be in a consecutive manner...3. A surgeon can not be assigned into two different operating room in one

day...4. A patient can be operated only once...5. If a surgery started it can not be interrupted with other surgeries, or
transferred to another operating rooms.

16

Chapter 5
Integer Linear Programming Model

Solving the problem of OR scheduling through integer linear programming
has been widely studied for example in (Aringhieri et al., 2015) or (Li et al.,
2015). In this section, we will introduce variables and constraints related to
the model, followed by mathematical formulation of the model. For the sake
of bilevel optimization, we introduce a two stage approach that is based on
adding lazy constraints to the ILP model (Maenhout et al., 2023).

5.1 Mathematical Formulation of ILP Model

5.1.1 Variables

For the ILP model, we present three binary variables. In the leader’s problem,
the head of surgeons assigns OR blocks to individual surgeons and thus
determines the allocated capacity and the schedule for the individual surgeons.
Binary variable ysb equals 1 if block b is assigned to surgeon s and 0 otherwise.
Both the head of surgeons and the individual surgeons also try to assign
patients into these blocks (although with different objective). Thus, we
introduce variable xpb indicating that patient p is assigned to block b. In
order to make the final solution bilevel optimal, we define a variable qslk = 1
if surgeon s has k blocks of length l and 0 otherwise.. xpb ∈ {0, 1} patient p is allocated to block b (followers’ decision). ysb ∈ {0, 1} block b is assigned to surgeon s (leader’s decision). qslk ∈ {0, 1} the number of blocks of length exactly l assigned to surgeon

s is exactly k e.g. if a surgeon s is assigned 3 blocks of length 4, then
qs40 = 0, qs41 = 0, qs42 = 0, qs43 = 1, qs44 = 0, ...

5.1.2 Constraints

In this section, the general constraints for the model are formulated. Some of
the constraints can be derived directly from the assumptions in section 4.2.
The constraints, which are later expressed mathematically in describing the
ILP and branch-and-price model, are listed below.

17

5. Integer Linear Programming Model1. Capacity of operating rooms cannot be exceeded. At every time t and
day d, the maximum number of overlapping blocks that are scheduled
cannot be greater than the number of operating rooms...2. A surgeon can be assigned at most one block a day...3. A patient can be scheduled only once...4. Capacity of a block b assigned to surgeon s cannot be exceeded. Thus,
the overall duration of patients placed in the block b must not surpass
the block’s length...5. Every surgeon must have at least m blocks assigned.

5.1.3 Leader’s Problem

min α(C −
∑
p,b

δpxpb) + β
∑
p∈P

prLP
p (1−

∑
b∈B

xpb) (5.1)

s.t.

∀d ∈W, ∀t ∈ T :
∑

b∈Odt

∑
s∈S

ysb ≤ |R| capacity of ORs (5.2)

∀s ∈ S, ∀d ∈W :
∑

b∈Bd

ysb ≤ 1 a surgeon can be assigned
at most one block a day (5.3)

∀s ∈ S :
∑
b∈B

ysb ≥ m
the minimum number of
the assigned blocks (5.4)

∀s ∈ S, ∀l ∈ L :
|W |∑
k=0

kqslk =
∑

b∈B: Db=l

ysb
first auxiliary
constraint

(5.5)

∀s ∈ S, ∀l ∈ L :
|W |∑
k=0

qslk = 1 second auxiliary constraint (5.6)

∀p ∈ P :
∑
b∈B

xpb ≤ 1 a patient can be scheduled
only once (5.7)

∀s ∈ S, b ∈ B :
∑

p∈Ps

δpxpb ≤ Dbysb

capacity of the block b
assigned to surgeon s
cannot be exceeded

(5.8)

5.1.4 Follower’s Problem

In the follower’s problem, it’s necessary to create a set of blocks assigned to
surgeon s in the leader’s problem. We will refer to this set as BAs. We will
also use variable x′

pb in order not to confuse it with xpb from leader’s problem.

BAs = {b ∈ B : ysb = 1} (5.9)

18

................................... 5.2. Lazy Constraints

Then we define the follower’s problem as follows:

∀s ∈ S : max foptim
s

follower’s objective for surgeon
s ∈ S

(5.10)

s.t.

∀s ∈ S : foptim
s =

∑
p∈Ps

πp

∑
b∈BAs

x′
pb

profit of surgeon
s ∈ S

(5.11)

∀p ∈ P :
∑

b∈BAs

x′
pb ≤ 1 a patient can be scheduled

only once (5.12)

∀s ∈ S, b ∈ BAs :
∑

p∈Ps

δpx′
pb ≤ Db

capacity of the block b
assigned to surgeon s
cannot be exceeded

(5.13)

5.2 Lazy Constraints

Whereas the leader’s problem is addressed in the main ILP model, the
follower’s problem is solved in a callback function. Callbacks are called
whenever an event occur, e.g. an integer solution is found. They are available
in most of modern MILP solvers.

In section 5.1.3, two more constraints appear in comparison with the
constraints in section 5.1.2. Constraint 5.5 assure that the variable qslk

contains exact information about the number of blocks of length l surgeon s
has been assigned. The second constraint ensures that the number of blocks
of length l of surgeon s is unique. The upper index of the sum in both of the
constraints comes from the fact that each surgeon can be assigned at most
one block per day, so in the extreme case, he can be assigned at most |W |
blocks of one length.

In the callback, we first retrieve the integer solution from the leader’s
problem. We will further use the following notation:

. c - counter of solutions found by the ILP (the leader’s problem only)

. y
(c)
sb is the c-th surgeon-block allocation found by the leader’s problem

. x
(c)
pb is the c-th patient-block assignment found by the leader’s problem

. l ∈ L a set of possible block lengths

. n
(c)
sl = ∑

b∈BAs:Db=l
y

(c)
sb is the number of blocks of duration l assigned to

surgeon s related to solution c

We will present two types of lazy constraints, which are used to assure the
bilevel optimality.

19

5. Integer Linear Programming Model
5.2.1 Objective Value Based Lazy Constraint

First lazy constraint is based on comparing the value of the follower’s objective
function from both the leader’s (fs) and the follower’s (foptim

s) perspective.
After an instance of assigned blocks is generated by solving the leader’s
problem, each follower’s objective value foptim

s is found and compared to the
fs value in the current solution of the leader’s problem.

fs =
∑

p∈Ps

πp

∑
b∈BAs

x
(c)
pb (5.14)

If fs < foptim
s following lazy constraint is added:

∑
p∈Ps

πp

∑
b∈B

xpb + M ·

|L| −∑
l∈L

q
sln

(c)
sl

 ≥ foptim
s (5.15)

5.2.2 Assigned Patients Based Lazy Constraint

Second lazy constraint is based on forcing/imposing specific patients if surgeon
s is assigned particular set of blocks. As in the previous lazy constraint, we
compare the value of fs and foptim

s . If fs < foptim
s , we retrieve patients of

surgeon s assigned in the callback (follower’s problem) and call them PAs.

PAs = {p ∈ Ps :
∑

b∈BAs

x′
pb = 1} (5.16)

The idea is to force the patients p ∈ PAs into the schedule. It means that
whenever surgeon s is assigned the same composition of blocks (given by
variable qslk), he must assign the patients p ∈ PAs and must not assign the
patients p ∈ Ps \ PAs. The final lazy constraint is as follows:

∑
p∈P As

∑
b∈B

xpb −
∑

p∈Ps\P As

∑
b∈B

xpb + M ·

|L| −∑
l∈L

q
sln

(c)
sl

)

 ≥ |PAs| (5.17)

20

Chapter 6
Branch And Price Model

The main approach in this thesis for OR scheduling is the branch-and-price.
Even though the ILP formulation is more straightforward and is easier
to understand and implement, is has several drawbacks, especially on the
performance level.

6.1 Dantzig-Wolfe Decomposition

As stated in the section 3.2, the original model is reformulated using Dantzig-
Wolfe decomposition into the master problem and the subproblem (Maenhout
et al., 2023). We no longer use variables ysb and xpb in the problem statement,
but we introduce a new variable θk

s . In the master problem, θk
s is continuous

variable. The variable has the following meaning:

θs
k = 1⇔ schedule k of surgeon s is selected (6.1)

The schedule k of a surgeon s is a vector ok
s ∈ {0, 1}|B|. This vector is

generated in the pricing problem and appended to a list of the surgeon’s
columns. Variable θs

k only indicates, whether a column is selected, but does
not keep track of content of the column. For this purpose, we need to create
a parameter as

k,b ∈ {0, 1}.

as
k,b = 1⇔ block b is assigned to surgeon s in schedule k (6.2)

So the parameter as
k,b can be thought of as en element of a three-dimensional

entity, where the length of the first dimension s is fixed (constant number of
surgeons), the length of the second dimension k can vary (number of columns
for each surgeon changes) and the third dimension b is always of length |B|.

In addition, we need to introduce two more parameters for each pattern k
of surgeon s, parameter ∆k

s ∈ R and wk
s ∈ R. They will be explained later.

21

6. Branch And Price Model................................
6.1.1 Master Problem

In the master problem, the constraints regarding the individual columns are
omitted and are left for the subproblem. We only keep the constraint referring
to 5.2. Other constraints in the master problem concern the variable θk

s :..1. for each surgeon, the sum of θk
s over all columns must be greater than 1..2. every column must be non-negative

We also introduce a set Ks, which comprises all columns of surgeon s in the
current node. The formulation of the master problem is following:

min α(C −
∑
s∈S

∑
k∈Ks

θs
k∆s

k) + β
∑
s∈S

∑
k∈Ks

θs
kws

k (6.3)

≡ min
∑
s∈S

∑
k∈Ks

θs
k(βws

k − α∆s
k) (6.4)

s.t.

∀d ∈W, ∀t ∈ T :
∑

b∈Odt

∑
s∈S

∑
k∈Ks

θs
kas

k,b ≤ |R| (6.5)

∀s ∈ S :
∑

k∈Ks

θs
k ≥ 1 (6.6)

∀s ∈ S,∀k ∈ Ks : θs
k ≥ 0 (6.7)

6.1.2 Dual Master Problem

We convert the primal master problem to dual master problem by doing
several steps. First, if primal is a minimization problem, the dual becomes
a maximization problem. Second, every constraint in the primal becomes a
variable in the dual. Also every variable in the primal becomes a constraint in
the dual. In linear programming, we talk about strong duality. That means
that an optimal solution for the primal problem is also an optimal solution
for the dual problem.

In the dual master problem, two variables λdt and µs arise from the primal
problem from constraints 6.5 and 6.6 respectively.

max
∑

d∈W

∑
t∈T

|R|λdt +
∑
s∈S

µs (6.8)

s.t.

∀s ∈ S, ∀k ∈ Ks :
∑

d∈W

∑
t∈T

∑
b∈Odt

as
k,bλdt + µs ≤ βws

k − α∆s
k (6.9)

∀d ∈W, ∀s ∈ S, ∀t ∈ T : λdt ≤ 0 (6.10)
∀s ∈ S : µs ≥ 0 (6.11)

22

............................. 6.1. Dantzig-Wolfe Decomposition

6.1.3 Subproblem

The subproblem, also called the pricing problem, is used to generate new
columns. Unlike in the ILP formulation, the subproblem is solved for each
surgeon separately. In each iteration of column generation, up to |S| columns
can be added, one column per each surgeon. In experiments, we also run the
branch-and-price with only one column per iteration meaning that once a
column is added, the subproblem stops and master problem is reoptimized
again.

To represent a column that may enter the basis, we need to create a vector
o ∈ {0, 1}|B|. For this purpose, we define a new variable ob.

ob = 1⇔ block b is assigned to the surgeon in the current schedule (6.12)

In the subproblem, we also use variable xpb, where p ∈ Ps, because the
pricing problem is solved separately for each surgeon. For the same reason,
we introduce a modified variable qlk (we omit index s).

qlk = 1⇔ surgeon has exactly k blocks of length exactly l (6.13)

The absence of variable ysb leads to the following modifications of constraints
5.5 and 5.6 compared to the ILP model.

∀l ∈ L :
|W |∑
k=0

kqlk =
∑

b∈B: Db=l

ob (6.14)

∀l ∈ L :
|W |∑
k=0

qlk = 1 (6.15)

A column is added to the restricted master problem, if it has a negative
reduced cost. In order to compute the reduced cost, we need to retrieve
the value of dual variables λdt and µs or corresponding primal constraints
(thanks to strong duality). A schedule for surgeon s is added, if the following
condition is fulfilled:

∑
d∈W

∑
t∈T

∑
b∈Odt

obλdt + µs − βws + α∆s > 0 (6.16)

Expressions ∆s and ws are explained in the formulation of the subproblem,
which is below.

23

6. Branch And Price Model................................
for ∀s ∈ S solve:

max
∑

d∈W

∑
t∈T

∑
b∈Odt

obλdt − βws + α∆s (6.17)

s.t. ∑
b∈B

ob ≥ m (6.18)

∀d ∈W :
∑

b∈Bd

ob ≤ 1 (6.19)

∀l ∈ L :
|W |∑
k=0

kqlk =
∑

b∈B: Db=l

ob (6.20)

∀l ∈ L :
|W |∑
k=0

qlk = 1 (6.21)

∀p ∈ Ps :
∑
b∈B

xpb ≤ 1 (6.22)

∀b ∈ B :
∑

p∈Ps

δpxpb ≤ Dbob (6.23)

ws =
∑

p∈Ps

prLP
p (1−

∑
b∈B

xpb) (6.24)

∆s =
∑

p∈Ps

∑
b∈B

δpxpb (6.25)

Follower’s Problem

max foptim
s (6.26)

s.t.

∀p ∈ Ps :
∑

b∈BAs

x′
pb ≤ 1 (6.27)

∀b ∈ BAs :
∑

p∈Ps

δpx′
pb ≤ Db (6.28)

foptim
s =

∑
p∈Ps

πp

∑
b∈BAs

x′
pb (6.29)

w′
s =

∑
p∈Ps

prLP
p (1−

∑
b∈BAs

x′
pb) (6.30)

∆′
s =

∑
p∈Ps

∑
b∈BAs

δpx′
pb (6.31)

24

................................... 6.2. Lazy Constraints

The set BAs of blocks assigned to surgeon s is defined in a similar way as
in ILP model.

BAs = {b ∈ B : ob = 1} (6.32)

6.2 Lazy Constraints

We only want to add such columns that are optimal also from the follower’s
perspective. This will once again be achieved by adding lazy constraints to
the subproblem. The process of adding lazy constraints is similar as in section
5.2. Following changes are made:. o

(c)
b is the c-th block allocation found by the subproblem. n
(c)
sl = ∑

b∈BAs:Db=l
o

(c)
b the number of blocks of duration l assigned to

surgeon s related to solution c

6.2.1 Objective Value Based Lazy Constraint

The form of first lazy constraint is almost identical to 5.15. If fs < foptim
s

the following lazy constraint is added (value of fs is computed in the same
way as 5.14):

∑
p∈Ps

πp

∑
b∈B

xpb + M ·

|L| −∑
l∈L

q
ln

(c)
sl

 ≥ foptim
s (6.33)

6.2.2 Assigned Patients Based Lazy Constraint

In the second lazy constraint, we slightly alter the objective function of the
follower to

max foptim
s + 1

M
(α∆′

s − βw′
s)

The idea is to prioritize a patient-block assignment with better leader’s
objective in case more assignments have the same foptim

s value. In this case,
the big M is usually a large value e.g. M = 1000.

We obtain the set of patients assigned PAs in the subproblem the same
way as in 5.16. Then, if fs < foptim

s , we add the following constraint:

∑
p∈P As

∑
b∈B

xpb −
∑

p∈Ps\P As

∑
b∈B

xpb + M ·

|L| −∑
l∈L

q
ln

(c)
sl

)

 ≥ |PAs| (6.34)

25

6. Branch And Price Model................................
6.3 Initial Columns

In beginning of the branch-and-price algorithm, we require an initial set of
columns. The most easiest way to generate an initial column for each surgeon,
which would be bilevel feasible, is to create an empty column. Such column
would be represented by a zero vector of size |B| × 1. So at the start, a
three-dimensional array a with parameter as

k,b as an element would look like:

a =

s0

k0

0
0
0
...
0
0
0

,

s1

k0

0
0
0
...
0
0
0

, . . .

s|S|−2

k0

0
0
0
...
0
0
0

,

s|S|−1

k0

0
0
0
...
0
0
0

For every column k of surgeon s, we need to store values of ∆k

s and wk
s .

For empty patterns (denoted as k0), surgeons cannot schedule any patients
as they have no blocks assigned. It means that variable xpb will also be zero
for every (p, b) pair. Because of that, it’s simple to compute parameters ∆k0

s

and wk0
s .

∆k0
s =

∑
p∈Ps

∑
b∈B

δpxpb = 0 (6.35)

wk0
s =

∑
p∈Ps

prLP
p (1−

∑
b∈B

xpb) =
∑

p∈Ps

prLP
p (6.36)

6.3.1 Initial Heuristics

It this section, we present an initial heuristics, which creates non-trivial initial
columns for each surgeon. It is based on iterative adding of surgeon-block
assignments/pairs to the schedule (Maenhout et al., 2023). In the following
subsections, we will introduce the algorithm and we will also define several
auxiliary models.

Knapsack Model

In each iteration, we try to solve a knapsack problem with objective 6.37 and
constraint 6.38. The knapsack is solved for every surgeon s ∈ S and every
block length l ∈ L. A set P ′

s represents remaining patients of surgeon s who

26

....................................6.3. Initial Columns

have not yet been assigned. Variable xp signify that patient p is assigned.

min α(l −
∑

p∈P ′
s

δpxp) + β
∑

p∈P ′
s

prLP
p (1− xp) (6.37)

s.t. ∑
p∈P ′

s

δpxp ≤ l (6.38)

When the model is solved, we store two values corresponding to the (s, l)
pair: idle capacity ∆̄sl = (l −∑

p∈P ′
s

δpxp) and utilization function ūsl =∑
p∈P ′

s
prLP

p xp.

Surgeon-Block Assignment Model

This model assigns blocks to surgeons via variable ysb. The surgeon-block
assignments created in the previous iteration are stored in a set ϕ, which is
empty in the beginning of the algorithm. It also uses values from the knapsack
problem ∆̄sl and ūsl. The objective is similar to the leader’s objective 5.1.
We try to minimize the idle time and the priority penalty associated with
patients that are not yet included in the schedule. In addition, we prioritize
blocks, which start earlier. For this reason, we define parameter Tb for each
block as follows:

Tb = db × (|T |+ 1) + tb, (6.39)
where db and tb are day and start time of a block respectively.

Constraint 6.41 stipulates that the surgeon-block assignments made earlier
cannot be altered. We might require at least θ blocks to be scheduled in each
iteration (constraint 6.46). Furthermore, constraint 6.43 assures that at most
one block can be scheduled for surgeon s per iteration. Contraints 6.42, 6.44
and 6.45 come straight from the ILP model.

min
∑
s∈S

∑
b∈B

(α∆̄sDb
− βw̄′

sDb
+ Tb)ysb (6.40)

s.t.

∀(s, b) ∈ ϕ : ysb = 1 (6.41)
∀s ∈ S, ∀d ∈W :

∑
b∈Bd

ysb ≤ 1 (6.42)

∀s ∈ S :
∑

b∈B\ϕ

ysb ≤ 1 (6.43)

∀d ∈W, ∀t ∈ T :
∑
s∈S

∑
b∈Odt

ysb ≤ |R| (6.44)

∀s ∈ S :
∑
b∈B

ysb ≥ m (6.45)
∑
s∈S

∑
b∈B\ϕ

ysb ≥ θ (6.46)

∀s ∈ S,∀b ∈ B : ysb ∈ {0, 1} (6.47)

27

6. Branch And Price Model................................
Algorithm

Below is a pseudocode for initial heuristics algorithm.

Algorithm 2 Initial heuristic
Step 0: Initialization

1: ϕ = ∅ ▷ Block schedule - assigned surgeon-block pairs
2: for s ∈ S do
3: P ′

s = Ps

4: repeat
Step 1: Compose best block composition for every block duration

5: for s ∈ S : P ′
s ̸= ∅ do

6: for l ∈ L do
7: Solve knapsack problem (6.37)-(6.38) and store values of ∆̄sl

and ūsl

Step 2: Schedule one additional block per surgeon to block schedule
8: Solve model (6.40)-(6.47) with current block schedule, ∆̄sl and ūsl as

input
Step 3: Update data

9: Update current block schedule ϕ with newly assigned blocks
10: for s ∈ S do
11: Update P ′

s by removing patients that have been assigned in this
iteration

12: until Model (6.40)-(6.47) returns a feasible solution (= new surgeon-block
pair is added to the block schedule)
Step 4: Find bilevel feasible patient schedule based on selected blocks

13: for s ∈ S do
14: Solve follower’s problem model (5.10)-(5.13) given currently assigned

blocks ysb resulting from the current block schedule
Step 5: Evaluation

15: Evaluate patient schedule obtained in Step 4 according to leader’s objec-
tive 5.1 (will be set as incumbent solution of the branch-and-price)

28

............................. 6.4. Lazy Constraint Remembering

6.4 Lazy Constraint Remembering

One of the speed-up mechanisms proposed in (Maenhout et al., 2023) is lazy
constraint remembering. There is an assumption that same lazy constraints
are generated multiple times. For the sake of effectiveness, we can save the
lazy constraints generated for surgeon s to a set LCs and then add them
explicitly to the subproblem in other iterations. It is expected that there will
be lower number of generated lazy constraints, which will result in lower time
spent in the subproblem. Impact of this speed-up mechanism is shown in the
section 8.

6.5 Branching

Suitable branching strategy is important for computational performance of
the branch-and-price algorithm. One option is to branch on column variables.
In (Vanderbeck, 2000), authors suggest that such approach can lead to
unbalanced branch-and-bound trees and can cause significant modifications to
the subproblem. More convenient method is branching on original variables
from the ILP formulation. Authors in (Villeneuve et al., 2005) show that
such a formulation always exists under certain assumptions. In our case, we
branch over the variable ysb. The branching separates surgeon’s patterns into
two disjunctive sets: first set are all columns satisfying ysb = 0 and the other
are all columns with ysb = 1. In every node, we keep track of the branching
history from the root node down to the current node that we refer to as BH.

(s, b, v) ∈ BH, meaning ysb = v (6.48)

The branching decisions are added to the pricing problem as constraints,
assuring consistency and correctness.

Algorithm 3 Adding constraints from branching history to the subproblem
for (s, b, v) ∈ BH do

if s is the surgeon who we solve the subproblem for then
Add constraint ob = v to the subproblem model

When the column generation is terminated and the solution is fractional, we
must decide, what (s, b) pair we are going to branch over. The “most fractional”
variable is usually chosen. The most fractional variable is the variable with
the closest value to 0.5 (in binary case). Also a “worst assignment” can be
used (Maenhout and Vanhoucke, 2009). In that case, a fractional variable
that is worst in terms of objective function value is selected.

As we don’t explicitly have the ysb variable, we need to compute it using
master problem variable θk

s and a vector as
k, which represents column k of

29

6. Branch And Price Model................................
surgeon s. The most fractional variable is obtained as follows:

(sbr, bbr) = argmin
s∈S,b∈B

|K|−1∑
k=0

as
kθs

k − 0.5

1
1
...
1
1

 (6.49)

After we obtain the branching variable, we split the columns into two sets
according to the new branching decision. Then, we branch with ysbrbbr

= 0
and ysbrbbr

= 1 and we add (sbr, bbr, v) to BH accordingly.
An example of a search tree in branch-and-price is shown in figure 6.1. It

can be seen that an incumbent solution was found at depth 3 and because
lower bound of all the parents is equal to the incumbent solution, there is no
need to explore other nodes.

objective_value=26.0
incumbent_objective_value=72

time=9
num_columns_added=115

num_CG_iterations=14

id=1
depth=1

objective_value=26.0
incumbent_objective_value=72

time=2
num_columns_added=6
num_CG_iterations=2

y_{0,18} = 0

id=6
depth=1

y_{0,18} = 1

id=2
depth=2

objective_value=26.0
incumbent_objective_value=72

time=2
num_columns_added=8
num_CG_iterations=2

y_{5,18} = 0

id=5
depth=2

y_{5,18} = 1

id=3
depth=3

objective_value=26.0
incumbent_objective_value=26

time=1
num_CG_iterations=1

y_{1,10} = 0

id=4
depth=3

y_{1,10} = 1

Figure 6.1: Search tree of a branch-and-price.

30

................................... 6.6. Dummy Pattern

6.6 Dummy Pattern

In the beginning of branch-and-price algorithm, we have an initial set of
columns for each surgeon (empty pattern + pattern from initial heuristics).
During branching, whenever a block is assigned to a surgeon, the empty
pattern disappears. Thus, a following situation can occur:. surgeon 0 has only one column in which he is assigned block 0. surgeon 1 has only one column in which he is assigned block 1. block 0 and block 1 overlap. there is only one operating room |R| = 1

It’s obvious that it is impossible to solve the master problem in this case.
By constraint 6.6 we are obliged to assign a schedule for every surgeon, but
constraint 6.5 enforces that at most one of surgeon-block assignments above
is assigned as they are overlapping and only one operating room is available.

To tackle this issue, we need to generate a “dummy” pattern every time
we branch with value v = 1, i.e. a block is firmly assigned to a surgeon. The
pattern is generated based on branching history. The procedure of generating
a “dummy” pattern is shown in the pseudocode below.

Algorithm 4 Dummy pattern generation
Require: sbr, bbr ▷ Branching pair (already added to BH)

1: dummyPattern← ∅
2: for (s, b, v) ∈ BH do
3: if sbr = s then
4: Add block b to dummyPattern

5: if dummyPattern in Ksbr
then ▷ Ksbr

- patterns of surgeon s
6: quit
7: else
8: Solve follower’s problem (5.10)-(5.13) and retrieve parameters ∆dummy

and wdummy

9: Add dummyPattern to Ksbr
and alongside save parameters ∆dummy

and wdummy

31

32

Chapter 7
Data Analysis

In this section, we analyze two different datasets. First is a publicly available
dataset called CHOIR that was published in paper (Leeftink and Hans, 2017).
The second dataset are real-life data from University Hospital of Hradec
Králové.

7.1 CHOIR Dataset

The name comes from Centre for Healthcare Operations Improvement and
Research at University of Twente in Netherlands. The dataset is generated
based on a characterization of the patient cases and surgery types. The
full dataset contains 22,400 instances (ten diverse instances per parameter
combination). A smaller test set containing only 146 instances is also present
in the data set. The instances are generated based on both theoretical and
real-life case mixes, encompassing 11 surgical specializations.

Each instance is characterized by the number of OR days, load and overall
capacity of operating rooms in minutes. Then, the instance contains a list
of surgical cases. Each surgical case is represented by a distribution type
and its parameters. In literature, researchers mostly use a 3-parameter
lognormal distribution to describe the duration δp of a surgery (Stepaniak
et al., 2009)(May et al., 2000). The probability density function of a 3-
parameter log-normal distribution is defined as follows:

f(x) = 1
(x− γ)σ

√
2π

e− (ln(x−γ)−µ)2

2σ2 (7.1)

The same distribution with parameters is also used in the CHOIR dataset.
As stated in (Leeftink and Hans, 2017), the three parameters are µ ∈ (0,∞),
σ ∈ (0,∞) and γ ∈ [0,∞). From these parameters, an average duration m
and standard deviation s can be computed as:

m =γ + eµ+ σ2
2 (7.2)

s =
√(

eσ2 − 1
)
× e2µ+σ2 (7.3)

However, when fitting data onto a log-normal distribution in SciPy library
in Python, we get three parameters shape, location, scale. The relation

33

7. Data Analysis
between these three parameters and the parameters µ, σ, γ is following:

µ = ln(scale) (7.4)
σ = shape (7.5)
γ = location (7.6)

In the dataset, the authors use load ranging from 0.8 to 1.2. To induce
selection of patients (not assigning all of them), we do not consider instances
with load 1 or smaller. From the available instances, we present a brief
summary of the data.

Surgery duration (in minutes)
Load m Range s
1.05 105 [15,375] 73.50
1.10 105 [15,420] 71.40
1.15 101 [15,450] 73.73
1.20 99 [15,420] 71.28

Table 7.1: Instance characteristics averaged per load

When looking at the data, it is obvious that many parameters required for
our problem are missing. First, the individual surgical cases are not related
to any particular surgeon. We do it arbitrarily by choosing a random surgeon
s ∈ S (with discrete uniform distribution). The patient’s priorities are also
not present, so we generate both the leader’s and the follower’s priorities from
a discrete uniform distribution on interval [1, 3].

7.2 Data from University Hospital of Hradec
Králové

The data are records of real life surgical cases that took place between years
2018 and 2019. Unlike the CHOIR dataset, we have information about the
deterministic values of the surgery duration and the pre-estimated duration.
The surgery duration is measured as the time difference between the patient’s
arrival and departure from the OR. We also have information about which
surgeon is responsible for each patient.

First, the actual probability distribution of the data (surgery duration)
must be verified. As stated earlier, the literature mostly assumes lognormal
distribution (and so does the CHOIR dataset). Some papers also work with
gamma distribution (Choi and Wilhelm, 2012). We will try to fit our data onto
the most common distributions (including lognormal and gamma). For this
purpose, we will assume four distinct surgical specializations - urology, trauma
surgery, general surgery, robotic surgery. For each of these specializations,
we will do the following steps:..1. select all surgical cases that belong to the specialization

34

..................... 7.2. Data from University Hospital of Hradec Králové..2. try to fit the data onto the most common distributions (Cauchy, chi-
squared, exponential, exponential power, gamma, lognormal, normal,
power law, Rayleigh, uniform)1..3. retrieve the best probability distribution, lognormal distribution and
gamma distribution and their parameters..4. draw samples from these three distributions and perform a Kolmogorov–Smirnov
test for each of them2

Below is a table, where the best probability distribution is displayed for
each specialization along with the p-value for the best, lognormal and gamma
distribution.

Specialization Best distr. p-value Lognormal’s p-value Gamma’s p-value
Urology gamma 0.35 0.33 0.35
Trauma surgery gamma 0.68 0.5e−09 0.68
General surgery lognormal 0.33 0.33 0.26
Robotic surgery Cauchy 0.07 1.81e−04 1.97e−04

Table 7.2: Distributions’ p-values for different specializations

As expected, the data indicates that lognormal and gamma distributions
indeed are suitable for describing surgery duration as a random variable. In
this case, the gamma distribution shows a bit more promising results, because
according to Kolmogorov-Smirnov test, it fits 3 out of 4 specializations
(lognormal only 2). The only anomaly is the robotic surgery that suggests
the data follows Cauchy distribution.

We can also compare the parameters such as mean and standard deviation
as in table 7.1. Instead of dividing the surgical cases by the load, in real-life
data we split them according to the specialization.

Surgery duration (in minutes)
Specialization mt Range st

Urology 124 [20,430] 66.96
Trauma surgery 163 [30,700] 109.38
General surgery 127 [30,515] 67.58
Robotic surgery 220 [32,645] 85.79

Table 7.3: Real-life data characteristics per specialization

The standard operating time in ORs in University Hospital of Hradec
Králové is usually 8 hours (from 7 AM to 3 PM). Thus, patients with
duration longer than 8 hours (480 minutes) will never fit into any block, so
they will stay unscheduled.

Distributions of the four specializations are also plotted below, together
with probability distribution functions for the TOP 5 distributions. It can be

1We use Fitter Python library to fit the distributions
2The Kolmogorov-Smirnov test is a method of mathematical statistics that serves to

test whether two univariate random variables come from the same probability distribution

35

https://fitter.readthedocs.io/

7. Data Analysis
seen that for urology, trauma surgery and general surgery, the distributions
are skewed and so they fit log-normal/gamma distribution decently. In case
of robotic surgery, there are not many short surgeries, so the probability
distribution functions are not so skewed.

(a) Urology (b) Trauma surgery

(c) General surgery (d) Robotic surgery

Figure 7.1: Comparison of TOP 5 distributions for different specializations

36

Chapter 8
Experimental Results

In this chapter, we present the experiments carried out on our ILP and branch-
and-price models. In section 8.1, we describe the software and hardware
used to implement the algorithms. The logical structure of the code is also
explained. In the next section 8.2, we introduce several experiments, where
we compare the performance of ILP and branch-and-price model, the solution
quality and speed-up mechanisms.

8.1 Implementation

The whole implementation is written in Python. This includes loading data,
instance generation, ILP and branch-and-price algorithm. The solver used
to solve MILP problems is Gurobi (the Python interface is called gurobipy).
Just as in CHOIR dataset, we use text format to store instances of our real
data. The parameters are stored in JSON format.

The scripts can be run on any machine with Python and Gurobi, but for
the sake of computational performance, we use Slurm cluster for experiments.
Slurm is an open source, fault-tolerant, and highly scalable cluster manage-
ment and job scheduling system for large and small Linux clusters. On our
cluster we can make use of up to 6 nodes, each having either 256 or 512 GB
of RAM and two Intel Xeon E5-2690 v4 processors @ 2.60GHz.

Below is a scheme of the project structure. In the configs folder, we have
two subfolders - instances and parameters. All the outputs are saved into
a folder of the same name. Results from benchmarks are stored into folder
excel. To store graphical outputs, we have folders schedules that serve to save
timeline charts and trees, where branch-and-price trees are saved. Gurobi
models are saved to models folder. In order to run experiments on our cluster,
we have created multiple bash scripts in scripts folder. Python files with ILP
and branch-and-price algorithm implementation are in src folder. Subfolder
benchmarks have multiple Python scripts to run benchmark experiments.

37

https://slurm.schedmd.com/overview.html

8. Experimental Results
or_scheduling

configs

instances

real_life

default

parameters

outputs

excel

graphical

schedules

trees

models

scripts

src

benchmarks

lib

Figure 8.1: Project’s folder structure

8.2 Computational Results

8.2.1 Comparison of Branch-and-Price and ILP Model

In the first set of experiments, we compare the performance of the baseline
ILP model and the branch-and-price. We put emphasis on overall time and
percentage of instances solved to optimality. We use instances that are created
from real-life data. For simplicity, we will refer to objective value based lazy
constraint as LC1 and the assigned patients based lazy constraint as LC2.
We will consider a timeout of 1800 seconds. When an instance is not solved
within this time, it will be flagged as not optimal, even though the objective
might have optimal value.

38

................................ 8.2. Computational Results

Small Instances

By small instances, we mean instances with relatively small number of
surgeons, patients and operating rooms. For this purpose, we create instances
with the following specifications. We set number of operating rooms |R| = 1.
Then, each instance has number of surgeons |S| from interval [13, 22]. Number
of patients |P | for each instance ranges on interval [41, 60]. We use all off the
speed-up techniques - initial heuristics and LC remembering. The type of
lazy constraint is LC2. We consider 5 days as planning time horizon.

Integer linear program Branch-and-price
Instance Time [s] Optimal Objective Time [s] Optimal Objective
january_|R|=1 915.3 True 57 65.4 True 57
february_|R|=1 701.0 True 56 49.5 True 56
march_|R|=1 1800.0 False 50 22.9 True 50
april_|R|=1 42.0 True 57 58.6 True 57
may_|R|=1 1800.0 False 59 50.2 True 59
june_|R|=1 8.5 True 51 19.8 True 51
july_|R|=1 46.9 True 25 14.4 True 25
august_|R|=1 5.8 True 46 75.8 True 46
september_|R|=1 15.7 True 46 23.9 True 46
october_|R|=1 107.6 True 39 17.2 True 39
november_|R|=1 9.3 True 39 128.6 True 39
december_|R|=1 0.2 True 39 8.1 True 39
average 454.37 0.83 47 44.52 1.00 47

Table 8.1: Benchmark comparison for small instances

From the table above, we can see that for all the instances, ILP and branch-
and-price model yields the same integer objective. The average time for the
branch-and-price is significantly better compared to the ILP, although it is
caused by the two time-outed instances. There is 83 % of instances solved to
optimality for the ILP and 100 % for the branch-and-price.

Large Instances

The drawbacks of ILP model in terms of efficiency will arise when we make
instances larger. We could for example set number of operating rooms to
|R| = 4. Every instance has number of surgeons |S| from interval [43, 62].
Number of patients |P | for each instance ranges on interval [162, 206]. Once
again, all speed-up techniques are used and the lazy constraint type is LC2.
We consider |D| = 5.

39

8. Experimental Results
Integer linear program Branch-and-price

Instance Time [s] Optimal Objective Time [s] Optimal Objective
january_|R|=4 1800.0 False 178 88.2 True 178
february_|R|=4 1800.1 False 148 46.8 True 148
march_|R|=4 1800.0 False 179 67.2 True 179
april_|R|=4 1800.0 False 172 269.7 True 172
may_|R|=4 1800.0 False 172 60.8 True 172
june_|R|=4 1800.0 False 159 47.6 True 159
july_|R|=4 1800.0 False 119 38.7 True 119
august_|R|=4 1800.1 False 125 59.9 True 125
september_|R|=4 1800.1 False 163 180.3 True 163
october_|R|=4 1800.0 False 152 41.2 True 152
november_|R|=4 1800.0 False 170 65.4 True 170
december_|R|=4 1800.0 False 88 16.8 True 88
average 1800.0 0.00 152.08 81.94 1.00 152.08

Table 8.2: Benchmark comparison for large instances

From the table above, it is obvious that ILP model becomes incompetent
for solving large instances. Similar results are obtained when working with
the CHOIR dataset, where ILP has turned out to be more efficient on smaller
instances than branch-and-price, but inefficient for larger instances.

Gantt Charts

Below is an example of two Gantt charts corresponding to the ILP and
branch-and-price results, where surgeon-block assignment and patient-block
assignment are shown - first with one operating room, second with four
operating rooms.

Figure 8.2: Gantt chart for schedule with one operating room.

40

................................ 8.2. Computational Results

Figure 8.3: Gantt chart for schedule with four operating rooms.

From figure 8.3, we can see that the head of surgeons always fills in the
entire available capacity. On the other hand, the assignment of patients may
contain many time gaps (idle time). This can be seen in figure 8.2. Time
gaps, of course, are not in contradiction with the bilevel optimality of the
schedule.

Comparing Different Configurations

During testing, one can create many configurations. In the following experi-
ment, we compare the performance and quality of different tested problem
sizes and different types of lazy constraints. The solution quality is expressed
by a value F , which is the value of leader’s objective value, the value of
the final lower bound F LP R that relaxes the binary domain conditions of
both the leader and follower decision variables, the relative optimality gap
%Gap = F −F LP R

F and the percentage of instances solved to optimality %Opt.
Once again, we will measure the computational performance by run time in
seconds. We compute the lower bound F LP R for the branch-and-price as the
relaxed objective in the root node.

We will create the following configurations.. |S| ∈ {10, 15} if |R| = 1. |S| ∈ {30, 45} if |R| = 4. |D| ∈ {5, 10} time horizon of 1 or 2 weeks. lazy constraints = {LC1, LC2}

Together, there will be 16 configurations. This will require 16 instances to be
created. They are compared in table 1 that can be found in the appendix.

41

8. Experimental Results
8.2.2 Impact of Speed-Up Mechanisms

In this section, we will focus on evaluating the impact of the three proposed
speed-up mechanisms for the branch-and-price model...1. Initial heuristics (InH)..2. Generating multiple patterns per pricing iteration (MuP)..3. LC remembering (LCR)

The idea is to start with a version, where all speed-up mechanisms are present.
Then, we leave out each of the three accelerating technique and the rest of
algorithm stays the same. Altogether, there will be four versions for every
lazy constraint.

In this table, we report the value of column generation iteration (#CGIter),
the number of columns generated (#columns), lazy constraints generated in
the callbacks (#LC), callbacks (#CB), nodes in the search tree (#nodes).
We further measure the solution quality by the relative optimality gap (%Gap)
and the percentage of instances solved to optimality (%Opt). We also measure
computational performance, i.e., the run time spent in the callback function
to generate lazy constraints (TimeCB) and run time to solve the subproblem
(including the callback time) (TimeSP), the run time to solve the master
problem (TimeMP) and the total required run time (TimeT).

Furthermore, the values in this table are an average over multiple instances.
The experiment was run for both the real dataset from Universital Hospity
of Hradec Králové and the CHOIR dataset. The results are presented below.

Results From CHOIR Dataset

LC1 LC2

Mechanism
w/o
InH

w/o
MuP

w/o
LCR All

w/o
InH

w/o
MuP

w/o
LCR All

#CGIter 236.1 480.4 258.5 243.8 171.1 223.5 252.4 74
#columns 426.7 428.9 464.4 446.9 332.9 213.9 450.8 215.5
#LC 4.3 4.2 772.8 4.4 4.2 4.5 767 4.8
#CB 5750.8 5258.9 7053.5 6139.8 3776.2 1721 6902.7 1723.1
#nodes 92.4 54.2 101 98.2 44.2 9.6 99 21.6
%Gap 0.02 0.02 0.03 0.02 0.02 0.01 0.03 0.01
%Opt 0.9 0.9 0.9 0.9 1 1 0.9 1
T imeCB [s] 5.07 4.8 6.97 5.51 3.59 1.78 6.93 1.75
T imeSP [s] 44.56 10.38 50.36 46.75 32.92 2.22 49.44 15.45
T imeMP [s] 158.03 215.42 158.75 165.4 129.9 133.23 161.31 52.39
T imeT [s] 206.54 259.35 211.02 212.58 163.07 148.94 212.55 67.97

Table 8.3: Comparison of speed-up mechanisms on the CHOIR dataset.

From the table above, it appears that using the advanced lazy constraint
(LC2) yields better overall results than using the basic one (LC1). Row #LC

42

................................ 8.2. Computational Results

indicates that the number of lazy constraints generated when LC remembering
is turned off is huge compared to other versions. As for the run time, the
version with advanced lazy constraint and all speed-up mechanisms on seems
to be the fastest.

Results From Real-life Dataset

LC1 LC2

Mechanism
w/o
InH

w/o
MuP

w/o
LCR All

w/o
InH

w/o
MuP

w/o
LCR All

#CGIter 528.15 691.5 626.1 543.7 429.35 914.15 641.55 450.7
#columns 1105.4 655.1 1218.9 1098.05 895.25 862.75 1311.9 930.6
#LC 29.2 26 2615.35 30.75 40.15 37.95 3103 43.7
#CB 7327.3 4513.8 10794.8 6947.45 5940.3 6221.5 11979.1 6094.1
#nodes 125.4 46.7 128.9 126.3 79.2 57.5 144.2 88
%Gap 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03
%Opt 0.65 0.7 0.65 0.65 0.85 0.75 0.6 0.9
T imeCB 13.42 8.78 25.17 13.27 13.41 14.51 35 13.48
T imeSP 285.18 34.69 214.01 259.89 162.16 26.42 243.11 170.1
T imeMP 298.73 409.22 351.07 319.81 257.65 565.85 359.36 267.7
T imeT 682.05 689.11 668.55 689.99 510.61 778.56 769.73 449

Table 8.4: Comparison of speed-up mechanisms on the real-life dataset.

From the results, the most preferable configuration in terms of run time is
again the version with advanced lazy constraint and all speed-up techniques
turned on. This configuration also has the biggest ratio of instances solved
to optimality. Leaving out the LC remembering results in the large amount
of lazy constraints generated and many callbacks. Also, using the advanced
lazy constraints yields slightly better run times (with average 626.9 [s] over
different versions) than the basic lazy constraints (average 682.4 [s]).

8.2.3 Game-Theoretical Approach

In this section, we evaluate the efficiency of the equilibrium solution obtained
from our bilevel optimization problem. In the equilibrium solution, the
individual surgeons (a.k.a. agents) cannot improve their objective given the
allocated OR blocks, which are determined by the head of surgeons. To model
the selfish behaviour of the surgeons, many concepts can be used e.g. Nash
equilibrium. We will further present two ways to assess the quality of the
Nash equilibrium..The Price of Stability (PoS) measures how the efficiency of a system

degrades due to the required equilibrium (Paccagnan et al., 2022). It is
a ratio between the best equilibrium solution and the best centralized
solution. In our case, we evaluate the best equilibrium solution by solving
the model (5.1)-(5.13). In other words, it is the bilevel optimal solution

43

8. Experimental Results
of our problem. The best centralized solution is the best solution of the
leader’s problem (5.1)-(5.8), so the followers’ interest is not taken into
consideration (in our implementation, we simply do not call the callback
function). The price of stability for a minimization problem is computed
by the following formula:

PoS = mine′∈E′F (e′)
mine∈EF (e) (8.1)

with E the set of all solutions and E′ the set of equilibrium solutions..The Price of Decentralization (PoD) measures how the efficiency of
a system degrades due to selfish behaviour of its agents. Similarly
to the PoS, the Price of Decentralization is a ratio between the best
decentralized solution and the best centralized solution. It models a
situation, where surgeons plan their schedules without taking the leader’s
objective into consideration. We obtain the best decentralized solution
by solving the model that maximizes the sum of the followers’ objectives,
i.e. the following objective

max
∑
s∈S

fs =
∑
s∈S

∑
p∈Ps

πp

∑
b∈B

xpb ≡
∑
p∈P

πp

∑
b∈B

xpb (8.2)

with respect to the constraints (5.2)-(5.8). The Price of Decentralization
is formalised as

PoD = F (e ∈ E|maxe∈E
∑

s∈S fs(e))
mine∈EF (e) . (8.3)

We decided to choose the metric of the Price of Decentralization over
the Price of Anarchy (Paccagnan et al., 2022), which is defined as

PoA = maxe′∈E′F (e′)
mine∈EF (e) . (8.4)

The Price of Anarchy is a ratio between the worst equilibrium solution
and the best centralized solution. In our case, the worst equilibrium
solution corresponds to an empty schedule, where the head of surgeons
does not assign any blocks to any surgeons, thus the individual surgeons
cannot schedule any patients. Such schedule is considered irrational.

For the next experiment, we are going to calculate the Price of Stability
and the Price of Decentralization for different settings. Individual settings
are defined by (i) patient’s priorities from the leader’s and the follower’s
perspective, (ii) the leader’s priorities in the objective 5.1, defined by constants
α and β. By default α = β = 1, which makes the idle time and the penalty
for not performing surgeries equally important. We will try to set one of
these values to zero, eliminating the corresponding part of the objective.
Furthermore, we will create 5 scenarios based on the patient’s priorities:

44

................................ 8.2. Computational Results

. Scenario 1 (πp = prLP
p = 1): Patient’s priorities are equal for all

patients and at the same time, the leader’s and the follower’s priority
are equal.. Scenario 2 (πp = prLP

p ∈ [1, 3] (random)): The leader’s and the fol-
lower’s priority of a patient are equal, but they can differ between
patients.. Scenario 3 (πp = 1; prLP

p ∈ [1, 3] (random)): Patient’s priorities set by
the head of surgeons can be different between patients. These priorities
may differ from the ones set by the individual surgeons, who set all
patient priorities equal.. Scenario 4 (πp ∈ [1, 3] (random); prLP

p = 1): Patient’s priorities set by
the individual surgeons can be different between patients. For the head
of surgeons, the patients have equal priority.. Scenario 5 (πp ∈ [1, 3] (random); prLP

p ∈ [1, 3] (random)): Both pa-
tient’s priorities are different between patients.

For the next table, we will need three models:..1. model that finds the best equilibrium solution, i.e. bilevel optimal
solution BOM..2. model that finds the best decentralized solution DeM..3. model that finds the best centralized solution CeM

For each of the models, we will define the following metrics: (i) utilization
of capacity U , (ii) F , which is the value of the objective function in 5.1, (iii)
time T in seconds. Values in the table are averaged over multiple instances.
The whole table 2 can be found in appendix.

Table 2 reveals that utilization of operating rooms is the highest for central-
ized solution, which corresponds with the objective of the leader, who unlike
the surgeons, tries to avoid idle time within schedule. The worst utilization is
expectedly for the decentralized solution. If we evaluate a model that seeks
the worst equilibrium, the utilization would be zero as no patients would be
in the schedule. The Price of Stability appears to be fairly small with an
average of 1.05, which indicates that the equilibrium solution is close to the
centralized solution. The Price of Decentralization has an average of 2.02 over
the different configurations, so the price we would pay for selfish behaviour
of the surgeons if we let them create the schedule is not negligible.

45

46

Chapter 9
Conclusion

The main objective of this thesis was to examine the problem of OR scheduling
on the operational level. We formulated our problem from bilevel perspective,
considering the head of surgeons and the individual surgeons to have different
interests. Furthermore, the goal was to design and implement an algorithm
that would simulate OR scheduling in a surgical department of a hospital.

We proposed and implemented a baseline integer linear programming model
along with a dedicated branch-and-price algorithm. We described the master
problem, the subproblem and the column generation as the essential parts
of the branch-and-price algorithm. To address the bilevel optimality of this
problem, we introduced two types of lazy constraints, which remove solutions
that are not bilevel optimal. For the branch-and-price model, we introduced
several speed-up mechanisms such as lazy constraint remembering, initial
heuristics and adding multiple columns per pricing iteration.

In data analysis, we verified that our real-life dataset follows distribution
parameters similar to the ones in literature (lognormal, gamma). We then
created lots of instances that either came from the real-life dataset or the
publicly available CHOIR dataset.

In the experiments, we mainly compared benchmarks of the ILP and branch-
and-price. The ILP model seems to work decently for smaller instances with
e.g. 5 or 10 surgeons and 1 operating room. Branch-and-price starts to
outperform the ILP when we scale the size of instances. For example, for
4 operating rooms and 30 or 45 surgeons, the ILP timeouts every single
time, whereas branch-and-price is solved to optimality for every instance.
In addition, the results showed that using speed-up mechanisms can help
improve the computational time. Leaving out LC remembering results in huge
number of generated lazy constraints and higher time spent in the subproblem
and the callbacks. The best configuration for both datasets seems to be using
the advanced (assigned patients based) type of lazy constraint together with
all the speed-up mechanisms: LC remembering, initial heuristics and multiple
pattern generation per pricing iteration. In the last experiment, we assessed
the value of game-theoretical approach. We presented two metrics to measure
the quality of the equilibrium solution: the Price of Stability and the Price
of Decentralization. It was shown that letting the surgeons decide their own
schedule results in less efficient utilization. On the other hand, the difference

47

9. Conclusion......................................
in the equilibrium solution and the centralized solution was not significant.

In conclusion, this thesis is not a real production application, but rather
serves as a proof of concept that shows the benefits of using branch-and-
price algorithm for OR scheduling along with the lazy constraint generation
as an approach to the bilevel optimization. The future work could be an
improvement of the branch-and-price algorithm, possibly another speed-up
mechanisms, that would make the algorithm perform better for even larger
instances, e.g. bigger time scheduling horizon, more operating rooms or more
surgeons.

48

Bibliography

Abdelrasol, Z. Y., Harraz, N., and Eltawil, A. (2013). A proposed solution
framework for the operating room scheduling problems. In Proceedings of
the world congress on engineering and computer science, volume 2, pages
23–25.

Ahmed, A. and Ali, H. (2020). Modeling patient preference in an operating
room scheduling problem. Operations Research for Health Care, 25:100257.

Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., and Testi, A. (2015). A
two level metaheuristic for the operating room scheduling and assignment
problem. Computers & Operations Research, 54:21–34.

Association, H. F. M. et al. (2003). Achieving operating room efficiency
through process integration. Healthcare financial management: journal of
the Healthcare Financial Management Association, 57(3):1–112.

Bard, J. F. and Moore, J. T. (1992). An algorithm for the discrete bilevel
programming problem. Naval Research Logistics (NRL), 39(3):419–435.

Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006). Defending
critical infrastructure. Interfaces, 36(6):530–544.

Cardoen, B., Demeulemeester, E., and Beliën, J. (2009). Sequencing surgical
cases in a day-care environment: An exact branch-and-price approach.
Computers & Operations Research, 36(9):2660–2669.

Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room plan-
ning and scheduling: A literature review. European Journal of Operational
Research, 201(3):921–932.

Chaieb, M., Sassi, D. B., Jemai, J., and Mellouli, K. (2022). Challenges
and solutions for the integrated recovery room planning and scheduling
problem during COVID-19 pandemic. Medical & Biological & Engineering
& Computing, 60(5):1295–1311.

Choi, S. and Wilhelm, W. E. (2012). An analysis of sequencing surgeries with
durations that follow the lognormal, gamma, or normal distribution. IIE
Transactions on Healthcare Systems Engineering, 2(2):156–171.

49

9. Conclusion......................................
Clark, P. A. and Westerberg, A. W. (1990). Bilevel programming for steady-

state chemical process design—i. fundamentals and algorithms. Computers
& Chemical Engineering, 14(1):87–97.

Doulabi, S. H. H., Rousseau, L.-M., and Pesant, G. (2016). A constraint-
programming-based branch-and-price-and-cut approach for operating room
planning and scheduling. INFORMS Journal on Computing, 28(3):432–448.

Easton, K., Nemhauser, G., and Trick, M. (2004). CP based branch-and-price.
In Constraint and Integer Programming, pages 207–231. Springer US.

González Velarde, J. L., Camacho-Vallejo, J.-F., and Pinto Serrano, G. (2015).
A scatter search algorithm for solving a bilevel optimization model for
determining highway tolls. Computación y Sistemas, 19(1):05–16.

Hansen, P., Jaumard, B., and Savard, G. (1992). New branch-and-bound rules
for linear bilevel programming. SIAM Journal on scientific and Statistical
Computing, 13(5):1194–1217.

Harris, S. and Claudio, D. (2022). Current trends in operating room scheduling
2015 to 2020: a literature review. Operations Research Forum, 3(1).

Huele, C. V. and Vanhoucke, M. (2014). Analysis of the integration of the
physician rostering problem and the surgery scheduling problem. Journal
of Medical Systems, 38(6).

Jebali, A. and Diabat, A. (2015). A stochastic model for operating room
planning under capacity constraints. International Journal of Production
Research, 53(24):7252–7270.

Kamran, M. A., Karimi, B., and Dellaert, N. (2020). A column-generation-
heuristic-based benders’ decomposition for solving adaptive allocation
scheduling of patients in operating rooms. Computers & Industrial Engi-
neering, 148:106698.

Leeftink, G. and Hans, E. W. (2017). Case mix classification and a benchmark
set for surgery scheduling. Journal of Scheduling, 21(1):17–33.

Li, F., Gupta, D., and Potthoff, S. (2015). Improving operating room schedules.
Health Care Management Science, 19(3):261–278.

Ma, Y., Liu, K., Li, Z., and Chen, X. (2022). Robust operating room
scheduling model with violation probability consideration under uncertain
surgery duration. International Journal of Environmental Research and
Public Health, 19(20):13685.

Maaroufi, F., Camus, H., and Korbaa, O. (2016). A mixed integer linear
programming approach to schedule the operating room. In 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE.

50

...................................... 9. Conclusion

Macario, A., Vitez, T. S., Dunn, B., and McDonald, T. (1995). Where are
the costs in perioperative care?: Analysis of hospital costs and charges for
inpatient surgical care. Anesthesiology, 83(6):1138–1144.

Maenhout, B. and Vanhoucke, M. (2009). Branching strategies in a branch-
and-price approach for a multiple objective nurse scheduling problem.
Journal of Scheduling, 13(1):77–93.

Maenhout, B., Šůcha, P., Tkadlec, O., and Nguyenova, M. T. (2023). Multi-
agent short-term surgeon scheduling and surgery planning. Technical report,
Czech Technical University in Prague, Ghent University, Department of
Business informatics and Operations Management.

May, J. H., Strum, D. P., and Vargas, L. G. (2000). Fitting the lognormal
distribution to surgical procedure times. Decision Sciences, 31(1):129–148.

Mazloumian, M., Baki, M. F., and Ahmadi, M. (2022). A robust multiobjective
integrated master surgery schedule and surgical case assignment model at a
publicly funded hospital. Computers & Industrial Engineering, 163:107826.

Meskens, N., Duvivier, D., and Hanset, A. (2013). Multi-objective operating
room scheduling considering desiderata of the surgical team. Decision
Support Systems, 55(2):650–659.

Milička, P., Šůcha, P., Vanhoucke, M., and Maenhout, B. (2022). The bilevel
optimisation of a multi-agent project scheduling and staffing problem.
European Journal of Operational Research, 296(1):72–86.

Momeni, M. A., Mostofi, A., Jain, V., and Soni, G. (2022). COVID19 epidemic
outbreak: operating rooms scheduling, specialty teams timetabling and
emergency patients' assignment using the robust optimization approach.
Annals of Operations Research.

Paccagnan, D., Chandan, R., and Marden, J. (2022). Utility and mechanism
design in multi-agent systems: An overview. Annual Reviews in Control.

Persson, M. J. and Persson, J. A. (2009). Analysing management policies
for operating room planning using simulation. Health Care Management
Science, 13(2):182–191.

Ponboon, S., Qureshi, A. G., and Taniguchi, E. (2016). Branch-and-price algo-
rithm for the location-routing problem with time windows. Transportation
Research Part E: Logistics and Transportation Review, 86:1–19.

Rahimi, I. and Gandomi, A. H. (2020). A comprehensive review and analysis
of operating room and surgery scheduling. Archives of Computational
Methods in Engineering.

Saharidis, G. K. and Ierapetritou, M. G. (2009). Resolution method for mixed
integer bi-level linear problems based on decomposition technique. Journal
of Global Optimization, 44:29–51.

51

9. Conclusion......................................
Scaparra, M. P. and Church, R. L. (2008). A bilevel mixed-integer program

for critical infrastructure protection planning. Computers & Operations
Research, 35(6):1905–1923.

Sinha, A., Malo, P., Frantsev, A., and Deb, K. (2013). Multi-objective
stackelberg game between a regulating authority and a mining company:
A case study in environmental economics. In 2013 IEEE congress on
evolutionary computation, pages 478–485. IEEE.

Stepaniak, P. S., Heij, C., Mannaerts, G. H., de Quelerij, M., and de Vries,
G. (2009). Modeling procedure and surgical times for current procedural
terminology-anesthesia-surgeon combinations and evaluation in terms of
case-duration prediction and operating room efficiency: a multicenter study.
Anesthesia & Analgesia, 109(4):1232–1245.

Vanderbeck, F. (2000). On dantzig-wolfe decomposition in integer program-
ming and ways to perform branching in a branch-and-price algorithm.
Operations Research, 48:111–.

Villeneuve, D., Desrosiers, J., Lübbecke, M. E., and Soumis, F. (2005). On
compact formulations for integer programs solved by column generation.
Annals of Operations Research, 139(1):375–388.

Von Stackelberg, H. (2010). Market structure and equilibrium. Springer
Science & Business Media.

Whittaker, G., Färe, R., Grosskopf, S., Barnhart, B., Bostian, M., Mueller-
Warrant, G., and Griffith, S. (2017). Spatial targeting of agri-environmental
policy using bilevel evolutionary optimization. Omega, 66:15–27.

Wullink, G., Houdenhoven, M. V., Hans, E. W., van Oostrum, J. M., van der
Lans, M., and Kazemier, G. (2007). Closing emergency operating rooms
improves efficiency. Journal of Medical Systems, 31(6):543–546.

Zhu, S., Fan, W., Yang, S., Pei, J., and Pardalos, P. M. (2018). Operating
room planning and surgical case scheduling: a review of literature. Journal
of Combinatorial Optimization, 37(3):757–805.

52

...................................... 9. Conclusion

B
ra

nc
h-

an
d-

pr
ic

e
In

te
ge

r
lin

ea
r

pr
og

ra
m

pa
ra

m
et

riz
at

io
n

F
F

L
P

R
%

G
a
p

%
O

p
t

T
im

e
[s

]
F

F
L

P
R

%
G

a
p

%
O

p
t

T
im

e
[s

]
LC

=
ba

si
c,

|S
|=

10
,|D

|=
5,

|R
|=

1
23

22
.7

5
0.

01
1

47
6.

24
23

22
0.

04
0

18
00

.0
2

LC
=

ba
si

c,
|S

|=
15

,|D
|=

5,
|R

|=
1

31
30

.2
5

0.
02

1
16

.5
1

31
30

0.
03

0
18

00
.0

4
LC

=
ba

si
c,

|S
|=

30
,|D

|=
5,

|R
|=

4
81

81
.0

0
0.

00
1

43
.2

81
71

0.
12

0
18

00
.0

5
LC

=
ba

si
c,

|S
|=

45
,|D

|=
5,

|R
|=

4
11

8
11

8.
00

0.
00

1
90

.8
2

11
9

10
7

0.
1

0
18

00
.0

5
LC

=
ba

si
c,

|S
|=

10
,|D

|=
10

,|R
|=

1
42

34
.0

0
0.

19
0

18
30

.2
7

34
28

0.
18

0
18

00
.0

3
LC

=
ba

si
c,

|S
|=

15
,|D

|=
10

,|R
|=

1
67

52
.0

0
0.

22
0

18
08

.4
3

52
44

0.
15

0
18

00
.0

2
LC

=
ba

si
c,

|S
|=

30
,|D

|=
10

,|R
|=

4
20

3
20

1.
97

0.
01

0
19

50
.2

4
27

2
11

4
0.

58
0

18
00

.1
1

LC
=

ba
si

c,
|S

|=
45

,|D
|=

10
,|R

|=
4

20
3

18
9.

00
0.

07
0

18
99

.2
8

26
8

16
1

0.
4

0
18

09
.0

2
LC

=
ba

si
c,

av
er

ag
e

96
91

.1
2

0.
07

0.
5

10
14

.3
7

11
0

72
.1

3
0.

2
0

18
01

.1
7

LC
=

ad
va

nc
ed

,|S
|=

10
,|D

|=
5,

|R
|=

1
23

22
.7

5
0.

01
1

30
5.

08
23

22
0.

04
0

18
00

.0
2

LC
=

ad
va

nc
ed

,|S
|=

15
,|D

|=
5,

|R
|=

1
31

30
.2

5
0.

02
1

15
.1

5
31

31
0

1
33

9.
51

LC
=

ad
va

nc
ed

,|S
|=

30
,|D

|=
5,

|R
|=

4
81

81
.0

0
0.

00
1

53
.3

3
81

74
0.

09
0

18
00

.0
3

LC
=

ad
va

nc
ed

,|S
|=

45
,|D

|=
5,

|R
|=

4
11

8
11

8.
00

0.
00

1
43

.2
6

11
8

10
9

0.
08

0
18

00
.0

5
LC

=
ad

va
nc

ed
,|S

|=
10

,|D
|=

10
,|R

|=
1

35
34

.0
0

0.
03

0
18

06
34

28
0.

18
0

18
00

.0
3

LC
=

ad
va

nc
ed

,|S
|=

15
,|D

|=
10

,|R
|=

1
52

52
.0

0
0.

00
1

64
8.

56
52

45
0.

13
0

18
00

.0
4

LC
=

ad
va

nc
ed

,|S
|=

30
,|D

|=
10

,|R
|=

4
20

3
19

3.
87

0.
05

0
18

05
.1

9
22

8
11

4
0.

5
0

18
00

.0
9

LC
=

ad
va

nc
ed

,|S
|=

45
,|D

|=
10

,|R
|=

4
20

3
20

2.
10

0.
00

0
18

76
.1

2
20

4
16

2
0.

21
0

18
00

.1
LC

=
ad

va
nc

ed
,a

ve
ra

ge
93

.2
5

91
.7

5
0.

01
0.

63
81

9.
09

96
.3

8
73

.1
3

0.
15

0.
13

16
17

.4
8

Ta
bl

e
1:

Be
nc

hm
ar

k
co

m
pa

ris
on

be
tw

ee
n

di
ffe

re
nt

so
lu

tio
n

ap
pr

oa
ch

es
an

d
la

zy
co

ns
tr

ai
nt

s.

53

9. Conclusion......................................

B
est

equilibrium
solution

B
est

decentralized
solution

B
est

centralized
solution

α
β

scenario
U

tilitation
F

T
im

e
[s]

U
tilitation

F
T

im
e

[s]
U

tilitation
F

T
im

e
[s]

PoD
PoS

0
1

1
0.81

2.6
1.05

0.78
3

0.92
0.83

2.6
0.91

1.15
1.00

0
1

2
0.82

3.9
0.95

0.78
4.7

0.81
0.81

3.9
0.79

1.21
1.00

0
1

3
0.82

4.6
1.79

0.78
8.1

0.94
0.82

4.6
2.32

1.76
1.00

0
1

4
0.81

2.6
1.31

0.78
3.7

1.02
0.83

2.6
0.86

1.42
1.00

0
1

5
0.82

5.1
1.98

0.77
10.3

0.87
0.82

4.7
2.95

2.19
1.09

1
0

1
0.92

13.2
1.73

0.78
34.8

0.92
0.92

13
0.93

2.68
1.02

1
0

2
0.91

14.9
3.77

0.78
35.1

0.84
0.92

13
0.96

2.70
1.15

1
0

3
0.92

18.3
1.55

0.78
37.8

0.91
0.92

18.2
1.46

2.08
1.01

1
0

4
0.91

15.1
2.51

0.79
33.7

1.05
0.92

13
0.97

2.59
1.16

1
0

5
0.91

14.7
2.05

0.77
36.7

0.88
0.92

13
0.94

2.82
1.13

1
1

1
0.92

18.3
1.56

0.78
37.8

0.91
0.92

18.2
1.46

2.08
1.01

1
1

2
0.9

23.2
6.68

0.78
39.8

0.84
0.91

22.7
2.76

1.75
1.02

1
1

3
0.91

22.4
2.3

0.78
43.1

0.87
0.91

22.4
2.04

1.92
1.00

1
1

4
0.9

19.9
4.71

0.79
37.8

1.05
0.92

18.2
1.44

2.08
1.09

1
1

5
0.89

24.7
15.27

0.77
47

0.85
0.91

23.7
4.6

1.98
1.04

Table
2:

T
he

effi
ciency

ofobtaining
the

equilibrium
solution.

54

	Introduction
	Motivation
	Contribution
	Outline

	Related work
	Surgery Planning
	Bilevel Optimization

	Branch and Price
	Overview and Motivation
	Algorithm Description

	Problem Statement
	Characteristics and Parameters
	Assumptions

	Integer Linear Programming Model
	Mathematical Formulation of ILP Model
	Variables
	Constraints
	Leader's Problem
	Follower's Problem

	Lazy Constraints
	Objective Value Based Lazy Constraint
	Assigned Patients Based Lazy Constraint

	Branch And Price Model
	Dantzig-Wolfe Decomposition
	Master Problem
	Dual Master Problem
	Subproblem

	Lazy Constraints
	Objective Value Based Lazy Constraint
	Assigned Patients Based Lazy Constraint

	Initial Columns
	Initial Heuristics

	Lazy Constraint Remembering
	Branching
	Dummy Pattern

	Data Analysis
	CHOIR Dataset
	Data from University Hospital of Hradec Králové

	Experimental Results
	Implementation
	Computational Results
	Comparison of Branch-and-Price and ILP Model
	Impact of Speed-Up Mechanisms
	Game-Theoretical Approach

	Conclusion
	Bibliography

