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help, Mgr. Barobra Čalkovská for her patient assistance and support and Mrs. Jana Zichová
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Abstract

This thesis presents a localization system for a small robotic helicopter
in an indoor environment. The system consists of helicopter hardware, a
2D LiDAR sensor, and localization software based on the ICP algorithm.
To verify the implementation, experiments were conducted in a realistic
Gazebo 3D simulator. The performance and accuracy of the presented
localization system were compared with the state-of-the-art localization
system.

Keywords

UAV, helicopter, drone, localization, LiDAR, SLAM, ICP

Abstrakt

Tato práce představuje lokalizačńı systém pro malý robotický vrtulńık
ve vnitřńım prostřed́ı. Systém se skládá z hardwaru vrtulńıku, 2D
LiDARového senzoru a lokalizačńıho softwaru založeného na algo-
ritmu ICP. Pro ověřeńı implementace byly provedeny experimenty v
realistickém 3D simulátoru Gazebo. Výkon a přesnost představeného
lokalizačńıho systému byly porovnány s moderńım lokalizačńım
systémem.
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Chapter 1

Introduction

For the purposes of this thesis, a small robotic helicopter is an Unmanned Aerial
Vehicle (UAV), which is an aircraft that does not carry a pilot. It can be remotely piloted,
or it can be autonomous. It can be a single-, double-, or multi-rotor helicopter. The rotors
provide the necessary thrust to keep the helicopter in the air and allow it to hover.

In this thesis, the small robotic helicopter cannot be generally defined as a Micro
Aerial Vehicle (MAV) because MAVs have been defined [2] as a vehicle with any dimension
less than 6 inches (approximately 15 cm) and a mass less than 100 grams. The UAV frames
used in this thesis exceed these specifications.

Localization is the process of determining the position and orientation of a selected
object in a given reference frame.

This thesis considers an indoor environment to be an environment that does not
allow the use of the Global Positioning System (GPS) or other Global Navigation Satel-
lite Systems (GNSS). Therefore, it is also referred to as a GPS-denied or GNSS-denied
environment.

The applications of drones are vast. They can be sent into environments where a
person cannot go for various reasons. UAVs can also more easily reach places that un-
manned ground vehicles (UGV) cannot, making them useful for search and rescue tasks in
otherwise impenetrable or dangerous terrain [3], [4], [5]. Additionally, UAVs can facilitate
the work of emergency responders, such as locating and extinguishing fires [6], [7]. They
are also helpful for law enforcement [8], [9]. Another area where UAVs can be used is in
surveying and mapping unknown and inaccessible areas [10], [11]. They are also used to
inspect buildings and other structures [12], [13].
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Figure 1.1: UAV flying in an indoor environment. Image originally published by the Multi-
robot Systems Group in [1].

As mentioned above, UAVs are also used in indoor environments (Figure 1.1) where
GNSS does not work. The most common indoor applications include search and rescue
missions, exploration of unknown confined spaces, and building inspections. For these and
other reasons, it is useful to ensure reliable navigation and safe, collision-free movement in
these indoor environments. It is also possible to apply the same approach to other areas
with obstacles and insufficient GNSS signal coverage.

1.1 State of the art

UAV localization in indoor environments remains an active area of research. The
following works have addressed this topic.

Visual localization of UAVs in the indoor environment using cameras was the subject
of [14]. Problematic in visual localization is the performance in both dark and bright
lighting conditions. Therefore, in this work, a camera was selected that can operate in a
wide range of lighting conditions.

In [5], two-dimensional (2D) Light Detection And Ranging (LiDAR) sensor was used
for indoor UAV localization. The UAVs were operated in underground tunnels. The lo-
calization was performed only in the 2D plane because the horizontal cross-section of the
tunnels did not change significantly.

Three-dimensional (3D) LiDAR sensors are also used for indoor localization. In [15],
such a 3D LiDAR system is used for simultaneous localization and mapping. In addition,
a fusion of sensor data from a downward-facing one-dimensional (1D) LiDAR sensor, gyro-
scope, accelerometer, and barometer is used to increase the robustness of the localization
system.
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Several localization systems are used for localization. For visual localization, these
include simultaneous localization and mapping (SLAM) systems such as Fast Semi-direct
Monocular Visual Odometry (SVO) [16], Direct Sparse Odometry (DSO) [17], or Oriented
FAST and rotated BRIEF feature-based simultaneous localization and mapping 2 (ORB-
SLAM2) [18].

The most commonly used 2D LiDAR localization systems include Hector SLAM
[19], Gmapping [20], [21], or Cartographer [22]. The Cartographer localization system can
also be used for localization with 3D LiDAR sensors. Other localization systems using 3D
LiDAR sensors include Lidar Odometry and Mapping (LOAM) [23] or its modified version,
Fast LOAM (F-LOAM) [24].

1.2 Outline

This thesis is primarily concerned with solving the problem of localizing a UAV,
in our case, a small robotic helicopter, in an indoor environment. Specifically, it aims to
achieve the following key objectives:

1. Conduct research on related work.

2. Design and implement a helicopter localization method.

3. Perform experiments to evaluate the performance and accuracy of the implemented
method in the simulator.

Objective 1, research on related work, has already been partially covered in the
chapter 1. Further research on UAV platforms, sensors, and known localization methods is
done in the chapter 2.

Objective 2, the design and implementation of a helicopter localization method, is
covered in the chapter 3.

And objective 3 is covered in the chapter 4, where experiments are performed to
evaluate the performance and accuracy of the implemented method.
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Chapter 2

Approach

The purpose of this chapter is to present the problem statement and describe the
approach to the solution.

2.1 Problem statement

This thesis aims to research and design a method for the localization of a small
helicopter in an indoor environment. Multiple aspects needed to be addressed in the design
process of the solution. These aspects were:

1. Selection of an appropriate development platform (a helicopter and appropriate soft-
ware needed for its function).

2. Selection of appropriate sensors.

3. Design and implementation of a suitable algorithm for localization.

Further requirements were derived according to the assignment of this thesis.

For the selection of a development platform, the requirements were divided into soft-
ware and hardware requirements. The software requirement was to find suitable, actively
developed, and supported software to facilitate control of the helicopter hardware, sup-
port a realistic simulator, and allow implementation of the required localization algorithm.
The hardware requirement was to find a helicopter small enough to fly indoors but with
sufficient lift capacity and battery life.

The requirements for the sensors were sufficient measurement speed and accuracy.
Furthermore, due to the requirements for the development platform, low weight, low power
consumption, and low computational complexity in the pre-processing of the sensor data
were added.
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The requirements for the localization algorithm were accuracy and speed. In addition,
due to the requirements of the development platform, low enough computational complexity
was added to make the localization sufficiently energy efficient. Finally, compatibility with
the sensor data is required.

2.2 Selection of a development platform

This section focuses on selecting an appropriate development platform. The selection
is subject to the requirements in the section 2.1. The goal is to select a suitable software
and hardware solution to operate and control a small robotic helicopter and to enable the
implementation of a localization algorithm.

2.2.1 Software platform

First, it was necessary to select a suitable software framework. As stated in the section
2.1, the software solution had to enable control of a small helicopter, be actively developed
and supported, support a realistic simulator, and allow implementation of the required
localization algorithm.

The following software platforms were considered:

• The Robot Operating System (ROS), an open-source robotics middleware platform
formerly developed by Willow Garage1, now developed by Open Robotics2, as de-
scribed in [25] and [26].

• The Carnegie Mellon Robot Navigation Toolkit (CARMEN), an open-source mobile
robot control software suite developed at Carnegie Mellon University and funded by
DARPA’s MARS Program. CARMEN has been described in [27].

• The Player Project, formerly the Player/Stage Project, an open-source software
project that provides the Player robot server and the Stage 2D simulator, introduced
in [28] and described in [29] and [30].

• The Mobile Robot Programming Toolkit (MRPT), a package of libraries and appli-
cations for robotics research, as detailed in [31].

• The Microsoft Robotics Developer Studio (MRDS), a robotics suite for robot control
and simulation. See [32] for an introduction to MRDS.

• The NVIDIA Isaac platform, a software platform for developing and deploying robots,
as introduced in [33].

1http://www.willowgarage.com/
2http://www.openrobotics.org/

http://www.willowgarage.com/
http://www.openrobotics.org/
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• The Open Robot Technology Middleware, implemented by the National Institute
of Advanced Industrial Science and Technology (OpenRTM-aist), an open source
and open architecture implementation of the Robotics Technology Middleware (RT-
middleware) and the Object Management Group’s (OMG) Robotics Technology
Components (RT-Components). RT-middleware is described in [34] and OpenRTM-
aist in [35].

• The Open Platform for Robotic Services (OPRoS), an open-source component-based
platform that includes a robot control framework, a server, and a test and verification
tool, developed by the Korea Association of Robot Industry. OPRoS was introduced
in [36].

• The Open Robot Control Software (Orocos), a software framework consisting of C++
libraries for machine and robot control. Its two main components are the Orocos
Real-Time Toolkit (RTT) and the Orocos Component Library (OCL). More about
the Orocos Project can be found in [37], [38], and [39]. For more information about
the Orocos RTT, see [40].

• The Orca, an open-source software framework designed for mobile robotics developed
by the KTH Royal Institute of Technology. It evolved from the Orocos Project. It
was first used in [41], formally introduced in [42], and further described in [43] and
[44].

• The Yet Another Robot Platform (YARP), an open-source robotics middleware, as
described in [45].

• The Mission Oriented Operating Suite (MOOS) and the MOOS Interval Program-
ming Helm (MOOS-IvP), software for mobile robotics, primarily focused on au-
tonomous marine vehicle research. MOOS was introduced in [46] and further de-
scribed in [47], and MOOS-IvP was introduced in [48].

• The Robot Construction Kit (Rock) is a software framework for the development
of robotic systems. It is based on the Orocos RTT. The description of Rock can be
found in [49] and [50].

Software platforms such as CARMEN, MRDS, OPRoS, or Orca were excluded be-
cause they were no longer actively maintained at the time of writing and therefore did not
support some of the newer sensors, other hardware, and software standards.

Software platforms such as MRPT or NVIDIA Isaac were excluded from the selection
because they function more as toolkits and would not facilitate the implementation of
our own localization algorithm. Both provide a set of ready-to-use applications and tools.
MRPT can be used alone or in conjunction with ROS or ROS 2. NVIDIA Isaac is based on
ROS 2 and is primarily designed to accelerate some robotics algorithms utilizing NVIDIA’s
proprietary hardware.
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To successfully operate and control a small robotic helicopter, the selected software
platforms had to be able to communicate with commonly used UAV flight controllers
and their autopilot firmware, such as PX43 as introduced in [51], or ArduPilot4. The
MAVLink protocol5 (described in [52]) is most commonly used for this purpose. Therefore,
software platforms without direct support for the MAVLink protocol were excluded. These
platforms were the Player Project, YARP, Orocos, and ROCK. All of these platforms can
also communicate with ROS through a translation layer.

In [53] and [54], the possibilities of using OpenRTM-aist for UAV control are de-
scribed. In these papers, a DroneKit-Python6 application is used as an RT-Component to
communicate with the flight controller using the MAVLink protocol. However, no source
code is provided for these solutions.

The iPX4 package7 and the pMavlink translation layer8 can bridge between MOOS
and the PX4 flight controller. They bring MAVLink support to MOOS. However, these
solutions lack proper documentation.

The last two software platforms considered were ROS and ROS 2. Although Open
Robotics develops both, they are not interoperable.

ROS 1 is still actively maintained. The MAVROS package9 provides the link between
ROS 1 and the various autopilots using the MAVLink protocol. It has broad support
for various sensors and other hardware. It is also well documented. There are also many
libraries and packages that extend the capabilities of ROS 1, such as the Multi-robot
Systems Group UAV system (MRS UAV system) described in [55].

ROS 2 is newer and uses the Data Distribution Service (DDS) as middleware. It is
under active development. Bridging between ROS 2 and various autopilots can be achieved
using the XRCE-DDS protocol10, provided, for example, by the eProsima Micro XRCE-
DDS library11 or by MAVROS. It is also well documented. At the time of writing, however,
it lacks an extension of the type that is the MRS UAV system for ROS 1.

Ultimately, a combination of the MRS UAV system and ROS 1 was selected.

2.2.2 Robot Operating System

ROS 1 is structured into nodes. Each node is a separate program. All nodes register
with the ROS master node. Nodes can communicate with each other using messages or

3https://px4.io/
4http://www.ardupilot.org/
5https://mavlink.io/
6https://dronekit.io/
7https://github.com/mission-systems-pty-ltd/iPX4
8https://github.com/mission-systems-pty-ltd/pMavlink
9https://wiki.ros.org/mavros

10https://www.omg.org/spec/DDS-XRCE/1.0/About-DDS-XRCE
11https://micro-xrce-dds.docs.eprosima.com/en/latest/

https://px4.io/
http://www.ardupilot.org/
https://mavlink.io/
https://dronekit.io/
https://github.com/mission-systems-pty-ltd/iPX4
https://github.com/mission-systems-pty-ltd/pMavlink
https://wiki.ros.org/mavros
https://www.omg.org/spec/DDS-XRCE/1.0/About-DDS-XRCE
https://micro-xrce-dds.docs.eprosima.com/en/latest/
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services. ROS 1 has interfaces in both Python and C++. We will only focus on the C++
interface here.

Topics, uniquely named buses, are used for message transport. Each node can send
and receive messages to and from a selected topic using the classes provided. The class
for sending messages is called the Publisher, and the class for receiving messages is called
the Subscriber. Topics are typically used for data streams of a particular type, such as a
continuous video stream from a camera.

Services are used for direct node-to-node communication. A node can advertise a
service using the advertiseService method of the NodeHandle class and call a service using
the call method of the ServiceClient class. There is exactly one response to each call.
Therefore, services are often used for specific actions, such as retrieving a single image
from a camera.

There are also nodelets. A nodelet is a separate program similar to a node. However,
unlike nodes, multiple nodelets can be combined into a single node while maintaining
separate namespaces, allowing zero-copy pointer passing between publish and subscribe
calls between those nodelets.

2.2.3 MRS UAV system

The MRS UAV system is an open-source UAV platform. It is built using ROS Noetic
and is intended to run entirely on board. The platform is actively developed, maintained,
and well-documented12.

It consists of several components, of particular importance are the MRS Gazebo
simulation13 and the MRS UAV system core14. The simulation environment is based on
the realistic Gazebo simulator. The MRS UAV core consists of only the most essential
ROS packages required for UAV operation. For our purposes, the ROS package MRS UAV
Odometry is particularly important.

MRS UAV Odometry allows estimation of the UAV state using sensor fusion of on-
board sensors. Sensor fusion is primarily accomplished by using a bank of Kalman filters
[56] to estimate multiple UAV state hypotheses simultaneously. More details about the
system architecture can be found in [55].

2.2.4 Hardware platform

Next, a suitable UAV platform had to be selected. The hardware requirements from
the section 2.1 were to select an aircraft small enough to fly indoors but with enough lift

12https://ctu-mrs.github.io/
13https://github.com/ctu-mrs/simulation
14https://github.com/ctu-mrs/uav_core

https://ctu-mrs.github.io/
https://github.com/ctu-mrs/simulation
https://github.com/ctu-mrs/uav_core
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capacity to carry the flight controller, necessary sensors, and other hardware and good
battery life to allow extended operation.

According to the above requirements, the selection was made among the smallest
helicopters for which the MRS UAV system is pre-configured. The [57], [58], and [59] were
used as guides. DJI Flame Wheel F450 and Holybro X500 helicopters were considered.

The Holybro X500 has a 500 mm frame. According to [57], [59], the MRS Group’s
Holybro X500 setup is equipped with four T-Motor MN3510-13 700 kV motors, 13-inch
carbon fiber propellers, and one or two 4S 6750 mAh lithium polymer batteries, allowing
a flight time of approximately 20 minutes.

The DJI Flame Wheel F450 has a 450 mm frame. According to [57], [59], the MRS
Group’s DJI Flame Wheel F450 setup is equipped with four 2312 920 kV motors, 9.4-inch
plastic propellers, and a 4S 6750 mAh lithium polymer battery, allowing for approximately
10 to 15 minutes of flight time.

2.2.5 DJI Flame Wheel F450

In the end, the DJI FlameWheel F450 quadcopter was chosen because it is the smaller
of the two helicopters but has a large enough lift capacity and battery life. In addition to
the 2312 920 kV motors, 9.4-inch plastic propellers, and a 4S 6750 mAh lithium polymer
battery, it was also equipped with the Pixhawk 4 flight controller15 loaded with MRS
Group’s custom PX4 autopilot firmware16 and an Intel NUC computer kit17.

2.3 Selection of sensors

For this thesis, it was also necessary to select suitable types of sensors for the local-
ization that could be carried by the small robotic helicopter, the DJI Flame Wheel F450.
Therefore, according to the section 2.1, the following criteria were considered when select-
ing sensors: low weight, low power consumption, and accuracy. Speed was not considered
a factor in the selection of sensor types, as sufficiently fast sensors are currently available
for each sensor category.

Our helicopter has to operate and localize in an indoor environment. However, tra-
ditional UAV localization methods, such as GNSS using a magnetometer, do not work
there. In general, the radio signal from GNSS satellites does not penetrate the walls of
buildings, and the use of various ferromagnetic materials and electrical wires makes the
magnetometer’s determination of the magnetic north pole less accurate.

15https://docs.px4.io/main/en/flight_controller/pixhawk4.html
16https://github.com/ctu-mrs/px4_firmware
17https://www.intel.com/content/www/us/en/products/sku/188808/

intel-nuc-10-performance-kit-nuc10i7fnk/specifications.html

https://docs.px4.io/main/en/flight_controller/pixhawk4.html
https://github.com/ctu-mrs/px4_firmware
https://www.intel.com/content/www/us/en/products/sku/188808/intel-nuc-10-performance-kit-nuc10i7fnk/specifications.html
https://www.intel.com/content/www/us/en/products/sku/188808/intel-nuc-10-performance-kit-nuc10i7fnk/specifications.html
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Obstacles are expected in indoor environments. Sensors designed to measure the char-
acteristics of the immediate environment or the internal state of the UAV are not capable of
tracking obstacles in the environment. Therefore, they are not suitable as primary localiza-
tion sensors. They can be used as a complement to other localization sensors to refine the
data. Such sensors include a barometer or an inertial measurement unit (IMU). However,
the IMU is still widely used because it is essential for UAV stabilization.

That leaves object detection and measurement sensors. Object sensors can be cate-
gorized in many ways. They can be categorized by the physical property being measured,
whether they are passive or active (whether they require external power), or by the nature
of their output. For the sake of simplicity, we have decided to divide the sensors into several
categories:

1. Digital cameras.

2. Ranging sensors.

3. Depth cameras.

These categories of sensors are sometimes accompanied by specific examples of the sensors
most commonly used by the MRS group as listed in [57].

2.3.1 Digital cameras

Digital cameras are often used in drones because, among other things, they give pilots
a first-person view.

The two fundamental types of camera-based localization algorithms are optical flow-
based and feature-based algorithms. Optical flow localization is generally not very accurate
because it only tracks the velocities of objects in the camera’s field of view (FOV) and is
thus prone to drift.

Feature-based algorithms can be divided into those that use pre-positioned markers
in the environment (like AprilTag [60], [61]) and those that search for significant features
of objects captured by the camera and compare them between successive frames [62]. Since
we assume that the indoor environment is potentially unknown, the marker-based method
is not applicable.

Digital cameras have the advantage that they are mostly passive sensors and there-
fore consume relatively little power. However, this low power consumption is offset by
the increased power consumption of the computing unit due to the high computational
complexity of most feature-based algorithms.

Cameras also typically have a limited FOV, which often makes using a multi-camera
system desirable (cite). However, this increases both the power consumption and the overall
weight.
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2.3.2 Ranging sensors

Ranging sensors are sensors that do not require physical contact with the target. A
ranging sensor typically measures the distance between the sensor and the objects.

RaDAR

The Radio Detection And Ranging (RaDAR) sensor is a ranging sensor that uses
radio waves to determine the distance, angle, and even speed of objects (using the Doppler
effect) relative to the measurement location. The advantage of RaDARs is their relatively
high accuracy. The disadvantage of RaDARs is their relatively high power consumption
and weight.

SoNAR

The Sound Navigation And Ranging (SoNAR) sensor is a sensor that works on the
same principle as RaDAR but uses sound instead of radio waves to measure distance.
SoNAR sensors for UAVs most commonly use ultrasound. These ultrasonic sensors typi-
cally measure in one direction only, are less accurate, and have a relatively limited range.
Therefore, they are not suitable for localization. However, they are useful for measuring
height from the ground and collision avoidance.

LiDAR

The LiDAR is a sensor that measures distance by illuminating objects with a laser
and measuring the time it takes for the reflected light to return. There are 1D, 2D and 3D
LiDARs.

1D LiDARs are commonly used in UAVs for ground range or collision avoidance.
They are not suitable for localization. 2D LiDARs are most commonly used in UAVs to
determine position and orientation within a plane. And 3D LiDARs are most commonly
used in UAVs to determine position and orientation in 3D space.

Both 2D and 3D LiDARs are suitable for localization purposes, but 2D LiDARs are
relatively lightweight and have low power consumption, while 3D LiDARs are heavier and
more expensive.

Depth camera

Depth cameras are a combination of cameras and ranging sensors, most commonly a
combination of cameras and LiDAR sensors. They are disadvantaged by the limited FOV
of the camera and the limited range of the LiDAR. They are a relatively good choice for
indoor localization but they often have higher power consumption than some 2D LiDARs.
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Evaluated criteria Multi-camera 2D RaDAR 2D LiDAR 3D LiDAR Depth camera
Weight 0 - + - ++
Power consumption + - ++ 0 +
Accuracy - 0 + ++ 0

Table 2.1: Suitable sensors for indoor localization are rated as bad (-), neutral (0), good
(+), or best (++) for each criterion.

Based on the research, applicable sensor types for indoor localization were selected.
These sensor types were then broadly compared to each other based on the given crite-
ria: weight, power consumption, and accuracy. The orientation results are presented in a
straightforward Table 2.1.

Finally, IMU, 1D, and 2D LiDAR sensors were selected, namely Garmin LIDAR-Lite
v3 and SLAMTEC RPLIDAR-A3. Garmin LIDAR-Lite v3 for height measurement from
the ground and SLAMTEC RPLIDAR-A3 as the primary localization sensor.

The IMU is already included in the non-equipped version of the helicopter, as it is
already part of the Pixhawk 4 module. A barometric sensor can be added to account for
altitude jumps when flying over uneven ground.

2.3.3 SLAMTEC RPLIDAR-A3

The selected LiDAR SLAMTEC RPLIDAR-A318 sensor weighs 190 grams. Its an-
gular range is a full 360 degrees. Its minimum range is 0.2 meters, while the maximum is
25 meters. According to the manufacturer, it can detect a dark object up to 10 meters away.
Its maximum sampling rate is given as 16000 times per second, and the scanning frequency
can be set between 10 and 20 Hz. Its maximum angular resolution is 0.225 degrees.

We operate the LiDAR sensor at a scan rate of 20 Hz and get 720 samples per scan,
which translates to an angular resolution of 0.5 degrees. We also limit the maximum range
to 14 meters due to significant measurement errors at longer distances and to maintain
compatibility with older sensors such as the SLAMTEC RPLIDAR-A2. It was mounted
horizontally on the top of our helicopter. Therefore it allows localization in the horizontal
plane (2D position and 1D orientation).

The used SLAMTEC RPLIDAR-A3 LiDAR scanner does not provide intensity value
measurements. Intensities can otherwise be used to make point-set registration algorithms
more robust by using point feature matching [63].

Its driver in ROS also does not report the time increment between each range mea-
surement. This time increment can otherwise be used in interpolating the position of 3D
points when the scanner is moving. The ROS package called laser geometry provides a

18https://www.slamtec.com/en/Lidar/A3

https://www.slamtec.com/en/Lidar/A3
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C++ class LaserProjection whose method transformLaserScanToPointCloud provides
this functionality.

2.4 Design of an appropriate localization algorithm

A suitable localization algorithm had to be devised. According to part 2.1, the fol-
lowing criteria were considered in the selection of sensors: accuracy, speed, sufficiently low
computational complexity, and compatibility with sensor data.

IMU data can be used to estimate translation and rotation displacement. However,
IMU data tends to drift and must be compensated. Therefore, an additional localization
sensor is required. Our localization sensor of choice is a 2D LiDAR. Thus the sensor data
are planar scans that could be represented as a 2D point cloud. In order to account for
drift, the mapping must be used. Each new scan is incrementally matched to the map. The
map is then updated by storing the matched scans in the map.

There are many localization algorithms that work with ranging sensor data. They can
be divided into four main categories: those based on Iterative Closest Point (ICP), those
based on Lidar Odometry and Mapping (LOAM), and those based on Normal Distributions
Transform (NDT). All of these algorithms are used to align two point clouds and determine
the resulting transformation between them.

2.4.1 Initial alignment estimation

Many scan-matching algorithms require a good estimate of the initial alignment be-
tween the LiDAR scan and the map because they tend to get stuck in the local optimum.

Feature-based registration19 can be used to obtain an initial estimate. Typically,
keypoints need to be selected first for such registration. A keypoint is generally a point of
interest that has a distinctive property.

Features are then extracted from the keypoints. Feature descriptors are used for this
purpose. Feature descriptors are generally mathematical functions that analyze and quan-
tify properties around given keypoints (such as various geometric patterns) and assemble
them into a feature vector. Feature vectors are extracted from both scans (scan and map).
Then, the correspondences between the feature vectors from the two sets of feature vectors
can be estimated using different algorithms. The transformation between the scans (scan
and map) is then estimated based on the correspondences. This transformation can then
be used as an estimate of the initial alignment.

In our work, however, this approach cannot be used because, for feature extraction,
the data from both scans (scan and map) must be of the same type and have the same
number of dimensions.

19https://pcl.readthedocs.io/en/latest/registration_api.html

https://pcl.readthedocs.io/en/latest/registration_api.html
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2.4.2 NDT-based algorithms

The first category is NDT-based algorithms. NDT was first introduced in [64]. The
original NDT worked only with 2D data, but later a version working with 3D data was
proposed and introduced in [65].

NDT essentially works as follows: Points from the first point cloud are divided into
regular cells using a grid. Then, the distribution of points in each cell is estimated using
a normal distribution. An optimization problem is then solved to find the transformation
that, when applied to the second point cloud, maximizes the sum of the point likelihoods
from the second point cloud over the distributions obtained from the first point cloud. For
this optimization, iterative optimization algorithms are often used, and thus NDT can also
be accelerated by using multithreading. Such a solution was used in [66].

The grid size setting is essential for NDT. If the grid size is set unsuitably, NDT
may perform poorly. However, the appropriate grid size is primarily determined by the
geometric properties of the perceived environment and thus cannot be reliably determined
without prior knowledge of the environment. Therefore, NDT cannot be used reliably for
our purposes.

2.4.3 LOAM-based algorithms

LOAM is an algorithm for simultaneous localization and mapping (SLAM). LOAM
was introduced in [23]. LOAM-based algorithms include:

• Advanced implementation of LOAM (A-LOAM) introduced in [67].

• Lightweight and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM)
introduced in [68].

• Fast LiDAR Odometry and Mapping (F-LOAM) introduced in [24].

• Optimized-SC-F-LOAM, Tightly Coupled 3D LiDAR Inertial Odometry and Map-
ping (LIO-Mapping) introduced in [69].

• And Tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping (LIO-
SAM) introduced in [70].

All these algorithms work only with 3D LiDAR data because they extract features from
geometric structures in the scene and thus cannot be used for our purposes.
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2.4.4 ICP-based algorithms

ICP is an iterative optimization algorithm that seeks to find the transformation that,
when applied to one of the point clouds, minimizes the sum of the least squares between the
given point clouds. ICP takes one point cloud as the fixed target and the other point cloud
as the source to which the estimated transformation is applied. A map must be constructed
and used as the target point cloud to account for potential drift between scans. ICP was
first introduced in [71] and [72].

ICP-based algorithms include the following:

• ICP point-to-plane introduced in [71].

• Generalized-ICP (GICP) introduced in [73].

• Fast GICP, Voxelized GICP (VGICP), Fast VGICP, Fast VGICP CUDA introduced
in [74], and many others.

All of these algorithms use surface normal estimation to approximate the neighborhood of
each point in the point cloud using a plane. As a result, the distances to these approximated
surfaces can be measured instead of just the distances between points. Generally, this
improves the speed of convergence.

However, 2D LiDAR data is planar, so fitting a plane to this data to obtain the
normals results in all normals being perpendicular to the plane where the scan was taken.
There is also no guarantee that the resulting map will be sufficiently dimensional (non-
planar). Therefore, these variants of ICP are not suitable for our purposes.

Finally, it was decided that the localization algorithm would be based on the ICP
algorithm.

2.4.5 Iterative Closest Point

Although ICP has already been briefly introduced in section 2.4.4, the pseudocode is
provided and further described in the Algorithm 1 for convenience.

The input to the ICP is a source point cloud, and a target point cloud. Optional
input is the initial estimate of rotation and translation. If both point clouds are 2D, the
rotation matrix is of the form R ∈ R2×2 and the translation vector is of the form t ∈ R2×1.
If at least one point cloud is 3D, the rotation matrix is of the form R ∈ R3×3 and the
translation vector is of the form t ∈ R3×1.

N is a constant whose value corresponds to the number of elements of the source point
cloud. ϵ represents the current mean squared error of the distances and MSE Threshold
is a threshold that represents the maximum acceptable mean squared error. The variable
named Iterations has a value corresponding to the number of already completed cycles, and
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Algorithm 1 Iterative Closest Point

Input:
Source point cloud: S
Target point cloud: T
Initial guess of rotation and translation: {R,t}
A constant equal to the number of source point cloud elements: N
Maximum acceptable mean squared error: MSE Threshold
Maximum number of iterations: Maximum Iterations
Output:
The transformation matrix estimate: Transformation

ϵ ← ∞ ▷ Variables are initialized.
Iteration ← 0
for n = 1 → N do ▷ The initial guess is applied.

Sn = R · Sn + t
end for

Transformation ←
[
R t

0⃗T 1

]
while ϵ > MSE Threshold and Iteration < Maximum Iterations do

C ← CorrespondenceEstimation(S,T )
{R,t} ← TransformationEstimation(C)
for n = 1 → N do

Sn = R · Sn + t
end for

Transformation ←
[
R t

0⃗T 1

]
· Transformation

ϵ ← 1
N

∑N
n=1∥Tn − Sn∥2

Iteration++
end while
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Maximum Iterations is a threshold that denotes the number of maximum iterations. If the
ϵ value exceeds the MSE Threshold or the Iteration value exceeds the Maximum Iterations
threshold, the algorithm terminates. The output is the resulting transformation estimate
in the form of a transformation matrix. Successive transformations are accumulated in this
transformation matrix every cycle.

For each point in the source point cloud S, the function CorrespondenceEstima-
tion(S,T ) assigns the nearest point in the target point cloud T . These pairs are then stored
in the correspondence list C. In general, several types of search methods can be used for this
nearest neighbor search. Brute-force nearest neighbor search is generally not used because
of the poor operational complexity of the algorithm. Therefore, nearest neighbor search
methods such as k-d tree (introduced in [75]) or Octree (introduced in [76]) are used. For
even faster searches, methods that only estimate nearest neighbors are also used. Such
methods include algorithms from the Fast Library for Approximate Nearest Neighbors
(FLANN) as described in [77].

TheTransformationEstimation(C) function estimates the transformation required
to align the source point cloud with the target point cloud.In this pseudocode, the transfor-
mation is returned in the form of a rotation matrix and a translation vector. The function
solves the problem of minimizing a point-to-point distance metric to estimate a transfor-
mation, the formulation of this minimization problem follows:

{R, t} =arg min
{R,t}

1

N

N∑
n=1

∥Tn −R · Sn − t∥2 (2.1)



Chapter 3

Implementation

This chapter lists used libraries, discusses implementation details and limits of used
methods, and describes some simplifications and innovative changes.

3.1 Selection of software frameworks

The code for this thesis was written as a ROS nodelet in C++. For the work
with point clouds and simplifying the implementation of ICP, it was necessary to choose
a suitable library that works well with ROS.

Point Cloud Library (PCL)1 is an open-source library that specializes in image and
point cloud processing. It provides both base implementations and state-of-the-art im-
plementations of algorithms used in filtering, feature estimation, surface reconstruction,
registration, model fitting, and segmentation. A wrapper for implementation in ROS is
also provided. The PCL was introduced in [78].

The C(canonical) Scan Matcher (CSM)2 is an open-source library written in C. It
provides an implementation of an ICP variant using a point-to-line metric. The CSM
library has been created for the purposes of [79]. The package called laser scan matcher3

builds upon the CSM and integrates well inside ROS. It also uses PCL for point cloud
representation. It can be run as a ROS node or nodelet.

Another open-source library that implements ICP is libpointmatcher4. It uses YAML5

files for its point-matching pipeline, allowing developers to change parameters without re-
compiling the code. The libpointmatcher was introduced in [80] and [81]. The libpoint-
matcher library was first introduced in [80] and was further evaluated in [81]. The module

1https://pointclouds.org/about/
2https://github.com/AndreaCensi/csm
3https://github.com/CCNYRoboticsLab/scan_tools
4https://github.com/ethz-asl/libpointmatcher
5https://yaml.org/

https://pointclouds.org/about/
https://github.com/AndreaCensi/csm
https://github.com/CCNYRoboticsLab/scan_tools
https://github.com/ethz-asl/libpointmatcher
https://yaml.org/
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Auto-tuned ICP (AICP)6 builds upon the libpointmatcher library. It provides laser-based
localization and mapping functions and includes a wrapper for ROS. The AICP was intro-
duced in [82] and further used in [83] and [84].

Ultimately, the PCL was chosen because it provides base classes for point cloud
registration that can be easily edited for each project. The Eigen7 library was chosen for
the work with vectors and matrices. Eigen is an open-source C++ template library for
linear algebra, and it integrates well into ROS and PCL. MRS libraries8 were used to
simplify the work with ROS, primarily for converting representations of 3D orientation.
They are a part of the MRS UAV system.

3.2 Filtering

Sometimes the data can be significantly affected by measurement errors. Therefore,
it is often necessary to filter the data before further processing of point clouds. In our
case, these errors manifest themselves as noise in the distance measurements and are most
often modeled using a normal distribution with zero mean and a standard deviation of
approximately 0.01m or 1 cm. Therefore, a filter node was incorporated into our design.
For this purpose, we used the ROS package laser filters. The median filter is particularly
useful for noise removal. However, our tests showed that the use of filters is not necessary
on our platform and that the more significant problem is the added time overhead.

3.3 Localization algorithms

Subsequently, it was necessary to implement the localization algorithm itself. This
section walks through the implementation process, then explains the specific solutions and
some limitations.

3.3.1 Implementation of the ICP algorithm

The base ICP implementation in PCL uses a singular value decomposition (SVD)
[85] compared to the original work of Paul J. Besl and Neil D. McKay [72] that used trans-
formation estimation based on quaternion optimization. Paul J. Besl and Neil D. McKay
also discussed in [72] the use of SVD as the transformation estimation method inside the
ICP algorithm. They state that their quaternion-based algorithm is adequate for up to
three-dimensional spaces but that SVD can be generalized to work in higher dimensions.
This transformation estimation is provided by the TransformationEstimationSVD class.

6https://github.com/ori-drs/aicp_mapping
7https://eigen.tuxfamily.org/
8https://ctu-mrs.github.io/docs/software/uav_core/mrs_lib/

https://github.com/ori-drs/aicp_mapping
https://eigen.tuxfamily.org/
https://ctu-mrs.github.io/docs/software/uav_core/mrs_lib/
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The SVD-based transformation estimation estimates rotation and translation, and its im-
plementation in PCL cannot be constrained to fewer than six degrees of freedom (6DOF).
This leads to problems when 2D point clouds like planar scans are combined with 3D
transformations. Points in the source point cloud tend to be aligned with the target point
cloud in the same plane, even if this does not correspond to the actual orientation in space
during the measurement. This is solved by the class WarpPointRigid3D that, when used
with the TransformationEstimationLM, allows the number of degrees of freedom to be
locked to three degrees of freedom (3DOF).

3.3.2 Constrained nonlinear ICP algorithm

The class IterativeClosestPointNonLinear mainly differs from the base class
IterativeClosestPoint by using a different transformation estimation class,
TransformationEstimationLM, instead of TransformationEstimationSVD. The
TransformationEstimationLM uses the Levenberg-Marquardt algorithm (LM) [85] to align
given correspondences, as proposed in [86]. The LM algorithm in the
TransformationEstimationLM class is using the LevenbergMarquardt class from the
Eigen library.

The WarpPointRigid3D class can be used with TransformationEstimationLM to
limit the rigid transformation to only 3DOF (1D rotation + 2D translation). This is done
by optimizing the equation 3.1 using the transformation matrix from equation 3.2 as the
transformation estimation:

T =argmin
T

1

N

N∑
n=1

∥Tn −T · Sn∥2 (3.1)

T =


cos (ψ) − sin (ψ) 0 tx
sin (ψ) cos (ψ) 0 ty

0 0 1 0
0 0 0 1

 (3.2)

Sn is the nth point from the source point cloud and Tn the nth point from the target
point cloud and N is the number of source point cloud points. The transformation matrix
T is determined by only three parameters tx, ty, and ψ. tx represents the translation along
the X axis, ty the translation along the Y axis, and ψ the rotation around the Z axis in
radians.

In our case, this allows the transformed scans (point clouds), among other things,
to remain at the correct height and not be squeezed into the same plane as the reference
point cloud, as is the case with IterativeClosestPoint and its SVD-based backend. The
TransformationEstimationLM also allows changing the default distance function. It can
be changed by creating a subclass of TransformationEstimationLM and overriding the
computeDistance method.
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3.3.3 Transformation estimation with custom distance metric

We propose a new distance function to be minimized to speed up the alignment of
the given correspondences:

d(S ′
n, Tn) =

∥∥[1 1 0 0
]
· (Tn − S ′

n)
∥∥
2

(3.3)

T =argmin
T

1

N

N∑
n=1

d(T · Sn, Tn)
2 (3.4)

The distance function is the equation 3.3 and the resulting minimization problem is
in the equation 3.4. Sn is the nth point from the source point cloud and Tn the nth point
from the target point cloud. T is the estimated transformation matrix. S ′

n denotes the nth
point from the transformed source point cloud, thus S ′

n = T · Sn. And N is the number of
source point cloud points.

Because our input point clouds are planar, our distance function omits the Z element
of the Cartesian coordinate system. This method does not change the metric used to esti-
mate correspondences and, therefore, should not lead to more outliers where points are close
together in the XY plane and far apart on the Z axis. If outliers are detected, they can be re-
moved by using outlier rejection classes from PCL, such as
CorrespondenceRejectorDistance and CorrespondenceRejectorMedianDistance.

This change should be equivalent to using the point-to-line metric if all lines were
perpendicular to the XY plane in the Cartesian coordinate system. This change should also
yield similar results to using the point-to-plane metric if we accept the assumption that
most measured points belong to surfaces perpendicular to the XY plane in the Cartesian
coordinate system and the density of points along the XY plane of the target point cloud
is sufficiently high.

This assumption should hold for surfaces such as walls that are close enough to the
sensor. Pathways and corridors in buildings should generally satisfy this assumption, while
cluttered or big spaces and natural structures do not. When this assumption is not met,
the results should still be similar to those using the default point-to-point metric.

This pseudo-point-to-plane matching could be improved by introducing a new method
of calculating normals and curvature, where normals would be calculated only in the XY
plane.
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3.3.4 Correction of displacement

Our method did not always converge to the global optimum when there was a sig-
nificant change in position or orientation between two scans. Therefore, we decided to use
a random sample consensus (RANSAC) [87] to improve the initial guess of the position
and orientation before the first iteration of our ICP method.

We decided to use the PCL class CorrespondenceRejectorSampleConsensus, which
uses the RANSAC to reject outliers. It has two configurable parameters: an inlier threshold
and a maximum number of iterations. The inlier threshold is a distance, and it is in the
same units as the source and target data sets. The class uses RANSAC to iteratively choose
a given number of point pairs from a provided list of correspondences. A transformation is
estimated given the point pairs chosen. The source point cloud is then transformed using
the estimated transformation, and the number of points whose corresponding points are
closer than the inlier threshold is recorded. After a fixed number of iterations set by the
maximum number of iterations parameter, the pairs of points with the highest number of
recorded correspondence distances below the inlier threshold are returned as inliers (filtered
correspondences). This solution is similar to the outlier detection algorithm found in [88].

The CorrespondenceRejectorSampleConsensus class uses SVD to estimate trans-
formations and thus suffers from the same problem as the base PCL ICP implementation.
However, this effect is much smaller in this case because the transformations are only
estimated on the given correspondence list, and only the list of inliers (remaining corre-
spondences) is returned at the end. The improved initial estimate is obtained by passing
the list of inliers to our TransformationEstimationLM2D class.

After extensive parameter testing, it was found that our algorithm for refining the
initial guess may run too long before finding a good enough transformation. Two approaches
provide the necessary speedup: reducing the number of correspondences by using another
correspondence rejection algorithm and subsampling the data. We decided to subsample
the data. The following PCL subsampling filters were tested:

• VoxelGrid.

• ApproximateVoxelGrid.

• UniformSampling.

The VoxelGrid class creates a 3D voxel grid [89] over the input point cloud. Then
in each voxel, all points are approximated by their centroid. The ApproximateVoxelGrid

class uses some approximations to create an output similar to subsampling using a 3D
voxel grid. The UniformSampling class also creates a 3D voxel grid, but it downsamples
the data by approximating each voxel with the closest point to the voxel’s center.

In our testing, the VoxelGrid performed the best, with the ApproximateVoxelGrid
being the second and the UniformSampling being last. We think the VoxelGrid performs
best because it preserves the underlying structure well.
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Other downsampling classes like the RandomSample or FarthestPointSampling could
work too. The RandomSample class randomly selects points from the provided point cloud
with uniform probability. The algorithm used in the class was based on Algorithm A from
[90]. The FarthestPointSampling class selects points from the provided point cloud, start-
ing with a random point and then applying the farthest point sampling (FPS) [91], [92]
using the Euclidean distance [93]. We could not use the FarthestPointSampling class
because it was not yet implemented in the version of PCL used while writing this thesis.

3.4 Mapping

It was also necessary to implement a method for mapping. The map had to be able
to store data in 3D. The data structures that were considered to be suitable for the repre-
sentation of the 3D map were:

• Point clouds.

• VoxelGrid.

• VoxelGridOcclusionEstimation9.

• Octree.

Using only point clouds to represent the map seems to be the simplest solution.
However, as the number of points increases, the memory requirements increase linearly.
Therefore, using such a map representation is undesirable.

VoxelGrid is more memory efficient because when the map is updated with new
point cloud data, the point clouds are downsampled.

VoxelGridOcclusionEstimation uses the same data structure as VoxelGrid but
additionally implements a raytracing method to estimate occluded voxels. This method
has been presented in [94].

Octree is a tree-like data structure where each internal node has eight children. Octree
trees can be used to partition 3D space. The tree’s root represents a cube bounding box
surrounding a subset of the given 3D space. The space is then partitioned by recursively
dividing the nodes into eight smaller cubes, or octants. Such an octree-based mapping
method, called Octomap, was introduced in [95]. Like VoxelGridOcclusionEstimation,
Octomap also implements a raytracing method. Using the octree as an internal data struc-
ture makes the map even more memory efficient than VoxelGrid. It also has the advantage
of partially filtering out moving objects from the map due to the raytracing method used.

9http://pointclouds.org/documentation/classpcl_1_1_voxel_grid_occlusion_estimation.

html

http://pointclouds.org/documentation/classpcl_1_1_voxel_grid_occlusion_estimation.html
http://pointclouds.org/documentation/classpcl_1_1_voxel_grid_occlusion_estimation.html
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In the end, Octomap was chosen as the mapping method because it has the best
properties for our purposes among all the other methods mentioned. The octomap server10

implementation, available as a ROS package, was configured and deployed as a ROS node.

3.5 Overview of the proposed localization system

LiDAR Filters RANSAC ICP Octomap

Odometry

Figure 3.1: Diagram of the proposed localization pipeline.

Figure 3.1 shows a simplified diagram of the proposed localization algorithm. The
inputs are LiDAR sensor data and MRS UAV Odometry data. The LiDAR data can be
filtered in the Filter node. Then the sensor data is converted into a point cloud. The
resulting point cloud, the map from the Octomap server, and the odometry data are used to
estimate 2D translation and 1D rotation. The resulting estimated position and orientation
can be sent to the MRS UAV Odometry. The aligned point cloud can be sent to the
Octomap server to update the map.

The map update is controlled by thresholds. These thresholds are in the XY plane
shift, Z axis shift, and rotation around the Z axis. If any of these thresholds are exceeded,
the map is updated with the point cloud that has the lowest mean squared error of the
point-to-point distance metric since the last update.

10http://wiki.ros.org/octomap_server

http://wiki.ros.org/octomap_server
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Chapter 4

Experiments

The proposed localization system was tested in a simulation. The simulations were
conducted in the realistic Gazebo simulator12. The 3D visualization tool RViz3 was used
to display the acquired ROS data. For the purpose of data collection, a ROS node was
programmed to collect data returned from the localization systems for later processing
in Matlab4. It was also necessary to obtain the reference position and orientation of the
helicopter for data comparison purposes, for which the ground truth pose is used. The
ground truth pose is obtained by the Gazebo simulator and forwarded by the Real-time
kinematic positioning (RTK) node (GNSS RTK pose estimation). The simulations were
performed on a laptop with an Intel® Core™ i7-8565U processor, NVIDIA GeForce GTX
1050 4GB GDDR5 graphics card and 16GB of memory running Ubuntu 20.04.6 LTS op-
erating system.The following tests are performed without a feedback loop with the MRS
UAV Odometry node because a suitable Kalman filter for our localization algorithm has
not been implemented.

4.1 Test environments

To verify the functionality of the localization system, it was necessary to create test
environments. The models of the buildings were created in the building editor go the
Gazebo simulator. It was necessary to design them so that different characteristics of the
tested algorithms could be verified. The result is two environments, which for the purposes
of this thesis will be called the building and the loop.

1https://gazebosim.org/
2https://github.com/ctu-mrs/simulation
3http://wiki.ros.org/rviz
4https://www.mathworks.com/products/matlab.html

https://gazebosim.org/
https://github.com/ctu-mrs/simulation
http://wiki.ros.org/rviz
https://www.mathworks.com/products/matlab.html
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4.1.1 The building

The building was designed to test two challenging parameters for indoor localization:
rotation and flight over stairs to a higher floor. The Figure 4.1 show a model of the building
as seen from the Gazebo simulator.

(a) First floor. (b) Second floor. (c) Top view.

Figure 4.1: The environment for testing rotation and flight to the higher floor.

The rotation test is designed to verify the ability of the localization algorithms to
respond to a large change in the displacement of distant points between two measurements
caused by rotation. In this test, a small robotic helicopter takes off and gradually makes a
full rotation around its vertical axis. The resulting map from the Octomap node is shown
in Figure 4.2a as shown in RViz.

The flight to the higher floor test is designed to verify the ability of localization
systems to perform localization during an upward flight in an environment with a horizontal
cross-sectional variation. In this test, a small robotic helicopter takes off, reaches the stairs,
climbs above them to the second floor and travels a short distance. The ground truth flight
path is shown in the Figure 4.3 and the resulting map from the Octomap node is shown
in Figure 4.2 as shown in RViz.

4.1.2 The loop

The loop was designed to test one of the important parameters of localization systems,
loop closure. Figure 4.4a shows a model of the loop as seen from the Gazebo simulator.

The loop closure test is designed to verify the ability of the localization systems to
close the reported flight path when visiting a previously visited location. In this test, the
helicopter takes off, flies around the entire circuit and returns to the starting point. The
ground truth flight path is shown in the Figure 4.5 and the resulting map from the Octomap
node is shown in Figure 4.4b as shown in RViz.
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(a) Rotation test. (b) Flight to the higher floor.

Figure 4.2: Octomap maps visualized with RViz.

(a) Side view. (b) Top view.

Figure 4.3: Flight path for the flight to the higher floor test.

4.2 Testing the RANSAC displacement correction

In this section, a version of our proposed localization algorithm is tested both with and
without the RANSAC displacement correction method. The localization system without
the RANSAC component is called ICP and the localization system with the RANSAC
component is called ICP+RANSAC. The purpose is to compare the performance of the
whole system as well as the performance of its individual parts.
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(a) The environment visualized in Gazebo. (b) Octomap map visualized with RViz.

Figure 4.4: The environment for testing loop closure.

(a) Side view. (b) Top view.

Figure 4.5: Flight path for the loop closure test.

4.2.1 The rotation test

In the Figure 4.6 is the flight path reported by both systems. The flight path figure is
dense because the helicopter was only rotating in place. The Figure 4.7 shows the absolute
deviation of position from ground truth and the Figure 4.8 shows the absolute deviation of
orientation from ground truth. The box plots in Figure 4.9 show the performance of ICP
and ICP+RANSAC in terms of both absolute position deviation and absolute orientation
deviation.

It can be seen that the two systems have similar performance in determining the
heading angle with the same absolute deviation of about 2.5 radians around the time of 25
seconds. The positioning performance is comparable, but the ICP performs slightly better
here. However, precise positioning is not the main focus of the rotation test.
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Figure 4.6: The rotation test flight path.

Figure 4.7: Absolute position deviation from the ground truth.
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Figure 4.8: Absolute orientation deviation from the ground truth.

(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.9: Comparison of ICP and ICP+RANSAC in the rotation test.
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4.2.2 The flight to the higher floor test

In the Figure 4.10 is the flight path reported by both systems. The image of the flight
path looks like a line because it is a top view, so the altitude change to reach the second
floor is not visible. The Figure 4.11 shows the absolute deviation of position from ground
truth and the Figure 4.12 shows the absolute deviation of orientation from ground truth.
The box plots in Figure 4.13 show the performance of ICP and ICP+RANSAC in terms
of both absolute position deviation and absolute orientation deviation.

Again it can be seen that the two systems have similar performance in determining
the heading angle with the same absolute deviation of about 0.034 radians around the time
of 45 seconds. The positioning performance is similar, but again the ICP performs slightly
better here. Both systems report maximum absolute position errors of about 35 cm, which
is at the limit of what can be used for reliable indoor positioning.

Figure 4.10: The flight to the higher floor test flight path.
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Figure 4.11: Absolute position deviation from the ground truth.

Figure 4.12: Absolute orientation deviation from the ground truth.
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(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.13: Comparison of ICP and ICP+RANSAC in the flight to the higher floor test.
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4.2.3 The loop closure test

In the Figure 4.14 is the flight path reported by both systems. The Figure 4.15
shows the absolute deviation of position from ground truth and the Figure 4.16 shows the
absolute deviation of orientation from ground truth. The box plots in Figure 4.17 show the
performance of ICP and ICP+RANSAC in terms of both absolute position deviation and
absolute orientation deviation.

Here, ICP achieves significantly better position estimation results. Its maximum ab-
solute deviation is about 0.5m, while ICP+RANSAC has an absolute positioning deviation
of about 1.5m. As can be seen from the figure and the figure, the error in the reported
position of the ICP+RANSAC positioning system is due to a jump of about 5 seconds,
which occurred during takeoff. Both systems perform similarly in determining the heading
angle, with ICP+RANSAC performing slightly better.

Figure 4.14: The loop closure test flight path.
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Figure 4.15: Absolute position deviation from the ground truth.

Figure 4.16: Absolute orientation deviation from the ground truth.
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(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.17: Comparison of ICP and ICP+RANSAC in the loop closure test.
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4.3 Comparison with the Hector SLAM

For further testing, it was decided to run the tests without the RANSAC displace-
ment correction method, as previous tests have shown that the performance of ICP and
ICP+RANSAC is comparable, and in some cases the ICP results were even better. Tests
were conducted at low flight speeds, and we discuss that the errors that the RANSAC
displacement correction method would handle better would be more apparent at higher
flight speeds.

The following tests compare the parameters of our proposed localization system with-
out the RANSAC displacement correction method with the Hector SLAM. Hector SLAM
is still considered to be a state-of-the-art localization system, mostly used by UAVs and
UGVs. Hector SLAM is also used by the MRS Group5.

4.3.1 The rotation test

In the Figure 4.18 is the flight path reported by both systems. The Figure 4.19
shows the absolute deviation of position from ground truth and the Figure 4.20 shows the
absolute deviation of orientation from ground truth. The box plots in Figure 4.21 show the
performance of ICP and Hector SLAM in terms of both absolute position deviation and
absolute orientation deviation.

Both systems performed similarly, with the ICP performing worse. The maximum
absolute deviation in both position and orientation is acceptable.

Figure 4.18: The rotation test flight path.

5https://github.com/ctu-mrs/hector_slam

https://github.com/ctu-mrs/hector_slam
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Figure 4.19: Absolute position deviation from the ground truth.

Figure 4.20: Absolute orientation deviation from the ground truth.
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(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.21: Comparison of ICP and Hector SLAM in the rotation test.
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4.3.2 The flight to the higher floor test

In the Figure 4.22 is the flight path reported by both systems. The Figure 4.23
shows the absolute deviation of position from ground truth and the Figure 4.24 shows the
absolute deviation of orientation from ground truth. The box plots in Figure 4.25 show the
performance of ICP and Hector SLAM in terms of both absolute position deviation and
absolute orientation deviation.

Here Hector SLAM had considerably better results. The maximum absolute deviation
in position for ICP was over 70 cm, when Hector SLAM had only 30 cm. However, the
median values are comparable between the two methods.

Figure 4.22: The flight to the higher floor test flight path.
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Figure 4.23: Absolute position deviation from the ground truth.

Figure 4.24: Absolute orientation deviation from the ground truth.
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(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.25: Comparison of ICP and Hector SLAM in the flight to the higher floor test.
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4.3.3 The loop closure test

In the Figure 4.26 is the flight path reported by both systems. The Figure 4.27
shows the absolute deviation of position from ground truth and the Figure 4.28 shows the
absolute deviation of orientation from ground truth. The box plots in Figure 4.29 show the
performance of ICP and Hector SLAM in terms of both absolute position deviation and
absolute orientation deviation.

Although neither system has a loop closure detection algorithm, both were able to
report approximately the correct position at loop closure. The ICP localization method
performed quite well in this test. Its maximum absolute position error was less than 25 cm
and its maximum absolute orientation error was less than 0.09 radians. On the other hand,
the Hector SLAM was better in both of these parameters.

Figure 4.26: The loop closure test flight path.
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Figure 4.27: Absolute position deviation from the ground truth.

Figure 4.28: Absolute orientation deviation from the ground truth.
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(a) Absolute position deviation from the
ground truth.

(b) Absolute orientation deviation from the
ground truth.

Figure 4.29: Comparison of ICP and Hector SLAM in the loop closure test.
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4.4 Odometry feedback loop

The previous tests were performed without feedback with MRS UAV Odometry be-
cause although our localization system is compatible with MRS UAV Odometry because it
uses the same message types as Hector SLAM, the position and orientation data are noisy
and have different parameters. For a good cooperation between the two systems, it would
be necessary to add a new Kalman filter to the bank of Kalman filters (in the MRS UAV
Odometry).

This section shows how the system might work approximately when it has a good
initial position estimate from odometry. This is done by using the Hector SLAM as the
transformation estimator and passing the estimated position and rotation estimate to our
proposed localization system.

In the Figure 4.30, we can see that ICP+Odometry has fewer outliers in terms of
absolute distance error in position, but its accuracy has not improved, on the contrary,
it is slightly worse than that of ICP. Where its performance has improved is in absolute
orientation error, as can be seen in the Figure 4.31. However, it still does not achieve the
same results as Hector SLAM, which has the best results in both measured parameters.

Figure 4.30: Absolute position deviation from the ground truth, comparison of ICP,
ICP+Odometry, and Hector SLAM.



4.4. Odometry feedback loop 49

Figure 4.31: Absolute orientation deviation from the ground truth, comparison of ICP,
ICP+Odometry, and Hector SLAM.
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Chapter 5

Conclusion

This work introduced a localization system for a small robotic helicopter in an in-
door environment. Other localization methods were also researched. Experiments were con-
ducted in a realistic Gazebo 3D simulator. The performance and accuracy of the presented
localization system were compared with the state-of-the-art localization system Hector
SLAM. Although the performance of the presented system did not outperform Hector
SLAM, it should be applicable for indoor localization.

Future work could focus on the following areas. Design and implement rotation cor-
rection such as by cross-correlation of two consecutive LiDAR scans or rotation estimation
using angle histograms [96]. Furthermore, better integrate the introduced localization sys-
tem with MRS UAV Odometry, configure and add a new Kalman filter to the bank of
Kalman filters.
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nent model and repository,” Software engineering for experimental robotics, vol. 30,
pp. 231–251, 2007.

[45] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot platform,” Inter-
national Journal of Advanced Robotic Systems, vol. 3, no. 1, p. 8, 2006.

[46] D. P. Eickstedt, “Adaptive sampling in autonomous marine sensor networks,”
WOODS HOLE OCEANOGRAPHIC INSTITUTION MA, Tech. Rep., 2006.

[47] P. M. Newman, “Moos-mission orientated operating suite,” 2008.

[48] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested autonomy for
unmanned marine vehicles with moos-ivp,” Journal of Field Robotics, vol. 27, no. 6,
pp. 834–875, 2010.

[49] S. Joyeux and J. Albiez, “Robot development: from components to systems,” in 6th
National Conference on Control Architectures of Robots, 2011, pp. 15–p.

[50] S. Joyeux, J. Schwendner, T. M. Roehr, and R. I. Center, “Modular software for an
autonomous space rover,” in The 12th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (i-SAIRAS 2014), 2014.

[51] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” in 2015 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2015, pp. 6235–6240.
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List of abbreviations

In the Table 1 and 2 are listed abbreviations used in this thesis.

Abbreviation Meaning
UAV Unmanned Aerial Vehicle
MAV Micro Aerial Vehicle
GPS Global Positioning System
GNSS Global Navigation Satellite System
UGV Unmanned Ground Vehicle
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
LiDAR Light Detection And Ranging
RaDAR Radio Detection And Ranging
SoNAR Sound Navigation And Ranging
SLAM Simultaneous Localization and Mapping
SVO Fast Semi-direct Monocular Visual Odometry
DSO Direct Sparse Odometry
ORB-SLAM2 Oriented FAST and rotated BRIEF feature-based SLAM 2
ROS Robot Operating System
CARMEN Carnegie Mellon Robot Navigation Toolkit
MRPT Mobile Robot Programming Toolkit
MRDS Microsoft Robotics Developer Studio
AIST National Institute of Advanced Industrial Science and Technology
OpenRTM-aist Open Robot Technology Middleware, implemented by AIST
RT-middleware Robotics Technology Middleware
OMG Object Management Group
RT-Components Robotics Technology Components

Table 1: Lists of abbreviations
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Abbreviation Meaning
Orocos Open Robot Control Software
RTT Real-Time Toolkit
OCL Orocos Component Library
YARP Yet Another Robot Platform
MOOS Mission Oriented Operating Suite
MOOS-IvP MOOS Interval Programming
Rock Robot Construction Kit
DDS Data Distribution Service
MRS Multi-robot systems
MRS UAV system Multi-robot Systems Group UAV system
FOV Field of view
ICP Iterative Closest Point
LOAM Lidar Odometry and Mapping
NDT Normal Distributions Transform
MCL Monte Carlo Localization
A-LOAM Advanced implementation of LOAM
LeGO-LOAM Lightweight and Ground-Optimized Lidar Odometry and Mapping
F-LOAM Fast lidar odometry and mapping
LIO-Mapping Tightly Coupled 3D Lidar Inertial Odometry and Mapping
LIO-SAM Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping
PCL Point Cloud Library
CSM The C(canonical) Scan Matcher
AICP Auto-tuned ICP
YAML YAML Ain’t Markup Language
IMU Inertial measurement unit
SVD Singular Value Decomposition
6DOF Six degrees of freedom
3DOF Three degrees of freedom
LM Levenberg-Marquardt algorithm
RANSAC Random sample consensus
FPS Farthest Point Sampling
RTK Real-time kinematic positioning

Table 2: Lists of abbreviations
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