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Abstract

This  thesis  aims  at  analyzing  chronic  patients  data,  trying  to  identify  subgroups  in  the 

population  for  which  a  more  personalized  treatment  can  be  provided,  using  state-of-the-art 

unsupervised  clustering  and  deep  learning  methods.  Focusing  further  on  the  patients  with 

chronic tobacco addiction, overview of the latest m-health and deep phenotyping approaches is 

given.  Suitable  dataset  is  created  from  the  database  of  smoking  cessation  smartphone 

application  with  real  patients  data,  of  cardinality  of  approximately  5000  patients  with  20 

measured, mainly sociodemographic, features.  Issues emerged by working with dataset with 

mixed –   numerical  and  categorical  –  variables  are  solved.  It  is  done  in  rather  innovative 

manner, proposing new technique of training Entity Embeddings for special case of nominal 

variables. Latest dimensionality reduction methods are discussed, namely the Autoencoders and 

Variational Autoencoders. Later the same is done for the clustering algorithms. Afterward, for 

the  created  datasets  exploratory  analysis  is  carried  on,  yielding  valuable   descriptive  and 

graphical  information about  the patients population. Finally the patients are clustered,  using 

algorithms. From the emerged patients clusters are estimated the digital phenotypes. Depending 

on the numerous hyperparameters 7 to 8 well defined clusters, phenotypes, were identified in 

the  patients  population.  These results  enable  future  personalized therapy improvements  and 

provide valuable feedback for the patients data collection process.

Keywords: deep phenotyping, smoking cessation app, Autoencoders, unsupervised learning, 

Entity Embeddings 



Abstrakt 

Tato diplomová práce si klade za cíl analyzovat data pacientů s chronickými onemocněními a 

identifikovat podskupiny jejich populace, pro které lze poskytnout více personalizovanou léčbu 

pomocí nejmodernějších metod shlukování a hlubokého učení. Zaměřuje se dále na pacienty s 

chronickou závislostí na tabáku a poskytuje přehled nejnovějších přístupů v oblasti mobilního 

zdravotnictví (m-health) a hlubokého fenotypování. Pro tyto účely byl vytvořen vhodný datový 

soubor z databáze mobilní aplikace pro odvykání kouření s reálnými daty pacientů, o velikosti 

přibližně 5000 pacientů a  20 měřených,  převážně sociodemografických,  charakteristik.  Dále 

jsou v rámci studie řešeny problémy spojené s prací s daty obsahujícími smíšené - numerické a 

kategoriální - proměnné jsou řešeny. Následně je představena technika pro získání vhodných 

reprezentací speciálního případu nominálních proměnných, pomocí trénování neuronových sítí. 

Jsou  diskutovány  nejnovější  metody  shlukování  a  redukce  dimenzionality  jako  jsou 

Autoenkodéry a Variační Autoenkodéry. Poté je provedena explorativní  analýza vytvořených 

datových sad, jejímž výsledkem jsou cenné popisné a grafické statistické informace o populaci 

závislých na nikotinu. Nakonec je populace rozdělena do  shluků shlukovacími algoritmy, což 

umožňuje  odhad  digitálních  fenotypů  uvnitř  jednotlivých  shluků  pacientů.  V závislosti  na 

různých hyperparametrech bylo identifikováno 7 až 8 dobře definovaných shluků, fenotypů, v 

populaci. Zjištěné digitální fenotypy umožňují budoucí zlepšení personalizované terapie a také 

poskytují hodnotnou zpětnou vazbu pro budoucí sběr dat pacientů skrz mobilní aplikaci.

Klíčová slova:  digitální fenotypizace aplikace na odvykání kouření, autoenkodery, učení bez 

učitele, Entity Embeddings 



Used shortcuts

api – application interface

app – application

dof – degrees of freedom
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ae – autoencoder
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tf – TensorFlow (deep learning framework)

json  - JavaScript Object Notation (data format)
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nlp – natural language processing

dimred – dimensionality reduction
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Chapter 1

Introduction

This chapter explains the motivation behind writting this thesis. Following chapters present the

actual context of personalized medicine and emerged techniques leveraging the various machine

learning methods to identify subgroups in the chronic patients population on the chosen subset

of measurable patients population features.

Motivation
In an ideal world, patients in general, including those with chronic conditions, would receive

personalized  medical  treatment.  To achieve  this,  it  is  necessary  to  create  an  apparatus  that

categorizes  patients  based  on  a  measurable  set  of  features.  While  such  a  task  may  vary

depending on the specific disease domains, there are commonalities across various domains that

can  be  utilized  in  developing  such  algorithm.  We  would  like  to  inspect  such  possibilities,

creating a suitable analysis pipeline and subsequently test proposed approach on real chronic

patients data. If  successful,  such personalized and more effective therapy could have strong

health and social  benefits.  Using machine learning methods to create digital  phenotypes for

some population of chronic patients is quite a novel approach and with smartphones and other

smart devices being ubiquitous in modern society, it would be unwise not to make use of such

platform.

Outline
The goal of this work is to create digital phenotypes for chosen suitable subset of real chronic

patients. Once the specific domain is chosen, it is important to conduct a thorough research to

determine the most relevant features of the chronic patient population. These features will be

used to create the resulting digital phenotypes. Next, it is important to obtain real patient data

and establish a preprocessing pipeline to generate a dataset that is appropriate for subsequent

analysis.  After  creating  the  dataset,  an  exploratory  analysis  will  be  conducted  to  obtain

descriptive  statistics  and  visualizations.  This  analysis  aims  to  gain  a  comprehensive

understanding  of  the  chronic  patient  population,  enabling  more  informed  and  data-based
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decisions to guide the final clustering steps in a meaningful direction. Since the dataset will be

of  high  dimensionality,  it  is  necessary  to  employ  dimensionality  reduction  methods  for

inspecting the dataset and visualizing the clustering results. Additionally, a wide range of state-

of-the-art clustering and dimensionality reduction techniques will be employed to determine the

optimal separation of the chronic nicotine users' population. Various metrics will be utilized to

evaluate the performance of the clustering methods. Finally the emerged phenotypes for the

found chronic patients groups will be created.

Contribution
This work creates - to our best knowledge – one of the first more complex digital phenotyping

pipelines applied on a real (mainly) Czech patients with chronic nicotine addiction, using the

latest unsupervised machine learning methods. Our results can be further utilized by medical

experts for targeting the right patients subgroups, creating more personalized therapy. Also, the

exploratory analysis  provides  many interesting statistics  about  chronic  smokers.  One  of  the

outputs of this work is a clean and well-documented dataset of approximately  five thousand

patients  and  twenty measured  features.  This  work  uses  the  deep  generative  models  for

dimensionality reduction, namely the Autoencoders and Variational Autoencoders, which is a

rather newer approach. Possibly, a new way of designing the encoding process for a specific

subgroup of nominal variables, whose values are subsets of the set of options patient can choose

from (e.g.  by  filling  out  a  questionnaire),  is  presented.  This  encoding  procedure  could  be

described as: “learning the Entity Embeddings by neural networks, formulated as a multi-label

classification task”. 
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Chapter 2

M-health and Personalized medicine

This chapter starts by summarizing the current trends in m-health and personalized medicine,

focusing then more on the smartphone therapy applications for chronic patients. In the end an

overview of nicotine cessation apps is given in general. Further, a particular smartphone app is

introduced, from which the chronic nicotine users data for further analysis were obtained. Also,

a  digital phenotype is defined.  The types of profiling usually used  for cigarette smokers and

nicotine users in the literature  is presented as well.

2.1 Mobile apps for chronic diseases management
Firstly, an overview of applications targeting chronic patients in general is given, followed by an

overview of  smoking  cessation  apps.  Mobile  phones  are  one  of  the  most  abundant  digital

platforms in today’s society. To make us of it’s huge potential for gathering patients data and for

providing therapy seems very reasonable, if tasks like providing more precise and personalized

medical treatment wants to be tackled. Long term health-management for patients with chronic

diseases was studied, and it was found, that using smartphones is a promising option [1]. The

retrospective analysis of users of a medication adherence management mobile app revealed a

positive trend in maintaining optimal medication adherence over time [2].  The mobile health

tracking apps targeting patients with chronic conditions were studied from an architectural point

of view in  [3] and it was find out, that the apps should be highly usable to motivate chronic

patients to continue in the virtual therapy. A difference in motivation regarding seriousness of

the quitting attempts was found between patients using Android and iOS [4].  The difference in

abstinence duration for patients using decision-apps and those using information-only apps, was

studied in  [5].  The quality  of  provided therapy mainly  for  apps  for  pain management  was

studied in [6] and it was found out, that one of the reasons behind a poor quality of some apps

could  be  the  lack  of  a  regulatory  body  assessing  their  qualities.  Overall  challenges  in  the

collection and analysis of digital phenotyping data were discussed more in depth in [7]. A large

review of smartphone applications for smoking cessation was conducted by [8].  Effectiveness

of mobile apps for smoking cessation and the various reasons for patients could be quitting the
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therapy was studied in [9]. The long-term effectiveness, of one of the main smoking cessation

apps  on  the  marked,  was  described  studied  in  [10].  These  studies  and  their  results  only

punctuate the importance of using the mobile technologies for personalized medicine and shows

the  growing   trend  in  m-health  and  using  smartphones  for  therapy  reasons,  as  a  medical

instrument.

2.2 Digital Phenotype
The main goal Digital Phenotyping is to collect high-quality smartphone data and to create the

necessary methodology to make use of such data, as first described in [11]. This field of study

was, from the year 2016 when the term emerged, intensively studied in the literature. Profound

study  of  opportunities  and  challenges  presented  by  the  collection  and  analysis  of  digital

phenotyping data was made by [12]. A more specialized approach towards precision health and

patient-centered care given in  [13],  proposing term Digital Twin.  Digital Phenotyping quality

and safety related issues are inspected into more detail in [14]. The ethical point of view then in

[15].  It  is  appropriate  to  ask such questions  about  ethics  and discuss  safety  related issues.

Although Digital Phenotyping is mainly a data-driven approach, it is important not to forget,

that  the  data  still  represent  real  people.  Also,  the  numerous  studies  prove,  that  the  digital

footprint could be used for something good, not just for a marketing purposes.

The data gathered from the smartphone (or any other personal mobile platform) can be divided

further  into 2  groups:  passive and  active.  Passive data  are  mainly some smartphone-sensor

generated data,  created without patients input. This thesis mainly works with the active data,

generated by patients  directly  interacting with the  device.  No biomarkers  or  any additional

biochemical information are at disposal, even though having such features would be beneficial.

2.3 Smokers profile
Profiling smokers in literature is done in many ways. The most primitive one is to categorize the

patients into usually three categories by the number of smoked cigarettes per day. The categories

are following: light, moderate and heavy smokers, smoking 1 to 10, 11 to 19 and more than 20

cigarettes per day, respectively. Other categories could be ‘Never-smokers’, ‘Daily smokers’,

etc.  based  on  the  frequency  or  previous  duration  patients  used  to  smoke.  More  profound

profiling for some smokers subgroups was done by [16].
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2.4 Used smoking cessation app structure
Data are created by patients interacting directly or indirectly with the smartphone application.

The application offers virtual therapy sessions either each day or periodically in later application

stages.  Patient  is  encouraged to  interact  with  the  application  during  each  session  either  by

answering  questions  about  current  physical  or  psychological  state  or  by  chatting  with  the

application . These interactions generate the features used for further analysis. The digital trace

patient leaves in the application is rather large, so only the major sociodemographic and some

other features are later chosen. There are two versions of the app, a free trial and a paid version.

The free version doesn’t let user further than  EE phase, defined in  Table 1, thus splitting the

emerged datasets into two parts.

2.4.1 Therapy phases
The therapy phase represents patient’s progress in the therapy. There are multiple consecutive

therapy phases, each one with exactly defined number of sessions, one per day. User must finish

current therapy phase to continue to the next one. The construction of the sessions and their

content were designed by medical experts. Table 1 and the flow graph on Figure 1 describe the

therapy phases.

Table 1: Therapy phases and their meaning.

Phase name Phase description
START Patient created account, but didn’t start the therapy yet. 
EE Patient started the therapy. 

This phase consists of 10 therapy sessions (1 session per day). Those sessions 
however don’t have to be completed continuously, there is no upper day limit. 
Patient can also choose to complete all of the 10 ‘EE’ sessions in 1 day, which is 
referred to as ‘bujon’.

EQ The day patient stops smoking. Patient gets stuck in this phase otherwise.
FU Intensive follow-up phase subsequent to cessation, consisting of 21 sessions. 
WR Maintenance phase, consisting of 70 consecutive days of therapy.
FIN User finished all phases, therapy ends.

5

Figure 1:  Therapy phases flow diagram. Image shows possible therapy phases used in the used 
smoking cessation app, duration of the phase is represented by the transition to the subsequent 
phase.



Chapter 3

Methods and algorithms

This chapter presents the statistical methods and machine learning algorithms used during the

exploratory analysis and in the subsequent clustering and evaluation steps performed in order to

create the patients digital phenotypes.  Firstly, general overview of method categories suitable

for this task is presented. In the following parts, the methods are discussed  in chronological

order, as used during the experiments pipeline. Starting by exploratory analysis and correlations

tests.  Followed  by  dimensionality  reduction  techniques,  clustering  methods  and  clustering

performance  evaluation  methods.  Special  section  is dedicated  to  deep  generative  models,

namely  the  Autoencoders  and  their  regularized  variant  Variational  Autoencoders.  However,

these models are not used as generative models in this work, but for dimensionality reduction.

In the end of this chapter, possible ways of encoding categorical variables are discussed.  New1

approach of training deep embeddings for categorical nominal variables, with values as subsets

of a set {1, …, n} (results from a questionnaire with n options), is presented. 

3.1 Digital phenotyping approaches
This  section  briefly  discusses  possible  approaches  to  analyzing  chronic  patients  data  and

creation of theirs digital phenotypes. There are many possible ways to approach the task of

digital phenotyping, mainly depending on type of measured features for the patients population.

The data this thesis works with does not contain implicit time information, thus methods using

time  series  in  some  way  would  not  be  applicable.  The  data  collected  from  the  cessation

smartphone  app are  mainly  sociodemographic  active  data  provided  directly  by  the  patients

themselves. Main preprocessing problem will be working with the mixed dataset, transforming

it into suitable numerical form. Only then, standard clustering techniques can be used.

1

1  Learning Entity Embeddings by neural networks for Label-encoded categorical variables is common approach, but

not defining the optimization task as multi-label classification in order to caption subset similarities.
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3.2 Exploratory analysis
This part presents the statistical methods used during the exploratory analysis. These methods

provide means for  obtaining both descriptive and graphical  statistics.  Firstly,  methods from

univariate  analysis  are  described  and  consequently  the  methods  used  in  bivariate  and

multivariate  analysis  are  presented.  Univariate  analysis  is  the  introductory  step  in  order  to

understand  the  dataset,  mainly  by  visualizing  variables  distributions,  calculating  central

tendencies  and measuring  variability  in  the  population.  For  continuous  variables  arithmetic

mean, standard deviation, skewness and kurtosis is calculated. For categorical variables, either

ratios  are  calculated,  or  median in  case  of  categorical  ordinal.  Used graphical  methods  are

mainly histograms and bar charts. 

Following section refreshes statistical methods used for testing pairwise variables relationship.

Main focus is on pairwise linear correlations and testing differences between expected values

for some variable between two independent  populations.  This step is  not  only desirable for

understanding  the data,  but  also  a  necessary preprocessing step prior  to  the  dimensionality

reduction and clustering algorithms. Multicollinearity would skew the results. Simply put, two

strongly correlated dimensions carry only one piece of information, but would be ‘counted’

twice. 

3.2.1 Correlations
For testing pairwise variables relations following methods will  be used:  Pearson correlation

coefficient (Pearson’s r), Spearman's rank correlation coefficient (Spearman’s  ρ ), Kendall

rank correlation coefficient  (Kendall’s  τ )  and Chi-square  test  of  independence.  Detailed

formulas  given  in  [17].  Table  2 shows  used  pairwise  independence  tests  and  correlation

coefficients, coefficient ranges and their meaning. 

Table 2: Correlation coefficients and pairwise independence tests statistic, their ranges and 
interpretations . 

Variable type Correlation coefficient Result range Result meaning
numeric Pearson’s r  <0, 1>  0 = uncorrelated

 1 = highly correlated
ordinal Spearman’s ρ <-1, 1>  1 = positive monotonic relationship

-1 = negative monotonic relationship
Kendall’s τ <-1, 1>  1 = ranking of variable A is the same as 

ranking of variable B, 
-1 = perfect inversion

binary χ2  
(not a coefficient, but 
value of the statistic) 

<0, inf> Depends on the significance level the test 
is performed. But for two binary variables
and dof=1 the critical value is 3.841.
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3.2.2 Comparing two independent population means
Using advanced clustering and machine learning algorithms directly could be tempting. But it

would be better,  if the relationship between some variables like ‘age’ and ‘therapy success’

could  have  been  found  by  common  statistical  methods.  The  results  would  be  much  more

explicable, than those obtained from some advanced method, because interpreting clustering

results could be substantially intriguing.

First the tests for testing normality and homoscedasticity are listed then the methods for testing

differences between two population means for some variable.  Shapiro-Wilk test tests the null

hypothesis H0, that data was drawn from a normal distribution. Levene or Bartlett tests are used

to asses equality of variances in two populations for some variable. Finally,  ANOVA and it’s

non-parametric counterpart  Kruskal-Wallis test by ranks  will be used, for testing whether two

(or more) groups statistically significantly differ for some independent variable. [17] 

3.3 Dimensionality reduction
Dimensionality reduction is an essential preprocessing step when dealing with high-dimensional

datasets.  It  enables  exploring  potential  patterns  within  the  data  before  applying  clustering

algorithms  and  facilitates  visualization  of  the  results.  Moreover,  dimensionality  reduction

enhances  the  effectiveness  of  clustering  algorithms,  by  eliminating  irrelevant  or  redundant

features, it can improve clustering performance. Ideally, if the projections show clustered data,

the clustering algorithms should find them as well. In order to maximize probability of finding

some  real  structure  in  the  data  in  two  dimensions,  plethora  of  algorithms from maximally

orthogonal  algorithm  ‘families’ will  be  used,  namely:  Principal  Component  Analysis [18],

Isomap [19],  t-SNE [20],  UMAP [21],  Multi-Dimensional Scaling[22], Autoencoder[23] and

Variational Autoencoder [24].

Following section does not aim to provide exhaustive comparison of dimensionality reduction

techniques such as [25], but rather discuss when is suitable to use the specific algorithm. Also to

present the various hyper-parameters that have to be tuned. Regarding the hyper-parameters,

they  can,  and  usually  do,  vary  depending  on  the  used  implementation.  Many  new

implementations of algorithms described in the original papers tend to upgrade the performance

by some changes in the original algorithm or by solving some niche use-case, that was not taken

into account in the original paper. Since choosing the hyper-parameters can be sometimes non-

intuitive, there have been many efforts to automate the hyper-parameter selection or to provide

reasonable set of defaults, for example for t-SNE in [26]. Also, all the used algorithms require

numerical input, or some metric that can handle non-numerical data must be provided. Usually
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the  default  metric  is  considered to  be  the  L2 norm (Euclidean distance).  So,  if  the  dataset

contains mixed variables, either suitable metric like Gower’s distance [27] must be provided or

all non-numerical variables must be transformed into numerical.

3.3.1 Hyper-parameters
For example, the number of possible hyper-parameters of scikit-learn Isomap implementation is 

rather large ~11 (leaving out performance-related ones such as the number of threads to use). 

Aim of this section, is not a detailed description of each algorithm. However good 

understanding of the hyper-parameters is necessary to be able to navigate the experiments in the 

right direction. For the each algorithm a reasonable default is used. However some parameters 

seem to have more serious effect on the algorithm run than others [28], so for those ‘more 

important ones’ some kind of search should be usually performed. Also one thing is a set of 

parameters as given in the original paper and second thing is the set of parameters and hyper-

parameters offered by the specific implementation, which tends to be usually non trivially 

larger. Table 3 summarizes dimred algorithms used later in this work, number of their major 

hyper-parameters and their basic meaning. The projection dimension is called differently for 

each algorithm. For example, for PCA it is the chosen number of the first ‘k’ principal 

components, for (V)AE it is the latent dimension usually denoted ‘z’. Table 4 presents whether 

for each run, the algorithm gives the same results.

Table 3: Used dimensionality reduction algorithms and their hyper-parameters.  Metric used by 
the algorithms are not counted as a hyper-parameters in this table, as well as projection 
dimension.

Algorithm Parameters Notes on parameters
PCA 0 optionally the parameters regarding SVD solver
MDS 0 Mainly internally used SMACOF algorithm parameters
Isomap 1 Number of neighbors
t-SNE 2 perplexity, number of iterations
UMAP 2 Number of neighbors, minimal distance for point to be core
AE / VAE very high the number and order of hidden layers, layers sizes and activations, 

normalization elements, training parameters, optimizer, ...

Table 4: Stochasticity of dimensinality reduction algorithms results.

PCA MDS Isomap t-SNE UMAP AE/VAE
deterministic stochastic deterministic stochastic stochastic stochastic
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3.3.2 Practical notes for some algorithms
Following section tries to discuss the algorithms from more practical point of view, because in

order to obtain reasonable results, can be quite finicky task and usually require some kind of a

hands-on  experience.  Not  mentioning  that  algorithm  interface  usually  differs  for  different

implementations. This should rather create some practical intuition for using the algorithms. An

intuition that is leveraged in the subsequent experiments.

PCA should be used only for standardized numerical features, however [29] presents a way how

to use  PCA for mixed a dataset. PCA should be used, when many of the variables are highly

correlated with each other, to reduce their number to an independent set. If found, during the

bivariate analysis, that the numerical variables are not correlated, it could be expected that that

PCA will not be able to explain much of the variance in the dataset by using fewer dimensions.

According  to  experiments  done  in  [28],  studying  how  t-SNE  behaves  on  simple  cases,

important algorithm behavior was observed:

• Keep the perplexity in range from 5 to 50, as given in [20]. 

• Different datasets require different number of iterations to converge, but usually 5000

should be sufficient.

• Probably relative sizes of clusters are not preserved, the resulting clusters sizes are not

relevant, as t-SNE tends to contract sparse clusters and expand dense ones.

• Distances between the resulting clusters might not be relevant as well.

• Topological information can be sometimes retrieved by plotting the data with various

perplexities.

Perplexity could be interpreted as the number of nearest neighbors that are considered during

the algorithm run in the original space, that implies that with increasing perplexity more of a

global data structure is captured, of course for the given metric that is used.

3.4 Autoencoders
This  section  describes  the  deep  generative  models,  a  neural  networks  family  used  and

implemented in this thesis. However it is used not as a generative model, but for dimensionality

reduction, using only the encoder part of the trained network. Autoencoder as described in [23]

can be considered a latent-variable model as described in[30]. The autoencoder family, as, to

date, is substantially large, the main branches being:

• Denoising Autoencoders [31],

• Sparse Autoencoders [32], 
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• Variational Autoencoders  [24] 

• Contractive Autoencoders [33]

This  thesis  further  works  with  the  “plain”  Autoencoder  as  described  in  [23] and  with  the
Variational Autoencoder as described in [24].

3.4.1 Autoencoder architecture
Autoencoders are usually depicted as an ‘hourglass’ shape architecture, however the input layer

does not have to be larger than the hidden layer, which doesn’t hold for the implementation in

this thesis neither. Usually much deeper networks or networks with higher capacity are used.

For purposes of this thesis is however sufficient quite a shallow network, both encoder and

decoder having just 3 hidden layers, of sizes 128, 64 and 32 with the last layer having only 2

dimensions, see Figure 2. This encoder structure generates what is referred to as the latent space

[34] – the embedding dimension, the bottleneck. Architecture of the decoder is mirroring the

encoder. In the network depicted in  Figure 2  and Figure 3 is the latent dimension equal to 2,

because the autoencoder was used as a tool for projecting the data it was trained on, into 2

dimensions for visualization. That is the main idea of using the autoencoder as dimensionality

reduction technique. First the model is trained on the dataset to convergence. It does not matter

if it overfits, and it most probably does, since no regularization is used and the number of data

could be small.  This would matter if the model would be used as a generative one, but for

dimensionality reduction purposes that does not matter. Only the encoder is kept, generating the

2 dimensional representations of the data it was trained on. 

3.4.2 Autoencoder training
The autoencoder is trained on a simple task. “Generate the same data on the output as received

on the input, but first pass them through a ‘bottle neck’ inside the network”. Thus imposing on

the model to learn low dimensional encoding of the input in the latent space. Loss used during

training is usually called a  reconstruction loss,  but  in reality it  could be the plain old  MSE
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Figure 3:  Decoder part of the autoencoder network implemented in TensorFlow 2.x framework. 
Latent dimension is 2, output dimension is 10.

Figure 2: Encoder part of the autoencoder network implemented in TensorFlow 2.x framework. 
Input dimension is 10, latent dimension is 2.



(Mean Squared Error) [35] loss, if the model output are logits (raw, unprocessed activations of

the last layer).

3.4.3 Autoencoder and Principal Component Analysis similarities
There is a similarity in the resulting projection between the  PCA and the encoder part of an

Autoencoder, if constructed in the most simple way, both encoder and decoder having only 1

hidden  (fully  connected  layer)  without  any  activation.  After  training  to  convergence,  such

encoder generates the same subspace as the  k-largest components identified by PCA, where  k

represents the size of the latent dimension in the autoencoder. However, the resulting projection

may (and most probably will) differ when additional layers or non-linear activation functions

are introduced. [36]

3.4.4 Variational autoencoder
Variational autoencoder could be viewed as a regularized version of the plain autoencoder. For

the plain autoencoder the  loss  is  calculated only as  a difference between the input  and the

‘reconstructed’.  For  Variational  Autoencoder,  there  is  put  an  additional  constrain  on  the

distributions generating the latent space. The combined loss is usually described as (1) or, in

order to formulate the training as a minimization task, as (2) and it is a called an  Evidence

Lower bound.

LELBO (θ ,ϕ ; x )=log Pθ(x)−DKL(Qϕ(x∣z )∥Pθ(z∣x))  (1) 

−LELBO (θ ,ϕ ; x )=log Pθ(x )−DKL(Qϕ(x∣z )∥Pθ(z∣x))  (2)

VAE is trained by minimizing  the -LELBO. Distribution Q is parametrized as Normal distribution

N(z| μ , σ2 ) with encoder generating the mean μ  and variance σ2 for given input x.

The expected value of Qfi(z|x) is estimated using single sample, prior is P(z) ~ N(0, I) and loss

has 2 parts:

→ Reconstruction loss – Start with input x, pass through Q, sample z, pass it though P, should

output x.

→ latent  loss  –  over  all  x,  the  distribution Qfi(z|x), should  be  as  close  as  possible  to  the

distribution P(z) = N(0, I), which is independent on x. Backpropagation is not possible due to

sampling. In order to backpropagate through  z~Q(z|x), “re-parametrization trick” must be used.

[23]

The theory for  the  VAE was described into more detail,  because unlike the majority of the

algorithms used out-of-the-box, VAE (and AE) had to be implemented from scratch.
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3.4.5 Variational Autoencoder architecture
Figure 4 and Figure 5 depict the actual internal architecture of Variational Autoencoder, as later

implemented in this work.  The interesting part  of  the network,  are arguably the two output

layers of the encoder (Figure 4), which generate two separate outputs representing the mean and

the variance (here both two-dimensional vectors) used to parametrize the Normal distribution.

This  parametrized  Normal  distribution  is  then  used  for  sampling  encoder  output,  which

represents the network input in the latent space. This is done in order to ‘cover’ the whole latent

space.  Each  model  input  generates  not  a  point  but  a  probability  distribution,  rather  than

projecting every the input every time into one point as the Autoencoder does. 
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Figure 4:  Encoder part of Variational Autoencoder. This is the actual architecture later 
implemented in this work. Input layer expects batch of vectors of size (12, ). The last two separate 
layers generate the mean and the variance used to parameters the a Normal distribution used for 
sampling the data representations, but in the latent space, which has here 2 dimensions.

Figure 5: Decoder part of Variational Autoencoder. Input to this model is a  2-dimensional vector in 
latent space, sampled from the Normal distribution, parametrized by the encoder output.  Three 
hidden fully-connected layers follow. Model outputs vector in the same shape that expects the 
encoder on the input, here (12,).



3.5 Metrics 
Almost  all  algorithms discussed  in  this  chapter  need  some way  of  measuring  the  pairwise

distances between the data. This usually defaults to some kind of  L1 or  L2 Minkowski norm

(Manhattan or Euclidean distance respectively). Large number of algorithms implementations

directly  offer  a  plethora  of  metrics  to  be  used  out-of-the-box,  for  example  UMAP2 python

module offers following groups of metrics:

• ‘minkowski-style’ metrics

• normalized spatial metric

• angular and correlation metrics

• metrics for binary data

However metrics that can compute the pairwise distances directly do exist. One of such metrics

would be the Gower’s distance.

3.6 Unsupervised clustering
This  section describes  unsupervised learning  algorithms used in  this  thesis  for  creating the

patients digital phenotypes. From number of clustering algorithms available, as discussed in

[25], following  4 were chosen, namely: hdbscan [37], optics [38], agglomerative hierarchical

clustering [39] and  k-means  [40].  K-means was  mainly  chosen,  in  order  to  have  in  the

clustering arsenal  some ‘base-line’ well  known algorithm.  That  doesn’t  mean that  for some

problems this method cannot perform sufficiently. Algorithms are presented from a practical

point of view, this section doesn’t aim to provide exhaustive overview of each used method,

such as have been done in [41] and [42].  Most algorithms work with some kind of intra-cluster

(inside the same cluster),  and inter-cluster (between distinct clusters) similarities. Metric must

be provided to  the  algorithms in order  to  compute the  cluster  distances.  This presents very

similar  issues,  already  discussed  in  previous  section  dedicated  to  dimensionality  reduction

algorithms.  K-means is  a  well  known method.  It’s  major hyper-parameter  is  the  number  of

clusters, that need to be set prior to starting the algorithm. This task can be tackled by using

various ‘elbow methods’ or using the gap statistics (discussed in section Clustering evaluation

metrics),  a  more  advanced  method  that  automates  the  process  of  choosing  the  number  of

clusters.  Agglomerative clustering, as well being an older concept,  proves to be a powerfull

technique. It  recursively merges closest  pairs of clusters of the sample data, provided some

chosen  linkage function [43]. Hdbscan  and optics  are rather novel approaches. Hdbscan is a

complex algorithm, but the major parameter of it’s ‘interface’ is arguably the  minimal cluster

size.  Optics’s major parameters set how the neighborhood of points is constructed and what

points will be chosen as the core points.
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3.7 Clustering evaluation metrics
This  section starts  by describing used performance  evaluation  metrics  used to  asses  results

obtained by the clustering algorithms described in the previous section. Then, another algorithm

called gap statistics[44] is described, a method used to choose the optimal number of clusters. 

There are multiple metrics applicable for evaluation of the clustering performance, only a few

can be used for clusters without knowing the ground truth labels. These methods usually work

with some notion of how well separated the clusters are. Following methods require only the

data  and  according  predicted  cluster  labels  on  the  input:  Davies-Bouldin  Index  [45],

Calinski-Harabasz  Index  [46]  (also  known  as Variance  ratio  criterion), and  Silhouette

coefficient [47]. Again, all these methods need to be provided with some distance function used

for calculating the distances between the data and clusters, and again this usually defaults to

Euclidean distance. There are also other metrics such as mutual information or rand index, but

these methods require both predicted and ground truth cluster labels on the input, so they cannot

be used for our problem. Short summary is presented in Table 5.

Table 5: Clustering evaluation metrics, applicable without knowing the ground truth labels, with
value ranges and their meanings.

Metric name Range of the score The higher the score, the more dense and
well separated the clusters are.

Davies-Bouldin Index <0, inf> No, the lower the better
Calinski-Harabasz Index <0, inf> Yes

Silhouette coefficient <-1, 1> Yes

3.7.1 Gap statistics
This method offers a convenient way for choosing an optimal number of clusters for given

clustering algorithms, that work in some sense with cluster centroids. Thus, it cannot be directly

used for  hdbscan or  agglomerative hierarchical clustering.  The authors in the  original paper

however state, that it can be used with any clustering algorithm. So it is possible, that this could

be  only  an  implementation-wise  issue,  of  the  used  third-party  algorithm  implementation.

Nonetheless, only 1 credible implementation in python  was found, the other - more famous one

- is implemented in R. It is usually used for k-means algorithms family. As stated in [44] this

method aimed on formalizing some of the heuristics used for choosing an optimal number of

clusters. Here optimal is defined as minimizing the within-cluster dispersion. 
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3.8 Encoding categorical variables
Neural  networks,  and  large  portion  of  methods  and  algorithms  used  in  this  thesis,  require

numeric input values (if non-exotic metric, such as Euclidean distance is used). There isn't a

single definitive solution for handling categorical data. The encoding should be done cautiously,

with regard to the specific method and chosen metric. Also different encodings could be more,

or less, suitable for the categorical variables. It usually depends whether it is nominal or ordinal

categorical variable.

First,  encoding methods overview is given,  followed up by  presenting possibly,  to our best

knowledge,  a novel  way of  learning  deep embeddings with multi-layer  perceptron network,

formulating the task as a multi-label classification  [48]. Many encoding methods exist, quick

refreshment of the most commonly used ones follows.

3.8.1 One-hot encoding
One-hot encoding de-factor splits the categorical variable into as many binary variables, as there

are categories, creating (usually) a sparse vector. For example nominal variable ‘state of health’

with  values  {cancer,  healthy,  diabetes}  would  be  one-hot  encoded  into  cancer→[1,  0,  0],

healthy→[0, 1, 0], diabetes→ [0, 0, 1].  Creating 3 new dimension, each representing yes/no

answer  to  the  question “Is  your  state  of  health  <category>”.  Used mainly for  categorical-

nominal variables, it tends to inflate the dimensionality quickly. The number of newly created

dimensions is equal to the number of the categories.  If used for encoding ordinal variables, the

implicit ranking is lost. 

3.8.2 Label encoding
This term usually refers to the method of simply assigning consecutive integers (’labels’)  to the

categories.  For  example,  variable  town_size={small,  medium,  large},  is  label  encoded  as

follows:  medium→1, small→2,  large→3. This  -  valid  -  labeling was chosen on purpose to

demonstrate, that if the labels are afterwards interpreted as real numbers, the ‘large town’ would

be closer to ‘small  town’ than to the ‘medium town’,  under euclidean distance.   Usually, it

makes sense to use this method for ordinal variables, because for nominal variables, it  puts

unrelated values falsely close together. However, it presents no problem to use this encoding for

nominal  variables  if  they  are  directly  fed  into  a  neural  network.  Notion  of  a  distance  or

similarity is usually captured by the task the model is trained on.
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3.8.3 Entity Embeddings
This approach leverages the power of neural networks to  train the embeddings, provided the

input data, some target and suitably formulated loss [49]. Resulting embedding is a dense vector

of fixed size with real values. The architectures may vary from simple multilayer perceptrons to

very deep and complex networks, but they usually share what is referred to as an ‘Embedding

layer’.  The input to the Embedding layer is interpreted as a key to a dictionary, with values

being the actual embeddings, which is then passed on the layer’s output.

3.8.4 Entity Embeddings for subsets
Learning entity embeddings are generally used to obtain a vector representation of each word

from the dictionary, where word represent a label encoded category. Problem encountered in this

work is more specific though. The issue is, that there is an additional information hidden in the

nominal  variables values.  For example,  the values of  variable  state of  health {2,  5,  6} and

{2, 3, 6} are obviously more related than the values  {1} and {2, 6}.  To capture such relations,

appropriate formulation of the problem has to be used. The model input will be still following

an ‘usual procedure’. First encoding the categories with Label encoding, using those values as

an input to the neural network model. To capture then the similarities between categories, that is

the subsets intersection, training the of the model formulated as a multi-label classification task

is proposed, where the target is a binary vector of size [1, number of variable’s options]. This

formulation dictates that binary cross-entropy loss (also known as the log loss) should be used,

defined as:

− 1
N ∑

i=1

N

y i . log (p ( y⃗ i))+(1− y⃗ i) . log(1−p ( y⃗ i))                            (3)

where N is the length of the target vector, y is the target vector,  p(yi)  is the probability of label i

being 1 and p(1-  yi) being 0.

Beware, the ‘label’ in the word ‘multi-label’, doesn’t have the same meaning as in the word

‘label encoding’. It represents the cardinality of the set {1, …, n} (n being the number of options

patient chooses from in some questionnaire), not the number of classes – all subsets of the set

{1, …, n}.

For  example,  the  multi-label  target  representation for  the  value  {2,  3,  6} of  state  of  health

variable (with 7 options) would be [0, 1, 1, 0, 0, 1, 0].  We could go even further and weight

each  of  the  labels  (options)  by  number  of  times  it  is  present  in  the  dataset,  because  it  is

presumable the number of observed options would be unbalanced.
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3.8.5 Entity Embeddings for subsets implementation details
This paragraph discusses the technical aspect of constructing the neural network model used for

learning the nominal variables embeddings. The model was implemented in the TensorFlow 2.x

using its Sequential Model api, which is sufficient for this task (TF offers more advanced api

called ‘functional’, which used for implementing VAE). As stated previously, the general idea of

this approach is to learn, on some suitably defined task, the weights of the Embedding layer.

Weights of this layer then directly represent the embeddings of the categorical variable values.

The  size  of  the  Embedding  layer  –  and  the  resulting  variable  embeddings  –  is

[size(vocabulary), embedding dimension]. Vocabulary size is equal to the number of categories

of  the nominal variable, in our case all subsets (present in dataset) of set {1, …, n}. Embedding

dimension is a hyper-parameter. Higher the embedding dimension, the more capacity the model

has to encode nuances in data it’s trained on. However, this presents a trade-off between how

well the categories can be represented by the embeddings and increasing dimensionality on the

other hand. There are many ‘rule of thumbs’ found in literature for choosing the embedding

dimensionality.  Usually,  for  nlp  tasks,  this  could in  order  of  hundreds or  even thousand of

dimensions. However, for variables of relatively small vocabulary size, as found in this thesis,

only a few embedding dimensions seems to be sufficient for the model to converge during the

training. Optimizer used is AdamW. As loss, the BinaryCrossentropy(from_logits=True) is used,

with the default hyper-parameters settings. Raw network outputs without any activations ( logits)

are passed into  n  separate sigmoid activations, giving  n  independent probabilities, 1 for each

label (label meaning the option, not category). Unlike softmax, which would yield 1 probability

distribution for all the n labels, which would then dictate to use ‘categorical cross-entropy loss’

instead. 

Figure 6 shows the architecture of implemented neural network used to learn the embeddings as

they  were  just  described.  The  embeddings  can  be  directly  extracted  as  the  weights  of  the

‘Embedding’ layer. 
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Figure 6: Neural network architecture used for learning entity embeddings. The model outputs a 
vector of logits of size [1, number_of_options] which is point-wise passed to a sigmoid activation 
and then used to compute the binary cross-entropy loss with the multi-label target. Sizes of input and
output tensors are (batch_size, dim_1, …, dim_k).



3.8.6 No encoding
Keeping a  mixed dataset  is  also a  relevant  approach.  Instead of unifying the feature  types,

distance metrics allowing mixed dataset can be used, for example the Gower’s distance. Some

clustering algorithms can directly work with mixed datasets, for example the decision trees or

the decision forests.

3.9 Feature scaling

3.9.1 Scaling numerical variables
As stated previously, majority of the algorithms calculate pair-wise distances. If the dimensions

(features) were presented to the algorithms while being on different scales, the results would be

naturally skewed by those scale-differences. Also many methods assume, the data distribution

ate least resembles the Normal distribution. Therefore, transforming data onto similar scales is

necessary step prior to performing the experiments. The two major and very simple methods are

usually used. Normalization, also known as min-max scaling and Standardization also known as

z-score normalization.  In general,  Normalization should be used when the data doesn't  have

Gaussian distribution. Standardization should be used on data having Gaussian distribution. 

3.9.2 Scaling ordinal categorical data
Ranked data can be scaled as well, assuming that the differences between ranks are the same.

Strategy, used further on in this work, is to scale ordinal variables to the range from 0 to 1, with

equal step. For example, ordinal variable with ranked categories 1, 2, 3, 4, 5 would be scaled to

0, 0.25, 0.5, 0.75, 1.

3.9.3 Scaling embeddings
The ‘deep embeddings’ retrieved directly from the neural network, can be of arbitrary scale.

There  is  no  objective  forcing  the  model  to  do  so.  It  could  be  appropriate  to  scale  these

embedding values as well.
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Chapter 4

Creating the dataset

In order to perform the experiments described in the previous chapter a dataset must be created.

This chapter describes all the steps in the creation of real chronic nicotine users dataset. Firstly,

it is described how the unprocessed data are retrieved. Then are presented the patients features

chosen to be used for the experiments. Later the preprocessing steps are presented.

4.1 Querying the database
Patients data are retrieved on each run of the application2 from the PostgreSQL database server.

This  database  server  contains  multiple  tables,  but  the  ones  queried  for  the  chosen  patients

features are users_user and payments_payment. 

SQL query itself is written in PostgreSQL dialect (script  retrieve_user_data.sql).  The query is

kept  simple,  most  of  the preprocessing is  done later  using python.  Majority of the relevant

features are stored as  json  objects inside one single column ‘data’ in the table ‘users_table’.

PostgreSQL offers a convenient way to work with  json format objects stored directly in the

database, so the parsing of the json objects is done directly in the query. The json feature values

are parsed as text type, conversions to the correct data-types are handled further downstream in

the pipeline. Retrieved data are  pickled (python term for serialization), adding a timestamp. If

pickled dataset with timestamp of the current day is found on the application start, the pickled

dataset  is  used to  speed things up,  because the query takes  about  30 seconds to  complete.

Otherwise the old dataset is discarded and new up-to-date dataset is retrieved from the database.

2

2 Implemenation uses the psycopg2 python module for interacting with the database server.
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Table 6 presents the 25 retrieved variables, their  naming in the application and names used

further on for convenience.

Table 6:  Retrieved features from the smoking cessation app database, with their naming in the 
database and the naming used further on in this work. 

Feature name in the database Feature name used further on
region region
date_joined date_joined
state app_purchased
0Sex sex
AnaData_userAge age
PHASE therapy_phase
stLM lapse_count
NoCig0 cigarettes_per_day_before_therapy
NoCig1   cigarettes_per_day_now
BujonOrEE     bujon
AnaData_userIncome income
AnaData_smokingSince smoking_since_regularly
AnaData_products  tried_nicotine_product
AnaData_usage    product_using_at_least_once_a_week
AnaData_reason   reason_for_quitting_smoking
AnaData_attempts  quitting_attempts_count
AnaData_townSize   town_size
AnaData_userJob employment_type
AnaData_userEducation educational_background
AnaData_userHealth state_of_health
AnaData_userCovid covid_suffered
AnaData_userMedicaments taking_medication_regularly
AnaData_methods last_withdrawal_method
AnaData_lastDuration last_non_smoking_period_duration
ReaQui reasons_for_quitting_smoking

4.2 Features description
This section describes in more detail, what retrieved sociodemographic and other patients 

features stands for. It is logically divided by the variable type into 4 groups: binary – Table 7, 

ordinal – Table 8, nominal – Table 9 and numerical – Table 10. The data were gathered from 

January 2018 until May 2023. The variables ranges and valid values are presented after 
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preprocessing and visualized during the experiments. All the values and types are stored in the 

script features_metadata.py .

Table 7: Binary features and their description. 0 represents No, 1 represents Yes.

Feature name Feature description
region The country user resides in. 

‘CZ’ for Czech Republic, ‘RoW’ – rest of the world, but mainly 
Norway.

sex Patient’s sex. 0 represents a woman and 1 represents a man. 
covid suffered Patient suffered covid19.
taking_medication_regularly Patient takes some kind of medication on the regular basis.
app_purchased This variable indicates whether the patients purchased the 

application, enabling them to complete the entire procedure. The
trial version concludes after the EE phase, so this variable is 
utilized to further split the dataset into two groups: patients who 
are able to complete the therapy and those who are not.

Table 8: Ordinal features and their description.

Feature name Feature description
therapy_phase The furthest achieved application therapy phase. Patients 

with trial, non-paid application version, cannot pass 
further than the EE phase. This implies that for the trial 
dataset some metrics, for example whether patient 
finished therapy, cannot be measured.

town_size Size of the town patient resides in.
educational_background Highest  achieved patient’s education.
last_non_smoking_period_duration Categorized from shortest to longest, last patient’s 

cessation period.

Table 9: Nominal features and their description. The values of those variables are responses 
from a questionnaire, where patient can choose multiple options at once.

Feature name Feature description
tried_nicotine_product Nicotine products patient tried so far.
product_using_at_least_once_a_week Nicotine products patient uses at least once a week.
reason_for_quitting_smoking Patients reasons for quitting smoking.
last_withdrawal_method Last tried nicotine addiction withdrawal method.
employment_type Patients current employment.
state_of_health Patients state of health.
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Table 10: Numeric features and their description.

Feature name Feature description
age Patient’s age in years.
lapse_count Number of relapses - times patient used a nicotine product after 

declaring nicotine abuse cessation. Only measurable on patients 
with paid app version.

cigarettes_per_day_now Number of cigarettes per day patient smokes now, during the 
ongoing the therapy.

cigarettes_per_day_before Number of cigarettes per day patient used to smoke before 
starting the therapy.

smoking_since_regularly The age in years since the patient smokes regularly.
quitting_attempts_count Number of times patient tried to quit nicotine abuse .

Variable date_joined was mainly used for comparing the feature values in the dataset before and

after some major changes in application. Retrieved mainly for debugging and testing reasons.

The variable  reasons_for_quitting_smoking was only retrieved and inspected, but isn’t further

used.

4.3 Dataset preprocessing pipeline
Following  section  describes  how  the  retrieved  data  is  processed  into  needed  for  later

experiments. Variable values retrieved from the Adiquit database are in a rather raw state. They

are obtained directly as an input by the patients, Adiquit application users, with small to none

validation. To such state contribute also the technical aspect of handling the data internally in

the  application  (presumably  passing  them  through  a  various  data  structures  or  performing

format conversion). Most of the variables contain either invalid characters, values outside valid

range, NaN values or unordered lists representing the subsets for multi-option nominal features.

Such impurities differ for each of the variables. For further analysis each variable had to be

taken care of individually and it  was done in most conservative manner, not to discard any

possibly useful information in the early stage of the analysis. For example: if the user inputs as

the number of smoked cigarettes per single day some astronomical number, let’s say a thousand ,

it could mean two things. The first one could mean, that it is a typo or the user didn’t care to

input a valid number. The second explanation could be, that the patient actually did express a

sentiment, feeling like smoking a thousand cigarettes a day. That would be just a one example to

illustrate that blind range-clipping could lead to information loss, so this phase is done in the

most circumspect manner.
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4.4 Pipeline steps
The preprocessing pipeline3 performs the following steps:

1. Drop unused features.

2. Drop rows with null (NaN) values.

3. Validate all features.

4. Create new features.

5. Encode nominal variables, choosing on of the following approaches:

• one-hot encoding, splitting the variables, possibly making them less granular

• learning the deep embeddings

6. Scale all the variables (using normalization or standardization).

1.  For various reasons (e.g.  debugging purposes) more features are retrieved from the SQL

database server, then they are finally used for during the experimental part of this work4. 

2. Removing missing values for the predefined set of features. There is a trade-off between the

number of features and number of patients that will be kept after this step, this is a opinionated

decision. Different approach would be trying to interpolate the mising values for given features.

But this seemed for this dataset rather impractical, and also the size of the resulting dataset is

still being reasonably large.

3. Values validation. This step ensures that only valid values are present in the final dataset. For

each feature, it handles data types conversions, valid ranges checks for the numerical data, valid

values from the predefined set of possible values for the categorical data, etc.

4.  New  features  are  created:  finished_therapy  and  smoking_category.  Finished  therapy is

created as binary variable and is later used as the target variable for determining whether the

therapy was successfully or not. It is equal to 1, only if patients therapy_phase (see Table 8) is

equal  to  FIN (see  Table  1)  and the  lapse  count  is  0.  Smoking_category,  ordinary  variable,

represents number of smoked cigarettes per day but less granularized,  having only 3 values

light,  medium and  heavy smokers. Motivation behind adding this variable is that in literature

smokers are usually divided into following into those 3 categories.

3,4

3 Implemented by the DataCleaner python class, scrip data_cleaner.py .
4 Features to be dropped could be passed to DataCleaner constructor, otherwise defaults are used.
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4.5 Nominal variables
The variables  which represent  patient  choosing multiple  options  from a  questionnaire  have

usually  high  cardinality.  For  example  nominal  categorical  variable  ‘reasons  for  quitting

smoking’ have 7 options, which renders 27=128 possible values. Large portion of those possible

values however would not be present in the dataset or their value count would be very small.

The best solution to this problem seems using the Entity Embeddings as described in Methods.

Figure 7 shows the learned 3 dimensional learned Entity Embeddings. It can be seen, how the

similar  values  –  sets  with  some  intersection,  are  grouped  together.  On  the  other  hand,

disjunctive sets are further away.

4.6 Full-version, trial-version and combined datasets
After performing all the described preprocessing steps, dataset is further split into two parts, by

the app_purchased (see Table 8) into trial-version dataset and full-version dataset. If the both

datasets are combined, it is referred to as combined dataset further on.
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Figure 7: Visualization of 3-dimensional embeddings Entity Embeddings 
learned by neural network of the nominal variable 'state of health', whose 
values are subsets of set={1, 2, 3, 4, 5, 6, 7}.



Chapter 5

Results

This chapter reports the all the analysis steps, all the performed experiments and their results. It

starts by the exploratory analysis. Firstly, by univariate analysis, introducing each one of the

variables separately. Bivariate analysis follows, providing some insight into relations between

the variables. First for the variables of the same type, than also for the mixed variable types.

Third step is the multivariate analysis which tries to discover even more patterns in the patients

dataset. Then, dataset is projected to 2 dimensional space using the according methods discussed

in Chapter 3. Gathering all the information along the way, what follows is the actual clustering

using methods again discussed in the third chapter. Subsequently the clustering performance

evaluation is performed. Finally the digital phenotypes are calculated, either by taking mean

values or as an intersection of the subsets for the nominal variables. 

Most  of the results  are for the full  dataset,  that  means both patients with trial  and full  app

version.  Whenever  used the full-version dataset,  it  is  explicitly stated before presenting the

results.

5.1 Univariate analysis
This section starts by inspecting numerical, binary, ordinal and finally nominal variables. For

each variable a short discussion is given.

5.1.1 Numeric variables
Following results describes the distributions and moments of numerical variables, namely: age

in years, age when patient started smoking in years, number of smoked cigarettes per day and

number of cessation attempts prior to starting the therapy, for combined dataset. The lapse count

has meaning only for the full-version dataset.
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The average patient is ~31 years old, but the variance in age among users is quite high, standard

deviation being almost 10 years. Third and fourth moments values are not surprising, because

the age is more limited from the left. Depicted on Figure 8.

It seems that majority of the patients smoke 1 pack of a cigarettes a day, or maybe the peak is so

present at 20, because the question is too granular and it is hard for patient to say whether the

precise number of smoked cigarettes per day is 17, or 22. So similar peaks, representing the

multiples of 1 pack of cigarettes, emerge. Half a pack – 10,  ¾ of a pack – 15, 1 and ½ a pack at

30 and two cigarette packs at 40. This variable could be further transformed into and categorical

ordinal, using less granular scale. Depicted on Figure 9.
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Figure 9:  Distribution of smoked cigarettes per day, for combined dataset. Peaks representing 
multiples of 20 cigarettes are visible (1 pack of cigarettes)

Figure 8: Age distribution, for combined dataset. Average age of patients is ~31 years.



The distribution of cessation attempts has two peaks. The first obvious group are the users that

tried breaking the habit, but were unsuccessful up to 5 tries. Than are the patients that tried

unsuccessfully many times, the values above 10 attempts were set to 10. Figure 10:

Majority of patients starts smoking around 15 to 17 years of age. Depicted on Figure 11:

The distribution of the patients relapses resembles Poisson probability distribution. Majority of

patients have no relapse. This feature is measurable only on the full-version dataset. Figure 12:
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Figure 10:  Distribution of number of times patients tried to quit nicotine abuse prior to the therapy. 
Two subpopulations can be observed. Those with lower, approximately 3, number of previous 
attempts and those who were unsuccessful many times, 10 and more.

Figure 11:  Distribution of age when the patients started smoking.

Figure 12: Distribution of relapses, measurable only on the full-version dataset. Majority of patients
did not relapse. 



5.1.2 Binary variables distributions
The sex is almost evenly distributed, majority of ~88% of patients are from the Czech republic,

minority  of  ~23%  of  patients  suffered  covid19  and  ~73%  of  patients  take  some  form  of

medications regularly. Figure 13:
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Figure 13: Binary variables: sex, region, if suffered covid19, if taking medication regularly. CZ 
stands for Czech republic, RoW for rest of the world.



5.1.3 Ordinal variables
Following plots shows the distribution of values of each of the categorical ordinal variable, that

represent  the  patients  educational  background,  furthest  achieved therapy phase,  categorized

length of last non-smoking period and the size of the town patient resides in.

The the patients  populations roughly splits  into two groups by the town size,  those having

finished only the high-school and those that have some university diploma, with sizes 2/3 and

1/3 respectively. Depicted on Figure 14.

Majority of the patients managed to stop smoking only for 1 week. Second most populous group

are the patients who managed not to smoke up to 1 month. Full distribution of variable last non-

smoking period duration on Figure 15.
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Figure 15: Distribution of user last non-smoking period. Majority of chronic smokers manage to 
cease smoking only for shorter period of time, up to 1 or 3 months, before they relapses. Minority of 
patients manages to stay nicotine-free for longer period of time.

Figure 14: Highest achieved education level. Majority of the patients have  only finished the high-
school. Second most present group are patients with master diploma. Patients population roughly 
splits into two subgroups, those with high-school (~2/3) and those with some kind of university 
education (~1/3)



The distribution of sizes of towns the patients reside in is quite uniform, however patients from

medium-size to small-size towns are more prevalent, Figure 16:

The therapy phase analyzed  only  for the full-version dataset.  This feature is not possible to

measure on the trial-version dataset. Most of the patients managed to use the application for a

longer period of time. This doesn’t mean, that they stopped smoking. To determine whether the

therapy was successful or not,  this variable must be correlated with the number of patient’s

relapses, see Figure 17:

5.1.4 Nominal ‘multiple-option’ variables
Two strategies were implemented for this type of variables: either split the variable into multiple

binary variables (one-hot encoding) or learn the deep embeddings. Preceding these steps could

be merging the too granular categories. For example, the variable ‘product using at least once a

week’ is too much granular, containing multiple following categories: snus, chewing tobacco,

snuff, dip, nicotine pouch,  that could be described by 1 simple category ‘smokeless tobacco’.
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Figure 16: : The distribution of patients regarding the size of the town they reside in. The 
distribution is quite uniform. The ‘Medium-Large’ and ‘Medium-Small’ might be chosen less often, 
because the question is too granular, majority of user choosing between ‘Large’, ‘Medium’ and 
‘Small’.

Figure 17: : Distribution of furthest achieved therapy phase in the Adiquit application. This 
information however needs to be further put together with other factors indicating the therapy 
success. By inspecting other variables such as number of lapses, it can be found out, that many users
in ‘WR’ or ‘FIN’ phase, actually still smoke, because they have many lapses.



However, experiments later on use the deep embedding approach, so capturing the subtle details

could be on the contrary beneficial.

Table 11 shows the number of times each option was found in the dataset for the given nominal

‘multi-option’ variable. The number of subsets is equal to 2 to the power of number of options.

For example, variable tried nicotine product has by this optics 212  = 4096 categories. For such

variables ‘unique subsets’ is the actual number of subsets was found in the inspected dataset and

‘uniqueness’ just represent the number of unique subsets divided by the number of all possible

subsets, reported as percentage.

Table 11:Nominal features - with values (questionnaire answers) being subsets of set {1, … , n}, 
where n is number of options to choose from. Unique subsets represent number of found unique 
variable values in the dataset and uniqueness is just unique subsets divided by total number of 
possible subsets. Reported values are for the combined dataset.

Nominal ‘multi-option’ feature Number of subsets
[exponents of 2]

 Unique 
subsets

Uniqueness 
[%]

tried nicotine product 12 510 10.8
product using at least once a week 12 90 1.5
reason for quitting smoking 7 262 5.6
employment type 10 66 1.4
state of health 7 30 0.6
last withdrawal method 11 82 1.7

Plots on the next pages show the counts of ‘Yes’ answers for each option, for each nominal

variable (patient can choose multiple options at once). For example valid value employment type

variable could be {self-employed,  part-time student}. The bars are sorted by the number of

patients that said ‘Yes’ to the given option. It  is to be reminded, that patients could choose

multiple options at a time. All graphs are for the whole dataset.
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Majority of patients work a full-time job, followed by those who are self-employed or full-time

students. Some of the patients have a part-time job, are on the parental leave some patients are

were unemployed during the therapy.  All  options for employment type variable depicted on

Figure 18.

By inspecting the methods used by patients during the last  cessation,  can be observed that

majority of patients tried to withdrawal without any help. Second most commonly used method

was using some kind of nicotine substitutes. Using mobile app is on the third place. Figure 19:
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Figure 19: Methods of patients last withdrawal. Most of the users tried to quit using nicotine 
products the last time they tried without any help, second most common method among patients is by
using nicotine substitutes and the third place takes withdrawal assisted by using a smartphone 
application. Some of the patients also tried medication or some alternative methods.

Figure 18: Number of times each option concerning the patients employment type occurred across 
the dataset. Most of the patients have a full-time job.



A Strong majority of the chronic patients in the dataset smoke cigarettes at least once a week.

Second most  commonly used tobacco product  are  the heated tobacco products followed by

nicotine e-cigarettes. For the whole distribution see Figure 20.

Main reason for quitting smoking patients chose to be health. On the second place is getting

addiction free,  followed by financial  reasons.  Fourth and fifth place took family and social

pressure respectively. See Figure 21:
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Figure 21: Reasons patients find the most important, when it comes to the motivation to quitting 
nicotine abuse. Number one reason ‘health’, second one is to get addiction free, closely followed by 
financial reasons. The four most common reason patients chose as ‘family’.

Figure 20: Products patients are using at least once a week. Nicotine products patients tend to use at
least once a week. Majority of the chronic nicotine users are cigarette smokers, followed by those 
who use heated tobacco products, nicotine e-cigarettes and cigars. 



Regarding the state of health of the patients, strong majority of patients consider themselves to

be healthy. Those with some issues most commonly face some mental disorder. Second and

third most common health problems are respiratory and cardiovascular diseases respectively.

Full distribution depicted on Figure 22:

5.2 Bivariate analysis
Following experiments inspects the pairwise relations between variables. This is done only for

the features of the same types (e.g. two numerical variables).

5.2.1 Numerical variables
It was found out that, number of smoked cigarettes before and number of smoked cigarettes now

are almost identical, thus the number of smoked cigarettes before will be dropped. The patient’s

age and the  age at which the patient started smoking have weak positive linear correlation.

Figure  23 shows  pairwise  relationships  between  all  the  numeric  features.  Lower  triangular

matrix of the grid shows the pairwise scatter plots with fitted polynomials. On the diagonal are

the  histograms  showing  number  of  users  having  the  particular  feature  value.  The  upper

triangular part of the grid shows pairwise Pearson r correction coefficients (Table 2), bigger the

bubble and the number, the bigger the correlation. ‘smoking since’ represents age when user

started smoking, ‘cessation attempts’ is the number of times user tried to get nicotine-addiction

free, ‘cigs now’ represents smoked cigarettes per day now, ‘cigs before’ the number of cigarettes

user used to smoke before starting the therapy. 
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Figure 22: State of health across the cessation app users. Majority of patients consider them self to 
be healthy. About 13% percents of patients have some mental disorder. Less than 1/10 of patients 
have some respiratory or cardiovascular disease.



By  looking  at  the  correlations  of  numerical  features  and  also  given  the  small  number  of

numerical features it  can be presumed that  PCA won’t manage to reduce the dimensionality

while preserving most of the variance at the same time. This assumption is confirmed by the

later experiments.
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Figure 23:  Pairwise scatter plots, value counts histograms and pairwise Pearson r correlation 
coefficients for all numerical variables from the “full version dataset”. ‘cigs now’ represents smoked 
cigarettes per day now, ‘cigs before’ the number of cigarettes user used to smoke before starting the 
therapy, ‘cessation attempts’ is the number of times user tried to get nicotine-addiction free, ‘smoking 
since’ represents age in years when user started smoking, and age is also counted in whole years. 
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Younger patients smoke on average less cigarettes. The number of smoked cigarettes per day

increases until 30 y.o. where it plateaus until reaching ~45 y.o. where it increases dramatically.

For average of  smoked cigarettes  for during the therapy per  day for  each patients age,  see

Figure 24:

37

Figure 24: Average number of smoked cigarettes per day given age.



5.2.2 Binary variables
For each pair of the binary variables pairwise chi-square test of independence was performed on

the 0.05 level of significance. Critical value of the chi-square statistics is in that case 3.841 (see

Table  2).  First  the  contingency tables  are  obtained using  pandas.crosstab function and chi-

square statistic and corresponding p-value is computed using scikit-learn implementation of chi

square  test  scipy.stats.chi2_contingency  function  for  each  pair.  The  degrees  of  freedom are

calculated  by  the  function  automatically,  but  it  would  be  equal  to  1  in  this  simplest  case.

Statistically significant correlation was found between sex and using medication regularly.

5.2.3 Ordinal variables
For  the  ordinal  variables  were  computed  Spearman’s  rank-order  correlation  coefficient

(Spearman’s ρ) and Kendall’s rank correlation coefficient (Kendall’s τ) (see Table 2). Both test

found mild negative correlation between the variables  town size and  educational background

with the coefficient  values being equal  to -0.14 for  Spearman’s  ρ and  -0.12 for  Kendall’s  τ

respectively. The town size is however encoded as  1 being the largest and  5 representing the

smallest town. This means that there is a positive correlation between how big the town is and

highest achieved education level.  The bigger the town, the more educated patients,  which is

somewhat  expected  result.  No  correlation  between  these  two  variables  and  suffered  covid

variable was observed.
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Figure 25:  Chi square pairwise test of independence for binary 
variables. For the dof=1 and significance level equal to 0.05 chi-
square critical value for performed chi-square test is 3.841

Covid
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sex

sex
Medications 
regularly



5.2.4 Testing differences in means for full-dataset split by finished 
therapy
This section describes experiments, where the full-version dataset was split into two parts by the

finished therapy variable. Than methods for analyzing whether the means the two populations

statistically significantly differ or not.  For this purpose could be user 1-way ANOVA, if it’s

requirements on the data distributions are met. If the data are not normally distributed or if they

are  not  homoscedastic,  non-parametric  tests  like  Kruskal-Wallis  can  be  used.  First  the

populations are visualized, later the normality tests is performed and will be find out, that the

data are not normally distributed. Than the Kruskal-Wallis test is used, but finds no statistically

significant difference. Distributions for the two populations are depicted on Figure 26:

For Shapiro-Wilk normality test we strongly reject the null hypothesis, that the numerical values
for all variables, for both population are normally distributed. Table 12 reports the results:

Table 12: Shapiro-Wilk normality test for numerical variables. Observing the resulting p-values 
we strongly reject, for the 0.05 level of significance, the null hypothesis, that the data was drawn
from a normal distribution, for all variables.

Feature name p-value 
finished therapy

p-value 
unfinished therapy

age 0.31 0.31
smoking_since_age_regularly 0 0
cigarettes_per_day_now 0 0
quitting_attempts_count 0 0
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Figure 26: Numeric variables distributions for the full-version dataset split 
into two parts by 'finished therapy' target variable.



After rejecting that the data come from a normal distribution, Kruskal-Wallis test is performed,

on the significance level equal to 0.05, testing the null hypothesis that population medians of the

two  groups  are  equal.  Observing  the  results,  null  hypothesis  can  be  accepted  for  all  the

variables. Meaning there is no difference in the mean values for any inspected numerical feature

between the two populations. For variables cigarettes per day now and educational background

was almost observed a significant results. Table 13 reports the results:

Table 13: Kruskal-Wallis H-test for independent samples, for both ordinal and numerical data. 
The values reported are the p-values obtained from the test. It can be concluded from the 
resulting values, that on the 0.05 level of significance, we can accept the null hypothesis.  
Means do not differ for the two populations of patients who finished therapy and those who did 
not.

Feature name Resulting p-value
age 0.54
smoking_since_age_regularly 0.32
cigarettes_per_day_now 0.07
quitting_attempts_count 0.39
educational_background 0.08
town size 0.96
last_non_smoking_period_duration 0.18

By performing these test we conclude that no significant relationships can be observed just by

inspecting some two variables separately. To find more complex relationships and patterns, we

proceed using more complex methods.

5.3 Scaling variables
By inspecting the continuous variables distributions and by performing the normality tests, it

can be concluded, that the continuous variables are not normally distributed. The proper way to

scale those features is the min-max feature scaling or what is usually referred to in literature just

as a normalization.
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5.4 Multivariate analysis
This section inspects the relationships between more than two variables, namely between age, 

educational background and sex  – Figure 27 and between smoked cigarettes per day, town size 

and age – Figure 28. The number of possible combinations of 3 grows fast, so only two 

significant results are presented and it is rather continued to dimensionality reduction and 

clustering techniques.
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Figure 28: Smoked cigarettes per day vs town size by age.

Figure 27: Age vs educational background by sex.



5.5 Dimensionality reduction
Data  are  projected  into  2  dimensions,  using  6  different  dimensionality  reduction  methods,

namely:  PCA, Isomap, t-SNE, UMAP, encoders from AE and VAE. No elaborate tuning of the

hyper-parameters  was performed,  reasonable defaults,  as  discussed in  Chapter 3 were used.

Nonetheless, behavior of the algorithms was thoroughly tested manually on both full-version

and combined datasets the results presented in following section shows the best obtained results.

5.6 Clustering 
This section summarizes performed clustering experiments on the full-version dataset using the

unsupervised clustering methods described in Chapter 3, namely:  agglomerative hierarchical

clustering, hdbscan, optics and k-means. The dataset is either directly input into the algorithms,

or it’s dimensionality is reduced by using autoencoder,  with latent dimension smaller than the

dataset dimensionality, before passing to the algorithm. Arguably the most intriguing step is

choosing the number of the clusters. This can be done by optimizing some metric designed for

cluster  evaluation  (Table  3).  However,  computing  some  score  or  metric  could  be  fruitless,

without thoroughly understanding and inspecting the data. For that reason both approaches are

combined.  At first,  as much as possible knowledge about  the dataset  is  obtained during the

exploratory analysis. Then, the data are visualized in two dimensions, using algorithms from

distinct dimensionality reduction technique families, to maximize the probability of capturing

the real structure of high-dimensional dataset. The data reduced to the two dimensions are then

scatter-plotted and colored by the clustering result. This is a great clue not just for setting the

hyper-parameters of the algorithms, but also for checking visually, that the data really do cluster.

5.6.1 Setting the hyperparameters
For the descriptive part of evaluation following procedure is used. It produces, from the cluster

evaluation metrics point of view, optimal results. 

1. For each clustering method: {hdbscan, optics, hierarchical clustering, k-means}

2. if reasonable, perform hyper-parameter grid search, aggregating clustering evaluation

metrics:  Silhouette  score,  Calinski-Harabasz  index,  Davies-Bouldin  score each

algorithm run. For the k-means algorithm also compute the gap statistics, choosing the

optimal number of clusters.

3. Retrieve some k number of optimal hyper-parameters for each used metric.

 The results from this step are then used as a clue and a sanity check for manually setting the

hyperparameters for each algorithm, by visually inspecting how well the algorithm manages to
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find the clusters visible in the 2 dimensional projections, by tweaking the hyperparameters. This

has to be done, because lot of optimal hyper-parameters values produces sub-optimal clustering

results.  Also  the  3  different  metrics  (Table  3),  tend  to  have  optimums  for  different

hyperparameters. This  approach has  two premises.  Of  course,  it  can be  done only if  some

clusters are present in the projection. Secondly, the manually set hyperparameters give statistics

that differ only by some small margin from the ‘optimal’ ones. If the statistics shows that the

clustering was  successful, inspect the characteristics of the population in the found cluster(s),

creating the patients phenotypes.

5.6.2 Clustering algorithms input
As final input to the clustering algorithms, from many tried feature subsets,following featurea

set was chosen, with features listed in Table 14.

Table 14: Used feature subsets

Features Set A Features Set B
sex sex
covid_suffered covid_suffered
taking_medication_regularly taking_medication_regularly
age age
cigarettes_per_day_now cigarettes_per_day_now
smoking_since_regularly smoking_since_regularly
quitting_attempts_count quitting_attempts_count
town_size town_size
educational_background educational_background
last_non_smoking_period_duration last_non_smoking_period_duration
product_using_at_least_once_a_week
state_of_health
employment_type
last_withdrawal_method

The dimensionality of resulting dataset has size of 594 patients with feature space with 26 
dimensions for set A (Entity Embeddings inflate the space a bit) and 10 features for set B.

All numeric features were scaled using the min-max scaling. Ordinal variables were scaled to 

range 0 to 1 with equal step. Binary variables were not scaled. There is a possibility 

implemented to reduce the weights of the binary variables, but for the following experiments 

weight was set to 1. The embedding dimensions for the nominal data were set from 3 to 5 

according the size of the vocabulary (number of present classes). The deep embedding models 

were trained repeatedly to convergence.

43



5.6.3 hdbscan results
Firstly, hdbscan hyperparameters grid search was performed for the minimal size of a cluster

(min_cluster_size) and for the minimum number of samples in a neighborhood of a point, to be

considered a ‘core’ point (min_samples). Size of the grid was 5 to 100 with step of 5 for both

parameters. The differences between the top-3 optimal values are minimal-to-none, for any used

metric. Table 15 presents the results:

Table 15: Optimal values found by the grid search for the set A, with hyperparameter values and
metric value in the optimum. Presented results are in form (min_cluster_size, min_samples): 
metric_value

Rank Silhouette score Davies-Bouldin score Calinski-Harabasz index
1. (35, 5): 0.030 (45, 5): 42.680 (45, 5): 2.677
2. (25, 5): 0.027 (55, 5): 42.680 (55, 5): 2.677
3. (45, 5): 0.019 (65, 5): 42.680 (65, 5): 2.677

Table 16: Optimal values found by the grid search for the set B, with hyperparameter values and
metric value in the optimum. Presented results are in form (min_cluster_size, min_samples): 
metric_value

Rank Silhouette score Davies-Bouldin score Calinski-Harabasz index
1. (5, 5): 0.358 (35, 5): 153.064 (5, 95): 1.955
2. (15, 5): 0.358 (45, 5): 153.064 (15, 95): 1.955
3. (35, 5): 0.347 (55, 5): 153.064 (25, 95): 1.955

Next, the best hyperparameter values were tried and used as a guide for manually setting the

results presented in the plots that follow. Manually set hyperparameters are: 

• set A:  min_cluster_size=10, min_samples = None

• set B:  min_cluster_size=15, min_samples = 5

Each subplot shows the data projected into 2 dimensions colored by labels found the hdbscan

algorithm. Blue color represent patients who are not assigned to any cluster. Seven well-defined

clusters were found for set A, Figure 29 and eight well defined clusters were found for set B,

Figure 30.
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Figure 29: Hdbscan results coloring projections of dataset with feature set A. Seven clusters 
emerged. Results are visualized using 6 different dimensionality reduction techniques. 

Figure 30: Hdbscan results coloring projections of dataset with feature set B. Eight visible clusters.



5.6.4 Agglomerative hierarchical clustering results
Also the hierarchical clustering was able to find the 7 clusters for set B, Figures 36, 37

Dendrogram is just another way, how to visualize the clustering results.
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Figure 32: Hierarchical clustering dendrogram for set B

Figure 31: Hierarchical clustering results on set B.



Hierarchical clustering was rather unsuccessful for set A, Figure 33 and Figure 34:
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Figure 34: Hierarchical clustering dendrogram for set A.

Figure 33: Hierarchical clustering results on set A.



5.6.5 OPTICS clustering results
For set B optics performs reasonable – Figure 35, but for set A it fails to present any results,

Figure 36.
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Figure 36: Optics clustering results for set A.

Figure 35: Optics clustering results for the set B.



5.6.6 K-means clustering results
Prior to running k-means algorithm, the encoder part of the Autoencoder network trained on the

input dataset was used to reduce the dataset dimensionality. It was trained for 1 thousand epochs

to convergence, with latent dimension being equal to 4. Once the dimensionality is reduced,

k-means  algorithm  is  used  to  identify  clusters  in  the  data.  Optimal  number  of  clusters  is

determined by  using  the  gap statistics  algorithm and it  was  equal  to  10.  However,  it  was

manually set from 10 to 8 by observing the projections. Results for the feature sets A and B are

depicted on Figures 37, 38, 39, 40, and 41.
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Figure 38: Gap statistic values with optimum at 10 and
sub optimum at 8 which was in the end chosen.

Figure 37: Projected dataset using feature set B and colorized clusters as found by k-means 
algorithm.



Gap statistics return 3 optimal value suggestion, using 3 different internal algorithms, presented

are just two of them. It can be seen the results are contradictory, the  gap*  suggesting only 1

clusters  Figure 34  while the original  gap statistic  method suggests 14,  Figure 35.  However,

number of clusters in in Figure 33 was manually set to 7.
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Figure 40: Gap statistic for set AFigure 41: Gap* for set A

Figure 39: Clusters found by k-means algorithm with using autoencoder first for dimensionality 
reduction for set A. Seven emerging clusters observed



5.6.7 Clustering performance evaluation
All the resulting scores for all algorithms on set A and set B, with according values of clustering

performance metrics are presented in the Table 17 for set A and in Table 18 for set B. As noted

before, score values for set afterwards by hand do not differ dramatically from the ‘optimal’

results found by the grid search.

Table 17: Clustering performance evaluation metrics for feature set A.

algorithm Silhouette Calinski-Harabasz Davies-Bouldin # of found clusters
hdbscan -0.05 24.46 2.24 7
k-means 0.19 107.85 1.64 7
optics -0.16 6.54 1.71 x
Agglomerative 
clustering

0.07 57.09 2.12 7

Table 18: Clustering performance evaluation metrics for feature set B.

algorithm Silhouette Calinski-Harabasz Davies-Bouldin # of found clusters
hdbscan 0.36 128.89 1.13 8
k-means 0.29 188.71 1.13 8
optics 0.2 94.71 1.37 8
Agglomerative 
clustering

0.35 156.74 1.24 5

For the following presentation of digital phenotypes, the best performing algorithm was chosen.

5.7 Digital phenotypes
The last section of the Results, presents the digital patients phenotypes as identified by the used

clustering algorithms. Digital phenotypes are computed from the clustered patients features. For

the  numerical  values  the  computed  mean  and  standard  deviation  is  computed.  For  ordinal

variables is used the median and for binary variables is computed a ratio of the two classes, but

in all cases clustering algorithms do not mix the distinct binary classes into one cluster – for

example male and female patents were not observed to be assigned to same cluster. For the

nominal features can be used three approaches. The first one is to choose the value that is found

the most in the given cluster. The second one is to make an intersection of the sets that represent

the categories  for  the  given cluster.  The third solution would be to  report  all  the  observed

categories for given nominal variable. Last mentioned approach is used. 
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5.7.1 Digital phenotypes found by k-means for feature set A.
The phenotypes are listed according to the cluster label ordering on Figure 33, it performed the

best.

Phenotype 0: Female, 34.4 y.o., smoking since 17.2 y.o. and smoking 17.6 cigarettes per day,
with 3.0 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 17.6%

Phenotype 1: Female, 32.8 y.o., smoking since 17.9 y.o. and smoking 16.9 cigarettes per day,
with 2.0 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 20.1%

Phenotype 2: Female, 35.7 y.o., smoking since 17.5 y.o. and smoking 18.2 cigarettes per day,
with 3.7 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 20.3%

Phenotype 3: Female, 37.3 y.o., smoking since 17.9 y.o. and smoking 19.7 cigarettes per day,
with 4.7 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 23.9%

Phenotype 4: Female, 33.1 y.o., smoking since 17.3 y.o. and smoking 19.7 cigarettes per day,
with 4.4 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 24.5%

Phenotype 5: Female, 34.2 y.o., smoking since 16.9 y.o. and smoking 18.8 cigarettes per day,
with 2.8 previous quitting attempts, using medications:No, covid suffered:Yes, resides in town
of size=3, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 22.2%

Phenotype 6: Female, 32.5 y.o., smoking since 18.6 y.o. and smoking 17.2 cigarettes per day,
with 2.6 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=2, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 18.6%
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5.7.2 Digital phenotypes for feature set B
Digital phenotypes found by k-means with prior Autoencoder features dimensionality reduction

on  feature  set  B  (Table  17)  .  Using  smaller  feature  set,  seems  to  provide  finer-grained

phenotypes then using the larger feature set A. The results are in the same order and colorized as

used in Figure 31.

Phenotype 0:  Female, 34.8 y.o., smoking since 17.3 y.o. and smoking 17.5 cigarettes per day,
with 3.1 previous quitting attempts, using medications:Yes, covid suffered:Yes, resides in town
of size=3, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 18.6%

Phenotype 1:  Female, 32.8 y.o., smoking since 17.1 y.o. and smoking 19.0 cigarettes per day,
with 2.6 previous quitting attempts, using medications:Yes, covid suffered:No, resides in town
of size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 23.7%

Phenotype 2: Male, 34.9 y.o., smoking since 18.4 y.o. and smoking 18.6 cigarettes per day, with
2.8 previous quitting attempts,  using medications:No, covid suffered:No,  resides  in town of
size=3, with educational background=3, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 14.1%

Phenotype 3: Female, 31.0 y.o., smoking since 17.0 y.o. and smoking 17.1 cigarettes per day,
with 2.7 previous quitting attempts, using medications:Yes, covid suffered:No, resides in town
of size=4, with educational background=2, length of previous non-smoking duration:3 || Patients
who finished therapy in this cluster : 20.6%

Phenotype 4: Female, 38.1 y.o., smoking since 17.9 y.o. and smoking 20.2 cigarettes per day,
with 9.8 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:2 || Patients
who finished therapy in this cluster : 28.9%

Phenotype 5: Female, 35.0 y.o., smoking since 17.9 y.o. and smoking 17.9 cigarettes per day,
with 2.6 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 18.9%

Phenotype 6: Female, 34.7 y.o., smoking since 18.9 y.o. and smoking 15.6 cigarettes per day,
with 2.3 previous quitting attempts, using medications:No, covid suffered:No, resides in town of
size=1, with educational background=4, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 22.0%

Phenotype 7: Male, 33.6 y.o., smoking since 16.8 y.o. and smoking 19.9 cigarettes per day, with
2.8 previous quitting attempts, using medications:No, covid suffered:Yes, resides in town of
size=3, with educational background=3, length of previous non-smoking duration:4 || Patients
who finished therapy in this cluster : 26.3%

For the ordinal value ranges see the univariate analysis results Figures 15, 16 and 17.
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Chapter 5

Conclusion

Literature and latest methods concerning the digital phenotypes were thoroughly inspected and

approach  utilizing  deep  latent  models  for  dimensionality  reduction  followed  by  various

clustering algorithms was chosen for the solution. Proposed experimental pipeline successfully

managed to  produce phenotypes  of  various  granularity  for  the  chronic  smokers  population,

depending on  the  hyperparameters  and  features  used.  The  quality  of  resulting  clusters  was

inspected using various metrics for clustering performance evaluation and in most cases two

methods prevailed. First one is to use Autoencoder to reduce features dimensionality prior to

running k-means. Second approach is using hdbscan. For both methods the data need to be

cleaned, scaled and the nominal features encoded using Entity Embeddings. Dataset creation

and preprocessing pipeline was constructed along the way, allowing further utilizing the dataset.

Regarding the found digital phenotypes, seemingly the least successful group of patients could

be characterized as: a man, 35 years old, who does not use medication on daily bases and did

not  suffer  covid19,  resides  in  middle-sized  town and achieved  only  high-school  education.

Patients characterized by this values tend to finish therapy the least with only 14% of them

finishing the therapy. On the other hand, patients who could be characterized as: a woman, 38

years old, with 10 or more quitting attempts, not using any medication nor suffered covid19,

from middle-sized town with high-school education, finished therapy the most, with 29% of

patients identified by this phenotype finished the therapy. 

In the Introduction was stated, that in order to cluster chronic patients in general, some kind of

apparatus or algorithmic pipeline must be created. Both the theoretical and experimental part of

this work shows,  that  there  are many possible ways to  construct  such a  pipeline.  The one,

presented in this work, seems to be a valid. The number of hyper-parameters is still very high,

but it was shown that reasonable defaults can be provided. However solving the problem still

needs a thorough inspection of the dataset manually and it  is preferable to have some prior

knowledge about the topic and not just use a plain data-driven approach. Also the found results

could be further compared to the known statistics about chronic nicotine patients. 
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Future improvements follows. The sub-task of classifying the population provided some target

variable, in our case it was the therapy success (referred to as ‘finished therapy’), could be

viewed also as a task for supervised learning. Also, there could be improvements made for the

data gathering process on smartphone application side of the pipeline. The results from this

thesis could be used as a feedback for either more effective data gathering or improving the

therapy,  by  focusing  more  on  patients  subgroups,  utilizing  the  proposed  phenotypes.  Such

procedure would ideally create a loop,  iterating back and forth between the gathering the data

from patients and subsequent analysis improving the therapy.
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Appendix A

Attachments structure
This appendix section describes the implementation structure of the code used for all the 
experiments.
koleckar /

+ jupyter_notebooks /
* clustering /

- hdbscan.ipynb
- hierarchical_clustering.ipynb
- k_means.ipynb
- optics.ipynb

* correlations /
- correlations_binary.ipynb
- correlations_ordinal.ipynb
- correlations_continuous.ipynb
- corrections_mixed.ipynb
- all_vs_finished_therapy.ipynb

* visualizations /
- visualization_categorical_variables.ipynb
- visualization_dimension_reduction.ipynb
- visualization_numeric_variables.ipynb
- visualize_data_cleaner_steps.ipynb
- visualization_multiple_options_variables.ipynb
- statistics_users_under_30.ipynb

+ postgresql_queries /
* retrieve_users_data.sql
* get_unique_features.sql

+ logs /
+ graphs /
+ ae.py
+ vae.py
+ categorical_embeddings.py
+ data_cleaner.py
+ dimred.py
+ plotting_functions.py
(+ users_data.pkl )
+ requirements.txt
+ README.md

The code was written with strong emphasis on  clean code princips, enabling possibile future

extensibility.  The  API  is  also fairly  well  documented  for  the  classes.  However,  the  jupyter

(.ipynb) notebooks have more for of an experimental and visualization character.
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